
Real-Time Application of Deep Learning
to Intrusion Detection in

5G-Multi-Access Edge Computing

Omesh Anthony Fernando

School of Engineering and Computer Science
University of Hertfordshire

Submitted to the University of Hertfordshire in partial fulfilment of the
requirement of the degree of Doctor of Philosophy

May 2023

I would like to dedicate this thesis to Jesus Christ, my Lord and Saviour . . .
“How Great Thou Art” (Boberg, Carl 1885) . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 60,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Omesh Anthony Fernando
May 2023

Acknowledgements

I would like to thank the God Almighty for the continuous guidance, blessings and love
showered upon me. Next, I would like to convey my gratitude to the University of
Hertfordshire for providing me with a studentship to achieve a PhD in Computer Science.

I would like to convey my sincerest appreciation to my supervisors: Dr Hannan Xiao,
Dr William Joseph Spring and Dr Xianhui Che. The wealth of knowledge, experience,
motivation, support and guidance that they have given me is immeasurable.

I would like to convey my gratitude to my late father, Mr Royce Fernando. To my loving,
beautiful, and kind mother Mrs Emarley Fernando and Dr Mesaj Fernando my brother, whose
guidance has always been the biggest pillar of strength. I also thank my colleagues in STRI,
for all the times we shared our struggles, laughter and jokes during this journey of PhD. Also,
I thank all the students I have come across, who helped enrich my knowledge. Lastly, to my
betrothed, Jayanie, the irreplaceable treasure of my life, for her unwavering support, love,
patience, and kindness in the most difficult of times.

Abstract

In this thesis, we explore networks for 5G mobile telecommunication, with a real-time
detection of malicious traffic using Deep Learning (DL) and 5G mobile telecommunication
testbeds. To investigate the performance of the core network, Software Defined Networking
(SDN) and Programming Protocol-independent Packet Processors (P4) were selected due to
the potential for programming at the both control and data forwarding layer. SDN and P4 have
predominately been researched on an individual basis with limited research combining the
two to evaluate improvements to the performance of SDN. We have conducted experiments
to explore the hypothesis that combining programmability at both the control plane and
data plane provides a platform with better performance in comparison to that achieved with
SDN+OvS multi-path, grid and transit-stub network models.

A real-time 5G mobile telecommunication testbed has been constructed combining
both software and hardware components. A P4 switch was integrated into the 5G testbed
motivated by the performance gains observed in our initial experiments with P4 and OvS
switch. Service providers use Multi-access Edge Computing (MEC) technology to provide
services on-the-go with low latency, high availability, and high bandwidth, however, MEC
nodes are subject to low processing power, which leaves them susceptible to adversaries
that may target the platform for malevolent purposes. As a result, we built a 5G testbed that
included an MEC node to generate datasets representing both malicious and non-malicious
traffic for use in evaluating algorithms intended to detect malicious network traffic.

A new Intrusion Detection System (IDS) has been developed using a 3-layer
Convolutional Neural Network (CNN), capable of identifying malicious network traffic.
The IDS employs a new injective algorithm capable of encoding network traffic without
loss of information as improved RGB images. A separate algorithm capable of decoding
RGB images back to network traffic was also developed. The IDS was evaluated in terms
of its computational complexity in for example: time, memory and CPU utilisation for the
encoding and decoding algorithms, and its accuracy and loss during training and detection.
We also applied a Convolutional Neural Network to the dataset created on our testbed and
for comparative purposes, to the publicly available datasets UNSW NB-15 and InSDN. The

x

5G-MEC datasets and detection rate suggest that the employment of current public datasets
for research into 5G-MEC security are now inappropriate.

Lastly, we proposed, developed, deployed and evaluated a Real-Time Deep Learning
Network Intrusion Detection System (RTDL-NIDS) in an MEC node located in the newly
developed 5G-MEC mobile telecommunication testbed in real-time. The deployed Network
Intrusion Detection System, conducts a soft real-time detection. The time spent on each
detection cycle can be defined as a parameter in the RTDL-NIDS. Hence, this system can be
categorised as a soft real-time system. The RTDL-NIDS conducts an initial detection based
on known signatures, followed by the encoding of network traffic to images, detection of
malicious traffic using our CNN algorithm, and finally decoding of the images to identify
the sources of malicious users. We implemented the RTDL-NIDS to function in real-time to
collect conclusive results over the application of DL to the intrusion detection problem in
5G-MEC.

Table of contents

List of figures xv

List of tables xix

Nomenclature 1

1 Introduction 5
1.1 Research Context . 5
1.2 Research Motivations . 6
1.3 Research Aim and Objective . 8
1.4 Research Methods . 9
1.5 Research Gaps . 10

1.5.1 Research Gaps Identified from the Literature Search 10
1.6 Research Questions . 13
1.7 Research Milestones . 17
1.8 Implementation . 18
1.9 Contributions . 18
1.10 Publications . 20
1.11 Structure of my Thesis . 20
1.12 Chapter Summary . 22

2 Literature Review 23
2.1 Overview . 23
2.2 A Core Network using SDN + P4 . 23
2.3 Real-Time 5G mobile telecommunication Testbed 28
2.4 Algorithms for the Detection Malicious Traffic 33
2.5 Chapter Summary . 37

xii Table of contents

3 A Performance Evaluation for Software Defined Networks with P4 39
3.1 Introduction . 40
3.2 System Platforms . 42

3.2.1 SDN Platform . 42
3.2.2 Mininet . 42
3.2.3 P4 Switch . 42

3.3 Experimental Design . 43
3.3.1 Network Topologies . 44
3.3.2 Traffic Design . 46
3.3.3 Tier-I - Single Type of Traffic Run 47
3.3.4 Tier-II - Multiple Types of Traffic Running Simultaneously 48

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 50
3.4.1 Case Study 1 - ICMP . 50
3.4.2 Case Study 2 - TCP . 53
3.4.3 Case Study 3 - UDP . 55
3.4.4 Case Study 4- Content Delivery Network 56

3.5 Results and Analysis of Tier-II - Multiple Types of Traffic Running
Simultaneously . 63
3.5.1 Case Study 5 - Mixed Type of Traffic over Topology II 63
3.5.2 Case Study 6 - Simultaneous Run over Topology III 65

3.6 Discussion . 68
3.7 Chapter Summary . 70

4 A Real-Time 5G Mobile Telecommunication Testbed 71
4.1 Introduction . 71

4.1.1 Research Questions . 72
4.1.2 Contributions . 72

4.2 A Mobile Telecommunication Testbed . 73
4.2.1 User Equipment (UE) . 74
4.2.2 Radio Access Network (RAN) . 74
4.2.3 Core Network (CN) . 78
4.2.4 Multi Access Edge Computing Platform (MEC) 78

4.3 Evaluation of the Testbed . 79
4.3.1 Testing the Connection . 79
4.3.2 Underlying 5G Network Traffic 81
4.3.3 User Traffic . 82
4.3.4 Malicious Traffic . 82

Table of contents xiii

4.4 Generating and Evaluating Datasets . 83
4.4.1 5G Dataset . 83
4.4.2 UNSW NB-15 and InSDN Datasets 84

4.5 Chapter Summary . 84

5 New Algorithms for the Detection of Malicious Traffic in 5G-MEC 87
5.1 Introduction . 87
5.2 Proposed Algorithms . 89

5.2.1 Encoding Network Traffic to Images (NeT2I Algorithm) 89
5.2.2 Decoding Images to Network Traffic (I2NeT Algorithm) 95
5.2.3 Detection Algorithm . 96

5.3 Evaluation Metrics for the New Algorithms 98
5.3.1 Workflow and Dataset . 98
5.3.2 Evaluation Metrics for the NeT2I and I2NeT Algorithms 100
5.3.3 Evaluation Metrics for the CNN3L Detection Algorithm 101
5.3.4 Existing Algorithms for Comparison 102

5.4 Results and Analysis . 103
5.4.1 Encoded Images . 104
5.4.2 Computational Complexity . 105
5.4.3 Training and Validation . 111
5.4.4 Evaluation of Detection . 114

5.5 Chapter Summary . 118

6 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC 121
6.1 Overview . 121
6.2 Introduction . 121
6.3 Real-Time Deep Leaning Network Intrusion Detection System (RTDL-NIDS)122

6.3.1 Stage-I . 123
6.3.2 Stage II . 124

6.4 5G-MEC Signature Detection (5G-SiD Algorithm) 125
6.5 Evaluation of the Proposed NIDS . 131

6.5.1 5G-MEC Mobile Telecommunication Testbed 131
6.5.2 Existing Algorithms for Comparison 133
6.5.3 Evaluation Metrics . 135

6.6 Results and Analysis . 136
6.6.1 Testing the workflow of RTDL-NIDS 136
6.6.2 Comparison of Encoded Images 137

xiv Table of contents

6.6.3 Evaluation of Detection . 138
6.6.4 Comparison of Computational Complexity 141

6.7 Chapter Summary . 148

7 Conclusion 149
7.1 Overview . 149
7.2 Research Findings . 149
7.3 Contribution to Knowledge . 153

7.3.1 Research Significance . 155
7.4 Future Work . 156
7.5 Closing . 158

References 159

List of figures

1.1 Overview of the thesis . 8
1.2 Depiction of the research method employed for this thesis 9
1.3 Literature review of this study and the organisation of material. 10
1.4 Milestones of this PhD . 16
1.5 Implementation of Experiments. 17

2.1 Functionality of SDN . 25
2.2 Functionality of P4 . 27
2.3 Considered Simulators and Emulators for the development of a 5G mobile

telecommunication testbed. 31
2.4 Open Air Interface was employed for developing the 5G mobile

telecommunication testbed . 32

3.1 Test bed used for this research. 43
3.2 Sample code of OvS and P4 . 44
3.3 Topologies employed for this research, (I) multi-path topology (II) grid

topology and a (III) Transit stub network model. (H denotes Host) 45
3.4 Throughput of ICMP transfer in case study 1 49
3.5 ICMP data capture at 10-20s and 285-295s in topology I 50
3.6 Throughput of TCP data transfer in case study 2 51
3.7 Throughput of UDP data transfer in case study 3 57
3.8 Jitter of UDP data transmission in case study 3 59
3.9 Throughput of video content transfer in case study 4 60
3.10 Jitter of CDN data transmission in case study 4 61
3.11 Data for mixed traffic over the grid topology (topology II) - case study 5 . . 63
3.12 Data of mixed traffic over the Internet topology (topology III) - case study 6 66
3.13 Comparison of CDN frames in internet topology for both SDN+OvS and

SDN+P4 for case studies 5 and 6. 68

xvi List of figures

4.1 Testbed used to generate datasets for 5G-MEC security analysis 74
4.2 P4-BMv2 switch between the RAN and the Core 75
4.3 5G Mobile Telecommunication Testbed: CN (Blue) and RAN (Pink) 76
4.4 OpenCells SIM cards . 77
4.5 Programming OpenCells SIM cards . 77
4.6 USRP x310 with two UBX160 daughter boards 77
4.7 Testing the Connection. (a) MME periodic update illustrating connected

eNBs and UEs (b) Access of Google and University learning platform on a
COTS UE. 79

4.8 Underlying 5G Network Traffic . 80
4.9 UDP and Spoofed DDoS Traffic directed towards MEC node 81

5.1 Convolutional Neural Network . 97
5.2 Workflow of the Proposed Algorithms . 98
5.3 A Visual Comparison of the Images for 5G Dataset 104
5.4 A Visual Comparison of the Images for UNSW NB-15 Dataset 105
5.5 A Visual Comparison of the Images for InSDN Dataset 105
5.6 Computational Complexity (time, CPU, and RAM) during NeT2I 106
5.7 Training and Validation Data from NeT2I algorithm from the CNN for the

5G Dataset . 107
5.8 Training and Validation Data from encoding algorithm [1] from the CNN for

the 5G Dataset . 108
5.9 Training and Validation Data from NeT2I algorithm from the CNN for the

UNSW NB-15 Dataset . 109
5.10 Training and Validation Data from encoding algorithm of [1] from the CNN

for the UNSW NB-15 Dataset . 110
5.11 Training and Validation Data from NeT2I algorithm from the CNN3L for the

InSDN Dataset . 111
5.12 Training and Validation Data from encoding algorithm of [1] from the

CNN3L for the InSDN Dataset . 112
5.13 Training and Testing the CNN3L using optimal specifications as per Table 5.8.113
5.14 Training and Validation Data from the Proposed 5G dataset using NeT2I and

encoding of [1] . 115
5.15 Training and Validation Data from the UNSW NB-15 dataset 116
5.16 Training and Validation Data from the InSDN dataset 117

List of figures xvii

6.1 Real-Time Deep Leaning Network Intrusion Detection System (RTDL-
NIDS) . 123

6.2 Spoofed DDoS . 129
6.3 Port scan attack . 130
6.4 Real-Time 5G Testbed with MEC-IDS and CNN 131
6.5 Workflow and algorithms for RTDL-NIDS and NIDS of [1] 134
6.6 RTDL-NIDS launched in MEC-IDS node 137
6.7 Execution of RTDL-NIDS launched in MEC-IDS node 138
6.8 Images generated from NeT2I being uploaded to the CNN3L 139
6.9 A Visual Comparison of the Images for network traffic from the Testbed . . 140
6.10 Training and Validation Data from the Testbed 142
6.11 Computational Complexity for 5G-SiD and 5G-SiD+Cypher Algorithm . . 143
6.12 Computational Complexity for NeT2I and encoding of [1] 146
6.13 Computational Complexity for Proposed NIDS and NIDS of [1] 147

7.1 Contributions from this thesis . 154

List of tables

1.1 Publications and the citation at the time of submitting the PhD Thesis . . . 21

3.1 Experiments conducted in this Chapter . 45
3.2 Configuration of traffic. Hosts are shown in Fig.3.3. 46
3.3 Network performance for case study 2 - TCP traffic 54
3.4 Network performance for case study 3 - UDP traffic 58
3.5 Network performance for case study 4 - CDN traffic 62
3.6 Network Performance of for case study 5 64
3.7 Network performance for case study 6 . 67

4.1 Experiments conducted in this Chapter . 72
4.2 Number of unique rows in the collected 5G dataset 85
4.3 Description of UNSW NB-15 dataset . 85
4.4 Description of InSDN dataset . 86

5.1 Experiments conducted in this Chapter . 89
5.2 Features Selected from the 5G Dataset . 99
5.3 Features Selected from the UNSW-NB15 Dataset 100
5.4 Features Selected from the InSDN Dataset 100
5.5 Computational complexity of NeT2I and I2Net against the encoding and

decoding algorithms in [1] for 5G Dataset 103
5.6 Computational complexity of NeT2I and I2Net against the encoding and

decoding algorithms in [1] for UNSW NB-15 Dataset 103
5.7 Computational complexity of NeT2I and I2Net against the encoding and

decoding algorithms in [1] for InSDN Dataset 104
5.8 Specification of the CNN3L Algorithm . 113
5.9 Confusion Matrix of the Detection Algorithm for the 5G dataset. 114
5.10 Confusion Matrix of the Detection Algorithm for the UNSW NB-15 Dataset. 118
5.11 Confusion Matrix of the Detection Algorithm for the InSDN Dataset. . . . 118

xx List of tables

6.1 Experiments undertaken in this Chapter 122
6.2 Collected Features and Flags from the Network Traffic 126
6.3 Assignment of UEs and IP addresses . 132
6.4 Features extrapolated for RTDL-NIDS and NIDS of [1] 133
6.5 Confusion Matrix of the 5G-SiD in Stage-I Detection. 140
6.6 Confusion Matrix of the CNN3L in Stage-II Detection. 141

7.1 Underlying Research Questions derived from the Primary Research Question 150
7.2 Investigation drawn from each Research Question 151

Nomenclature

Acronyms

2D 2-Dimensional

3GPP 3rd Generation Partnership Project

4G−LT E 4th Generation Long Term Evolution

5G−MEC 5G-Multi-Access Edge Computing

5G−SiD 5G-MEC Signature Detection

API Application Programming Interface

ARP Address Resolution Protocol

bmv2 Behavioural Model v2

CDN Content Delivery Network

CN Core Networks

CNN3L Convolutional Neural Network 3-Layers

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma Separated Values

DDoS Distributed Denial of Service

DL Deep Learning

DNN Deep Neural Network

2 Nomenclature

DNS Domain Name Server

DoS Denial of Service

DT Decision Trees

E2E End-to-End

eMBB enhanced Mobile Broadband

eNB Evolved Node B

GoogleColab Google Colaboratory

GRU Gated Recurrent Unit

GT P GPRS Tunnelling Protocol

GUI Graphical User Interface

HSS Home Subscriber Server

I2NeT Image to Network Traffic

ICMP Internet Control Messaging Protocol

IDS Intrusion Detection System

IoT Internet of Things

JSON JavaScript Open Notation

KPIs Key Performance Indicators

KV M−UV T Kernal Virtual Machine Ubuntu Virtualised Tool

LLDP Link Layer Discovery Protocol

LST M Long Short-Term Memory

MEC Multi-Access Edge Computing

ML Machine Learning

MME Mobility Management Entity

mMTC massive Machine Type Communication

Nomenclature 3

NB Naive Bayes

NeT 2I Network Traffic to Images

NIC Network Interface Card

NIDS Network Intrusion Detection System

NS3 Network Simulator 3

NSP Network Service Providers

OAI OpenAirInterface

OMEC Open Mobile Evolved Core

ONOS Open Networking Operating System

OvS Open vSwitch

P4 Programming Protocol Independent Packet Processing

PNG Portable Network Graphics

QoS Quality of Service

QUIC Quick UDP Internet Connections

RAM Random Access Memory

RAN radio access networks

RF Random Forrest

RGB Red Green Blue

RMSProp Root Mean Square Propagation

RNN Recurrent Neural Network

S1AP S1 Application Protocol

SCT P Stream Control Transmission Protocol

SDN Software Defined Networking

SDR Software Defined Radio

4 Nomenclature

Sigmoid “S”-Shaped curve

SIM Subscriber Identity Modules

SPGW −C/UandPGW −C Control and User plane separation serving gateway

SSDP Simple Service Discovery Protocol

SV M Support Vector Machines

SY N Synchronize Packets

TCP Transmission Control Protocol

UDP User Datagram Protocol

UE User Equipment

URLLC Ultra Reliable Low Latency Communication

USRP Universal Software Radio Peripheral

V 2V Vehicle-to-Vehicle

VoIP Voice over IP

Chapter 1

Introduction

This chapter provides an introduction to my research. The chapter includes research fields,
research motivations, research questions, challenges, and contributions to knowledge, that I
engaged in during the course of this thesis.

1.1 Research Context

With 4th Generation Long Term Evolution (4G-LTE) completing, and the 5th Generation
(5G) mobile telecommunication rollout, more and more service providers are using a Multi-
Access Edge Computing (MEC) Infrastructure [2], to provide a faster access time to the
content/services by intelligently allocating short-lived, low computational servers, as close as
possible to the end user.

The resource allocation, geographical location and computation of MEC have been
extensively researched due to the popularity and applicability of MEC. However, despite the
advancements in research in the aforementioned fields, the low computational power and
on-the-fly realization of MEC create vulnerabilities for Denial of Service (DoS), Distributed
Denial of Service (DDoS), Spoof Attacks, and Port Scan attacks. The potential impact of
such attacks could create not just service disruptions for multi-media applications under
enhanced Mobile Broadband (eMBB), but also disruptions for safety-critical applications that
operate under Ultra Reliable Low Latency Communication (URLLC) and massive Machine
Type Communication (mMTC).

Malicious intent targeted towards MEC nodes pose a significant threat to MECs,
inherently, as they possess low computational resources. MECs can, therefore, potentially be
easily exploited by adversaries [3]. Since multiple vendors or organizations use MEC nodes
at the edge of the network to offer services or content, this vulnerability may be a threat for
multiple organizations. Protecting the MEC launched at the edge of the network, using a

6 Introduction

built-in Intrusion Detection System (IDS) will result in a higher requirement for computation
at the initiation of an MEC edge node. This not only creates a drawback when providing
services but also incurs an additional cost to organisations. The complexity of the attacks, and
the lack of knowledge required to conduct such an attack, resulted in a higher false negative
rate when traditional IDS’s were employed, as opposed to a higher true positive rate for IDS
backed by an intelligent agent, in the 5G mobile telecommunication architecture [4]. Having
a higher chance of detecting spoofing attacks, DDoS, DoS attacks, and Port Scan attacks
amidst 5G user traffic which consists of high dimensions and granularity, the application of
Deep Learning (DL) towards the detection of malicious traffic has outperformed traditional
signature detection methods or the application of Machine Learning (ML) to further the
effectiveness of traditional IDS’ [5].

1.2 Research Motivations

There are four motivations that have driven this research.

1. Reducing the delay, jitter, loss and congestion in the core network. These will lead
towards faster convergence for network packets which in turn will create a direct
impact for faster detection of malicious traffic and potentially a higher Quality of
Service (QoS) on applications. With the application of programmability at both the
control plane and the data plane, the network will be able to handle the heterogeneity
of applications, complexity and dimensions of network traffic, without being restricted
by a fixed parser, that requires an extension for its specification, each time a new
protocol type is introduced. In order to accommodate a protocol that arises with new
applications that will occupy the network, the current control plane specification has
to be extended manually, whereas, with data plane programmability, this limitation
will no longer exist, with the introduction of a flexible parser. The current literature
suggests that the application of programmability is only available for one of the above
planes (control plane or data plane) but not towards the combination of both. With this
combination of technologies (control plane and the data plane programmability), an
evaluation of the combination across multiple case studies and technologies has not
been undertaken. An evaluation would provide conclusive results over the performance
gain by the application of combining programmability in both the control plane and
the data plane, to provide a higher QoS and quick detection of intruders.

2. Current literature in the field of 5G and beyond has been developed using simulators
or using a desk approach where the research employed a publicly available dataset to

1.2 Research Motivations 7

test the effectiveness of an algorithm for security or resource utilisation and allocation.
However, the employed datasets were collected on LAN or campus networks, making
the application of a tested algorithm, to a real 5G scenario, questionable with a high
false positive rate [6]. The aforementioned motivates this PhD research to design and
build a 5G testbed and generate datasets from 5G network traffic for the research of
5G and beyond. This is particularly important, due to unique traffic patterns found in
5G telecommunication.

3. The third motivation involves the application of a DL algorithm, Convolutional Neural
Network (CNN), in which we develop efficient, faster algorithms to secure the 5G-MEC
infrastructure based on the collected dataset from our 5G mobile telecommunication
testbed. The current literature has utilised the application of a dataset and with
it the data encoding for the CNN algorithm. As CNN accepts images as data for
training and testing, data encoding plays a crucial part towards the success of its
application. Available literature has utilised 2D-tiled images in Red Green Blue
(RGB) or in grayscale. Available data encoding also included mechanisms to cypher
network information such as IP addresses and MAC addresses. This information
carries important statistics that can be used to identify spoofing attacks. Therefore, the
prime focus of our research here revolves around the development of new, improved
algorithms for encoding and decoding, and for CNN, and evaluating the computational
complexity of these algorithms, which are often overlooked in the literature. For
evaluation, the computational complexity of these algorithms was considered. As these
algorithms will be executed in the 5G-MEC architecture, which inherently possesses
low computation, the resource utilisation of our algorithms are, we believe, crucial.

4. The fourth and final motivation is to apply the newly developed algorithms in real-time
to the 5G mobile telecommunication testbed and to evaluate the performance of the
algorithms. Therefore, the new algorithms for encoding were implemented in the 5G
mobile telecommunication testbed. With this, a challenge was derived. That was, how
to collect network traffic and conduct quick signature-based detection, given that the
resulting suspicious network traffic can be used to create RGB images. The images
are to be sent to the CNN algorithm in real-time, for a true two-staged detection [7]
using a CNN algorithm, where the algorithms have been implemented in a 5G mobile
telecommunication testbed. The aforementioned indicates that by employing a multi-
staged detection process, the application of CNN can be implemented in real-time to a
5G mobile telecommunication testbed.

8 Introduction

1.3 Research Aim and Objective

This study seeks to safeguard the 5G-MEC infrastructure on the periphery of a 5G-MEC
mobile telecommunications testbed with data plane programmability, by implementing a
two-stage intrusion detection system augmented with deep learning. The low computational
requirement of the newly developed algorithms translates to securing the MEC edge nodes
without utilising additional resources.

Integration in 5G-MEC Testbed

Control Plane
and Data Plane

Programmability

5G-MEC
 Mobile

Telecommunication
Testbed

5G-SiD, NeT2I,
I2NeT, CNN3L

Algorithms

Fig. 1.1 Overview of the thesis

In order to achieve this, the research was organised as depicted in Fig.1.1. They can be
described as follows:

1. To evaluate the underlying switching mechanisms which involve, programmability in
the control plane against programmability in both the control and data plane. Multiple
case studies and topologies were considered.

2. To design and build a 5G mobile telecommunication testbed with a data plane
programmed switch (Objective 1) to further the research of 5G and to aid in the
creation of a dataset suited for 5G telecommunication networks.

3. To Propose a new encoding mechanism (Network Traffic to Images (NeT2I)), as
opposed to greyscale or 2D x and y dimensional images, which translates network
information into RGB images with lower computational complexity. To Propose a
new detection algorithm to test the nature of the traffic (malicious or non_malicious)
by employing a CNN3L algorithm. To evaluate the algorithms developed on publicly

1.4 Research Methods 9

available datasets. To propose a new decoding mechanism (Images to Network Traffic
(I2NeT)), which translates RGB images to network traffic with lower computational
complexity.

4. The development of a Real-Time Deep Learning Network Intrusion Detection System
(RTDL NIDS) by streamlining the algorithms (Objective 3) in real-time on the 5G
mobile telecommunication testbed (Objective 2). Proposal of a new early signature
detection algorithm (5G-SiD) with a lower computational complexity in comparison to
two other popular NIDS, to generate a dataset for the NeT2I (Objective 2), and upload
them to the CNN3L detection algorithm (Objective 3), to evaluate the nature of the
traffic, and finally an affirmation of the nature (malicious or non_malicious) by using
I2NeT.

1.4 Research Methods

Identify
Research

Gaps

Define
Research
Questions

Design of
Experiments

Implementation Experiments
Data

Collection
Analysis

Fig. 1.2 Depiction of the research method employed for this thesis

This research has been organised in the following manner as depicted by Fig.1.2. Initially,
the gaps in the literature will be presented, followed by the design of experiments based on
research questions (section 1.6), the implementation of experiments, and the collection and
analysis of results from our experiments.

10 Introduction

1.5 Research Gaps

1.5.1 Research Gaps Identified from the Literature Search

The literature search was carried out in the following order. Improvements to the underlying
core network to reduce delay, jitter, congestion and loss and thereby improve the performance
of the core network to provide a higher QoS and faster convergence of network packets for
faster delivery. This also aided in the quick detection of malicious network traffic. Next,
the literature focused on 5G security, particularly with respect to the desk application of an
algorithm for a dataset. This helped to establish the importance of employing a testbed to
conduct research in 5G and beyond. Next, the literature based on the encoding/decoding
of data towards a DL algorithm, CNN will be presented. With it, the literature based on
the DL algorithms and the accumulated advantages for the 5G IDS problems will also
be presented. Finally, the literature for a two-staged detection of malicious intent will be
presented, finalising the literature review, which motivated this study. The order in which the
literature search was carried out is depicted in Fig. 1.3.

SDN + P4

Testbeds

Encoding/Decoding

Real-Time

Deep Learning

Fig. 1.3 Literature review of this study and the organisation of material.

The gaps that can be drawn from the literature search can be listed as follows.

1. The need for reducing the delay in the core network in order to improve the performance
of the applications, that occupy the network. Improve the performance of the network
for faster packet convergence and thereby detect malicious traffic quickly.

Research Challenges

(a) Available emulation tools that can facilitate and emulate programmability in both
the control plane and data plane.

1.5 Research Gaps 11

(b) Compatibility of tools and software with the emulation tool that can facilitate
programmability in the control plane and data plane.

(c) Researching network topologies in the existing literature that can be replicated.

Contributing to the aforementioned research gap, the following solutions were achieved
upon researching the challenges. Employment of Mininet as the emulation tool, ONOS
as the network controller, OvS and BMv2 for achieving programmability at the control
plane and data forwarding plane, employment of the most popular traffic types to
emulate a network to achieve realism, and emulating three network topologies that are
found in the literature.

2. The need to employ a testbed to further the study and the evaluation of 5G research.

Research Challenges

(a) Available tools, equipment, and software to launch a testbed.

(b) Installation, testing, and launching the testbed.

(c) Study of the existing datasets used for intrusion detection research and the creation
of a dataset based on network traffic from the testbed.

The following solutions were accomplished in achieving the research gap amidst the
aforementioned challenges. OpenAirInterface was chosen as the testbed to launch a
5G mobile telecommunication testbed. A dataset was created that possesses traffic
patterns unique to a 5G mobile telecommunication network after studying popular
datasets, UNSW NB-15 and InSDN.

3. The need for the employment of DL as opposed to ML, for the intrusion detection
problems of 5G and beyond.

Research Challenges

(a) Reviewing existing research on Intrusion Detection based on Machine Learning
and Deep Learning.

(b) Study of performance in terms of the detection rate for Machine Learning and
Deep Learning algorithms.

(c) Study of Convolutional Neural Network and the implementation of an algorithm.

(d) Study of the existing encoding and decoding algorithms and the associated
computational complexity.

12 Introduction

Upon studying the existing literature and research on ML and DL, DL was chosen as
opposed to ML. From DL algorithms, CNN was chosen as the detection algorithm with
3 layers of convolutions due to the higher accuracy achieved by them as opposed to
other DL algorithms. Also, the RGB encoding mechanism was considered as opposed
to grayscale images, given the higher accuracy achieved by them.

4. The use of algorithms in the 5G-MEC and their computational complexity.

Research Challenges

(a) Study of the computational capabilities and limitations in MEC nodes.

(b) Collection of data pertaining to computational complexity from the execution of
an algorithm.

Upon studying the available functions and libraries to collect computational complexity,
the following libraries were chosen. Time, memory_profiler, and psutil were chosen to
collect computational complexity. The collated statistics were collected on an MEC
node launched using UVT-Cloud environments to ensure that the algorithms can be
executed in MEC nodes.

5. Two staged detection of malicious traffic for 5G and beyond using an intelligent agent.

Research Challenges

(a) Study of the existing hypothetical two-staged Intrusion Detection Systems.

(b) Researching tools, software, and libraries required to implement algorithms
capable of conducting a two-staged detection.

(c) Programming a continuous execution of an algorithm in a computationally viable
manner.

(d) Connecting an intelligent agent launched in the Google Cloud to the local MEC.

The following solutions were created to address the challenges. Studying the existing
real-time hypothetical NIDSs’ and implementing a workflow for implementation.
Employing tools and technologies such as Pyshark, shell scripting, and various Python
libraries for conducting a two-stage detection.

6. The need for the real-time application of DL-based IDS system.

Research Challenges

1.6 Research Questions 13

(a) Non-existence of soft real-time detection mechanisms that utilise an intelligent
agent for intrusion detection.

(b) Study of tools, technologies and software that can be utilised towards the creation
of a soft real-time detection mechanism.

Implementation of a soft real-time NIDS that can conduct intrusion detection using
signatures and deep learning. Use of tools such as Google Colab and TensorFlow were
used extending the two staged detection to be a soft real-time NIDS.

1.6 Research Questions

Computer scientists are inherently expected to conduct more and more research and
experiments [8, 9], primarily to obtain a consistent result or a collection of results that
can only be obtained with a repeated process involving a collection of feasible experiments
[10]. The primary method of research for this thesis was conducted employing a series
of quantitative methods, derived from data collected from the designed experiments. The
experiments were designed with the research questions in mind. From a user’s perspective,
receiving a service with less congestion, loss and delay will be a binary finding, as the service
has minimal to no downtime or the service suffers unavailability. From a service provider’s
perspective, the service has to be provided during normal conditions and during an attack.
The service provider will also be able to detect malicious traffic at a faster speed since this
research is aimed at providing the faster delivery of network packets and the detection of
maliciousness using a two-staged detection mechanism involving a DL component.

RQ1: How does programmability in both the control plane and data plane affect
network performance?

I researched the existing literature with the intention of improving the performance of the
underlying network. Improvements to the underlying network were either focused on a
particular case study or an application. Given the heterogeneity of devices, the complexity
that arises from the use of various applications and the congestion that arises with the
exponential growth of connected users and devices, it was preferable to evaluate the network
as a whole, in order to identify the best packet forwarding or processing mechanism. This is
important for the following three reasons: 1: in order for the service providers to provide
the best QoS to end users, 2: a network with minimal delay and latency with a higher
throughput is the most desirable avenue to consider, and finally, 3: when there’s malicious

14 Introduction

intent occurring in the network albeit, from an external or an internal source, a quick detection
will alleviate performance degradation.

In order for quick detection to occur, faster transmission of network packets is a crucial
factor to consider. As the Internet grows towards 5G and beyond, many applications and
vendors will occupy the network space and with it, there is a need for extending the
specification of the control plane, for the new network traffic to pass through or to be
processed. In order to diminish the constriction of extending the specification for packet
processing, a parser independent from the target switch and protocol with capabilities to
extend and reconfigure in future, should the need arises, is the most ideal solution to future
networks that has the capability to implement data plane programmability and to process
network packets in parallel as opposed to sequential processing. Given the faster processing
capabilities of packets, not only this solution will aid the networks in providing higher
performance, but will also aid in the quick detection of malicious traffic.

RQ2: How do we design and build a testbed for 5G mobile telecommunications?

Current literature employs datasets to demonstrate the accuracy of the algorithm in research
for 5G security. There is a question regarding the validity of the datasets and the traffic
patterns found in them.

From a security perspective frameworks/applications for 5G have been presented in the
literature, however, these studies do not include testbeds for their respective work but rather
present frameworks based on literature for specific use cases (eMBB, URLLC, and mMTC).
The inclusion of testbeds will, I believe provide a deeper understanding of the feasibility
of the frameworks/applications. To accomplish the realisation of a testbed to further the
conclusiveness of results, I researched the available technological advancement in 5G to
launch a testbed capable of demonstrating a 5G mobile telecommunication, maintaining
compliance with the 3GPP standards for both core networks (CN) and radio access networks
(RAN).

RQ3: How can we design new algorithms for intrusion detection using a DL agent in
5G-MEC?

For securing 5G networks and Multi-access Edge Computing (MEC) infrastructure, Deep
Learning (DL) is a viable candidate for the problem of detecting malicious traffic. The ease
of training and generalisation, in comparison to other fully connected networks together with
the high accuracy rate achieved with Convolutional Neural Networks (CNN), has prompted

1.6 Research Questions 15

us to explore CNN as a viable option for the detection of malicious traffic in the 5G network
infrastructure.

Despite the high accuracy produced by CNN as opposed to other DL and ML algorithms,
a challenge exists when converting network traffic (integer and string type data) to a form
(images) recognisable by a CNN algorithm. CNN accepts images in both grayscale and RGB
forms. Since grayscale has limited colour space to represent information, RGB colour space
is the prominent option to consider.

Since the MEC infrastructure will possess low processing power, a CNN-based IDS must
produce images for the detection algorithm requiring less computation. Research-based
on encoding network traffic into images has not discussed computational complexity in
the application of their respective algorithms. Similarly, the computational complexity of
decoding, encoded images back to network traffic should also produce less computation, due
to the low processing power of MEC nodes. Current research has not produced decoding
algorithms for their respective encoding algorithms, nor evaluated their computational
complexity.

RQ4: How do we apply DL in real-time to intrusion detection in 5G-MEC mobile
telecommunication testbed?

Previous studies on the application of CNN towards NIDS have been focused on testing
the effectiveness of a desired feature selection or DL algorithm by employing a dataset/s.
However, in order to test the hypothesis that the application of DL will be beneficial for
NIDS on 5G networks, has to be tested by employing 5G datasets collected on a 5G mobile
telecommunication testbed. Further to the employment of 5G data, the application of
employing an intelligent agent such as a DL should be advanced from the traditional desk
approach. This is because, an algorithm trained and tested using a desk approach (off-line
mode), may not function correctly in real-time. By applying a DL algorithm in a real-time
5G mobile telecommunication testbed, we can attest to the generated accuracy as opposed to
the accuracy presented by a desk approach research.

To reduce the computation by the detection algorithm (CNN), a quick detection based on
signatures, with less computational power is beneficial. This method alleviates the pressure on
the CNN-based detection algorithm, as the signature-based detection algorithm will be able
to filter and remove non_malicious traffic from progressing to the CNN-based detection. A
multi-staged detection mechanism has been theoretically presented in the literature, however,
they have not been implemented. The implementation of a multi-staged NIDS with a DL
element, on a 5G-MEC mobile telecommunication testbed, will we believe provide conclusive
results to the applicability of DL towards securing a real 5G-MEC network.

16 Introduction

SDN+P4

Testbed

• Evaluating existing simulators/emulators/testbeds

• Design and implementing 5G-MEC Mobile Telecommunication
Testbed

• Implementing Data Plane Programmability

• Generate Datasets

Encoding

/Decoding

• Study of existing encoding/decoding algorithms and colour modes

• Design and implement NeT2I and I2NeT algorithms

• Design and implement encoding/decoding of [1]

• Encode and Decode to publicly available datasets

• Evaluate computational complexity

Deep
Learning

• Study of existing ML/DL techniques

• Design and implement CNN3L on Google Collaboratory

• Train and test CNN3L on publicly available datasets

• Generate the confusion matrix

Real-Time

• Study of existing hypothetical multi-staged NIDS

• Design and implement 5G-SiD

• Evaluate computational complexity of 5G-SiD

• Link Google Drive (Fuse_Google_Drive)

• Develop RTDL-NIDS (5G-SiD, NeT2I, Fuse_Google_Drive, CNN3L
and I2NeT)

• Evaluate RTDL NIDS with NIDS of [1]

• Emulation of Control Plane and Data Plane Programmability
• Emulating Different Topologies
• Emulating Different Network Traffic
• Analysis of Key Performance Indicators

Fig. 1.4 Milestones of this PhD

1.7 Research Milestones 17

1.7 Research Milestones

Fig.1.4 depicts the milestones of this research. We initiate our research on an emulated
environment where we evaluated the applicability of achieving programmability in both the
control plane and data plane. Having achieved the above, we moved on to the design
and the implementation of a 5G-MEC testbed for the creation of datasets to advance
security-based research on 5G and beyond. Having created datasets which resembled
the unique traffic patterns of 5G mobile telecommunication, we designed and developed
new algorithms for the detection of malicious network traffic in 5G-MEC. This included
encoding/decoding algorithms and a CNN-based detection algorithm. Our final research
milestone is the application of the previously mentioned algorithms to the 5G-MEC mobile
telecommunication testbed, as a form of a multi-staged NIDS. As depicted in Fig.1.4, each
of the aforementioned milestones will be discussed in-depth in a dedicated chapter in the
following manner.

• Chapter 3: A Performance Evaluation for Software Defined Networks with P4

• Chapter 4: A Real-Time 5G Mobile Telecommunication Testbed

• Chapter 5: New Algorithms for the Detection of Malicious Traffic in 5G-MEC

• Chapter 6: Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

Emulation

5G Testbed

New Algorithms on
Datasets

5G Testbed +
New Algorithms

Fig. 1.5 Implementation of Experiments.

18 Introduction

1.8 Implementation

This section refers to the implementation of the experiments outlined in the previous section.
Fig.1.5 depicts the manner in which implementations of the experiments were conducted.
Our initial research was carried out using an emulated environment to evaluate the benefits
of combining the control plane and data plane programmability. Mininet utilised a Python
API to specifically emulate networks, devices, and links. Having completed emulations,
we designed and developed a 5G testbed composed of User Equipment (UE), a RAN and
a CN, which is composed of entities that one would find in a mobile telecommunication
network. To incorporate MEC into the 5G mobile telecommunication testbed, Ubuntu UVT
Cloud environments were employed. Next, as per Fig.1.5, we designed and developed new
algorithms for the detection of malicious traffic in 5G-MEC. The developed algorithms were
tested and evaluated on publicly available datasets. Finally, we implemented the newly
designed and developed algorithms on the developed 5G testbed, to function in real-time to
detect malicious network traffic. Further details of the implementation of experiments can be
found under each respective chapter.

