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Abstract

Neurons store energy in the ionic concentration gradients they build across their
cell membrane. The amount of energy stored, and hence the work the ions can
do by mixing, can be enhanced by the presence of ion buffers in extra- and intra-
cellular space. Buffers act as sources and sinks of ions, however, and unless the
buffering capacities for different ion species obey certain relationships, a complete
mixing of the ions may be impeded by the physical conditions of charge neutral-
ity and isotonicity. From these conditions, buffering capacities were calculated
that enabled each ion species to mix completely. In all valid buffer distributions
the Ca2+ ions were buffered most, with a capacity exceeding that of Na+ and
K+ buffering by at least an order of magnitude. The similar magnitude of the
(oppositely directed) Na+ and K+ gradients made extracellular space behave as
a Na+–K+ exchanger. Anions such as Cl− were buffered least. The great capac-
ity of the extra- and intracellular Ca2+ buffers caused a large influx of Ca2+ ions
as is typically observed during energy deprivation. These results explain many
characteristics of the physiological buffer distributions but raise the question how
the brain controls the capacity of its ion buffers. It is suggested that neurons and
glial cells, by their great sensitivity to gradients of charge and osmolarity, respec-
tively, sense deviations from electro-neutral and isotonic mixing, and use these
signals to tune the chemical composition, and buffering capacity, of the extra-
and intracellular matrices.
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extracellular matrix, neuron, glial cell, ischemia
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1 Introduction

Neurons spend 50–60% of their oxygen consumption maintaining ionic concentration

gradients across their cell membrane (Ritchie and Straub, 1980; Astrup et al., 1981;

Ereciñska and Silver, 1989). The energy stored in these ion gradients, and hence the

maximum amount of work the ions can do by mixing, is presumably of the same

order of magnitude as the chemical energy stored in the cytosolic concentration of

adenosine triphosphate (ATP) and its reaction products, which has been estimated

to keep neurons functioning for about one minute in the absence of oxygen supply

(Hansen, 1985, p. 123). The present theoretical study examines how the presence of

ion buffers in extra- and intracellular space affects ion mixing, and, conversely, how

the conditions of isotonic and electro-neutral mixing constrain the buffer distributions.

Ion mixing underlies many pathological and physiological processes. Disruption of

the energy supply (Hansen, 1985; Ayata and Lauritzen, 2015; Lemale et al., 2022), or

to a lesser degree neuronal hyperactivity (Dietzel et al., 1989), lead to a collapse of

the ion gradients and a shrinkage of extracellular space, during which the extracellular

K+ concentration can rise from 2–4 mM to more than 50 mM (Hansen and Zeuthen,

1981), a level unviable for other excitable tissues such as the heart. Smaller changes in

ion concentration have been observed to occur between sleep and waking (Ding et al.,

2016).

Basic physiological processes such as synaptic activity and action potential gener-

ation are accompanied by ion mixing. Simulating a model of a spiny dendrite in which

Na+ and K+ were the only permeant ions, Qian and Sejnowski (1989) found that the

influx of Na+ ions on the postsynaptic side of a glutamatergic synapse caused a drop

of the K+ concentration that almost perfectly mirrored the rise in Na+ concentration.

The balancing was imperfect because the membrane capacitor was discharged in the

process. But with a membrane capacitance of 2 µF cm−2, the charge involved must

have been small, constituting approximately two elementary charges per (25 nm)2
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surface area for a change in membrane potential of RT/F = 26.7 mV (R denoting

the universal gas constant, 8.3145 J mol−1 K−1; F the Faraday constant, 96458 C

mol−1; and T the physiological temperature of 310 K) (Benedek and Villars, 2000;

Genet et al., 2000). Hence all Na+ current entering the neuron must either leave the

neuron (mostly as leakage K+ current) or (dis-)charge the membrane capacitor as

displacement current (Gratiy et al., 2013).1

Even without taking into account the detailed components and mechanisms

involved in physiological and pathological mixing (Dijkstra et al., 2016), any simplified

mixing model must obey elementary physical laws.

The first, and most stringent, condition is that the intra- and extracellular bulk

solutions remain electro-neutral. Electrostatic repulsion would drive any unbalanced

charge immediately (actually with the so-called Maxwell relaxation time-constant,

Benedek and Villars (2000)) to the surface of the conductive bulk solution, in this

case the cell membrane, where a diffusely charged Debye layer is formed (Jäckle, 2007;

Pods, 2017). Since, as argued above, the number of charges in this thin layer is small,

charge neutrality of the bulk solutions implies (approximate) charge neutrality of the

net membrane transport. In accordance with this, a single ion species cannot mix in

isolation, as its resulting Nernst potential would seal the membrane against further

transport.

The second condition is that the mixing be isotonic. Even though neurons may

withstand greater osmotic pressures than glial cells (Andrew et al., 2007), their swelling

during energy deprivation has been proposed to be isotonic, like that of glial cells

(Nagasawa et al., 1986; Murphy et al., 2017; Hellas and Andrew, 2021). As noted in

Kimelberg (2004), a 1 mM difference in solute concentration across a semi-permeable

membrane corresponds to a hydrostatic pressure of RT = 2,576 J mol−1, which is

1The restoration of the concentration gradients after synaptic activity is thought to account for half the
energy use of neocortex (Attwell and Laughlin, 2001; Howarth et al., 2012, but see also Levy and Calvert
(2021) for a discordant view). One may therefore wonder why the brain ’wastes’ so much energy on leakage

currents. The answers can be manifold: the great permeability for K+ ions repolarises the membrane and
reduces its time-constant; it further keeps the resting potential close to the K+ reversal potential, preventing
in this manner the K+ ions from leaking most of the time.
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equivalent to 2,576 N m−2 or 19.3 mm Hg, a value greater than the intracranial

pressure. The condition of isotonicity precludes also that the Donnan equilibrium be

a valid state of mixing, and hence requires that the neurons swell during the mixing

process.

Thirdly, the work done by the ions will be maximised if the mixing is conducted

under reversible conditions. The concentration gradients of K+ and Na+ deliver

the energy for reversible secondary transport, such as that of Cl− by the KCC2

co-transporter (Zeuthen, 1994), or that of glutamate by sodium-driven glutamate

transporters (Zerangue and Kavanaugh, 1996; Rossi et al., 2000). Work is also done in

charging the membrane capacitor, a process that is considered, on theoretical grounds,

to be reversible (El Hady and Machta, 2015; de Lichtervelde et al., 2020). In accor-

dance with this, almost all initial heat produced by an action potential is re-absorbed

during repolarisation (Ritchie and Keynes, 1985; Heimburg, 2021). More generally, no

heat is evolved by the mixing of ideal solutions (Wilkie, 1960; Alberty, 1969), and if

the mixing does isothermal work then the entropy of mixing is counterbalanced by the

heat absorbed from the environment (Benedek and Villars, 2000). In the present anal-

ysis, the assumption of reversibility will only be used in the calculation of the work of

mixing (Section 7 and Table 5), not for the derivation of valid buffer distributions.

Finally, ion mixing is assumed to follow a path from the physiological ion concen-

trations (columns K∗
o and K∗

i in Table 1) to the state of complete thermodynamic

equilibrium (column Ke) in which each ion species, permeant or impermeant, acquires

the same concentration inside and outside the neurons.2 For the concentration of the

immiscible (because membrane-impermeant) anions A− to equalise as well, the extra-

cellular compartment necessarily must shrink from its initial volume fraction α = 0.25

to αe ≈ 0.025. The last column of Table 1 (headed cK) shows for each ion species the

2This statement does not imply that neurons ever reach this final state of complete mixing, only that the
ions, during mixing, move along such a path.
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ratio of the molar number of transported ions to the global volume of transported sol-

vent. The bottom line, lastly, shows that both the equilibrium state (column Ke) and

the net membrane transport (cK) are isotonic; they are also electro-neutral.

In a previous study (Maex, 2023) a minimal two-compartmental mixing model was

presented obeying these conditions. In that model, all mixing states were guaranteed

to be isotonic and electro-neutral by the isotonicity and charge neutrality of the net

membrane transport. Unless the buffering capacities for different ion species are prop-

erly tuned, however, this needs no longer be the case in the presence of ion buffers,

which act as independent sources and sinks of ions. Nevertheless, from the conditions

of isotonicity and charge neutrality of the equilibrium state (column Ke in Table 1)

and the net transport (column cK), constraints on the distributions of ion buffers can

be calculated.

