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Abstract Searches of large-scale surveys have resulted in the discovery of over 1000
brown dwarfs in the Solar neighbourhood. In this chapter we review the progress in
finding brown dwarfs in large datasets, highlighting the key science goals, and sum-
marising the surveys that have contributed most significantly to the current sample.

Introduction

The first two confirmed brown dwarf discoveries were published in 1995 following
many years of intense searching (Nakajima et al 1995; Rebolo et al 1995). One of
these, G229B, was found via high-contrast imaging as a faint companion to a nearby
M dwarf (Nakajima et al 1995). The other, Tiede 1, was found from a deep imaging
search (with follow-up spectroscopy) of the Pleiades cluster (Rebolo et al 1995).
While both these discoveries represent the result of large efforts to identify brown
dwarfs, their discovery routes turned out to be relatively minor contributors to the
growing catalogue of brown dwarfs. In the following 20 years, the main discovery
route for brown dwarfs was via large-scale surveys. That the first discoveries did not
arise from large-scale sky surveys reflects the faintness of the targets in comparison
to the depths photographic surveys available in the early 1990s, and the difficulty
of identifying targets with hitherto unknown photometric properties from large cat-
alogues. However, despite the challenge of searching for such objects in large-scale
surveys, it remains the fundamental pathway for characterising the substellar popu-
lation.

The first wide field searches for brown dwarfs used the all-sky photographic sur-
veys carried out during the second half of the 20th century. These searches were
limited by the available photometric bands (typically BRI), and initial ignorance of
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the spectral energy distributions of brown dwarfs in the solar neighbourhood. In ad-
dition, the depth of these surveys was insufficient to detect more than a handful of
the nearest targets. Large-scale discovery of brown dwarfs would need to wait for the
large-scale digital surveys with sensitivity in the near-infrared that came online at
the turn of the 21st century. The discovery methods largely followed those applied to
finding late-type M dwarfs in photographic surveys, which fell into two categories:
searches that relied on the motion of nearby and faint objects; and searches that
distinguish the targets via their photometric colours. Of these, the dominant search
route for brown dwarfs from wide field surveys has been photometric selection. The
efficacy of the method depends on the difference between the spectral morphology
of the targets of interest and the background population. This allows the definition
of a region of colour space that effectively isolates the target population. In practice,
the separation is rarely perfect, and photometric selections are typically contami-
nated with one or more type of interloper. As a result, spectroscopic confirmation is
usually required to define reliable samples.

Searches for brown dwarfs in large-scale surveys followed on from the ongoing
process of extending the stellar spectral sequence to ever lower temperatures and
later spectral types. Spectral types of M7 and later are collectively known as ultra-
cool dwarfs (UCDs). As such, all but the youngest brown dwarfs are also UCDs. The
search for brown dwarfs in large-scale surveys is thus also the search for UCDs, and
it both follows and drives the definition the UCD spectral sequence. Rapid progress
was made extending the UCD sequence in the late 1990s and early 2000s, resulting
in the definition of the L and T spectral classes (Kirkpatrick et al 1999; Burgasser
et al 2006). A detailed review of these spectral classes is beyond the scope of this
chapter, but may be found in Kirkpatrick (2005). Extending the spectral sequence
beyond the T sequence proved impossible using ground based surveys, and will be
discussed later in this chapter, and in detail elsewhere in this Handbook.

Figure 1 shows the spectral sequence from M7 to T6. The basis for key colour se-
lection criteria is immediately apparent. Both L and T dwarfs may be distinguished
from M dwarfs via the red slope of their spectra as we move from optical to the
near-infrared J band. Colour cuts such as i′− z′>∼1.8 colours, or a z′− J>∼2.5 cut
are often used as initial selectors for LT dwarfs. Often such selections require the
combination of optical with near-infrared surveys, which may or may not have com-
plementary depths. The faintness of the targets in the submicron region means that
optical surveys often probe significantly smaller volumes for LT dwarfs than their
near-infrared contemporaries. In these cases, the full depth of a near-infrared survey
can only be searched by allowing non-detections in the optical survey to place limits
in the optical to near-infrared colours. Such search methods are known as ”dropout”
methods: candidates are required to be undetected at certain wavelengths.

Typical contaminants in such selections are late-M dwarfs that have been scat-
tered into the selection by photometric error. Such contaminants can be weeded
out of searches for T dwarfs via further selection based on blue J −H colours.
Alternatively, selecting mid- to late-L dwarfs is facilitated by requiring very red
J−H colours. Selections targeting LT transition objects and early-T dwarfs suf-
fer the greatest contamination due to J−H ∼ 0 colours that overlap with those of
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Fig. 1 Near-infrared spectra of M7 - T6 spectral standards from the SpeX Prism Library (Burgasser
2014). Key absorption features are indicated, and the approximate bandpasses for commonly used
photometric filters are shaded grey.
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M dwarfs. As a result they have been generally underrepresented in the samples
selected from near-infrared surveys.

The nature of the photometric selection methods for LT dwarfs means that, with
very few exceptions (e.g. Folkes et al 2012), searches for these objects have been
focused away from the Galactic plane. This is for two main reasons. Firstly, match-
ing survey catalogues of different wavelengths and epochs is extremely problematic
in the crowded fields when the targets of interest often have large proper motions.
Secondly, selecting targets based on red optical to near-infrared colour is prone to
significant contamination from reddened background stars. As a result, sight lines
near the Galactic plane represent the greatest source of incompleteness in the census
of UCDs in the Solar neighbourhood.

Most of the dedicated large-scale searches for brown dwarfs have been led by
teams within, or closely associated with, survey science teams. The details of the
survey design, which may or may not have been devised with brown dwarf science
in mind, drive the search strategies that these teams employ. While discovery science
has undoubtedly been pursued by scientists beyond the survey consortia, the realities
of winning telescope time for extensive follow-up mean that the head start given to
the survey teams has often been decisive. Consequently, discoveries of brown dwarfs
are commonly tied to one particular survey, even though multiple survey datasets are
typically used to select candidates from the many millions of detected sources.

Table 1 summarises the tally of L and T dwarf discoveries from wide field surveys
over the past two decades, along with an estimate total number of detectable LT
dwarfs if the full survey depth and area was exploited in each case. Each of these
surveys is discussed in detail later in this chapter. What is immediately apparent
is that the numbers of spectroscopically confirmed LT dwarfs fall well short of the
maximum detectable number. This is for several reasons.

