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Abstract—Image encryption is a reliable method for securely 
transmitting images over a network. The time required to 
encrypt and decrypt an image in online applications is also very 
important. Although cellular automata cryptography is an 
appropriate technique for parallelizing and accelerating 
cryptographic methods, its capacity cannot be demonstrated 
only in multi-core platforms. Thus, it is needed to parallelize 
cellular automata cryptography on Graphic Processor Units 
(GPUs) in order to significantly decrease the 
encryption/decryption time. In this paper, we propose a new 
parallel algorithm for two-dimensional cellular automata 
cryptography that is implemented on GPU. The proposed 
algorithm uses multiple threads at once to accelerate the bit-
level permutation and substitution operations by taking into 
account the capacity of cellular automata in parallel processing. 
According to the study experimental findings, the proposed 
algorithm performs faster on GPU compared to a multicore 
platform while maintaining the same level of security in 
comparison to the serial algorithm. 

Keywords— Partitioned cellular automata, Image 
cryptography, Parallel cryptography, Graphic Processing Unit 
(GPU)  

I. INTRODUCTION (HEADING 1) 

The need for quick, secure image storage, display, and 
transfer is unavoidable given the 20th century's rapid 
advancement of information technology and the pervasive 
use of digital images in communication and information 
networks [1, 2, 3]. Image cryptography is different from 
textual cryptography algorithms due to some inherent 
intrinsic of images. We can encrypt images using traditional 
text-based cryptography algorithms like AES, DES, and 
Blowfish. These algorithms are designed to encrypt data in 
binary format, which includes image files. However, it is 
important to note that image files are larger than regular text 
files, and thus the encryption and decryption time may be 
longer. Additionally, the size of the encrypted image file may 
be larger due to the addition of padding [3, 4].  

There are several image cryptography algorithms that make 
use of Cellular Automata (CA), chaotic functions, DNA 
computing, and other techniques [5, 6, 7, 8]. Because of their 
complex behavior, randomness, and unpredictable nature as 
well as their simplicity in implementation, cellular automata 
is one of the nonlinear dynamic systems that are frequently 

used in cryptography [9, 10]. The combination of the cellular 
automata-based image encryption technique with parallel 
processing techniques is a good candidate for meeting the 
expanding computational needs of image cryptography due 
to the large data capacity of images. A Partitioned Cellular 
Automata (PCA) is a regular (arranged) network of cells, with 
each cell subdivided into multiple components. For updating 
the state of each cell, the PCA-based image encryption 
employs two functions: (1) Function P, which replaces each 
part of the cell with one of its neighboring cells. (2) Function 
F, which modifies the state of all cells. The following 
algorithm first receives the image and the encryption key, 
then encrypts the image using functions P and F after some 
repetitions.  

Because the computational complexity of image 
cryptography using PCA is so high, parallelizing it can result 
in a significant increase in computing speed.  However 
multicore platform cannot fulfill the potential parallel 
capabilities in PCA. The Graphics Processing Unit (GPU) has 
a high capacity for parallelizing with the use of different 
threads on GPU cores, and its speed is significantly faster 
than the Central Processing Unit (CPU) cores.  

In this paper, we propose a parallel algorithm based on 
PCA that runs on GPUs. Each cell's computation is assigned 
to one thread for this purpose. As a result, all cells are 
computed concurrently by different threads on GPU to reduce 
the execution time (encryption/decryption time). So the main 
contribution of this paper is presenting a new parallel image 
encryption based on PCA and paralleling the proposed 
method on GPU. The study measures the speedup of the 
proposed scheme and shows it is quick for online 
applications.  

The rest of this paper is structured as follows. Section II 
present a literature review. Section III describes the proposed 
parallel image encryption algorithm. Section IV demonstrates 
the performance and security analysis to the proposed 
algorithm. Finally, Section V concludes this study. 