This paper is organised as follows. Section 2 describes the analytical mixing model

including the implementation of ion buffering. In Section 3 the mathematical condi-

tions are derived for isotonic and electro-neutral mixing. These conditions are first

applied in Section 4 to constrain buffering in a model containing only monovalent ion

species. Section 5 then derives valid buffering capacities for the full set of six perme-

ant ion species of Table 1. Section 6 illustrates that buffering enhances the amount

of energy stored in the ionic concentration gradients. The physiological relevance of

the model and its predictions are discussed in Section 7. Lastly, Section 8 postulates

a hypothesis regarding the control, by neurons, of the capacity of ion buffering.

2 The mathematical model

The model of isotonic ion mixing described before (Maex, 2021, 2023) is first summa-

rized in Section 2.1 and then, in Section 2.2, extended with ion buffers. The concept

of valid buffer distributions is introduced in Section 2.3.
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Table 1 Ion concentrations before and after complete mixing, and ratio of solute to solvent transport

Physiological concentration1 Full equilibrium2 Concentration
at α = 0.25 at αe = 0.0243 of transport3

outside inside outside = inside outside → inside

K∗
o K∗

i Ke cK
Ion species K (mM) (mM) (mM) (mM)

Na+ 142 12 44.5 152.5
K+ 4 137 103.75 −6.7
Cl− 113 8 34.25 121.5

HCO−
3 29 9 14 30.6

A− 10 134 103 0
Ca2+ 2.0001 2 0.0001 0.5001 2.2
Mg2+ 0.9999 2 0.9999 2 0.9999 0.9999

Total 301 301 301 301

1Adapted from Armstrong (2015, Fig. 3).
2Calculated using Eq. 5.
3Calculated using Eq. 1 with K◦

o = Ke.
4Chosen such that the total solute concentration (bottom row) is an integer number.

2.1 A minimal model of ion mixing

The model describes the variation in concentration of six permeant ion species in two

compartments. The two compartments, representing the extracellular (or interstitial)

and intracellular space, are separated by a moveable semi-permeable membrane. Their

volumes Vo and Vi vary if solvent is co-transported with the ions but the joint volume

Vo + Vi is conserved and set to unity. In the model’s physiological state (Table 1),

extracellular space occupies a volume fraction α = 0.25, comparable to that in actual

grey matter (Vor̆́ı̆sek and Syková, 1997; Rasmussen et al., 2020).

Each of the six permeant ion species K diffuses down its concentration gradient

– the electrical membrane potential is not taken into account in this minimal model

(see below). The outer and inner concentrations Ko and Ki vary such that the number

of particles of each ion species is conserved. About 44% of the intracellular anions,

collectively denoted by A−, do not permeate the membrane (Armstrong, 2015); they

represent (osmotically active) compounds such as charged amino acids (glutamate

and aspartate), phosphorylated metabolites, and macromolecules, all with an average
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valency of −1 (Westheimer, 1987; Jäckle, 2007; Park et al., 2016). The extracellular

concentration of impermeant anions is set to 10 mM (Delpire and Staley, 2014) so

that the oncotic pressures on both sides of the membrane can equilibrate at a finite

volume of extracellular space (αe ≈ 0.025 in Table 1).

If, during mixing, the extracellular concentration of ion species K varies from its

initial value K∗
o to a final concentration K◦

o (the superscripts * and ◦ will be used to

denote initial and final conditions, respectively), while extracellular space shrinks by

a factor w from its initial volume V ∗
o (or α) to a final volume V ◦

o = wV ∗
o (wα), then

the mean ratio of solute to solvent transfer is

cK =
∆K

∆V
=

K∗
o − wK◦

o

1 − w
(1)

=
K∗

i − yK◦
i

1 − y
, (2)

where ∆K and ∆V are the amount of solute (in moles) and the volume of solvent (in

m3) transported. Hence, like Ko and Ki, the quantity cK has units of concentration

(mol m−3 or mM). The equivalent Eq. 2 uses the corresponding intracellular variables,

and is warranted to yield the same value of cK as Eq. 1 by the conservation of the

total volume and of the number of particles (y = 1−wα
1−α denotes the relative expansion

of the intracellular compartment after mixing).

The value of cK is assumed to remain constant during the mixing process. As time

is not explicitly modelled, cK cannot be considered a flow or current; it only indicates

the molar amount of ion species K that is transported from the outer to the inner

compartment for a given shrinkage of extracellular space by a volume ∆V . For an ion

transferred against the direction of solvent transport, the value of cK is negative, as

is the case with cK+ in Table 1. For the impermeant anions, cA− = 0. The model does
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not make assumptions about the actual mechanism of ion and water transport, but

as neurons lack functional aquaporins (Andrew et al., 2007), ion co-transporters such

as KCC2, which act as water channels, should be considered (Zeuthen, 1994).

If mixing starts from a state in which both compartments have the same total

solute concentration or osmolarity (Ω∗
o = Ω∗

i ) and in which the bulk solutions are

electro-neutral (ρ∗o = ρ∗i = 0), then mixing in the absence of buffering leads to another

isotonic and electro-neutral state, if and only if the values of cK obey (Maex, 2023)

∑
K

cK = Ω∗
o = Ω∗

i (3)

and

∑
K

zKcK = 0, (4)

where zK is the valency of ion species K (negative for anions).

To maximise the work of ion mixing, as final state in Table 1 the state of complete

equilibrium was chosen (column Ke). At this state the extracellular volume fraction

had shrunk from α = 0.25 to αe = 0.0243 (or w = 0.0971) so that the impermeant

anions A− also equalised their concentration. For each permeant ion species K, the

concentration Ke at equilibrium is calculated as

Ke = αK∗
o + (1 − α)K∗

i . (5)

Substituting the value of Ke for K◦
o in Equation 1, and using w = 0.0971, yields

for each permeant ion species the value of cK tabulated in the last column of Table 1.

Isotonicity and charge neutrality of the equilibrium state require

∑
K

Ke + [A−]e = Ω∗
o = Ω∗

i (6)
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and ∑
K

zKKe − [A−]e = 0. (7)

Finally, because the net transport of ions was assumed to be electro-neutral

(Section 1 and Eq. 4), the membrane potential could be disregarded. Evidently the

membrane potential, like the expression of channels and transporters, affects the

detailed time-course of ion transport. If, however, the mixing process is seen as a min-

imisation of the Gibbs energy (or a maximisation of entropy) then the contribution of

the membrane potential is negligible, as the electrical energy stored in the membrane

capacitor is several orders of magnitude less than the Gibbs energy of the concentra-

tion gradients (Maex, 2021). Put another way, if the work of mixing is seen as the

reverse of the work that has been done by the ion pumps in generating the gradients,

then it is clear that the charge on the membrane capacitor constitutes only a fraction

of the number of ions pumped (Benedek and Villars, 2000; Jäckle, 2007).

2.2 Incorporation of ion buffering in the extra- and

intracellular compartments

By ion buffering is meant any mechanism (active or passive) that binds the ions of

a particular species in such a manner that the bound ions no longer contribute to

the concentration or chemical potential of the unbound or free ions. Examples are as

diverse as the active re-uptake by glial cells of the K+ ions released into extracellular

space by neurons (Dietzel et al., 1989; Somjen et al., 2008; Larsen et al., 2016), the

binding of Ca2+ to intracellular proteins (Lehninger, 1975; Eisner et al., 2023), or

the binding of extracellular Na+ and K+ to polyanions in peri-neuronal nets (Härtig

et al., 1999; Morawski et al., 2015). The model assigns a buffering capacity for each

permeant ion species in each compartment. The physical nature of the buffers is not

specified here, but will be discussed in Section 7. As in the last example above, buffering
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Fig. 1 Illustration of the model and its buffering strategy. Drawings show the extra- and intracellu-
lar compartments in the absence ((a) and (c)) and presence of buffering ((b) and (d)), and before ((a)
and (b)) and after complete mixing ((c) and (d)). The barrier (membrane) separating the compart-
ments is drawn as a thick vertical line. Widths indicate relative compartmental sizes (not to scale),
heights relative concentrations of the two permeant monovalent ions Na+ (gray) and K+ (white).
The extracellular compartment shrinks during mixing from its initial fractional volume α ((a) and
(b)) to ω = wα ((c) and (d)). In (b) a buffer with the same capacity γ for Na+ and K+ ions has
been added as a virtual volume to the extracellular compartment (rectangle in dotted line). During
mixing the size of this virtual buffering compartment remains unchanged, although the volume of
the actual compartment, and hence the position of the barrier, changes in the same manner as in the
absence of buffering (compare (c) and (d)). Note that unlike in the figure, different ion species can
have buffers with different capacities (different values of γ), and hence have differently sized virtual
volumes attached to the host compartment

capacities for different ion species may, in the actual brain, be accounted for by the

same physical buffer.