1.9 Contributions

My research has been conducted in a manner where the main contributions can be summarised
into two main sections. In the former, I focused on mitigating the delay in the core of the
network that may help in achieving the Key Performance Indicators (KPIs) for 5G. Upon
realisation of the application of SDN+P4 the most promising solution to overcome the delay
in the core of the network, I implemented a mobile telecommunication testbed that can be
used to implement an MEC distribution using UVT-Cloud environments, create datasets,
extract features in real-time, encode network traffic exceeding 24-bits into RGB space. The
following presents a detailed description:

1. Evaluated the performance of networks when SDN+P4 is employed rather than
SDN+OvS.

• The research found that initialising SDN+P4 with parallel processing of packets,
improves performance on applications in comparison to SDN+OvS, which uses
sequential processing.

• Evaluated the quality of applications due to faster processing achieved with
SDN+P4 in comparison to SDN+OvS. The statistics such as increased bps and

1.9 Contributions 19

throughput, reduced delay jitter, packet loss, delay and buffering time have led to
a higher quality of application at the receiver’s end.

• Investigated the overhead created due to the slow path utilisation of OvS and the
performance variation in comparison to a P4 target switch. With the evolution of
the internet and the increased number of connected devices, networks will face
congestion. With more and more packets requiring processing using a controller,
a network model that utilises a slow path approach such as OvS will potentially
lead to an exponential growth in traffic congestion.

2. A Testbed was developed employing functions of a 5G-MEC mobile
telecommunication network with fully functioning P4-BMv2 switches in the
Radio Access Network and Core Network.

• A dataset was generated from the testbed containing both legitimate and malicious
types of traffic found in 5G networks. This dataset can help in mitigating the
False Positive rate for an Intrusion Detection System, applied to a 5G mobile
telecommunication network.

• The dataset was tested and compared to existing datasets not generated from a
5G testbed.

3. A new algorithm to encode network traffic, for example, IP addresses, and MAC
addresses to RGB Images and a new algorithm to decode, encoded RGB images into
network traffic.

• A new IDS using CNN and the proposed encoding and decoding algorithms for
the detection of malicious network traffic.

• Evaluation of the proposed IDS in terms of computational complexity in, for
example, time, memory and CPU utilisation, together with accuracy and loss in
training, validation and detection.

• Comparison of the proposed IDS against a significant IDS that uses a different
approach for encoding and CNN detection.

4. A new Real-Time Deep Learning based Network Intrusion Detection System (RTDL-
NIDS)

• A novel signature detection algorithm to conduct a quick signature-based
detection (5G-SiD) in the 5G-MEC mobile telecommunication testbed.

20 Introduction

• A new RTDL-NIDS launched in the 5G-MEC mobile telecommunication testbed
for real-time detection of malicious network traffic using CNN

• Evaluation of the proposed RTDL-NIDS in terms of computational complexity
in, for example, time, memory and CPU utilisation, together with accuracy and
loss in training, validation and detection.

• Comparison of the proposed RTDL-NIDS against a significant NIDS that was
implemented in the testbed, that uses a different approach for signature-based
detection and encoding.

1.10 Publications

• Fernando, Omesh A., Hannan Xiao, and Xianhui Che. "Evaluation of Underlying
Switching Mechanism for Future Networks with P4 and SDN (workshop paper)."
International Conference on Collaborative Computing: Networking, Applications and
Worksharing. Springer, Cham, 2019.

• Fernando, Omesh A., Hannan Xiao, and Joseph Spring. "Developing a Testbed with
P4 to Generate Datasets for the Analysis of 5G-MEC Security." 2022 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2022.

• Fernando, Omesh A., Hannan Xiao, and Joseph Spring. "New Algorithms for the
Detection of Malicious Traffic in 5G-MEC." 2023 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2023.

• Fernando, Omesh A., Hannan Xiao, Joseph Spring and Xianhui Che. "An Evaluation
of Software Defined Networking" 2023 IEEE Transactions on Networking, 2023.
(Submitted)

• Fernando, Omesh A., Hannan Xiao, and Joseph Spring. "Real-Time Application of
Deep Learning to Intrusion Detection in 5G-Multi-Access Edge Computing" 2023
IEEE Transactions on Machine Learning in Communications, 2023. (Submitted)

1.11 Structure of my Thesis

My dissertation is organised as follows.

1.11 Structure of my Thesis 21

Title Type Cited by Year
Real-Time application of Deep Learning to
Intrusion Detection in
5G-Multi-Access Edge Computing (Submitted)

Journal
Article 2023

A Performance Evaluation for
Software Defined Networks with P4
(Submitted)

Journal
Article 2023

New Algorithms for the Detection of
Malicious Traffic in 5G-MEC

Conference
Paper 2023

Developing a Testbed with P4 to Generate Datasets
for the Analysis of 5G-MEC Security.

Conference
Paper 4 2022

Evaluation of underlying switching mechanism for
future networks with P4 and SDN

Conference
Paper 4 2019

Table 1.1 Publications and the citation at the time of submitting the PhD Thesis

• Chapter 2 provides a detailed collection of background information on topics such as
Software Defined Networking, Programming Protocol independent Packet Processing,
Implementation of the testbed and other simulators/emulators employed in literature,
Deep Learning and its advantages, Multi-Access Edge Computing and lastly, the
application of Deep Learning towards the intrusion detection problem.

• Chapter 3 evaluate the SDN with the application of P4. This chapter, explains the
need for control plane programmability and the importance of combining the paradigm
of programmability with the data plane. This chapter was aimed at evaluating the
performance of SDN+P4 which combined the programmability at both the control
plane and data plane as a means of achieving better performance by reducing delay,
jitter and loss in the core network. In this chapter, we also evaluated if particular traffic
outperforms other protocols. This was done primarily because the future application
will require faster convergence of traffic due to stringent requirements.

• Chapter 4 introduces the real-time 5G mobile telecommunication testbed that
encompasses an MEC deployment. It was developed in order to collect a dataset
containing 5G mobile telecommunication traffic and evaluate the dataset against well-
known publicly available datasets. The chapter also presents the training and validation
accuracy along with the loss associated with it for both the collected dataset and a
publicly available dataset.

• Chapter 5 presents the new algorithms that were developed towards encoding collected
network traffic data into RGB images. The algorithm, NeT2I encodes network traffic

22 Introduction

from a CSV file to a collection of PNG images whilst the I2NeT algorithm decodes
the PNG images into creating a CSV file. Furthermore, this chapter also presents
the CNN3L algorithm which is capable of binary classification between malicious to
non-malicious network traffic. In this chapter, the newly developed IDS was evaluated
with a comparative IDS. The comparative IDS was designed to benchmark a popular
encoding algorithm to test the effectiveness of the newly developed IDS. As opposed
to training and validation accuracy together with the loss, computational complexity
was also presented, since the application of the proposed IDS can be deployed in a low
processing power MEC node.

• Chapter 6 introduces the RTDL NIDS. This new NIDS collect network traffic at the
edge of the 5G-MEC mobile telecommunication network conducts feature selection,
effectuates a signature-based detection (5G-SiD) of known malicious traffic patterns,
enables the NeT2I algorithm to encode network traffic to PNG images, and lastly
uploads the images to the predict function of the CNN3L detection algorithm, decode
the images using I2NeT. RTDL NIDS was designed and implemented to conduct
detection in real-time. With the employment of the RTDL NIDS, an MEC node
capable of carrying out NIDS based on DL can be implemented at the edge. In this
chapter, matrices including time, CPU and RAM were also presented to evaluate the
performance of the new NIDS against the NIDS of [1]. The NIDS from [1] was also
streamlined as above, to evaluate the performance of RTDL-NIDS. Accuracy and
loss were also presented for both NIDSs that were accumulated during training and
validation.

• Chapter 7 concludes this dissertation by discussing the overall achievements and
contributions. It also presents the limitations and our future research work.

1.12 Chapter Summary

The above chapter has provided an overview of the dissertation. The initial section provided
an introduction to the topics that were studied in this research, which formulated the research
questions and resulted in the contributions following the publications. In the next chapter,
we present the literature which motivated this thesis.

Chapter 2

Literature Review

2.1 Overview

This section presents the findings from the literature search that was carried out, during the
development of this thesis. Each section will present an introduction followed by a related
work section. The literature listed below has been referenced at later stages throughout this
thesis.

Section 2.2, introduces the literature pertaining to the core of the network. This section is
important to reduce the delay, loss and jitter in the core network for faster convergence of
network traffic together with faster detection of malicious traffic. Section 2.3, presents the
literature that we utilised for the development of a 5G mobile telecommunication testbed.
This section also refers to the existing literature that has utilised either a desk approach or
a simulator for research in the realm of 5G Security. Finally, Section 2.4, highlights the
literature search carried out for the development of the algorithms.

2.2 A Core Network using SDN + P4

Software Defined Networking (SDN) [11, 12] allows for the decoupling of the control plane
from the data forwarding plane facilitating an improved performance via programmable
network management. The flexibility obtained enables virtualisation, and centralised control
for the network, with routing tables being generated and updated centrally by a network
controller. The separation of the control plane and data plane is made possible through a
clearly defined interface which connects the switches to the network controller. This interface
employs an Application Programming Interface (API), which allows the controller to exert
direct control over the data plane elements (networked devices). The protocol OpenFlow

24 Literature Review

[13, 14],is a notable example of such an API. Fig.2.1a highlights the functionality of the
network controller and OpenFlow.

An OpenFlow forwarding rule consists of a ‘match’ and ‘action’. The ‘match’ involves
the matching of packet header fields such as source and destination fields and an ‘action’
involves the action to be performed such as forward or drop a packet. This function is referred
to as ‘match+action’ [15]. The controller installs these flow entries in the Flowtables of the
SDN enabled devices. If a matching flow entry is found against a packet in the data flow,
the predefined action (pass or drop) for that entry is performed on the matched packet. If no
match is found, the packet is forwarded to the network controller as a Packet-in Message.
The controller is responsible for determining how the packet should be handled by returning
this specific packet to the switch and stating which port it should be forwarded to (Packet-out
message). This has been illustrated in Fig. 2.1b.

OpenFlow was first introduced with 12 ‘match’ header fields [16], and now stands at 44
header fields, as described in the OpenFlow specification 1.5.1 [14]. These are anticipated to
grow exponentially in the foreseeable future, in response to the evolution and heterogeneity
of the internet. This could potentially be a problem as the application of new header field
extensions cannot be achieved when using a stringent-fixed parser at run time, whilst the
switches are actually processing packets.

An alternative to extending the OpenFlow specification is to employ a novel parser that can
carry out ‘match+action’ in parallel as opposed to sequential allowing for programmability
in the data forwarding plane without having to modify the OpenFlow specification. In our
abstract model, as depicted in Fig. 2.2a, switches forward packets via a programmable parser
followed by multiple stages of match+action, arranged in series, parallel or a combination
of both. The forwarding model is controlled by two types of operations: Configure and
Populate. The configure operation (which is composed of Parse graph, Control Program,
Table configuration, and Action set), programs the parser, arrange the order of match+action,
and specify the order of fields processed by each stage. The populate operation, adds, or
removes entries to the match+action tables that were specified during configuration. Such a
parser can be updated, extended and modified without interrupting packet processing and
forwarding and would allow for heterogeneous applications. A protocol that can be employed
to carry out ‘match+action’ in parallel is the Programming Protocol Independent Packet
Processing (P4) [16]. Fig. 2.2b, shows the relationship between P4 and a switch, telling
the switches how packets are to be processed using existing APIs (such as OpenFlow) that
are designed to populate the forwarding tables in switches. P4 raises the abstraction for
programming the network and can serve as a general interface between the controller and the

2.2 A Core Network using SDN + P4 25

Applications

Network Controller

SDN – Enabled Device(Switch/Router/BS)

Northbound API

Southbound API
Control Plane

Data Plane

(a) Software Defined Networking (SDN).

(b) How SDN is implemented

Fig. 2.1 Functionality of SDN

26 Literature Review

switches. That is, we believe the future of OpenFlow, where the controller tells the switch
how to operate, rather than be constrained by a fixed switch design.

P4 has three main properties: re-configurability, protocol independence, and target
independence allowing the network administrator to determine the functions and capabilities
of a switch rather than adhering to vendor’s specification [17]. Utilising a common open
interface, the administrator can leverage P4 to program a flexible parser to match new
header fields as opposed to working with a fixed parser in OpenFlow which would require a
specification update in order to process new header fields. An illustration of P4 functionality
and its interaction with a target switch can be found in Fig.2.2.

The extensive research carried out in [18, 19] indicate that the majority of future network
traffic is expected to be the result of using hand-held smart devices. It is stated that the
increased traffic due to hand-held devices has resulted in an approximately 82% [19] of
all consumer Internet traffic. The increased load of end-user IP traffic threatens to lead to
network congestion resulting in a reduced Quality of Service (QoS) in terms of, for example,
jitter [20], packet loss, and throughput [21] with service providers trying to maintain an
acceptable level of service. It is interesting to note a challenge presented in [22], which
suggests that the majority of the delay in data communication occurs at the core of the
network due to an exponential growth in periodic updates [23] used to maintain the network
state.

Control and data plane programmable functions motivate us to investigate how this
emerging approach can improve the performance of a network by processing packets faster.
It is, we feel, crucial to investigate whether and how the extent to which a solution with
programmability in both the control plane and forwarding plane will provide an improved
core network to accommodate stringent performance and flexibility when network traffic
increases continuously.

Research in [24] discussed technological enhancements for networks highlighting
technologies such as OpenFlow, P4, the Data Plane Development Kit and Click-based
solutions. It was established that the protocol-independent nature of the high-level language
P4 [16] together with independence from the underlying hardware and header limitation
benefits the network, increasing performance through the faster processing of packets. The
survey [24, 25] compliments the research of [16] on P4. The utilisation of the language
P4 has been presented for many applications. [17, 26–32]. Research in [17] applied the
programmability of P4 to create an application capable of handling data centre traffic. In [26]
a congestion control mechanism has been used together with P4 and in [27] mechanisms
for packet processing capabilities through P4 have been utilised with a Robust Header
Compression (ROHC) scheme for improving performance. Further examples include a tool

2.2 A Core Network using SDN + P4 27

Switch Configuration

Parse Graph
Control

Program
Table

Configuration
Action set

I
N
P
U
T

P
A
R
S
E
R

B
U
F
F
E
R

O
U
T
P
U
T

Match +
Action

Match +
Action

Forwarding Rules

Ingress Pipeline
Packet Mods +

Egress Selection

Egress
Pipeline

Packet Mods

(a) Programming Protocol Independent Packet Processing (P4).

SDN Control Plane

Complier

Parser and Table
Configuration

Rule Translator

Configuration : P4
Programme

Populating:
installing and
querying rules

Classic
OpenFlow

(b) How P4 and classic OpenFlow is implemented with SDN

Fig. 2.2 Functionality of P4

28 Literature Review

for developing and evaluating data plane applications [28], Service Function Chaining on
P4 devices in [29] and in [30], an extension to the application of Open vSwitch, to act as a
hypervisor switch.

A study conducted in [33] employed an identical topology to that initially presented
in [34] which highlights the validity of the respective initial work. The study focused on
economic factors from a hypothetical migration towards OpenFlow for Network Service
Providers (NSP) but did not evaluate network performance. In [35] and [36] a methodology
to orchestrate a dynamic end-to-end (E2E) path between transit stub domains was presented,
with the idea of SDN successfully managing traffic between NSP. How an SDN controller
should be placed between NSPs was discussed in [37] as a means of improving performance.
This was achieved through the ‘correct’ and optimal placement of SDN controllers at various
topological locations. A similar approach has been employed in [38] where a second
controller was placed to mitigate traffic overload in the core network. In [39] it was suggested
that in order to achieve better performance, a minimum of 20% of the nodes in the core
network should operate as SDN controllers with control plane programmability. In [40] and
[41] the authors utilised control plane functions in an SDN controller to improve performance.
Similarly, [42] presented that when faced with congestion SDN networks face performance
degradation. In addition, in [43] the use of a high-level specification template for management
patterns was utilised to improve performance in SDN networks.

Various researchers have utilised the P4 language to improve the performance of a
particular case study or an instance. To the best of our knowledge research aimed at improving
the performance of a network through the utilisation of programmability at the control plane
and data forwarding plane (SDN+P4) have been limited to improving performance for
specific case studies only.

Therefore, we hypothesise that a combination of data plane and control plane
programmability (SDN+P4), as illustrated in Fig.2.1b will elevate the performance of the
network, to accommodate stringent performance requirements for future applications in
comparison to ‘Open vSwitch (OvS) [44] coupled with control plane programmability’
(SDN+OvS). The two models can be seen in Fig.2.2b.

2.3 Real-Time 5G mobile telecommunication Testbed

5G mobile networks will become the key enabler and foundation for Information
Communication Technology, catering to a diverse set of use cases (enhanced mobile
broadband, massive machine type communication and ultra-low reliable low latency
communication) with a range of different requirements. Providing support to each of the

2.3 Real-Time 5G mobile telecommunication Testbed 29

use cases using a common architecture has led to a significant change in design philosophy
for core and radio access networks, and the application of Multi-access Edge Computing
(MEC) involves a significant modification at the service based architectural level in order to
(potentially) cater for the diverse use cases involved.

Multi-access Edge Computing and methods of deployment have been presented in [2]
and as awareness and interest in 5G-MEC has grown within the industry and academia,
research based on resource allocation, energy awareness and network slicing has also
grown. Flexibility, scalability, virtualisation, and availability at the edge have created
many advantages for both users and service providers. The importance of securing this
architecture has gained the attention of researchers working in this field. The works found in
the literature employed a dataset to conduct their research, as opposed to employing a 5G
mobile telecommunication testbed. Another fact to consider is that their respective research
in traffic analysis and intrusion detection for 5G-MEC does not employ publicly available
datasets collected from a mobile telecommunication 5G testbed. Currently, popular datasets
include KDD Cup‘99 [45], NSL-KDD [46], CTU-13 [47] and UNSW NB-15 [48]. Of the
above datasets, KDD Cup‘99 was employed for example in [49] and [50], the CTU dataset
in [7], UNSW NB-15 in [51] and [52] and InSDN [53].

KDD Cup’99 was collected in 1999 from a U.S. Air Force LAN network with realistic
network traffic. This labelled dataset albeit imbalanced contained a large number of entries.
Although the dataset is quite popular amongst researchers, lack of variety in traffic, predefined
attacks, repetitive data points, and being outdated questions its application for 5G research.
NSL-KDD was created to improve the original 1999 dataset. Compared to the predecessor,
this dataset contained fewer data points all of which were unique with no duplicated records.
Despite the advantage of removing redundant records, being outdated, imbalanced, collected
on a LAN network, lack of variety, and the limited set of pre-defined attacks make the
acquired datasets questionable for use in 5G. The CTU dataset was created by the CTU
University of Prague in 2011 on a campus network with a collection of labelled real network
traffic with a diverse collection of attack traffic. However, CTU dataset is small in comparison
to other datasets used for 5G research, imbalanced, collected on controlled conditions, and
doesn’t represent the traffic of a mobile telecommunication network. Hence, the employment
of the CTU dataset is questionable for 5G research. The UNSW NB-15 dataset was created
in 2015 using the IXIA tool on three virtualised servers. The dataset contains a collection
of labelled network traffic consisting of a diverse collection of attack traffic. However, the
UNSW NB-15 dataset is imbalanced, collected using a simulation tool, and therefore can
be construed as not suitable for 5G research. Finally, the recently collated InSDN dataset
was collected at University College Dublin, emulating a campus network with SDN traffic.

30 Literature Review

Similar to the previous datasets, InSDN is imbalanced, collected using simulation tools, and
doesn’t represent mobile telecommunication traffic. All of the aforementioned datasets lack
the following traffic which is vital for the function of mobile telecommunication. Traffic
such as Quick UDP Internet Connections (QUIC), GPRS Tunnelling Protocol (GTP), S1
Application Protocol (S1AP), Stream Control Transmission Protocol (SCTP) and Simple
Service Discovery Protocol (SSDP) are not represented in the above datasets. We, therefore,
believe that it is time to develop a testbed to generate realistic datasets for 5G-based research.
The dataset was generated adhering to the quality of data as outlined by the research presented
in [54–57].

From a security perspective frameworks/applications for 5G have been presented in
[58–60]. However, these studies do not include testbeds for their respective work but rather
present frameworks based on literature for specific use cases (eMBB, URLLC, and mMTC).
The inclusion of testbeds will, we believe provide a deeper understanding of the feasibility of
the frameworks/applications. In our thesis, we present a mobile telecommunication testbed
capable of transmitting, capturing, and processing various types of 5G mobile traffic.

The heterogeneity, diversity and complexity of the applications due to complex use
cases in 5G (and beyond), will we believe benefit in having a flexible parser that can
carry out ‘match+action’ in parallel. Having the capability to re-configure, and to be both
protocol and target (network devices i.e switches) independent, can aid in issues relating
to heterogeneity, diversity and complexity for applications. For this research Programming
Protocol Independent Packet Processing (P4), [16] serves as the prime candidate for inclusion
in our testbed. In order to emphasise the importance of employing a realistic, relevant and
pragmatic dataset for 5G-MEC security, we formulated a 5G-MEC testbed.

Simulation/emulation tool(s) such as NS3/Mininet has been used in [61–63] in their
respective research in 5G, and do not involve data collected from a mobile telecommunication
testbed. The above research raises the question as to the reliability of the study since
the dataset or simulation/emulation does not involve traffic collected from a mobile
telecommunication network.

Authors at [7, 49, 50, 64–72] researched towards resource management and security of
5G-MEC. The aforementioned studies did not utilise a testbed but merely used a publicly
available dataset and an algorithm towards their respective study. This poses a question about
the reliability of the study since the dataset does not represent the traffic found in a mobile
telecommunication network. Traffic such as Quick UDP Internet Connections (QUIC) [73],
GPRS Tunnelling Protocol [74], S1AP Protocol, Stream Control Transmission Protocol [75]
and Simple Service Discovery Protocol (SSDP) were not represented in the datasets that the
researchers have employed. Therefore, the employment of datasets towards research in 5G

2.3 Real-Time 5G mobile telecommunication Testbed 31

(a) 5G-LENA simulator provided by
NS3 (b) Mininet-WiFi Emulator

(c) OMNET++ Simulator (d) Open Mobile Evolved Core (OMEC)

Fig. 2.3 Considered Simulators and Emulators for the development of a 5G mobile
telecommunication testbed.

32 Literature Review

security creates a contradiction when their respective algorithms were faced with real traffic
of a mobile network.

Frameworks for 5G mobile telecommunication have been reviewed by the authors at
[76–79] without the employment of a testbed or an evaluation for their proposal. Security
frameworks/applications for 5G have been presented in [58–60, 80] in their various studies.
The studies given, do not include a testbed for their respective work but rather they have
presented a framework-based literature for a specific use case. The literature referenced
above, have presented their research without utilising a real mobile telecommunication
testbed.

Fig. 2.4 Open Air Interface was employed for developing the 5G mobile telecommunication
testbed

In order to develop a mobile telecommunication testbed following state-of-the-art
deployments can be considered. They were: Open Mobile Evolved Core (OMEC) [81],
Network Simulator 3 (NS3) 5G-LENA project [82], Omnet++ [83] and Mininet-wifi [84].
OMEC is an open-source deployment capable of launching a mobile telecommunication
testbed with various customisations, offering opportunities to a varied set of experiments.
High resource utilisation for the launch of OMEC, creates a bottleneck for deploying a
5G mobile telecommunication testbed. 5G-LENA is a recently developed open-source
simulation tool capable of simulating various case studies and scenarios. However, a realistic
5G scenario or a case study, differs significantly from that of a simulated environment.
Omnet++ is an open-source tool that offers modularity and visualisation for various case
studies. However, the simulation nature and resource intensity question the suitability of
Omnet++’s application. Finally, Mininet-wifi is an open-source tool created for educational
and research purposes that possesses the capability to emulate custom topologies and case
studies. Despite the popularity of this emulation tool, realism versus emulation differs
significantly [85], contributing to the validity of the results collated. The high resource
requirements for OMEC, the simulation nature of NS3 and Omnet++ and the missing LTE
functions of Mininet-wifi show that these options are inappropriate for developing a 5G
mobile telecommunication network. A better option we believe is the OpenAirInterface
(OAI) which we have employed throughout this research.

2.4 Algorithms for the Detection Malicious Traffic 33

OpenAirInterface [86] and [87] is an open-source development managed by the
OpenAirInterface Software Alliance. OAI is a cost-effective tool with customisation options
that support rapid prototyping that can be leveraged to launch a 5G mobile telecommunication
testbed. However, OAI can not be optimised towards commercial use, but it enables
researchers to test and evaluate 5G (and beyond) case studies and scenarios whilst maintaining
compliance with the 3GPP standards for both core networks (CN) and radio access networks
(RAN) [88].

OAI consists of the following emulating the CN: mobility management entity (MME),
home subscriber server (HSS), and the control and user plane separation serving gateway
(SPGW-C/U and PGW-C). OAI also deploys the components pertaining to the RAN, capable
of connecting User Equipment to the network. To make the testbed realistic to reflect real-
world applications, the following addenda were considered. Commercial Off the Shelf User
Equipment (COTS-UE) was employed in connecting users to the network. This highlights a
common user accessing medium via a smart UE. The users initiated the most popular types
of network traffic in an attempt to highlight the user activity to the closest possible state.
The network also consisted of connected but idle users to make the network more realistic.
The network initialised services to users by employing UVT-Cloud nodes to demonstrate the
popularity of the cloud services. A similar approach as above has also been employed by the
authors in [87]. The employment of OAI and the addenda above will provide traffic patterns
unique to a 5G mobile network, which can enhance the research of securing the 5G-MEC
architecture.

2.4 Algorithms for the Detection Malicious Traffic

As the internet continues to evolve and the deployment of 5G and beyond expands, meeting
strict low latency requirements will become increasingly important. In order to provide a
service with low latency, high bandwidth and ultra-reliable communication to users, service
providers will employ the concept of a Multi-Access Edge Computing (MEC) infrastructure.
MEC and respective methods of deployment have been presented in [2] and as awareness and
interest in 5G-MEC has grown within the industry and academia, research based on resource
allocation, energy awareness and network slicing has also grown. Flexibility, scalability,
virtualisation, and availability at the edge have created many advantages for both users and
service providers. Given the potential and the advantages that the deployment provides,
adversaries may target the platform to create service disruption [3]. Hence, the importance of
securing the MEC infrastructure by applying a Network Intrusion Detection System (NIDS)
has attracted attention from both academia and industry.

34 Literature Review

Despite the popularity of research in the field of NIDS technology, many applications
remain based on signature-based methodologies for the detection of malicious traffic [4, 89–
92]. Due to the increased volume of network data, lack of in-depth monitoring and granularity,
as well as the diverse range of data types and protocols [4, 93] in a 5G mobile network,
traditional signature-based NIDS systems may be less effective [94, 95]. With the complexity
of non_malicious traffic increasing exponentially, the classification of traffic as malicious
or non_malicious becomes a complex task [96]. DDoS attacks, spoofed attacks, port scan,
SYN floods and other forms of malicious network traffic have become easier to launch with
the availability of many open-source tools[97–99]. Therefore, malicious intent has become
difficult to detect, especially when the attack is also spoofed [100]. Research by [101–106],
suggests that the aforementioned attacks pose the most significant threat to MEC nodes due
to low processing capabilities [103] and an attack may bypass a traditional NIDS [107]. An
efficient method for the identification of malicious network traffic involves the utilisation of
an efficient and effective signature-based detection algorithm [89, 108–110] that can label
suspicious traffic [7]. A faster labelling [111, 112] of suspicious traffic can be extended
by a cumulative and a confirmed detection [113] by an intelligent agent [7, 65, 114, 115],
which has shown to be a more accurate approach than traditional NIDS [4] when signatures
have been identified accurately [116]. Research [89, 93, 95, 117] suggest that this is the best
source of detection. Similarly, an application of a behaviour-based NIDS will contribute
towards a higher false positive rate [6] compared to a signature-based NIDS due to the high
volume of data expected with 5G networks [114]. Signature-based NIDS can also be seen in
applications where the devices have energy [118] and processing constraints [119]. When
coupled with an intelligent agent (Machine Learning or Deep Learning), a signature-based
NIDS can outperform a stand-alone signature-based NIDS as evidenced in [120, 121].

Interest in applying Machine Learning (ML) towards NIDS has grown exponentially [117]
in recent years. ML techniques such as Naive Bayes (NB), Decision Trees (DT), Random
Forrest (RF) and Support Vector Machines (SVM) have attracted the most attention for NIDS
[89, 122, 123]. However, the inability to handle data with higher dimensions, the associated
time overhead in training, the requirement for vast amounts of limited dimensional data and
the labour-intensive process of identifying relevant data together with the heterogeneity of
5G data creates a bottleneck [4, 95] for the application of ML to NIDS problems.

Deep Learning (DL) has been promoted as a viable solution to the above-mentioned
drawbacks of ML by extracting representations from network data relating to a DL modelling
approach [5]. We note the most recent research into the NIDS problem based on DL
techniques [89, 124–127]. Various studies have shown that DL approaches have achieved
better results in comparison to ML techniques due to their advanced layer-based, feature

2.4 Algorithms for the Detection Malicious Traffic 35

learning mechanisms [128]. This benefits the analysis of network traffic with high complexity
and dimensions [129], such as data generated through 5G mobile telecommunication and
complicated applications (Massive Machine Type Communication and Ultra-Reliable Low
Latency Communication) that occupy the network [130]. The capacity for learning from
historical network data (both malicious and non-malicious) provides DL with the ability
to reduce the complexity of network traffic in order to find correlations without human
intervention [131, 124]. It is also noteworthy to mention that DL is capable of learning from
a vast training dataset [132, 133] to build a detection model. After analysing the available
DL techniques and as per the findings of Ding and Zhai [134], we employed Convolutional
Neural Networks (CNN) due to its high performance [60, 135, 136] and accuracy [137–139].

Previous studies on the application of DL towards NIDS have been focused on testing
the effectiveness of a desired feature selection or DL algorithm by employing a dataset/s
[1, 60, 124, 130, 134, 140–151] that has been primarily collected on a network, which
contradicts the traffic patterns and functions of a 5G network [152]. However, in order to test
the hypothesis that the application of DL will be beneficial for NIDS on 5G networks, has
to be tested by employing 5G data which is collected on a 5G mobile telecommunication
testbed. Further to the employment of 5G data, the application of employing an intelligent
agent such as a DL should be advanced from the traditional desk approach. Research in [130]
also suggests that an algorithm trained and tested using a desk approach (off-line mode), may
not function correctly in real-time.

Wu et al. [153] employed an algorithm employing all 122 features of the NSL-KDD
Dataset into images which were later used towards training and testing a CNN. The
mechanism employed by the researchers highlights the importance of utilising a Deep
Learning algorithm instead of a Machine Learning algorithm where data with high dimension
and complexity can be used. This research supports the use of CNN against other well-known
classifiers, (Recurrent Neural Networks (RNN)). Fewer computations required for CNN
and higher detection rates for DoS traffic were achieved in comparison to RNN, and also
highlighted by the authors in their respective research. However, the research employed
a dataset which was collected in 1999. The traffic patterns of the internet have changed
significantly in comparison to that represented in the dataset.

Xiao et al. [154] presented research evaluating CNN, RNN and Deep Neural Networks
(DNN), along with machine learning algorithms such as Logistic Regression, Decision Tree,
Random Forest, Support Vector Machine, AdaBoost and Naive Bayes. In their research,
they highlighted the performance on detection for the CNN algorithm against other well-
known classifiers along with the time spent on training for CNN, RNN and DNN. The
research highlighted and confirmed the high reputation of CNN against other classifiers

36 Literature Review

which have been employed towards intrusion detection problems. Although the research
provided promising results, the methodology employed utilised the KDD dataset. Authors
at [155], employed the same dataset for their application of CNN-based IDS, evaluating it
against other classifiers such as (DBN, SVM and Back Propagation Neural Network). Similar
to the above approaches, authors at [156] also employed a CNN backed by the data from
KDD and NSL-KDD datasets. The application of a dataset which was collected in the year
1999, questions the validity of results from the above research when the algorithm is placed
in a real-time system for the detection of malicious 5G traffic.

Kim et al. [140] employed two datasets when evaluating the effectiveness of their
CNN algorithm for intrusion detection problem. The authors have created images in both
RGB and Grey-Scale. Upon image creation, the authors evaluated the effectiveness of their
algorithm against different variations of convolutions and image classes. They employed two
datasets for their research. Namely, they are KDD and CSE-CIC-IDS-2018 datasets. Authors
identified that the application of RGB images produced effective and higher accuracy for
detection compared to Grey-Scale images together with an application of 3 convolutional
layers. A similar approach of employing 3 convolutional layers to increase the effectiveness
of the detection algorithm can also be seen in the works of [135, 136, 138, 139, 155].

Research presented in [157] evaluated the effectiveness of various DL algorithms (CNN,
Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)) against the ISCX2012
dataset. In their research, the authors concluded that the application of CNN towards a
binary traffic classification problem in an IDS produces higher results in comparison to other
classifiers that they have employed in their work.

A hypothetical application of a real-time network intrusion detection system that conducts
traffic classification at two stages was first introduced by the authors at [7]. This work
presented a hypothetical signature detector following which confirmed traffic and suspicious
network traffic was sent to an intelligent detection mechanism that employed a DL algorithm.
The authors highlighted the importance of a two-stage detection mechanism for 5G and
beyond to accommodate the higher volume and higher complexity of network traffic.
However, the authors used the CTU dataset in order to test and evaluate the effectiveness
of their DL algorithm as opposed to implementing the framework in a real-time testbed.
Similarly, [158] presented a framework of detection using DL but the work is limited towards
the application of CTU dataset as opposed to being applied to a real-time testbed. Work
presented by [113], employed a simulator to collect GPS Tunnelling Protocol (GTP) packets
and extrapolated features and detected DDoS attacks in real-time. The work presented
highlighted the importance of a real-time network traffic classifier for 5G and beyond.
However, the work is limited towards the detection of DDoS attacks. Also, the application of

2.5 Chapter Summary 37

a testbed will provide more conclusive and reliable statistics as opposed to a simulator. Given
the ability of DL to be trained with data which has higher dimensions and complexities ML
will create a drawback towards the IDS problem when applied to 5G and beyond, which
authors at [113] employed. Therefore, we hypothesise that the application of a DL algorithm
that can conduct detection in real-time, in a 5G mobile telecommunication testbed will
provide concrete results of its application and the generated accuracy.

2.5 Chapter Summary

The above section presents multiple areas of research available in the realm of 5G-
MEC security. Research areas adjacent to the above progressed into the creation of new
technologies and applications that can be integrated into solidifying contributions to the
research questions. The next chapter in this thesis will present the evaluation undertaken
for the first research question: How does programmability in both the control plan and data
plane affect network performance?

Chapter 3

A Performance Evaluation for Software
Defined Networks with P4

This chapter evaluates the performance of Software Defined Networking (SDN). SDN and
Programming Protocol-independent Packet Processors (P4) have been attracting attention
from both industry and academia as a means of achieving programmability in the network
at different layers. The two emerging technologies have in the main, been researched
individually in the literature, however, research evaluating the performance of SDN with
P4 is limited. As the number of connected users continues to grow with the evolution
of communication and with increasing complexity issues and heterogeneity relating to
applications, the challenge for service providers to provide resilient connections with faster
processing of packets increases. The application of SDN with its ease of management
through centralised programmable control logic attracts attention from both academia and
industry as a means of achieving better performance. This research was conducted to explore
the hypothesis that combining programmability at both the control plane and data plane,
namely SDN+P4, will provide a platform with faster packet processing. In this research,
we design a system platform to investigate the network and applications performance in
SDN+P4, in comparison to SDN+Open vSwitch. Topologies considered were the multi-path,
grid and transit-stub network models with hosts placed at leaf nodes to emulate a small, an
intermediate, and a core network. The mininet emulation results demonstrate that across all
case studies, parallel processing of P4 has provided more queues for traffic to be processed
with the utilisation of a flexible parser. With the evolution of the internet and the heterogeneity
of applications, SDN+P4 will, we believe, provide a more resilient stringent service to all
use cases of 5G and beyond.

40 A Performance Evaluation for Software Defined Networks with P4

3.1 Introduction

Software Defined Networking (SDN) [11, 12] enables the separation of the control plane and
the data forwarding plane, leading to enhanced performance through programmable network
management. The acquired flexibility allows for virtualization and centralized control of the
network, where routing tables are generated and updated centrally by a network controller.
The protocol OpenFlow [13, 14] employs APIs to maintain forwarding rules for the switches
establishing flow paths for data to travel in a network.

An OpenFlow forwarding rule consists of a ‘match’ and ‘action’. The ‘match’ involves
the matching of a packet header fields such as source and destination fields and an ‘action’
involves the action to be performed such as forwarding or dropping a packet. This function
is referred to as ‘match+action’ [15]. OpenFlow was first introduced with 12 ‘match’ header
fields [16] and now stands at 44 header fields, as described in the OpenFlow specification
1.5.1 [14]. Anticipated to experience exponential growth in the foreseeable future, these
developments respond to the evolving and heterogeneous nature of the internet. This
could pose a potential issue, as the application of new header field extensions cannot be
accomplished when employing a rigid, fixed parser during runtime, while the switches are
actively processing packets.

An alternative to extending the OpenFlow specification is to employ a novel parser that
can carry out ‘match+action’ in parallel allowing for programmability in the data forwarding
plane without having to modify the OpenFlow specification. A parser of this nature can
be updated, extended, and modified seamlessly without disrupting packet processing and
forwarding, thereby enabling the integration of heterogeneous applications. A protocol
that can be employed to carry out ‘match+action’ in parallel is the Programming Protocol
Independent Packet Processing (P4) [16]. Parallel processing can be achieved in P4 by
employing one of the following.

1. Multiple Processing Cores: Some network devices have multiple CPU cores or
processing units. P4 programs can be designed to distribute packet processing tasks
across these cores to achieve parallelism. For example, one core might handle packet
parsing, while another core handles packet forwarding.

2. Parallel Pipelines: P4 allows the definition of multiple packet processing stages within a
pipeline. These stages can be designed to operate in parallel, with each stage processing
packets independently. For instance, one stage might perform access control checks
while another stage performs packet routing.

3.1 Introduction 41

3. Hardware Offload: In some cases, P4 programs can be used to offload certain packet
processing tasks to specialized hardware accelerators or programmable ASICs. These
hardware components can operate in parallel with the CPU, further increasing packet
processing efficiency.

4. Load Balancing: P4 can be used to implement load balancing mechanisms, where
incoming packets are distributed across multiple processing units or network paths,
enabling parallel processing of packets.

P4 possesses three primary properties: re-configurability, protocol independence,
and target independence. These features empower the network administrator to define
the functions and capabilities of a switch, rather than being constrained by a vendor’s
specifications [17]. By utilizing a common open interface, administrators can leverage P4 to
program a flexible parser for matching new header fields. This stands in contrast to working
with a fixed parser in OpenFlow, where processing new header fields would necessitate a
specification update.

The extensive research carried out in [18, 19] indicate that the majority of future network
traffic is expected to be the result of using hand-held smart devices. It is accounted that the
increased traffic due to hand-held devices has resulted an approximate 82% of all consumer
Internet traffic. The escalating load of end-user IP traffic poses a potential risk of network
congestion, which could lead to a diminished Quality of Service (QoS) in terms of factors
such as jitter, packet loss, and throughput, as noted in [21]. Service providers are actively
working to uphold an acceptable level of service amid these challenges. It is noteworthy to
highlight a challenge outlined in [22], indicating that a significant portion of the delay in data
communication arises in the core of the network. This is attributed to the exponential growth
in periodic updates [23] employed for maintaining the network state.

Control and data plane programmable functions motivate us to investigate how this
emerging approach can improve the performance of a network by processing packets
faster. We believe it is essential to examine whether and how a solution incorporating
programmability in both the control plane and forwarding plane can offer an enhanced core
network capable of meeting stringent performance requirements and providing flexibility as
network traffic continues to increase.

