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Abstract—We investigate multichannel relay assisted non-
orthogonal multiple access (NOMA) in slotted ALOHA systems,
where each user randomly accesses one of different channel
slots and different transmit power for uplink transmissions
over two-hop links, to and from the relay. By using multi-
agent reinforcement learning, we propose greedy and non-greedy
random access methods so that each user can learn its best
strategies of random access over multiple relay slots. Random
collisions and fading over the relay slots are both considered.
The behaviors of relay-aided NOMA-ALOHA strategies are
evaluated with the simulation. It is shown that the greedy method
outperforms the non-greedy method in terms of average success
rate. For deployment of relay, the greedy method benefits in
improving transmission reliability under the symmetric relay
channels (between the two-hop links) compared to asymmetric
channels. Thus, it is interpreted that the proposed greedy method
is more promising to the NOMA-ALOHA systems under a
symmetric multichannel relay.

Index Terms—Non-orthogonal multiple access; random access;
ALOHA; relay; reinforcement learning

I. INTRODUCTION

Due to various emerging applications such as smart factory
and smart home, significant increase of Internet of Thing (IoT)
connections is anticipated [1]. To support a huge increase
of connections, non-orthogonal multiple access (NOMA) has
been considered [2]. In NOMA, while multiple users can
share the radio resource by utilizing the different transmission
powers with successive interference cancellation [3].

Considering IoT transmission characteristics [4], adopting
NOMA into slotted-ALOHA systems has been recently stud-
ied [5]–[8]. As the first work that applied NOMA to slotted-
ALOHA, [5] studies the throughput enhancement perspective,
and the analysis of throughput bounds of NOMA-ALOHA
is investigated with derivation of lower bound of throughput
in [6]. Since users would contend for the shared channel
slots in NOMA-ALOHA, multiple studies were conducted on
the channel access scheme. In [7], a non-cooperative game
theory based approach is proposed to decide the mixed strategy
for transmissions and a reinforcement learning (RL) based
approach [9] for NOMA-ALOHA is studied in [8]. In [10],
the use of RL for ALOHA systems is studied under random
collision.

When NOMA is adopted to IoT transmissions, users may
not be able to reach the destination directly due to connectivity
deterioration. The deployment of relays can help to improve

the transmission reliability as well as outage probability [11],
[12]. Thus, it is worth to study on how distributed users can
benefit from both NOMA and multichannel relay slots for
ALOHA systems, and how they can select the shared channel
slots and power level the two-hop links.

In this paper, we study the use of a multichannel relay
in the NOMA-ALOHA random access system and propose
the RL-based random access strategies for NOMA-ALOHA-
RELAY systems. Two different power levels (High, Low) are
considered for users in NOMA. A multi-armed bandit is used
to model random access of distributed users in a multi-agent
learning framework. In this context, we develop two RL-based
random access methods: greedy and ϵ-greedy action decision
algorithm. By the simulation results, we demonstrate the supe-
riority of the proposed system to the existing ALOHA systems.
In addition, it is shown that the greedy selection outperform
the ϵ-greedy selection in terms of average success rate, and the
ϵ-greedy selection shows severely poor performance under a
highly overloaded scenario in which users achieve successful
transmission rates only below 0.1. Moreover, the impact of
the relay node position between users and the destination on
transmission success rate is evaluated. It is found that under the
symmetric relay channels (the average channel gains between
two-hop links are the same), the greedy method can improve
transmission success rates at most.

The remaining part of this paper is organized as follows.
Section II describes the model of relay aided MIMO-ALOHA
system. In Section III, the modelling of the random access with
RL is explained. Then, the proposed solutions are elaborated
in IV. The performance validation are explained in Section V
and this paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a multi-channel relay aided time-slotted ran-
dom access network. Since users are assumed not to be able
to reach the destination directly, they are required to access
the relay with one of M different channel slots. In our model,
there are K users and M different time-slotted channels for
uplink transmissions aided by a single relay node.

