
Parallel Image Encryption Algorithm Using Partitioned
Cellular Automata on Graphic Processor Unit

 1th Mahmood Fazlali
Cybersecurity and Computing Systems

Research Group
University of Hertfordshire

Hatfiled, UK
M.Fazlali@herts.ac.uk

4th Myasar Tabani
Cybersecurity and Computing Systems

Research Group
University of Hertfordshire

Hatfiled, UK
M.Tabani@herts.ac.uk

 2th Amirhossein Alihoseini
Dept. of data and Computer Sciensce,

Faculty of Mathematical sciences
Shahid Beheshti University

Tehran, Iran
A.Alihosini@sbu.ac.ir

5th Seyedali Pourmoafi
Cybersecurity and Computing Systems

Research Group
University of Hertfordshire

Hatfiled, UK
S.Pourmoafi@herts.ac.uk

 3th Ebrahim Zarei
Dep. of Computer Science, Khansar

Campus
University Of Isfahan

Isfahan, Iran
E.Zarei@khc.ui.ac.ir

Abstract—Image encryption is a reliable method for securely
transmitting images over a network. The time required to
encrypt and decrypt an image in online applications is also very
important. Although cellular automata cryptography is an
appropriate technique for parallelizing and accelerating
cryptographic methods, its capacity cannot be demonstrated
only in multi-core platforms. Thus, it is needed to parallelize
cellular automata cryptography on Graphic Processor Units
(GPUs) in order to significantly decrease the
encryption/decryption time. In this paper, we propose a new
parallel algorithm for two-dimensional cellular automata
cryptography that is implemented on GPU. The proposed
algorithm uses multiple threads at once to accelerate the bit-
level permutation and substitution operations by taking into
account the capacity of cellular automata in parallel processing.
According to the study experimental findings, the proposed
algorithm performs faster on GPU compared to a multicore
platform while maintaining the same level of security in
comparison to the serial algorithm.

Keywords— Partitioned cellular automata, Image
cryptography, Parallel cryptography, Graphic Processing Unit
(GPU)

I. INTRODUCTION (HEADING 1)

The need for quick, secure image storage, display, and
transfer is unavoidable given the 20th century's rapid
advancement of information technology and the pervasive
use of digital images in communication and information
networks [1, 2, 3]. Image cryptography is different from
textual cryptography algorithms due to some inherent
intrinsic of images. We can encrypt images using traditional
text-based cryptography algorithms like AES, DES, and
Blowfish. These algorithms are designed to encrypt data in
binary format, which includes image files. However, it is
important to note that image files are larger than regular text
files, and thus the encryption and decryption time may be
longer. Additionally, the size of the encrypted image file may
be larger due to the addition of padding [3, 4].

There are several image cryptography algorithms that make
use of Cellular Automata (CA), chaotic functions, DNA
computing, and other techniques [5, 6, 7, 8]. Because of their
complex behavior, randomness, and unpredictable nature as
well as their simplicity in implementation, cellular automata
is one of the nonlinear dynamic systems that are frequently

used in cryptography [9, 10]. The combination of the cellular
automata-based image encryption technique with parallel
processing techniques is a good candidate for meeting the
expanding computational needs of image cryptography due
to the large data capacity of images. A Partitioned Cellular
Automata (PCA) is a regular (arranged) network of cells, with
each cell subdivided into multiple components. For updating
the state of each cell, the PCA-based image encryption
employs two functions: (1) Function P, which replaces each
part of the cell with one of its neighboring cells. (2) Function
F, which modifies the state of all cells. The following
algorithm first receives the image and the encryption key,
then encrypts the image using functions P and F after some
repetitions.

Because the computational complexity of image
cryptography using PCA is so high, parallelizing it can result
in a significant increase in computing speed. However
multicore platform cannot fulfill the potential parallel
capabilities in PCA. The Graphics Processing Unit (GPU) has
a high capacity for parallelizing with the use of different
threads on GPU cores, and its speed is significantly faster
than the Central Processing Unit (CPU) cores.