We hypothesise that a combination of data plane and control plane programmability
(SDN+P4) will elevate the performance of the network, to accommodate stringent
performance requirements for future applications in comparison to ‘Open vSwitch (OvS)
[44] coupled with control plane programmability’ (SDN+OvS). In this chapter, we explore
SDN+OvS and SDN+P4 environments for different topologies comparing the performance

42 A Performance Evaluation for Software Defined Networks with P4

of each. Various types of traffic were transmitted to test the performance of the SDN+OvS
and SDN+P4.

3.2 System Platforms

To explore the research questions, a network emulation was built on Ubuntu 18.04LTS
running on VMWare with a Core i7 CPU with 3.40GHz together with an Open Networking
Operating System (ONOS) [159] version 2.0.0. Mininet [84] was utilised to emulate the
networks, as shown in Fig.3.1.

3.2.1 SDN Platform

ONOS is an open-source SDN network operating system built to provide a platform for
service provider networks [159]. ONOS facilitates the control plane for network components
such as switches, links or software [160]. Being highly reliable, resilient, and scalable
makes ONOS, we believe the best open-source option [161, 162] available for building and
catering for SDN networks. A real-time GUI provides a global view of the network that
aids administrators to monitor and manage resources accordingly. ONOS provides two
APIs: the southbound API interacts with devices and the northbound API offers services
to applications. The controller inside ONOS can push a switch configuration towards a
forwarding device. We chose ONOS as a platform in this research for the above features and
its ability to maintain a network’s state without compromising performance.

3.2.2 Mininet

Mininet [84], developed by Stanford University, is an open-source, lightweight and easy-
to-deploy network emulator that provides a programmable interface to launch and initialise
networks either in wireless or wired mode. Mininet has the ability to initialise a large network
with multiple hosts and switches on a physical host. Mininet supports the emulation of
OpenFlow enabled switches such as OvS for this research. OvS coupled with an ONOS
controller was used to emulate the SDN+OvS environment for this research.

3.2.3 P4 Switch

Upon selecting ONOS for the SDN platform, we chose the bmv2 switch [163] as our P4
software switch. A bmv2 switch can configure a custom parser with ingress and egress
pipelines working in parallel to perform match+action. In bmv2, parsers are implemented

3.3 Experimental Design 43

VmWare

Ubuntu 18.04 LTS

Mininet

ONOS

Network Topology (n)

Fig. 3.1 Test bed used for this research.

prior to the match+action stages. As we employed the standard bmv2 to emulate a P4
software switch, the parsers are implemented in this manner by default. The program utilised
is independent of the target switch design and can be employed to represent different switch
designs should the need arise. The P4 software switch, bmv2 was instantiated with parallel
processing and without using specific metadata or specific port forwarding to specific traffic
(dynamic features of P4) to ensure fairness between the OvS switch and the bmv2 switch.
The bmv2 switch coupled with the ONOS controller was employed to emulate the SDN+P4
environment in this research.

SDN+P4 will enable programmability in both the control and data forwarding plane.
Unlike the previous instance (SDN+OvS), SDN+P4 has the capability to modify the switch
configuration such as a flexible parser, ‘match+action’ which can operate in parallel or series
or include metadata and buffer, using a JavaScript Open Notation (JSON) obtained from a
P4 program [16]. By utilising a P4 switch, a fixed parser in OvS has been replaced with a
flexible parser, which can process packets more efficiently and effectively. Fig.3.2a highlight
a code written in C to implement an Open VSwitch that can conduct match+action based on
MAC address. Fig. 3.2b, depicts the same functionality that has been implemented using
P4. In this code, the network packet parameters can be configured to achieve flexibility and
programmability in the data forwarding plane, which can not be achieved in OvS.

3.3 Experimental Design

Experiments designed for answering the research question “How does programmability in
both the control plane and data plane affect network performance?", have been conducted as
per Table 3.1. In this chapter, the computational complexity or capacity to implement bmv2
or OvS were not collected, as this was outside the set research goals.

44 A Performance Evaluation for Software Defined Networks with P4

#include <stdio.h>

#include <string.h>

#include <openvswitch/ofp-print.h>

#include <openvswitch/ofp-parse.h>

#include <openvswitch/ofp-actions.h>

#include <openvswitch/ofp-util.h>

void add_flow_entry(const char *bridge_name, const char *dst_mac, int output_port) {

 struct ofputil_flow_mod *fm;

 struct ofputil_actions *actions;

 struct ofpbuf *msg;

 /* Initialize the OpenFlow context. */

 ofp_init();

 /* Create a flow_mod message. */

 fm = ofputil_encode_flow_mod(OFPFC_ADD, OFPFF_SEND_FLOW_REM, OFP_TABLE_UNSPEC, OFPVID_NONE,

 OFPVID_NONE, OFPP_ANY, OFPG_ANY, 0, OFP_NO_BUFFER, OFP_DEFAULT_PRIORITY,

 OFP_FLOW_PERMANENT, OFPP_ANY, OFPG_ANY, 0, OFPMT_OXM);

 /* Set the match criteria for the flow entry to match the destination MAC address. */

 struct ofpact *ofpact;

 struct ofpact_dl_addr *dl_act;

 ofpact = ofpact_put_SET_DL_DST(NULL);

 dl_act = ofpact_get_dl_addr(ofpact);

 ovs_be16_parse_mac(dst_mac, &dl_act->dl_addr);

 ofputil_push_action(&fm->header, ofpact);

 /* Create an action to output the traffic to a specific port. */

 actions = ofputil_actions_alloc(OFPUTIL_POFPT_SET_FIELD, NULL, false);

 ofputil_actions_add_output(actions, output_port);

 /* Add the action to the flow_mod message. */

 ofputil_push_actions(fm, actions);

 /* Encode the flow_mod message into an OpenFlow message. */

 msg = ofputil_encode_flow_mod_message(fm);

 /* Connect to the OVS switch and send the flow_mod message. */

 struct ofpbuf *reply;

 ovs_open(bridge_name, &reply);

 ovs_sendmsg_blocking(ovs_get_fd(), msg);

 ovs_recvmsg_blocking(ovs_get_fd(), reply);

 ovs_close();

 /* Clean up memory. */

 ofpbuf_delete(msg);

 ofpbuf_delete(reply);

 ofputil_flow_mod_unref(fm);

 ofputil_actions_free(actions);

}

int main() {

 const char *bridge_name = "br0"; // Replace with your OVS bridge name.

 const char *dst_mac = "00:11:22:33:44:55"; // Replace with the destination MAC address.

 int output_port = 2; // Replace with the desired output port number.

 add_flow_entry(bridge_name, dst_mac, output_port);

 return 0;

}

(a) A Sample Open vSwitch code

// Define the header format for Ethernet frames

header ethernet_t {

 bit<48> dst_mac;

 bit<48> src_mac;

 bit<16> eth_type;

}

// Define the packet parser

parser start {

 extract(ethernet_t);

 return parse_ethernet;

}

// Define the Ethernet parser state

state parse_ethernet {

 transition select(ethernet.eth_type) {

 0x0800: parse_ipv4; /* IPv4 packet */

 0x0806: parse_arp; /* ARP packet */

 default: drop;

 }

}

//Define the IPv4 parser state

state parse_ipv4 {

 // Add parsing logic for IPv4 headers here if needed

}

// Define the ARP parser state */

state parse_arp {

 // Add parsing logic for ARP headers here if needed

}

// Define the Ethernet forwarding logic

control ingress {

 apply(ethernet_switch);

}

// Define the Ethernet switch logic

control ethernet_switch {

 action forward() {

 // Forward the packet to the appropriate port based on the destination MAC address

 if (ethernet.dst_mac == 0x001122334455) {

 forward(1);

 } else if (ethernet.dst_mac == 0xaabbccddeeff) {

 forward(2);

 } else {

 forward(3); // Default port for unknown destinations

 }

 }

 // Apply the forwarding action

 table forwarding {

 key = {

 ethernet.dst_mac: exact;

 }

 actions = {

 forward;

 }

 size = 1024; // Adjust the table size as needed

 }

 apply {

 forwarding.apply();

 }

}

// Define the egress control

control egress {

 //Add egress processing logic here if needed

}

(b) A Sample P4 code

Fig. 3.2 Sample code of OvS and P4

3.3.1 Network Topologies

Fig.3.3 illustrates the three topologies that we employed. Topology I is a multi-path topology
that extends the spine-leaf [164] topology used by data centres.Multi-path topology was
employed to test the effectiveness of SDN+OvS and SDN+P4 to a popular topology employed
to simulate a data centre network. Gradual increment of nodes from [165] and ease of
programming also contributed towards the rationality for the multi-path topology. Topology
II was employed to emulate an environment with a simple-grid topology and a similar
topology has been presented in [41, 166, 167]. Further extension of the multi-path topology
with more nodes to the network and the popularity of similar topologies being employed
for SDN research were the rationale towards employing the simple grid topology. Topology
III emulates the transit-stub network model also known as the Internet topology initially

3.3 Experimental Design 45

Experiments
RQ1: Evaluation of Control Plane and Data Plane
1. Emulation of Control Plane and Data Plane Programmability
2. Emulation of Different Topologies
3. Emulation of Various Network Traffic Types
4. Analysis of Key Performance Indicators

Table 3.1 Experiments conducted in this Chapter

H5H1

H7

H1

H7

H2

H3 H4

H6

H8

H5H1

H7

H2

H3 H4

H6

H8
(I) Multi-path Topology (II) Simple Grid Topology

H1 H2

H3 H4 H7

H5 H6

H8

H1 H2

H3 H4 H7

H5 H6

H8

(III) Internet topology following the Transit-Stub network model

H31

H1
H2H3

H4
H5H6

H7H8

H9H10
H11 H12

H14H13

H15H16 H17 H18 H19 H20

H36

H26

H21H23 H22H24H25

H27 H28 H29H30

H32 H33 H34

H35

Fig. 3.3 Topologies employed for this research,
(I) multi-path topology (II) grid topology and a

(III) Transit stub network model. (H denotes Host)

46 A Performance Evaluation for Software Defined Networks with P4

presented in [34] and in subsequent works [33, 168–174]. Extensive research conducted
towards an SDN based internet, and the popularity of similar topologies being employed for
such research were the rationale towards employing the simple grid topology.

Traffic
Topology I and
Topology II

Topology III

Client → Server Client → Server

ICMP H1 → H5, H2 → H6, H3 → H7, H4 → H8
H1 → H21, H5 → H22, H9 → H23,
H13 → H24, H17 → H25

TCP H1 → H5, H2 → H6, H3 → H7, H4 → H8
H2 → H26, H6 → H27, H10 → H28,
H14 → H29, H18 → H30

UDP H1 → H5, H2 → H6, H3 → H7, H4 → H8
H3 → H31, H7 → H32, H11 → H33,
H15 → H34, H19 → H35

CDN H1 → H8, H2 → H8, H3 → H8, H4 → H8
H4 → H36, H8 → H36, H12 → H36,
H16 → H36, H20 → H36

Table 3.2 Configuration of traffic. Hosts are shown in Fig.3.3.

3.3.2 Traffic Design

In order to mimic the Internet as closely as possible, traffic types such as Internet Control
Message Protocol (ICMP), Transmission Control Protocol (TCP) [175], User Datagram
Protocol (UDP) [176] and Content Delivery Network (CDN) were chosen. The traffic types
were selected based on research presented in [177], where the results focused on popular
downloaded traffic. ICMP traffic is widely used as a measurement tool for troubleshooting,
control and error messaging services. TCP can be considered as one of the main protocols of
the IP suite. TCP is considered as one of the most trustworthy and reliable protocols utilised
by applications on the internet. UDP is widely used to send messages with a minimum
protocol mechanism. Based on the research presented in [178] and the popularity of UDP
applications, UDP traffic was included. Finally with the popularity and demand of the CDN
as highlighted in [18, 179] a case study emulating the same has been included. The above
distinct traffic types were examined both on an individual basis and mixed basis to test and
evaluate the performance of the network for both SDN+OvS and SDN+P4.

The involved experiments were conducted in two stages: Tier 1, in which only one type
of traffic at a time was run over the network, ICMP, TCP, UDP or CDN, each forming a
single case study and Tier 2, in which all four types of traffic were run simultaneously over
topologies II and III.

3.3 Experimental Design 47

3.3.3 Tier-I - Single Type of Traffic Run

Table 3.2 shows the configuration of simple types of traffic run in this Tier.

Case Study 1 - ICMP
A custom Python script was utilised to send ICMP traffic between the designated hosts

simultaneously to emulate an unpredictable traffic load in the network. ICMP traffic was
generated using the ping command. A total of 1000 ICMP sequenced packets were saved for
calculations for the topologies I and II whilst 2000 sequenced packets for topology III with a
packet size of 1500 bytes and a data rate of 12 Kbps. Data was saved for both SDN+OvS
and SDN+P4 in each of the three topologies.The default ping command encompasses the
aforementioned packet size and the data rate. Hence the rationality in choosing these
configurations. The number of ICMP packets transferred for topologies I and II was chosen
for ease of calculation. Due to the size of the network, the number of ICMP packets saved
was doubled for topology III.

Case Study 2 - TCP Traffic
In order to establish a connection with the server and the client and to transmit data

between the client and the server, iPerf[180] v2.0 was used. iPerf’s capabilities and functions
were thoroughly examined and presented in [177]. Given the stability of v2.0 over v3.0
in iPerf, the former was selected for the experiments. For topologies, I and II, data with
a file size limitation of 1GB encapsulated, as TCP was chosen. For topology III, a data
burst for 1200s was chosen to identify which network abstraction was able to process the
largest amount of data. For ease of emulation and calculation, a download with the file size
of 1GB was chosen for Topologies I and II. The 1GB file size served as an example to a
scenario where a user intends to download a file of a fixed size from an File Transfer Protocol
(FTP) server. For a scenario where the user is engaged in a TCP transmission with a time
constraint (i.e., Secure Shell (SSH) or Telnet), a time limitation of 1200s was employed
for the topology III. This was also applied with respect to the size of the network and for
extending the download time and the amount of data.

Case Study 3 - UDP Traffic
For this case study, iPerf was utilised to stream UDP traffic. Similar to case study 2, the

use of 1GB traffic for topologies I and II with a data burst of 1200s for topology III. The
iPerf traffic was initiated with a bound of 12MBps between the client and the server for
both UDP due to resource limitations in the system platform. Similar to the TCP case study,
a download with the file size of 1GB was chosen for Topologies I and II. This case study
setting was designed with the intent of emulating a user downloading multimedia content,
which will be bound by a file size. For topology III, a UDP download was conducted for

48 A Performance Evaluation for Software Defined Networks with P4

1200s in the aim of emulating a user engaged in online gaming or video conference. Time
constraint of 1200s was also applied with respect to the size of the network and for extending
the download time and the amount of data. Measurements such as throughput, delay jitter
and transmission completion time were collected for both SDN+OvS and SDN+P4 for each
of the three topologies.

Case Study 4 - Content Delivery Network
An emulation was designed to explore video traffic with live stream, using VLC-player

[181] to send videos with the quality of 1080p and H.264 compression due to the demand and
the popularity of high-quality video streaming. For topology, I and II, a video of 600s long
was chosen and for topology III a video of similar quality was chosen with 1200s. The length
of the two video files (600s and 1200s) was used for the ease of emulation and calculation
purposes. As the topology III was larger in size as opposed to Topologies I and II, a larger
video file was employed. Topology III emulated a higher number of hosts and switches
involved. In order to establish an emulation reinforcing a live video stream, a Python script
was utilised that determined transfers between multiple clients with a server.

3.3.4 Tier-II - Multiple Types of Traffic Running Simultaneously

Networks will carry different types of traffic executing simultaneously. Tier II involves two
case studies. The first look at, Simultaneous Traffic in Topology II and the second looks
at Simultaneous Traffic in Topology III. Simultaneous Traffic refers to the initiation of all
traffic shown in Table 3.2.

Case Study 5 - Simultaneous Traffic in Topology II
A custom Python script was utilised all traffic in Table 3.2 at the same time in an attempt

to saturate links with applications being launched at the same time. Client and server
configurations remain the same for this case study, as they were for individual case studies
to ease of evaluation since the variance in performance can be easily observed between the
individual execution and simultaneous execution. The distinction of traffic types and their
usage remains the same with the addition of VoIP traffic. VoIP traffic was not presented
individually since the results between SDN+OvS and SDN+P4 had less significance due to a
smaller volume of traffic involved in the communication.

Case Study 6 - Simultaneous Traffic in Topology III
This case study launch all traffic simultaneously according to Table 3.2 in the Internet

topology (Topology III). This approach aids in closely mimicking the Internet in which
multiple clients and servers are sending and receiving traffic in the network. Since the
network is under stress due to the amount of traffic and applications, the collected data

3.3 Experimental Design 49

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t

(b
ps

)

ICMP Sequenced Packets

ICMP Transfer in SDN+OvS
ICMP Transfer in SDN+P4

(a) ICMP transfer of 1000 packets in simple multi-path topology

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t

(b
ps

)

ICMP Sequenced Packets

ICMP Transfer in SDN+OvS
ICMP Transfer in SDN+P4

(b) ICMP transfer of 1000 packets in simple grid topology

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t

(b
ps

)

ICMP Sequenced Packets

ICMP Transfer in SDN+OvS
ICMP Transfer in SDN+P4

(c) ICMP transfer of 2000 packets in transit-stub network model

Fig. 3.4 Throughput of ICMP transfer in case study 1

50 A Performance Evaluation for Software Defined Networks with P4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 11 12 13 14 15 16 17 18 19 20

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

ICMP Transfer in SDN+OvS
ICMP Transfer in SDN+P4

(a) ICMP throughput at 10-20s in topology I

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 285 286 287 288 289 290 291 292 293 294 295

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

ICMP Transfer in SDN+OvS
ICMP Transfer in SDN+P4

(b) ICMP throughput at 285-295s in topology
I

Wireshark capture between 11 – 12 s

Environment with SDN + OvS

(c) Wireshark capture of ARP and LLDP
messages at 11-12s in topology I

 `

Wireshark capture between 291 – 293 s

Environment with SDN + OvS

(d) Wireshark capture of ARP and LLDP
messages at 291-293s in topology I

Fig. 3.5 ICMP data capture at 10-20s and 285-295s in topology I

provides valuable results. Delay, delay jitter, packet loss, bps and throughput are amongst
the key statistics recorded at client-side.

3.4 Results and Analysis of Tier-I Single Type of Traffic
Run

This section will present and analyse the results of the experiments for Tier-I, a single type
of traffic run. Data of both SDN+OvS and SDN+P4 will be presented under each case study
followed by their analysis.

3.4.1 Case Study 1 - ICMP

The ICMP traffic for the configuration given in Table 3.2 commenced at the same time. At
the client end, Wireshark collected 1000 ICMP packets. Following the completion of the
transfer, the average throughput for each connection was recorded.

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 51

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Th
ro

ug
hp

ut
(b

ps
)

Time(s)

TCP Transmission in SDN + OvS
TCP Transmission in SDN + P4

(a) TCP transfer of 1GB data using iPerf in topology I

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Th
ro

ug
hp

ut
(b

ps
)

Time(s)

TCP Transmission in SDN + OvS
TCP Transmission in SDN + P4

(b) TCP transfer of 1GB data using iPerf in topology II

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

TCP Transmission in SDN + OvS
TCP Transmission in SDN + P4

(c) TCP transfer for 1200s using iPerf in topology III

Fig. 3.6 Throughput of TCP data transfer in case study 2

52 A Performance Evaluation for Software Defined Networks with P4

Fig.3.4 compares the ICMP throughput for SDN+OvS networking and SDN+P4
networking, over the three topologies in Fig.3.1. For topology I (multi-path) and topology
II (grid), the SDN+P4 networking has maintained a steady stream of ICMP traffic with a
constant throughput of approximately 6200bps until the transmission terminates (see the red
line in Figs.3.4a and 3.4b). The SDN+OvS emulation recorded recurring drops in throughput
from approximately 6200bps to 4800bps (see the blue lines in Figs.3.4a and 3.4b). The same
pattern in Fig.3.4c, the transit-stub network model, with values of approximately 7800bps
for SDN+P4 and recurring drops in throughout to approximately 6200bps for SDN+OvS.
However, in Fig.3.4c, the throughput have registered an aperiodic drop for SDN+OvS as
depicted by blue lines. This can be due to one of the two following factors, processing
requirements or congestion. When faced with processing requirements or congestion, SDN
networks tend to face performance degradation and cause packet loss. The same has also
been observed by [42].

We investigated the throughput drop in SDN+OvS experiments. Fig.3.5 shows the
throughput drops at 12s and 292s (Figs.3.5 (a) and 3.5(b)) and the Wireshark captures
Figs.3.5 (c) and 3.5 (d)) at those time for topology I. Out of the two controller states,
reactive and proactive, the reactive state was chosen to avoid miss-configurations during the
installation of FlowRules using the Reactive Forwarding application in the ONOS controller.
Given that the controller was in a reactive state, PACKET_IN and PACKET_OUT control
messages played a crucial role in maintaining ARP/IP address mapping information [182].
The drop in throughput for SDN+OvS resulted from the ARP and LLDP packets (observed
in Fig.3.5c and Fig.3.5d) being routed towards the slow path of the OvS, detouring from
the caching layer. A detour occurs when the OvS sends a PACKET_IN message to the
SDN controller to resolve the headers. Until a response arrives as a form of PACKET_OUT
from the SDN controller, the packet will remain in the switch buffer. Deviating from the
caching layer or fast path can create an overhead [183] in the network which leads to a
deterioration in performance. Research in [23, 184, 185] established that ARP messages can
create a bottleneck in the network due to high volume and frequency [186–188]. Therefore
deviating from a fast path in the OvS architecture creates a substantial overhead in the
network. Processing requirements from the CPU towards the ARP/LLDP packets can also
affect the processing of application centric packets ultimately resulting in a poor quality
of service. Since each emulated host represents a networked host with the OS as Ubuntu
18.04, the default ARP update time is 60s. Hence a periodic ARP update will be generated
automatically. The results in Fig 3.4 and 3.5 demonstrate how the network performance has
been affected in the SDN+OvS architecture through periodic ARP updates.

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 53

In the SDN+P4 experiments, the P4 switch processed headers in parallel, thus the LLDP
and ARP packets did not interfere with ICMP packets in the pipeline. Hence the SDN+P4
environment did not experience a throughput drop (red line in Fig.3.4). Due to parallel
processing for headers and packets, the bmv2 switch was able to process packets faster,
reducing delay in the core network. Given the periodic nature of the ARP packets (60s by
default), the exponential growth associated with a higher number of connected devices and
ARP storms caused by network outages a bottleneck may if the packets are not processed
faster. Hence utilising SDN+P4 will aid in achieving some stringent requirements for future
applications given its ability to process packets faster for both application centric and network
centric traffic.

3.4.2 Case Study 2 - TCP

TCP traffic was generated via a file download of 1GB using iPerf for topologies I and II. For
topology III a transmission of TCP for 1200s was employed. See Fig. 3.1 and Table 3.2 for
respective topologies and traffic configuration. The results for the experiments are shown in
Fig.3.6 with a summary of the results given in Table 3.3.

In SDN+P4 (red line) TCP has achieved a higher and more constant throughput in
comparison to SDN+OvS (blue line). In Figs.3.6a and 3.6b, the fixed sized TCP download
completed earlier for SDN+P4 in approximately 750s as opposed to approximately 820s for
SDN+OvS. In Fig.3.6b, blue line experienced fluctuations of throughput. TCP traffic, by
design, requires acknowledgments. As the data packets and the acknowledgments traverse in
the same route (as observed by accessing the ONOS GUI), the throughput fluctuated due to
saturation of links. It is also noteworthy that for both SDN+P4 and SDN+OvS, TCP traffic
traversed in the same route for topology II. However, the SDN+P4 didn’t record a fluctuation
of throughput due to faster processing capability. For topology I, (Fig.3.6a) a fluctuation
of throughput was not recorded in the SDN+OvS due to the small size of the network and
fewer nodes with processing requirements. For topology III,(Fig.3.6c) similar results were
observed as per topology I. This is because the links in Topology III were not saturated with
network traffic.

Fig.3.6c presents the transmission of TCP traffic in topology III. In contrast to from a
fixed download size (Figs.3.6a and 3.6b), the TCP traffic file downloading from iPerf was run
with a time constraint of 1200s. Again SDN+P4 (red) achieves a higher throughput than that
achieved with SDN+OvS (blue), demonstrating that P4 switches process packet forwarding
in SDN+P4 faster than OvS switches in SDN+OvS.

Table 3.3 summarises the performance metrics in terms of throughput, packet loss, Syn
packet delay, delay, amount of data transmitted and transmission time for this group of

54 A Performance Evaluation for Software Defined Networks with P4

(a) Network performance of TCP transfer in simple multi-path
topology (topology I)

Topology I - Single Type of Traffic (TCP)
SDN+OvS SDN+P4 Improvement

Throughput 1.09*107bps 1.19*107bps 9.17%
Packet Loss 4% 0.75% -81.25%
Delay 0.0041s 0.0035s -14.6%
Syn Delay 0.43 ms 0.096 ms -77.6%
Data
transmitted

1GB 1GB N/A

Total
transmission
time

822.8s 752.1s -8.5%

(b) Network performance of TCP transfer in simple-grid topology
(topology II)

Topology II - Single Type of Traffic (TCP)
SDN+OvS SDN+P4 Improvement

Throughput 1.05*107bps 1.175*107bps 11.9%
Packet Loss 5.9% 3.9% -33.8%
Delay 0.06s 0.03s -50%
Syn Delay 0.94ms 0.05 ms -94.68%
Data
transmitted

1GB 1GB N/A

Total
transmission
time

820.2s 746.1s -9.034%

(c) Network performance of TCP transfer in the Internet topology
(topology III)

Topology III - Single Type of Traffic (TCP)
SDN+OvS SDN+P4 Improvement

Throughput 1.04*107bps 1.169*107bps 12.4%
Packet Loss 1.8% 3.7% -51.35%
Delay 2.87s 0.94s -67.24%
Syn Delay 3.89ms 1.4 ms -64.01%
Data
transmitted

1.0796GB 1.2106GB 12.13%

Total
transmission
time

1200s 1200s N/A

Table 3.3 Network performance for case study 2 - TCP traffic

experiments, averaged over the connections for each respective topology in Table 3.2. In

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 55

all counts, SDN+P4 has shown significant improvement over SDN+OvS. Throughput has
shown improvement in topology I, II and III by 9%, 11% and 12% respectively. Syn delay
has also been reduced with SDN+P4, by 77%, 94% and 64% respectively, for the three
topologies. The TCP Syn Delay [189] has been calculated by determining which switch
architecture can complete the TCP handshake more efficiently and effectively to establish
a TCP connection. Given the nature of the TCP traffic, SYN packets play a crucial rule
in establishing a TCP connection. As shown in Table 3.3, SDN+P4 has spent the least
amount of time in synchronising the stateful connection between the respective client and
server. Having achieved a higher throughput for all cases in SDN+P4, total transmission
time has been reduced by 8% and 9% respectively, for topologies I and II respectively with a
12% increase on the total data transmitted for topology III. The application of SDN+P4 has
improved the performance of the network significantly.

3.4.3 Case Study 3 - UDP

In case study 3, UDP traffic was generated via file downloads using iPerf. Clients downloaded
a file of 1GB from respective servers for topologies I and II with a transmission of UDP for
1200s for topology III. The results of the experiments are presented in Fig.3.7 together with
a summary of the results given in Table 3.4.

For all three experiments, Figs.3.7a, 3.7b and 3.7c show that SDN+P4 achieved a higher
and constant throughput in comparison to SDN+OvS. The initial delay in SDN+OvS was
longer than for SDN+P4, because the route discovery delay is significant in SDN+OvS but
lesser with SDN+P4. With successful population of FlowRules, consuming a greater time
for route discovery bottlenecks can result for real-time applications that involve a demanding
service such as, for example Vehicle-to-Everything (V2X).

In Fig.3.7a, the fixed size UDP download completed earlier for SDN+P4 in approximately
510s (Fig.3.7a), than for SDN+OvS which took approximately 640s, (Fig.3.7b). In both
SDN+P4 and SDN+OvS, traffic traversed the same route for topologies I and II. In contrast
to Fig.3.7a and 3.7b, the UDP traffic file download in iPerf ran for a fixed 1200s. As shown
in Fig.3.7c, SDN+P4 (red) achieved a higher throughput than SDN+OvS (blue). In all
cases the P4 switches, process packet forwarding in SDN+P4 faster than non-P4 switches in
SDN+OvS.

For case study 3, Figs.3.8a, 3.8b and 3.8c present jitter for UDP packets. As observable
by the Figs.3.8a, 3.8b, jitter in SDN+OvS (blue lines) have recorded a lower jitter than that of
collated in SDN+P4. Albeit being recorded for a fraction of a few seconds in a quasi-periodic
trend, an argument can be presented that these should not contribute towards an application
that requires stringent jitter constraints. The primary reason for this quasi-periodic pattern

56 A Performance Evaluation for Software Defined Networks with P4

of higher jitter is the higher throughput that was recorded by SDN+P4. This has been
corroborated by the authors at [20]. In Table 3.4a, SDN+OvS recorded an average jitter of
0.298ms while SDN+P4 produced an average of 0.231 ms using the equation (1).

1
M

M

∑
f=1

N f

∑
i=1

J f i/N f (3.1)

Here M represents the number of flows in the network, Nf denotes the number of packets
in flow f and J f i represents the jitter in packet i of flow f. With the application of equation (1)
and the analysis of jitter, SDN+P4 recorded a reduction in jitter of 22% in comparison to
SDN+OvS.

Table 3.4 summarises the performance metrics in terms of throughput, packet loss, delay,
amount of data transmitted and transmission time for this group of experiments, averaged
over the respective connections given in Table 3.2. In all cases, SDN+P4 has demonstrated
a significant improvement in network related statistics in comparison to SDN+OvS. For
example, the grid topology has demonstrated a 13% improvement of throughput in SDN+P4
in comparison to SDN+OvS. SDN+P4 has reduced the packet loss from 22% to 9% a
reduction of 59%. Recorded delay for UDP traffic has reduced from 1.95s for SDN+OvS to
0.32s for SDN+P4, an increment of 83%. Lastly, the total transmission time has reduced
by 14% due to the faster download speed achieved by SDN+P4 over that achieved with
SDN+OvS. Although the above results for each case study were conducted on software
switches, the experiments can be conducted on hardware switches to further support our
hypothesis with improved results [29].

3.4.4 Case Study 4- Content Delivery Network

In this case study we used VLC-player for our experiments. Ability to program the video
streaming via a Python script, lightweight deployment and the ability to collect data for video
traffic were the rationale for the selection of VLC-player. Fig.3.9 presents the captured data
of a video stream for topologies I,II and III.

Figs.3.9a, 3.9b and 3.9c show that for each of the three topologies, the video for SDN+P4
had a higher throughput than with SDN+OvS. Table 3.5 shows further that, throughput has
improved by 60% in the multi-path topology, 77% in the grid topology and 60% in the
Internet topology for SDN+P4 in comparison to SDN+OvS. The high throughput achieved
with SDN+P4 topologies, resulted in a higher amount of data being transferred between
hosts. As shown in Table 3.5, the amount of data transmitted improved by 46% in the
multi-path topology, 50% in the grid topology and 43% in the Internet topology for SDN+P4

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 57

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

UDP Transfer in SDN+OvS
UDP Transfer in SDN+P4

(a) UDP transfer of 1GB data using iPerf in topology I

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

UDP Transfer in SDN+OvS
UDP Transfer in SDN+P4

(b) UDP transfer of 1GB data using iPerf in topology II

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

UDP Transfer in SDN+OvS
UDP Transfer in SDN+P4

(c) UDP transfer for 1200s using iPerf in topology III

Fig. 3.7 Throughput of UDP data transfer in case study 3

58 A Performance Evaluation for Software Defined Networks with P4

(a) Network performance of UDP transfer in simple multi-path
topology (topology I)

Topology I - Single Type of Traffic (UDP)
SDN+OvS SDN+P4 Improvement

Throughput 1.06*107bps 1.2*107bps 13%
Packet Loss 22% 9% (-59%)
Delay 1.9519s 0.3221s (-83%)
Jitter 0.298 ms 0.231 ms (-22%)
Data
transmitted

1GB 1GB N/A

Total
transmission
time

640s 514s (-14%)

(b) Network performance of UDP transfer in simple-grid
topology (topology II)

Topology II - Single Type of Traffic (UDP)
SDN+OvS SDN+P4 Improvement

Throughput 1.04*107bps 1.2*107bps 15%
Packet Loss 37% 7% (-81%)
Delay 1.9344s 0.3744s (-80%)
Jitter 0.371 ms 0.204 ms (-45%)
Data
transmitted

1GB 1GB N/A

Total
transmission
time

670s 524s (-17%)

(c) Network performance of UDP transfer in the Internet
topology (topology III)

Topology III - Single Type of Traffic (UDP)
SDN+OvS SDN+P4 Improvement

Throughput 0.98*107bps 1.2*107bps 22%
Packet Loss 39% 8% (-79%)
Delay 1.9905s 1.0432s (-60%)
Jitter 0.301 ms 0.2007 ms (-33.3%)
Data
transmitted

1.4723GB 1.6178GB 10%

Total
transmission
time

1200s 1200s N/A

Table 3.4 Network performance for case study 3 - UDP traffic

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

Jit
te

r
(m

s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(a) Jitter experienced for UDP Transmission in Topology I

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

Jit
te

r
(m

s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(b) Jitter experienced for UDP Transmission in Topology II

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Jit
te

r
(m

s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(c) Jitter experienced for UDP Transmission in Topology III

Fig. 3.8 Jitter of UDP data transmission in case study 3

60 A Performance Evaluation for Software Defined Networks with P4

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 1.8×107

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

CDN Transfer in SDN+OvS
CDN Transfer in SDN+P4

(a) Live video stream in topology I for 600s

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

CDN Transfer in SDN+OvS
CDN Transfer in SDN+P4

(b) Live video stream in topology II for 600sI

 0

 5×106

 1×107

 1.5×107

 2×107

 2.5×107

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

CDN Transfer in SDN+OvS
CDN Transfer in SDN+P4

(c) Live video stream in topology III for 1200s

Fig. 3.9 Throughput of video content transfer in case study 4

3.4 Results and Analysis of Tier-I Single Type of Traffic Run 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400 450 500 550 600

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(a) Jitter experienced in CDN Transmission in Topology I

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400 450 500 550 600

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(b) Jitter experienced in CDN Transmission in Topology II

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(c) Jitter experienced in CDN Transmission in Topology III

Fig. 3.10 Jitter of CDN data transmission in case study 4

62 A Performance Evaluation for Software Defined Networks with P4

(a) Network performance of CDN transfer in simple multi-path
topology (topology(I))

Topology I - Single Type of Traffic
(CDN)

SDN+OvS SDN+P4 Improvement
Throughput 1.0*106bps 1.6*106bps 60%
Data
transmitted

667.63MB 973.61MB 46%

Buffering delay 8.672s 2.7s (-69%)
Jitter 0.255ms 0.164ms (-35.6%)

(b) Network performance of CDN transfer in simple-grid
topology (topology(II))

Topology II - Single Type of Traffic
(CDN)

SDN+OvS SDN+P4 Improvement
Throughput 0.9*106bps 1.6*106bps 77%
Data
transmitted

647.63MB 973.61MB 50%

Buffering delay 16.9s 2.7s (-84%)
Jitter 0.351ms 0.207ms (-41%)

(c) Network performance of CDN transfer in the Internet topology
(topology(III))

Topology III - Single Type of Traffic
(CDN)

SDN+OvS SDN+P4 Improvement
Throughput 1.0*106bps 1.6*106bps 60%
Data
transmitted

1609.17MB 2308.88MB 43%

Buffering delay 12.94s 2.17s (-83%)
Jitter 0.342ms 0.261ms (-41%)

Table 3.5 Network performance for case study 4 - CDN traffic

in comparison to SDN+OvS. A notable delay of initiating the video stream can be observed
at Figs.3.9a, 3.9b and 3.9c for SDN+OvS (blue line). This again is due to the delay caused
in route discovery, resulting in the delayed start of the video terminating later in SDN+OvS.
This can be seen by observing the averaged buffering delay illustrated in Table 3.5. Buffering
delay in SDN+P4 has been reduced by 69%, 84% and 83% for topologies I, II and III
respectively in comparison to SDN+OvS. Figs.3.10a, 3.10b and 3.10c represent the observed
jitter during the CDN transmission. The equation at (1) was used once more to calculate the
averaged values for jitter. As shown in Table 3.5, jitter in SDN+P4 has been reduced by 35%,
41% and 23% respectively in comparison to SDN+OvS for topologies I, II and III. In our

3.5 Results and Analysis of Tier-II - Multiple Types of Traffic Running Simultaneously 63

experiments, topologies I and II streamed a video for 600s whilst topology III streamed a
video for 1200s. Although the streaming times are different, the performance gain remained
constant across topologies I, II and III.

3.5 Results and Analysis of Tier-II - Multiple Types of
Traffic Running Simultaneously

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
hr

ou
gh

pu
t

(b
ps

)

Time(s)

ICMP transmission
VoIP transmission
TCP transmission
UDP transmission
CDN transmission

(a) Throughput for mixed traffic in the simple-
grid topology - SDN+OvS

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 1.8×107

 2×107

 0 100 200 300 400 500 600 700 800 900 1000 1100

T
hr

ou
gh

pu
t

(b
ps

)

T ime(s)

ICMP tranmission
VoIP tranmission
TCP tranmission
UDP tranmission
CDN tranmission

(b) Throughput for mixed traffic in the simple-
grid topology - SDN+P4

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800 900 1000

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(c) Jitter in UDP Transmission for mixed
traffic in the simple-grid topology

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500 550 600

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(d) Jitter in CDN Transmission for mixed
traffic in the simple-grid topology

Fig. 3.11 Data for mixed traffic over the grid topology (topology II) - case study 5

Having investigated the performance of single types of traffic running over different
network topologies for SDN+OvS and SDN+P4, we now study the performance of mixed
types of traffic running simultaneously over topologies II and III.

3.5.1 Case Study 5 - Mixed Type of Traffic over Topology II

Five types of traffic from Table 3.2, ICMP, VoIP, TCP, UDP and CDN, were run
simultaneously. The performance of each type of traffic is presented in Table 3.6. Table 3.6a
(ICMP traffic) reports an improvement of 6.7% in throughput for SDN+P4 in comparison

64 A Performance Evaluation for Software Defined Networks with P4

(a) Performance of ICMP traffic in case study 5

Topology II - Mixed Traffic
(ICMP)

SDN+OvS SDN + P4 Improvements
Throughput 5.85*103 bps 6.3*103 bps 6.7%

(b) Performance of TCP traffic in case study 5

Topology II - Mixed Traffic (TCP)
SDN + OvS SDN + P4 Improvement

Throughput 1.05*107bps 1.18*107bps 12%
Packet Loss 7.9% 5% (-36%)
Delay 3.1 s 2.9s (-6%)
Syn Delay 2.6 ms 0.6 ms (-77%)
Data
transmitted

1 GB 1 GB N/A

Total
transmission
time

982.1 s 807 s (-18%)

(c) Performance of UDP traffic in case study 5

Topology II - Mixed Traffic (UDP)
SDN+OvS SDN+P4 Improvement

Throughput 7*106bps 1*107bps 43%
Packet Loss 38% 10% (-73%)
Delay 1.9157s 0.4064s (-78%)
Jitter 0.480 ms 0.247 ms (-48%)
Total
transmission
time

1020s 800s (-21%)

(d) Performance of CDN traffic in case study 5

Topology II - Mixed Traffic (CDN)
SDN+OvS SDN+P4 Improvement

Throughput 3.8*105bps 4*105bps 5%
Data
transmitted

588.41 MB 817.54 MB 38%

Buffering delay 3.11s 1.91s (-38%)
Jitter 0.351ms 0.33ms (-5%)

Table 3.6 Network Performance of for case study 5

to the throughput achieved by SDN+OvS. Table 3.6b (TCP traffic) records an improvement
of 12% in throughput from 1.05*107bps for SDN+OvS to 1.18*107 bps for SDN+P4.
These are represented in Fig.3.11a and Fig.3.11b by the blue line. Packet loss, packet

3.5 Results and Analysis of Tier-II - Multiple Types of Traffic Running Simultaneously 65

delay, synchronisation delay and total transmission time achieved significant reductions for
SDN+P4over SDN+OvS of, 36%, 6%, 77% and 18% respectively.