Firstly, even low-resolution spectroscopic confirmation of LT dwarfs requires
significant resources in the form 4m-class telescope time for targets with J<∼17.0, or
8m-class telescope time for fainter targets. This means that the number of confirmed
LT dwarfs in each survey often depends on how its volume is accessed: via wider
coverage or deeper imaging over smaller areas. For example, the UKIDSS Large
Area Survey (LAS) has confirmed fewer L dwarfs than 2MASS, despite probing
nearly ten times the volume. This reflects the fact that the extra volume probed by the
UKIDSS LAS was at much fainter magnitudes. As a result, spectroscopic follow-up
was largely restricted to 8m class facilities, and focused on tightly defined science
goals such as understanding the historic birthrate of brown dwarfs (e.g. Day-Jones
et al 2013; Marocco et al 2015) or constraining the substellar initial mass function
(e.g Burningham et al 2013).

The changing nature of the science that drives the search for brown dwarfs in
large surveys is another big factor. Current community effort appears to be focused
on exploring the extremes of brown dwarf parameter space such as low tempera-
tures (e.g. Luhman 2014; Skemer et al 2016), young ages and planetary masses(e.g.
Gagné et al 2017; Faherty et al 2013), and low metallicity (e.g. Lodieu et al 2010;
Mace et al 2013b). Studying such extremes typically involves detailed follow-up
of particularly interesting targets. The sheer expense of detailed characterisation of
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very faint brown dwarfs precludes their study unless faint targets are only the ex-
amples of their kind, as in the case of the coolest brown dwarfs. This limits the
exploitation of deeper surveys, so all-sky surveys continue to provide the dominant
resource for ongoing studies of brown dwarfs in the Solar neighbourhood.

Survey Bands Area / deg2 Depth Npub(L) Npub(T) Refs Ndet (L) Ndet (T)
DENIS iJH 20000 J = 16.5 49 1 1–7 1400 56
2MASS JHKs all-sky J = 16.5 403 57 8 – 39 2800 110
SDSS (I & II) ugriz 15000 z′ = 20.5 381 55 40 – 50
UKIDSS-LAS Y JHK 3600 J = 19.6 142 263 50–59 22000 1100
CFDBS(IR) iz(J) 1000 (355) z′AB = 24.0;J = 20.0 170 45 60–64 3800 180
WISE W1W2W3W4 all-sky W2 = 15.6 10 176 64–67 19000 1200

Table 1 The numbers of published L and T dwarfs by survey, discovery references and the poten-
tial numbers detectable based on the surveys’ depths and current estimates of the L and T dwarf
space densities. Space densities were compiled from data in Cruz et al (2007), Day-Jones et al
(2013) and Kirkpatrick et al (2012). SDSS potential yields are not projected due to poor availabil-
ity of mean z′ magnitudes for LT dwarfs. The CFBDS(IR) yields are based on the region with J
band overlap. References: 1) Delfosse et al (1997); 2) Martı́n et al (1999); 3) Martı́n et al (2010);
4) Bouy et al (2003); 5) Kendall et al (2004); 6) Phan-Bao et al (2008); 7) Artigau et al (2010) ; 8)
Kirkpatrick et al (1999) ;9)Kirkpatrick et al (2000); 10) Kirkpatrick et al (2008); 11) Kirkpatrick
et al (2010a); 12) Burgasser et al (1999) ; 13) Burgasser et al (2000);14) Burgasser et al (2002); 15)
Burgasser et al (2003a) ; 16) Burgasser et al (2003b) ; 17) Burgasser et al (2003c); 18) Burgasser
et al (2004);19) Burgasser (2004a) ; 20) Kirkpatrick et al (2010b) ; 21) Reid et al (2008); 22) Gizis
(2002); 23) Gizis et al (2000); 24) Gizis et al (2003); 25) Kendall et al (2003); 26) Kendall et al
(2007); 28) Cruz et al (2003); 29) Cruz et al (2004); 30) Cruz et al (2007); 31) Wilson et al (2003) ;
32) Folkes et al (2007); 33) Metchev et al (2008); 34) Looper et al (2007); 35) Looper et al (2008);
36) Sheppard and Cushing (2009); 37) Scholz et al (2009); 38) Geißler et al (2011); 39) Tinney
et al (2005); 40) Fan et al (2000); 41) Hawley et al (2002); 42) Geballe et al (2002); 43) Schneider
et al (2002); 44) Knapp et al (2004); 45) Chiu et al (2006); 46) Zhang et al (2009); 47) Scholz
et al (2009); 48) Schmidt et al (2010); 49) Leggett et al (2000); 50) Lodieu et al (2007b); 51) Pin-
field et al (2008); 52) Burningham et al (2008); 53) Burningham et al (2009); 54) Burningham et al
(2010a); 55) Burningham et al (2010b); 56) Burningham et al (2013); 57) Cardoso et al (2015); 58)
Day-Jones et al (2013); 59) Marocco et al (2015); 60) Delorme et al (2008b) 61) Reylé et al (2010);
62) Delorme et al (2010); 63) Albert et al (2011); 64) Kirkpatrick et al (2011); 65) Kirkpatrick et al
(2012); 66) Mace et al (2013a); 67) Pinfield et al (2014); 68) Lodieu et al (2012)

Although significant questions remain regarding the properties of the brown
dwarf population, particularly in a Galactic context, there is currently little appetite
within the community for addressing these questions via large-scale spectroscopic
follow-up of faint brown dwarfs selected from current or future surveys. The work
of Skrzypek et al (2015, 2016) is worth noting here. They combined eight filter
bandpasses (izY JHKW1W2) across three surveys (SDSS, UKIDSS and WISE) to
estimate photometric spectral types for some 1361 LT dwarfs. Limited spectro-
scopic follow-up suggests that their method is sound, and their photo-typing method
achieves ±1 subtype accuracy across the LT range. Such approaches provide the
opportunity to extend current studies of brown dwarfs to much larger samples and
likely represent a key future methodology for large-scale searches for brown dwarfs.



6 Ben Burningham

In the remainder of this chapter, we summarise the details of the surveys which
contributed most significantly to the current brown dwarf census, and highlight some
of the key science results of large-scale searches for brown dwarfs.