In this paper, we propose a parallel algorithm based on
PCA that runs on GPUs. Each cell's computation is assigned
to one thread for this purpose. As a result, all cells are
computed concurrently by different threads on GPU to reduce
the execution time (encryption/decryption time). So the main
contribution of this paper is presenting a new parallel image
encryption based on PCA and paralleling the proposed
method on GPU. The study measures the speedup of the
proposed scheme and shows it is quick for online
applications.

The rest of this paper is structured as follows. Section II
present a literature review. Section III describes the proposed
parallel image encryption algorithm. Section IV demonstrates
the performance and security analysis to the proposed
algorithm. Finally, Section V concludes this study.

II. RELATED WORKS

There are numerous image cryptography techniques based
on chaotic functions, DNA computing, and Cellular
Automata [11]. One class of nonlinear dynamic systems
known as chaotic systems exhibits important characteristics

like initial condition dependence, unpredictability, and
system definability while behaving erratically. These systems
are therefore ideally suited for image cryptography. Rostami
et al. [1] propose a sample method based on chaotic functions
that makes use of logistic maps. This technique divides the
image into blocks of 16×16 pixels, and simultaneously
encrypts each block. Order plays a crucial role in chaotic
functions. This is why blocking is used in the above method.
Due to floating-point calculations, this method takes longer
to encrypt an image than cellular automata. cellular automata-
based image cryptography techniques come in a variety of
forms. For instance, cellular automata are used in some
algorithms to permute the image's pixels and sabotage the
relationship between them [12, 13].

Researchers in [3] uses recursive cellular automata for
image cryptography. Initially, the image is divided into
blocks of 16 × 16 pixels, and then, a pseudo-random
permutation function is applied on the blocks. Next, the
blocks are cipher simultaneously using GPU. Debasis and
Abishak in [14] proposed an encryption algorithm based on
Recursive Cellular Automata (RCA). In this method, a
circular transfer chart is used so that the image has the
capability of being decrypted. Using cellular automata, this
approach can have a parallel implementation. However, the
proper parallel algorithm is not proposed.

A technique for sharing cryptography with cellular
automata has been put forth by Hernandez et al. [15], in
which multiple files are ciphered simultaneously using GPU.
The above-mentioned method receives several images at
once and encrypts them all at once. For image cryptography,
Zhang and colleagues [16] have also employed two-
dimensional cellular automata based on stream cyphers. In
the above method, the sender and receiver first share the
initial information over a secure channel before they begin
sending and receiving data. Because the encryption and
decryption procedures are less complicated with stream
cyphers than with block cyphers, they operate more quickly.

In [17], a secured lightweight cryptosystem is designed
based on lookup table operations that reduce computational
overhead, resource requirement and power consumption
compared to traditional security mechanisms. In this context,
one-dimensional elementary cellular automaton has been
combined with Henon chaotic map to design a cryptosystem,
which can produce unprecedented results in cryptography.
However it is not enough Fast. Researchers in [18] tried to
overcome this weakness by using FPGA hardware platform
but it needs a new hardware and extra cost. It is worth
mentioned that cryptography helps protect data against
malware, and malware detection systems may use
cryptography to identify and verify the integrity of files [19].

Partitioned Cellular Automata in two dimensions were used
for image encryption by Wang and coworkers [9]. Due to its
flexibility and ease of use, this method is utilized for images
with various color depths. Additionally, it is capable of bing
parallelized. The aforementioned algorithm's processing time
is insufficient for online communications and images with
large amounts of data. In order to improve running time, a
parallel algorithm based on PCA is proposed in this paper
using the programming language "CUDA" on GPUs to
overcome this weakness.

.