Table 3.6c (UDP traffic) reports an increase in UDP throughput of 43% (from 7*106bps
in SDN+OvS to 1.0*107bps in SDN+P4) as illustrated in Figs.3.11a and 3.11b by the red
line. It was also observed that SDN+P4 completed the download of 1GB of UDP traffic in
800s in contrast to SDN+OvS which took 1020 seconds. Packet loss, delay and jitter were
each observed to have reduced values for SDN+P4 in comparison to those obtained using
SDN + OvS, these being 73%, 78% and 48% respectively. The reduction in jitter for UDP
packets is shown in Fig.3.11c.

Table 3.6d (CDN traffic) records an increase of 5% in throughput from 3.8*105bps for
SDN+OvS to 4*105bps for SDN+P4. This is illustrated by the green line in Figs.3.11a
and 3.11b. Higher throughput resulted in SDN+P4 transferring more data (817.54MB)
in comparison to SDN+OvS (588.41MB), an improvement of 38% for the same video
file. Buffer delay and jitter in SDN+P4 resulted in significant reductions of 38% and 5%
respectively, in contrast to SDN+OvS. The reduction in jitter is shown in Fig.3.11d.

The difference in throughput has an effect on the quality of the video. Fig.3.13a shows
a comparison for the 34th frame captured during the experiments for both SDN+OvS and
SDN+P4. The same frame was sent from the server side, with the client side in SDN+OvS
displaying a distorted frame in comparison to that received by the client with SDN+P4.

3.5.2 Case Study 6 - Simultaneous Run over Topology III

Table 3.7 presents the data collected during this case study. Table 3.7a, the throughput of
ICMP has seen an improvement of 6.7% in SDN+P4 in comparison to SDN+OvS.

Table 3.7b (TCP traffic) records an increase in TCP throughput of 19% from 0.99*107bps
in SDN+OvS to 1.18*107bps in SDN+P4. They are illustrated by the blue lines in Figs.3.12a
and 3.12b. Packet loss, packet delay and synchronisation delay in SDN+P4 reflects significant
reductions in comparison to that achieved using SDN+OvS of 75%, 65% and 45% respectively.
The data transmitted achieved a 23% improvement from 0.82GB for SDN+OvS to 1.01GB
with SDN+P4.

Table 3.7c (UDP traffic) records an increase in UDP throughput of 33% from 9*106bps in
SDN+OvS to 1.2*107bps in SDN+P4. They are illustrated by the red lines in Figs.3.12a and
3.12b. Packet loss, delay and jitter in SDN+P4 reflects significant reductions in comparison
to that achieved using SDN+OvS of 69%, 58% and 31% respectively. A reduction in jitter for
UDP packets is shown in Fig.3.12c. The higher speed, reduced delay, jitter and packet loss
in SDN+P4 result in an increase in data transmission (1.602GB) for SDN+P4 in comparison
to (1.456GB) for SDN+OvS.

66 A Performance Evaluation for Software Defined Networks with P4

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
hr

ou
gh

pu
t

(b
ps

)

T ime(s)

ICMP transmission
VoIP transmission
TCP transmission
UDP transmission
CDN transmission

(a) Mixed traffic in the Internet topology
SDN+OvS

 0

 2×106

 4×106

 6×106

 8×106

 1×107

 1.2×107

 1.4×107

 1.6×107

 1.8×107

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
hr

ou
gh

pu
t

(b
ps

)

T ime(s)

ICMP transmission
VoIP transmission
TCP transmission
UDP transmission
CDN transmission

(b) Mixed traffic in the Internet topology
SDN+P4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(c) Jitter experienced in UDP Transmission
while simultaneous applications occupy the
network space in Topology III

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Jit
te

r(
s)

T ime(s)

Jitter in SDN+OvS Environment
Jitter in SDN+P4 Environment

(d) Jitter experienced in CDN Transmission
while simultaneous applications occupy the
network space in Topology III

Fig. 3.12 Data of mixed traffic over the Internet topology (topology III) - case study 6

Table 3.7d (CDN traffic) shows an increase in throughput of 44% from 0.97*106bps in
SDN+OvS to 1.4*106bps in SDN+P4. This is illustrated by the green line in Figs.3.12a
and 3.12b. Higher throughput resulted in SDN+P4 transferring more data (1451.3MB)
in comparison to SDN+OvS (1183.4MB), an improvement of 23% for the same video
file. Buffer delay and jitter in SDN+P4 resulted in significant reductions of 61% and 21%
respectively, in comparison to SDN+OvS. The reduction in jitter is shown in Fig.3.12d.

The difference in throughput has directly affected the quality of the video. Fig.3.13b
shows a comparison for the 34th frame captured during the experiments for both SDN+OvS
and SDN+P4. The same frame was sent from the server side. At the client side SDN+OvS
displayed the previous frame (33rd) in comparison to that received by the client via SDN+P4
(34th).

3.5 Results and Analysis of Tier-II - Multiple Types of Traffic Running Simultaneously 67

(a) Performance of ICMP traffic in case study 6

Topology III - Mixed Traffic
(ICMP)

SDN+OvS SDN + P4 Improvements
Throughput 5.9*103bps 6.3*103bps 6.7%

(b) Performance of TCP traffic in case study 6

Topology III - Mixed Traffic (TCP)
SDN + OvS SDN + P4 Improvement

Throughput 0.99*107bps 1.18*107bps 19%
Packet Loss 0.4% 0.1 % (-75%)
Delay 3.2s 1.1s (-65%)
Syn Delay 3.84ms 2.1ms (-45%)
Data
transmitted

0.82GB 1.01GB 23%

(c) Performance of UDP traffic in case study 6

Topology III - Mixed Traffic (UDP)
SDN+OvS SDN+P4 Improvement

Throughput 9*106bps 1.2*107bps 33%
Packet Loss 36% 11% (-69%)
Delay 2.516s 1.034s (-58%)
Jitter 0.292ms 0.201ms (-31%)
Data
transmitted

1.456GB 1.602GB 10%

(d) Performance of CDN traffic in case study 6

Topology III - Mixed Traffic (CDN)
SDN+OvS SDN+P4 Improvement

Throughput 0.97*106bps 1.4*106bps 44%
Data
transmitted

1183.4MB 1451.3MB 23%

Buffering delay 20s 7.8s (-61%)
Jitter 0.422ms 0.331ms (-21%)

Table 3.7 Network performance for case study 6

68 A Performance Evaluation for Software Defined Networks with P4

Topology II – Mixed Traffic (CDN)

SDN+OvS SDN+P4

Server Client Server Client

Observing time 90.0s 90.0s 90.0s 90.0s

Sequence No of the
Frame observed

34th 34th 34th 34th

 (a)

Topology III – Mixed Traffic (CDN)

SDN+OvS SDN+P4

Server Client Server Client

Observing time 90.0s 90.0s 90.0s 90.0s

Sequence No of the
Frame observed

34th 33rd 34th 34th

 (b)

Fig. 3.13 Comparison of CDN frames in internet topology for both SDN+OvS and SDN+P4
for case studies 5 and 6.

3.6 Discussion

In the context of this research, we explored the performance of SDN with OvS (SDN+OvS)
and SDN with P4 (SDN+P4). We have seen that SDN+P4 outperforms SDN+OvS for each
of our case studies using different types of traffic and topologies. In this section, we present
a discussion based on our research questions.

We investigated the overhead created due to the slow path utilisation of OvS and the
performance variation in comparison to a P4 target switch. With the evolution of the internet
and the increased number of connected devices, networks will face congestion. With more
and more packets requiring processing using a controller, a network model that utilises a slow
path approach such as OvS will potentially lead to an exponential growth in traffic congestion.
Our results suggest that the network can maintain a gain in performance whilst links are
saturated with traffic for the SDN+P4 environment in comparison to that experienced with
SDN+OvS.

We evaluated the performance of networks when SDN+P4 is employed rather than
SDN+OvS. The evolution of 5G and beyond has led to the need to evaluate methods
for reducing the delay at the core. Initialising programmability in the network has been

3.6 Discussion 69

shown to increase performance at the core. To the best of our knowledge, current literature
does not evaluate the performance of the network when the control plane and data plane
programmability (SDN+P4) is employed in comparison to control plane (SDN+OvS)
programmability. Fig 3.3 (III) illustrates the Internet topology which we employed for
the purpose of this research. Results were collected over the emulation of a core network
(Transit-stub models).

We evaluated the performance of applications where SDN+P4 has been employed in
contrast to SDN+OvS. For a time-sensitive application with minimal latency requirements,
reducing the delay at the core can be essential. For example Vehicle-to-Vehicle (V2V)
and Ultra Reliable Low Latency Communication (URLLC) applications. A solution, that
processes packets in parallel as opposed to sequential processing in OvS, has been considered
in this research and its effect on performance in applications. Our research has established that
with the initialisation of SDN+P4 with parallel processing of packets, various applications
have better performance in comparison to applications run over SDN+OvS. We also evaluated
the quality of applications that occurred due to faster processing achieved with SDN+P4
in comparison to SDN+OvS. The statistics such as increased bps and throughput, reduced
delay jitter, packet loss, delay and buffering time have led to a higher quality of application
at the receiver’s end. Improvement of the quality of the video at the receiver end for a video
streaming application (Fig.3.13) has also been presented to confirm our contributions.

Furthermore, we investigated whether the type of traffic has a bearing on performance
for SDN+P4 in comparison to SDN+OvS. Given that the majority of network traffic will
be accumulated by multimedia applications in the future, a fair switching mechanism
that enhances the performance of such applications will provide a beneficial factor for
service providers. As the majority of the downloaded traffic in a modern context consists
of UDP traffic (multimedia applications) and the demand for such applications is expected
to grow exponentially in the future, the employment of SDN+P4 is a viable solution for
service providers looking to provide an improved service. Protocols such as Google Quick
UDP Internet Connections (GQUIC) in mobile telecommunication will also benefit from
the employment of SDN+P4. The employment of SDN+P4 will also benefit non-media
applications where a connection-less protocol is employed by a service provider. For instance,
communication between a Radio Device and eNB, Multi-access Edge Clouds (MEC) or
between Radio Access Networks (RAN) and Fog nodes [178] can benefit through the use of
SDN+P4. To meet the requirements for faster convergence and faster processing of packets,
SDN+P4 will serve as an inventive solution. A detailed discussion on the testbed and the
rationality for the employment can be found in Chapter 4.

70 A Performance Evaluation for Software Defined Networks with P4

3.7 Chapter Summary

The above Chapter has answered the research questions given at the beginning of this
study. We conclude that the application of SDN+P4 has enabled networks to improve their
performance for different topologies and traffic. The results from our experiments show
an improvement in, for example, delay and packet loss which has reduced significantly for
SDN+P4, whilst throughput has increased for all case studies. SDN+P4 has improved
performance in the networks through the use of parallel processing in P4, which has
complemented the standardised SDN architecture. The results for all case studies indicate
that SDN+P4 is a promising alternative to SDN+OvS providing a resilient approach for
future networking.

Through a combination of SDN and P4 (control plane programmability with data plane
programmability), we have established that it is possible to provide an improved service to
clients with SDN+P4 than with SDN+OvS. Across all case studies, parallel processing in P4
has provided an increase in available queues for processing traffic with the utilisation of a
flexible parser. With the evolution of the internet and with the heterogeneity of applications,
SDN+P4 will, we believe, provide an improved service to all use cases for 5G and beyond.
Based on the results collated from the conducted experiments of this chapter, we implemented
‘data plane programmability’ (P4) into our 5G mobile telecommunication testbed connecting
our RAN network to the Core Network, with the aim of improving performance. The
programmability at the data plane is implemented using a BMv2 switch on Intel 10GbE x520
NIC, employed at the edge of the deployed 5G-MEC mobile telecommunication testbed,
due to the benefits (traffic engineering, in-band telemetry for latency critical services, and
Cyber security) as emphasized by [190]. The details and the configurations of the 5G mobile
telecommunication testbed, will follow in the next chapter, where we aim to answer the
research question: How do we design and build a testbed for 5G mobile telecommunications?

Chapter 4

A Real-Time 5G Mobile
Telecommunication Testbed

This chapter presents the Real-Time testbed that was developed in order to implement a 5G
mobile telecommunication testbed. Service providers have now entered the implementation
phase for 5G mobile telecommunication networks. With this, the concept of Multi-access
Edge Computing (MEC) will play a crucial role when providing services on the go with low
latency, high availability and high bandwidth. However, due to the low processing power of
MEC nodes, adversaries may target the platform for malevolent purposes. In this chapter, we
focus on building a realistic 5G-MEC testbed to run legitimate traffic and network attacks
and to collect 5G datasets for 5G-MEC.

4.1 Introduction

5G mobile telecommunication networks are poised to become the key enabler for Information
Communication Technology (ICT), accommodating a variety of use cases, case studies, and
scenarios that were not covered under predecessor technologies. Use cases such as enhanced
mobile broadband, massive machine-type communication, and ultra-reliable low-latency
communication will function in a diverse yet distinct manner. The integration of Multi-
access Edge Computing (MEC) necessitates a substantial modification at the service-based
architectural level to potentially address the diverse requirements of these use cases. The
importance of securing this architecture has gained the attention of researchers working in
this field, however, their respective research in traffic analysis and intrusion detection for 5G-
MEC does not employ publicly available datasets collected from a mobile telecommunication
5G testbed.

72 A Real-Time 5G Mobile Telecommunication Testbed

Experiments
RQ 2:Implementation of a 5G
Mobile Telecommunication Testbeds
1. Study of the existing simulators and emulators
2. Implement a 5G Mobile Telecommunication Testbed
3. Implement programmability in the 5G Mobile
Telecommunication Testbed
4. Emulate a MEC network
5. Emulate Network traffic between User and
MEC edge node
6. Conduct Malicious Network Attacks
7. Analysis of Key Performance Indicators
8. Creation of Datasets from 5G-MEC network traffic

Table 4.1 Experiments conducted in this Chapter

Also, existing studies, while presenting frameworks for specific use cases, do not
incorporate testbeds for their respective work. The incorporation of testbeds, we believe,
would enhance the depth of understanding regarding the feasibility of these frameworks
and applications. In this chapter, we present a mobile telecommunication testbed capable
of transmitting, capturing, and processing various types of 5G mobile traffic, to further the
study of security based 5G research.

4.1.1 Research Questions

The research under this chapter was conducted in order to address the following sub-research-
questions.

• Which state-of-the-art platforms can be used to develop an appropriate testbed to
generate 5G mobile network traffic?

• What configurations of P4 switches should be implemented on the 5G testbed?

• To what extent is the dataset generated by the developed 5G testbed effective for the
analysis of 5G-MEC security?

Experiments were designed as shown in Table 4.1, in order to present the contributions
of this Chapter.

4.1.2 Contributions

The key contributions from this study:

4.2 A Mobile Telecommunication Testbed 73

• A Testbed was developed employing functions of a 5G mobile telecommunication
network with fully functioning P4-BMv2 switches in the Radio Access Network and
Core Network.

• A dataset was generated from the testbed containing both legitimate and malicious types
of traffic found in 5G networks. This dataset can help in mitigating the False Positive
rate for an Intrusion Detection System, applied to a 5G mobile telecommunication
network.

• The dataset was tested and compared to existing datasets not generated from a 5G
testbed.

4.2 A Mobile Telecommunication Testbed

In order to develop a mobile telecommunication testbed we considered the following state-
of-the-art deployment. Open Mobile Evolved Core (OMEC), Network Simulator 3 (NS3)
5G-LENA project, Omnet++ and Mininet-wifi. The high resource requirements for OMEC,
the simulation nature of NS3 and Omnet++ and the missing LTE functions of Mininet-wifi
made these options inappropriate. A better option we believe, was the OpenAirInterface
(OAI) which we employed throughout this research.

OpenAirInterface [86] and [87] is an open-source development managed by the
OpenAirInterface Software Alliance. It enables researchers to test and evaluate 5G (and
beyond) case studies and scenarios whilst maintaining compliance to the 3GPP standards for
both core networks (CN) and radio access networks (RAN).

Being an open-source project, OpenAirInterface provide the user with options, software,
and configurations to customise the environment to launch a testbed which caters to their case
study. As OpenAirInterface is an open-source project, it can significantly reduce the costs
associated with developing and testing wireless communication solutions. OpenAirInterface
also has an active and engaging community that supports learning and research. This
is advantageous as it will enable researchers to seek community support and guidance.
Finally, OpenAirInterface supports rapid prototyping allowing research to progress with new
applications and technologies.

In this research, OAI was used in emulating CN’s consisting of the mobility management
entity (MME), home subscriber server (HSS), the control and user plane separation serving
gateway (SPGW-C/U and PGW-C). For this research, OAI was installed on a Ubuntu Bionic
distribution with 64GB of RAM running on a Core i7 CPU with 3.4GHz. Hyper-threading1,

1A technology provided by Intel®which allowed more than one thread to run on each core

74 A Real-Time 5G Mobile Telecommunication Testbed

Infected
UE

 BMv2

MME HSS

SPGW-U

SGW-C

PGW-C

COTS UE

Infected
 UE

COTS UE

Attacker Internet

 BMv2

eNBUSRP X310

Software
Defined RAN

MEC Orchestrator

MEC - UDP

Radio Access Network

Core Network

MEC

Fig. 4.1 Testbed used to generate datasets for 5G-MEC security analysis

CPU C-States and Speed-Step2 have been disabled prior initialising the testbed. Our model
of a real mobile telecommunication network is shown in Fig.4.1. Screenshots of the system
while in operation have been depicted in Figs.4.2 and 4.3

4.2.1 User Equipment (UE)
OpenCells Subscriber Identity Modules (SIM) cards [191] were programmed to communicate
with the mobile testbed. To connect legitimate and malicious users, Huawei E3372 Dongles
with programmed SIM cards were used to connect to the mobile test-bed.

4.2.2 Radio Access Network (RAN)
RAN is denoted by the purple area in Fig.4.1. To model the Radio Access Network, the
OAI core was connected to OAI5g [192] using a Software Defined Radio namely USRP

2A technology that allows the clock speed of the processor to be dynamically changed or adjusted by a
software

4.2 A Mobile Telecommunication Testbed 75

P4-BMv2 Switch
between

RAN and Core

Fig. 4.2 P4-BMv2 switch between the RAN and the Core

76 A Real-Time 5G Mobile Telecommunication Testbed

Fig. 4.3 5G Mobile Telecommunication Testbed: CN (Blue) and RAN (Pink)

4.2 A Mobile Telecommunication Testbed 77

Fig. 4.4 OpenCells SIM cards
Fig. 4.5 Programming
OpenCells SIM cards

Fig. 4.6 USRP x310 with two
UBX160 daughter boards

x310, [193]. An Intel 10GbE x520 NIC3 was used to connect the USRP x310 to the eNB PC.
An LTE-Softmodem on band 7 was used in order connect eNB to the USRP x310, which
facilitates access towards the UEs.

• SDR USRP x310: The Universal Software Radio Peripheral (USRP) denotes radio
equipment developed by Ettus Research. The employment of USRP allows the user to
define and create a Software Defined Radio (SDR) connected to a host PC via a Gigabit
Ethernet port. An Intel 10GbE x520 NIC connects the two Gigabit Ethernet ports
between the eNB and the USRP device. Two UBX160 daughter boards were employed
on USRP. For the purpose of this research radio frequency band 7 was employed.

• eNB: Evolved Node B was instantiated using the host PC under the Ubuntu distribution
with a low latency Linux kernel. The software implementation of eNB is equipped
with a scheduler that handles the Upper Link and Down Link of a PHY radio. As
per the 3GPP specification, Frequency Division Duplex (FDD) and Physical Uplink
Shared Channel (PUSCH) information is also available upon activation of the eNB.

• P4-BMv2 Switch [163] : Given the requirements for faster processing of packets, a
BMv2 switch was installed between RAN-CN (on an NIC card). An ingress pipeline,
a custom parser and an egress pipeline was developed working in parallel to perform
match+action. The increased capacity for faster processing of packets established our
motivation for their employment. As shown in our previous publication [165], UDP
traffic has a greater throughput with a P4 implementation than with Open vSwitch

3Intel®Ethernet Converged Network Adapter x520 provides better flexibility and scalability for cloud and
data centre environments

78 A Real-Time 5G Mobile Telecommunication Testbed

(OvS). Given that the communication between USRP and eNB are based on UDP
traffic, the employment of a P4-BMv2 switch is an appropriate choice.

4.2.3 Core Network (CN)
The CN is denoted in Fig.4.1 by the blue cloud. The following describe the various
components of the CN, initialised on a Ubuntu UVT-Cloud [194] environment.

• HSS: HSS is a centralised database containing information relating to registered users
and subscriptions. HSS provides data used for session creation, authentication and
authorisation. The HSS database connects to the MME using a local loop-back. A
Cassandra database stores and updates the records of the connected UEs.

• MME: The MME contains global information relating to the network. This includes
attached and connected UEs, connected eNBs and bearers (default and S1U). MME
communicates with eNBs, HSS and SPGW-C.

• SPGW-C: Provides control plane functions for the Serving Gateway (SGW-C) and
Packet Data Network Gateway (PGW-C). It handles control requests from the MME
and communicates with the SPGW-U. User traffic is tunnelled by SPGW-C as GTP
(GPRS-Tunnelling Protocol).

• SPGW-U: This forwards user traffic between the Packet Data Network and the Internet.
It is also, connected to the eNB.

4.2.4 Multi Access Edge Computing Platform (MEC)
The MEC deployment is depicted in yellow in Fig.4.1. For realising a 5G-MEC architecture
four different types of deployments [2] are presented. We have employed (III) the MEC
connected to a network edge point scenario due to its popularity [67, 195–197].

The MEC architecture was instantiated using two UVT-Cloud environments, the MEC
Orchestrator and the MEC-UDP. Both MEC nodes have been virtualized as UVT-Cloud
environments running Ubuntu Bionic servers. Each server has been instantiated with 2GB
of RAM, 10GB of HDD and 1 CPU core. This is to reflect the lightweight, low processing
power, that MEC nodes possess. An iPerf UDP server has been initiated on the MEC UDP
node with the bind option, for the UE’s to transfer UDP data.

4.3 Evaluation of the Testbed 79

(a) (b)

Fig. 4.7 Testing the Connection. (a) MME periodic update illustrating connected eNBs and
UEs (b) Access of Google and University learning platform on a COTS UE.

4.3 Evaluation of the Testbed

The traffic generation and workflow of the 5G testbed is shown in Fig. 4.1. Evaluation of the
testbed is as follows. First we test the connectivity of the components in the testbed followed
by the testbed with the UEs. Then, we evaluated the underlying 5G network traffic and finally
we evaluated the user traffic in the developed testbed.

4.3.1 Testing the Connection
We first tested the UE connections. Fig.4.7(a) shows the periodic updates from the MME
containing the connected devices of the network. Fig.4.7(b) shows the screenshots for the
connection established after authentication and registration of the UEs to the testbed. The
UEs were able to connect to the internet using the programmed mobile network- HERTS5G,
which is an experimental 5G campus network. A ping message to the DNS also confirmed
the successful connection in our testbed. We collected the underlying 5G network traffic once
the UE connections had been established. Another key finding gathered from this experiment
was that the P4-BMv2 switch was able to perform switching and packet processing for a
higher volume of data (UDP traffic between USRP and RAN, see Fig 4.8f) with an average
throughput of 2*109bps, without the switch collapsing.

80 A Real-Time 5G Mobile Telecommunication Testbed

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

SCTP Traffic

(a) SCTP Traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400 450 500 550 600
T

hr
ou

gh
pu

t
(b

ps
)

Time (s)

S1AP Traffic

(b) S1AP Traffic

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

T ime (s)

GTP Traffic

(c) GTP Traffic

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

SPGW Traffic

(d) Periodic TCP traffic between eNB and MME

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

SSDP Traffic

(e) SSDP traffic from SPGW-U towards DNS

 0

 5×108

 1×109

 1.5×109

 2×109

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
hr

ou
gh

pu
t

(b
ps

)

Time (s)

UDP Traffic

(f) UDP data between eNB and USRP

Fig. 4.8 Underlying 5G Network Traffic

4.3 Evaluation of the Testbed 81

 1.04×106

 1.05×106

 1.06×106

 1.07×106

 1.08×106

 1.09×106

 1.1×106

 1.11×106

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
h
ro

u
g
h
p
u
t

(b
p
s
)

Time (s)

UDP Traffic

(a) UDP Traffic directed towards MEC node

 0

 200000

 400000

 600000

 800000

 1×106

 1.2×106

 0 50 100 150 200 250 300 350 400 450 500 550 600

T
h
ro

u
g
h
p
u
t

(b
p
s
)

Time (s)

UDP Traffic
Spoofed DDoS Traffic

(b) UDP and Spoofed DDoS Traffic directed
towards MEC node

Fig. 4.9 UDP and Spoofed DDoS Traffic directed towards MEC node

4.3.2 Underlying 5G Network Traffic
This traffic provides different types and protocols of traffic found in a 5G mobile
telecommunication testbed. The underlying traffic (SCTP, S1AP, GTP, TCP (between MME
and eNB), SSDP (between SPGW-U and DNS) and UDP (between USRP and eNB)) were
observed in the collected dataset. Without introducing any user traffic, we collected the
underlying traffic for a period of 600s. This type of traffic provides a dataset that can be used
for training and testing algorithms used to enhance security for 5G communication.

Fig.4.8 presents six types of underlying 5G network traffic. SCTP traffic (Fig. 4.8a)
between between SPGW-U, SGW-C and PGW-C occurs in the form of a heartbeat. Once
generated, it is responded to with a heartbeat-acknowledgement. SCTP traffic carries the
protocol number 132 and is an essential type of traffic in 5G mobile telecommunication for
monitoring and detecting loss of sessions. S1AP traffic (Fig.4.8b) provides control plane
signalling between RAN and EPC. S1AP traffic carries the protocol number 36412. The next
type of traffic visible in a 5G mobile telecommunication network is GTP (Fig.4.8c) which is
used by UEs to communicate with the DNS and other resources in the internet. GTP carries
the protocol number 3386.

Fig.4.8d, represents the periodic TCP communication between MME and eNB. Since
the MME require periodic updates about the connected/attached UEs, eNBs and bearers
(tunnels for connecting UEs to packet data network) this periodic communication is extremely
important for the network to maintain an accurate state. SSDP traffic (Fig.4.8e) aids the
local network in service discovery. The captured traffic involves both SPGW-U and DNS.
Fig.4.8f, represents the UDP traffic between the USRP and eNB. Due to the high volume

82 A Real-Time 5G Mobile Telecommunication Testbed

and high speed required for communication between the two nodes, the communication is
encapsulated as UDP traffic.

The above protocols and their underlying traffic have not been included in the following
datasets (KDD Cup 99, NSL-KDD, CTU, UNSW NB-15 and InSDN). We note that the
underlying TCP/UDP traffic in a 5G network is different in both volume and pattern from
user-generated TCP/UDP traffic.

4.3.3 User Traffic
The third type of experiments generated legitimate UDP traffic from UE’s to MEC node. A
total of six iPerf clients were instantiated to communicate with the iPerf server at the MEC
node. Data was collected for a period of 600s on each of the six hosts.

Fig.4.9a represents the average UDP throughput (1.08*106 bps) between the UE’s and
the MEC node. The fluctuations in the traffic are due to interference in the wireless medium.
Underlying 5G network network traffic was also present but were not included in calculating
the average UDP throughput.

4.3.4 Malicious Traffic

The fourth type of experiment generated malicious traffic from UE’s towards MEC. A total
of six clients initiated malicious traffic using hping3. Traffic such as DoS, Spoofed DDoS,
botnet traffic, port scanning and TCP Syn Flood were employed in the malicious traffic
category. Research by [101–104] highlighted that DoS, DDoS, and Spoofed DDoS with
or without infected botnets have created a significant threat for MEC nodes. Data collated
from their respective test beds [105] and case studies [106] revealed that prior to launching
an attack adversaries employ scanning techniques either using TCP SYN messages or by
conducting port scans to collect open port information. Research by [103] highlighted
that due to low resources available in an MEC node, a traditional IDS which has a higher
computational requirement may cause the IDS to malfunction, resulting in certain attacks
being bypassed [107]. This also corroborates the findings of [4], on how traditional IDS are
inadequate to be applied for 5G and beyond. Data was collected for a period of 600s on each
of the six hosts. Underlying 5G network traffic and user traffic were also present during the
malicious traffic transmission.

Fig.4.9b represents Spoofed DDoS traffic sent during the UDP transmission. The constant
throughput of user traffic has been obstructed by the DDoS traffic. The throughput can be
seen reaching 0bps at various intervals. Spoofed DDoS traffic was illustrated since it created
a considerable service disruption compared to other types of malicious traffic.

4.4 Generating and Evaluating Datasets 83

4.4 Generating and Evaluating Datasets

4.4.1 5G Dataset

The collected traffic from the developed testbed was filtered using Python scripts for creating
5G datasets. Datasets included fields such as flow ID, source IP, source MAC, destination IP,
source port, destination port, protocol, packet length, acknowledgment, and a binary label for
classification. In our 5G dataset, depicted in Table 4.2, the underlying 5G network traffic
and user traffic have been classified as legitimate and network attack traffic as malicious.
Labeling network traffic into classes and the algorithms employed for same will shortly
follow in the next chapter.

The quality of a dataset can be measured using the following indicators. Completeness,
Uniqueness, Validity, Timeliness, Accuracy, and Consistency [54]. The 5G dataset that was
accumulated using the testbed was aimed at achieving the aforementioned indicators.

1. Completeness: The dataset possesses zero incomplete values. As the network data
was accumulated in real-time, a Python function was programmed in order to remove
incomplete rows of data. This function was particularly useful in avoiding biased
analysis. Furthermore, the NeT2I algorithm was also programmed to read a complete
set of columns in a row, in order to generate an image. These strategies were taken in
order to ensure the completeness of the dataset.

2. Uniqueness: The number of unique rows in the 5G dataset is shown in Table 4.2. Out
of the collected traffic, we filtered and refined the traffic to a total of 1,865,935 rows to
remove redundant, repetitive, and empty rows of data. We employed several Python
scripts for the refinement and creation of the datasets.

3. Validity: Authors in [55] measured the validity of the dataset using the quality of the
metadata. In the 5G dataset, in addition to the collated network traffic, additional
features were generated that aided algorithms in detection. These additional features
can be classified as metadata of the dataset.

4. Timeliness: The publicly available datasets (UNSW NB-15 and InSDN), to which
the generated dataset was compared, were collected in the years 2015 and 2020. The
change in traffic patterns, protocols, and volume differ significantly in the generated
dataset as opposed to the publicly available datasets. This may contribute towards a
higher false positive rate to the intrusion detection problem in 5G.

5. Accuracy: [56] measured the accuracy determining inaccurate values using functional
dependence rules. In the generated dataset, each column of collected network traffic

84 A Real-Time 5G Mobile Telecommunication Testbed

only carried data that accurately represented the column title. For example, the column
which included data on MAC addresses only carried MAC addresses throughout the
dataset. The dataset was organised by using a shell function. Similarly, additional
features were calculated based on the collected network traffic, and these additional
features were assigned a value based on binary classification.

6. Consistency: As per [57], data consistency can be mentioned as the evaluation of
data from two different datasets. The 5G dataset has been evaluated using two other
datasets. They are the UNSW NB15 and InSDN datasets. The collated features can
also be found in the aforementioned two datasets.

4.4.2 UNSW NB-15 and InSDN Datasets

Table 4.3 and Table 4.4 present a summary of the UNSW NB-15 and InSDN datasets which
we employed for detection and evaluation along with our 5G dataset. From Tables 4.2, 4.3
and 4.4, we note that the underlying 5G network traffic is absent from the UNSW NB-15
and InSDN dataset. Xu et al. [137] highlight that as a result of an imbalanced or partial
traffic classification, a higher False Positive rate follows. Although augmentation schemes
have been employed to mitigate this drawback, Xu et al. state that the correct representation
of generated datasets provides better results with a negligible False positive rate. Hence, it
is important to be able to classify underlying 5G network traffic as legitimate traffic. The
total number of flows in both datasets (Table 4.2, Table 4.3, and Table 4.4) can be classified
into two classes, malicious and legitimate. Hence, we employed binary classification in our
detection methodology (CNN), which will be presented in the following chapter.

4.5 Chapter Summary

In this chapter, we developed a 5G mobile telecommunication testbed to produce 5G datasets
that can be used to study 5G traffic malicious attacks and their characteristics. We conducted
this research to advance the effectiveness of security based research for 5G and beyond,
using 5G datasets instead of simulators or emulators. Our UDP server has been instantiated
using iPerf but the testbed is otherwise free from simulation or emulation. We collected
traffic unique to a 5G mobile network, conducted malicious attacks on an MEC node, studied
the service disruption and presented the associated data for the above. The employment
of the testbed for this research paved the following findings which were unexpected. The
underlying 5G network traffic, traffic between RAN and USRP, and protocol types. User
traffic and malicious traffic are commonly found in any publicly available dataset. However,

4.5 Chapter Summary 85

Traffic Type Number of Flows

Underlying 5G
Network Traffic

SCTP 150,706
S1AP 100,472
GTP Traffic 50,236
eNB and MME Traffic 251,176
SSDP Traffic 25,118
eNB-USRP UDP Traffic 401,882
Total 979,590

User Traffic UDP Traffic 468,847

Malicious Traffic

DoS 14,976
DDoS 39,700
TCP Syn Flood 142,604
Botnet Traffic 39,700
Port Scanning 180,518
Total 886,345

Total Flows 1,865,935
Table 4.2 Number of unique rows in the collected 5G dataset

UNSW NB-15 Number of Flows

User Traffic

TCP 1,492,153
UDP 990,144
ICMP 524
Other 524
Total 2,218,755

Malicious Traffic

Fuzzers 24,246
Reconnaissance 13,987
Shellcode 1511
Analysis 2677
DoS 16,353
Exploits 44,525
Worms 174
Generic 215,481
Total 321,283

Total Flows 2,540,038
Table 4.3 Description of UNSW NB-15 dataset

86 A Real-Time 5G Mobile Telecommunication Testbed

InSDN Number of Flows

User Traffic

TCP 34,115
UDP 33,920
Other 389
Total 68,424

Malicious Traffic

DDoS 121,942
Probe 98,129
DoS 53,616
brute-force-attack 1405
Exploit 17
Web attack 192
Botnet 164
Total 275,515

Total Flows 343,939
Table 4.4 Description of InSDN dataset

the presence of underlying network traffic which aids in maintaining the state of a mobile
telecommunication network was not anticipated. Also, network traffic pattern, the volume,
and the frequency between RAN and USRP device was not anticipated. Lastly, protocols
such as GTP and S1AP are unique to a mobile telecommunication network. The presence
of these protocols would not have been included in the generated dataset, had the testbed
not been employed. The aforementioned can be summarised as findings that were generated
due to the employment of a testbed. Details regarding the CNN detection algorithm, and
encoding/decoding algorithm employed in the RGB image generation together with a
discussion on the computational complexity of the algorithms employed will follow in
the next chapter. We also test our algorithms on two publicly available datasets and the
collected 5G dataset, where we aim to answer the research question: How can we design
new algorithms for intrusion detection using a DL agent in 5G-MEC?

Chapter 5

New Algorithms for the Detection of
Malicious Traffic in 5G-MEC

This chapter presents a new Intrusion Detection System using a 3-layer Convolutional Neural
Network (CNN), capable of identifying malicious network traffic. We employ a new injective
algorithm to encode network traffic without loss of information. We also include a new
algorithm to decode, and encoded RGB images back into network traffic. We evaluate the
proposed Intrusion Detection System (IDS) in terms of its computational complexity for
example time, memory and CPU utilisation for the encoding and decoding algorithms, and
its accuracy and loss during training and detection. Lastly, we compare the proposed IDS
against a significant IDS algorithm that uses a different approach for encoding, decoding and
CNN detection.

5.1 Introduction

For securing 5G networks and Multi-access Edge Computing (MEC) infrastructure, authors at
[59] and [60] claimed that the application of Deep Learning (DL) to the problem of detecting
malicious traffic would be a better approach than using a Machine Learning (ML) approach,
leading to greater accuracy due to the complexity arising from communication between
components and users in various 5G (and beyond) use cases [114]. Deep Learning ([132]
and [198]), has caught the attention of both academia and industry, with applications of DL
increasing, following the application of deep convolutional networks in computer vision. The
ease of training and generalisation, in comparison to other fully connected networks together
with the high accuracy rate achieved with Convolutional Neural Networks (CNN) [132], has

88 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

prompted us to explore CNN as a viable option for the detection of malicious traffic in the
5G network infrastructure.

One of the greatest challenges in the application of CNN to the study of network security
involves the process of encoding data into a form recognisable by the CNN. As CNNs accept
images for training and testing, data collected from a dataset has to be converted into images.
Existing research uses various methods to encode network traffic, data into images that can
be used to train a CNN algorithm.

Research published in [134], [144], [145], [146], and [147] employed grayscale images
to represent and encode their desired features of network traffic for training and testing a
CNN algorithm. However, representing network traffic by grayscale images can lead to a
loss of information since modern network traffic due to heterogeneity and complexity can
contain data that exceeds a pixel value in the grayscale (0-255).

Due to this limitation on grayscale images, authors in [1] and [140] employed mechanisms
to encode network traffic as RGB images. Improvements in accuracy were observed [140],
when employing RGB images in preference to opposed to grayscale images. Authors of [1]
and [140], employed a tiled image approach along the x and y axis, for a given pixel length
and width. Although, these images are capable of producing a higher accuracy than grayscale
images, RGB can represent a pixel value between 0 - 16,777,215, leading to in a tiled image
that places a high demand on CPU, memory and time of execution.

Since the MEC infrastructure will possess low processing power, a CNN based IDS
must produce images for the detection algorithm requiring less computation. To the best of
our knowledge, research based in encoding network traffic into images, has not discussed
computational complexity in the application of their respective algorithms.

In this chapter, we propose a new method in the encoding and decoding process. We have
evaluated the computational complexity that arises with the use of our proposed encoding and
decoding mechanism and compared this against a similar encoding mechanism in RGB that
uses a tiled image approach. The conducted experiments in this chapter have been presented
in Table 5.1.

The key contributions of this chapter include:

• A new algorithm to encode network traffic for example, IP addresses, MAC addresses
to RGB Images and a new algorithm to decode, encoded RGB images into network
traffic.

• A new IDS using CNN and the proposed encoding and decoding algorithms for the
detection of malicious network traffic.

5.2 Proposed Algorithms 89

Experiments
RQ3: New Algorithms for the

Detection of Malicious Network Traffic
1. Study of the existing Machine Learning and
Deep Learning Algorithms
2. Study of the existing methods of data encoding
3. Implement algorithms for data encoding and decoding
4. Implement a detection algorithm by employing CNN
5. Evaluate existing publicly available datasets
6. Encode data from the Datasets using the developed
encoding algorithm
7. Evaluate the computational complexity
of the encoding algorithm against literature
8. Train and Test the CNN algorithm
9. Apply the Confusion Matrix

Table 5.1 Experiments conducted in this Chapter

• Evaluation of the proposed IDS in terms of computational complexity in, for example,
time, memory and CPU utilisation, together with accuracy and loss in training,
validation and detection.

• Comparison of the proposed IDS against a significant IDS that uses a different approach
for encoding and CNN detection.

5.2 Proposed Algorithms

In this section, we present new algorithms for encoding network traffic as RGB images
and for decoding the images back to network traffic. We also present the CNN detection
algorithm that we have employed for identifying traffic as either malicious or non-malicious

5.2.1 Encoding Network Traffic to Images (NeT2I Algorithm)

The NeT2I algorithm describes the pseudo-code used for the Python script utilised in creating
PNG images from network traffic that has been saved as a CSV file. The NeT2I algorithm
outlines two primary functions. They are, encode network data collated in a CSV file into
RGB values and subsequently translate those RGB values into an image in the PNG format.
def encodeCSVToRGB (Input): This function takes a CSV file as an input. The function
initialises a 2D Tuple to store RGB values generated through the function. The function

90 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

iterates through each line in the CSV, storing values in a new Tuple for each line. This
loop also determines the variable type in each value in each line. For integer values less
than 224, such as flow ID, port numbers, protocol number and packet length, a sub-function
convertIntToRGB (value) maps them to RGB values and saves to the current Tuple.
Since IP addresses and MAC addresses are larger than 24 bits, mapping them without losing
the integrity of data is a challenge. In the NeT2I algorithm, we adopted a delimited approach
and present a detailed description of this process below.