Significant large area surveys

The Deep Near-Infrared Survey of the Southern Sky (DENIS)

Carried out between 1996 and 2001 the 1m-ESO telescope at La Silla (Chile),
the Deep Near Infrared Survey of the Southern Sky (DENIS) was one of the
first substantial surveys in the near-infrared. It covered 20,000 square degrees in I
(λ ≈ 0.8µm), J (λ ≈ 1.25µm) and Ks≈ 2.15µm) photometric bandpasses (Epchtein
et al 1997), and was a significant contributor to the early progress of brown dwarf
science the Solar neighbourhood. Its choice of filters provided leverage on the ex-
tremely red 0.8−1.2µm SED of L and T dwarfs, and so brown dwarfs could be di-
rectly selected from the survey catalogue without the need to cross-reference other
surveys sensitive to other wavelengths. This resulted in the discovery of 50 brown
dwarfs (see Table 1).

The Two Micron All Sky Survey (2MASS)

The Two Micron All-Sky Survey (2MASS ; Skrutskie et al 2006) was the first,
and to date only, all-sky survey covering the 1− 2.5µm near-infrared region. A
transformational contribution to the study of low-mass stars and brown dwarfs, it
provided discovery images for over 400 L dwarfs and nearly 60 T dwarfs (Table 1)
and continues to feature as a key dataset in many ongoing studies of brown dwarfs
in the Solar neighbourhood. The survey was completed between 1997 and 2001
using one 1.3m telescope in each hemisphere: one at the Fred Lawrence Whipple
Observatory, on Mount Hopkins, Arizona (USA); and one at the Cerro Tololo Inter-
American Observatory (Chile). The survey imaged the whole sky in three filters:
J (≈ 1.235µm); H (≈ 1.662µm); Ks (≈ 2.159µm).

Alone, the wavebands covered by 2MASS would not allow photometric selection
of brown dwarfs against a background of stars with similar JHKs colours. However,
its depth in JHKs was well matched to the depth of the various photographic sur-
veys that were digitised during the 1990s, allowing the selection of candidate brown
dwarfs using the dropout technique. The principal search strategy for brown dwarfs
in 2MASS was photometric and relied on the red optical-to-NIR colours of L and T
dwarfs, combined with their respective red and blue J−Ks colours. Initial candidate
selections required non-detections in the red photographic plates,which combined
with 2MASS detection limits to set a colour limit of R−Ks>∼5.5 (e.g. Kirkpatrick
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et al 1999). The NIR colours of candidates were then used to distinguish T dwarfs
and L dwarfs. The many discoveries made in 2MASS are summarised and refer-
enced in Table 1.

The Sloan Digital Sky Survey (SDSS)

The SDSS is widely regarded as being the most successful astronomical survey of
all time. The SDSS really represents a set of surveys that continue through the time
of printing, targeting diverse science goals. Here, we consider the original SDSS
obtained as part of SDSS I & II, now known as the SDSS Legacy Survey. Data col-
lection started in 2000 (York et al 2000) and the final data release took place in 2011
(Adelman-McCarthy and et al. 2011), incorporating data taken as part of the original
SDSS observing plan up until 2008. The facility has diversified its survey portfolio
since 2008, pursuing spectroscopic surveys targeting wide-ranging science goals in-
cluding exoplanets, Galactic structure and the large-scale structure of the Universe
across optical to near-infrared wavelengths (e.g. Eisenstein et al 2011; Blanton et al
2017). The SDSS Legacy Survey consisted of two principal components: a pho-
tometric survey and a spectroscopic survey. Both were obtained using the 2.5-m
wide-angle optical telescope at Apache Point Observatory in New Mexico (USA).

The SDSS photometric survey imaged some 8,000 square degrees of sky in ugriz
filters. The survey region targeted the northern Galactic cap, and three stripes in cov-
ering the southern galactic cap. This strategy minimised contamination from Milky
Way foreground gas, dust and stars that would interfere with the survey’s principal
goal of constructing a three-dimensional map of the distribution of galaxies. This
strategy did not hinder searches for brown dwarfs in the solar neighbourhood, which
would generally avoid the Galactic plane in any case. The spectroscopic survey was
predominantly targeted at determining redshifts for galaxies, and it obtained spectra
of some 1.8 million targets

Brown dwarfs were discovered within the SDSS photometric catalogues from
the outset, with seven L dwarfs and two T dwarfs identified in commissioning data
(Strauss et al 1999; Tsvetanov et al 2000; Fan et al 2000). Candidates were se-
lected via (i′− z′) vs (r′− i′) colour-colour diagrams, and via r′ and i′ band dropout
searches. Searches of SDSS photometric catalogues were also complemented with
2MASS photometry to further constrain the colours of the targets (e.g. Chiu et al
2006). SDSS provided the discovery data for some 381 L dwarfs and 55 T dwarfs
to-data (see Table 1.

In addition to photometric selections of candidates, the work carried out by
Schmidt et al (2010) is of note for selecting L dwarfs based on their spectra, rather
than broadband colours. This unique selection method is largely free of colour bi-
ases that can be introduced by photometric methods, and was made possible thanks
to the spectroscopic survey carried out as part of the SDSS. Although the vast ma-
jority of targets within the SDSS spectroscopic survey were extragalactic in nature,
approximately 5% of its spectra were of objects with late-M spectral type and cooler
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(Schmidt et al 2010). The resulting sample of spectroscopically selected L dwarfs
had a median J−Ks colour 0.1 magnitudes bluer than previous photometric selec-
tions for spectral types on the L0 - L4 range. This example highlights how colour
based selections can introduce bias, particularly when colour cuts are aimed at dis-
tinguishing objects in spectral type transition regions.

The UKIRT Infrared Deep Sky Survey (UKIDSS)

The UKIRT Infrared Deep Sky Survey (UKIDSS) was carried out using the purpose
built Wide-Field CAMera (WFCAM; Casali et al 2007) between 2005 and 2012.
UKIDSS employed what is commonly known as a wedding cake strategy: the survey
as a whole consists of a set of sub-surveys of decreasing sky-area and increasing
depth (Lawrence et al 2007). The original plan for UKIDSS aimed to image some
7500 square degrees, but the largest planned area for single sub-survey was just over
half that area. This approach is seen frequently in modern sky surveys which tension
various science goals with differing requirements in terms of depth and coverage
against finite observing time on dedicated survey instruments.