II. RELATED WORKS 

There are numerous image cryptography techniques based 
on chaotic functions, DNA computing, and Cellular 
Automata [11]. One class of nonlinear dynamic systems 
known as chaotic systems exhibits important characteristics 



like initial condition dependence, unpredictability, and 
system definability while behaving erratically. These systems 
are therefore ideally suited for image cryptography. Rostami 
et al. [1] propose a sample method based on chaotic functions 
that makes use of logistic maps. This technique divides the 
image into blocks of 16×16 pixels, and simultaneously 
encrypts each block. Order plays a crucial role in chaotic 
functions. This is why blocking is used in the above method. 
Due to floating-point calculations, this method takes longer 
to encrypt an image than cellular automata. cellular automata-
based image cryptography techniques come in a variety of 
forms. For instance, cellular automata are used in some 
algorithms to permute the image's pixels and sabotage the 
relationship between them [12, 13].  

Researchers in [3] uses recursive cellular automata for 
image cryptography. Initially, the image is divided into 
blocks of 16 × 16 pixels, and then, a pseudo-random 
permutation function is applied on the blocks. Next, the 
blocks are cipher simultaneously using GPU. Debasis and 
Abishak in [14] proposed an encryption algorithm based on 
Recursive Cellular Automata (RCA). In this method, a 
circular transfer chart is used so that the image has the 
capability of being decrypted. Using cellular automata, this 
approach can have a parallel implementation. However, the 
proper parallel algorithm is not proposed.  

A technique for sharing cryptography with cellular 
automata has been put forth by Hernandez et al. [15], in 
which multiple files are ciphered simultaneously using GPU. 
The above-mentioned method receives several images at 
once and encrypts them all at once. For image cryptography, 
Zhang and colleagues [16] have also employed two-
dimensional cellular automata based on stream cyphers. In 
the above method, the sender and receiver first share the 
initial information over a secure channel before they begin 
sending and receiving data. Because the encryption and 
decryption procedures are less complicated with stream 
cyphers than with block cyphers, they operate more quickly.  

In [17], a secured lightweight cryptosystem is designed 
based on lookup table operations that reduce computational 
overhead, resource requirement and power consumption 
compared to traditional security mechanisms. In this context, 
one-dimensional elementary cellular automaton has been 
combined with Henon chaotic map to design a cryptosystem, 
which can produce unprecedented results in cryptography. 
However it is not enough Fast. Researchers in [18] tried to 
overcome this weakness by using FPGA hardware platform 
but it needs a new hardware and extra cost. It is worth 
mentioned that cryptography helps protect data against 
malware, and malware detection systems may use 
cryptography to identify and verify the integrity of files [19].   

Partitioned Cellular Automata in two dimensions were used 
for image encryption by Wang and coworkers [9]. Due to its 
flexibility and ease of use, this method is utilized for images 
with various color depths. Additionally, it is capable of bing 
parallelized. The aforementioned algorithm's processing time 
is insufficient for online communications and images with 
large amounts of data. In order to improve running time, a 
parallel algorithm based on PCA is proposed in this paper 
using the programming language "CUDA" on GPUs to 
overcome this weakness. 

. 

III. PROPOSED PARALLEL IMAGE ENCRIPTION 

ALGORITHM 

A. Partitioned Celular Automata 

PCA is a D-dimensional network with K neighbors, defined 
as quintuplet P = (ZK, Q, S, f, #) in which: 

 Z is the set of integer numbers 
 Q is a set of states of each cell 
 S = {s1, s2, . . ., sm} is the set of all the neighbors 

such that si ∈ ZK (i = 1, . . ., m) 
 f: Q → Q defines the rules of PCA 
 # ∈ Q is a quiescent state such that f (#) = # 

Suppose α(r+1)(x) demonstrates the state of a cell in 
coordinate x after r reiterations of function f which can be 
calculated as follows: 

 
α( )(x) = 𝑓 p α( )(x + s ) , … , p α( )(x + s )  (1) 

where pi is a function with rules of pi(x) = x.ei which 
indicates dot product of x and ei, and ei = [a1, a2, · · · , am] are 
basic vectors in an m−dimensional space. In PCAs, there are 
two approaches for processing the cells in edges:  

1) The cells at the beginning and the end of each row 
(or each column) are considered adjacent; (2) The 
grid is surrounded by an outer layer of cells in the 
fixed state of zeros. Besides, there are two types 
of boundary conditions in PCA: (1) Von Neumann 
neighborhood consists of four orthogonally 
surrounding neighbors. 