III. PROPOSED PARALLEL IMAGE ENCRIPTION

ALGORITHM

A. Partitioned Celular Automata

PCA is a D-dimensional network with K neighbors, defined
as quintuplet P = (ZK, Q, S, f, #) in which:

 Z is the set of integer numbers
 Q is a set of states of each cell
 S = {s1, s2, . . ., sm} is the set of all the neighbors

such that si ∈ ZK (i = 1, . . ., m)
 f: Q → Q defines the rules of PCA
 # ∈ Q is a quiescent state such that f (#) = #

Suppose α(r+1)(x) demonstrates the state of a cell in
coordinate x after r reiterations of function f which can be
calculated as follows:

α()(x) = 𝑓 p α()(x + s) , … , p α()(x + s) (1)

where pi is a function with rules of pi(x) = x.ei which
indicates dot product of x and ei, and ei = [a1, a2, · · · , am] are
basic vectors in an m−dimensional space. In PCAs, there are
two approaches for processing the cells in edges:

1) The cells at the beginning and the end of each row
(or each column) are considered adjacent; (2) The
grid is surrounded by an outer layer of cells in the
fixed state of zeros. Besides, there are two types
of boundary conditions in PCA: (1) Von Neumann
neighborhood consists of four orthogonally
surrounding neighbors.

2) Moore neighborhood comprises four Von
Neumann neighborhoods and four diagonally
surrounding neighbors.

 Paper [9] uses a two-dimensional PCA which has a
suitable structure for digital images. The proposed PCA is
uniform and includes cyclic boundary conditions. Therefore,
the rules for all cells are the same. Moor adjacency is used in
the proposed PCA because it can be suitable for different color
depths.

B. The Proposed Parallel Image Encryption by Partitioned
Celular Automata for GPU

The method for parallelizing image cryptography using
PCA on GPUs is shown in Figure 1. Also Algorithm 1
displays the encryption procedure's steps as pseudocode.
Following is a summary of the encryption algorithm's overall
steps:

1. The inputs—a M × N plain image and a 4 × 4 key—are
first received and stored in the GPU's global memory.

2. In the GPU's global memory, a matrix named matrix key
with a size of M ×N bytes is defined to hold the key.

3. The function InitiateRondKey is simultaneously run on
the M/4 × N/4 threads of GPU through CUDA to
generate the matrixkey. Each thread puts a 4 × 4 tile
matrix equivalent to a 4 × 4 key. In this section, the
external key, which is the size of 4 x 4, is taken, and in

the matrixkey, which is the size of the image, it is
placed next to each other in the form of tiles.

4. After generating the matrixkey, the function F is
simultaneously run on the M/4 × N/4 threads of GPU
through CUDA. As shown in Algorithm 2, each thread
receives one byte from the image matrix and one byte
from the key matrix. Then, functions P, S-box, and
XOR are executed, and finally, the output is stored.

If Round < M

yes

no

 Initiation
Round key

...
External Key

 (16 byte)
Plain Image
(M*N byte)

Image
(M*N byte)

Function P
key

Function P
image

 S-BOX
key

 S-BOX
image

XOR

Thread 1

Thread 1

Initiation
Round key

Thread 2

Initiation
Round key

Thread M/4*N/4

Function P
key

Function P
image

 S-BOX
key

 S-BOX
image

XOR

Thread 2

Function P
key

Function P
image

 S-BOX
key

 S-BOX
image

XOR

Thread M*N

Figure 1: The flowchart of the Parallel PCA Encryption Algorithm.

5. After the repetition of step 4 for M times, the cipher
image, is transferred from the GPU’s global memory to
RAM and the encryption process ends. The number of
repetitions of step 4 in the article [9] is equal to the
number of rows in the image.

Due to the large size of the matrices and lack of storage
space in faster and smaller memories, we used the global
memory of the GPU to implement the suggested algorithm.
On the other hand, it is not possible to use constant memory
because the values of the matrices change. The S-box
function's value is fixed for all images, so rather than
implementing it, we simply included its ready matrix in the
code. We need a constant matrix to implement the S-box,
and we store it in GPU constant memory to speed things up.