In order of sky coverage, the surveys that comprise UKIDSS are as follows. The
Large Area Survey (LAS): 3700 sq. degs. in Y JHK principally covering overlap
sky with SDSS outside the Galactic plane to a typical 5σ depth of K < 18.4. The
Galactic Plane Survey (GPS): 1800 sq. degs. at JHK covering the Galactic plane
within b± 5deg to K < 19.0. The Galactic Clusters Survey (GCS): 1400 sq. degs.
covering 10 star clusters in JHK to a depth of K < 18.7). The Deep Extragalactic
Survey (DXS): 35 sq. degs. in JHK to K < 21). The Ultra Deep Survey (UDS): 0.8
sq. degs. in JHK to K < 25.3.

The most prolific of the UKIDSS surveys for brown dwarf detections was the
LAS. The top two LAS headline science goals were: discovering the coolest brown
dwarfs in the Solar neighbourhood, and identifying the highest redshift quasars (z >
6). Both of these target populations are heavily contaminated by Galactic M dwarfs
in NIR colour-colour diagrams, so the bulk of the LAS footprint was placed to
coincide with the SDSS. This allowed the reddest bands of the SDSS to be used
to exclude the populous M dwarfs to nearly the full depth of the J band survey.

To further aid in the photometric selection of its key science targets, the LAS was
the first wide field survey to employ the MKO Y band filter, centred at 1.02µm. This
filter was designed to allow effective discrimination between high-redshift quasars
and T(+) dwarfs, which otherwise share similar colours in JHK. This discrimination
relied on the fact that the L and T dwarfs discovered up to this time had Y −J > 1.0,
with cooler brown dwarfs expected to be even redder, whilst high-redshift quasars
were expected to remain bluer than this limit up to z∼ 7 (Warren and Hewett 2002).
Early searches of the LAS for extremely cool T dwarfs, and the preemptively classi-
fied Y dwarfs, were guided by this expectation. However, the first brown dwarf to be
identified with spectral type later than T8, ULAS J0034-0052, was excluded from
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early searches and was instead identified as part of a search for quasars, displaying
Y − J = 0.75±0.1.

As the survey progressed it became clear that late-T dwarf colours frequently
overlapped with those of high-redshift quasars, with the latest type objects generally
found with Y −J < 1 (e.g. Burningham et al 2010b, 2013). This trend to bluer Y −J
colours is now understood in terms of rain-out chemistry removing K I from the
gas phase in the coldest objects, and weakening the strong, pressure-broadened,
potassium line that dominates the T dwarf spectral morphology in the Y band (e.g.
Line et al 2017). The small number of T7+ dwarfs discovered in previous surveys
did not initially show this trend, and the experience serves to illustrate the potential
pitfalls of using previously justified photometric selection criteria to explore new
parameter space for ultracool dwarfs.

The final photometric selection methods for the principal UKIDSS late-T dwarf
follow-up programme are outlined in detail in Burningham et al (2013), which
also provides copies of the SQL queries used to the perform the selections in the
WFCAM Science Archive (WSA). These selections employed a relatively weak
Y −J > 0.5 requirement. This weak criterion was necessary to avoid excluding late-
T dwarfs with blue Y − J colours, but let many M dwarfs pass the selection. A
J−H < 0.1 cut removed the bulk of L and M dwarfs, while a final z′− J > 2.5
excluded further M dwarfs. For the bulk of the volume searched, this final cut
was achieved by requiring candidates to the undetected in the SDSS. This search
confirmed some ∼ 200 T dwarfs, making it the most prolific source of confirmed
T dwarfs to-date.

Canada-France Brown Dwarf Survey CFBDS(IR)

The Canada-France Brown Dwarf Survey (CFBDS; Delorme et al 2008b) covered
some 1000 square degrees in iz filters, with J band coverage in 355 square degrees.
The iz survey drew data from two existing surveys carried out using MegaCam
on the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii (USA):
the CFHT Legacy Survey (CFHTLS; Cuillandre and Bertin 2006) and the Red Se-
quence Cluster Survey (RCS-2; Yee et al 2007). Candidate brown dwarfs were se-
lected on the basis of red i−z colours, and followed up with J band imaging. Despite
its modest coverage this survey made a significant contribution to determining the
local space density of brown dwarfs (Reylé et al 2010) and discovering extremely
cool T dwarfs (Delorme et al 2008a).

The Wide-field Infrared Survey Explorer (WISE)

Launched in 2009, the WISE mission surveyed the entire sky in four wavebands
that are largely inaccessible from the ground, centred at 3.4µm (W1), 4.6µm (W2),
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12µm (W3) and 22µm (W4) (Wright et al 2010). In many ways in can be viewed
as a successor to 2MASS in terms of brown dwarf science. Early exploitation and
follow-up for brown dwarf science was led by the same team at the Infrared Process-
ing and Analysis Center in Pasadena that pursued early brown dwarf science with
2MASS. As with 2MASS, early science drivers were concerned with completing
a census of brown dwarfs in the solar neighbourhood and defining a new spectral
type, in this case the Y spectral type.

The initial survey design was based around a cryogenic mission lifetime of 6
months, during which the full sky was imaged in all four passbands. The cryogen
lasted after the initial pass was completed, allowing 20% of the sky to be imaged
a second time in all four bands. The shortest two wavebands (W1 & W2) do not
require additional active cooling of the spacecraft by venting cryogen, and post-
cryogen operations were planned to take advantage of this. Following the exhaustion
of cryogen, the mission was renamed NEOWISE (for Near-Earth Object WISE), and
completed the second pass of the whole sky in W1 and W2 with the aim of detecting
potentially hazardous NEOs (Mainzer et al 2011). The point source catalogue for the
full cryogenic mission was released as the WISE All-Sky data release in 2012. In
2013, data from the cryogenic mission and subsequent post-cryogenic NEOWISE
mission were published as the ALLWISE data release.

The WISE spacecraft performed the survey by scanning the sky as it orbited
the Earth above the terminator region, building up depth via multiple passes over
each region. The regions near the ecliptic poles thus received the greatest number
of images (1000s of images at the poles), whereas regions on the ecliptic place
typically received 12 to 13 passes in the original cryogenic mission. Moon avoidance
led to some regions receiving considerably fewer passes.

The WISE all-sky W1 and W2 depths probe a similar volume for L dwarfs to
that probed by 2MASS, however as one moves to cooler temperatures the probed
volume soon overtakes that probed by 2MASS for T dwarfs. As a result, the brown
dwarf discoveries by WISE are dominated by objects with late-T type and beyond
(e.g. Kirkpatrick et al 2011; Mace et al 2013a). Although its probed volume for late-
T dwarfs is similar to that of the UKIDSS LAS, WISE provides a more accessible
sample due to its all-sky coverage giving a greater volume at smaller distances.
Nonetheless, the comparable discovery number of T dwarfs in UKIDSS LAS and
WISE largely reflects shifting science priorities, and the lack of clear motivation for
spectroscopic follow-up of large numbers of faint mid- to -late-T dwarfs. The early
searches of the WISE dataset were also successful in discovering the long sought
Y dwarfs (Cushing et al 2011).