2) Moore neighborhood comprises four Von 
Neumann neighborhoods and four diagonally 
surrounding neighbors. 

     Paper [9] uses a two-dimensional PCA which has a 
suitable structure for digital images. The proposed PCA is 
uniform and includes cyclic boundary conditions. Therefore, 
the rules for all cells are the same. Moor adjacency is used in 
the proposed PCA because it can be suitable for different color 
depths. 

B. The Proposed Parallel Image Encryption by Partitioned 
Celular Automata  for GPU 

The method for parallelizing image cryptography using 
PCA on GPUs is shown in Figure 1. Also Algorithm 1 
displays the encryption procedure's steps as pseudocode. 
Following is a summary of the encryption algorithm's overall 
steps: 

1. The inputs—a M × N plain image and a 4 × 4 key—are 
first received and stored in the GPU's global memory. 

2. In the GPU's global memory, a matrix named matrix key 
with a size of M ×N bytes is defined to hold the key. 

3. The function InitiateRondKey is simultaneously run on 
the M/4 × N/4 threads of GPU through CUDA to 
generate the matrixkey. Each thread puts a 4 × 4 tile 
matrix equivalent to a 4 × 4 key. In this section, the 
external key, which is the size of 4 x 4, is taken, and in 



the matrixkey, which is the size of the image, it is 
placed next to each other in the form of tiles. 

4. After generating the matrixkey, the function F is 
simultaneously run on the M/4 × N/4 threads of GPU 
through CUDA. As shown in Algorithm 2, each thread 
receives one byte from the image matrix and one byte 
from the key matrix. Then, functions P, S-box, and 
XOR are executed, and finally, the output is stored. 

If Round < M

yes

no

 

 Initiation
Round key

...
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 (16 byte)
Plain Image
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Image
(M*N byte)

Function P
key

Function P
image
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key

 S-BOX
image

XOR
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Thread 1
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Figure 1: The flowchart of the Parallel PCA Encryption Algorithm. 

5. After the repetition of step 4 for M times, the cipher 
image, is transferred from the GPU’s global memory to 
RAM and the encryption process ends. The number of 
repetitions of step 4 in the article [9] is equal to the 
number of rows in the image. 

Due to the large size of the matrices and lack of storage 
space in faster and smaller memories, we used the global 
memory of the GPU to implement the suggested algorithm. 
On the other hand, it is not possible to use constant memory 
because the values of the matrices change. The S-box 
function's value is fixed for all images, so rather than 
implementing it, we simply included its ready matrix in the 
code. We need a constant matrix to implement the S-box, 
and we store it in GPU constant memory to speed things up. 

 
Algorithm 1: PCA Encryption Algorithm 

       Input: image Arrays of Byte, key Arrays of Byte 
  1   dImage ← copyHostToDevice(image) 
  2   dkey ← copyHostToDevice(key) 
  3   matrixkey ←  cudaMalloc M*N of Byte 
  4   for i ← 1 to M/4 do 
  5       for j ← 1 to N/4 do in parallel 
  6           InitiationRoundKey(dkey[i][j], matrixkey) 
  7       end 
  8   end 
  9   cudaDeviceSynchronize() 
10   for i ← 1 to M do 
11      for j ← 1 to N do 
12          for k ← to M do in parallel 
13              Function_F(dImage[j][k], matrixkey[j][k]) 
14          end 
15      end 
16      cudaDeviceSynchronize() 
17  end 
18  Outimage ← copyDeviceToHost(dImage) 

      Output: Outimage Arrays of Byte 
Algorithm 2: Function_F in PCA encryption 

     Input: Byte Image, Byte Key 
1   copyImage ← Function_p(Image) 
2   copyKey ← Function_p(Key)  
3   Image ← S_box(copyImage) 
4   Key ← S_box(copyKey) 
5   Image ← Xor(Image, Key) 
    Output: Image, Key 

It should be noted that Function P performs a permutation 
between bits of the pixels in the image using Eq. 2, and 
function F uses Sbox table from the AES algorithm. 