MAC address

Mapping of MAC addresses were only carried out to the proposed 5G dataset. Mapping a
48-bit MAC address into an RGB value that can be used to create a PNG image is a challenge
due to the 24-bit space of the RGB scheme. We used the colon symbol (:), which divides
the MAC address into six octets (NeT2I Algorithm: line 9). By employing a sub-function
convertMACToRGB (value) each Hexadecimal value was mapped to its corresponding
integer value using another sub-function HexToInt(hex). This provided us with six integer
values that can be used to map the address to its respective RGB values. The resulting values
were appended to the Tuple. These values were then used in the image creation process.

IP address

We employed the IPv4 addresses available in the UNSW NB-15 and InSDN datasets.
Mapping a 32-bit IP address into an RGB value that can be used to create a PNG image
is a challenge due to the 24-bit space of the RGB scheme. We used the decimal point (.),
which divides the IPv4 address into four octets (NeT2I Algorithm: line 13). This provided us
with four integer values that can be used to map the address to its respective RGB values.
This was carried out by employing the convertIPToRGB (value). The resulting values
were appended to the Tuple. If the value does not fit any of these types, an error is flagged,
indicating that the value cannot be read. Finally, the function concludes by saving the RGB
Tuple to the overarching 2D Tuple, consolidating the encoded RGB information. The
values in the 2D Tuple were then used to create a PNG image.

Mapping RGB values and creating PNG images

Upon successfully mapping integer values to RGB values, we saved them in a Python
2D Tuple. Since RGB is a representation of multiple values that require storing in
the same element, the use of the Python data structure 2D Tuple was ideal. The
def RGB_to_PNG (2DTuple) in line 19 takes the 2D Tuple input where all the RGB

5.2 Proposed Algorithms 91

values have been saved. The function iterates through each tuple in the 2D Tuple and within,
each tuple, iterates through the individual elements which store RGB values. For each value,
we employed a condition check to identify stored values larger than 224. If the values meet
the conditional check, they are mapped to a PNG file by employing a sub-function savePNG
which invokes another sub-function createPNG (values) where individual RGB values
were passed as input. We utilised the PIL (Pillow) library within createPNG function.
Finally, the algorithm returns the output PNG, providing the result of the RGB to PNG
conversion process.

Encoding Algorithm 1: NeT2I
Input: input.csv
Output: output.png

1 def encodeCSVToRGB (Input):
2 2DTuple = [[]]
3 for line in csvfile do
4 TUPLE = []
5 for value in line do
6 if type(value) == int then
7 rgb = convertIntToRGB(value)
8 saveRGBValueToTuple(rgb, TUPLE)

9 if type(value) == MAC then
10 value = HexToInt(hex)
11 rgb= convertMACToRGB(value)
12 saveRGBValueToTuple(rgb, TUPLE)

13 if type(value) == IP then
14 rgb= convertIPToRGB(value)
15 saveRGBValueToTuple(rgb, TUPLE)

16 else
17 Error /* Can’t read value */

18 saveRGBTupleTo2DTuple(TUPLE, 2DTuple)

19 def RGB_to_PNG (2DTuple):
20 for tuple in 2DTuple do
21 for value in tuple do
22 if value > 224 then
23 Error /* Can’t draw value to RGB */

24 Output = savePNG(createPNG(value))

25 return Output

92 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

5.2 Proposed Algorithms 93

Decoding Algorithm 2: I2NeT
Input: input.png
Output: output.csv

1 def Images_to_CSV (Input):
2 2DTupple = [[]]
3 for png in PNGs do
4 Tuple = []
5 int = convertPNGToInteger(png)
6 saveIntegerToTuple(Tuple)
7 convertIntegerToMAC (values 1_2_3_4 _5 _6):
8 for value in values 1_2_3_4_5 _6 do
9 MAC += value

10 MAC += ’:’

11 return MAC

12 convertIntegerToIP (values 1_2_3_4):
13 for value in values 1_2_3_4 do
14 IP += value
15 IP += ’.’

16 return IP

17 createSourceMACFromInt (tuple):
/* element(1, 2, 3, 4, 5, 6) */

18 SourceMAC = convertIntegerToMAC(tuple)
19 return SourceMAC

20 createSourceIPFromInt (tuple):
/* element(7, 8, 9, 10) */

21 SourceIP = convertIntegerToIP(tuple)
22 return SourceIP

23 createDestinationIPFromInt (tuple):
/* element(11, 12, 13, 14) */

24 DestinationIP = convertIntegerToIP(tuple)
25 return DestinationIP

26 return 2DTuple
27 saveIntTupleTo2DTuple(Tuple, 2DTuple)

28 Write_2DTuple_to_CSV ():
29 WriteToCSV (2DTuple, Output)

30 return Output

94 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

Detection Algorithm 3: CNN3L
Input: PNGs

1 Segregate Dataset (Images):
2 while Upload Images do
3 if Images ≡Corrupt then
4 Remove or Discard corrupt images

5 else
6 Split 80% as train images and 20% for test

7 Create CNN Model ():
8 Input RGB Image 150*150 pixels
9 Convolutional Layer 1 (32, (3,3))

10 MaxPooling (2,2)
11 Convolutional Layer 2 (64, (3,3))
12 MaxPooling (2,2)
13 Convolutional Layer 3 (128, (3,3))
14 MaxPooling (2,2)
15 while load train images do
16 for Randomly selected images do
17 Run Image Augmentation and Replace

18 while Steps ̸= NumberO f E pochs do
19 for Load images by BatchSize do
20 Train and Test CNN
21 Save to Array1

22 Steps++ if Steps ≡ NumberO f E pochs then
23 Calculate Average Values of Array1
24 Print Plots

25 else
26 Print Error /* Array Empty */

27 Detection ():
28 LoadImages f romNeT 2I_Algorithm classes = model.predict(images)
29 if classes > 0.5 then
30 print Legitimate Traffic

31 else
32 print Malicious Traffic

5.2 Proposed Algorithms 95

5.2.2 Decoding Images to Network Traffic (I2NeT Algorithm)

The I2NeT algorithm describes in pseudo code the steps involved in generating network
traffic from PNG images. The algorithm can only decode PNG images that were generated
using the NeT2I algorithm since the underpinned algorithm functions by mapping RGB
values found in an image to corresponding fields for network traffic.

The function def Images_to_CSV (Input): takes the PNG images as the input. The
function initialises a 2D Tuple to store processed data. For each PNG that is received as an
input a Tuple is created. The pixel values of the PNG are converted to integers by employing
the sub-function convertPNGToInteger (PNG):. The resulting integer values are saved
to the Tuple, and then appended to the 2D Tuple. The images were created by encoding
string fields such as MAC addresses, and IP addresses, these values were treated differently
to other integer values, during the decoding stage.

Decoding MAC address

Similarly, a set of acquired integer values, from the previous mapping stage correspond to the
sender’s MAC address. Stored integers are converted to Hexadecimal values and stored in the
same element. The function convertIntegerToMAC (values 1_2_3_4_5_6): conducts
the aforementioned task. Since the converted Hexadecimal values are a representation of
an octet in the MAC address, we use a delimited approach(:) for appending octets into a
MAC address. We only converted the source MAC addresses, as this will aid us in detecting
Spoofed IP addresses. The employed function can be found in the I2NeT algorithm: line
17. This function (convertIntegerToMAC (values 1_2_3_4_5_6):) has been called as
a sub-function in createSourceMACFromInt (tuple): which returns the SourceMAC
address.

96 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

Decoding IP address

Once the integer value has been derived from the mapping stage, corresponding
array elements of the sender and receiver IP addresses are decoded separately.
Since the converted integer numbers are a representation of an octet in the IP
address, we use a delimited approach for appending octets into an IP address.
The function convertIntegerToIP (values 1_2_3_4): was aimed at conducting
the aforementioned tasks. In our algorithm, we use two separate functions
createSourceIPFromInt (tuple): which utilised elements 7, 8, 9, 10 as inputs and
createDestinationIPFromInt (tuple): which utilised elements 11, 12, 13, 14 as
inputs to return the IP addresses corresponding to the source and the destination. The
employed function for mapping RGB values to source IP address and destination IP address
can be found in the I2NeT algorithm: lines 20 and 23, respectively. The returned values
from the functions were saved to a 2D Tuple from the Tuple by calling the function
saveIntTupleTo2DTuple(Tuple, 2DTuple).

Creating the initial network traffic

After successful mapping of RGB values (in a Tuple) to an Array, we then write the contents
of this array to a CSV file. The pseudo-code instructions can be found in the I2NeT
algorithm: line 28, outlining the function Write_2DTuple_to_CSV ():. Upon writing the
last element in the array, we save each element separated by a delimiter (‘,’) to ensure that
the file corresponds to a CSV file.

5.2.3 Detection Algorithm

The CNN3L algorithm, conducts a binary classification of network traffic into non-malicious
and malicious traffic, using TensorFlow and Keras libraries on Google Colaboratory.

Prior to building the model, we initially segregated the dataset using the
Segregate Dataset(Images): function. This function iterates through the images
created using the NeT2I algorithm. If an image is identified as corrupt, it is removed
or discarded. Otherwise, the dataset is split into an 80% training set and a 20% test set. In
line 7 of the CNN3L algorithm, the pseudo block for the CNN Model(): has been presented.
This model is designed to take RGB images of size 150 x 150 pixels as input. It consists
of three layers of Convolutional 2D with corresponding MaxPooling layers, progressively
extracting features from the images. We employed three convolutional layers as opposed to
one or two due to the increase in accuracy.

5.2 Proposed Algorithms 97

Feature Extraction Classification

Fully Connected Layer

Output
Layer

Input

Conv Layer I

Maxout Pooling

Conv Layer II

Conv Layer III

Maxout Pooling

Fig. 5.1 Convolutional Neural Network

The application of three convolutional layers with the higher accuracy found in the
detection of malicious traffic has also been discussed in [140]. Similarly, the authors
[138, 139, 155] provided evidence for same, when the CNN layers fall under three or surpass
three, the accuracy reduces with a higher loss. We employed the sigmoid activation function
since a binary classifier can be represented using a one neuron, setting the value 0 for
non-malicious and 1 for malicious traffic. The computational complexity of the CNN3L
algorithm was not considered for this research. This is due to CNN3L being launched in
the Google Colaboratory environment. However, the work by [135] presented the resource
utilisation and energy consumption of various CNN algorithms on smartphones. All of the
presented algorithms have a higher number of convolutional layers and fully connected layers
as opposed to the proposed CNN3L algorithm. Similarly, authors at [136], evaluated CNN
algorithms in edge devices by employing an algorithm with three convolutional layers and
two fully connected layers, similar to that of the CNN3L algorithm, due to low resource
utilisation and high accuracy. Fig. 5.1 illustrates the proposed CNN3L algorithm using the
parameters highlighted in Table 5.8.

Upon model creation, pseudo-randomly selected images in the training set were sent
and replaced through an image augmentation function, in order to prepare our model to

98 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

detect data or attributes that were not in the original dataset. This is an important function to
consider since the heterogeneity of 5G mobile telecommunication traffic can create network
traffic patterns that the training set may not possess.

CNN3L, then enters the training loop when while Steps ̸= Number Of Epochs:,
where it loads the training images to the CNN model that has gone through image
augmentation, and trains the model. The training process occurs in batches, updating
model parameters iteratively. The resulting performance metrics are saved to Array1. After
completing the set number of epochs, the average value of the performance metrics in Array1
are calculated. In the CNN3L algorithm, we considered different epochs and batch sizes, in
order to achieve the highest accuracy (line 18). These were incremented with each iteration
once the optimal batch size was determined (line 19).

Lastly, the algorithm transitions to the detection phase by calling the Detection():
function. (See line:28) We utilised the model.predict(images): function, where the
images from NeT2I served as an input. If the classes exceed a threshold of 0.5, the image
is classified as legitimate or non_malicious. Otherwise, it is classified as malicious.

5.3 Evaluation Metrics for the New Algorithms

5.3.1 Workflow and Dataset

Dataset NeT2I CNN3L

I2NeT CSV of Malicious Traffic

Fig. 5.2 Workflow of the Proposed Algorithms

5G Dataset

Table 5.2 described the features collected from 5G-MEC mobile telecommunication testbed.
The traffic was initially collected in the form of a pcapng file, which was filtered into creating
datasets. For the features mentioned above, a label was included to classify traffic which
resulted in a dataset of 12 features. Details pertaining to Source port variation and destination
port variation will follow in the following chapter.

5.3 Evaluation Metrics for the New Algorithms 99

5G Dataset
Feature Description

f1 Flow ID
f2 Source IP
f3 Source MAC
f4 Destination IP
f5 Source Port
f6 Destination Port
f7 Protocol
f8 Packet size
f9 Source Port Variation

f10 Destination Port Variation
f11 Flags

Table 5.2 Features Selected from the 5G Dataset

UNSW NB 15 Dataset

Amongst the publicly available datasets, the UNSW-NB15 dataset contains the most
recently collected data for malicious and non-malicious traffic. The collected data has
been represented using 49 features with 12% of the available traffic in the UNSW-NB15
dataset corresponding to malicious traffic. We randomly collected a total of 12500 lines
from each traffic class (malicious and non-malicious) and created a subset of the dataset with
25000 rows. The resulting CSV file was further filtered to reflect the features employed in [1]
for compatibility purposes in our research. A final dataset with 11 features (f1, f2, f3, f4, f5,
f7, f8, f15, f17, f23 and f42) resulted together with a label for traffic classification, generating
a CSV file containing 12 features. The features are described in Table 5.3. The workflow
of the proposed algorithms and their applications on the UNSW NB-15 dataset is shown in
Fig. 5.2. The CSV file extrapolated from the UNSW NB-15 dataset was used as input for
the NeT2I algorithm for generating PNG images based on network traffic. Generated PNG
images were used as input for the CNN3L algorithm. Following detection by the CNN3L
algorithm, the I2NeT algorithm was used to decode the images back to a CSV file in order to
test the accuracy of our detection algorithm.

InSDN Dataset

Another dataset that we considered was InSDN dataset that was collected recently by
researchers at University College Dublin [53]. The dataset has a collection of 83 features
with 80% of traffic corresponding to malicious traffic. We randomly collected a total of
12500 lines from each traffic class (malicious and non-malicious) and created a subset of the
dataset with 25000 rows. The resulting CSV file reflects the features employed in [1]. The

100 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

dataset contains 11 features (f2, f3, f4, f5, f6, f10, f12, f14, f18, f29 and f51) along with a
label for traffic classification. The features are described in Table 5.4. The same workflow
mentioned in Fig. 5.2 has been employed for InSDN dataset as well. The extrapolated CSV
was used as input for the NeT2I algorithm for generating PNG images based on network
traffic. Generated images were used as input for the CNN3L algorithm. Upon detection by
the CNN3L algorithm, the I2NeT algorithm was used to decode the images back to a CSV
file in order to test the accuracy of our detection algorithm.

UNSW NB-15
Feature Description

f1 Source IP
f2 Source Port
f3 Destination IP
f4 Destination Port
f5 Protocol
f7 Duration
f8 Source to Destination bytes
f15 Source bits per second
f17 Source to Destination packet count
f23 Mean packet size transmitted by the source

f42
No. of connections that contain the same
service and destination address

Table 5.3 Features Selected from the UNSW-NB15 Dataset

InSDN
Feature Description

f2 Source IP
f3 Source Port
f4 Destination IP
f5 Destination Port
f6 Protocol

f18 Flow Duration
f10 Total packets in forward direction
f12 Total size of the packet in forward direction
f14 Mean size of the packet in forward direction
f49 Number of Flow Bytes per second
f51 Number of forward packets

Table 5.4 Features Selected from the InSDN Dataset

5.3.2 Evaluation Metrics for the NeT2I and I2NeT Algorithms

For evaluating the encoding algorithms, we compared the accuracy and computational
complexity of each in terms of time of execution, CPU and RAM. An algorithm that can

5.3 Evaluation Metrics for the New Algorithms 101

encode network traffic as images and decode images back to network traffic with low
computational complexity and high accuracy will be advantageous for the detection of
malicious traffic in 5G-MEC networks.

Time for execution

For measuring the time of execution, we employed the Python Time library. As discussed in
[199], identifying the accurate execution time of a program is important being preferable to
using an estimate for the execution time. Variation in execution time can affect performance
and efficiency, particularly important when applying the algorithm to an intrusion detection
problem based in an environment with low resources.

CPU Utilisation

For CPU utilisation we employed the Python psutil library in order to collect the percentage
use for the algorithm. Our code uses the standard single-threaded Python execution with
global interpreter lock. Hence, our algorithms can only be executed on one single CPU
thread at a time. Since our algorithms are expected to be executed at an MEC node with low
processing capabilities, it is crucial that our algorithms effectively utilise CPU resources for
an optimal window of time.

Memory Utilisation

As discussed in [200], memory allocation is not as precise as the CPU allocation or usage. In
order to determine memory allocation for our algorithms, we employed the Python library
memory_profiler. Computer systems tend to over-allocate memory to a process for efficiency
of execution, and as garbage collection doesn’t occur instantaneously, an average value for
the memory allocation is used to compare the performance.

5.3.3 Evaluation Metrics for the CNN3L Detection Algorithm

We evaluated our CNN3L algorithm based on configurations, for example, convolutional
layers, epochs and batch sizes, in order to understand the percentage deviation that occurs in
the accuracy of the detection algorithm when different configurations are employed.

We considered evaluating our CNN3L algorithm in terms of overfitting. This occurs when
the CNN model perform with significant results for the training data and can not perform well
for the validation data. We evaluated overfitting by observing and calculating the difference
between training and validation lines for both accuracy and loss.

102 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

The following metrics [5] were used in terms of accuracy (A), precision (P), recall (R)
and F1-Score (F1) to evaluate the proposed CNN detection algorithm.

A =
T P+T N

T P+FP+T N +FN
(5.1)

P =
T P

T P+FP
(5.2)

R =
T P

T P+FN
(5.3)

F1 =
P∗R∗2

P+R
(5.4)

TP stands for the number of positively predicted attacks, FP stands for negatively
predicted attacks on non-malicious traffic, TN represents non-malicious traffic that was
correctly predicted as normal, and finally, FN stands for malicious traffic that was predicted
as normal.

5.3.4 Existing Algorithms for Comparison

To evaluate the performance of the algorithms NeT2I, I2NeT, and CNN3L, we would like to
compare our IDS with an existing IDS. The IDS presented in [1], is a recently published study
is selected because of its use of 2D RGB images for network traffic, with the application
of CNN for the detection of malicious traffic and for its high accuracy. We evaluated our
algorithms in terms of the performance metrics discussed in Section 5.3.2 against [1]. The
algorithms used in comparing the two IDs are as follows:

• NeT2I is compared with the encoding algorithm used in [1]. Both transfer traffic data
to images for the detection of malicious traffic. The NeT2I algorithm produces one
dimensional RGB images while the encoding algorithm used in [1] generates tiled
RGB images.

• The CNN3L algorithm is used for both IDSs. Although a two layer CNN is used in
[1], due to the recorded performance gain in employing three convolutional layers as
opposed to two layers [140], we employed, for comparative purposes CNN3L for both
IDSs.

• The I2NeT algorithm was evaluated against the decoding algorithm of [1], although not
explicitly given in their work. This algorithm is capable of generating a CSV file for the

5.4 Results and Analysis 103

Algorithm
Traffic
Class

Number
of
Images

Total
Execution
Time

Execution
Time
Per
Image

CPU
Utilisation

CPU
Utilisation
Per
Image

Memory
Utilisation

NeT2I Malicious 12500 10.1s 0.000808 100 % 0.008% 20.2%
Non-Malicious 12500 10s 0.0008 100 % 0.008% 20.1%

Encoding Algorithm
used in [1]

Malicious 12500 28.2s 0.002256 100 % 0.008% 27%
Non-Malicious 12500 28s 0.00224 100 % 0.008% 27%

I2NeT Malicious 12500 6s 0.00048 100 % 0.008% 21%
Non-Malicious 12500 6s 0.00048 100 % 0.008% 21%

Decoding Algorithm
used in [1]

Malicious 12500 28s 0.00224 100 % 0.008% 28%
Non-Malicious 12500 28s 0.00224 100 % 0.008% 28%

Table 5.5 Computational complexity of NeT2I and I2Net against the encoding and decoding
algorithms in [1] for 5G Dataset

Algorithm
Traffic
Class

Number
of
Images

Total
Execution
Time

Execution
Time
Per
Image

CPU
Utilisation

CPU
Utilisation
Per
Image

Memory
Utilisation

NeT2I Malicious 12500 6s 0.00048 100% 0.008 19%
Non-Malicious 12500 6s 0.00048 100% 0.008 19%

Encoding Algorithm
used in [1]

Malicious 12500 27s 0.00216 100% 0.008 28%
Non-Malicious 12500 27s 0.00216 100% 0.008 28%

I2NeT Malicious 12500 6s 0.00048 100% 0.008 20%
Non-Malicious 12500 7s 0.00056 100% 0.008 20%

Decoding Algorithm
used in [1]

Malicious 12500 28s 0.00056 100% 0.008 29%
Non-Malicious 12500 29s 0.00232 100% 0.008 28%

Table 5.6 Computational complexity of NeT2I and I2Net against the encoding and decoding
algorithms in [1] for UNSW NB-15 Dataset

associated network traffic from a collection of tiled PNG images by reading the pixel
value of each tile in the image and mapping the value to its respective integer value.
Since the encoding algorithm of [1] masked the IP address of source and destination, a
simple RGB to Integer function was employed to decode all tiles in the image into a
corresponding a CSV file.

5.4 Results and Analysis

We collected the data on a UVT_Cloud deployment running Ubuntu 18.04 LTS, with a single
CPU, 8GB of RAM and 20 GB of HDD space. 25000 images representing two different
network classes were created consisting of 12500 images for malicious traffic and 12500 for
non-malicious traffic. The images were subsequently grouped in the ratio 80:20, for training

104 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

Algorithm Traffic Class
Number
of
Images

Total
Execution
Time

Execution
Time
per
Image

CPU
Utilisation

CPU
Utilisation
per
Image

Memory
Utilisation

NeT2I Malicious 12500 10s 0.0008 100% 0.008% 20.8%
Non - Malicious 12500 10s 0.0008 100% 0.008% 20.8%

Encoding Algorithm
used in [1]

Malicious 12500 30s 0.0024 100% 0.008% 29.4%
Non - Malicious 12500 29s 0.00232 100% 0.008% 29.4%

I2NeT Malicious 12500 6s 0.00048 100% 0.008% 20%
Non - Malicious 12500 6s 0.00048 100% 0.008% 20%

Decoding Algorithm
used in [1]

Malicious 12500 30s 0.0024 100% 0.008% 29.8%
Non - Malicious 12500 29s 0.00232 100% 0.008% 29.8%

Table 5.7 Computational complexity of NeT2I and I2Net against the encoding and decoding
algorithms in [1] for InSDN Dataset

and testing respectively. Randomly selected images were passed to the image augmentation
process to eliminate overfitting in the algorithm. The images were processed by the CNN3L
algorithm in batches in order to increase efficiency for the experiment.

5.4.1 Encoded Images

(a) An image from the NeT2I algorithm (b) A tiled image from the encoding
algorithm of [1]

Fig. 5.3 A Visual Comparison of the Images for 5G Dataset

A visual representation of the images generated by the Net2I algorithm and the encoding
algorithm used in [1], are presented in Fig.5.3 for 5G dataset, Fig.5.4 for UNSW NB-15
dataset whilst the images generated from the InSDN dataset are represented in Fig. 5.5. The
NeT2I algorithm generates the images depicted in Fig.5.3a, Fig.5.4a, and Fig.5.5a which
consists of one-dimensional horizontal lines with a variable x value and a fixed y value. Each
line in the generated PNG, encompasses a traffic feature where as an IP address is distributed
amongst four lines in the PNG. The images depicted in Fig.5.3b, Fig.5.4b, and Fig.5.5b are

5.4 Results and Analysis 105

(a) An image from the NeT2I algorithm (b) A tiled image from the encoding
algorithm of [1]

Fig. 5.4 A Visual Comparison of the Images for UNSW NB-15 Dataset

(a) An image from the NeT2I algorithm (b) A tiled image from the encoding
algorithm of [1]

Fig. 5.5 A Visual Comparison of the Images for InSDN Dataset

generated from the algorithm presented in [1]. These images are comprised of both x and y
coordinates used to describe a tiled image for each feature present in the network traffic file.

5.4.2 Computational Complexity

Tables 5.5, 5.6, and 5.7 present the time of execution, CPU utilisation and memory utilisation
of the NeT2I and I2NeT algorithms and the encoding and decoding algorithms used in [1]. A
screenshot of the NeT2I execution has been depicted in Fig. 5.6.

Time for Execution

As the number of images remained uniform throughout, we formulated execution time per
image, based on the total execution time, since our task of image creation from network traffic
remains an Aperiodic Task [201]. From the collected results shown in Tables 5.5, 5.6, and 5.7
the NeT2I and I2NeT algorithms resulted in a smaller total execution time than the encoding
and decoding algorithms of [1] for the same dataset which produced a reduction from 28s

106 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

Fig. 5.6 Computational Complexity (time, CPU, and RAM) during NeT2I

to 10s (5G Dataset), 27s to 6s (UNSW NB-15 Dataset), and 30s to 10s (InSDN Dataset)
(encoding algorithm of [1] and NeT2I) for both malicious and non-malicious traffic. The
decoding algorithm of [1] and I2NeT, utilised 28s and 6s (5G Dataset), 29s and 7s (UNSW
NB-15 Dataset), and 30s and 6s (InSDN Dataset) for malicious traffic and for non-malicious
traffic, respectively.

CPU Utilisation

Given the global interpreter lock and single-threaded execution of Python code, we observe
that the code, irrespective of the algorithm (NeT2I, I2NeT, encoding and decoding algorithm
of [1]) used 100% of the CPU resources per image, however, the NeT2I and I2NeT algorithms
utilised the CPU for a smaller window as seen in the total execution time in Tables 5.5, 5.6,
and 5.7. The same observations were made across all three datasets.

5.4 Results and Analysis 107

Memory Utilisation

NeT2I utilised 20.2% of memory while the encoding algorithm of [1] utilised 27% memory.
During the decode stage, I2NeT utilised 21% memory while the decoding algorithm of
[1] utilised 28% of memory for the 5G dataset as described by Table 5.5. 19% and 28%
of memory utilisation was recorded by NeT2I and encoding of [1], and 20% and 29% of
memory for the I2NeT and decoding of [1], respectively, for the UNSW NB-15 dataset.
InSDN dataset recorded 20.8% and 29.4% for NeT2I and encoding of [1], whilst the I2NeT
and decoding of [1] recorded 20% and 29.8% of memory utilisation.

 0.98

 0.985

 0.99

 0.995

 1

50 100 150 200 250 300 350 400 450 500

A
cc

ur
ac

y

Epoc

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(a) Accuracy - Different epocs

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

50 100 150 200 250 300 350 400 450 500

Lo
ss

Epoc

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(b) Loss - Different epocs

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

25 50 100 125 200 250 500 625 1000 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Training Average accuracy
Validation Average accuracy

Training Average accuracy
Validation Average accuracy

(c) Accuracy - Different batch sizes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

25 50 100 125 200 250 500 625 1000 1250

A
ve

ra
ge

 L
os

s

Batch Size

Training Average loss
Testing Average loss

Training Average loss
Testing Average loss

(d) Loss - Different batch sizes

Fig. 5.7 Training and Validation Data from NeT2I algorithm from the CNN for the 5G
Dataset

To establish the optimal batch size, divisors that can evenly divide the number of images
in both the training and testing dataset were chosen, i.e: 50, 100, 125, 250, 500, 625 and
1250. In order to determine the most accurate epoch, values between 50, 100, 150, 200,
250, 300, 350, 400, 450 and 500 were chosen. The batch size and the epoch with the lowest
amount of loss (a scalar value that compares the target and predicted values) and the highest
accuracy rate were identified as optimal values. Upon completion of successful execution
under the aforementioned batch sizes and epoch, for both datasets, CNN3L performed with

108 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 A
cc

ur
ac

y

Epoch

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(a) Accuracy - Different epocs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 L
os

s

Epoch

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(b) Loss - Different epocs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

25 50 100 125 200 250 500 625 1000 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(c) Accuracy - Different batch sizes

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

25 50 100 125 200 250 500 625 1000 1250

A
ve

ra
ge

 L
os

s

Batch Size

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(d) Loss - Different batch sizes

Fig. 5.8 Training and Validation Data from encoding algorithm [1] from the CNN for the 5G
Dataset

significant results (high accuracy and low loss) when the batch size was 250 and the epoch
was set to 100.

Optimal batch size and epoch for 5G Dataset

Fig. 5.7 present the average accuracy and loss collated for the various execution of CNN3L,
to determine the optimal batch size and epoch, for the images generated from the 5G
dataset, employing NeT2I. When the epoch value was incremented, the loss of training and
information leakage [202], caused the average accuracy and the average loss to deviate from
the optimal state. Figs. 5.7a and 5.7b, recorded that the CNN3L algorithm is at its optimal
performance when the epoch value is at 100. Similarly, Figs. 5.7c and 5.7d, highlighted that
the batch size 250 recorded the highest accuracy and the lowest loss for the CNN3L.

Fig. 5.8 present the results related to batch sizes and epoch when images were created
from the encoding algorithm employed by [1]. Fig. 5.8a and 5.8b the highest accuracy and
the lowest loss when the epoch value was at 100. Fig. 5.8c and Fig. 5.8d, present the data
collated for different batch sizes of images sent to the algorithm for training and validation.
The batch size 250 performed with the lowest loss and the highest accuracy.

5.4 Results and Analysis 109

 0.6

 0.7

 0.8

 0.9

 1

 1.1

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 A
cc

ur
ac

y

Epoch

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(a) Accuracy - Different epocs

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 L
os

s

Epoch

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(b) Loss - Different epocs

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

50 100 125 250 500 625 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
 Average Validation Accuracy

(c) Accuracy - Different batch sizes

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

50 100 125 250 500 625 1250

A
ve

ra
ge

 L
os

s

Batch Size

Average Training Loss
Average Validation Loss

Average Training Loss
 Average Validation Loss

(d) Loss - Different batch sizes

Fig. 5.9 Training and Validation Data from NeT2I algorithm from the CNN for the UNSW
NB-15 Dataset

Optimal batch size and epoch for UNSW NB-15

Fig. 5.9 present the average accuracy and loss collated for the various executions of the
CNN3L algorithm in order to determine the optimal batch size and the epoch, for the images
created from the UNSW NB-15 dataset. In this iteration, the images were created using the
NeT2I algorithm. By careful observation of Fig. 5.9a and Fig. 5.9b, epoch 100 performed
the highest accuracy and the lowest loss. Fig. 5.9c and Fig. 5.9d, present the data collated for
different batch sizes of images sent to the algorithm for training and validation. The batch
size 250 performed with the lowest loss and the highest accuracy. As these two parameters
(batch size and epoch) have to be decided from the initial experiment, we ran batch size
experiments first with the epoch set as 100. Upon selecting the optimal batch size, we ran
experiments pertaining to deciding the optimal epoch.

Fig. 5.10 present the results related to batch sizes and epoch when the images were
created from the encoding algorithm employed by [1]. The number 100 was chosen for the
epoch as the optimal value since that iteration of execution resulted in the lowest loss and
highest accuracy. Fig. 5.10a and Fig. 5.10b present this result. Similarly, the optimal batch

110 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 A
cc

ur
ac

y

Epoch

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(a) Accuracy - Different epocs

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 L
os

s

Epoch

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(b) Loss - Different epocs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

50 100 125 250 500 625 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
 Average Validation Accuracy

(c) Accuracy - Different batch sizes

 0.1

 0.15

 0.2

 0.25

 0.3

50 100 125 250 500 625 1250

A
ve

ra
ge

 L
os

s

Batch Size

Average Training Loss
Average Validation Loss

Average Training Loss
 Average Validation Loss

(d) Loss - Different batch sizes

Fig. 5.10 Training and Validation Data from encoding algorithm of [1] from the CNN for the
UNSW NB-15 Dataset

size was chosen as 250 for the images created from the UNSW NB-15 dataset when the
encoding algorithm of [1] was employed. Fig. 5.10c and Fig. 5.10d present this result.

Optimal batch size and epoch for InSDN

Similar to the UNSW NB-15 dataset, optimal values for batch sizes and epoch were also
chosen for the images derived from the InSDN dataset. Images generated from both the
NeT2I and encoding of [1] were used.

Fig. 5.11 presents the data collated for the experiments pertaining to both batch size and
epoch for images generated from the NeT2I algorithm. Fig. 5.11a present the accuracy while
Fig. 5.11b present the loss for different epoch. Accuracy and loss recorded their optimal
values when the CNN3L algorithm was executed for 100 epoch. Fig. 5.11c and Fig. 5.11d
present the optimal batch size as 250. The CNN3L produced the lowest loss and the highest
accuracy when the batch size was set to 250 and epoch to 100.

Fig. 5.12 present the data for the images generated from the encoding algorithm of [1]
when used in CNN3L algorithm. Similar to previous instances, batch size and the epoch were
evaluated by employing the previously mentioned divisors. Fig. 5.12a and Fig. 5.12b present
the accuracy and loss for different epoch. The epoch 100 was chosen as the optimal value

5.4 Results and Analysis 111

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Average Training Accuracy

Average Validation Accuracy
Average Training Accuracy

Average Validation Accuracy

50 100 150 200 250 300 350 400 450 500

Epoch

A
v
e
ra

g
e
 A

cc
u
ra

cy

(a) Accuracy - Different epocs

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Average Training Loss

Average Validation Loss
Average Training Loss

Average Validation Loss

50 100 150 200 250 300 350 400 450 500

Epoch

A
v
e
ra

g
e
 L

o
ss

(b) Loss - Different epocs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

50 100 125 250 500 625 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(c) Accuracy - Different batch sizes

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

50 100 125 250 500 625 1250

A
ve

ra
ge

 L
os

s

Batch Size

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(d) Loss - Different batch sizes

Fig. 5.11 Training and Validation Data from NeT2I algorithm from the CNN3L for the
InSDN Dataset

since CNN3L registered the lowest loss and the highest accuracy. Fig. 5.12c, and Fig. 5.12d
present that the batch size 250 was the optimal for the images generated from [1] encoding
algorithm when applied to the CNN3L algorithm. The optimal values employed for training
and testing CNN3L have been presented in Table 5.8.

5.4.3 Training and Validation

Figs. 5.14a, 5.14b, 5.15a, 5.15b, 5.16a, and 5.16b present the accuracy and loss acquired
from training and validation of the CNN3L algorithm with the optimal batch size and epoch
for the 5G dataset, UNSW NB-15 dataset and InSDN dataset respectively. Lines depicted in
blue and green, present the accuracy and loss for the CNN3L algorithm created using NeT2I.
Similarly, the lines depicted in the red and black present the accuracy and loss created using
the encoding algorithm from [1].

By using the configurations available in Table 5.8, a minimised loss was recorded with
high accuracy. By observing lines of blue, green, red and black in Figs. 5.14a, 5.14b, 5.15a,
5.15b, 5.16a, and 5.16b, we can state that our model had minimal overfitting given the
marginal difference between training and validation lines for both accuracy and loss. For the

112 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

Average Training Accuracy

Average Validation Accuracy
Average Training Accuracy

Average Validation Accuracy

50 100 150 200 250 300 350 400 450 500

Epoch

A
v
e
ra

g
e
 A

cc
u
ra

cy

(a) Accuracy - Different epocs

0.14

0.12

0.1

Average Training Loss

Average Validation Loss
Average Training Loss

Average Validation Loss

0.08

0.06

0.04

0.02

0
50 100 150 200

250

300

350

400

450

500

Epoch

A
v
e
ra

g
e
 L

o
ss

(b) Loss - Different epocs

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

50 100 125 250 500 625 1250

A
ve

ra
ge

 A
cc

ur
ac

y

Batch Size

Average Training Accuracy
Average Validation Accuracy

Average Training Accuracy
Average Validation Accuracy

(c) Accuracy - Different batch sizes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

50 100 125 250 500 625 1250

A
ve

ra
ge

 L
os

s

Batch Size

Average Training Loss
Average Validation Loss

Average Training Loss
Average Validation Loss

(d) Loss - Different batch sizes

Fig. 5.12 Training and Validation Data from encoding algorithm of [1] from the CNN3L for
the InSDN Dataset

5G dataset, observing epoch 80 in (Fig. 5.14a), which recorded an accuracy of 0.9669 and
0.9671, meant that the model didn’t experience overfitting. We can also state that our model
reached a stable performance state after epoch 80 for the UNSW NB-15 dataset, by observing
the slope for accuracy (Fig. 5.15a) and loss (Fig. 5.15b) during training and validation. Upon
reaching a stable performance state, our model continued to show a minimum difference
between training and validation (at epoch 80 for NeT2I + CNN3L training and validation
values were 0.964050026 and 0.965800018), suggesting that our model did not experience
much overfitting.

Corresponding configurations in Table 5.8 were used once more to the CNN3L algorithm
to the images derived from the InSDN dataset. Recorded minimal loss and high accuracy
can be observed in Fig. 5.16a and Fig. 5.16b. Another observation that we can make is
that similar to the previous model, this iteration too experienced minimal overfitting. This
can be noticed by the marginal difference between training and validation lines for both
accuracy and loss. Furthermore, our model during the underpinned experiment experienced
a stable state after epoch 60, by observing the slope for accuracy (Fig. 5.16a) and loss
(Fig. 5.16b) during training and validation. Upon reaching a stable performance state, our
model continued to show a minimum difference between training and validation (at epoch 60

5.4 Results and Analysis 113

Variable Parameter
Convolutional2D 3 Layers
MaxPooling 3 Layers
Activation Sigmoid
Optimiser Function RMSprop
Batch Sizes 250
Epoch 100
Kernel Size 3*3
Loss Function Binary Cross Entropy
Output classes 2

Table 5.8 Specification of the CNN3L Algorithm

Fig. 5.13 Training and Testing the CNN3L using optimal specifications as per Table 5.8.

114 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

for NeT2I + CNN3L training and validation values were 0.995850027 and 0.996200025)
whilst the difference between training and validation loss were 0.01306867,0.010818329,
suggesting that our model did not experience much overfitting.

The accuracy of the CNN3L model has been presented in Fig. 5.15a for both NeT2I
+ CNN3L and the encoding algorithm of [1] + CNN3L where the images were generated
from the UNSW NB-15 dataset. The former (NeT2I + CNN3L) outperformed the latter
with an average of 95% and 97% whereas the latter (encoding algorithm of [1] + CNN3L)
produced an average of 86% and 88% for training and validation accuracy. This supports
our claim that using NeT2I to create the images leads to greater accuracy with the CNN3L
model during training and validation. As loss is the summation of errors in the model during
training and validation, the model trained and tested using the NeT2I images resulted in a
lower loss compared to the encoding algorithm of [1] as seen in Fig. 5.15b created using the
NeT2I resulted in a lower averaged loss of 6% and 5% during training and testing whereas
the image dataset from the encoding algorithm of [1] resulted an averaged loss of 18% and
17% during training and validation, thus highlighting that the NeT2I + CNN3L outperformed
the encoding algorithm of [1] + CNN3L in both accuracy and loss.

The accuracy and loss in both training and validation for the CNN3L algorithm from the
images derived from the InSDN dataset have been represented in Fig. 5.16a and Fig. 5.16b
for both NeT2I + CNN3L and the encoding algorithm of [1] + CNN3L. The former (NeT2I
+ CNN3L) outperformed the latter with an average of 96% and 97% whereas the latter
(encoding algorithm of [1] + CNN3L) produced an average of 90% and 91% for training
and validation accuracy. This supports our claim that using NeT2I to create the images
leads to greater accuracy with the CNN3L model during training and validation. As seen in
Fig. 5.16b created using the NeT2I resulted in a lower averaged loss of 4% and 6% during
training and testing whereas the image dataset from the encoding algorithm of [1] resulted in
an averaged loss of 19 % and 18 % during training and validation, thus highlighting that the
NeT2I + CNN3L outperformed the encoding algorithm of [1] + CNN3L in both accuracy
and loss across both UNSW NB-15 and InSDN datasets.