Algorithm 1: PCA Encryption Algorithm

 Input: image Arrays of Byte, key Arrays of Byte
 1 dImage ← copyHostToDevice(image)
 2 dkey ← copyHostToDevice(key)
 3 matrixkey ← cudaMalloc M*N of Byte
 4 for i ← 1 to M/4 do
 5 for j ← 1 to N/4 do in parallel
 6 InitiationRoundKey(dkey[i][j], matrixkey)
 7 end
 8 end
 9 cudaDeviceSynchronize()
10 for i ← 1 to M do
11 for j ← 1 to N do
12 for k ← to M do in parallel
13 Function_F(dImage[j][k], matrixkey[j][k])
14 end
15 end
16 cudaDeviceSynchronize()
17 end
18 Outimage ← copyDeviceToHost(dImage)

 Output: Outimage Arrays of Byte
Algorithm 2: Function_F in PCA encryption

 Input: Byte Image, Byte Key
1 copyImage ← Function_p(Image)
2 copyKey ← Function_p(Key)
3 Image ← S_box(copyImage)
4 Key ← S_box(copyKey)
5 Image ← Xor(Image, Key)
 Output: Image, Key

It should be noted that Function P performs a permutation
between bits of the pixels in the image using Eq. 2, and
function F uses Sbox table from the AES algorithm.

(2)

𝐼′ (𝑖. 𝑗) = 𝐼 𝑖, 𝑠 , 𝑚𝑜𝑑 𝑀, 𝑗, 𝑠 , 𝑚𝑜𝑑 𝑁

𝑠 = (1 , −1), 𝑠 = (1 , 0), 𝑠 = (1 , 1),
𝑠 = (0 , −1), 𝑠 = (0 , 1), 𝑠 = (−1 , −1),
𝑠 = (−1 , 0), 𝑠 = (−1 , 1)
𝑠 = (𝑠 , , 𝑠 ,) , 𝑡 = 1 , . . . , 8

Algorithm 2 demonstrate the details in function F in the
proposed PCA encryption algorithm.

Now we need a parallel decryption method to be run on
GPU. Here the reverse of the encryption is performed. The
steps of decryption algorithm can be summarized as follows:

1) First, the M × N image and the 4 × 4 key are received
as the inputs and stored in the GPU’s global
memory.

2) The matrix key (matrix of size M × N bytes) is
defined in the GPU’s global memory for storing the
key.

3) The function InitiateRondKey is simultaneously run
on the M/4 × N/4 threads of GPU through CUDA to
generate the matrix key.

4) To start the decryption operation, the matrix key of
the last stage of encryption must be generated, and
then the decryption operation must be started. To do
this, the P and S-box functions must be executed
consecutively M times on the key matrix, and the
output of the last step will be the desired key matrix.
To increase the speed of this part, each repetition is
done in parallel by M × N threads of GPU. Note that
the repetitions must be done serially, but in each
repetition, there is the ability to parallelize.

5) After generating the key matrix in the last stage of
the decryption process, functions XOR, P, and S-
box are run simultaneously on M × N threads. Each
thread receives one byte from the key matrix and
one byte from the image matrix, and then runs
functions XOR, P, and S-box, and finally stores the
output.

After the repetition of step 5 for M times, the resulting
image is transferred from GPU’s global memory to RAM and
the decryption process ends.

IV. PERFORMANCE AND SECURITY ANALYSIS

The speed and the security of the proposed algorithm were
assessed through a number of different experiments in this
section. First, the execution time is the main factors used to
assess the performance of the proposed method. Then, the
security and toughness of the proposed parallel PCA were
also examined.

A. Performance Analysis

In this section, the performance analysis of the proposed
algorithm is presented on two GPUs and a CPU. The main
specifications of the platforms used for the experiments are
shown in Table 1.

Table 1: The Specification of the Running Platform
Intel i7 CPU

 GeForce GT 740M, GeForce GTX 940M GPU
Windows 10 x64 OS

9. 0.176 CUDA Version

A random 4×4 matrix of integer numbers between 0 and
255 has been generated and considered as the secret key. The
proposed approach can encrypt the plain image into the noise-
style cipher image.

The proposed method is then applied to the plain image of
Lena (1024×1024 pixels in size). The execution times of
running algorithms are shown in Tables 2. The first column
of the table identifies whether the operation is encryption or
decryption. The serial implementation of the proposed
algorithm is equal to Wang et al. Algorithm [9]. The number
of threads used for the operation is displayed in the second
column. The execution times of each operation using a CPU
are shown in the third column, and the execution times of
each operation using two different types of GPUs are shown
in the last two columns. To improve the accuracy of the
execution time, each experiment was performed 10 times and
the average execution time was reported in these tables.