Within the framework of the model of Section 2.1, a buffer can, to a first approxima-

tion, be implemented as an ion-specific virtual volume added to the host compartment.

Buffering of ion species K in the outer (inner) compartment then adds a virtual vol-

ume of fixed size γKo
V ∗
o (γKi

V ∗
i ) to the outer (inner) compartment (Maex, 2021).

Each virtual volume γKo
V ∗
o (γKi

V ∗
i ) is used only in the calculation of the concentra-

tion of that particular ion species in that compartment. The dimensionless parameters

γK ≥ 0 are called the buffering capacities or buffering powers (Chesler, 2003). The

fraction of ions bound to a buffer of capacity γK measures γK

1+γK
at α = 0.25.
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This procedure is illustrated by the right panels of Fig. 1 for the buffering of

Na+ and K+ ions in extracellular space, both buffers having the same capacity γ in

this example. As before, the actual extra- and intracellular compartments initially

occupy volume fractions α and (1 - α), respectively (Fig. 1 (a)), and extracellular

space shrinks during mixing to a final volume ω = wα (Fig. 1 (c)). Buffering adds to

the outer compartment a virtual compartment of size γα (Fig. 1 (b)), whose volume

is held constant when the host compartment contracts (or expands) during mixing

(Fig. 1 (d)).

The presence of a buffer for ion species K always increases the total (molar) number

of particles of that species: from αK∗
o to (1 + γKo

)αK∗
o , and from (1 − α)K∗

i to

(1+γKi
)(1−α)K∗

i , for buffers located in the outer and inner compartment, respectively.

Buffering of an ion in its high-concentration compartment acts as a source of ions,

buffering in its low-concentration compartment as a sink (here the virtual volume can

be thought of as a dilution volume). The concentration of K at complete equilibrium,

now denoted by Kb
e , then equals

Kb
e =

(1 + γKo
)αK∗

o + (1 + γKi
)(1 − α)K∗

i

(1 + γKo
)α + (1 + γKi

)(1 − α)

=
(1 + γKo

)αK∗
o + (1 + γKi

)(1 − α)K∗
i

1 + αγKo + (1 − α)γKi

. (8)

In the same manner, the membrane transport cK , now denoted cbK , must take into

account that, in the presence of buffering, the (molar) amount ∆K of transported ions

measures (1 + γKo
)αK∗

o − (w + γKo
)αKb

e , whereas the change in (actual plus virtual)

volume of the outer compartment ∆V remains (1 − w)α, so that

cbK =
∆K

∆V
=

(1 + γKo
)αK∗

o − (w + γKo
)αKb

e

(1 + γKo)α− (w + γKo)α
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=
(1 + γKo

)K∗
o − (w + γKo

)Kb
e

1 − w
, (9)

with w = 0.0971 and Kb
e as given by Eq. 8. The value of γKi enters Eq. 9 indirectly

through Kb
e . Alternatively, using the parameters of the inner compartment,

cbK =
(1 + γKi

)K∗
i − (y + γKi

)Kb
e

1 − y
.

The values of Kb
e and cbK for each ion species are given in Table 4, which will be

discussed in Section 5.

The transfer of solute between the actual (host) and virtual compartment of a

buffered ion species is not modelled explicitly (see also Section 7.1). It can be assumed,

however, that the buffers remain electro-neutral at all intermediate states of the mixing

process. As the net membrane transport will also be imposed to be electro-neutral

(see Section 3.2), charge neutrality of the bulk solutions can always be satisfied.

2.3 Valid versus invalid buffer distributions

The term buffer distribution is used to denote a set of buffering capacities {γKi,o
≥ 0},

each γ specifying the power with which the ions of a species K are buffered in either

the inner or outer compartment. The mathematical conditions for a buffer distribution

to be valid will be established in Section 3. In brief, valid buffer distributions meet

the following physical criteria.

1. All permeant ion species can mix completely between the bulk solutions, such that

at equilibrium each ion species has the same concentration inside and outside the

neurons. In addition to being electro-neutral, the bulk solutions are isotonic and in

osmotic equilibrium.
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2. All buffered ions can mix completely between their buffer and the bulk solution,

such that at equilibrium the amount of ions bound to buffer is proportional to the

concentration of the ions in the bulk solution (Figure 1 (d)). Moreover, the buffers

(with their bound ions) are electro-neutral after mixing.

3. All membrane transport is isotonic and electro-neutral during the entire mixing

process.

An invalid buffer distribution would be one in which, for instance, only a single ion

species were buffered in a single compartment, say Na+ in extracellular space (hence

only γNa+o
> 0). Clearly, in such a case, a complete mixing of all ions is physically

impossible. If the buffer consists of fixed immobile charges then, at the start of mixing,

a Donnan potential will develop at its interface with the bulk solution, impeding

further migration of buffered Na+ ions. If the Na+ ions dissociate from a soluble,

mobile buffer, in contrast, Na+ ions can enter the bulk solution but, as these excess

Na+ ions cannot be transported in an isotonic and electro-neutral manner across

the cell membrane (see Theorem 1 in Section 3.2), a Donnan potential will develop

between the bulk solutions. Although in both cases an electro-chemical equilibrium is

established, with the electrical potential precisely balancing the chemical potentials

(Gibbs, 1875; Mauro, 1962), the emergence of an electrical potential at equilibrium

implies the persistence of a chemical disequilibrium. Hence not all energy stored in the

ionic concentration gradients is retrieved. Neither can there be osmotic equilibrium

(see Section 1).

As will be shown in Section 4, this invalid buffer distribution can be made valid by

assigning to the buffer also a K+-binding capacity γK+
o
> 0, such that each Na+ ion

released is replaced by a K+ ion. In this manner, electro-neutrality is restored, and all

ion species are able to mix completely.
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3 Mathematical conditions for the mixing of ions in

the presence of buffers

Sections 3.1–3.3 establish three conditions for the mixing of ions. From these conditions

some useful theorems are derived in Section 3.4.

3.1 Charge neutrality and isotonicity of the equilibrium state

For the first condition, it is convenient to express the equilibrium concentration Kb
e

of permeant ion species K in the presence of buffering (Eq. 8) as the sum of the

equilibrium concentration Ke in the absence of buffering (Eq. 5) and a supplemental

term Ks
e such that

Kb
e = Ke + Ks

e

and

Ks
e =

α(1 − α)(γKo − γKi)(K
∗
o −K∗

i )

1 + αγKo
+ (1 − α)γKi

. (10)

From this equation it is clear that a buffer located in the high-concentration

compartment of ion species K tends to increase the equilibrium concentration of K

(Ks
e > 0), whereas a buffer located in the low-concentration compartment tends to

reduce Ke (Ks
e < 0). Buffering of an ion with equal capacity in both compartments

(γKo
= γKi

) does not change its equilibrium concentration (Ks
e = 0).

The tonicity (osmolarity) of the equilibrium in the presence of buffering is

Ωb
e =

∑
K

Kb
e + [A−]e

=
∑
K

Ke +
∑
K

Ks
e + [A−]e

14



= Ωe +
∑
K

Ks
e.