The presence of multiple passes and two full sky surveys notably facilitated NEO
detection, but also allows for efficient searches for high proper motion objects be-
yond the Solar System. Of particular note are the efforts of Kevin Luhman at the
Pennsylvania State University Center for Exoplanets and Habitable Worlds, whose
proper motion searches using WISE’s multi-epoch imaging has resulted in the dis-
covery of some of the Sun’s closest substellar neighbours (Luhman 2013, 2014). An
L7.5+ T0.5 binary (Burgasser et al 2013) at a distance of less than 2 pc (Sahlmann
and Lazorenko 2015), Luhman 16AB was visible in previous surveys DSS, 2MASS
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and DENIS but was not identified as a nearby brown dwarf system due to confusion
with other nearby sources. By contrast, WISE J085510.83-071442.5, at a distance
of 2.2 pc (Luhman 2014; Luhman and Esplin 2016) lacked a ground-based detection
for nearly two years following its discovery (e.g. Skemer et al 2016). This reflects
the tiny flux emitted at wavelengths easily accessible from the ground by this ex-
tremely cool brown dwarf, with an estimated Teff ≈ 200− 250K (Schneider et al
2016).

Whereas Luhman’s strategy relied on fairly cumbersome searching the single-
exposure catalogues, followed by labour-intensive vetting of candidates by eye, the
ALLWISE catalogue provides a more convenient route to leveraging the WISE ex-
tended dataset to search for high-motion objects. The ALLWISE catalogue forms
the basis for a number of motion-based surveys for brown dwarfs in the solar neigh-
bourhood (e.g. Kirkpatrick et al 2014).

In December 2013, the WISE spacecraft was reactivated and NEOWISE survey
operations continued through Spring 2018. The increasing depth and motion data
raise the likelihood of further exciting discoveries from the WISE spacecraft. On-
going efforts to mine these data for brown dwarfs include the citizen science project
”Backyard Worlds”, which has found at least one cool brown dwarf to date (Kuchner
et al 2017).

The Visible and Infrared Survey Telescope for Astronomy (VISTA)

The European Southern Observatory’s (ESO) Visible and Infrared Survey Telescope
for Astronomy (Dalton et al 2006) has facilitated a number of public surveys, the
first tranche of which follow a similar wedding cake design to that seen for the
UKIDSS surveys. Three of the public surveys hold particular potential for brown
dwarf science: the VISTA Hemisphere Survey (VHS; McMahon et al 2013); the
VISTA Kilo-degree survey (VIKING; Edge et al 2013); the VISTA Variables in the
Via Lactea (VVV; Minniti et al 2010).

The first of these has delivered a handful of brown dwarfs found following sim-
ilar photometric methods to those applied to exploitation of UKIDSS (e.g Lodieu
et al 2012). One of the reddest known L dwarfs, VHS J1256601.92-125723.9, was
identified in the VHS as a companion to a brown dwarf binary with a probable age
of 300 Myr (Gauza et al 2015; Stone et al 2016). However, although the nearly
half-sky coverage of VHS in the near-infrared provides excellent opportunities for
large-scale searches for brown dwarfs, it initially lacked the complimentary opti-
cal coverage that is so important for selecting LT dwarfs. The 1500 square degree
ZY JHK VIKING survey provides opportunity to select LT dwarfs in a self-sufficient
way, but the limited coverage means that the candidates will be faint, and require
expensive follow-up.

The VVV has provided one of the best opportunities to date to search within the
Galactic plane for nearby brown dwarfs. This survey covers the southern Galactic
plane in ZY JHKs, but with around 100 epochs in the Ks filter over a 7-year period
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(Minniti et al 2010). This multi-epoch survey has been optimised for studying vari-
able stars, however, it also allows astrometric selection of fast-moving and nearby
brown dwarfs that are otherwise hard to spot in the crowded Galactic plane (e.g.
Beamı́n et al 2013).

The Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS)

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS;
Kaiser et al 2010) is a wide-field imaging facility based around a 1.8 metre telescope
on Haleakala, Maui (USA). The design of the facility is based around rapid scan-
ning of the sky to allow identification of fast-moving sources, transients and solar
system objects. Several synoptic surveys have been carried out with Pan-STARRS,
but the survey of most interest for brown dwarf searches is the Pan-STARRS1 3π

survey (PS1: Chambers et al 2016). Named for its coverage of the three quarters
of the sky that it can access, it incorporates around 12 visits in each of its five fil-
ters (grizy) over the four years it took to complete (2010 - 2014). It’s typical 5σ

detection threshold is zps1 ≈ 22.3.
The optical coverage of PS1 has been combined with WISE data to target LT

transition objects that have been otherwise difficult to identify in near-infrared sur-
veys, and this is one the most significant contributions that PS1 has made to the
census of local LT dwarfs (Best et al 2015, 2018). The multiple epochs also pro-
vide accurate proper motions, and many brown dwarfs have also been discovered
as wide common proper motion companions to stars using PS1 (e.g. Deacon et al
2014, 2017). PS1 is also noteworthy for the discovery of the planetary mass brown
dwarf PSO J318.5-22 (Liu et al 2013).

Science drivers for large-scale brown dwarf searches

The science drivers behind large-scale searches for brown dwarfs have evolved over
the years, from identifying first examples of new classes of objects, to growing
statistically useful samples for population studies, targeting outliers and expanding
parameter space. Here we explore some of the key science goals that have driven
searches for brown dwarfs via large-scale surveys in the past few decades.

The Initial Mass Function

Much of the popular excitement surrounding the search for brown dwarfs in the
1990s was thanks to idea that brown dwarfs might account for a significant com-
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ponent of dark matter, under the umbrella of Massive Compact Halo Objects (MA-
CHOs). However, there were already good reasons to suspect that brown dwarfs
at most accounted for a small proportion of dark matter. This did not significantly
reduce the impetus for confirming the existence of the hitherto unseen population,
since (for many) the real motivation for this search was an understanding of the star
formation process via a full accounting of its products.

