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AUTOMATIC CONTINUITY, UNIQUE POLISH TOPOLOGIES, AND ZARISKI

TOPOLOGIES ON MONOIDS AND CLONES

L. ELLIOTT, J. JONUŠAS, Z. MESYAN, J. D. MITCHELL, M. MORAYNE, AND Y. PÉRESSE

Abstract. In this paper we explore the extent to which the algebraic structure of a monoid M determines
the topologies on M that are compatible with its multiplication. Specifically we study the notions of
automatic continuity; minimal Hausdorff or T1 topologies; Polish semigroup topologies; and we formulate
a notion of the Zariski topology for monoids and inverse monoids.

If M is a topological monoid such that every homomorphism from M to a second countable topological
monoid N is continuous, then we say that M has automatic continuity. We show that many well-known,
and extensively studied, monoids have automatic continuity with respect to a natural semigroup topology,
namely: the full transformation monoid NN; the full binary relation monoid BN; the partial transformation
monoid PN; the symmetric inverse monoid IN; the monoid Inj(N) consisting of the injective transformations
of N; and the monoid C(2N) of continuous functions on the Cantor set 2N.

The monoid NN can be equipped with the product topology, where the natural numbers N have the
discrete topology; this topology is referred to as the pointwise topology. We show that the pointwise
topology on NN, and its analogue on PN, are the unique Polish semigroup topologies on these monoids. The
compact-open topology is the unique Polish semigroup topology on C(2N), and on the monoid C([0, 1]N)
of continuous functions on the Hilbert cube [0, 1]N. The symmetric inverse monoid IN has at least 3 Polish
semigroup topologies, but a unique Polish inverse semigroup topology. The full binary relation monoid BN

has no Polish semigroup topologies, nor do the partition monoids. At the other extreme, Inj(N) and the

monoid Surj(N) of all surjective transformations of N each have infinitely many distinct Polish semigroup
topologies.

We prove that the Zariski topologies on NN, PN, and Inj(N) coincide with the pointwise topology; and
we characterise the Zariski topology on BN.

Along the way we provide many additional results relating to the Markov topology, the small index
property for monoids, and topological embeddings of semigroups in NN and inverse monoids in IN.

Finally, the techniques developed in this paper to prove the results about monoids, are applied to
function clones. In particular, we show that: the full function clone has a unique Polish topology; the
Horn clone, the polymorphism clones of the Cantor set and the countably infinite atomless Boolean algebra
all have automatic continuity with respect to second countable function clone topologies.
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1. Introduction

1.1. Summary of main theorems and background. A semigroup is a set together with an associative
binary operation, and a monoid is a semigroup with an identity. Broadly speaking, the topic of this paper
is to explore the extent to which the algebraic structure of a semigroup, or monoid, S determines the
topologies on S that are compatible with its multiplication. If S is a semigroup and T is a topology on the
set S, then T is called a semigroup topology if the multiplication function from S × S, with the product
topology, to S is continuous. A semigroup together with a semigroup topology is referred to as a topological
semigroup. For many semigroups and monoids, the problem of determining the admissible semigroup
topologies seems to be difficult. In this article, we consider the following well-known, and extensively
studied, infinite monoids: the full transformation monoid XX ; the full binary relation monoid BX ; the
partial transformation monoid PX ; the symmetric inverse monoid IX ; Inj(X) consisting of the injective
transformations of X ; Surj(X) consisting of the surjective transformations of X ; and the monoids C(2N)
and C([0, 1]N) of continuous functions on the Cantor set 2N and the Hilbert cube [0, 1]N, respectively. The
general aim being to classify the minimal and maximal semigroup topologies, under some natural additional
assumptions, such as being T1, second countable, or Polish, for example. Along the way we will encounter a
number of natural topologies that can be defined for arbitrary semigroups (the Fréchet-Markov, Hausdorff-
Markov, and Zariski topologies), and discuss there interrelations (Section 2); we develop some general
machinery (property X, Section 3); study the related notions of automatic continuity and the small index
property for semigroups (Section 4); and characterise when a topological semigroup topologically embeds
in NN (Section 5.1) and when an inverse monoid topologically embeds in IN (Section 5.4). Finally, we foray
slightly into the land of clones, defined in Section 7, and prove analogues of several of the main results in
the previous sections.

This paper arose out of a previous version [52] which considered topologies on the full transformation
monoid XX .