Each user can select an random access action (i,msa)
including the channel m ∈ {1, · · · ,M} and the power level
i ∈ {H, L}. H and L indicate the transmit power PH and
PL (PH > PL > 0). Thus, a set of actions is denoted as



A = {(H, 1), . . . , (H,M), (L, 1), . . . , (L,M), 0}, and 0 stands
for no transmission. Let hk;m denote the channel coefficient
from user k on channel m to the relay. The received signal at
the relay on channel m is given by

ym =
∑

k∈KH,m

√
PHhk;msk +

∑
k∈KL,m

√
PLhk;msk + nm, (1)

where KH,m and KL,m are the index sets of users choosing
channel m with power PH and PL, respectively, sk is the
transmitted signal, and nm ∼ CN (0, N0) is the noise of
channel m. Let E[sk] = 0 and E[|sk|2] = 1 for normalization.

For the link from the relay to the destination, denote by
gk;m the channel coefficient of the relayed channel m. The
signal received at the BS on relayed channel m is

ỹm =
∑

k∈KH,m

√
PHgk;mskzk +

∑
k∈KL,m

√
PLgk;mskzk + wm,

(2)
where sk is the signal relayed on behalf of user k, zk ∈ {0, 1}
is a successful decoding indicator at the relay for user k, and
wm ∼ CN (0, N0) is the background noise of the channel m.

We assume that users do not know the channel coefficients,
hk;m and gk;m, thus, no power control is employed. Addition-
ally, since each user chooses only one action at a time, the
index sets, KH,m and KL,m, become disjoint.

It is noteworthy that the proposed relay aided NORA system
exploits not only multiple slotted channels of a relay but
also the power differences. Provided that users cannot directly
communicate with the BS, users access a relay over one of
time-slotted channels which are shared by others. Moreover,
when two users compete for shared channels, the use of power
difference can allow two users access the same channel. The
multi-user superposed transmission in the 3GPP Release 13
was introduced to enable NOMA [13]. However, the use a
small number of power levels would be desirable considering
the tradeoff between the cost and power efficiency, the use
of two power levels is considered. In view of this, for a
given generalized number K of users, each user becomes to
randomly access M channels with a random choice of one
of power levels. This differs from the conventional two-user
NOMA application, in which the users using two power levels
are determined.

III. THE RANDOM ACCESS MODELLING IN RELAY-AIDED
NOMA-ALOHA

A reinforcement learning model is considered for relay-
aided NOMA-ALOHA. The players, actions, rewards are
defined considering random collision and channel fading on
channels over two-hop links (i.e., to and from the relay).

A. Formulation of Reinforcement Learning

K-user random relaying can be formulated with three
elements: the set of users, K, the set of actions, A, and
the rewards Rk (for user k). As for the rewards, user k is
assumed to choose an action of (H,m) or (L,m), which
indicates that the user chooses channel m with transmit power
PH or PL. If the transmission from this user on channel

m to the relay becomes successful, the relay will choose
the same action of (H,m) or (L,m) to transmit to the
BS over the relay channel m. The instantaneous rewards
of user k, Rk, is denoted by Vk;m and Wk;m for selecting
(H,m) and (L,m), respectively. In particular, the rewards are
calculated by three cases depending on the chosen action,
i.e., Rk(H,m) = Vk;m, Rk(L,m) = Wk;m, Rk(0) = C0. C0

denotes the cost of action i = 0, i.e., no transmission. Vk;m and
Wk;m becomes 1 if the transmissions to the BS are successful.
Otherwise, it is equal to 0. Notice that the rewards Rk do not
rely on only channel fading, but also others’ actions.

B. SINR under channel fading and collision
When user k chooses an action (i,m) for i ∈ {H, L}, the

corresponding SINR can be expressed by

SINRk(i,m) = αk;m
Pi

Im
, for i ∈ {H, L}, (3)

where αk;m = |hk;m|2 for channel m to the relay, or αk;m =
|gk;m|2 for relay channel m to the destination. Channel gains
|hk;m| (and |gk;m|) to the relay (and the destination) are
assumed to follow independent Rayleigh fading. In particular,
we have

αk;m ∼ Exp(ᾱk;m), (4)

where ᾱk;m = E[αk;m]. For the sake of simple notation
let α̃k;m denote ᾱk;m for relay channel m to destination.
Interference Im in (3) can be defined as