Table 2: Encryption and Decryption’s Execution Time on CPU and
GPUs/ Picture Size 1024 × 1024

As you can see in Tables 2, there are some instances where
the time is not calculated and is empty in the third column.
This is due to the lengthened runtime caused by thread counts
that are higher than permitted. Threads can be run
simultaneously on twice as many cores as CPUs. The ideal
number of threads to operate effectively on CPU cores is
eight where the encryption/decryption has its minimum
execution time and let overhead.

As shown in the table, by increasing the number of threads
running on the CPU cores, from one thread to four threads,
the execution time is reduced. Afterwards, the execution time
is increased. This means that using four threads on CPU is the
saturation point and the best option for paralleling the
algorithm on CPU where the parallelization overhead is less
than the obtained acceleration.

The table's fourth and fifth columns display the algorithm's
execution time on two GPUs for various thread counts per
block. The algorithm's execution time in encryption decreases
as the number of threads increases and is significantly faster
than parallel CPU implementation. When 128 threads are
used, the encryption algorithm performs best on both GPUs.
For both GPUs, 256 threads and more take longer to execute
than 128 threads. This is because running this many threads
has a high synchronization overhead and cost of thread
creation. This means that the plain image Lena, with a size of
1024 × 1024, should not be encrypted using a granularity of
more than 128 threads. The same scenario is happened for the
decryption part and using 256 threads on GPU is the best
option.

Table 3: Encryption and Decryption’s Execution Time on CPU and GPUs/
Picture Size 8192 × 8192

Table 3 displays the proposed algorithm's execution time
for the 8192×8192 pixel plain image Lena. The table
illustrates how the algorithm execution time is decreased by
increasing the number of threads running on the CPU cores.
Both encryption and decryption algorithms follow this
pattern. The acceptable parallelization overhead in
comparison to the parallel acceleration is the cause of this.
The first GPU's GPU-implemented encryption algorithm
performs best when 256 threads are active. Additionally,
using 256 threads produces the best results for the GPU-
implemented encryption algorithm on the second GPU. The
decryption algorithm for the plain image Lena, which has a
size of 8192×8192, follows the same principle. The best
number of threads to run the decryption algorithm on both
GPUs is 256, and parallel execution of threads on CPU cores
thus reduces the algorithm's execution time.

Mode Thread CPU GPU
8Core GT

740M
GTX
960M

Encryption

1 3.318(s) 15.478(s) 0.091(s)
2 1.710(s) 7.829(s) 2.877(s)
4 0.984(s) 4.041(s) 1.5331(s)
8 1.067(s) 2.108(s) 0.716(s)

16 - 1.128(s) 0.372(s)
32 - 0.637(s) 0.222(s)
64 - 0.351(s) 0.159(s)

128 - 0.218(s) 0.158(s)
256 - 0.229(s) 0.160(s)
512 - 0.259(s) 0.161(s)
1024 - 0.303(s) 0.164(s)

Decryption

1 4.935(s) 24.853(s) 8.920(s)
2 2.514(s) 12.713(s) 4.607(s)
4 1.678(s) 6.489(s) 2.380(s)
8 1.811(s) 3.347(s) 1.274(s)

16 - 1.761(s) 0.676(s)
32 - 0.964(s) 0.383(s)
64 - 0.531(s) 0.267(s)

128 - 0.343(s) 0.264(s)
256 - 0.341(s) 0.255(s)
512 - 0.361(s) 0.257(s)
1024 - 0.393(s) 0.259(s)

Mode Thread CPU GPU
8Core GT 740M GTX

960M

Encryption

1 167.442(s) - -
2 85.299(s) - 185.743(s)
4 46.400(s) - 98.968(s)
8 36.945(s) 132.892(s) 45.202(s)