The main theorems in this paper are summarised in Table 1 and Table 2; the relevant definitions are
given in the later sections of the paper. Tables 1 and 2 are not exhaustive, in particular, many of the
results in the paper apply to sets of arbitrary cardinality, rather than just N.

The questions that are the focus of this paper originally arose in the context of groups; we will briefly,
and probably incompletely, discuss the history of these questions for groups, and then for semigroups. A
topological semigroup that happens to be a group is called a paratopological group, i.e. multiplication is
continuous but inversion need not be. If G is a paratopological group and inversion is also continuous,
then the topology is a group topology, and the group G is a topological group.

The problem of determining what topologies are compatible with the multiplication and inversion in a
group has an extensive history that can be traced back to Cauchy and Markov. Markov [48] asked whether
there exists an infinite group whose only group topologies are the trivial and discrete topologies; such
a group is called non-topologizable. Shelah [70] showed that a non-topologizable group exists assuming
the continuum hypothesis; Hesse [31] showed that the assumption of the continuum hypothesis in Shelah’s
construction can be avoided. Olshanskii [57] showed that an infinite family of the Adian groups (constructed
by Adian [1] as a counter-example to the Burnside problem) are non-topologizable. A more recent paper
on this topic is [44].

Given that there exist groups where the only group topologies are trivial and discrete, it is natural to
ask if there are groups that admit a unique non-trivial non-discrete group topology. The only results in
this direction, that we are aware of, require additional assumptions on the topology.

A topological space X is Polish if it is completely metrizable and separable. A Polish semigroup is
just a topological semigroup where the topology is Polish. Polish groups are defined analogously to Polish
semigroups. The fundamental results of R. M. Solovay [73] and S. Shelah [71] show that it is consistent
with ZF without choice that any Polish group has a unique Polish group topology. The same is not true
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AC # PST Min Z F-M H-M # PIST
full transformations NN

✓ 1 ✓ ✓ ✓ ✓ - §5.1
binary relations BN ✓ 0 ✓ ✓ ✓ ✓ - §5.2
partial transformations PN ✓ 1 ✓ ✓ ✓ ✓ - §5.3
partial bijections IN ✓ ≥ 3 ✓ ? ✓ ✓ 1 §5.4
injective transformations Inj(N) ✓ ≥ ℵ0 ? ✓ ? ✓ - §5.5
surjective transformations Surj(N) ? ≥ ℵ0 ? ? ? ? - §5.5
continuous functions on [0, 1]N C([0, 1]N) ? 1 ? ? ? ? - §6.1
continuous functions on 2N C(2N) ✓ 1 ? ? ? ? - §6.2

AC = automatic continuity with respect to a second countable topology on the
semigroup and the class of second countable topological semigroups

# PST = number of Polish semigroup topologies
Min = the minimum T1 semitopological topology is known

Z = the semigroup Zariski topology is known
F-M = Fréchet-Markov topology is known
H-M = Hausdorff-Markov topology is known

# PIST = number of Polish inverse semigroup topologies

Table 1. A summary of the main results in this paper, and where they can be found in the document.

AC # PCT
full function clone ON ✓ 1 §7.2
Horn clone HN ✓ ≥ ℵ0 §7.3
polymorphisms on 2N Pol(2N) ✓ 1 §7.4
polymorphisms on B∞ Pol(B∞) ✓ 1 §7.4

AC = automatic continuity with respect to the class of second countable topological function clones
# PCT = number of Polish clone topologies

Table 2. A summary of the main results for clones in this paper, and where they can be
found in the document.

in ZFC: the additive group of real numbers R is a Polish group with the usual topology on R, as too is
the additive group R2. The two groups R and R2 are isomorphic, since they are vector spaces of equal
dimension over the rationals Q, but are not homeomorphic, since R2 with any point removed is connected
and R with any point removed is not.

The Baire space NN is equipped with the product topology, where the natural numbers N = {0, 1, . . .}
have the discrete topology. This topology on NN, and the subspace topology that it induces on any subset
of NN, will be referred to as the pointwise topology throughout this paper. The pointwise topology on NN is
Polish. In addition to being a topological space, NN is a monoid under composition of functions; called the
full transformation monoid. Indeed, NN is a topological semigroup with respect to the pointwise topology;
see Section 5.1.