Im =
∑
k′ ̸=k

αk′;m (PHZk′;H,m + PLZk′;L,m) +N0, (5)

where Zk;i,m for i ∈ {H, L} represent the user k’s activity
binary indicators. If user k chooses an action (i,m), Zk;i,m

becomes 1, otherwise is equal to 0. It is noteworthy that
E[Zk;i,m] = xk;i,m and

∑
m Zk;H,m + Zk;L,m ∈ {0, 1}, for

given k.
Notice that even with no use of a relay, the conventional

approaches [5] [7] [14] consider that users know the CSI. The
knowledge of the CSI at users may allow the power control so
that a required SINR for successful decoding can be obtained
if no collision occurs. Unlike this, as in (1) and (2), transmit
nodes (i.e., users and relay) in this work do not know the
CSI and thus no power control is utilized. Accordingly, the
computation of the average rewards in this work requires a
consideration not only on random collision but also on fading
on both users-relay slots and relay-destination slots.

C. Relay Access Rewards
For action chosen by user k, the instantaneous reward Rk

can be computed in relay assisted NORA.
1) Relay-Reward with (H,m): The signal transmitted from

user k can be decoded successfully only when the following
conditions are all satisfied and Rk(H,m) = Vk;m = 1.

(H1) user k is only the user choosing (H,m);
(H2) the SINR on channel m to the relay is greater than
or equal to ΓH;
(H3) and the SINR on channel m to the destination is
greater than or equal to ΓH.



2) Relay-Reward with (L,m): The transmission by user k
can be successful only when the following conditions are all
satisfied and Rk(L,m) = Wk;m = 1.

(L1) user k is only the user choosing (L,m);
(L2) at most one another user k′ ̸= k, chooses (H,m);
(L3) and the signals from users k and k′ (if exists) can
be decodable with ΓL and ΓH.

IV. PROPOSED MACHINE LEARNING BASED ALGORITHM

The reinforcement learning technique is adopted to help
each user decide the best time slot and power to combat the
random collisions caused by resource contending and channel
fading. Each user observes the reward for the selected action
at each time, and estimates the average reward value of the
action indicating the probability of reliable transmission by
the action. Then, the estimated reward values are exploited for
action choice. We develop the action-value method based on
multi-arm bandit problem which can be considered as MarKov
Decision Process with a single state (or stateless). To present
the action-value method, we focus on a certain user k and
define the following elements:

1) the action a = (i,m) ∈ A where A is the set of actions;
2) the estimated mean reward of action a, qn(a), at time n;
3) the immediate reward of the action at time n, Rn;
4) the initial estimated rewards, q1(a) = 0, for all a ∈ A.

We consider the sample-average method to compute the
estimated reward value. For a given arbitrary action a, the
reward after at most the n-th selection of the action a can
be denoted by Rn(a) and its estimated mean reward after
selecting n− 1 times at most is denoted by qn(a). Then, the
new average of all n rewards, qn+1(a) is expressed by

qn+1(a) =
1

n

n∑
i=1

Ri(a) = qn(a) +
1

n
(Rn − qn(a)), (6)

where 1
n indicates the learning rate and q2(a) = R1(a). It is

worth to mention that qn(a) not only represents the sample
average of Rn’s over at most n selections of the action a,
but also indicates the estimated probability of the successful
transmissions with the action a. The term Rn − qn(a) in (6)
expresses the estimation error. Notice that the factor scaling
the gradient η(n) = 1

n , as a step size of learning, varies from
one step to another and control the learning rate. As n is
larger, the impact of the error term Rn − qn(a) gets reduced,
and the new estimate qn+1(a) becomes to rely more on the
estimated mean of all n−1 rewards qn(a) than the immediate
reward Rn. Therefore, the choice of the learning rate 1

n makes
a variation of estimated rewards to be reduced over time, and
guarantees a convergence to the true action value by the law
of large numbers. Based on the above framework, we propose
RL based random access algorithms for relay-assisted NORA
systems: greedy and ϵ-greedy action selection algorithm.

Greedy algorithm is to select the action in a greedy man-
ner, i.e., selecting the action producing the highest estimated

reward at each time. For given qn = {qn(a)| ∀a ∈ A}, the
action selection rule of the greedy algorithm is expressed as

a(n) = argmax
a∈A

{qn(a)| qn(a) ∈ qn}.