16 - 70.291(s) 22.439(s)
32 - 38.672(s) 13.535(s)
64 - 20.589(s) 9.596(s)

128 - 12.778(s) 9.516(s)
256 - 12.553(s) 9.336(s)
512 - 14.490(s) 9.712(s)
1024 - 16.904(s) 9.844(s)

Decryption

1 282.144(s) - -
2 145.294(s) - 293.837(s)
4 81.891(s) - 154.921(s)
8 70.939(s) 211.627(s) 81.592(s)

16 - 109.992(s) 42.447(s)
32 - 59.173(s) 22.951(s)
64 - 31.687(s) 15.817(s)

128 - 19.632(s) 15.449(s)
256 - 19.599(s) 15.132(s)
512 - 20.280(s) 15.271(s)
1024 - 22.292(s) 14.805(s)

B. Key Space Alanysis

The key space in cryptography refers to the collection of
all feasible keys used to initialize the cryptographic scheme.
In cryptography, a key space's size determines how secure an
encryption scheme is against a brute-force attack. As of right
now [20, 21], cryptography schemes with key spaces larger
than 2100 1030 can withstand brute-force attacks. The key
space size for the suggested image encryption scheme will be
2128, which is larger than 2100. As a result, the proposed key
space is sufficiently large to fend off a brute-force attack.

C. Kye Sensivity Analysis

To analysis the key sensitivity in the encryption and
decryption process, we can compute the Number of Bit
Change Rate (NBCR). For two images B1 and B2, the NBCR
is expressed as:

NBCR (B1, B2) = Ham (B1, B2)/ Len × 100% (3)

Where Ham(B1; B2) is the hamming distance between two
images B1 and B2 and Len is the bit length of B1 and B2.
According to Eq. 3, if the NBCR(B1, B2) is 50%, then two
images B1 and B2 are completely different. The ideal value of
NBCR is about 50%. We can analyze the sensitivity of each
bit of the K1 as follows: (1) Change one bit of the secret key
K1 to obtain secret key K2 ; (2) In the encryption process, to
test the key sensitivity, encrypt the plain image P using the
secret keys K1 and K2 to obtain the cipher images C1 and C2
and then calculate the NBCR(C1,C2); (3) In the decryption
process, to test the key sensitivity, decrypt the cipher image
C1 using the secret keys K1 and K2 to obtain the decrypted
images D1 and D2 and then calculate the NBCR(D1,D2); (4)
Iterate the steps 1, 2 and 3 for all the 128 bits in the secret key
K1.

Figure 2: (a) The plain image P; (b) The cipher image C1 = EncK1(P); (c)
The cipher image C2 =EncK2(P); (d) The different between C1 and C2; (e)
The decrypted D1 = DecK1(C1); (f) The decrypted D2 = DecK2(C1); (g)
The decrypted D3 = DecK3(C1); (h) The different between D2 and D3.

The secret key should be changed with extreme care in a
good image encryption scheme. In other words, you can
correctly decrypt the plain image if you use the right secret
key. Several experiments have been conducted to evaluate the
encryption schemes' key sensitivity. To achieve this, we
generate a 128-bit secret key K1 at random, change one bit of
K1, and then generate K2 and K3 secret keys that are similar
to K2. We create two cypher images, C1 and C2, and then
encrypt the plain image P, depicted in Figure 2(a), using the
secret keys K1 and K2 (c).

Fig. 2 displays the decrypted image C1, which was done
with the right secret key K1 (e). The decrypted image C1 is
shown in Fig. 2(f), (g), and (h). These noisy and dissimilar
images were created using two incorrect secret keys, K2 and
K3. The experimental results demonstrate that even a small
modification to the encryption schemes' secret keys results in
a completely different ciphered image. As a result, the secret
key plays a critical role in the proposed image encryption
scheme. The proposed image encryption scheme's key
sensitivity analysis results are shown in Fig. 3. The NBCR of
the two obtained cypher images in the encryption and
decryption processes are 50% on average by changing one bit
of the secret key. In other words, the two obtained cypher
images and the two obtained decrypted images are
completely different, and the proposed encryption scheme
has a secret key that is extremely sensitive to changes of one
bit.