The initial mass function (IMF; Salpeter 1955) describes the rate of star forma-
tion as a function of mass, and is often thought of as the distribution of mass in a
coeval stellar population as a function of stellar mass. It has long been regarded as
one of the fundamental diagnostics for testing models of star formation, despite the
impossibility of measuring it directly over the full stellar and substellar mass range.
This measurement is challenging for many reasons.

Prime of these is the fact masses are not directly observed, so the IMF is inferred
from the luminosity function (LF). Although the mass-luminosity relationship is
generally well characterised for main sequence stars in hydrostatic equilibrium, it is
not possible to observe coeval populations of main sequence stars over the full mass
range: the most massive stars have exploded as supernovae before the lowest-mass
stars have reached the main sequence. Determining masses for pre-main sequence
(PMS) stars in young coeval populations depends on PMS evolutionary models and
correctly determining the age of the population. Both of these hurdles introduce
significant uncertainty to the resulting IMF.

These issues can be avoided to by considering the field population, as Salpeter
did in his seminal paper that first defined the IMF (Salpeter 1955). Instead, one
must account for rate of stars evolving off the main sequence, and the star formation
history of the field population. In the case of the substellar population, which never
reaches the main sequence and thus lacks a unique mass-luminosity relationship in
a mixed age population, reference must also still be made to evolutionary models to
determine object masses. Salpeter was untroubled by this last point: his luminosity
function corresponded to a mass range of roughly 0.4−10M�. His mass distribution
was well fit by a power law, ζ (m) ∝ m−α , with α = 2.35, which is now known as
the Salpeter mass function. The human story behind this first derivation of the IMF
is wonderfully described in Salpeter (2005).

The essential quality of the Salpeter mass distribution is that the number of stars
increases steeply with decreasing mass. Moreover, since α > 2.0, it reflects more
mass being sequestered in lower-mass stars than higher-mass stars when integrated
over equal logarithmic mass bins. Extrapolating this to ever lower masses leads to
the prediction that brown dwarfs (and planetary mass objects) might represent a
dominant constituent of baryonic matter in the Galaxy. However, in the following
years it became clear that the mass distribution flattened below 1M�, and by the
1990s it was clear that a significant upturn in the substellar regime would be required
for brown dwarfs to be numerous enough to account for dark matter (Sandage 1957;
Schmidt 1959; Miller and Scalo 1979; Scalo 1986). An in-depth review of progress
in constraining the stellar IMF is beyond the scope of this chapter, so the reader
is directed to an excellent review by Bastian et al (2010). Continued studies of the
IMF in young clusters, globular clusters, other galaxies and the local field support
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the idea that the IMF is apparently universal across much of the stellar mass range,
regardless of environment (e.g. Scalo 1986; Bastian et al 2010). There is consensus
that the Salpeter IMF holds for masses greater than about 1M�. For masses below
∼M�, however, the IMF can be fit by shallower power law (e.g. α ∼ 1.0−1.3 Reid
et al 2002) or log-normal form for low-mass stars (Chabrier 2003).

The first extension of the luminosity function to ultracool temperatures, and sub-
stellar masses, was facilitated by the Two Micron All-Sky Survey (2MASS; see
Section ; Skrutskie et al 2006), with key papers by Cruz et al (2003, 2007) which
robustly explored the LF across the M7 - L8 spectral-type range. However, studies
of this spectral-type range had limited value for constraining the IMF. The lack of
unique mass-luminosity relationship for brown dwarfs significantly complicates the
estimation of the form of IMF in the mixed age field population. Since the age, and
hence the mass, for isolated brown dwarfs cannot be reliably determined, estimates
for the IMF depend on comparisons of observed LFs or spectral-type distributions
to simulations based on different assumed IMFs and historic formation rates. Fig-
ure 2 shows simulated Teff distributions under a range of assumed IMF power laws
and a log-normal IMF from Burgasser (2004b). The luminosity function in the late-
M and early-L spectral-type range shows relatively weak dependence on the form
of the underlying mass function. As such, the well-measured space densities in this
regime placed weak constraints on the form of the substellar IMF, with Allen et al
(2005) finding the LF consistent with α = 0.0±0.5.

2002). Below 300 K, there is a sharp turnover in !(TeA)
similar to that seen in !(Mbol) for MbolP 22.

4. ANALYSIS

4.1. Composition of !(Mbol) and !(TeA)

It is instructive to break down the luminosity and Teff dis-
tributions by mass and age in order to examine in detail the
origins of the various features seen. Figure 6 shows !(TeA) for
the! ¼ 0:5 simulation for which a low-mass cutoff of 0.001M"
was used (see x 4.2.3). This distribution is broken down into
groupings of low-mass stars (0:075 M" < M < 0:1 M"),
deuterium-burningbrowndwarfs (0:012 M" < M < 0:075 M"),
and nonfusing brown dwarfs (0:001 M" < M < 0:012 M"). It
is clear that the high-temperature peak in the LF is indeed
dominated by main-sequence low-mass stars down to 1900–
2000 K (spectral type #L3), with a smaller contribution of
predominantly young deuterium-burning brown dwarfs. At
cooler temperatures, deuterium-burning brown dwarfs are the
dominant population down to TeA # 500 K, encompassing all
of the currently known field brown dwarfs. Nonfusing brown
dwarfs only make a significant contribution below this tem-
perature. This segregation of masses in the !(TeA) distribution
is seen for all of the MFs examined.

An alternate way to examine the mass composition of
!(Mbol) and !(TeA) is by computing the median mass per
luminosity or Teff bin, as diagrammed in Figure 7 for simu-
lations with Mmin ¼ 0:001 M" and ! ¼ 0:5 and 1.5. The most
likely range of masses in each bin was chosen to comprise
63% of all objects about the median value, equivalent to $1 "
in a Gaussian distribution. Three trends are immediately dis-
cernible; first, the median mass decreases toward lower lu-
minosities and cooler temperatures, consistent with the fact
that lower mass brown dwarfs start off cooler, and therefore
remain cooler, than their higher mass counterparts at any
given age. Second, as the median mass relations cross the
HBMM, they diverge for different MFs, with the steeper
distributions exhibiting lower median masses at a given lu-
minosity or temperature. This is simply because of the larger

number of lower mass brown dwarfs in the steeper MFs
contributing to each of the luminosity and temperature bins.
Finally, there is a wide range of masses that comprise each
luminosity and temperature bin, a range that increases for
steeper MFs with the inclusion of more low-mass sources. In
one sense, these substantial mass ‘‘uncertainties’’ highlight the
motivation for the simulations—the nonunique nature of the
field substellar M -L relation—and demonstrates the substan-
tial uncertainty in assigning masses to field objects without
age information.
Figure 8 plots the median age as a function of luminosity and