ϵ-greedy algorithm selects actions randomly in a while (with
a probability ϵ ∈ [0, 1]) regardless of the estimated rewards
although it chooses actions greedily most of time. While
the greedy method always selects the action to get the most
reward, ϵ-greedy method intends to improve user’s knowledge
about each action by trying many actions. Two algorithms for
NOMA-ALOHA-RELAY systems are explained in Algorithm
1. (Due to a lack of space, two algorithms are presented
together). Notice that banditH(a) and banditL(a) (in line 8-
9) will return Vk;i,m and Wk;i,m, respectively, considering all
conditions of (H1)-(H3) or (L1)-(L3) in the previous section.

Algorithm 1 RL for NOMA-ALOHA-RELAY systems

1: User k, ∀k, independently run the following steps.
2: Initialization, for a = 1 to 2M + 1,
3: Z(a) = V (a) = W (a) = 0, q(a) = 0, where a ∈ A and

A(a) denotes A(·) of action a
4: procedure RANDOM-ACCESS(M,K,PH , PL, RL, ϵ)
5: while 1 do ▷ A loop until a convergence
6: a ↢ SEL-ACTION(RL, ϵ)
7: user k transmits by action a, ▷ NOMA process
8: V ↢ banditH(a) if a ∈ {(H, 1), · · · , (H,M)},
9: W ↢ banditL(a) if a ∈ {(L, 1), · · · , (L,M)},

10: R ↢ V +W,
11: Z(a) ↢ Z(a) + 1,
12: q(a) ↢ q(a) + 1

Z(a) (R− q(a)),

13: procedure SEL-ACTION(RL, ϵ)
14: if (RL == greedy) a ↢ argmaxa∈A q(a)
15: else if(RL == ϵ− greedy)
16: if(1− rand() < ϵ) a ↢ argmaxa∈A q(a)
17: else a ↢ a random action in A
18: Learning outcomes: qk

V. SIMULATIONS AND DISCUSSIONS

To evaluate the performance of proposed reinforcement
learning driven NORA-RELAY systems, two cases of high
traffic are considered: the double-distribution case of M chan-
nels and K(= 2M) users, and the over-distribution case of
K(> 2M) users. Two power levels are exploited for NOMA
users. As a performance indicator, we measure the average
success rate (ASR) of actions selected by each agent indicating
the transmission reliability of actions. In addition, we illustrate
the sum of estimated rewards (ERs) of action at each action
to address the efficacy of accumulated action decisions. The
simulation parameters are summarized in Table I.

We first consider the double-distribution case of 8 users
and 4 channels with two power level. In Fig. 1, the ASRs of
two systems, the proposed RL-NOMA-ALOHA-RELAY and
RL-ALOHA-RELAY, are illustrated. To focus on comparison
of two systems’ performance, the greedy algorithm is used



TABLE I: Simulation Parameters

Parameter Value
Number of users and channels, {K,N} {8, 4} and {12, 48}
Transmit power level, {PH, PL} {0.8, 0.2}
Channel gain, {ᾱk;m, α̃k;m} {10, 10} dB

ϵ 0.2

Simulation time (transmissions) {3500, 5000}

Fig. 1: The effect of NOMA in double-distribution case

for both systems. In the proposed system, users randomly
select one of M channel slots and one of two power levels
while users in RL-ALOHA-RELAY can randomly access one
channel slot only with the high power. The ASRs of the
proposed system are split with two user groups depending on
the selected power level. While high power users (blue solid
lines) are shown to achieve around 0.93 success rates after
1000 transmissions, low power users (red solid lines) achieve
only around 0.4 success rates after 2000 transmissions. For
the relaying ALOHA, only 4 users (dashed lines) are able to
transmit with 0.4 success rates after 2000 transmissions.