Since the mixture was isotonic in the absence of buffering (Ωe = Ω∗
o) (Table 1),

isotonicity of the equilibrium in the presence of buffering requires

∑
K

Ks
e = 0. (11)

In a similar manner, the molar charge concentration ρbe of the bulk solution at

equilibrium in the presence of buffering, given that ρe = 0, can be written as

ρbe =
∑
K

zKKb
e − [A−]e

=
∑
K

zKKe +
∑
K

zKKs
e − [A−]e

= ρe +
∑
K

zKKs
e

=
∑
K

zKKs
e,

so that charge neutrality of the equilibrium requires

∑
K

zKKs
e = 0. (12)

3.2 Charge neutrality and isotonicity of the net membrane

transport

As with Kb
e in Section 3.1, the membrane transport of ion species K in the presence

of buffering, denoted cbK in Eq. 9, can be written as the sum of the same transport
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term in the absence of buffering (cK in Eq. 1) and a supplemental term csK such that

cbK = cK + csK

and

csK =
(1 − α)(K∗

o −K∗
i ) [γKo

(1 − wα) + γKo
γKi

+ wαγKi
]

(1 − w)(1 + αγKo
+ (1 − α)γKi

)
. (13)

Because in the absence of buffering the net membrane transport was isotonic and

electro-neutral (Table 1), the preservation of isotonic and electro-neutral transport in

the presence of buffering requires

∑
K

csK = 0 (14)

and

∑
K

zKcsK = 0. (15)

The following theorem will be used in Section 3.4.

Theorem 1. The magnitude of the membrane transport of an ion species with a

non-vanishing concentration gradient is always enhanced by the presence of a buffer,

whether that buffer is located in the ion’s high- or low-concentration compartment.

Proof. The supplemental term csK calculated in Eq. 13 takes the sign of the concen-

tration gradient (K∗
o − K∗

i ) because the three terms in the bracketed factor of the

numerator are nonnegative and cannot all be zero (noting that by hypothesis either

γKo
> 0 or γKi

> 0, and that 0 < wα < 1).
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3.3 Charge neutrality of the buffers at the equilibrium state

Charge neutrality of the buffers (Maroudas, 1968) requires that the net charge of all

ions bound to buffer is the same after complete mixing as it was before, hence


∑
K

zKγKoαKe =
∑
K

zKγKoαK
∗
o

∑
K

zKγKi
(1 − α)Ke =

∑
K

zKγKi
(1 − α)K∗

i .

(16)

From the charge neutrality of the bulk solutions at equilibrium (Condition 3.1),


∑
K

zKwαKe =
∑
K

zKαK∗
o = 0

∑
K

zK(1 − wα)Ke =
∑
K

zK(1 − α)K∗
i = 0.

Adding these equations to Eqs. 16 gives, with y as defined in Eq. 1,


∑
K

zK(w + γKo)αKe =
∑
K

zK(1 + γKo)αK∗
o

∑
K

zK(y + γKi
)(1 − α)Ke =

∑
K

zK(1 + γKi
)(1 − α)K∗

i .

These equations state that in each compartment the total charge does not change after

complete mixing. But this is always the case, because the membrane transport itself

is electro-neutral (Condition 3.2), so that charge neutrality of the buffers is satisfied

by Conditions 3.1 and 3.2 alone.

3.4 General rules for the buffering of ions

By virtue of the above Conditions 3.1–3.3, the mixing of ions puts constraints on the

distribution of ion buffers.
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Theorem 2. An ion species cannot be buffered in isolation. Its buffering must be

coupled to the buffering of at least one other ion species.

Proof. The buffering of an ion species most commonly will change that ion’s equilib-

rium concentration (Kb
e ̸= Ke, K

c
e ̸= 0), and in that case the tonicity of the entire

mixture must be restored by the buffering, in parallel, of another ion species. The

only exception, in which buffering does not change an ion’s equilibrium concentration

(hence Kc
e = 0), occurs when the ion is buffered with the same capacity in both com-

partments (γKo = γKi), which makes Ks
e vanish in Eq. 10 (see Section 3.1). But in

that case, following Theorem 1, csK ̸= 0 and hence the supplemental transport term

must be neutralised by the increased transport of another buffered ion species.

Theorem 3. Some of the buffered ion species must have concentration gradients of

opposite direction.

Proof. If the gradients of all buffered ion species had the same direction, charge neu-

trality of the net transport could still be preserved by the simultaneous mixing of

(buffered) cations and anions, but the tonicity of the transport would be increased.

Or, as the sign of csK in Eq. 13 is determined by the polarity of the concentration gra-

dient (K∗
o −K∗

i ) (Theorem 1), some of the buffered ion species must have gradients

of opposite direction if the net transport is to be isotonic.

The following theorem will be used in Sections 4.2 and 5.1, and is proven in

Appendix A.

Theorem 4. If all buffers are located in the same compartment, then satisfying Eqs. 11

and 12 guarantees that Eqs. 14 and 15 are also satisfied.

Sections 4 and 5 will examine in greater detail which ion species can be coupled

to find valid buffer distributions.
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Table 2 Ion concentrations for a reduced model of monovalent ions in the absence of buffering

Ion species K K∗
o (mM) K∗

i (mM) Ke (mM) cK (mM)
Na+ 148 12 46 159.0
K+ 4 140 106 −7.0
Cl− 113 8 34.25 121.5

HCO−
3 29 10 14.75 30.5

A− 10 134 103 0

Total 304 304 304 304

Values from Ref. Maex (2023, Table 1); same format as in Table 1.

4 Valid buffer distributions in a reduced model of

only monovalent ions

Before dealing in Section 5 with the buffering of the six permeant ion species of Table 1,

it is instructive to derive valid buffering capacities for the simpler configuration of four

monovalent ions shown in Table 2.

From Eqs. 11 and 12, the conditions for the equilibrium after complete mixing to

be isotonic and electro-neutral become


[Na+]

s
e + [K+]

s
e + [Cl−]

s
e + [HCO−

3 ]
s
e = 0

[Na+]
s
e + [K+]

s
e = [Cl−]

s
e + [HCO−

3 ]
s
e.

(17)

Satisfying both equations requires


[Na+]

s
e + [K+]

s
e = 0

[Cl−]
s
e + [HCO−

3 ]
s
e = 0.

(18)

Similar equations hold for the supplemental transport terms csK (Eqs. 13–15).

Three cases can be distinguished, according as the paired ion species in Eqs. 18

have initial concentrations with gradients of: (4.1) opposite direction but the same

magnitude; (4.2) opposite direction and different magnitude; and (4.3) the same

direction.
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4.1 Paired buffering of two ion species having concentration

gradients of opposite direction and equal magnitude

In the absence of divalent and other monovalent cations, the identity [Na+]o + [K+]o

= [Na+]i + [K+]i must hold, so that, as it is the case in Table 2, Na+ and K+ have

concentration gradients of equal magnitude but opposite direction: [Na+]∗o − [Na+]∗i

= [K+]∗i − [K+]∗o.

Because these ion gradients obey Theorem 3, the buffers can be paired. For

instance, buffering both Na+ and K+ in extracellular space with a capacity of unity

(γNa+o
= γK+

o
= 1) would raise the equilibrium concentration of the Na+ ions from

[Na+]e = 46 mM (Table 2) to [Na+]be = 66.4 mM, while reducing that of the K+ ions

from [K+]e = 106 mM to [K+]be = 85.6, giving [Na+]se = 20.4 and [K+]se = −20.4, and

thus satisfying Eqs. 18.

The transport terms change in a similar manner, from cNa+ = 159 mM (Table 2) to

cbNa+ = 247.1 mM (giving csNa+ = 90.4 mM), and from cK+ = −7 mM to cbK+ = −95.1

mM (csK+ = −90.4 mM), so that the net transport remains isotonic and electro-neutral

as well.

In general, let

γNa+o
γNa+i

γK+
o

γK+
i

 denote the distribution of buffering capacities for

the Na+–K+ cation pair, then it can be shown from Eqs. 10 and 13 that any buffer

distribution of the formΓo Γi

Γo Γi

 with (Γo, Γi ≥ 0 ) will satisfy the conditions for isotonic and electro-

neutral mixing (an example of such a configuration was shown in Fig. 1 (b)).