(2) 

𝐼′ (𝑖. 𝑗) = 𝐼 𝑖, 𝑠 ,  𝑚𝑜𝑑 𝑀, 𝑗, 𝑠 ,  𝑚𝑜𝑑 𝑁  

𝑠 = ( 1 , −1 ), 𝑠  = ( 1 , 0 ), 𝑠  = ( 1 , 1 ), 
𝑠 = ( 0 , −1 ), 𝑠 = ( 0 , 1 ), 𝑠  = ( −1 , −1 ), 
𝑠  = ( −1 , 0 ), 𝑠  = ( −1 , 1 ) 
𝑠  =  (𝑠 ,  , 𝑠 , ) , 𝑡 =  1 , . . . , 8 

Algorithm 2 demonstrate the details in function F in the 
proposed PCA encryption algorithm.  

Now we need a parallel decryption method to be run on 
GPU. Here the reverse of the encryption is performed. The 
steps of decryption algorithm can be summarized as follows: 

1) First, the M × N image and the 4 × 4 key are received 
as the inputs and stored in the GPU’s global 
memory. 

2) The matrix key (matrix of size M × N bytes) is 
defined in the GPU’s global memory for storing the 
key. 

3) The function InitiateRondKey is simultaneously run 
on the M/4 × N/4 threads of GPU through CUDA to 
generate the matrix key. 

4) To start the decryption operation, the matrix key of 
the last stage of encryption must be generated, and 
then the decryption operation must be started. To do 
this, the P and S-box functions must be executed 
consecutively M times on the key matrix, and the 
output of the last step will be the desired key matrix. 
To increase the speed of this part, each repetition is 
done in parallel by M × N threads of GPU. Note that 
the repetitions must be done serially, but in each 
repetition, there is the ability to parallelize. 

5) After generating the key matrix in the last stage of 
the decryption process, functions XOR, P, and S-
box are run simultaneously on M × N threads. Each 
thread receives one byte from the key matrix and 
one byte from the image matrix, and then runs 
functions XOR, P, and S-box, and finally stores the 
output. 

After the repetition of step 5 for M times, the resulting 
image is transferred from GPU’s global memory to RAM and 
the decryption process ends. 

IV. PERFORMANCE AND SECURITY ANALYSIS 

The speed and the security of the proposed algorithm were 
assessed through a number of different experiments in this 
section. First, the execution time is the main factors used to 
assess the performance of the proposed method. Then, the 
security and toughness of the proposed parallel PCA were 
also examined. 



A. Performance Analysis 

In this section, the performance analysis of the proposed 
algorithm is presented on two GPUs and a CPU. The main 
specifications of the platforms used for the experiments are 
shown in Table 1. 

Table 1: The Specification of the Running Platform 
Intel i7 CPU 

  GeForce GT  740M, GeForce GTX  940M GPU 
Windows 10 x64 OS 

9. 0.176 CUDA Version 

A random 4×4 matrix of integer numbers between 0 and 
255 has been generated and considered as the secret key. The 
proposed approach can encrypt the plain image into the noise-
style cipher image.  

The proposed method is then applied to the plain image of 
Lena (1024×1024 pixels in size). The execution times of 
running algorithms are shown in Tables 2. The first column 
of the table identifies whether the operation is encryption or 
decryption. The serial implementation of the proposed 
algorithm is equal to Wang et al. Algorithm [9]. The number 
of threads used for the operation is displayed in the second 
column. The execution times of each operation using a CPU 
are shown in the third column, and the execution times of 
each operation using two different types of GPUs are shown 
in the last two columns. To improve the accuracy of the 
execution time, each experiment was performed 10 times and 
the average execution time was reported in these tables. 