The analogue, in the context of groups, of the full transformation monoid NN is the symmetric group
Sym(N). Since Sym(N) is a Gδ subset of NN, the pointwise topology on Sym(N) is also Polish (see [41,
Theorem 3.11]). Furthermore, Sym(N) with the pointwise topology is a topological group. In problem
number 96 of the famous Scottish Book [49], Ulam asked if the symmetric group Sym(N) on the natural
numbers has a locally compact Polish group topology. Ulam’s problem was answered in the negative by
Gaughan [26], who also showed that every T1 group topology on Sym(N) contains the pointwise topology.
It can be shown that if T1 and T2 are Polish group topologies on the same group and T1 ⊆ T2, then T1 = T2.
It therefore follows by Gaughan’s result in [26] that Sym(N) has a unique Polish group topology. This
result was strengthened in [65, Theorem 6.26], where it was shown that the pointwise topology is the only
non-trivial separable group topology on Sym(N).

Many further examples of groups are known to have unique Polish group topologies: the groups of
isometries of the Urysohn space and of the Urysohn sphere [67]; homeomorphism groups of a wide class of
metric spaces such as any separable metric manifold [39] (including the Hilbert cube [0, 1]N) or the Cantor
set 2N); the automorphism groups of many countable relational structures, in particular, Fräıssé limits,
such as the rational numbers Q under the usual linear order, the countable random graph R [33, 34],
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and the group of Lipschitz homeomorphisms of the Baire space [42]. Some further references on the
uniqueness of Polish group topologies are [14, 25]. On the other hand, many groups have been shown to
have no non-discrete Polish group topologies, for example: free groups [18]; the homeomorphism groups
of the irrational and of the rational numbers and the group of Borel automorphisms of R [64]. Additional
references include [15, 35, 36, 37, 38, 40, 65].

A topological group G is said to have automatic continuity with respect to a class of topological groups,
if every homomorphism from G to a member of that class is continuous. Several of the topological groups
mentioned in the previous paragraph have automatic continuity with respect to a natural class of topological
groups, such as, for example, the separable topological groups. The group Aut([0, 1], λ) was shown to have
automatic continuity by Yaacov, Berenstein, and Melleray [82], as was the infinite-dimensional unitary or
orthogonal group to a separable group; see Tsankov [78]; further references are [3, 10, 23, 29, 46, 47, 58,
59, 66, 77]. If G is a Polish group that has automatic continuity with respect the class of Polish groups,
then G has a unique Polish group topology.

Among many other interesting results in [42], it is shown that a Polish group G has automatic continuity
with respect to the class of separable groups whenever there is a comeagre orbit of the action by conjugation
of G on Gn for every n ∈ N; such a group G is said to have ample generics. Many permutation groups
have ample generics: the symmetric group Sym(N); the automorphisms of the random graph [33, 34]; the
free group on countably many generators [13]; some further references are [30, 68, 72]. Some groups do not
have ample generics, for instance: Aut(Q,≤) [45], and the homeomorphism group Homeo(R) of the reals
R.

Another notion that is implied by automatic continuity for a group (with respect to the class of separable
groups) is the so-called small index property. A topological group G has the small index property if every
subgroup of index at most ℵ0 is open; some authors assume this condition for subgroups of index less
than 2ℵ0 . Small index property does not necessarily imply automatic continuity; see Example 4.6. A
topological group G has the small index property if and only if every homomorphism from G to Sym(N)
is continuous. Many groups were shown to have the small index property before they were shown to have
automatic continuity: Sym(N) [17, 63, 69], the automorphism groups of countable vector spaces over finite
fields [22]; Aut(Q, <) and the automorphism group of the countably infinite atomless Boolean algebra [76];
the automorphism group of the random graph and all automorphism groups of ω-categorical ω-stable
structures [33]; the automorphism groups of the Henson graphs [29].

Analogously to the definition for groups, we will say that a topological semigroup S has automatic
continuity with respect to a class of topological semigroups, if every homomorphism from S to a member
of that class is continuous. A related notion is that of automatic homeomorphicity: a topological semigroup
S has automatic homeomorphicity with respect to a class C of topological semigroups if every isomorphism
from S to a member of C is necessarily a homeomorphism. In the literature, such as [6, 8, 9, 60, 61, 62],
the terms automatic continuity and automatic homeomorphicity are exclusively used for the case where S
is a submonoid of the full transformation monoid NN with the pointwise topology, and the class C consists
of submonoids of NN with the pointwise topology.