Figure 3: Key Sensitive Analysis of the proposed Algorithm.

D. Correction Analysis

The correlation coefficient in a digital image reflects the
relationship between its pixels. Usually, the correlation
between adjacent pixels in the plain image (in different
direction vertical, horizontal, and diagonal) is high. An ideal
encryption scheme should reduce the correlation between
adjacent pixels in the cipher image to an acceptable level to
prevent the statistical attacks. The ideal value of correlation
for cipher image is close to zero. In this paper, we selected
1000 pairs of adjacent pixels in different directions from plain
image and cipher image randomly, and compute correlation
coefficients for all of them. Table 4 shows the result of the
correlation coefficient of plain image Lena of sizes
1024×1024, and 8192×8192 the correlation coefficient of the
corresponding chipper images. The results demonstrate that
the correlation coefficients of the plain images in different
sizes are quite high, but the correlation coefficients of the
cipher image are extremely low and close to zero. The
proposed encryption scheme could efficiently decrease the
high correlations between adjacent pixels of the plain image.

Table 4: The correlation coefficient of adjacent pixels in the plain images
and their corresponding chipper images

Image Size Image
Type

Horizontal
Direction

Vertical
Direction

Diagonal
Direction

1024 × 1024 plain 0.9810 0.9891 0.9670

cipher -0.0204 0.0153 -0.0122

8192 × 8192 plain 0.9997 0.9956 0.9950

cipher 0.0052 0.0011 -0.0351

Figure 4: Correlations of two adjacent pixels. (a) Vertical direction of the
Lena plain-image 1024×1024, (b) Vertical direction of the Lena cipher-
image 1024×1024, (c) Horizontal direction of the Lena plain-image 1024 ×
1024, (d) Horizontal direction of the Lena cipher-image 1024×1024, (e)
Diagonal direction of the Lena plain-image 1024×1024 and (f) Diagonal
direction of the Lena cipher-image 1024 × 1024.

Fig. 4 shows the results of the correlation of two adjacent
pixels of the plain image Lena and the cipher image Lena of
size 1024 × 1024. The results demonstrate that the correlation
coefficients of the plain images in different sizes are quite
high, but the correlation coefficients of the cipher image are
extremely low and close to zero. The proposed encryption
scheme could efficiently decrease the high correlations
between adjacent pixels of the plain image.

E. Differencial Attack

 In this attack, the attacker may create a slight change
in the original image and find the encrypted image of it with
the original encrypted image and find a meaningful
relationship between them. To test the resistance to the attack,
two coefficients of NPCR and UACI are used. The NPCR
value for the Lena is close to 100% and the UACI value is
close to 33.5% showing the sensitivity of the method to the
original image changes is showing.

V. CONCLUSION

The paralleling capabilities of GPU and CPU were used in
this paper to propose a new parallel image encryption
algorithm based on two-dimensional cellular automata. The
implementation of C++ on CPU and GPU using Visual
Studio, OpenMP, and CUDA were all examples of the
paralleling style. The permutation and substitution operations
for each pixel of the image are accelerated in order to
accomplish this task using parallel threads running on GPU.

According to the performance data, the proposed algorithm
on a GPU can process plain images of sizes 1024 ×1024, and
8192×8192 up to 27, and 28 times faster than its sequential
counterpart. Additionally, the security analysis demonstrates
that the proposed algorithm is secure against statistical and
differential attacks. It also comes with a sufficiently large key
space and being extremely sensitive to even the smallest
change to the secret key and plaintext.

REFERENCES
[1] M. J. Rostami, A. Shahba, S. Saryazdi, H. Nezamabadi-pour, A novel

parallel image encryption with chaotic windows based on logistic map,
Computers & Electrical Engineering 62 (2017) 384–400.

[2] Q. Zhou, K.-w. Wong, X. Liao, T. Xiang, Y. Hu, Parallel image
encryption algorithm based on discretized chaotic map, Chaos, Solitons
& Fractals 38 (4) (2008) 1081–1092.