Teff for the same MF simulations; the indicated typical range of
ages was computed as above. In this case, the spread in ages in
each bin is substantial; it is not possible to assign a statistical
age with uncertainty better than a few Gyr based on luminosity
and Teff alone. However, there are some subtle trends in these
relations that may have statistical merit. There is a notable
drop in the median age at the same locations as the troughs in
the !(Mbol) and !(TeA) distributions, around 1500 KPTeAP
2000 K. These features are related, as the higher luminosities
and hence more rapid evolution of brown dwarfs at these
temperatures implies both fewer objects present at any given
time and very few brown dwarfs remaining or reaching these
temperatures at later ages. At earlier times, this temperature
region encompasses a much broader range of masses and hence
a larger percentage of the young population. Allen et al. (2004)
note a similar age bias amongst L dwarfs in their simulations.
One consequence of this feature is that L dwarfs in the field
should be younger on average than T dwarfs. There is some
empirical evidence of this form tangential velocity measure-
ments (Vrba et al. 2004) and the mass-age-activity trends of
late-type M and L dwarfs (Gizis et al. 2000). However, it is
important to stress that the range of ages sampled at these
temperatures is still very large, and individual age determi-
nations cannot be precisely determined. The apparent decrease
in median age for steeper power-law MFs is again due to the
greater contribution of lower mass brown dwarfs, which appear
in the higher temperature and luminosity bins when they are
younger and less evolved.

Fig. 6.—Teff distribution for the ! ¼ 0:5 MF simulation with a lower mass
cutoff of 0.001 M", broken down into various mass bins: low-mass stars
(0:075 M" < M < 0:1 M"; dashed line), deuterium-burning brown dwarfs
(0:012 M" < M < 0:075 M"; dot-dashed line), and nonfusing brown dwarfs
(0:001 M" < M < 0:012 M"; triple-dot-dashed line).

Fig. 5.—Derived Teff distributions [!(TeA); number density per 100 K] for
the baseline MF simulations. Distributions are sampled every 100 K and are
slightly offset horizontally for clarity. The approximate location of spectral
types L0, L5, T5, and T8 are indicated, based on empirical Teff determinations
from Golimowski et al. (2004).
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Fig. 2 From Burgasser (2004b, Fig. 5). Simulated Teff distributions for the local field population
under different assumed IMF forms for historically constant formation rate.

From Figure 2 it is clear that the sub-1000 K late-T dwarf Teff distribution carries
the greatest potential for constraining the slope of the substellar IMF in the field.
Although 2MASS and SDSS were responsible for defining the T dwarf spectral
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sequence, they lacked the depth to detect a sufficient number of T6+ dwarfs to con-
strain the IMF with any statistical power. For this reason, late-T dwarfs were pref-
erentially targeted for large-scale searches as soon as the probed volume allowed
for the selection of useful samples. The UKIDSS survey was the first to achieve
this, and it was found that the space density of T6 - T8 dwarfs was most con-
sistent with a steeply declining substellar IMF, with α < 0.0 (Pinfield et al 2008;
Burningham et al 2010b, 2013). This was subsequently confirmed in the WISE cen-
sus of the Solar Neighbourhood (Kirkpatrick et al 2012). This is in contrast to a
number of determinations for the substellar IMF in young clusters and associations
which have generally found α > 0.0, e.g. Upper Sco, 0.3–0.01M�, α = 0.6± 0.1
(Lodieu et al 2007a); Pleiades, 0.48–0.03M�, α = 0.60±0.11 (Moraux et al 2003);
α Per, 0.2–0.04M�, α = 0.59± 0.05 (Barrado y Navascués et al 2002); σ Orio-
nis, 0.5–0.01M�, α = 0.5± 0.2 (Lodieu et al 2009); σ Orionis, 0.25–0.004M�,
α = 0.6±0.2 (Peña Ramı́rez et al 2012).

The reason for the discrepancy between the substellar IMF estimated in the field
and that estimated in young clusters is not clear. Trivial incompleteness in the field
studies is an unlikely origin of the discrepancy since the surveys would need to miss
more late-T dwarfs than they found to account for the difference. Another possi-
bility is incorrect treatment of the historic substellar formation rate when simulat-
ing the IMF, which has generally assumed a flat formation rate (e.g. Burningham
et al 2013). For example, a low historic formation rate might give rise to an under-
abundance of late-T dwarfs in the Solar neighbourhood, despite sharing the young
cluster IMF. However, studies of the kinematics of the late-T population suggest that
it is of a similar age to the stellar population on the Solar neighbourhood (Smith et al
2013). Similarly, work by Dupuy and Liu (2017) supports the assumption of a rela-
tively flat formation history for brown dwarfs. Another possible cause is some issue
with the evolutionary models used to transform between mass and temperature at
young ages or over Gyr timescales. Alternatively, the form of the IMF may devi-
ate significantly from a power law or log normal form below the masses probed in
young clusters. In that case, simulations of the mixed age field population based on
such assumed forms may be expected to disagree with observed space densities in
the field due to influence from the mass population below the sensitivity of previous
cluster studies.

Extending the spectral sequence to ever lower temperatures

One of the headline science goals for large area surveys in the period following
2MASS and SDSS was the discovery of objects cooler than the T8 (Teff ≈ 700K)
low temperature extent of the T spectral sequence defined in Burgasser et al (2006).
Speculation was divided over the question as to whether another spectral type would
be required beyond the T sequence, or if the T dwarfs would be final entry in the
stellar spectral classification scheme. Comparisons of the coolest T dwarfs with Sat-
urn and Jupiter suggested that ammonia absorption should be become increasingly
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important with decreasing temperature, and that new features in the Y and J bands
might distinguish a new spectral sequence (e.g. Leggett et al 2007). Another spec-
ulated driver for a shift in the spectral sequence was the impact of water clouds
condensing at Teff<∼400−500 K. Regardless of the ultimate rationale for adopting
a new scheme, the class beyond the T dwarfs was pre-emptively named the Y dwarfs
(Kirkpatrick et al 1999).