Table 2: Encryption and Decryption’s Execution Time on CPU and 
GPUs/ Picture Size 1024 × 1024 

 

As you can see in Tables 2, there are some instances where 
the time is not calculated and is empty in the third column. 
This is due to the lengthened runtime caused by thread counts 
that are higher than permitted. Threads can be run 
simultaneously on twice as many cores as CPUs. The ideal 
number of threads to operate effectively on CPU cores is 
eight where the encryption/decryption has its minimum 
execution time and let overhead.  

As shown in the table, by increasing the number of threads 
running on the CPU cores, from one thread to four threads, 
the execution time is reduced. Afterwards, the execution time 
is increased. This means that using four threads on CPU is the 
saturation point and the best option for paralleling the 
algorithm on CPU where the parallelization overhead is less 
than the obtained acceleration.  

The table's fourth and fifth columns display the algorithm's 
execution time on two GPUs for various thread counts per 
block. The algorithm's execution time in encryption decreases 
as the number of threads increases and is significantly faster 
than parallel CPU implementation. When 128 threads are 
used, the encryption algorithm performs best on both GPUs. 
For both GPUs, 256 threads and more take longer to execute 
than 128 threads. This is because running this many threads 
has a high synchronization overhead and cost of thread 
creation. This means that the plain image Lena, with a size of 
1024 × 1024, should not be encrypted using a granularity of 
more than 128 threads. The same scenario is happened for the 
decryption part and using 256 threads on GPU is the best 
option.  

Table 3: Encryption and Decryption’s Execution Time on CPU and GPUs/ 
Picture Size 8192 × 8192 

Table 3 displays the proposed algorithm's execution time 
for the 8192×8192 pixel plain image Lena. The table 
illustrates how the algorithm execution time is decreased by 
increasing the number of threads running on the CPU cores. 
Both encryption and decryption algorithms follow this 
pattern. The acceptable parallelization overhead in 
comparison to the parallel acceleration is the cause of this. 
The first GPU's GPU-implemented encryption algorithm 
performs best when 256 threads are active. Additionally, 
using 256 threads produces the best results for the GPU-
implemented encryption algorithm on the second GPU. The 
decryption algorithm for the plain image Lena, which has a 
size of 8192×8192, follows the same principle. The best 
number of threads to run the decryption algorithm on both 
GPUs is 256, and parallel execution of threads on CPU cores 
thus reduces the algorithm's execution time. 

Mode Thread CPU GPU 
8Core GT 

740M 
GTX 
960M 

Encryption 

1 3.318(s) 15.478(s) 0.091(s) 
2 1.710(s) 7.829(s) 2.877(s) 
4 0.984(s) 4.041(s) 1.5331(s) 
8 1.067(s) 2.108(s) 0.716(s) 

16 - 1.128(s) 0.372(s) 
32 - 0.637(s) 0.222(s) 
64 - 0.351(s) 0.159(s) 

128 - 0.218(s) 0.158(s) 
256 - 0.229(s) 0.160(s) 
512 - 0.259(s) 0.161(s) 
1024 - 0.303(s) 0.164(s) 

Decryption 

1 4.935(s) 24.853(s) 8.920(s) 
2 2.514(s) 12.713(s) 4.607(s) 
4 1.678(s) 6.489(s) 2.380(s) 
8 1.811(s) 3.347(s) 1.274(s) 

16 - 1.761(s) 0.676(s) 
32 - 0.964(s) 0.383(s) 
64 - 0.531(s) 0.267(s) 

128 - 0.343(s) 0.264(s) 
256 - 0.341(s) 0.255(s) 
512 - 0.361(s) 0.257(s) 
1024 - 0.393(s) 0.259(s) 

Mode Thread CPU GPU 
8Core GT 740M GTX 

960M 

Encryption 

1 167.442(s) - - 
2 85.299(s) - 185.743(s) 
4 46.400(s) - 98.968(s) 
8 36.945(s) 132.892(s) 45.202(s) 