4.2 Paired buffering of two ion species having concentration

gradients of opposite direction and unequal magnitude

How would the set of valid buffer distributions of Section 4.1 change if in Table 2 the

concentration gradients of Na+ and K+ were of unequal magnitude? (For instance if
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Fig. 2 Buffering capacities γ1 and γ2 enabling isotonic and electro-neutral mixing of two monovalent
cation species with concentration gradients of opposite direction and varying relative magnitude Q.
Both buffers are located in the extracellular compartment (taking α = 0.25). The relative magnitude
Q of the ion gradients is given by Eq. 19

an unspecified non-buffered cation X+ had been added that destroyed the symmetry.)

If the buffers are co-located in a single compartment, say extracellular space, then a

simple expression can be obtained for the relative buffering capacities.

Take

Q =
[Na+]

∗
o − [Na+]

∗
i

[K+]
∗
i − [K+]

∗
o

, (19)

then satisfying Eqs. 18 requires

γNa+o
=

γK+
o

Q + αγK+
o

(Q− 1)
. (20)

Since in this example all buffers are co-located in a single compartment, Theorem 4

guarantees that the net membrane transport is isotonic and electro-neutral as well.

Figure 2 plots Eq. 20 for various values of Q. In each case the buffering capacity

γ should be greater for the ion species having the smaller gradient. Moreover, unless

Q = 1, γ rises hyperbolically and would turn negative beyond the asymptote.
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4.3 Paired buffering of two ion species having concentration

gradients of the same direction

The concentration gradients of Cl− and HCO−
3 in Table 2 are both inward. According

to Theorem 3, this precludes the Cl− and HCO−
3 ions from being buffered, at least in

this reduced model which has to obey Eqs. 18. Indeed, even though isotonicity of the

equilibrium could still be preserved by locating the Cl− and HCO−
3 buffers in different

compartments (giving them Ks
e values of opposite sign), the values of csCl− and cs

HCO−
3

are bound to have the same sign (the sign of the gradient, see Eq. 13), so that the net

transport would be hypertonic.

5 Valid buffer distributions in a model of both

mono- and di-valent ions

Here buffering capacities are calculated for the full set of ions of Table 1. This model

has 12 variables γK ≥ 0 : buffering capacities for six permeant ion species in two

compartments. It will be shown that the addition of divalent cations, even in concen-

trations one or two orders of magnitude less than those of the monovalent ions, leads

to a qualitative change in the range of valid buffer distributions, so that monovalent

anions such as Cl−, which could not be buffered before (Section 4.3), can now be

buffered.

The conditions for isotonicity and charge neutrality of the equilibrium, obtained

in Eq. 17, must be extended to


[Na+]

s
e + [K+]

s
e + [Mg2+]

s
e + [Ca2+]

s
e + [Cl−]

s
e + [HCO−

3 ]
s
e = 0

[Na+]
s
e + [K+]

s
e + 2[Mg2+]

s
e + 2[Ca2+]

s
e = [Cl−]

s
e + [HCO−

3 ]
s
e.

(21)
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Recall that the variables are the supplemental terms defined in Eq. 10, hence they

denote the in- or decreases of the equilibrium concentrations when buffering is added.

Similar equations hold for the supplemental transport terms csK of Eq. 13


csNa+ + csK+ + csMg2+ + csCa2+ + csCl− + cs

HCO−
3

= 0

csNa+ + csK+ + 2csMg2+ + 2csCa2+ = csCl− + cs
HCO−

3
.

(22)

Grouping the ion species in pairs of the same valency yields for both Eqs. 21 and 22

a system of equations of the form


x + y + z = 0

x + 2y − z = 0,

(23)

which has solutions on the straight line passing through the origin and the point (3,

−2, −1). Since the point (0,0,0) is a solution of Eqs. 23, it is still possible to decouple

Eqs. 21 into three independent equations


[Na+]

s
e + [K+]

s
e = 0

[Mg2+]
s
e + [Ca2+]

s
e = 0

[Cl−]
s
e + [HCO−

3 ]
s
e = 0.

Their solution, however, would exclude Ca2+ from being buffered, as Mg2+ is already

at equilibrium in Table 1. Hence [Mg2+]se = 0, so that Theorem 3 cannot be satisfied

for the second equation.

Another approach to finding valid buffer distributions is to add buffers gradually

in steps. According to Theorem 3, in a first step, buffering can be introduced for the

set of ion species {K+, Ca2+, Cl−} (but not for Na+, Ca2+ and Cl−, which all have

their highest concentration in the same compartment). In a second step, Na+ buffers

can be added as will be described in Section 5.2.
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5.1 Calculating capacities for the buffering of K+, Ca2+, and

Cl− ions

Equations 23 can be satisfied with a set of buffers for K+, Ca2+ and Cl−, such that

3 excess K+ ions leave the neuron for 2 Ca2+ ions and 1 Cl− ion entering, each

species flowing down its concentration gradient in an exchange that is both isotonic

and electro-neutral.

5.1.1 Ion buffering restricted to a single compartment

A uni-compartmental distribution of buffers is possible but suffers the drawback

described in Section 4.2.

In practice, for any chosen value of γK+
i

, the value of [K+]se was calculated from

Eq. 10 (given that γK+
o

= 0), after which the values of [Ca2+]se and [Cl−]se were derived

from the imposed (3,−2,−1) proportionality, finally to find γCa2+i
and γCl−i

by invert-

ing Eq. 10. The large discrepancy in magnitude of the K+ and Ca2+ gradients, however,

put a limit on the buffering capacities, as γCa2+i
first rose hyperbolically to become

then negative for γK+
i
> 0.0307. (More precisely γCa2+i

= 604.9 at γK+
i

= 0.0307 and

γCl−i
= 0.013, whereas γCa2+i

= −1,366 at γK+
i

= 0.0308.) Putting the three buffers in

the extra-cellular compartment suffered the same drawback.

5.1.2 Buffering of ions in both compartments

The problem of γCa2+ turning negative at very low buffering capacities for the other

ions could be solved by putting buffers in both compartments. In Figs. 3 (a) and

(b) the capacity γK+
i

of intracellular K+ buffering was independently varied on the

horizontal axis, and the values of the five other buffering capacities were calculated

by solving simultaneously Eqs. 21 and 22.

Except for Ca2+ (red curves in Figs. 3 (a-b)), the intra- and extracellular buffering

capacities for each ion species largely overlapped. When, in Fig. 3 (b), a correction
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Fig. 3 Construction of sets of valid extra- and intracellular buffering capacities γK for K+, Ca2+,
Cl− and Na+. (a) Buffering capacities γK (see the inset to panel (b) for the legend of K) for the set
of ion species {K+, Ca2+, Cl−}. (b) Same data as in panel (a) but with each buffering capacity γK
multiplied by the magnitude of the concentration gradient

∣∣K∗
o −K∗

i

∣∣ (in mM) of that ion species.
(c) Adding Na+ buffers. The buffering capacities for Ca2+ and Cl− were clamped at their values
obtained in panel (a) at γ

K+
i

= 0.8, while γ
K+

o
was varied on the horizontal axis. From this, the

extra- and intracellular buffering capacities for Na+ were calculated as explained in Section 5.2
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Table 3 Selected buffering capacities for the {K+, Cl−, Ca2+} triplet of ions

Ion species K γKo γKi
Kb

e (mM)1 cbK (mM)2

K+ 0.97 0.8 101.5 −110.8
Cl− 0.4 0.35 35.0 156.2
Ca2+ ∞ 9.5 2.0001 71.6

K+ 0.95 0.8 101.7 −109.6
Cl− 0.4 0.35 34.9 155.7
Ca2+ 500 10.0 1.9 70.7

K+ 0.86 0.8 103.0 −100.5
Cl− 0.36 0.34 34.5 152.7
Ca2+ 57.4 17.9 1.0 64.7

K+ 0.75 0.8 104.4 −90.2
Cl− 0.32 0.33 34.0 149.3
Ca2+ 25.6 500 0.03 57.8

K+ 0.75 0.8 104.5 −89.9
Cl− 0.32 0.33 34.0 149.1
Ca2+ 25.0 ∞ 0.0001 57.6

Each of the five solutions was found by taking the values in bold as given, and calculating
the four other γ values (assuming no other ions being buffered) from Eqs. 21 and 22 with
the Matlab solve function.
1Calculated using Eq. 8.
2Calculated using Eq. 9.

was made for the difference in magnitude of the concentration gradients of the three

ion species, the capacity of extracellular Ca2+ buffering (solid red line) almost coin-

cided with that of (extra- and intracellular) K+ buffering, whereas the capacity of

intracellular Ca2+ buffering (dashed red line) coincided with the capacities of the Cl−

buffering. (Note that still γCa2+o
→ ∞ for γK+

i
→ 0.830986 but positive values of γCa2+o

were obtained over the entire range of γK+
i

.)