Examples of monoids with automatic homeomorphicity with respect to the class of closed submonoids
of NN include the full transformation monoid NN and the monoids of: order-endomorphisms or order-
embeddings of the rational numbers Q; injective functions Inj(N) on N; self-embeddings of the countable
random graph (the Rado graph); endomorphisms of the countable random graph; self-embeddings of the
countable universal homogeneous digraph (see [6, 9]). Many of the results in [6, 9] are extended to the
corresponding clones of polymorphisms; see also [8, 60, 61, 62].

1.2. Preliminaries. We aim to give the relevant definitions within the sections where they are used
whenever possible. In this section, we collect some technical definitions that are required throughout the
paper.

In this paper, functions are written to the right of their arguments, and composed from left to right. If
S is a semigroup, then we use S1 to denote the monoid obtained by adjoining an identity 1 to S. A set X
is countable if it is finite or has cardinality ℵ0.

Suppose that S is a semigroup and that T is a topology on the set S. Then we will say that T
is left semitopological for S if for every s ∈ S the function λs : S −→ S defined by (x)λs = sx is
continuous. If every function ρs : S −→ S defined by (x)ρs = xs is continuous, then we say that T is right
semitopological for S. If T is left and right semitopological for S, then we say that T is semitopological
for S. Every semigroup topology is semitopological. We refer to a semigroup with a left semitopological



AUTOMATIC CONTINUITY, UNIQUE POLISH TOPOLOGIES, AND ZARISKI TOPOLOGIES 5

topology as a left semitopological semigroup. Analogous definitions can be made for right semitopological
and semitopological.

If T1 and T2 are topologies on a set X (or indeed any collections of subsets of X), then the least topology
on X containing T1 and T2 will be referred to as the topology generated by T1 and T2. If X and Y are
topological spaces and B is a subbasis for Y , then f : X −→ Y is continuous if and only if (B)f−1 is open
for all B ∈ B. Hence if T1 and T2 are topological for S, then so too is the topology generated by T1 and T2.
The analogous statement holds if “topological” is replaced by “semitopological”, “right semitopological”,
or “left semitopological”.

An inverse semigroup is a semigroup S such that for every x ∈ S there exists a unique y ∈ S such
that xyx = x and yxy = y; y is usually denoted by x−1. Inverse semigroup topologies and topological
inverse semigroups are defined analogously to group topologies and topological groups. In other words,
a topological inverse semigroup is a topological semigroup with continuous inversion. A semitopological
group or inverse semigroup is a semitopological semigroup that happens to be a group or inverse semigroup,
i.e. inversion is not assumed to be continuous.

2. Fréchet-Markov, Hausdorff-Markov, and Zariski topologies

In this section, we introduce, and prove some results about, three topologies that can be defined for any
semigroup, that, in some sense, arise from the algebraic structure of that semigroup.

2.1. Definitions. The Fréchet-Markov topology of a semigroup S is the intersection of all T1 semigroup
topologies on S. Similarly, the Hausdorff-Markov topology of a semigroup S is the intersection of all
Hausdorff semigroup topologies for S. The inverse Fréchet-Markov topology and inverse Hausdorff-Markov
topologies of an inverse semigroup S are similarly defined to be the intersections of all T1 and Hausdorff
inverse semigroup topologies on S respectively. Clearly, the Fréchet-Markov topology on a semigroup is
contained in the Hausdorff-Markov topology. The intersection of T1 topologies is T1 and the intersection
of semigroup topologies is semitopological. Hence the Fréchet-Markov and Hausdorff-Markov topologies of
a semigroup S are T1 and S is semitopological with respect to both.

It is well-known that if G is a topological group, then every T0 group topology is also T3 1
2
and so,

in particular, there is no distinction in the theory of topological groups between the notions of inverse
Fréchet-Markov and inverse Hausdorff-Markov topologies. In Example 2.6 we show that these notions are
distinct in the context of topological semigroups and topological inverse semigroups.

By definition, the least T1 topology that is semitopological for S is contained in the Fréchet-Markov
topology of S. These two topologies may coincide, for example, if S is a semigroup of right zeros, then
every topology on S is a semigroup topology. Hence the least T1 topology on a semigroup S of right zeros is
the cofinite topology, and the Hausdorff-Markov topology is the intersection of all the Hausdorff topologies
on the set S, and it is straightforward to verify that this is also the cofinite topology. We will show that for
several well-known examples of semigroups the Fréchet-Markov and Hausdorff-Markov topologies coincide.
In particular, if S is a semigroup where the least T1 topology T that is semitopological for S happens to
be a Hausdorff semigroup topology, then T is both the Fréchet-Markov and Hausdorff-Markov topology
for S.