[3] F. K. Mohamed, A parallel block-based encryption schema for digital
images using reversible cellular automata, Engineering Science and
Technology, an International Journal 17 (2) (2014) 85–94.

[4] M. Machkour, A. Saaidi, M. Benmaati, A novel image encryption
algorithm based on the two-dimensional logistic map and the latin square
image cipher, 3D Research 6 (4) (2015) 36.

[5] E. Z. Zefreh, S. Rajaee, M. Farivary, Image security system using
recursive cellular automata substitution and its parallelization, in: 2011
CSI International Symposium on Computer Science and Software
Engineering (CSSE), IEEE, 2011, pp. 77–86.

[6] X. Wei, L. Guo, Q. Zhang, J. Zhang, S. Lian, A novel color image
encryption algorithm based on dna sequence operation and hyper-
chaotic system, Journal of Systems and Software 85 (2) (2012) 290–299.

[7] R. Bhardwaj, D. Bhagat, two level encryption of grey scale image
through 2d cellular automata, Procedia Computer Science 125 (2018)
855–861.

[8] J. Jin, an image encryption based on elementary cellular automata,
Optics and Lasers in Engineering 50 (12) (2012) 1836–1843.

[9] Y. Wang, Y. Zhao, Q. Zhou, Z. Lin, Image encryption using partitioned
cellular automata, Neurocomputing 275 (2018) 1318–1332.

[10] A. Bakhshandeh, Z. Eslami, an authenticated image encryption scheme
based on chaotic maps and memory cellular automata, Optics and
Lasers in Engineering 51 (6) (2013) 665–673.

[11] P. Fang, H. Liu, Ch. Wu, M. Liu, A survey of image encryption
algorithms based on chaotic system, The Visual Computer 39 (1)
(2023) 1975-2003.

[12] T. Chen, M. Zhang, J. Wu, C. Yuen, Y. Tong, Image encryption and
compression based on Kronecker compressed sensing and elementary
cellular automata scrambling, Optics & Laser Technology 84 (2016)
118–133.

[13] X. Wang, D. Luan, A novel image encryption algorithm using chaos
and reversible cellular automata, Communications in Nonlinear
Science and Numerical Simulation 18 (11) (2013) 3075–3085.

[14] D. Das, A. Ray, A parallel encryption algorithm for block ciphers based
on reversible programmable cellular automata, arXiv preprint
arXiv:1006.2822 (2010).

[15] A. Hernandez-Becerrjl, M. Nakano-Miyatake, H. M. Perez-Meana, A.
Bucio, M. Ramirez-Tachiquin, A parallel authenticated encryption
sharing scheme based on cellular automata, in: Proceedings of the
World Congress on Engineering and Computer Science, Vol. 1, 2014.

[16] X. Zhang, C. Wang, S. Zhong, Q. Yao, Image encryption scheme based
on balanced two-dimensional cellular automata, Mathematical
Problems in Engineering 2013 (2013).

[17] Kumar, A., Raghava, An efficient image encryption scheme using
elementary cellular automata with novel permutation box, Journal of
Multimedia Tools and Applications 80 (1) (2021) 21727–21750.

[18] George Cosmin Stănică, Petre Anghelescu, Cryptographic Algorithm
Based on Hybrid One-Dimensional Cellular Automata, in Mathematics
11 (6) (2023) 1481.

[19] M. Fazlali, P. Khodamoradi, F Mardoukhi, M. Nosrati MM. Dehshibi,
Metamorphic malware detection using opcode frequency rate and
decision tree, International Journal of Information Security and
privacy. (IJISP) 10 (3) (2016), 67-86.

[20] L. Y. Zhang, C. Li, K.-W. Wong, S. Shu, G. Chen, cryptanalyzing a
chaos-based image encryption algorithm using alternate structure,
Journal of Systems and Software 85 (9) (2012) 2077–2085.

[21] H. Zhu, X. Zhang, H. Yu, C. Zhao, Z. Zhu, A novel image encryption
scheme using the composite discrete chaotic system, Entropy 18 (8)
(2016) 276.