As only four equations had been used to constrain five variables (γK+
i

being used as

independent variable), the solutions plotted in Fig. 3 are not unique. Table 3 lists for

the buffering of the {K+, Ca2+, Cl−} triplet of ions a selection of five other solutions,

out of an infinite number, each time with γK+
i

= 0.8. It is clear that the capacities

for K+ and Cl− buffering did not vary much among these five solutions, but those

for Ca2+ stand out. As shown by the first solution in Table 3, the lower boundary of

γCa2+i
was 9.5, as at this value the capacity of external Ca2+ buffering went to infinity
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(γCa2+o
→ ∞). Similarly, as shown by the fifth solution, γCa2+i

→ ∞ as γCa2+o
→ 25.0.

This means that Ca2+ had to be buffered with a capacity at least an order of magnitude

greater than that for K+ and Cl− buffering, in order for isotonic and electro-neutral

mixing to be possible.

Also striking is that Ca2+ buffering enhanced the influx of Ca2+ ions (column cbK

of Table 3) by more than an order of magnitude as compared with the unbuffered

configuration in Table 1 (column cK), the influx rising from cK = 2.2 mM to cbK = 64.7

mM in the third solution. The outflux of K+ ions rose in a similar fashion, and will

be shown to increase even further when Na+ buffers are added (Sections 5.2 and 5.3).

5.2 Calculating capacities for the buffering of Na+ ions

In a second step, after the buffering capacities for the {K+, Ca2+, Cl−} triplet of

ions had been determined, Na+ buffering was added as follows. (This procedure is

illustrated only for the third solution of Table 3). With γK+
i

held constant at 0.8,

the value of γK+
o

was varied independently on the horizontal axis of Fig. 3 (c). Each

deviation of γK+
o

from its value of 0.86, obtained in Table 3, disturbed the isotonicity

and charge neutrality of the equilibrium state and net transport. These disturbances

then enabled the capacities of Na+ buffering to be determined in such a manner that

they restored tonicity and charge neutrality. More particularly, each excess or deficit

in tonicity (or charge) resulting from the variation of γK+
o

was used as value of [Na+]se

and csNa+ in Eqs. 10 and 13, from which γNa+o
and γNa+i

could be calculated. Notice

in Fig. 3 (c) that γNa+o
varied almost linearly with γK+

o
, indicating that the added

extracellular Na+ and K+ buffers behaved as a Na+–K+ exchanger.
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5.3 Example of a valid set of buffering capacities

To close this section, Table 4 shows in its first two columns a valid set of buffering

capacities. The physiological ion concentrations were those of Table 1; the new equi-

libria (Kb
e ) and transport concentrations (cbK) are listed in the last two columns. We

repeat that the buffering capacity for each ion species K in the outer (γKo) and inner

compartment (γKi) was calculated as follows. The capacity of intracellular potassium

buffering, γK+
i

, was set to 0.8 (see Section 7 for a motivation of this value) and valid

values were calculated simultaneously for γK+
o

and for the capacities of Ca2+ and Cl−

buffering. Out of all possible solutions the third one of Table 3 was selected (a choice

that was rather arbitrary as all solutions shared a strong Ca2+ buffering and a large

Ca2+ influx). In a second step, the value of γK+
o

was multiplied by two as compared to

its value in Table 3 (again a rather arbitrary choice) to make room for Na+ buffering,

after which the capacities of Na+ buffering were calculated as explained in Section 5.2.

No explicit capacities were calculated for the buffering of HCO−
3 , although this ion

could in theory share buffers with Cl−. The HCO−
3 ion forms itself, however, together

with CO2, the major pH buffer of the brain, so that modelling its buffering would

require that pH homeostasis also be modelled (Chesler, 2003; Ruusuvuori and Kaila,

2014).

Neither does Table 3 contain capacities of Mg2+ buffering. Because the Mg2+ ion

has a very small or non-existing concentration gradient (see Table 1 and Section 7.2),

the capacity of its buffers cannot be predicted by the present method. In the absence of

a Mg2+ gradient, Mg2+ is always in the equilibrium state (Table 1), and, accordingly,

any distribution of its buffers would preserve the tonicity and charge neutrality of

mixing. This can be seen from Eqs. 10 and 13, where, for [Mg2+]∗o = [Mg2+]∗i , both

[Mg2+]se and csMg2+ vanish for all buffering capacities γMg2+
o

and γMg2+
i

. Hence adding

any such buffers would neither change the equilibrium concentration of Mg2+, nor the

number of Mg2+ ions transported between the compartments.
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Table 4 Valid distribution of buffering capacities γ for the physiological
concentration gradients given in Table 1

γKo γKi
Kb

e cbK
Ion species K (mM)1 (mM)2

Na+ 0.768 0.195 54.9 225.4
K+ 1.712 0.8 92.5 −173.4
Cl− 0.360 0.342 34.5 152.7

HCO−
3 0 0 14 30.6

A− 0 0 103 0
Ca2+ 57.37 17.87 1.0 64.7
Mg2+ – – 0.9999 0.9999

Total 301.0 301.0

1Calculated using Eq. 8.
2Calculated using Eq. 9.

Table 5 Work of mixing in the absence and presence of ion buffering compared

Ion species Work (J/l) without buffers1 Work (J/l) with buffers2

Na+ 131.5 154.2
K+ 8.25 123.6
Cl− 109.4 125.1

HCO−
3 14.5 14.5

A− 0 0
Ca2+ 2.6 51.6
Mg2+ 0 0

Total 266.2 461.0

Work in joules per liter calculated from Eq. 25.
1Using the ion concentrations of Table 1.
2Using the buffering capacities of Table 4.

6 Work of mixing in the presence of ion buffering

The buffering of an ion species enhances the amount of work the ions can do by mixing

or, equivalently, the amount of energy stored in its concentration gradient (Maex,

2021).

As in our previous studies (Maex, 2021, 2023), the maximum amount of isothermal

work that can be done by the mixing of ions of species K was calculated as

WK = ∆GK = RT

∫ Ke

K∗
o

ln
Ko

Ki
dK = RT

∫ Ke

K∗
o

ln
Ko

Ki
d(KiVi), (24)
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where the differential dK denotes an elementary amount of ions transferred from the

outer to the inner compartment. This differential can also be written as d(KiVi),

the differential of the molar amount of ion species K in the inner compartment.

Equation 24 assumes the mixing is entirely entropy-driven and that, as is the case

for the mixing of ideal solutions, no changes of enthalpy are involved (Wilkie, 1960;

Alberty, 1969).

Equation (24) can be solved (Maex, 2021) to give, after the volumes of the virtual

(buffering) compartments of ion species K have been added,

∆GK

RTV
= (1 + γKo)αK∗

o lnK∗
o + (1 + γKi)(1 − α)K∗

i lnK∗
i

− (w + γKo)αKb
e lnKb

e − (y + γKi)(1 − α)Kb
e lnKb

e

− cbKCK ln
1 + γKo

w + γKo

− cbKDK ln
1 + γKi

y + γKi

. (25)

The logarithmic functions in the third and fourth line of Eq. 25 take as argument the

relative change in size of the outer and inner compartment, respectively (including the

virtual buffering compartment). The integration constants CK and DK are determined

by the initial conditions (Maex, 2021):

CK = (1 + γKo
)α

cbK −K∗
o

cbK

DK = (1 + γKi
)(1 − α)

cbK −K∗
i

cbK
.

Equation 25 can be interpreted as follows (Maex, 2023): the maximum amount

of work WK the ions of species K can do by mixing is the difference between their

Gibbs energy before and after complete mixing (aggregate over both compartments
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in the first and second line) minus the osmotic work the ions do in changing the

compartmental volumes (third and fourth line) (Benedek and Villars, 2000).