5.4.4 Evaluation of Detection

Algorithm Accuracy Prediction Recall F1-Score
NeT2I + CNN3L 0.97 0.96 0.97 0.96
Encoding of [1]
+ CNN3L 0.91 0.9 0.92 0.91

Table 5.9 Confusion Matrix of the Detection Algorithm for the 5G dataset.

5.4 Results and Analysis 115

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

A
cc

ur
ac

y

Epocs

Training Accuracy - NeT2I + CNN3L
Validation Accuracy - NeT2I + CNN3L

Training Accuracy - Encoding of [1] + CNN3L
Validation Accuracy - Encoding of [1] + CNN3L

(a) Training and Validation Accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

Lo
ss

Accuracy

Training Loss - NeT2I + CNN3L
Validation Loss - NeT2I + CNN3L

Training Loss - Encoding of [1] + CNN3L
Validation Loss - Encoding of [1] + CNN3L

(b) Training and Validation Loss

Fig. 5.14 Training and Validation Data from the Proposed 5G dataset using NeT2I and
encoding of [1]

116 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Accuracy

Training Accuracy - NeT2I + CNN3L
Validation Accuracy - NeT2I + CNN3L

Training Accuracy - Encoding of [1] + CNN3L
Validation Accuracy - Encoding of [1] + CNN3L

(a) Training and Validation Accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

Lo
ss

Accuracy

Training Loss- NeT2I + CNN3L
Validation Loss - NeT2I + CNN3L

Training Loss - Encoding of [1] + CNN3L
Validation Loss - Encoding of [1] + CNN3L

(b) Training and Validation Loss

Fig. 5.15 Training and Validation Data from the UNSW NB-15 dataset

5.4 Results and Analysis 117

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Accuracy

Training Accuracy - NeT2I + CNN3L
Validation Accuracy - NeT2I + CNN3L

Training Accuracy - Encoding of [1] + CNN3L
Validation Accuracy - Encoding of [1] + CNN3L

(a) Training and Validation Accuracy

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Accuracy

Training Accuracy - NeT2I + CNN3L
Validation Accuracy - NeT2I + CNN3L

Training Accuracy - Encoding of [1] + CNN3L
Validation Accuracy - Encoding of [1] + CNN3L

(b) Training and Validation Loss

Fig. 5.16 Training and Validation Data from the InSDN dataset

118 New Algorithms for the Detection of Malicious Traffic in 5G-MEC

Algorithm Accuracy Prediction Recall F1-Score
NeT2I + CNN3L 0.96 0.95 0.97 0.95
Encoding of [1]
+ CNN3L 0.89 0.9 0.89 0.89

Table 5.10 Confusion Matrix of the Detection Algorithm for the UNSW NB-15 Dataset.

Algorithm Accuracy Prediction Recall F1-Score
NeT2I + CNN3L 0.96 0.95 0.97 0.95
Encoding of [1]
+ CNN3L 0.93 0.92 0.91 0.9

Table 5.11 Confusion Matrix of the Detection Algorithm for the InSDN Dataset.

The results of our experiments are shown in Tables 5.9, 5.10, and 5.11. The employment
of the NeT2I algorithm and the CNN3L algorithm, achieved a higher accuracy in comparison
to the encoding mechanism employed by the authors in [1] and the CNN3L algorithm. The
applied methodologies of detecting malicious traffic for the 5G dataset with a detection rate
of 97% for the NeT2I and CNN3L with 91% for the encoding of [1] and CNN3L for the same
features. UNSW dataset with the same 11 features as [1] has resulted in a higher detection
rate of 96% from NeT2I algorithm + CNN3L and 89% from encoding from [1] + CNN3L
respectively. Similarly, the InSDN dataset recorded an accuracy of 96% and 93% for NeT2I
+ CNN3L, as opposed to the encoding of [1] + CNN3L. We compared these results with
those produced by other methodologies, for example, 47.19% in [203], binary classification
in ML (linear regression (74.3%), Naive Bayes (77.3%), k Nearest Neighbour (81%) and
radial basis function in support vector machine (65.3%)) and deep neural network (80.1%) in
[204] 37.15% in [205], and 81.42% [206].

NeT2I + CNN3L achieved 95%, 97% and 95% respectively for prediction, Recall and
F1-Score while encoding from [1] + CNN3L achieved 90%, 89% and 89% respectively.
As achieving a 100% accuracy would signify an overfitting of data in neural networks, the
achieved 96% can be considered as having achieved cross-validation in our methodology due
to augmentation and increase of varied training data [207].

5.5 Chapter Summary

In this chapter, we developed and presented a new method to encode network traffic into RGB
images with less computation against a well-established method of encoding. We conducted
this research to advance the security of the 5G-MEC infrastructure by employing an effective

5.5 Chapter Summary 119

IDS based on CNN with low resource utilisation. Next chapter we aim to implement the
NeT2I, encoding of [1], and CNN3L algorithms in the 5G-MEC mobile telecommunication
testbed, that we discussed in Chapter 4, where aim to answer our final research question: How
do we apply DL in real-time to intrusion detection in 5G-MEC mobile telecommunication
testbed?

Chapter 6

Real-Time Application of Deep Learning
Intrusion Detection in 5G-MEC

6.1 Overview

This chapter presents a new Network Intrusion Detection System (NIDS) employing the
algorithms (NeT2I, CNN3L, and I2NeT) presented in Chapter 5. The new NIDS has been
launched in a 5G-Multi-Access Edge Computing (MEC) Mobile Telecommunication Testbed
(Chapter 4) in real-time. We evaluate the proposed NIDS in terms of its computational
complexity in for example: time, memory and CPU utilisation for the signature-detection,
encoding and decoding algorithms, and its accuracy and loss during training and detection.

6.2 Introduction

Multi-Access Edge Computing (MEC) and its respective methods of deployment have been
presented in [2, 208] and as awareness and interest in 5G-MEC has grown within academia
and industry, research based on resource allocation, energy awareness and network slicing has
also grown [209]. Despite the popularity of research in the field of NIDS technology, many
applications remain based on signature-based methodologies for the detection of malicious
traffic [4, 89–91]. Due to the increased volume of network data, lack of in-depth monitoring
and granularity, as well as the diverse range of data types and protocols [4, 93] in a 5G mobile
network, traditional signature-based NIDS systems may be less effective [94, 95].

As demonstrated in [120, 121], a signature-based NIDS can perform better when
combined with an intelligent agent (Machine Learning or Deep Learning). However, a
bottleneck for the application of ML to NIDS problems is created by the inability to handle

122 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

Experiments
RQ4: Real-time Implementation of Intrusion Detection

in the 5G Mobile Telecommunication Testbed
1. Study of the existing hypothetical two-staged IDSs
2. Study of network traffic collection techniques
3. Implement a signature detection algorithm
4. Incorporate encoding algorithm after signature detection
5. Evaluate the computational complexity
of the encoding algorithm against literature
6. Link Google Colab
7. Apply the Confusion Matrix

Table 6.1 Experiments undertaken in this Chapter

data with higher dimensions, the associated time overhead in training, the need for large
amounts of limited dimensional data, the labour-intensive process of identifying relevant
data, and the heterogeneity of 5G data [4, 95]. Authors at [89, 124] reviewed the latest
advancements in NIDS using ML/DL approaches in which the authors state that the DL
techniques have received the most attention from both industry and academia. Hence we
apply a DL approach towards the detection of malicious traffic in real-time.

Our research is focused towards securing the MEC architecture at the edge of the network,
hence algorithms will be bound by the computational complexity (RAM, CPU and time
complexity) since the MEC architecture will inherently possess low processing power. Based
on the literature, we proposed a multi-stage Real-Time Deep Leaning Network Intrusion
Detection System (RTDL-NIDS), developed by conducting the following experiments,
mentioned in Table 6.1.

6.3 Real-Time Deep Leaning Network Intrusion Detection
System (RTDL-NIDS)

The proposed NIDS: Real-Time Deep Learning Network Intrusion Detection System (RTDL-
NIDS) is illustrated in Fig. 6.1, launched in the 5G-MEC mobile telecommunication testbed
[152], as depicted in Fig. 6.4. The RTDL-NIDS has been implemented as a soft real-time
application for intrusion detection. This is due to its execution on general-purpose hardware
and the limited resource availability [210] that is expected to have on MEC nodes. The
deadline of execution is also set by the user to accommodate different traffic volumes, which
addendum to the soft real-time execution. The testbed encompasses components of the Radio

6.3 Real-Time Deep Leaning Network Intrusion Detection System (RTDL-NIDS) 123

5G-SiD

NeT2I

CNN3L

I2NeT

CSV of Malicious Traffic

5G – MEC Mobile Telecommunication
Testbed

R
TD

L-
N

ID
S

St
ag

e
-I

I
St

ag
e

-I

Fig. 6.1 Real-Time Deep Leaning Network Intrusion Detection System (RTDL-NIDS)

Access Network (RAN), Core Network (CN), MEC Network, and User Equipment (UE).
The NIDS is launched in the MEC-IDS node, where real-time, low-computational signature
detection is carried out, followed by the employment of algorithms capable of data encoding
and detection using a DL agent that we developed in Chapter 5.

6.3.1 Stage-I

The RTDL-NIDS has two stages. Stage-I employs three algorithms. They are 5G-Signature
Detection algorithm (5G-SiD), NeT2I from Chapter: 5.2.1, and Fuse_Google_Drive.

Stage-I: 5G-Signature Detection algorithm (5G-SiD)

The 5G-SiD algorithm functions in the following manner.

• MEC-IDS node stores 5G-SiD and listens to the traffic for the MEC-UDP and captures
using PyShark [211] and this is the input to 5G-SiD.

• Captured pcapng file is processed into a CSV file.

124 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

• Resulting CSV file from the previous step, undergoes several Py functions and conducts
a signature-detection and labelling of network traffic occurs.

• Produces an output CSV, containing suspicious network traffic.

Stage I: NeT2I

NeT2I from Chapter: 5.2.1 functions in the following manner:

• NeT2I reads the CSV file generated from 5G-SiD.

• NeT2I Converts integer and string values to RGB format

• RGB values are used to generate images

• Save PNG images

Stage I: Algorithm : Fuse_Google_Drive

Fuse_Google_Drive functions in the following manner:

• Link Google Drive and local file system

• Upload the PNG images from NeT2I to Google Drive for the Google Collaboratory to
access.

This concludes Stage I.

6.3.2 Stage II

Stage II includes two algorithms. They are CNN3L and I2NeT from Chapter: 5.2.2.

Stage II: CNN3L

CNN3L from Chapter: 5.2.3 functions in the following manner:

• CNN3L reads a designated folder in Google Drive

• Uploads the images generated via NeT2I

• Classifies traffic between malicious and non_malicious.

6.4 5G-MEC Signature Detection (5G-SiD Algorithm) 125

Stage II: I2NeT

I2NeT from Chapter: 5.2.2 functions in the following manner:

• Reads the images

• Translates images to RGB format

• Maps RGB values to network features

• Generate a CSV file

Upon successful generation of the output CSV from I2NeT, and from the images which
were classified as malicious from the CNN3L, we can gather information about malicious
sources. In the next section, we will present a detailed explanation of the developed 5G-SiD
algorithm, which helps us conduct quick signature detection.

6.4 5G-MEC Signature Detection (5G-SiD Algorithm)

The pseudo-code in Algorithm 4:5G-MEC Signature Detection Algorithm (5G-SiD),
describes the steps involved in the new signature detection algorithm. We chose a signature
detection algorithm to be implemented at the initial stage of detection, considering the
following rationale.

1. Resource Efficiency: Signature detection mechanisms are computationally effective
as they compare the system against a collection of known threats. This mechanism of
signature detection has been corroborated by authors where devices have constraints
on resources [7] and energy [118]. Implementation of a Signature-based detection
system for intrusion detection alleviates the need to provide dedicated edge nodes with
higher computational power.

2. Low False Positive rate: The research presented by authors in [109, 110] highlights
the effectiveness of the application of signature detection towards intrusion detection
problem, towards the identification of known threats. With the effective management
of signatures, the system can be optimised to detect malicious intent.

3. Quick Response: Research presented by [111, 112] highlight the quick response
time for detection or prevention generated by the intrusion detection systems that are
categorised as signature detectors. The ease of matching signatures against a database,
and the lack of observing baseline statistics have paved the way towards this outcome.

126 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

4. Ease of Management: Research by authors in [111, 112, 116] highlight the ease
of including new signatures to detect into the respective signature-based intrusion
detection system. Through effective management of the signatures to match, the IDS
can efficiently detect malicious intent.

The 5G-SiD algorithm was developed considering the above nationalities. The
computational complexity of the algorithm was monitored during development and execution.
This was carried out to ensure that the algorithm maintain a low computational requirement.
The 5G-SiD provided a quick response time with a higher accuracy when malicious traffic
was present in the network. Also, as per [7, 66], a quick detection in the initial stage of
intrusion detection is crucial to maintain stringent performance requirements for future
networks. The py function, responsible for matching new signatures, was developed with
ease of management in mind, particularly for including new signatures to match.

The 5G-SiD conducts signature detection in the following manner. Dedicated Py functions
calculate the variance of source/destination port variations and packet size to detect malicious
attacks such as DoS, DDoS, and port scan. Similarly, another Py function inspects ws.col.Info
for certain flags (ACK, RST-ACK) that have been set in the network traffic, to detect SYN
flood attacks. The detection in Stage-I, alleviates the computational workload for the CNN-
based algorithm (CNN3L), leaving the detection time for malicious network traffic, reduced.
Feature extrapolation has been described in Table 6.2.

Protocol Features Extrapolated

ICMP frame.number ip.src eth.src ip.dst ip.proto frame.len ws.col.Info

TCP frame.number ip.src eth.src ip.dst ip.proto
tcp.dstport
tcp.srcport

tcp.window size value
frame.len
ws.col.Info

UDP frame.number ip.src eth.src ip.dst ip.proto
udp.dstport
udp.srcport

udp.length
ws.col.Info

SSH frame.number ip.src eth.src ip.dst ip.proto
tcp.dstport
tcp.srcport

ssh.packet.length
frame.len
ws.col.Info

SCTP frame.number ip.src eth.src ip.dst ip.proto
sctp.srcport
sctp.dstport

sctp.port
frame.len
ws.col.Info

ARP frame.number arp.src.proto.ipv4 eth.src arp.dst.proto.ipv4 arp.isprobe frame.len ws.col.Info
GTP
(TCP/
UDP/
ICMP)

frame.number ip.src eth.src ip.dst ip.proto
dstport
srcport

tcp.window size value
frame.len
length
ws.col.Info

Table 6.2 Collected Features and Flags from the Network Traffic

The functions in the 5G-SiD algorithm are described in detail below.

1. Initiate PyShark: Upon initialisation of the RTDL-NIDS, PyShark listens and captures
network traffic to a pcapng file for a defined period of time. In Algorithm 4: line 3,

6.4 5G-MEC Signature Detection (5G-SiD Algorithm) 127

Algorithm 4: 5G-Signature Detection Algorithm (5G-SiD)
Input: Network Traffic

1 while SIGINT == FALSE do
2 Function Initiate PyShark():
3 Collect for n seconds
4 SSH .pcapng to MEC:IDS

5 Function Segregate Traffic():
6 Filter Traffic using TShark
7 Generate a CSV

8 Function Label Traffic():
9 while ReadCSV do

10 Function Check Packet Size():
11 Result ≡ Equation 6.1

/* See Equation 6.1 */
12 if Result ≡1 then
13 Write Label_1≡ Int(1)

14 else
15 Write Label_1≡ Int(0)

16 Function cal_Src_Port_Variation ():
17 for 3 lines in Source_Column do
18 Variation ≡ Equation 6.2

/* See Equation 6.2 */
19 if Variation ≡ 1 then
20 Write Label_2≡ Int(1)

21 else
22 Write Label_2≡ Int(0)

23 Function cal_Dest_Port_Variation():
24 for 3 lines in Dest_Column do
25 Variation ≡ Equation 6.3

/* See Equation 6.3 */
26 if Variation ≡ 1 then
27 Write Label_3≡ Int(1)

28 else
29 Write Label_3≡ Int(0)

30 Function Check_Flags():
31 Result ≡ Equation 6.4

/* See Equation 6.4 */
32 if Result ≡ 1 then
33 Write Label_4≡ Int(1)

34 else
35 Write Label_4≡ Int(0)

36 Function Additional Rules():
/* Insert Additional Rules to detect Signatures */

37 Function Write Label_5():
38 Result ≡ Equation 6.5

/* See Equation 6.5 */
39 if Result ≡ 1 then
40 Write Label_5≡ Int(1)

41 else
42 Write Label_5≡ Int(0)

43 Return CSV

44 System Shutdown

128 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

collects network traffic for n number of seconds, which the user can define to facilitate
a soft real-time execution. We ran our algorithm continuously to collect network
traffic in 10s intervals. In the testbed illustrated in Fig.6.4, the algorithm listens to the
interface on the BMv2 switch connecting CN and RAN, to bring the detection as close
as possible to the source.

2. Traffic Segregation and reorder: Upon collection of a large pcapng file, network
traffic was segregated based on the protocol and was ordered accordingly. The primary
reason behind this was to apply a function at a later stage that can detect variations of
source and destination port numbers. Upon filtering the traffic, another Py function
converts the collected pcapng file into a CSV file with information such as flow ID,
source IP, source MAC, destination IP, source port, destination port, protocol number,
packet length and information column. Based on the above fields, traffic labelling is
conducted by successor functions.

3. Traffic Labelling: For detection which is faster with quick and efficient processing
of network packets, we employed a signature-based IDS system, due to the resource
limitation in MEC nodes. Following is the description of the nested functions.

4. Check Packet Size: In the predecessor function, we omitted the traffic that was
generated via the USRP device towards the RAN. Given this exclusion, packets
exceeding the standard size may be due to a network intrusion. Also, network packets
with 0 size will also be due to malicious intent. Hence, we employ a function that can
create a label for this type of traffic upon reading the CSV file. We used the integer 1
for label_1 for traffic with packet size exceeding 1500 or packets with size registered
as 0.

label_1 =

1 if (Packet_size > 1500) || (Packet_size = 0)

0 otherwise
(6.1)

5. Calculate Source Port Variations:

label_2 =

1 if
(

3n
∑

i=1

(SP(i)+SP(i+1)+SP(i+2))

3(SPi)

)
> 1

0 otherwise
(6.2)

For this function, we process the number of packets to the maximum multiple of 3.
The remaining 1 or 2 packets are left unprocessed and written to the output file directly.
This function is feasible since the assignment of port numbers is always in uniform

6.4 5G-MEC Signature Detection (5G-SiD Algorithm) 129

Fig. 6.2 Spoofed DDoS

increments of 1 or 2 [212]. Since a malicious user can create multiple connections to
the same destination as a means of a DoS or DDoS attack with or without spoofed IP
addresses, employing this function in Algorithm 4: 5G-Signature Detection Algorithm:
line 16 which encompasses the equation available in 6.2, will aid in identifying an
attack. Fig.6.2 depicts the Wireshark capture when a Spoofed DDoS scan attack is
being conducted by an adversary, to a UDP server at port 7788. The following example
which is derived from the Fig.6.2, assigns 1 to label_2.

label_2 =
(

3n
∑

i=1

(1105+1106+1107)
3∗1105

)
label_2 = 1.0009

label_2 = 1.0009 > 1
∴ label_2 = 1

In equation 6.2, i denotes the number of lines and SP denotes the source port number.
Integer 1 is assigned to label_2 if the calculated value is greater than 1, indicating that
the source port variations occurred, highlighting an attack is underway.

6. Calculate Destination Port Variations:

label_3 =

1 if
(

∑
(DP(i)+DP(i+1)+DP(i+2))

3(DPi)

)
> 1

0 otherwise
(6.3)

When a malicious user is initiating a port scan attack, the source IP and destination IP
will remain static whilst the destination port will increase continuously. Fig.6.3 depicts
a Wireshark capture when a port scan attack is underway. To detect a port scan attack,
we employed the equation available in 6.3 in Algorithm 4: 5G-Signature Detection:
line 23. Similar to the predecessor function if the calculated value is greater than 1, we
assigned integer 1 to the label_3. The example below which was derived from Fig.6.3,
label_3 is assigned with 1 to mark malicious activity of destination port variation.

130 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

Fig. 6.3 Port scan attack

label_3 =
(

3n
∑

i=1

(53344+53345+53346)
3∗53344

)
label_3 = 1.0000187

label_3 = 1.0000187 >1
∴ label_3 = 1

7. Check Flags:

As the final stage of signature detection, we employed a function capable of reading the
flags and information column on the traffic capture. The collated labels are mentioned
in Table 6.2 along with their respective traffic type. The function in Algorithm 4:
5G-Signature Detection: line 30, which encompasses the equation 6.4 will set label_4
to integer 1 if one or more of the criteria are met: i.e [RST, ACK], Ack=1 or Seq=1.

label_4 =

1 if (([RST, ACK = 1])||(Ack = 1)||(Seq = 1))

0 otherwise
(6.4)

Lastly, if any of the labels (label_1, label_2, label_3, or label_4) are set to integer 1, a
final label was created in the function Algorithm 4: 5G-Signature Detection: line 37 to
write integer 1 to label_5 using an OR operation as per the equation 6.5.

label_5 =

1 if ((label_1 = 1) || (label_2 = 1) || (label_3 = 1) || (label_4 = 1))

0 otherwise
(6.5)

Completion of the above functions will create a CSV file, which carries traffic that is
both malicious or susceptible to being detected as malicious. This CSV file serves as an
input to the NeT2I algorithm, which translates network traffic into PNG images with RGB
colours. The generated images are uploaded to the CNN3L function by the employment of
the Fuse_Google_Drive algorithm, which utilised the ocaml_fuse library [213] to link the
Google Drive to the local file system.

In the next section, we evaluate the RTDL-NIDS which encompasses the 5G-SiD, NeT2I,
CNN3L, and I2NeT.

6.5 Evaluation of the Proposed NIDS 131

Algorithm 5: Fuse_Google_Drive
Input: PNG
Output: Detection Results

1 Function Connect to Google Drive():
2 Google Drive ocamlfuse
3 while SIGINT == FALSE do
4 while ocamlfuse==True do
5 image counter = os.listdir()
6 for each image in (image counter) do
7 Upload _Images_To_CNN3L

8 System Shutdown

9 return Detection Results

6.5 Evaluation of the Proposed NIDS

6.5.1 5G-MEC Mobile Telecommunication Testbed

Infected
UE

 BMv2

MME HSS

SPGW-U

SGW-C

PGW-C

COTS UE

Infected
 UE

COTS UE

Attacker

Internet

 BMv2

eNBUSRP X310

Software
Defined RAN

MEC
Master

MEC - UDP

Radio Access Network

Core Network

MEC

MEC - IDS

Fig. 6.4 Real-Time 5G Testbed with MEC-IDS and CNN

132 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

UE Number Assignment Source IP address Spoofed IP address

UE 1 Non_Malicious 12.1.1.1 NA
UE 2 Non_Malicious 12.1.1.2 NA
UE 3 Non_Malicious 12.1.1.3 NA
UE 4 Non_Malicious 12.1.1.4 NA
UE 5 Non_Malicious 12.1.1.5 NA
UE 6 Non_Malicious 12.1.1.6 NA
UE 7 Malicious 12.1.1.7 10.0.0.80
UE 8 Malicious 12.1.1.8 10.0.0.81
UE 9 Malicious 12.1.1.9 192.168.20.23
UE 10 Malicious 12.1.1.10 172.168.10.32
UE 11 Malicious 12.1.1.11 172.168.10.33
UE 12 Malicious 12.1.1.12 172.168.10.34

Table 6.3 Assignment of UEs and IP addresses

The testbed in Chapter 4.2 has been expanded to accommodate RTDL-NIDS using CNN.
See Fig.6.4. The testbed consists of three main elements: Core network (CN), Radio Access
Network (RAN) and multi-access edge computing (MEC) deployment. RAN is denoted
by the purple area in Fig.6.4, CN is denoted by the blue cloud, and the MEC deployment
is depicted in yellow. The MEC architecture was instantiated using three UVT-Cloud
environments, the MEC-Master, the MEC-UDP and MEC-IDS. All three nodes have been
virtualized as UVT-Cloud environments running Ubuntu Bionic servers. Each node has
been instantiated with 2GB of RAM, 10GB of HDD and 1 CPU core. This is to reflect the
lightweight, low processing power, that MEC nodes possess. An iPerf UDP server has been
initiated on the MEC Client node with the bind option, for the UE’s to transfer UDP data.

MEC-IDS node listens to the network traffic of MEC-UDP. MEC-IDS node execute
the RTDL-NIDS as per the Fig.6.1. MEC-IDS node has been connected to the Google
Colaboratory environment. A prerequisite to the MEC-IDS is that the CNN3L has been
trained and tested, and the predict function is awaiting images for detection. Once the images
have been generated via the NeT2I, Google_Fuse_Drive algorithm uploads the images to the
Google Drive, for the predict function to access. This mechanism provides the realisation of
MEC, where services are launched in the Cloud as closest to the user. Since the CNN3L is
not launched locally, the algorithm can be used to detect malicious traffic in any location of
the MEC network.

Table 6.3 refers to the assignment of UEs and the IP addressing used for the purpose of
this experiment. Given the limitation of dongles, we virtualised each connected laptop to

6.5 Evaluation of the Proposed NIDS 133

Original
Network
Traffic

RTDL-NIDS NIDS of [1]

Flow ID ✓ ✓
Source IP ✓ Cyphered
Source MAC ✓ ×
Destination IP ✓ Cyphered
Source port ✓ ✓
Destination port ✓ ✓
Protocol number ✓ ✓
Packet length ✓ ✓
Acknowledgement ✓ ✓

Source
Port Change

Source
Port Change

Destination
Port Change

Destination
Port Change

Check Flags Check Flags
Label Label

Table 6.4 Features extrapolated for RTDL-NIDS and NIDS of [1]

host two Virtual Machines, totalling the number of connected devices to three in each laptop.
Hence we were able to connect 12 UEs to the testbed.

6.5.2 Existing Algorithms for Comparison

To evaluate the performance of the algorithms 5G-SiD, NeT2I, I2NeT, and CNN3L, we
would like to compare our IDS with an existing IDS. The IDS presented in [1] selected is a
recently published study selected, because of its use of 2D RGB images for network traffic,
with the application of CNN for the detection of malicious traffic and for its high accuracy.
The workflow of the proposed NIDS (RTDL-NIDS) and the NIDS of [1] can be found in
Fig.6.5.

1. Upon completion of the 5G-SiD, a cypher algorithm as per [1] was employed to encrypt
the source IP address and destination IP address. MAC address was dropped from the
list of features. This was done in order to be aligned with any other work, that may
employ a publicly available dataset since information pertaining to MAC addresses
is omitted. The extrapolated features and how they were applied in the RTDL-NIDS
against the NIDS of [1] can be found in Table 6.4.

134 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

5G-SiD

NeT2I

CNN3L

I2NeT

CSV of Malicious Traffic

5G – MEC Mobile
Telecommunication Testbed

R
TD

L-
N

ID
S

5G-
SiD+Cypher

Encoding
of [1]

CNN3L

Decoding of [1]

CSV of Malicious Traffic

5G – MEC Mobile
Telecommunication Testbed

R
TD

L-
N

ID
S

fr
o

m
 [

1
]

(a) Proposed NIDS (b) NIDS of [1]

St
ag

e
-I

St
ag

e
-I

St
ag

e
-I

I

St
ag

e
-I

I

Fig. 6.5 Workflow and algorithms for RTDL-NIDS and NIDS of [1]

2. NeT2I is compared with the encoding algorithm of [1]. Both transfer traffic data to
images for the detection of malicious traffic. The NeT2I algorithm produces one-
dimensional RGB images while the encoding of [1] generates tiled RGB images.

3. The CNN3L algorithm is used for both IDSs. Although a two-layer CNN is used in
[1], due to the recorded performance gain in employing three convolutional layers as
opposed to two layers [140], we employed, for comparative purposes CNN3L for both
IDSs.

4. The I2NeT algorithm was evaluated against the decoding algorithm of [1], although
not explicitly given in their work. This algorithm is capable of generating a CSV file
for the associated network traffic from a collection of tiled PNG images by reading the
pixel value of each tile in the image and mapping the value to its respective integer
value. Since the encoding algorithm of [1] masked the IP address of the source and
destination, a simple RGB to Integer function was employed to decode all tiles in the
image into a corresponding a CSV file.

6.5 Evaluation of the Proposed NIDS 135

6.5.3 Evaluation Metrics

Matrices for Detection

We evaluated our 5G-SiD algorithm based on the confusion matrix. As the computational
complexity is evaluated, the confusion matrix will provide a statistic with regard to its
applicability in detecting malicious attacks. Next, we evaluated the CNN3L algorithm based
on configurations, for example, convolutional layers, epochs and batch sizes, in order to
understand the percentage deviation that occurs in the accuracy of the detection algorithm
when different configurations are employed.

We considered evaluating our CNN3L algorithm in terms of overfitting. This occurs
when the CNN model performs with significant results for the training data and can not
perform well for the validation data. We evaluated overfitting by observing and calculating
the difference between training and validation lines for both accuracy and loss.

The following metrics [5] were used in terms of accuracy (A), precision (P), recall (R)
and F1-Score (F1) to evaluate the proposed CNN detection algorithm.

A =
T P+T N

T P+FP+T N +FN
(6.6)

P =
T P

T P+FP
(6.7)

R =
T P

T P+FN
(6.8)

F1 =
P∗R∗2

P+R
(6.9)

TP stands for the number of positively predicted attacks, FP stands for negatively
predicted attacks on non-malicious traffic, TN represents non-malicious traffic that was
correctly predicted as normal, and finally, FN stands for malicious traffic that was predicted
as normal.

Computational Complexity

For evaluating the RTDL-NIDS and the NIDS of [1], we compared the computational
complexity of each in terms of the time of execution, CPU and RAM. Since the MEC nodes
possess low resources, an algorithm that conducts a signature-based detection and converts
network traffic into images, with minimal resource utilisation will be advantageous.

• Time for execution

To accurately measure the execution time, we used the Python Time library. As
mentioned in reference [199], determining the exact execution time of a program is

136 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

crucial, as it is better than using a rough estimate. Variations in execution time can
impact performance and efficiency, which is particularly significant in low-resource
environments, such as in intrusion detection.

• CPU Utilisation

To measure CPU utilization, we used the Python psutil library to collect the percentage
of usage for the algorithm. Our code uses the standard single-threaded Python execution
with global interpreter lock, which means that the algorithms can only be executed
on one single CPU thread at a time. Given that our algorithms are expected to be
executed on an MEC node with limited processing capabilities, it is essential that they
effectively use the CPU resources for an optimal period of time.

• Memory Utilisation

As mentioned in reference [200], memory allocation is not as precise as CPU allocation
or usage. To determine memory allocation for our algorithms, we used the Python
library memory_profiler. Computer systems often over-allocate memory to a process
for efficient execution, and since garbage collection doesn’t happen immediately, an
average value for the memory allocation is used for comparison of performance.

6.6 Results and Analysis

We first present results pertaining to the testing of the RTDL-NIDS, and the encoded images
generated from the real-time network traffic in the 5G-MEC mobile telecommunication
testbed from the NeT2I and the encoding of [1]. Next, we present the computational
complexity accumulated from the 5G-SiD and 5G-SiD+Cypher. Lastly, we compare the new
RTDL-NIDS against the NIDS of [1], in terms of computational complexity and evaluation
of detection. We conclude this section with the results related to detection.

6.6.1 Testing the workflow of RTDL-NIDS

RTDL-NIDS Execution

Fig.6.6 presents screenshots while the RTDL-NIDS launched in the 5G-MEC mobile
telecommunication testbed which shows the continued execution of RTDL-NIDS. In the
given iteration, the 5G-SiD has classified 182 lines of network traffic as suspicious.

6.6 Results and Analysis 137

Fig. 6.6 RTDL-NIDS launched in MEC-IDS node

NeT2I Output

The same number of images (i.e., 182 images) has been created as shown in Fig.6.7, by the
execution of NeT2I. Fuse_Google_Drive has uploaded the images for the detection algorithm
launched in the Google Colab environment.

CNN3L Output

Fig.6.8 depicts the detection of CNN3L occurring in real-time. Fuse_Google_Drive uploads
the images generated from the NeT2I to the Google Drive for the CNN3L to access. Depicted
screenshot (Fig.6.8), shows that the images are being detected in real-time by the algorithm.

6.6.2 Comparison of Encoded Images

A visual representation of the images generated by the Net2I algorithm and the encoding
algorithm of [1], in the 5G-MEC mobile telecommunication testbed are presented in Fig.6.9.
The NeT2I algorithm generated the images depicted in Fig.6.9a, which consist of one-
dimensional horizontal lines with a variable x value and a fixed y value. Each line in the
generated PNG, encompasses a traffic feature where as an IP address is distributed amongst

138 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

Fig. 6.7 Execution of RTDL-NIDS launched in MEC-IDS node

four lines in the PNG. The images generated from the encoding algorithm of [1], which
consists of both x and y coordinates, have been represented in Fig. 6.9b.

6.6.3 Evaluation of Detection

The results of our experiments pertaining to the new signature detection algorithms are
shown in Tables 6.5, and 6.6. We first present the confusion matrix for the newly developed
signature detector, followed by the confusion matrix generated from the CNN3L algorithm
when applied in real-time to the 5G-MEC Mobile Telecommunication Testbed.

Signature Based Detection (5G-SiD) in Stage-I

The results from the signature-based detection with the application of 5G-SiD are shown in
Table 6.5. Table 6.5 presents the accuracy, precision, recall and F1 score for the malicious
attacks that we conducted in the 5G-MEC mobile telecommunication testbed. Our algorithm
performed with an accuracy of 85%, 82%, and 74% for port scan, TCP Syn Flood and
DDoS. Prediction, Recall and F1-score also showed 87%, 98% and 92% for the port scan
attack, whilst 85%, 96% and 91% for TCP SYN Floods, and 78%, 83% and 81% for the
DDoS attack. Thus suggesting that the port scan attack was more accurately detected by
our signature-based detection algorithm, than DDoS, or TCP SYN Floods. Given the nature
of signature detection, it is not feasible to detect malicious traffic with an absolute state of

6.6 Results and Analysis 139

Fig. 6.8 Images generated from NeT2I being uploaded to the CNN3L

140 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

(a) An image from the NeT2I algorithm (b) A tiled image from the encoding
algorithm of [1]

Fig. 6.9 A Visual Comparison of the Images for network traffic from the Testbed

Attack Type Accuracy Prediction Recall F1-Score
Port Scan 0.85 0.87 0.98 0.92
TCP SYN Flood 0.8 0.85 0.96 0.91
DDoS 0.74 0.78 0.83 0.81
Spoofed DDoS 0.74 0.78 0.83 0.81

Table 6.5 Confusion Matrix of the 5G-SiD in Stage-I Detection.

accuracy. Application of an anomaly detection algorithm may help in detecting attacks of
unknown signatures, however, given the resource requirement and false alarm rate generated
by such an algorithm, it is not viable to apply to a MEC architecture, since the nodes have
low processing capabilities [214]. As our RTDL-NIDS can be extended into recognising
more signatures by the introduction of additional rules, the application of a signature-based
detection algorithm is considered a viable solution to be employed in the edge. As per [66],
a quick detection with a lower accuracy at stage-I can be further improved with a higher
accuracy at stage-II using an intelligent agent.

CNN3L Based Detection in Stage-II

Similarly, the confusion matrices for the two CNN3L models have been presented in Table
6.6 for the data collected in the 5G testbed. The employment of the proposed RTDL-NIDS,
achieved a higher accuracy in comparison to the NIDS of [1]. The applied methodologies of
detecting malicious traffic for the traffic from the testbed with the same 11 features as [1]
has resulted in a higher detection rate of 97% from our proposed NIDS and 91% from the
comparison NIDS respectively. We compared these results with those produced by other
methodologies, for example, 47.19% in [203], binary classification in ML (linear regression
(74.3%), Naive Bayes (77.3%), k Nearest Neighbour (81%), radial basis function in support

6.6 Results and Analysis 141

vector machine (65.3%)) and an ensemble algorithm (97.2%) in [113] and deep neural
network (80.1%) in [204] 37.15% in [205], 81.42% [206] and 72.57% Recall in [158].

Algorithm Accuracy Prediction Recall F1-Score
Proposed IDS 0.97 0.96 0.97 0.96
NIDS of [1]
+ CNN3L 0.91 0.9 0.92 0.91

Table 6.6 Confusion Matrix of the CNN3L in Stage-II Detection.

Results pertaining to accuracy during training and validation have been depicted in Fig.
6.10. By observing the training and validation accuracy (Fig. 6.10a) for both RTDL-NIDS
and NIDS of [1], we can state that the CNN3L algorithm reached a steady state after epoch
70. Also, our model did not experience overfitting of data, as the validation accuracy curve
didn’t decrease. At epoch 70, acquired training and validation accuracy for the RTDL-NIDS
were 0.992950022, 0.994000018, and for the NIDS of [1] acquired training and validation
accuracy were 0.938750029, 0.942799995, respectively. Therefore, We can state that the
RTDL-NIDS achieved a higher training and validation accuracy as opposed to NIDS of [1].
Similarly, Fig.6.10b presents the accumulated loss during training and validation. RTDL-
NIDS recorded a lower loss compared to the NIDS of [1]. At epoch 70, the recorded loss
for RTDL-NIDS during training and validation were 0.029572723, 0.021679578 and for the
NIDS of [1], recorded loss during training and validation were 0.09036645, 0.101018724,
respectively.

6.6.4 Comparison of Computational Complexity

We next present the computation complexity for the two NIDS, as depicted in Fig. 6.5.
As the number of images being generated is arbitrary since it is based on the volume of
real-time network traffic present in the network, we present the computation complexity
with respect to the observed throughput in the network. We initially present the results for
the two signature detection mechanisms, 5G-SiD, and 5G-SiD+Cyhper, followed by the
computational complexity for the NeT2I and encoding of [1], when applied in the 5G-MEC
mobile telecommunication testbed, and lastly, we present the computational complexity, as
a whole, for the new RTDL-NIDS and the NIDS of [1]. Results pertaining to 5G-SiD and
5G-SiD+Cypher have been graphically depicted in Figs.6.11. Results collected from the
NeT2I and encoding of [1] employed in the 5G-MEC mobile telecommunication testbed can
be found in Figs.6.11 and Fig.6.12.

142 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 A
cc

ur
ac

y

Epoch

Training Accuracy - RTDL NIDS
Validation Accuracy - RTDL NIDS
Training Accuracy - NIDS of [1]

Validation Accuracy - NIDS of [1]

(a) Training and Validation Accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
os

s

Epoch

Training Loss - RTDL NIDS
Validation Loss - RTDL NIDS

Training Loss - NIDS of [1]
Validation Loss - NIDS of [1]

(b) Training and Validation Loss

Fig. 6.10 Training and Validation Data from the Testbed

6.6 Results and Analysis 143

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

T
ot

al
 T

im
e

C
on

su
m

pt
io

n
(s

)

Throughput (bps)

Time Consumption - 5G-SiD
Time Consumption - 5G-SiD+Cypher

(a) Time consumption for 5G-SiD and 5G-SiD+Cypher as per [1]

 99

 99.5

 100

 100.5

 101

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

A
ve

ra
ge

 C
PU

 U
til

is
at

io
n

%

Throughput (bps)

CPU Utilisation - 5G-SiD
CPU Utilisation- 5G-SiD+Cypher

(b) CPU computational complexity for 5G-SiD and 5G-SiD+Cypher as
per [1]

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

A
ve

ra
ge

 R
A

M
 U

til
is

at
io

n
%

Throughput (bps)

RAM Utilisation - 5G-SiD
RAM Utilisation - 5G-SiD+Cypher

(c) RAM computational complexity for 5G-SiD and 5G-SiD+Cypher
as per [1]

Fig. 6.11 Computational Complexity for 5G-SiD and 5G-SiD+Cypher Algorithm

144 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

Computational Complexity for 5G-SiD and 5G-SiD+Cypher

• Time Consumption

Fig.6.11a, depicts in black the time consumption of the 5G-SiD and in red depicts
the time consumption of the 5G-SiD+Cypher. We employed the time spent for each
algorithm against the throughput. A similar approach can be seen in the works of
[92]. The 5G-SiD consumed an average of 0.369s to collect network traffic, segregate,
label, calculate variations, check for flags and return a CSV with network traffic that
corresponds to signature detection with an average throughput of 10*106 bps. For a
similarly recorded throughput, the 5G-SiD+Cypher recorded 0.428s. Irrespective of
the recorded throughput in the network, the 5G-SiD+Cypher algorithm has consumed
more time in signature detection and in preparing a CSV file for NeT2I as opposed
to 5G-SiD. This can be observed when the recorded throughput was at 6.5*106 bps,
a noticeable gap between the two algorithms is visible. Hence, we can state that the
employment of the cypher algorithm consumed an additional 14% of time as opposed
to 5G-SiD.