Fig. 2: The effect of relay assist in double-distribution case

When users cannot reach the destination directly, deploying
a relay can extend the users’ connectivity. In Fig. 2, the relay
effect is illustrated by comparing the ASRs of two system, a
relay assisted system and a non-relay system. It is observed
that ASRs of two user groups are increased by using a relay
(dashed to solid lines). Such gain is explained that employing

a relay node is beneficial to combat the channel fading for both
high and low power users. Actually, the relay node position
can affect the system performance. In Fig. 3, the ASRs of
symmetric and asymmetric relay channels are compared. For
symmetric channels, the average SNR level of two-hop links
(to and from the relay) is set to the same, {ᾱk;m, α̃k;m} =
{10, 10}. For asymmetric channels, the average SNR of two-
hop links is set differently, {ᾱk;m, α̃k;m} = {20, 0} dB. It
is observed that both high and low power users can obtain
higher ASRs under the symmetric relay channels. With the
assumption that the relay node is deployed much closer to
users, we use the asymmetric channel setting of {20, 0} dB.
It is analyzed, by locating the relay closer to users, the impact
of fading of the link from relay makes ASRs to be degraded.
When relay is located closer to the destination with the setting
{ᾱk;m, α̃k;m} = {0, 20} dB, the similar result is observed (no
graph due to a lack of space). Thus, it is found that the effect
of relay can be the most under symmetric relay channels.

Fig. 3: The effect of a relay position with greedy selection

Fig. 4: ASRs of ϵ-greedy algorithm

We also evaluate the ASR of ϵ-greedy algorithm depicted in
Fig. 4. Compared to the performance of greedy selection illus-
trated in Fig. 1, lower ASRs of both group users are achieved
with ϵ-greedy selection. Moreover, ϵ-greedy selection needs
more transmissions to reach to convergence. For example,
in greedy selection, convergence of the high power group’s
ASRs occurs after 1000 transmissions, but it happens after
2000 transmissions in ϵ-greedy selection. It is interpreted that



random selection in ϵ-greedy algorithm tries to explore differ-
ent actions but it actually results in decrease of transmission
success rate and increases of convergence time.

The rewards of actions can be visualised by using the sum of
estimated rewards (ERs) from the individual user perspective.
The sum of estimated rewards is calculated over all actions
at a certain time for each user and is illustrated over the
transmission trials in Fig. 5. While Fig. 5(a) shows the sum
of ERs of greedy algorithm, the sum of ERs per each user is
observed to converge over transmission trials. Similar to curves
shown in Fig. 1-3, the sum of ERs is grouped depending on
the chosen power level. In Fig. 5(b), the sum of ERs of the ϵ-
Greedy action selection is depicted. The sum of ERs of users
can be grouped but a small amount of ripples is observed.
Such ripple is explainable that each user selects the non-greedy
actions with the probability of ϵ.

Fig. 5: Sum of ERs across users over transmission

The over-distribution case of K > 2M is considered
with the setting of K = 48 and M = 12. First, we apply
the greedy selection and the obtained ASRs in RL-NOMA-
ALOHA-RELAY are illustrated in Fig. 6. Similar to the
double-distribution case presented in Fig. 1, the ASRs are
split with two group depending on the selected power level.
However, both group users can achieve much lower ASRs
(the ASRs of low power group reaches to only 0.06) and
each 12 user (the same number of channels M ) in two power
groups could have data transmission opportunities. Moreover,
this over-distributed case needs the longer convergence time.
We also evaluated ASRs of ϵ-Greedy selection even though the
result is not included. While all 48 users only achieve the very
low ASRs below 0.1, ASRs are shown not to be converged.
It can be interpreted that non-greedy action selection in ϵ-
Greedy algorithm distributes the slot access chances to users
but hinders convergence. Based on observation, it is found ϵ-
greedy selection is not effective in highly overloaded scenarios.

VI. CONCLUSIONS

We studied the multichannel relay assisted NOMA-ALOHA
system where each user can randomly select one of differ-
ent time slots over multiple two-hop channels and exploit
power differences for uplink transmissions. We proposed the

Fig. 6: ASRs for greedy algorithm in the over-distribution case

reinforcement learning based random access algorithms with
no central cooperation, no channel information and no power
control. In the multi-agent learning framework, each user can
learn its own strategies to improve transmission success rates.
Performance of the proposed greedy and ϵ-greedy algorithm
was evaluated in terms of average success rates. greedy al-
gorithm outperforms ϵ-greedy algorithm, and even in highly
overloaded scenarios, greedy algorithm shows its effectiveness.
For deployment of a relay, it was found that the condition of
symmetric relay channels would be beneficial for the greedy
method to maximise the effect of relay.
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