Table 5 shows that buffering of the Na+, K+, Cl− and Ca2+ ions, each species

buffered with the capacities given in Table 4, enhanced the total work of mixing by

76%. Of this increase, 57% was caused by buffering of the K+ ions and 24% by the

buffering of Ca2+ ions. The great effect of K+ buffering confirms that more energy can

be gained by buffering an ion in its low-concentration, than in its high-concentration,

compartment (Maex, 2021). In the absence of a concentration gradient, Mg2+ can do

no work, whether the ion is buffered or not.

As a reference, the total energy density of 461 J l−1 stored in the concentration

gradients would suffice to keep the brain functioning during about 28 s (given a brain

volume of 1.2 l and an energy use of 20 W)3. This energy can be further enhanced by

increasing the buffering capacities in the manner of Fig. 3 (c).

7 Physiological relevance

This section discusses the limitations of the buffering model described in Section 2.2

and the relevance of the buffering capacities calculated in Section 5.

7.1 Physiological relevance of the present model of ion buffering

The implementation of ion buffers as a supplemental volume (Fig. 1) captures the

most important characteristic of ion buffers: their ability to act as a source (when

located in the ion’s high-concentration compartment) or sink of ions (for location in

the low-concentration compartment).

In contrast, some other characteristics of buffers were lacking. The interaction

between ion and buffer, and the buffering capacity (Eisner et al., 2023), were assumed

to be independent of ion concentration, whereas physiological binding commonly

3Levy and Calvert (2021) arrived, for forebrain cortex, at a much lower energy budget of 4.94 W, of

which the postsynaptic clearance of Na+ ions accounted for only 2% (0.1 W). In their study, however, the
dendrites were perfect, non-leaky integrators (see also footnote 1).
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obeyes a (hyperbolically saturating) Michaelis-Menten function (Lehninger, 1975; Eis-

ner et al., 2023). Hence the model assumed that ions and buffers interacted on the

low-concentration, linear part of the titration curve. Another characteristic not taken

into account was competition between different ion species for the same buffer. For

instance, although the higher affinity of proteoglycans for Ca2+ than for Na+ ions

(see Section 7.2) was reflected by a greater extracellular buffering capacity for Ca2+

(Table 4), the inhibitory effect of Na+ concentration on Ca2+ binding was not explicitly

modelled (Hunter et al., 1988).

The volume of the virtual (buffering) compartment was held constant, even when

the actual host compartment shrank or expanded (Fig. 1). One could argue that

the buffer concentration in extracellular space should rise when the latter shrinks.

Indirectly this was the case in the model, as the fraction of ions bound to buffer

increased from γ
1+γ at the physiological volume α = 0.25 to γ

w+γ after shrinkage to

αe = 0.0243 (w = 0.0971, see Section 2.1). On the other hand, such shrinkage usually

occurs during energy deprivation, which itself may cause buffers to disintegrate (as

may be the case with glial cells, see Section 7.2).

Whereas the former points should be considered physical limitations of the buffer-

ing model, the present implementation is also not completely satisfactory from a

computational point of view. At present there is no easy manner to calculate the

ion concentrations in the bulk solutions at intermediate mixing states (although they

are correctly calculated at the state of complete mixing by virtue of conditions 3.1

and 3.3). The reason for this difficulty is as follows. As shown previously (Maex, 2021,

2023), Eqs. 1 and 9 cause the ion concentration to vary as a hyperbolical function of

the compartmental volume during mixing. Whereas in the absence of buffering (Eq. 1),

the obtained value is the ion concentration in the bulk solution, in the presence of

buffering (Eq. 9) the value pertains to the aggregate of actual and virtual (buffer-

ing) compartment. Without a continual reshuffling of ions between buffer and bulk
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solution, each of them taken apart may not be electro-neutral, but together they will

always be. Such reshuffling would require a more detailed buffering model, at the cost

of preventing the buffer distributions from being calculated analytically.

Nevertheless these limitations do not affect the main conclusions of the present

study. The conditions used to constrain the buffer distributions, formulated in

Sections 3.1 and 3.3, concerned only the concentration and charge of the final (equilib-

rium) state. Neither do the limitations affect the work of mixing calculated by Eq. 25

in Section 6, at least if no energy is dissipated, overall, in the binding and unbinding of

ion and buffer. (The latter assumption, admittedly, may not hold for the buffering of

K+ ions by glial cells, which involves the action of the sodium pump, see Section 7.2.)

7.2 Physiological relevance of the predicted buffering capacities

Evidently the present analysis can make only qualitative predictions of the distribution

of ion buffers. Neither can the buffering of ions in the actual brain easily be quantified.

One method is to compare the ionic concentrations (in mM) with the content of

chemical elements obtained from scanning electron microscopy (in mmol per kg dry

weight) (LoPachin et al., 2001; Akar et al., 2003). From the values in LoPachin et al.

(2001) (662 mmol K+ per kg, for a water content of 75%), not more than 50% of

the cytoplasmic K+ content is probably bound to buffer, but this value can be higher

within the cell nucleus and the mitochondria (LoPachin et al., 2001). As explained

in Section 2.2, a buffer with a capacity of γK+
i

= 0.8 (Tables 3 and 4) would bind a

fraction
γ
K

+
i

1+γ
K

+
i

= 0.44 of the intracellular K+ ions. This fraction is greater than that

found in experiments measuring the diffusion of a radio-active K+ isotope in giant

axons (Hodgkin and Keynes, 1953). It is clear from Fig. 3 (a) that when the value of

γK+
i

is changed all other buffering capacities should be varied in proportion to this

change.
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Some of the buffering capacities in Tables 3 and 4 can be tentatively mapped onto

well-known buffering mechanisms of the actual brain, others should be regarded as

predictions of the present analysis.

Astrocytes, which occupy 5–15% of the volume of cortical tissue (Hansen, 1985;

Dienel and Rothman, 2020), are well known to take up K+ ions released by neurons

both through the activity of their Na+/K+ pump and through voltage-gated rectifier

Kiv4.1 channels (Somjen et al., 2008; MacAulay and Zeuthen, 2012; Larsen et al., 2016;

Rouach et al., 2018). As such, glial cells should be regarded as part of the extracellular

K+ buffer in the present study.

In addition, passive Na+–K+ exchange in interstitial space may be accomplished

in perineuronal nets, a polyanionic glycopolymeric matrix ensheathing many glia cells

and neuron types (Brückner et al., 1993; Härtig et al., 1999). These nets have been

estimated to carry fixed negative charges with a density up to 0.5 M (Morawski et al.,

2015). Interestingly, the incorporation of proteoglycans, an essential component of

perineuronal nets (Fawcett et al., 2019), was found to facilitate the diffusion of small

ions such as Na+ through synthetic membranes (Preston and Snowden, 1972). As

explained in Sections 4.1 and 5.2, paired Na+–K+ buffering takes a privileged position

because these monovalent cations have oppositely directed concentration gradients of

similar magnitude. As a result, a change of γK+
o

was paralleled by an almost identical

change of γNa+o
(Fig. 3 (c)), indicating that extracellular space may indeed act as a

Na+–K+ exchanger (Carnay and Tasaki, 1971; Härtig et al., 1999; Morawski et al.,

2015).

The intracellular buffering of K+ and Na+ ions, on the other hand, may be more

limited, as most proteins have a higher affinity for divalent than for monovalent cations.

Nevertheless, all four cations are needed for the structural stabilisation of ribonucleic

acids and certain enzymes (Lehninger, 1975; Kolev et al., 2018; Danchin and Nikel,

2019).
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An unexpected result was that the permeant anions such as Cl− could only be

buffered, with low capacity, when divalent cations were added: isotonic and electro-

neutral mixing became impossible when Cl− buffering was introduced in the simplified

model of Table 2 (Section 4.3). The abundance of impermeant anions inside the cells

(A− in Table 1) leaves little room for the intracellular concentration of permeant

anion species. During ischemia, weak acids such as lactate can accumulate (Hansen,

1985), but these are transported in their protonated, thus neutral form (Ruusuvuori

and Kaila, 2014). An outward directed flow of another anion would be needed, indeed,

to balance, during mixing, the inward flow of Cl− (see Theorem 3). In the actual

brain, Cl− ions may bind to certain extracellular proteins such as albumin (Halle and

Lindman, 1978), and can be accumulated in cellular organelles, such as the lysosomes,

by intracellular chloride transporters (Stauber and Jentsch, 2013).