In Fig.6.11a,we can notice a higher time consumption to a low throughput for the
5G-SiD+Cypher, denoted in red, during the initial distribution of time. The higher time
consumption can be regarded as due to the high processing requirement and the time
consumption of the 5G-SiD+Cypher algorithm. Collated traffic features such as MAC
addresses and IP addresses must be translated into a numerical representation. This
process contributes towards the processing time. A similar increase of time to a lower
throughput has also been recorded by the work presented by [92] when the network
speed grows from 0 bps, and then suddenly grows with the increment of throughput.

• CPU Utilisation

Fig.6.11b, depicts in black the CPU utilisation of the 5G-SiD and in red depicts the
CPU utilisation of the 5G-SiD+Cypher. 5G-SiD and 5G-SiD+Cypher utilised 100% of
the CPU resources whilst being applied to the 5G-MEC mobile telecommunication
testbed. As both 5G-SiD and 5G-SiD+Cypher are characterized as Aperiodic tasks
and therefore acquiring the full resources of the CPU, is acceptable.

• RAM Utilisation

Fig.6.11c, depicts in black the RAM utilisation of the 5G-SiD and in red depicts
the RAM utilisation of the 5G-SiD+Cypher. 5G-SiD utilised 20.2% of RAM for
the duration of the execution whilst the 5G-SiD+Cypher algorithm utilised 24.3% of

6.6 Results and Analysis 145

RAM for an averaged throughput of 10∗106 bps, signifying a 16% reduction of RAM
utilisation in 5G-SiD as opposed to 5G-SiD+Cypher.

Computational Complexity for NeT2I and Encoding of [1]

• Time Consumption

Fig.6.12a present the results collected from the NeT2I and the encoding of [1] when
applied to real-time network traffic, as opposed to when the aforementioned algorithms
were applied in a desk approach (to a dataset). On average, the NeT2I algorithm
consumed 7.1s on average to translate a CSV file containing network traffic to images,
whereas the encoding algorithm of [1], consumed an average of 30.786s. The creation
of variable x and y coordinates have contributed towards a 76% increment in time
for the encoding algorithm of [1] as opposed to NeT2I. Thus confirming the results
obtained from the aforementioned two algorithms when applied in a desk approach
[215] (See Chapter 5.4.2).

• CPU Utilisation

Fig.6.12b present the computational complexity for the NeT2I and encoding of [1]
when applied for the creation of images in the 5G-MEC Mobile Telecommunication
testbed. Both NeT2I and the encoding of [1] recorded a CPU utilisation of 100%,
by being an Aperiodic Task. NeT2I and encoding of [1] results pertaining to CPU
utilisation in this iteration are also in line with the results when applied in the desk
approach (See Chapter 5.4.2).

• RAM Utilisation

Fig.6.12c presents the results of RAM utilisation of NeT2I and encoding of [1] when
applied to the real-time 5G-MEC mobile telecommunication testbed. NeT2I utilised
21.3% of the available RAM when applied to the real-time testbed. Encoding of [1]
utilised 28.3% of available RAM. NeT2I used 24% less RAM in the real-time testbed
as opposed to the encoding of [1] NeT2I and encoding of [1] results pertaining to
RAM utilisation in this iteration are also in line with the results when applied in the
desk approach (See Chapter 5.4.2).

Computational Complexity for RTDL-NIDS and NIDS of [1]

• Time Consumption

Fig.6.13a presents the cumulative results of the two NIDSs pertaining to time
consumption. On average the new RTDL-NIDS (black) spent 7.5s for signature

146 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

5

10

15

20

25

30

35

40

45

5×106 6×106 7×106 8×106 9×106 1×107 1.1×1071.2×1071.3×1071.4×107

T
ot

al
 T

im
e

C
on

um
pt

io
n

(s
)

Throughput (bps)

Time Consumption - NeT2I
Time Consumption - Encoding of [1]

(a) Time consumption for NeT2I and encoding of [1]

99

99.5

100

100.5

101

5×106 6×106 7×106 8×106 9×106 1×107 1.1×1071.2×1071.3×1071.4×107

C
PU

 U
til

is
at

io
n

%

Throughput (bps)

CPU Utilisation - NeT2I
CPU Utilisation - Encoding of [1]

(b) CPU computational complexity for NeT2I and encoding of [1]

20

22

24

26

28

30

32

5.5×106 6×106 6.5×106 7×106 7.5×106 8×106 8.5×106 9×106

A
ve

ra
ge

 R
A

M
 U

til
is

at
io

n
%

Throughput (bps)

RAM Utilisation NeT2I
RAM Utilisation - Encoding of [1]

(c) RAM computational complexity for NeT2I and encoding of [1]

Fig. 6.12 Computational Complexity for NeT2I and encoding of [1]

6.6 Results and Analysis 147

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

T
ot

al
 T

im
e

C
on

su
m

pt
io

n
(s

)

Throughput (bps)

Time Consumption - RTDL-NIDS
Time Consumption - NIDS of [1]

(a) Time consumption for RTDL-NIDS and the NIDS of [1]

 99

 99.5

 100

 100.5

 101

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

C
PU

 U
til

is
at

io
n

%

Throughput (bps)

CPU Utilisation - RTDL-NIDS
CPU Utilisation- NIDS of [1]

(b) CPU computational complexity for RTDL-NIDS and NIDS of [1]

 22

 24

 26

 28

 30

 32

 34

 36

 5×106 6×106 7×106 8×106 9×106 1×107 1.1×107 1.2×107 1.3×107 1.4×107

A
ve

ra
ge

 R
A

M
 U

til
is

at
io

n
%

Throughput (bps)

RAM Utilisation - RTDL-NIDS
RAM Utilisation - NIDS of [1]

(c) RAM computational complexity for RTDL-NIDS and NIDS of [1]

Fig. 6.13 Computational Complexity for Proposed NIDS and NIDS of [1]

148 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC

detection and image creation, whereas the NIDS of [1] (red) consumed 31s to conduct
the same, highlighting a reduction of time consumption by 75%.

• CPU Utilisation

Fig.6.13b presents the computational complexity pertaining to the CPU utilisation
in the RTDL-NIDS and the NIDS of [1]. Similar to the previous findings (5G-SiD,
5G-SiD+Cypher, NeT2I, and encoding of [1]) pertaining to the CPU utilisation, the
execution of RTDL-NIDS and the NIDS of [1] recorded a CPU utilisation of 100%.
The usage of 100% is in line with the characteristics of an Aperiodic Task.

• RAM Utilisation

The RAM utilisation for the new RTDL-NIDS and the NIDS of [1], have been presented
in Fig. 6.13c. On average the new NIDS (black) consumed 24.25% for signature
detection and image creation, whereas the NIDS of [1] (red) consumed 32.19% to
conduct the same, highlighting a reduction of RAM utilisation by 24%.

As per the findings, the application of the proposed new RTDL-NIDS has utilised a
lower computational complexity as opposed to the NIDS of [1]. The data suggest that the
application of the new RTDL-NIDS is the most viable approach to detect malicious activity in
the MEC architecture as a form of MEC-IDS. Although both underpinned algorithms utilised
100% of the CPU resources, new RTDL-NIDS executed for a shorter time period. With the
additional requirements of cyphering the IP addresses and the creation of x and y coordinates
in the encoding phase, have acquired more time to compute. This also resulted in a higher
requirement for RAM resources. From the collated data, RTDL-NIDS require 500MB of
RAM and 1 CPU to conduct signature detection, encoding to images, and uploading to the
CNN3L algorithm. Thus highlighting the suitability and the applicability of the proposed
RTDL-NIDS to a MEC-IDS node, capable of detecting malicious attacks.

6.7 Chapter Summary

In this chapter, we employed the encoding mechanisms and the detection algorithm that we
presented and evaluated in [215] on the testbed [152] and collected results in real-time. We
conducted this research to advance the security of the 5G-MEC infrastructure by employing
an effective IDS based on CNN with low resource utilisation, and the employment of a
real-time testbed provided us with many conclusive results. In the next chapter, we provide
the conclusion, present our future work, and close this thesis.

Chapter 7

Conclusion

7.1 Overview

The aim of this research was to develop an efficient 5G mobile telecommunication testbed
with MEC architecture and protect these low-resource bound nodes from malicious attacks
using an intelligent agent. This chapter concludes this research by reviewing the findings,
discussions, contributions, and limitations and discussing areas for, future research, that
follow on from the research that we have carried out.

7.2 Research Findings

The primary research of this thesis was based on what steps can be taken to enhance the
security of 5G-MEC against malicious attacks in a 5G-MEC network, by utilising a DL
agent. A thorough study of the existing literature highlighted research gaps that motivated
our research for this thesis. They can be found in Chapters 1 and 2. Underlying research
questions derived from the primary research question can be found in Table 7.1. Having
low computational power makes the MEC nodes vulnerable to attack since IDS/IPS systems
inherently require complex computational power [112]. The utilisation of a highly resource-
consuming algorithm or software launched in a MEC node also makes a barrier to providing
a consistent service to the users [216], since MEC nodes are inherently short-lived with
low resource availability. Attacks should be detected swiftly, effectively, and efficiently,
to provide a service as free from degradation due to attacks, as possible. To facilitate this,
a network with faster convergence of network packets with reduced redundancies, jitter,
loss, and delays in the core network would be beneficial. Furthermore, the detection should

150 Conclusion

Primary Research Question:
What steps can be taken to enhance the security of 5G-MEC

against malicious attacks
in a 5G network, by utilising a DL agent?

Sub Questions
RQ1:How does programmability in both the control plane and data plane
affect network performance?
RQ2: How do we design and build a testbed for
5G mobile telecommunications?
RQ3: How can we design new algorithms for intrusion detection
using a DL agent in 5G-MEC?
RQ4: How do we apply DL in real-time to intrusion detection in
5G-MEC mobile telecommunication testbed?

Table 7.1 Underlying Research Questions derived from the Primary Research Question

occur in an effective and efficient manner in real-time on a 5G testbed. For this, the newly
developed algorithms were implemented on the 5G testbed for a real-time detection.

Discussions based on our findings were organised covering the four main research
questions and objectives. They are 1. to improve the performance of the core, 2. To
design and develop a 5G-MEC Mobile Telecommunication Testbed, 3. To encode, and
decode network traffic effectively and efficiently with low computational complexity, 4.
And finally, to conduct a real-time detection based on Deep Learning in 5G-MEC Mobile
Telecommunication Testbed. Experiments were conducted for each research question as per
Table 7.2 and the findings are as follows.

• RQ1: How does programmability in both the control plane and data plane affect
network performance?

The first objective was to improve the performance of the core network by increasing
throughput, bps, and QoS by reducing delay, jitter, packet loss and latency. To achieve
the envision of 5G and beyond, programmability at both the control plane (SDN) and
the data plane (P4) is crucial when providing resilient and high-performing service to
various use cases. The potential to pass packets in parallel as opposed to sequentially
(SDN+OvS), establishes SDN+P4 as an advantage in providing an improved platform.
The capability to parse packets without modification or an upgrade to the parser, offers
flexibility to service providers when introducing new services and packet headers.

The emulations of SDN+P4 successfully outperformed SDN+OvS with respect to
the topologies, traffic types and network matrices that follow. The implementation

7.2 Research Findings 151

Research Question 1:
Evaluation of Control Plane and
Data Plane Programmability

Research Question 2:
Implementation of a 5G
Mobile Telecommunication
Testbeds

Research Question 3:
New Algorithms for the
Detection of Malicious
Network Traffic

Research Question 4:
Real-time Implementation of
Intrusion Detection in the 5G
Mobile Telecommunication
Testbed

1. Emulation of Control Plane
and Data Plane Programmability

1. Study of the
existing simulators and
emulators

1. Study of the existing
Machine Learning and
Deep Learning Algorithms

1. Study of the existing
hypothetical
two-staged IDSs

2. Emulation of
Different Topologes

2. Implement a 5G
Mobile Telecommunication
Testbed

2. Study of the existing
methods of data encoding

2. Study of network traffic
collection techniques

3. Emulation of Various
Network Traffic

3. Implement programmability
in the 5G Mobile
Telecommunication Testbed

3. Implement algorithms
for data encoding and decoding

3. Implement a signature
detection algorithm

4. Analysis of
Key Performance Indicators 4. Emulate a MEC network

4. Implement a detection
algorithm by employing CNN

4. Incorporate encoding
algorithm after signature
detection

5. Emulate Network traffic
between User and MEC edge node

5. Evaluate existing publicly
available datasets

5. Evaluate the computational
complexity of the encoding
algorithm against literature

6. Conduct Malicious Network
Attacks

6. Encode data from the Datasets
using the developed encoding
algorithm

6. Link Google Colab

7. Analysis of
Key Performance
Indicators

7. Evaluate the computational
complexity of the encoding
algorithm against literature

7. Apply the Confusion
Matrix

8. Creation of Datasets from
5G-MEC network traffic

8. Train and Test the CNN
algorithm
9. Apply the Confusion Matrix

Table 7.2 Investigation drawn from each Research Question

of SDN+P4 and SDN+OvS was tested across multiple topologies: multi-path, grid
and the Internet. In each topology, network traffic such as ICMP, TCP, UDP, and
CDN was instantiated. Performance matrices such as throughput, bps, delay, packet
loss, jitter and latency were collected across each topology with respect to individual
network traffic and, lastly in a simultaneous execution of all network traffic. The
collected results accentuated the performance gain achieved via the employment
of SDN+P4. The results also highlighted how the sequential processing of OvS, has
created a drop in consistent throughput in the performance for SDN+OvS. The collected
results also highlighted the advantage of parallel processing with SDN+P4, in similar
circumstances to those in which SDN+OvS, failed to provide higher throughput. Lastly,
our research suggests that the application of SDN+P4 serves as a viable option to be
considered in reducing redundancy and delays, that exist in the core network, and
which could potentially disrupt achieving KPIs for 5G and beyond. The emulations
and results were presented and discussed thoroughly in Chapter 3.4.

• RQ2: How do we design and build a testbed for 5G mobile telecommunications?

The second objective was to develop a 5G-MEC mobile telecommunication testbed to
highlight the significance of employing a 5G testbed and a dataset for research based

152 Conclusion

on 5G. The collection of network traffic, both malicious and non_malicious in the
5G testbed aids us in developing datasets, that were used in comparison to publicly
available but inappropriate datasets that have been employed for 5G research in the
literature.

For the purpose of this research, we evaluated the UNSW NB-15 and InSDN datasets
against the dataset collected from our testbed. The collected dataset differed from the
UNSW NB-15 and InSDN datasets as it contained the 5G traffic types and protocols,
not found in the UNSW NB15 and InSDN datasets. They were, SCTP, S1AP, SSDP,
GTP, eNB and MME traffic and eNB and USRP traffic. We also included malicious
network traffic such as DoS, DDoS, TCP Syn Flood, Botnet Traffic, and Port Scanning.
The collection of the aforementioned network traffic accentuated and provided a
certitude to this research objective. The development, deployment and the collection
of 5G datasets have been discussed in Chapter 4.3.

• RQ3: How can we design new algorithms for intrusion detection using a DL agent
in 5G-MEC?

The third objective was to evaluate the existing ML/DL algorithms and to develop
an ideal algorithm that could be applied to the 5G-MEC mobile telecommunication
testbed, for the detection of malicious network traffic. This objective also carried a sub-
objective of feature selection and data preprocessing. Upon identifying the advantages
and the performance gain of CNN, an algorithm capable of binary classification was
developed. A significant challenge to the application of CNN involved data encoding.
To this end, the NeT2I algorithm was developed. Although it created an elegant
solution for the encoding process, the algorithm had to be evaluated. See Chapter 5.
Both algorithms were evaluated based on computational complexity and the acquired
accuracy from the detection algorithm (CNN3L). As these algorithms would eventually
be implemented in an MEC node, the computational complexity must be minimal.
NeT2I recorded a lower computational complexity as opposed to the comparative
algorithm. This was the case for network traffic based on UNSW NB-15, InSDN and
the collected 5G dataset. Upon successful encoding, the detection algorithm, CNN3L,
successfully detected malicious traffic with 96% accuracy for the images derived from
NeT2I, as this algorithm, didn’t employ a Cipher mechanism. To emulate the functions
and capabilities of the MEC, the CNN3L algorithm was launched in Google Colab.

Lastly, the detected images were decoded in order to collect malicious user information.
To this end, I2NeT was developed. To compare the performance of the I2NeT,
a comparative decoding algorithm was also developed. Across, UNSW NB-15,

7.3 Contribution to Knowledge 153

InSDN, and the collected 5G dataset, I2NeT showed significantly less computational
complexity, highlighting that both NeT2I and I2NeT can be implemented in an MEC
node. The development and evaluation of the new algorithms have been presented and
discussed in Chapter 5.4.

• RQ4: How do we apply DL in real-time to intrusion detection in 5G-MEC mobile
telecommunication testbed?

The last objective was to incorporate the developed algorithms from the previous
objective into the 5G-MEC mobile telecommunication testbed.

To overcome the challenges, the following were developed and applied to the testbed.
5G-SiD algorithm was developed to conduct a quick signature detection. Following
the 5G-SiD, NeT2I, Fuse_Google_Drive, CNN3L, and I2NeT were developed as sub-
routines. The 5G-SiD was found to detect malicious attacks with an accuracy of 82%.
As this also labels suspicious traffic as malicious, it is followed by a more accurate
detection by the CNN3L, however, the lower accuracy achieved was negligible. At the
end of the signature-based detection, NeT2I gets executed based on the CSV file. The
generation of images using NeT2I is computationally more viable than other popular
NIDS algorithms. Generated images were uploaded in real-time to CNN3L, which
was launched in Google Colab.

Given that this is the first image-based NIDS, launched in real-time, the recorded
accuracy along with the computational complexity provides eligibility to be
implemented in a real MEC node as MEC-IDS. Our findings at the end of these
last four objectives show that a real-time detection based on DL is achievable, as
a CNN3L algorithm can be implemented in a 5G-MEC mobile telecommunication
testbed; as a two-staged detection which conducts, both a quick detection based on
known signatures, followed by a more accurate DL based detection. The development,
and the application of RTDL-NIDS and the evaluation of it has been presented in
Chapter 6.6.

7.3 Contribution to Knowledge

Significant and original contributions to knowledge can be listed as follows. Fig 7.1
depicts the contributions from this thesis in the overview. Overall, the thesis initially
evaluated the performance of SDN+OvS against SDN+P4, developed a new 5G-MEC mobile
telecommunication testbed, developed and evaluated new algorithms for the detection of

154 Conclusion

Integration in 5G-MEC Testbed

Control Plane
and Data Plane

Programmability

5G-MEC
 Mobile

Telecommunication
Testbed

5G-SiD, NeT2I,
I2NeT, CNN3L

Algorithms

RQ1: RQ2: RQ3:

RQ4:

Fig. 7.1 Contributions from this thesis

malicious traffic in 5G-MEC, proposed and developed a new RTDL-NIDS, a Real-Time
Deep Learning based Network Intrusion Detection System.

• Development of Real-Time Deep Learning based Network Intrusion Detection
System (RTDL-NIDS): A novel RTDL-NIDS which encompasses a 5G-SiD algorithm
capable of conducting a quick signature detection, employment of NeT2I, CNN3L,
and I2NeT was developed to conduct intrusion detection in real-time in the developed
5G-MEC Mobile Telecommunication testbed. The RTDL-NIDS was evaluated against
the real-time application of the NIDS presented by [1]. The current literature has been
aimed at applying an intelligent agent (ML or DL) towards the detection of malicious
traffic in an offline mode (desk approach). In this thesis, the application of intrusion
detection using an intelligent agent has been carried out in real-time as opposed to the
desk approach.

• Development of New Algorithms for the Detection of Malicious Traffic in 5G-
MEC: The development of NeT2I for encoding network traffic, including IP addresses
and MAC address to RGB colour space, a new algorithm (I2NeT) to decode RGB
images back to network traffic, and finally a new algorithm (CNN3L) for the detection
of malicious network traffic. The developed algorithms were evaluated against a similar
encoding, decoding, and detection algorithm [1], based on computational complexity
and generated accuracy. Current literature uses a Cypher algorithm or evades the

7.3 Contribution to Knowledge 155

encoding of network information such as IP addresses and MAC addresses in the RGB
colour space as IP addresses and MAC addresses which exceed 24 bits. Information on
the significance of NeT2I has been discussed in Chapter 5. By using NeT2I, we present
a new algorithm to encode and decode network information to RGB colour space, to
generate images that can be utilised for intrusion detection. The development of a
decoding algorithm has not been attempted in the current literature, whereas I2NeT,
was developed to introduce the importance of a decoding algorithm that can be utilised
towards future intrusion prevention problems. The developed algorithms (NeT2I and
I2NeT) were also evaluated based on computational complexity that has not been
attempted in the current literature.

• A Development of a 5G-MEC Mobile Telecommunication Testbed with P4 and
Dataset: A 5G-MEC Mobile Telecommunication testbed was developed and launched,
employing P4 BMv2 switches, for the creation of 5G datasets. The acquired 5G
datasets were evaluated against publicly available datasets. The current literature
conducts security-based research for 5G, by employing datasets that were generated
on LAN networks. The network traffic on a LAN network differs significantly from
that found in a 5G-MEC network. The created dataset and the evaluation of it against
popular datasets (UNSW NB-15 and InSDN) highlight the need to employ a relatable
dataset to 5G and beyond intrusion detection research.

• An Evaluation of SDN+P4 against SDN+OvS: Across multiple topologies and
by employing various network traffic, emulations were conducted to evaluate the
performance of SDN+P4 against SDN+OvS. Our research established that with the
initialisation of SDN+P4 with parallel processing of packets, various applications have
better performance in comparison to applications run over SDN+OvS. The current
literature has employed P4 to improve the performance of a particular case study or
an application. In this thesis, we applied SDN+P4 to improve the performance of the
network irrespective of the type of traffic and the topology.

7.3.1 Research Significance

The significance of this research is that it provides a mechanism to conduct a multi-staged
detection using a quick signature-based detection scheme and a more accurate DL-based
detection in a real-time 5G-MEC mobile telecommunication testbed, using RTDL-NIDS.
The developed algorithms have also been evaluated computationally so that they can be
implemented in a low-processing power environment.

156 Conclusion

This research demonstrated the importance of applying data plane programmability to
faster processing of network packets. This was corroborated by the emulation results and the
faster processing achieved by the edge switches in the 5G-MEC mobile telecommunication
testbed. Having programmability in the data plane (P4) will also aid in providing specific
functions on top of connectivity. Faster processing of network packets will also aid in
translating in-directly toward faster detection of malicious network traffic. Having utilised
data plane programmability at the edge of the network will contribute more to both the
end user and the service provider in a more meaningful manner in addition to providing
connectivity.

Another fact that this research highlighted was that the application of a testbed to imitate
a 5G mobile telecommunication testbed provided more meaningful and contributory results
as opposed to applying an algorithm to a dataset collected on a LAN or a campus network.
As the current research for securing 5G was carried out using training/testing an algorithm
using a publicly available dataset, the application of a 5G mobile telecommunication testbed,
highlights traffic patterns and protocols that cannot be obtained using LAN or campus
networks. Our evaluative results highlight the unique traffic patterns in a 5G mobile network.

Following the development of the 5G-MEC mobile telecommunication testbed, this
research highlights the importance of developing encoding and decoding algorithms with
minimal computational complexity. NeT2I, I2NeT, and 5G-SiD were developed with
respect to minimal computational complexity. Not only do these algorithms outperform
the comparative algorithms in terms of computational complexity, but they also aided
in producing a higher detection rate when the images were applied to CNN3L. These
results point to the fact that these algorithms can be implemented in a MEC node with low
computational power.

This research also signifies that the implementation of DL can be achieved in real-time
with the employment of a 5G-MEC mobile telecommunication testbed. The application of
the aforementioned algorithms can be implemented in real-time, thus eliminating the desk
approach of applying DL to a dataset to test the effectiveness of classification. Given that the
CNN3L was launched on a Google Colab environment, the detection algorithm can be easily
launched on-the-fly as an MEC-IDS node.

7.4 Future Work

This thesis provides an early investigation into real-time intrusion detection using DL in
5G-MEC followed by an implementation. Future work identified from the research presented
in this thesis includes:

7.4 Future Work 157

• Publication of further results from the employment of NeT2I, I2NeT, and CNN3L
across other publicly available datasets. This will help to further evaluate the
effectiveness of the developed NeT2I, I2NeT, and CNN3L algorithms.

• Improvements to the 5G-MEC mobile telecommunication testbed in, for example, the
extension of the RAN network by employing multiple USRP devices.

– This will extend the RAN network and nodes can experience mobility whilst
being connected to the network. Research such as mobility prediction
using ML/DL can be further investigated by employing this 5G-MEC mobile
telecommunication testbed, by improving the collected 5G datasets.

– Employing two physical nodes to independently initialise the RAN network and
the Core network. This will further improve the performance of the network and
the algorithms employed.

– The employment of a Tofino P4 [217] switch will further improve the
performance of the network [218] and will aid in the faster detection of malicious
network traffic as opposed to the P4 switch, implemented on the NIC.

• RTDL-NIDS can be further improved. Currently, the algorithm is executed using a
single thread. This can be further improved by employing multiple threads to execute
this algorithm: i.e 5G-SiD can be implemented on a different thread to NeT2I and
Fuse_Google_Drive, and finally, I2NeT on another thread. This will improve the
detection even further. Although the current execution time for NeT2I is smaller,
removing this execution time from the main thread, where signature detection occurs,
should provide improved detection and computational complexity.

• Current RTDL-NIDS can successfully detect malicious network traffic. But at present,
it doesn’t prevent it. Upon successful completion of another API connecting CNN3L
with I2NeT, information such as the IP address and the MAC address of the advisories
can be passed to the P4 switch to prevent access [190]. In this manner, a successful, IDS
and an IPS based on DL can be implemented in the 5G-MEC mobile telecommunication
testbed.

• As we collected computational complexity in our algorithms, we can extend this work
in order to determine the baseline performance of the 5G-MEC nodes. By doing so,
we can conduct anomaly detection using the CNN3L algorithm. As the detection of
unknown attacks seems difficult with signature detection mechanisms, the employment

158 Conclusion

of an anomaly detection system seems promising. We can include computational
complexity as a feature of the NeT2I and train the CNN3L to detect anomalies along
with known intrusions.

• The current MEC-IDS can be extended to listen to multiple nodes in the MEC network.
This extension will provide a mechanism to detect malicious traffic in the entire
5G-MEC network.

• As the 5G-MEC mobile telecommunication testbed grows with multiple RAN nodes,
Federated learning [219] can be implemented to train and test a DL algorithm for IDS
and IPS in a decentralised manner. Since multiple MEC nodes can be launched in the
improved testbed, multiple MEC-IDS nodes can collect network traffic, and train a DL
algorithm for improved detection and prevention of malicious access.

7.5 Closing

Detection of malicious network traffic aimed towards the edge using DL implemented in
real-time employing a 5G-MEC mobile telecommunication testbed has been presented in this
thesis. This implementation paves the way for researchers to consider real-time approaches
and new 5G datasets as opposed to simulators/emulators or desk approaches for security-
based research in 5G and beyond. With the implementation of future work and further
technological improvements, this research can be truly transcended into a real-world solution
that can be launched on-the-fly in 5G and beyond.

References

[1] Ahmed H Janabi, Triantafyllos Kanakis, and Mark Johnson. Convolutional neural
network based algorithm for early warning proactive system security in software
defined networks. IEEE Access, 10:14301–14310, 2022.

[2] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice Li, Anurag
Ranjan, Debashish Purkayastha, Feng Jiangping, Danny Frydman, Gianluca Verin,
et al. Mec in 5g networks. ETSI white paper, 28:1–28, 2018.

[3] Belal Ali, Mark A Gregory, and Shuo Li. Multi-access edge computing architecture,
data security and privacy: A review. IEEE Access, 9:18706–18721, 2021.

[4] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep learning
approach to network intrusion detection. IEEE transactions on emerging topics in
computational intelligence, 2(1):41–50, 2018.

[5] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A deep learning approach
for intrusion detection using recurrent neural networks. IEEE Access, 5:21954–21961,
2017.

[6] Abdullah J Alzahrani and Ali A Ghorbani. Real-time signature-based detection
approach for sms botnet. In 2015 13th Annual Conference on Privacy, Security and
Trust (PST), pages 157–164. IEEE, 2015.

[7] Lorenzo Fernández Maimó, Ángel Luis Perales Gómez, Félix J García Clemente,
Manuel Gil Pérez, and Gregorio Martínez Pérez. A self-adaptive deep learning-based
system for anomaly detection in 5g networks. Ieee Access, 6:7700–7712, 2018.

[8] Peter J Denning. Is computer science science? Communications of the ACM, 48(4):
27–31, 2005.

[9] Walter F Tichy. Should computer scientists experiment more? Computer, 31(5):
32–40, 1998.

[10] Matti Tedre and Nella Moisseinen. Experiments in computing: A survey. The Scientific
World Journal, 2014, 2014.

[11] Keith Kirkpatrick. Software-defined networking. Communications of the ACM, 56(9):
16–19, 2013.

[12] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A
comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2014.

160 References

[13] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation
in campus networks. ACM SIGCOMM Computer Communication Review, 38(2):
69–74, 2008.

[14] Anders Nygren, B Pfaff, B Lantz, B Heller, C Barker, C Beckmann, D Cohn, D Malek,
D Talayco, D Erickson, et al. Openflow switch specification version 1.5. 1. Open
Networking Foundation, Tech. Rep, 2015.

[15] Pedro Heleno Isolani, Juliano Araujo Wickboldt, Cristiano Bonato Both, Juergen
Rochol, and Lisandro Zambenedetti Granville. Interactive monitoring, visualization,
and configuration of openflow-based sdn. In 2015 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pages 207–215. IEEE, 2015.

[16] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[17] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit, and
Mihai Budiu. Dc. p4: Programming the forwarding plane of a data-center switch. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, pages 1–8, 2015.

[18] Cisco Visual Networking Index. Forecast and methodology, 2016–2021. White Paper,
June, 2017.

[19] V Cisco. The zettabyte era: trends and analysis. updated (07/06/2017), 2017.

[20] Donato Emma, Salvatore Loreto, Antonio Pescapé, and Giorgio Ventre. Measuring
sctp throughput and jitter over heterogeneous networks. In 20th International
Conference on Advanced Information Networking and Applications-Volume 1
(AINA’06), volume 2, pages 5–pp. IEEE, 2006.

[21] Winarno Sugeng, Jazi Eko Istiyanto, Khabib Mustofa, and Ahmad Ashari. The impact
of qos changes towards network performance. International Journal of Computer
Networks and Communications Security, 3(2):48–53, 2015.

[22] Jose F Monserrat, Genevieve Mange, Volker Braun, Hugo Tullberg, Gerd
Zimmermann, and Ömer Bulakci. Metis research advances towards the 5g mobile
and wireless system definition. EURASIP Journal on Wireless Communications and
Networking, 2015(1):53, 2015.

[23] Victor Boteanu, Hanieh Bagheri, and Martin Pels. Minimizing arp traffic in the ams-ix
switching platform using openflow. Cited on, page 7, 2013.

[24] Danilo Cerović, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, and Guy
Pujolle. Fast packet processing: A survey. IEEE Communications Surveys & Tutorials,
20(4):3645–3676, 2018.

References 161

[25] Athanasios Liatifis, Panagiotis Sarigiannidis, Vasileios Argyriou, and Thomas Lagkas.
Advancing sdn from openflow to p4: A survey. ACM Computing Surveys, 55(9):1–37,
2023.

[26] Naveen Kr Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishnamurthy,
Jacob Nelson, and Simon Peter. Evaluating the power of flexible packet processing for
network resource allocation. In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), pages 67–82, 2017.

[27] Jeferson Santiago da Silva, François-Raymond Boyer, Laurent-Olivier Chiquette,
and JM Pierre Langlois. Extern objects in p4: an rohc header compression scheme
case study. In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 517–522. IEEE, 2018.

[28] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate
Foster, and Hakim Weatherspoon. P4fpga: A rapid prototyping framework for p4. In
Proceedings of the Symposium on SDN Research, pages 122–135, 2017.

[29] Xiang Chen, Dong Zhang, Xiaojun Wang, Kai Zhu, and Haifeng Zhou. P4sc: Towards
high-performance service function chain implementation on the p4-capable device. In
2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 1–9. IEEE, 2019.

[30] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster, Nick
McKeown, and Jennifer Rexford. Pisces: A programmable, protocol-independent
software switch. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
525–538, 2016.

[31] P Gyanesh Kumar Patra, Fabricio E Rodriguez Cesen, Juan Sebastian Mejia,
Daniel Lazkani Feferman, Levente Csikor, Christian Esteve Rothenberg, and Gergely
Pongracz. Toward a sweet spot of data plane programmability, portability, and
performance: On the scalability of multi-architecture p4 pipelines. IEEE Journal on
Selected Areas in Communications, 36(12):2603–2611, 2018.

[32] Ting-Shan Wong and Steven SW Lee. Design of an in-band control plane for automatic
bootstrapping and fast failure recovery in p4 networks. IEEE Transactions on Network
and Service Management, 2023.

[33] K Tolga Bagci and A Murat Tekalp. Sdn-enabled distributed open exchange: Dynamic
qos-path optimization in multi-operator services. Computer Networks, 162:106845,
2019.

[34] Kenneth L Calvert, Matthew B Doar, and Ellen W Zegura. Modeling internet topology.
IEEE Communications magazine, 35(6):160–163, 1997.

[35] Vasileios Kotronis, Adrian Gämperli, and Xenofontas Dimitropoulos. Routing
centralization across domains via sdn: A model and emulation framework for bgp
evolution. Computer Networks, 92:227–239, 2015.

[36] Vasileios Kotronis, Rowan Klöti, Matthias Rost, Panagiotis Georgopoulos, Bernhard
Ager, Stefan Schmid, and Xenofontas Dimitropoulos. Stitching inter-domain paths
over ixps. In Proceedings of the Symposium on SDN Research, pages 1–12, 2016.

162 References

[37] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller placement
problem. ACM SIGCOMM Computer Communication Review, 42(4):473–478, 2012.

[38] Paulo Fonseca, Ricardo Bennesby, Edjard Mota, and Alexandre Passito. A replication
component for resilient openflow-based networking. In 2012 IEEE Network operations
and management symposium, pages 933–939. IEEE, 2012.

[39] David Hock, Matthias Hartmann, Steffen Gebert, Michael Jarschel, Thomas Zinner,
and Phuoc Tran-Gia. Pareto-optimal resilient controller placement in sdn-based core
networks. In Proceedings of the 2013 25th International Teletraffic Congress (ITC),
pages 1–9. IEEE, 2013.

[40] Cristian Cleder Machado, Lisandro Zambenedetti Granville, and Alberto Schaeffer-
Filho. Answer: Combining nfv and sdn features for network resilience strategies. In
2016 IEEE Symposium on Computers and Communication (ISCC), pages 391–396.
IEEE, 2016.

[41] Xu Zhang, Kefeng Wei, Lei Guo, Weigang Hou, and Jingjing Wu. Sdn-based resilience
solutions for smart grids. In 2016 International Conference on Software Networking
(ICSN), pages 1–5. IEEE, 2016.

[42] MZA Rahman, N Yaakob, A Amir, RB Ahmad, SK Yoon, and AH Abd Halim.
Performance analysis of congestion control mechanism in software defined network
(sdn). In MATEC Web of Conferences, volume 140, page 01033. EDP Sciences, 2017.

[43] Paul Smith, Alberto Schaeffer-Filho, David Hutchison, and Andreas Mauthe.
Management patterns: Sdn-enabled network resilience management. In 2014 IEEE
Network Operations and Management Symposium (NOMS), pages 1–9. IEEE, 2014.

[44] Production quality, multilayer open virtual switch. URL http://www.openvswitch.org/.
Accessed: 2022-10-10.

[45] Kdd cup’99. URL https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[46] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed analysis
of the kdd cup 99 data set. In 2009 IEEE symposium on computational intelligence
for security and defense applications, pages 1–6. IEEE, 2009.

[47] The ctu-13 dataset. a labeled dataset with botnet, normal and background traffic. URL
https://www.stratosphereips.org/datasets-ctu13.

[48] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set). In 2015 Military
Communications and Information Systems Conference (MilCIS), pages 1–6, 2015.

[49] Jiaqi Li, Zhifeng Zhao, and Rongpeng Li. A machine learning based intrusion
detection system for software defined 5g network. arXiv preprint arXiv:1708.04571,
2017.

[50] Reeta Devi, Rakesh Kumar Jha, Akhil Gupta, Sanjeev Jain, and Preetam Kumar.
Implementation of intrusion detection system using adaptive neuro-fuzzy inference
system for 5g wireless communication network. AEU-International Journal of
Electronics and Communications, 74:94–106, 2017.

http://www.openvswitch.org/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.stratosphereips.org/datasets-ctu13

References 163

[51] Hichem Sedjelmaci, Sidi Mohammed Senouci, Nirwan Ansari, and Abdelwahab
Boualouache. A trusted hybrid learning approach to secure edge computing. IEEE
Consumer Electronics Magazine, 2021.

[52] Ibrahim Alrashdi, Ali Alqazzaz, Esam Aloufi, Raed Alharthi, Mohamed Zohdy, and
Hua Ming. Ad-iot: Anomaly detection of iot cyberattacks in smart city using machine
learning. In 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), pages 0305–0310. IEEE, 2019.

[53] Mahmoud Said Elsayed, Nhien-An Le-Khac, and Anca D Jurcut. Insdn: A novel sdn
intrusion dataset. IEEE Access, 8:165263–165284, 2020.

[54] Mohammad Rifat Ahmmad Rashid, Giuseppe Rizzo, Marco Torchiano, Nandana
Mihindukulasooriya, Oscar Corcho, and Raúl García-Castro. Completeness and
consistency analysis for evolving knowledge bases. Journal of Web Semantics, 54:
48–71, 2019.

[55] Ahmad Assaf, Raphaël Troncy, and Aline Senart. Roomba: An extensible framework
to validate and build dataset profiles. In The Semantic Web: ESWC 2015 Satellite
Events: ESWC 2015 Satellite Events, Portorož, Slovenia, May 31–June 4, 2015,
Revised Selected Papers 12, pages 325–339. Springer, 2015.

[56] Christian Fürber and Martin Hepp. Swiqa–a semantic web information quality
assessment framework. 2011.

[57] ibm. What is data quality? | IBM — ibm.com. https://www.ibm.com/topics/
data-quality#:~:text=Data%20quality%20is%20a%20broader,accuracy%2C%
20consistency%2C%20and%20completeness. [Accessed 10-10-2023].

[58] Jong-Hyouk Lee and Hyoungshick Kim. Security and privacy challenges in the internet
of things [security and privacy matters]. IEEE Consumer Electronics Magazine, 6(3):
134–136, 2017.

[59] Hongji Huang, Song Guo, Guan Gui, Zhen Yang, Jianhua Zhang, Hikmet Sari,
and Fumiyuki Adachi. Deep learning for physical-layer 5g wireless techniques:
Opportunities, challenges and solutions. IEEE Wireless Communications, 27(1):
214–222, 2019.

[60] Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyiannis, and Helge
Janicke. Deep learning for cyber security intrusion detection: Approaches, datasets,
and comparative study. Journal of Information Security and Applications, 50:102419,
2020.