16 - 70.291(s) 22.439(s) 
32 - 38.672(s) 13.535(s) 
64 - 20.589(s) 9.596(s) 

128 - 12.778(s) 9.516(s) 
256 - 12.553(s) 9.336(s) 
512 - 14.490(s) 9.712(s) 
1024 - 16.904(s) 9.844(s) 

Decryption 

1 282.144(s) - - 
2 145.294(s) - 293.837(s) 
4 81.891(s) - 154.921(s) 
8 70.939(s) 211.627(s) 81.592(s) 

16 - 109.992(s) 42.447(s) 
32 - 59.173(s) 22.951(s) 
64 - 31.687(s) 15.817(s) 

128 - 19.632(s) 15.449(s) 
256 - 19.599(s) 15.132(s) 
512 - 20.280(s) 15.271(s) 
1024 - 22.292(s) 14.805(s) 



B. Key Space Alanysis 

The key space in cryptography refers to the collection of 
all feasible keys used to initialize the cryptographic scheme. 
In cryptography, a key space's size determines how secure an 
encryption scheme is against a brute-force attack. As of right 
now [20, 21], cryptography schemes with key spaces larger 
than 2100 1030 can withstand brute-force attacks. The key 
space size for the suggested image encryption scheme will be 
2128, which is larger than 2100. As a result, the proposed key 
space is sufficiently large to fend off a brute-force attack. 

C. Kye Sensivity Analysis 

To analysis the key sensitivity in the encryption and 
decryption process, we can compute the Number of Bit 
Change Rate (NBCR). For two images B1 and B2, the NBCR 
is expressed as: 

NBCR (B1, B2) = Ham (B1, B2)/ Len × 100%  (3)            

Where Ham(B1; B2) is the hamming distance between two 
images B1 and B2 and Len is the bit length of B1 and B2. 
According to Eq. 3, if the NBCR(B1, B2) is 50%, then two 
images B1 and B2 are completely different. The ideal value of 
NBCR is about 50%. We can analyze the sensitivity of each 
bit of the K1 as follows: (1) Change one bit of the secret key 
K1 to obtain secret key K2 ; (2) In the encryption process, to 
test the key sensitivity, encrypt the plain image P using the 
secret keys K1 and K2 to obtain the cipher images C1 and C2 
and then calculate the NBCR(C1,C2); (3) In the decryption 
process, to test the key sensitivity, decrypt the cipher image 
C1 using the secret keys K1 and K2 to obtain the decrypted 
images D1 and D2 and then calculate the NBCR(D1,D2); (4) 
Iterate the steps 1, 2 and 3 for all the 128 bits in the secret key 
K1. 

 
Figure 2: (a) The plain image P; (b) The cipher image C1 = EncK1(P); (c) 
The cipher image C2 =EncK2(P); (d) The different between C1 and C2; (e) 
The decrypted D1 = DecK1(C1); (f) The decrypted D2 = DecK2(C1); (g) 
The decrypted D3 = DecK3(C1); (h) The different between D2 and D3. 

The secret key should be changed with extreme care in a 
good image encryption scheme. In other words, you can 
correctly decrypt the plain image if you use the right secret 
key. Several experiments have been conducted to evaluate the 
encryption schemes' key sensitivity. To achieve this, we 
generate a 128-bit secret key K1 at random, change one bit of 
K1, and then generate K2 and K3 secret keys that are similar 
to K2. We create two cypher images, C1 and C2, and then 
encrypt the plain image P, depicted in Figure 2(a), using the 
secret keys K1 and K2 (c). 

Fig. 2 displays the decrypted image C1, which was done 
with the right secret key K1 (e). The decrypted image C1 is 
shown in Fig. 2(f), (g), and (h). These noisy and dissimilar 
images were created using two incorrect secret keys, K2 and 
K3. The experimental results demonstrate that even a small 
modification to the encryption schemes' secret keys results in 
a completely different ciphered image. As a result, the secret 
key plays a critical role in the proposed image encryption 
scheme. The proposed image encryption scheme's key 
sensitivity analysis results are shown in Fig. 3. The NBCR of 
the two obtained cypher images in the encryption and 
decryption processes are 50% on average by changing one bit 
of the secret key. In other words, the two obtained cypher 
images and the two obtained decrypted images are 
completely different, and the proposed encryption scheme 
has a secret key that is extremely sensitive to changes of one 
bit. 