As noted in Section 5.3, no buffering capacities were calculated for the HCO−
3 ion,

which is itself involved in pH homeostasis so that its reversal potential follows that

of the H+ ion (Chesler, 2003; Ruusuvuori and Kaila, 2014). The bicarbonate ion is

also exceptional in its having electro-chemical and concentration gradients of opposite

directions. With a reversal potential less negative than the resting membrane potential

(−31 mV using the concentrations of Table 1), HCO−
3 is driven out of the neurons

during the first seconds of energy deprivation, to be driven inward afterwards either

through co-transport with Na+ or as a consequence of the collapse of the membrane

potential (Hansen, 1985; Larsen and MacAulay, 2017).

The intracellular Ca2+ concentration is kept extremely low by ion pumps and

buffers. It has been estimated that only 1 in 500 Ca2+ ions may be free (unbound)

(Akar et al., 2003; Eisner et al., 2023), most intracellular Ca2+ being buffered by

proteins and membrane surfaces, and > 80% found in subcellular organelles such as

the endoplasmic reticulum and mitochondria (Pozzan et al., 1994; Jasielec et al., 2020).

Even though interstitial fluid, as compared with blood plasma or cytoplasm, is almost
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devoid of soluble proteins (Collewijn and Schadé, 1965; Kimelberg, 2004), Ca2+ ions

have a greater affinity than Na+ or K+ ions for the glycosaminoglycans that form a

large part of the interstitial matrix (Comper and Laurent, 1978; Hunter et al., 1988;

Nicholson and Hrabĕtová, 2017).

The present analysis correctly predicted the strong buffering of Ca2+ ions in both

intra- and extracellular space (Table 3). Another feature of Table 3 was that the

capacities of the Ca2+ buffers may diverge. The first and second solution in the table

showed a huge extracellular Ca2+ buffering, which could be more appropriate for

cartilage- or bone-forming tissue (Comper and Laurent, 1978). In the fourth and fifth

solution, in contrast, Ca2+ ions were predominantly buffered inside the cells. The fifth

solution was the only one in which [Ca2+]o dropped by more than 90% during mixing,

a phenomenon that has been observed near cerebellar Purkinje cells (Nicholson et al.,

1977), a cell type known for its elaborate intracellular Ca2+ handling (Cheron et al.,

2004; Eisner et al., 2023).

The strong Ca2+ buffering caused a large influx of Ca2+ ions into the neurons

(cbCa2+ = 64.7 mM in Table 4). The present minimal model cannot identify the mem-

brane channels mediating this influx, but in actual neurons the Ca2+ influx during

energy deprivation is mediated by AMPA- and NMDA-type glutamate receptors and

by inverse operation of the Na+–Ca2+ exchanger (Ascher and Nowak, 1988; LoPachin

et al., 2001). The clinical consequences of this influx are important, as it is probably

the Ca2+ entry that triggers processes that are lethal for the cell (Brini and Carafoli,

2009).

The total intracellular Mg2+ concentration measures 15–20 mM in neurons, of

which only 0.8–1.2 mM is free (Romani, 2011; de Baaij et al., 2015). Intracellular

Mg2+ competes with Ca2+ for many buffers (Levitsky and Takahashi, 2013; Eisner

et al., 2023), but the largest pool (5 mM) is bound to ATP and its metabolites

(Romani, 2011; Alberty, 1969). Whereas the flow of Ca2+ ions during mixing is clearly
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directed into the cells, the transmembrane potential of Mg2+ is very small or nonexis-

tent (Hansen, 1985; Romani, 2011; de Baaij et al., 2015; Rasmussen et al., 2020). An

outward Mg2+ gradient may arise during ischemia, nevertheless, when the free intra-

cellular Mg2+ concentration increases by 15–20% because of a partial breakdown of

the ATP buffer (Alberty, 1969; Henrich and Buckler, 2008; Levitsky and Takahashi,

2013). As explained in Section 5.3, the absence of a concentration gradient precludes

the model from predicting buffering capacities.

8 Conclusion

The present analysis shows that the (physiological or pathological) mixing of ions puts

constraints on the distribution of ion buffers in extra- and intracellular space. The

buffers must have properly tuned buffering capacities, otherwise an equilibrium state

of maximum entropy, in which all ion species are completely mixed, may be impossible

to achieve, either because such state of complete mixing would not be isotonic and

electro-neutral, or because the net transport that would be needed to reach this state

cannot be so4. In both cases, the work done by ion mixing will be less than that done

when the ions can mix along a path leading toward a complete equilibrium. Conversely,

less energy will be stored in the ionic concentration gradients.

Such paths toward incomplete mixing, and conversely a suboptimal energy storage,

can be avoided by constraining the distribution of ion buffers: all valid buffer distri-

butions were found to share a strong buffering of the Ca2+ ions, a balanced exchange

of Na+ and K+ ions, and a weak buffering of the anions (Tables 3 and 4).

Evidently, apart from storing energy, ion buffers, which constitute an essential part

of the extra- and intracellular matrices, can serve other functions in development,

cell differentiation, and learning (Levin, 2021). Ion buffers in the neighbourhood of a

synapse, for instance, could potentiate that synapse by preventing a local collapse of

4An example of hypertonic transport being needed to reach an isotonic equilibrium was given in the proof
of Theorem 2.

37



the ion gradient, such as that observed in a model of spines by Qian and Sejnowski

(1989). The mixing of ions should moreover not be regarded as a rare phenomenon

restricted to swelling neurons during ischemia or spreading depression (Ayata and

Lauritzen, 2015; Herreras and Makarova, 2020; Maex, 2023). It is, in contrast, at the

core of processes that occur continually at a local level (Section 1). Hence optimising

the energy of ion mixing is crucial for the functioning of the brain.

The important question then arises how the brain detects and corrects non-optimal

distributions of its ion buffers. It is suggested that neurons and glial cells act as charge-

and osmo-sensors, respectively, which signal local deviations from charge neutrality

and isotonicity caused by the mixing of ions in the presence of improperly balanced

buffers. Neurons and glial cells, in turn, control the composition of the extracellular

matrix, of which they synthesise and degrade themselves, through surface proteins, the

major components (Carulli et al., 2006; Galtrey and Fawcett, 2007). Any change in

buffer composition could further trigger the expression of ion channels and transporters

as may be needed for the ions to mix towards a new, more effective equilibrium state.

In this hypothesis, the excitability of neurons would serve, primarily, a biological

function, namely the control of the size and composition of their immediate environ-

ment, the extracellular matrix, upon which evolutionarily later acquired functions of

sensory processing and communication have been superimposed (Armstrong, 2015).

It is hoped that such a bottom-up perspective may provide new clues to the mod-

elling of degenerative and neoplastic brain disorders, many of which show prominent

changes in the size and composition of extracellular space (Syková and Nicholson,

2008).
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Appendix A Proof of Theorem 4

Proof. The supplemental transport term csK defined in Eq. 13 can be rewritten as

csK = Ks
e

[
γKo

(1 + γKi
)

α(1 − w)(γKo − γKi)
− w

1 − w

]
. (A1)

If the terms Ks
e (defined in Eq. 10) of a set of ion species add up to zero, as they

must do for the mixture to be isotonic (Eq. 11), then the supplemental transport terms

csK of the set of buffered ions will also add up to zero if the bracketed factor in Eq. A1

is identical for all ion species.

For ions buffered exclusively in the extracellular compartment, γKi
= 0 and Eq. A1

reduces to

csK = Ks
e

[
1 − wα

α(1 − w)

]
, (A2)

where the bracketed factor is indeed a constant.

For ions buffered only in the intracellular compartment, γKo
= 0 and Eq. A1

simplifies to

csK = Ks
e

[
w

(w − 1)

]
, (A3)

where again the bracketed factor is a constant.

Thus, in both cases, if the equilibrium state has been proven to be electro-neutral

and isotonic, then the membrane transport can be concluded to be so as well.
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