[61] Alicia Esquivel Morel, Deniz Kavzak Ufuktepe, Robert Ignatowicz, Alexander Riddle,
Chengyi Qu, Prasad Calyam, and Kannappan Palaniappan. Enhancing network-edge
connectivity and computation security in drone video analytics. In 2020 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR), pages 1–12. IEEE, 2020.

[62] Alper Kaan Sarica and Pelin Angin. Explainable security in sdn-based iot networks.
Sensors, 20(24):7326, 2020.

https://www.ibm.com/topics/data-quality#:~:text=Data%20quality%20is%20a%20broader,accuracy%2C%20consistency%2C%20and%20completeness.
https://www.ibm.com/topics/data-quality#:~:text=Data%20quality%20is%20a%20broader,accuracy%2C%20consistency%2C%20and%20completeness.
https://www.ibm.com/topics/data-quality#:~:text=Data%20quality%20is%20a%20broader,accuracy%2C%20consistency%2C%20and%20completeness.

164 References

[63] Ihsan H Abdulqadder, Shijie Zhou, Deqing Zou, Israa T Aziz, and Syed
Muhammad Abrar Akber. Multi-layered intrusion detection and prevention in the
sdn/nfv enabled cloud of 5g networks using ai-based defense mechanisms. Computer
Networks, 179:107364, 2020.

[64] He Fang, Xianbin Wang, and Stefano Tomasin. Machine learning for intelligent
authentication in 5g and beyond wireless networks. IEEE Wireless Communications,
26(5):55–61, 2019.

[65] Lorenzo Fernández Maimó, Félix J García Clemente, Manuel Gil Pérez, and
Gregorio Martínez Pérez. On the performance of a deep learning-based anomaly
detection system for 5g networks. In 2017 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing
& Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1–8. IEEE,
2017.

[66] Lorenzo Fernández Maimó, Alberto Huertas Celdrán, Manuel Gil Pérez, Félix J García
Clemente, and Gregorio Martínez Pérez. Dynamic management of a deep learning-
based anomaly detection system for 5g networks. Journal of Ambient Intelligence and
Humanized Computing, 10(8):3083–3097, 2019.

[67] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. Deep reinforcement learning based
computation offloading and resource allocation for mec. In 2018 IEEE Wireless
Communications and Networking Conference (WCNC), pages 1–6. IEEE, 2018.

[68] Shahadate Rezvy, Yuan Luo, Miltos Petridis, Aboubaker Lasebae, and Tahmina Zebin.
An efficient deep learning model for intrusion classification and prediction in 5g and
iot networks. In 2019 53rd Annual Conference on information sciences and systems
(CISS), pages 1–6. IEEE, 2019.

[69] Marouane Hachimi, Georges Kaddoum, Ghyslain Gagnon, and Poulmanogo Illy.
Multi-stage jamming attacks detection using deep learning combined with kernelized
support vector machine in 5g cloud radio access networks. In 2020 international
symposium on networks, computers and communications (ISNCC), pages 1–5. IEEE,
2020.

[70] Miquel Puig Mena, Apostolos Papageorgiou, Leonardo Ochoa-Aday, Shuaib Siddiqui,
and Gabriele Baldoni. Enhancing the performance of 5g slicing operations via multi-
tier orchestration. In 2020 23rd Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), pages 131–138. IEEE, 2020.

[71] Adlen Ksentini and Pantelis A Frangoudis. Toward slicing-enabled multi-access edge
computing in 5g. IEEE Network, 34(2):99–105, 2020.

[72] Luca Cominardi, Thomas Deiss, Miltiadis Filippou, Vincenzo Sciancalepore, Fabio
Giust, and Dario Sabella. Mec support for network slicing: Status and limitations
from a standardization viewpoint. IEEE Communications Standards Magazine, 4(2):
22–30, 2020.

References 165

[73] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan
Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The quic
transport protocol: Design and internet-scale deployment. In Proceedings of the
conference of the ACM special interest group on data communication, pages 183–196,
2017.

[74] Shiao-Li Charles Tsao. Enhanced gtp: an efficient packet tunneling protocol for
general packet radio service. In ICC 2001. IEEE International Conference on
Communications. Conference Record (Cat. No. 01CH37240), volume 9, pages 2819–
2823. IEEE, 2001.

[75] Randall Stewart and Christopher Metz. Sctp: new transport protocol for tcp/ip. IEEE
Internet Computing, 5(6):64–69, 2001.

[76] Pawani Porambage, Tanesh Kumar, Madhusanka Liyanage, Juha Partala, Lauri Lovén,
Mika Ylianttila, and Tapio Seppänen. Sec-edgeai: Ai for edge security vs security for
edge ai. The 1st 6G Wireless Summit,(Levi, Finland), 2019.

[77] Songlin Chen, Hong Wen, Jinsong Wu, Jie Chen, Wenjie Liu, Lin Hu, and Yi Chen.
Physical-layer channel authentication for 5g via machine learning algorithm. Wireless
Communications and Mobile Computing, 2018, 2018.

[78] Gregory Blanc, Nizar Kheir, Dhouha Ayed, Vincent Lefebvre, Edgardo Montes de Oca,
and Pascal Bisson. Towards a 5g security architecture: Articulating software-defined
security and security as a service. In Proceedings of the 13th International Conference
on Availability, Reliability and Security, pages 1–8, 2018.

[79] Anastasios Zafeiropoulos, Anastasius Gavras, Anna Tzanakaki, Antonino Albanese,
Apostolos Kousaridas, Avi Weit, Bessem Sayadi, Boris Tiomela Jou, Carlos J.
Bernardos, Chafika Benzaid, Christian Mannweiler, Daniel Camps-Mur, David
Breitgand, David Gutierrez Estevez, David Navratil, De Mi, Diego Lopez, Dimitrios
Klonidis, Edward Mutafungwa, Eleni Fotopoulou, Emmanouil Kafetzakis, Emmanouil
Pateromichelakis, Erez Biton, Fasil B. Tesema, George Kalfas, Holger Karl, Jens
Bartelt, Jesús Gutiérrez, John Cosmas, John Thomson, Jordi Joan Giménez, Jose
M. Alcaraz Calero, Josep Mangues-Bafalluy, Kostas Katsalis, Laurent Gallo, Marco
Gramaglia, Maria Rita Spada, Mukhald Salih, Navid Nikaein, Nawar Jawad, Nebojsa
Maletic, Ömer Bulakci, Panagiotis Demestichas, Peer Hasselmeyer, Qi Wang, Qing
Wei, Refik Fatih Ustok, Rolf Blom, Salvatore Pontarelli, Selçuk Keskin, Stefano
Salsano, Stephanie Parker, Thomas Deiss, Ugur Acar, Xi Li, and Yue Zhang. 5G PPP
Architecture Working Group: View on 5G Architecture, volume Version 3.0. European
Commission, Belgium, June 2019.

[80] Keke Gai, Meikang Qiu, Lixin Tao, and Yongxin Zhu. Intrusion detection techniques
for mobile cloud computing in heterogeneous 5g. Security and communication
networks, 9(16):3049–3058, 2016.

[81] Omec, Aug 2020. URL https://opennetworking.org/omec/.

[82] Ns3-5g-lena. URL https://apps.nsnam.org/app/nr/.

[83] Admin and Andras. Omnet. URL https://omnetpp.org/.

https://opennetworking.org/omec/
https://apps.nsnam.org/app/nr/
https://omnetpp.org/

166 References

[84] Mininet. Mininet. URL http://mininet.org/.

[85] Muhammad Imran, Abas Md Said, and Halabi Hasbullah. A survey of simulators,
emulators and testbeds for wireless sensor networks. In 2010 International Symposium
on Information Technology, volume 2, pages 897–902. IEEE, 2010.

[86] 5g core network. URL https://openairinterface.org/oai-5g-core-network-project/.

[87] Navid Nikaein, Raymond Knopp, Florian Kaltenberger, Lionel Gauthier, Christian
Bonnet, Dominique Nussbaum, and Riadh Ghaddab. Openairinterface: an open lte
network in a pc. In Proceedings of the 20th annual international conference on Mobile
computing and networking, pages 305–308, 2014.

[88] Florian Kaltenberger, Aloizio P Silva, Abhimanyu Gosain, Luhan Wang, and Tien-
Thinh Nguyen. Openairinterface: Democratizing innovation in the 5g era. Computer
Networks, 176:107284, 2020.

[89] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and
Farhan Ahmad. Network intrusion detection system: A systematic study of machine
learning and deep learning approaches. Transactions on Emerging Telecommunications
Technologies, 32(1):e4150, 2021.

[90] Philokypros Ioulianou, Vasileios Vasilakis, Ioannis Moscholios, and Michael
Logothetis. A signature-based intrusion detection system for the internet of things.
Information and Communication Technology Form, 2018.

[91] Marcus Botacin, Marco Zanata Alves, Daniela Oliveira, and André Grégio. Heaven: A
hardware-enhanced antivirus engine to accelerate real-time, signature-based malware
detection. Expert Systems with Applications, 201:117083, 2022.

[92] Dongzi Jin, Yiqin Lu, Jiancheng Qin, Zhe Cheng, and Zhongshu Mao. Swiftids: Real-
time intrusion detection system based on lightgbm and parallel intrusion detection
mechanism. Computers & Security, 97:101984, 2020.

[93] Kuruva Lakshmanna, Rajesh Kaluri, Nagaraja Gundluru, Zamil S Alzamil,
Dharmendra Singh Rajput, Arfat Ahmad Khan, Mohd Anul Haq, and Ahmed Alhussen.
A review on deep learning techniques for iot data. Electronics, 11(10):1604, 2022.

[94] Ali Imran, Ahmed Zoha, and Adnan Abu-Dayya. Challenges in 5g: how to empower
son with big data for enabling 5g. IEEE network, 28(6):27–33, 2014.

[95] Asmaa Halbouni, Teddy Surya Gunawan, Mohamed Hadi Habaebi, Murad Halbouni,
Mira Kartiwi, and Robiah Ahmad. Machine learning and deep learning approaches
for cybersecuriy: A review. IEEE Access, 2022.

[96] Thenmozhi Rayan and SC Sandeep. Machine learning ids models for 5g and iot.
Secure Communication for 5G and IoT Networks, pages 73–84, 2022.

[97] Dynamic Designz. Dynamicdesignz/hoic: High orbit ion cannon. URL https://github.
com/DynamicDesignz/HOIC.

http://mininet.org/
https://openairinterface.org/oai-5g-core-network-project/
https://github.com/DynamicDesignz/HOIC
https://github.com/DynamicDesignz/HOIC

References 167

[98] NewEra Cracker. Neweracracker/loic: Low orbit ion cannon - an open source network
stress tool, written in c. based on praetox’s loic project. use on your own risk. without
any express or implied warranties. URL https://github.com/NewEraCracker/LOIC.

[99] hping3. URL https://tools.kali.org/information-gathering/hping3.

[100] Cheng Jin, Haining Wang, and Kang G Shin. Hop-count filtering: an effective defense
against spoofed ddos traffic. In Proceedings of the 10th ACM conference on Computer
and communications security, pages 30–41, 2003.

[101] Yuchuan Deng, Hao Jiang, Peijing Cai, Tong Wu, Pan Zhou, Beibei Li, Hao Lu, Jing
Wu, Xin Chen, and Kehao Wang. Resource provisioning for mitigating edge ddos
attacks in mec-enabled sdvn. IEEE Internet of Things Journal, 9(23):24264–24280,
2022.

[102] Pasika Ranaweera, Anca Jurcut, and Madhusanka Liyanage. Mec-enabled 5g use
cases: a survey on security vulnerabilities and countermeasures. ACM Computing
Surveys (CSUR), 54(9):1–37, 2021.

[103] Ijaz Ahmad, Sergio Lembo, Felipe Rodriguez, Stephan Mehnert, and Mikko
Vehkaperä. Security of micro mec in 6g: A brief overview. In 2022 IEEE 19th
Annual Consumer Communications & Networking Conference (CCNC), pages 332–
337. IEEE, 2022.

[104] Shin-Ming Cheng, Bing-Kai Hong, and Cheng-Feng Hung. Attack detection and
mitigation in mec-enabled 5g networks for aiot. IEEE Internet of Things Magazine, 5
(3):76–81, 2022.

[105] Arpit Tripathi, Abhishek Thakur, and Bheemarjuna Reddy Tamma. Attack graphs
for standalone non-public 5g networks. In 2022 IEEE Future Networks World Forum
(FNWF), pages 158–163. IEEE, 2022.

[106] Sergio Ruiz-Villafranca, José Roldán-Gómez, Javier Carrillo-Mondéjar, Juan
Manuel Castelo Gómez, and José Miguel Villalón. A mec-iiot intelligent threat
detector based on machine learning boosted tree algorithms. Computer Networks,
page 109868, 2023.

[107] Mojtaba Eskandari, Zaffar Haider Janjua, Massimo Vecchio, and Fabio Antonelli.
Passban ids: An intelligent anomaly-based intrusion detection system for iot edge
devices. IEEE Internet of Things Journal, 7(8):6882–6897, 2020.

[108] Vasaka Visoottiviseth, Pranpariya Sakarin, Jetnipat Thongwilai, and Thanakrit
Choobanjong. Signature-based and behavior-based attack detection with machine
learning for home iot devices. In 2020 IEEE REGION 10 CONFERENCE (TENCON),
pages 829–834. IEEE, 2020.

[109] Jesús Díaz-Verdejo, Javier Muñoz-Calle, Antonio Estepa Alonso, Rafael
Estepa Alonso, and Germán Madinabeitia. On the detection capabilities of signature-
based intrusion detection systems in the context of web attacks. Applied Sciences, 12
(2):852, 2022.

https://github.com/NewEraCracker/LOIC
https://tools.kali.org/information-gathering/hping3

168 References

[110] Mansoor Farooq. Supervised learning techniques for intrusion detection system based
on multi-layer classification approach. International Journal of Advanced Computer
Science and Applications, 13(3), 2022.

[111] T Yerriswamy and Gururaj Murtugudde. Signature-based traffic classification for
ddos attack detection and analysis of mitigation for ddos attacks using programmable
commodity switches. International Journal of Performability Engineering, 18(7):529,
2022.

[112] Abdul Waleed, Abdul Fareed Jamali, and Ammar Masood. Which open-source ids?
snort, suricata or zeek. Computer Networks, 213:109116, 2022.

[113] Ye-Eun Kim, Yea-Sul Kim, and Hwankuk Kim. Effective feature selection methods to
detect iot ddos attack in 5g core network. Sensors, 22(10):3819, 2022.

[114] Rongpeng Li, Zhifeng Zhao, Xuan Zhou, Guoru Ding, Yan Chen, Zhongyao Wang, and
Honggang Zhang. Intelligent 5g: When cellular networks meet artificial intelligence.
IEEE Wireless communications, 24(5):175–183, 2017.

[115] Lorenzo Fernandez Maimo, Alberto Huertas Celdran, Angel L Perales Gomez, Felix J
Garcia Clemente, James Weimer, and Insup Lee. Intelligent and dynamic ransomware
spread detection and mitigation in integrated clinical environments. Sensors, 19(5):
1114, 2019.

[116] Syed Ali Raza Shah and Biju Issac. Performance comparison of intrusion detection
systems and application of machine learning to snort system. Future Generation
Computer Systems, 80:157–170, 2018.

[117] Nitasha Sahani, Ruoxi Zhu, Jin-Hee Cho, and Chen-Ching Liu. Machine learning-
based intrusion detection for smart grid computing: A survey. ACM Transactions on
Cyber-Physical Systems, 2023.

[118] Hichem Sedjelmaci. Cooperative attacks detection based on artificial intelligence
system for 5g networks. Computers & Electrical Engineering, 91:107045, 2021.

[119] Shun-Sheng Wang, Kuo-Qin Yan, Shu-Ching Wang, and Chia-Wei Liu. An integrated
intrusion detection system for cluster-based wireless sensor networks. Expert Systems
with Applications, 38(12):15234–15243, 2011.

[120] James B Fraley and James Cannady. The promise of machine learning in cybersecurity.
In SoutheastCon 2017, pages 1–6. IEEE, 2017.

[121] Yang Xin, Lingshuang Kong, Zhi Liu, Yuling Chen, Yanmiao Li, Hongliang Zhu,
Mingcheng Gao, Haixia Hou, and Chunhua Wang. Machine learning and deep learning
methods for cybersecurity. Ieee access, 6:35365–35381, 2018.

[122] Roberto Magán-Carrión, Daniel Urda, Ignacio Díaz-Cano, and Bernabé Dorronsoro.
Towards a reliable comparison and evaluation of network intrusion detection systems
based on machine learning approaches. Applied Sciences, 10(5):1775, 2020.

References 169

[123] T Saranya, S Sridevi, C Deisy, Tran Duc Chung, and MKA Ahamed Khan.
Performance analysis of machine learning algorithms in intrusion detection system: A
review. Procedia Computer Science, 171:1251–1260, 2020.

[124] Jan Lansky, Saqib Ali, Mokhtar Mohammadi, Mohammed Kamal Majeed, Sarkhel
H Taher Karim, Shima Rashidi, Mehdi Hosseinzadeh, and Amir Masoud Rahmani.
Deep learning-based intrusion detection systems: a systematic review. IEEE Access,
9:101574–101599, 2021.

[125] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network intrusion
detection using deep convolutional neural network. Vehicular Communications, 21:
100198, 2020.

[126] B Riyaz and Sannasi Ganapathy. A deep learning approach for effective intrusion
detection in wireless networks using cnn. Soft Computing, 24(22):17265–17278, 2020.

[127] Muder Almiani, Alia AbuGhazleh, Amer Al-Rahayfeh, Saleh Atiewi, and Abdul
Razaque. Deep recurrent neural network for iot intrusion detection system. Simulation
Modelling Practice and Theory, 101:102031, 2020.

[128] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system call graphs.
In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops
(WIW), pages 104–111. IEEE, 2016.

[129] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar. A
survey of deep learning and its applications: a new paradigm to machine learning.
Archives of Computational Methods in Engineering, 27(4):1071–1092, 2020.

[130] Arwa Aldweesh, Abdelouahid Derhab, and Ahmed Z Emam. Deep learning
approaches for anomaly-based intrusion detection systems: A survey, taxonomy,
and open issues. Knowledge-Based Systems, 189:105124, 2020.

[131] William Grant Hatcher and Wei Yu. A survey of deep learning: Platforms, applications
and emerging research trends. IEEE Access, 6:24411–24432, 2018.

[132] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[133] Amjad Rehman Khan, Muhammad Kashif, Rutvij H Jhaveri, Roshani Raut, Tanzila
Saba, and Saeed Ali Bahaj. Deep learning for intrusion detection and security of
internet of things (iot): current analysis, challenges, and possible solutions. Security
and Communication Networks, 2022, 2022.

[134] Yalei Ding and Yuqing Zhai. Intrusion detection system for nsl-kdd dataset using
convolutional neural networks. In Proceedings of the 2018 2nd International
Conference on Computer Science and Artificial Intelligence, pages 81–85, 2018.

[135] Ishan Prakash, Aniruddh Bansal, Rohit Verma, and Rajeev Shorey. Smartsplit:
Latency-energy-memory optimisation for cnn splitting on smartphone environment.
In 2022 14th International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 549–557. IEEE, 2022.

170 References

[136] Hasib-Al Rashid, Utteja Kallakuri, and Tinoosh Mohsenin. Tinym2net-v2: A compact
low power software hardware architecture for m ulti m odal deep neural networks.
ACM Transactions on Embedded Computing Systems, 2023.

[137] Xing Xu, Jie Li, Yang Yang, and Fumin Shen. Toward effective intrusion detection
using log-cosh conditional variational autoencoder. IEEE Internet of Things Journal,
8(8):6187–6196, 2020.

[138] Meliboev Azizjon, Alikhanov Jumabek, and Wooseong Kim. 1d cnn based network
intrusion detection with normalization on imbalanced data. In 2020 international
conference on artificial intelligence in information and communication (ICAIIC),
pages 218–224. IEEE, 2020.

[139] Leila Mohammadpour, Teck Chaw Ling, Chee Sun Liew, and Alihossein Aryanfar.
A survey of cnn-based network intrusion detection. Applied Sciences, 12(16):8162,
2022.

[140] Jiyeon Kim, Jiwon Kim, Hyunjung Kim, Minsun Shim, and Eunjung Choi. Cnn-based
network intrusion detection against denial-of-service attacks. Electronics, 9(6):916,
2020.

[141] Suwani Jayasinghe, Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage,
and Mika Ylianttila. Federated learning based anomaly detection as an enabler for
securing network and service management automation in beyond 5g networks. In
2022 Joint European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit), pages 345–350. IEEE, 2022.

[142] Muhammad Ahmad, Qaiser Riaz, Muhammad Zeeshan, Hasan Tahir, Syed Ali Haider,
and Muhammad Safeer Khan. Intrusion detection in internet of things using supervised
machine learning based on application and transport layer features using unsw-nb15
data-set. EURASIP Journal on Wireless Communications and Networking, 2021(1):
1–23, 2021.

[143] Muhammad Zeeshan, Qaiser Riaz, Muhammad Ahmad Bilal, Muhammad K Shahzad,
Hajira Jabeen, Syed Ali Haider, and Azizur Rahim. Protocol-based deep intrusion
detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets. IEEE Access,
10:2269–2283, 2021.

[144] Ingyom Kim and Tai-Myoung Chung. Malicious-traffic classification using deep
learning with packet bytes and arrival time. In International Conference on Future
Data and Security Engineering, pages 345–356. Springer, 2020.

[145] Chuan Yue, Lide Wang, Dengrui Wang, Ruifeng Duo, and Xiaobo Nie. An ensemble
intrusion detection method for train ethernet consist network based on cnn and rnn.
IEEE Access, 9:59527–59539, 2021.

[146] Yang Liu, Jian Kang, Yiran Li, and Bin Ji. A network intrusion detection method
based on cnn and cbam. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2021.

References 171

[147] Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification is as
easy as image recognition. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 680–687. IEEE, 2019.

[148] Sydney Mambwe Kasongo and Yanxia Sun. A deep learning method with wrapper
based feature extraction for wireless intrusion detection system. Computers & Security,
92:101752, 2020.

[149] Hyun-Jin Kim, Jonghoon Lee, Cheolhee Park, and Jong-Geun Park. Network
anomaly detection based on domain adaptation for 5g network security. In 2022
13th International Conference on Information and Communication Technology
Convergence (ICTC), pages 976–980. IEEE, 2022.

[150] Shanshuo Ding, Liang Kou, and Ting Wu. A gan-based intrusion detection model for
5g enabled future metaverse. Mobile Networks and Applications, 27(6):2596–2610,
2022.

[151] Lifeng Lei, Liang Kou, Xianghao Zhan, Jilin Zhang, and Yongjian Ren. An anomaly
detection algorithm based on ensemble learning for 5g environment. Sensors, 22(19):
7436, 2022.

[152] Omesh A Fernando, Hannan Xiao, and Joseph Spring. Developing a testbed with
p4 to generate datasets for the analysis of 5g-mec security. In 2022 IEEE Wireless
Communications and Networking Conference (WCNC), pages 2256–2261. IEEE,
2022.

[153] Kehe Wu, Zuge Chen, and Wei Li. A novel intrusion detection model for a massive
network using convolutional neural networks. Ieee Access, 6:50850–50859, 2018.

[154] Yihan Xiao, Cheng Xing, Taining Zhang, and Zhongkai Zhao. An intrusion detection
model based on feature reduction and convolutional neural networks. IEEE Access, 7:
42210–42219, 2019.

[155] Li Yong and Zhang Bo. An intrusion detection model based on multi-scale cnn.
In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), pages 214–218. IEEE, 2019.

[156] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Applying convolutional
neural network for network intrusion detection. In 2017 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), pages 1222–
1228. IEEE, 2017.

[157] Jianjing Cui, Jun Long, Erxue Min, Qiang Liu, and Qian Li. Comparative study
of cnn and rnn for deep learning based intrusion detection system. In International
Conference on Cloud Computing and Security, pages 159–170. Springer, 2018.

[158] Minh Doan and Zhanyang Zhang. Deep learning in 5g wireless networks-anomaly
detections. In 2020 29th Wireless and Optical Communications Conference (WOCC),
pages 1–6. IEEE, 2020.

172 References

[159] Davide Sanvito, Daniele Moro, Mattia Gulli, Ilario Filippini, Antonio Capone, and
Andrea Campanella. Onos intent monitor and reroute service: enabling plug&play
routing logic. In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 272–276. IEEE, 2018.

[160] onos. Onos project. URL https://wiki.onosproject.org/.

[161] Lucas V Ruchel, Rogério C Turchetti, and Edson T de Camargo. Evaluation of the
robustness of sdn controllers onos and odl. Computer Networks, 219:109403, 2022.

[162] Lusani Mamushiane and Themba Shozi. A qos-based evaluation of sdn controllers:
Onos and opendaylight. In 2021 IST-Africa Conference (IST-Africa), pages 1–10.
IEEE, 2021.

[163] P4 Language Consortium et al. Behavioral model (bmv2). URL: https://github.
com/p4lang/behavioral-model [cited 2020-01-21], 2018.

[164] Mohammad Alizadeh and Tom Edsall. On the data path performance of leaf-spine
datacenter fabrics. In 2013 IEEE 21st annual symposium on high-performance
interconnects, pages 71–74. IEEE, 2013.

[165] OA Fernando, Hannan Xiao, and Xianhui Che. Evaluation of underlying switching
mechanism for future networks with p4 and sdn (workshop paper). In International
Conference on Collaborative Computing: Networking, Applications and Worksharing,
pages 549–568. Springer, 2019.

[166] Saba Al-Rubaye, Ekhlas Kadhum, Qiang Ni, and Alagan Anpalagan. Industrial
internet of things driven by sdn platform for smart grid resiliency. IEEE Internet of
Things Journal, 6(1):267–277, 2017.

[167] Nteziriza Nkerabahizi Josbert, Wang Ping, Min Wei, and Yong Li. Industrial networks
driven by sdn technology for dynamic fast resilience. Information, 12(10):420, 2021.

[168] Ellen W Zegura, Kenneth L Calvert, and Michael J Donahoo. A quantitative
comparison of graph-based models for internet topology. IEEE/ACM Transactions on
networking, 5(6):770–783, 1997.

[169] Romualdo Pastor-Satorras and Alessandro Vespignani. Evolution and structure of the
Internet: A statistical physics approach. Cambridge University Press, 2007.

[170] Faria Khandaker, Sharief Oteafy, Hossam S Hassanein, and Hesham Farahat. A
functional taxonomy of caching schemes: Towards guided designs in information-
centric networks. Computer Networks, 165:106937, 2019.

[171] Binxu Yang, Wei Koong Chai, Zichuan Xu, Konstantinos V Katsaros, and George
Pavlou. Cost-efficient nfv-enabled mobile edge-cloud for low latency mobile
applications. IEEE Transactions on Network and Service Management, 15(1):475–488,
2018.

[172] Fernando Matos, Alexandre Matos, Paulo Simoes, and Edmundo Monteiro.
Provisioning of inter-domain qos-aware services. Journal of Computer Science and
Technology, 30(2):404–420, 2015.

https://wiki.onosproject.org/

References 173

[173] Stênio Fernandes. Methods and techniques for measurements in the internet. In
Performance Evaluation for Network Services, Systems and Protocols, pages 45–73.
Springer, 2017.

[174] Guanrong Chen, Zhengping Fan, and Xiang Li. Modelling the complex internet
topology. In Complex Dynamics in Communication Networks, pages 213–234.
Springer, 2005.

[175] Jon Postel et al. Transmission control protocol. 1981.

[176] Jon Postel. Rfc0768: User datagram protocol, 1980.

[177] Esma Yildirim, Ibrahim H Suslu, and Tevfik Kosar. Which network measurement
tool is right for you? a multidimensional comparison study. In 2008 9th IEEE/ACM
International Conference on Grid Computing, pages 266–275. IEEE, 2008.

[178] Eren Balevi and Richard D Gitlin. Unsupervised machine learning in 5g networks
for low latency communications. In 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC), pages 1–2. IEEE, 2017.

[179] Stefan Saroiu, Krishna P Gummadi, Richard J Dunn, Steven D Gribble, and Henry M
Levy. An analysis of internet content delivery systems. ACM SIGOPS Operating
Systems Review, 36(SI):315–327, 2002.

[180] Vivien GUEANT. iperf - the ultimate speed test tool for tcp, udp and sctptest the
limits of your network + internet neutrality test. URL https://iperf.fr/.

[181] VideoLAN. Vlc media player for ubuntu. URL https://www.videolan.org/vlc/
download-ubuntu.html. Accessed: 2020-04-10.

[182] Roberto Bifulco, Julien Boite, Mathieu Bouet, and Fabian Schneider. Improving sdn
with inspired switches. In Proceedings of the Symposium on SDN Research, pages
1–12, 2016.

[183] Aliyu Lawal Aliyu, Peter Bull, and Ali Abdallah. Performance implication and analysis
of the openflow sdn protocol. In 2017 31st International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pages 391–396. IEEE,
2017.

[184] Gianni Antichi, Ignacio Castro, Marco Chiesa, Eder L Fernandes, Remy Lapeyrade,
Daniel Kopp, Jong Hun Han, Marc Bruyere, Christoph Dietzel, Mitchell Gusat, et al.
Endeavour: A scalable sdn architecture for real-world ixps. IEEE Journal on Selected
Areas in Communications, 35(11):2553–2562, 2017.

[185] Vasileios Giotsas, Christoph Dietzel, Georgios Smaragdakis, Anja Feldmann, Arthur
Berger, and Emile Aben. Detecting peering infrastructure outages in the wild.
In Proceedings of the conference of the ACM special interest group on data
communication, pages 446–459, 2017.

[186] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet Demeester.
Enabling fast failure recovery in openflow networks. In 2011 8th International
Workshop on the Design of Reliable Communication Networks (DRCN), pages 164–
171. IEEE, 2011.

https://iperf.fr/
https://www.videolan.org/vlc/download-ubuntu.html
https://www.videolan.org/vlc/download-ubuntu.html

174 References

[187] Olatunde Awobuluyi. Periodic control update overheads in openflow-based enterprise
networks. In 2014 IEEE 28th International Conference on Advanced Information
Networking and Applications, pages 390–396. IEEE, 2014.

[188] Matej Groma, Tomáš Boros, and Pavol Helebrandt. Scalable cache-based
address resolution protocol handling in software-defined networks. In 2019
XXVII International Conference on Information, Communication and Automation
Technologies (ICAT), pages 1–6. IEEE, 2019.

[189] Yuan-Cheng Lai, Ahsan Ali, Md Shohrab Hossain, and Ying-Dar Lin. Performance
modeling and analysis of tcp and udp flows over software defined networks. Journal
of Network and Computer Applications, 130:76–88, 2019.

[190] Francesco Paolucci, Filippo Cugini, Piero Castoldi, and Tomasz Osiński. Enhancing
5g sdn/nfv edge with p4 data plane programmability. IEEE Network, 35(3):154–160,
2021.

[191] Opencells-programmable sim cards. URL https://open-cells.com/.

[192] oai / openairinterface5g. URL https://gitlab.eurecom.fr/oai/openairinterface5g.

[193] Usrp sdr x310. URL https://files.ettus.com/manual/page_usrp_x3x0.html.

[194] Virtualization - uvt. URL https://ubuntu.com/server/docs/virtualization-uvt.

[195] Peng Liu, Bozhao Qi, and Suman Banerjee. Edgeeye: An edge service framework for
real-time intelligent video analytics. In Proceedings of the 1st international workshop
on edge systems, analytics and networking, pages 1–6, 2018.

[196] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik, Minlan
Yu, Paramvir Bahl, and Matthai Philipose. Videoedge: Processing camera streams
using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 115–131. IEEE, 2018.

[197] Angel Martin, Roberto Viola, Mikel Zorrilla, Julián Flórez, Pablo Angueira, and Jon
Montalbán. Mec for fair, reliable and efficient media streaming in mobile networks.
IEEE Transactions on Broadcasting, 66(2):264–278, 2019.

[198] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[199] Robert Sedgewick and Kevin Wayne. Algorithms: Part I. Addison-Wesley
Professional, 2014.

[200] Micha Gorelick and Ian Ozsvald. High Performance Python: Practical Performant
Programming for Humans. O’Reilly Media, 2020.

[201] Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications, volume 24. Springer Science & Business Media, 2011.

[202] Shivam Sinha, TN Singh, VK Singh, and AK Verma. Epoch determination for neural
network by self-organized map (som). Computational Geosciences, 14:199–206,
2010.

https://open-cells.com/
https://gitlab.eurecom.fr/oai/openairinterface5g
https://files.ettus.com/manual/page_usrp_x3x0.html
https://ubuntu.com/server/docs/virtualization-uvt

References 175

[203] Dimitrios Papamartzivanos, Félix Gómez Mármol, and Georgios Kambourakis.
Dendron: Genetic trees driven rule induction for network intrusion detection systems.
Future Generation Computer Systems, 79:558–574, 2018.

[204] Ravi Vinayakumar, Mamoun Alazab, KP Soman, Prabaharan Poornachandran, Ameer
Al-Nemrat, and Sitalakshmi Venkatraman. Deep learning approach for intelligent
intrusion detection system. IEEE Access, 7:41525–41550, 2019.

[205] Nour Moustafa and Jill Slay. The significant features of the unsw-nb15 and the
kdd99 data sets for network intrusion detection systems. In 2015 4th International
workshop on building analysis datasets and gathering experience returns for security
(BADGERS), pages 25–31. IEEE, 2015.

[206] Chaouki Khammassi and Saoussen Krichen. A ga-lr wrapper approach for feature
selection in network intrusion detection. computers & security, 70:255–277, 2017.

[207] Haotian Zhang, Lin Zhang, and Yuan Jiang. Overfitting and underfitting analysis for
deep learning based end-to-end communication systems. In 2019 11th International
Conference on Wireless Communications and Signal Processing (WCSP), pages 1–6.
IEEE, 2019.

[208] Tomasz W Nowak, Mariusz Sepczuk, Zbigniew Kotulski, Wojciech Niewolski, Rafal
Artych, Krzysztof Bocianiak, Tomasz Osko, and Jean-Philippe Wary. Verticals in 5g
mec-use cases and security challenges. IEEE Access, 9:87251–87298, 2021.

[209] Pedro Cruz, Nadjib Achir, and Aline Carneiro Viana. On the edge of the deployment:
A survey on multi-access edge computing. ACM Computing Surveys, 55(5):1–34,
2022.

[210] Scott A Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time, and non-real-time processes. In
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, pages 396–407. IEEE,
2003.

[211] Pyshark. URL https://pypi.org/project/pyshark/.

[212] Saikat Guha, Yutaka Takeda, and Paul Francis. Nutss: A sip-based approach to udp
and tcp network connectivity. In Proceedings of the ACM SIGCOMM workshop on
Future directions in network architecture, pages 43–48, 2004.

[213] Fuse filesystem over google drive. URL https://github.com/astrada/
google-drive-ocamlfuse. Accessed: 2022-10-28.

[214] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks, 51(12):3448–
3470, 2007.

[215] Omesh A Fernando, Hannan Xiao, and Joseph Spring. New algorithms for the
detection of malicious traffic in 5g-mec. In 2023 IEEE Wireless Communications and
Networking Conference (WCNC), 26–29 March 2023, Glasgow, Scotland, UK. IEEE,
2023.

https://pypi.org/project/pyshark/
https://github.com/astrada/google-drive-ocamlfuse
https://github.com/astrada/google-drive-ocamlfuse

176 References

[216] Konstantinos Poularakis, Jaime Llorca, Antonia M Tulino, Ian Taylor, and Leandros
Tassiulas. Service placement and request routing in mec networks with storage,
computation, and communication constraints. IEEE/ACM Transactions on Networking,
28(3):1047–1060, 2020.

[217] Intel. Explore the power of intel® intelligent fabric processors. URL https://www.
intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch.
html.

[218] Xiaoquan Zhang, Lin Cui, Fung Po Tso, and Weijia Jia. Compiling service
function chains via fine-grained composition in the programmable data plane. IEEE
Transactions on Services Computing, 2023.

[219] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch.html

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Context
	1.2 Research Motivations
	1.3 Research Aim and Objective
	1.4 Research Methods
	1.5 Research Gaps
	1.5.1 Research Gaps Identified from the Literature Search

	1.6 Research Questions
	1.7 Research Milestones
	1.8 Implementation
	1.9 Contributions
	1.10 Publications
	1.11 Structure of my Thesis
	1.12 Chapter Summary

	2 Literature Review
	2.1 Overview
	2.2 A Core Network using SDN + P4
	2.3 Real-Time 5G mobile telecommunication Testbed
	2.4 Algorithms for the Detection Malicious Traffic
	2.5 Chapter Summary

	3 A Performance Evaluation for Software Defined Networks with P4
	3.1 Introduction
	3.2 System Platforms
	3.2.1 SDN Platform
	3.2.2 Mininet
	3.2.3 P4 Switch

	3.3 Experimental Design
	3.3.1 Network Topologies
	3.3.2 Traffic Design
	3.3.3 Tier-I - Single Type of Traffic Run
	3.3.4 Tier-II - Multiple Types of Traffic Running Simultaneously

	3.4 Results and Analysis of Tier-I Single Type of Traffic Run
	3.4.1 Case Study 1 - ICMP
	3.4.2 Case Study 2 - TCP
	3.4.3 Case Study 3 - UDP
	3.4.4 Case Study 4- Content Delivery Network

	3.5 Results and Analysis of Tier-II - Multiple Types of Traffic Running Simultaneously
	3.5.1 Case Study 5 - Mixed Type of Traffic over Topology II
	3.5.2 Case Study 6 - Simultaneous Run over Topology III

	3.6 Discussion
	3.7 Chapter Summary

	4 A Real-Time 5G Mobile Telecommunication Testbed
	4.1 Introduction
	4.1.1 Research Questions
	4.1.2 Contributions

	4.2 A Mobile Telecommunication Testbed
	4.2.1 User Equipment (UE)
	4.2.2 Radio Access Network (RAN)
	4.2.3 Core Network (CN)
	4.2.4 Multi Access Edge Computing Platform (MEC)

	4.3 Evaluation of the Testbed
	4.3.1 Testing the Connection
	4.3.2 Underlying 5G Network Traffic
	4.3.3 User Traffic
	4.3.4 Malicious Traffic

	4.4 Generating and Evaluating Datasets
	4.4.1 5G Dataset
	4.4.2 UNSW NB-15 and InSDN Datasets

	4.5 Chapter Summary

	5 New Algorithms for the Detection of Malicious Traffic in 5G-MEC
	5.1 Introduction
	5.2 Proposed Algorithms
	5.2.1 Encoding Network Traffic to Images (NeT2I Algorithm)
	5.2.2 Decoding Images to Network Traffic (I2NeT Algorithm)
	5.2.3 Detection Algorithm

	5.3 Evaluation Metrics for the New Algorithms
	5.3.1 Workflow and Dataset
	5.3.2 Evaluation Metrics for the NeT2I and I2NeT Algorithms
	5.3.3 Evaluation Metrics for the CNN3L Detection Algorithm
	5.3.4 Existing Algorithms for Comparison

	5.4 Results and Analysis
	5.4.1 Encoded Images
	5.4.2 Computational Complexity
	5.4.3 Training and Validation
	5.4.4 Evaluation of Detection

	5.5 Chapter Summary

	6 Real-Time Application of Deep Learning Intrusion Detection in 5G-MEC
	6.1 Overview
	6.2 Introduction
	6.3 Real-Time Deep Leaning Network Intrusion Detection System (RTDL-NIDS)
	6.3.1 Stage-I
	6.3.2 Stage II

	6.4 5G-MEC Signature Detection (5G-SiD Algorithm)
	6.5 Evaluation of the Proposed NIDS
	6.5.1 5G-MEC Mobile Telecommunication Testbed
	6.5.2 Existing Algorithms for Comparison
	6.5.3 Evaluation Metrics

	6.6 Results and Analysis
	6.6.1 Testing the workflow of RTDL-NIDS
	6.6.2 Comparison of Encoded Images
	6.6.3 Evaluation of Detection
	6.6.4 Comparison of Computational Complexity

	6.7 Chapter Summary

	7 Conclusion
	7.1 Overview
	7.2 Research Findings
	7.3 Contribution to Knowledge
	7.3.1 Research Significance

	7.4 Future Work
	7.5 Closing

	References