 
Figure 3: Key Sensitive Analysis of the proposed Algorithm. 

D. Correction Analysis 

The correlation coefficient in a digital image reflects the 
relationship between its pixels. Usually, the correlation 
between adjacent pixels in the plain image (in different 
direction vertical, horizontal, and diagonal) is high. An ideal 
encryption scheme should reduce the correlation between 
adjacent pixels in the cipher image to an acceptable level to 
prevent the statistical attacks. The ideal value of correlation 
for cipher image is close to zero. In this paper, we selected 
1000 pairs of adjacent pixels in different directions from plain 
image and cipher image randomly, and compute correlation 
coefficients for all of them. Table 4 shows the result of the 
correlation coefficient of plain image Lena of sizes 
1024×1024, and 8192×8192 the correlation coefficient of the 
corresponding chipper images. The results demonstrate that 
the correlation coefficients of the plain images in different 
sizes are quite high, but the correlation coefficients of the 
cipher image are extremely low and close to zero. The 
proposed encryption scheme could efficiently decrease the 
high correlations between adjacent pixels of the plain image. 

Table 4: The correlation coefficient of adjacent pixels in the plain images 
and their corresponding chipper images 

Image Size Image 
Type 

Horizontal 
Direction 

Vertical 
Direction 

Diagonal 
Direction 

1024 × 1024 plain 0.9810 0.9891 0.9670 

cipher -0.0204 0.0153 -0.0122 

8192 × 8192 plain 0.9997 0.9956 0.9950 

cipher 0.0052 0.0011 -0.0351 



 

Figure 4: Correlations of two adjacent pixels. (a) Vertical direction of the 
Lena plain-image 1024×1024, (b) Vertical direction of the Lena cipher-
image 1024×1024, (c) Horizontal direction of the Lena plain-image 1024 × 
1024, (d) Horizontal direction of the Lena cipher-image 1024×1024, (e) 
Diagonal direction of the Lena plain-image 1024×1024 and (f) Diagonal 
direction of the Lena cipher-image 1024 × 1024. 

Fig. 4 shows the results of the correlation of two adjacent 
pixels of the plain image Lena and the cipher image Lena of 
size 1024 × 1024. The results demonstrate that the correlation 
coefficients of the plain images in different sizes are quite 
high, but the correlation coefficients of the cipher image are 
extremely low and close to zero. The proposed encryption 
scheme could efficiently decrease the high correlations 
between adjacent pixels of the plain image. 

E. Differencial Attack 

        In this attack, the attacker may create a slight change 
in the original image and find the encrypted image of it with 
the original encrypted image and find a meaningful 
relationship between them. To test the resistance to the attack, 
two coefficients of NPCR and UACI are used.  The NPCR 
value for the Lena is close to 100% and the UACI value is 
close to 33.5% showing the sensitivity of the method to the 
original image changes is showing.  

V. CONCLUSION 

The paralleling capabilities of GPU and CPU were used in 
this paper to propose a new parallel image encryption 
algorithm based on two-dimensional cellular automata. The 
implementation of C++ on CPU and GPU using Visual 
Studio, OpenMP, and CUDA were all examples of the 
paralleling style. The permutation and substitution operations 
for each pixel of the image are accelerated in order to 
accomplish this task using parallel threads running on GPU. 

According to the performance data, the proposed algorithm 
on a GPU can process plain images of sizes 1024 ×1024, and 
8192×8192 up to  27, and 28 times faster than its sequential 
counterpart. Additionally, the security analysis demonstrates 
that the proposed algorithm is secure against statistical and 
differential attacks. It also comes with a sufficiently large key 
space and being extremely sensitive to even the smallest 
change to the secret key and plaintext. 
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