Two surveys in the mid-2000s were targeted at identifying objects beyond the
T sequence: UKIDSS and CFBDS(IR). Both surveys were successful at identifying
cooler objects than had been found previously, e.g.: CFBDS J005910.90-011401.3
at Teff ≈ 620K (Delorme et al 2008a); UGPS J072227.51-054031.2 at Teff ≈ 520K
(Lucas et al 2010). However, even at Teff ≈ 500K, the objects’ spectra continued to
appear as a continuation of the T spectral sequence. Although the methane bands
continued to strengthen with approximately similar relative changes between sub-
types, the absolute changes were small and strongly argued for the continuation of
the T sequence for these new objects (e.g. Burningham et al 2008, 2010b; Lucas
et al 2010). More recent analysis has highlighted the measurable impact of ammo-
nia on the near-infrared spectra on objects with spectral types T8 and later (e.g. Line
et al 2015; Canty et al 2015), but its effect at these temperatures does not cause a
qualitative deviation from the T sequence.

The launch of the WISE spacecraft provided the necessary sensitivity to identify
even cooler objects, which would justify the adoption of a new spectral type. Se-
lected by their brightness at W2 above all else, the Y dwarfs are differentiated from
the T sequence in the near-infrared by the similar comparative heights of their Y and
J band peaks and a narrowing of the J band flux peak (Figure 3 and Cushing et al
2011; Kirkpatrick et al 2012). It is reasonable to note that the differences between
the near-infrared spectra of late-T and Y dwarfs show more subtle differences than
seen across the LT transition. However, they also display significantly redder J−W2
colours and much fainter near-infrared magnitudes than late-T dwarfs. These differ-
ences suggest that the adoption of a new spectral type is appropriate.

A review of the progress in characterising the Y dwarf population is provided in
the chapter “Y Dwarfs, the Challenge of Discovering the Coldest Substellar Popula-
tion in the Solar Neighborhood”, by S. Leggett. Given that the bulk of their emission
escapes at wavelengths that are particularly challenging from the ground, detailed
study of the Y dwarfs will have to wait for the successful commissioning of JWST.
However, initial characterisation based on parallaxes and the available limited near-
infrared spectroscopy and multi-wavelength photometry suggest the Y dwarfs have
Teff ranging from ≈ 500 K down to ≈ 300 K (e.g. Leggett et al 2017). Evolution-
ary models suggest that at typical thin disk ages of a few Gyr, these temperatures
correspond to masses near, and below, the deuterium burning limit (e.g. Baraffe
et al 2003). As such, a significant proportion of the Y dwarf population can also be
classified as isolated planetary mass objects.
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Figure 2. Near-infrared spectra of the new WISE brown dwarfs (black) as compared to the spectrum of UGPS 0722−05 (red). The data have been normalized to unity
at the peak of the J band (except for WISEP J1828+2650 which is normalized to unity at the peak of the H band) and offset by constants (dotted lines).
(A color version of this figure is available in the online journal.)

7

Fig. 3 From Cushing et al (2011, Fig. 2). Spectra of the first Y dwarfs found in the WISE survey.
Note the comparable heights of the flux peaks in the Y and J bands compared to the T9 standard
UGPS J0722-05. Also apparent is the narrower J band peak in the Y dwarfs.

The bottom of the IMF: Planetary mass objects

Finding and studying the lowest mass brown dwarfs is compelling for a variety of
reasons. As we’ve already discussed, determining the form of the IMF and the pres-
ence or otherwise of a low-mass cutoff is considered a key observable of the star
formation process. This motivation has driven many searches for planetary mass
brown dwarfs. In recent years, however, emphasis has shifted to look at how brown
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dwarfs can provide insights to understand the atmospheres of giant exoplanets (e.g.
Burgasser 2011). Although LT dwarfs span the same temperature range as giant
exoplanets, they typically have larger masses, higher gravity and thus higher pres-
sure photospheres. However, at ages of <∼500Myr, planetary mass brown dwarfs
occupy a wide range of spectral types on the LT sequence, and display similarly low
surface gravity to that expected for giant exoplanets. To leverage this shared param-
eter space, a number of large-scale searches are ongoing to identify planetary mass
brown dwarfs as members of young moving groups in the solar neighbourhood (e.g.
Aller et al 2016; Gagné et al 2015b).

Planetary mass brown dwarfs have most often been identified initially by anoma-
lously red J−Ks colours (e.g. Faherty et al 2013; Liu et al 2013). Spectroscopic
signatures of low-gravity also highlight young, low-mass brown dwarfs (Allers and
Liu 2013). However, careful kinematic characterisation is then required to establish
their membership of a young moving group to independently constrain their age
(e.g. Gagné et al 2015b).

Over 150 low-gravity L dwarfs are now known and their population property as
a red and faint extension of the field L dwarf sequence is well established (Faherty
et al 2016). However, discoveries of T dwarf members of moving groups are few,
and their observed spectral properties and colours do not obviously distinguish them
from apparently older objects of similar type in the field (Naud et al 2014; Gagné
et al 2015a). Large-scale kinematic searches are thus necessary to uncover the lowest
mass contingent of young associations in the solar neighbourhood.

The near future

The new generation of large-scale surveys have leveraged advances in optical de-
sign and imaging capabilities to achieve rapid coverage of the sky. This has opened
the door to wide field synoptic surveys in the past few years such as VISTA VVV,
Pan STARRS, and the under-construction Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration et al 2009). The LSST will survey the entire visible
sky from Cerro Pachón (Chile) every few nights. This observing strategy, aimed at
discovering transients, will also provide proper motions and, more crucially, par-
allaxes for all the sources with measurable motions. This will open the door for a
new unbiased method for searching for brown dwarfs through parallax selections.
By selecting candidates based solely on their parallax and apparent luminosity, bi-
ases due to assumptions about colour and motion can be avoided. Such searches
will likely find numerous brown dwarfs in the Solar neighbourhood that have been
missed previously in regions such as the Galactic plane.

Also of note is the European Space Agency’s Euclid mission (Refregier et al
2010) which will provide deep optical and Y JH imaging along with slitless spec-
troscopy of the 1.1−2.0µm region with R≈ 250 over large areas of sky. Although
targeted at extragalactic science, this mission will also provide the opportunity to
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study the brown dwarf population on sufficient scale to place them in a Galactic
context.

Cross-References

• First Discoveries of Brown Dwarfs and the Substellarity Tests
• Y Dwarfs, the Challenge of Discovering the Coldest Substellar Population in the

Solar Neighborhood
• Spectral Properties of Brown Dwarfs and Unbound Planetary-Mass Objects
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