Recall that the group Zariski topology on a group G is defined as the topology with subbasis consisting
of the sets

{g ∈ G : (g)φ 6= 1G}

where 1G is the identity of G and φ : G −→ G satisfies (g)φ = h0g
i0h1g

i1 · · ·hk−1g
ik−1 for every g ∈ G

and for some fixed h0, . . . , hk−1 ∈ G and i0, . . . , ik−1 ∈ {−1, 1}. The group Zariski topology has been
extensively studied in the literature of topological groups; see, for example, [12, 16, 48].

Analogously to the definition for groups, we define the semigroup Zariski topology on a semigroup S as
the topology with subbasis consisting of

{s ∈ S : (s)φ0 6= (s)φ1}

where φ0, φ1 : S −→ S are any functions such that (s)φ0 = t0st1s · · · tk−1s, k ≥ 1 for every s ∈ S and for
some fixed t0, . . . , tk−1 ∈ S1, and φ1 is defined analogously for some fixed u0, . . . , ul−1 ∈ S1. Similar to the
notion for groups used in the literature, the complement of a set in the basis for the Zariski topology:

{s ∈ S : (s)φ0 = (s)φ1}

will be referred to as an elementary algebraic set.
The inverse Zariski topology for an inverse semigroup is defined analogously, where the functions are

of the form (s)φ = t0s
i0t1s

i1 · · · tk−1s
ik−1 , where i0, . . . , ik−1 ∈ {−1, 1}. The inverse Zariski topology on
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a group coincides with the usual notion of the Zariski topology on a group; the inverse semigroup and
semigroup Zariski topologies on an inverse semigroup do not always coincide, see Corollary 5.16; the dual
question comparing the group and semigroup Zariski topology on group is open, see Question 2.8.

We are primarily concerned with the semigroup Zariski topology in this paper, which we will often refer
to as the Zariski topology, if no ambiguity will arise (such as when the semigroup under consideration is
not inverse).

2.2. Relations between the topologies. In this section we prove some results about the Zariski, Fréchet-
Markov, and Hausdorff-Markov topologies, and their relationships to each other, for an arbitrary semigroup.

Proposition 2.1. The Zariski topology on any semigroup S is contained in every Hausdorff semigroup
topology on S. Similarly, the inverse Zariski topology on any inverse semigroup S is contained in every
inverse Hausdorff semigroup topology on S.

Proof. We prove the result for semigroups without inversion, the inverse semigroup proof is dual. Recall
that if X is a Hausdorff topological space and f, g : X −→ X are continuous functions, then the set

{x ∈ X : (x)f = (x)g}

is closed in X . Let T denote a Hausdorff semigroup topology on S. Let φ0 : S −→ S be from the definition
of a subbasic open set for the Zariski topology. In other words, (s)φ0 = t0st1s · · · tk−1s, k ≥ 1 for every
s ∈ S and for some fixed t0, . . . , tk−1 ∈ S1. If m = 2k, then the function ψ0 : S −→ Sm defined by

(s)ψ0 = (t0, s, t1, s, t2, . . . , tk−1, s)

is continuous in every coordinate, and hence is continuous with respect to T . The function φ0 is then
the composite of ψ0 and the multiplication function from Sm to S, and is hence continuous with respect
to T . The function φ1 is continuous by an analogous argument. It follows that every subbasic open set
{s ∈ S : (s)φ0 6= (s)φ1} for the Zariski topology is open in T . �

Proposition 2.2. The Zariski topology is semitopological on any semigroup.

Proof. Let S be any semigroup, and let y ∈ S be arbitrary. We will show that λy : S −→ S defined by
(x)λy = yx is continuous. Suppose that φ0, φ1 : S −→ S are defined by

(s)φ0 = t0st1s · · · tk−1s

(s)φ1 = u0su1s · · ·ul−1s

for some k, l ≥ 1, for every s ∈ S, and for some fixed t0, . . . , tk−1, u0, . . . , ul−1 ∈ S1. Then

{s ∈ S : (s)φ0 6= (s)φ1}λ
−1
y = {x ∈ S : (yx)φ0 6= (yx)φ1}

= {x ∈ S : t0(yx) · · · tk−1(yx) 6= u0(yx) · · · ul−1(yx)}.

If

(x)φ′0 = t0(yx)t1(yx) · · · tk−1(yx)

(x)φ′1 = u0(yx)u1(yx) · · ·ul−1(yx),

then it is clear that {x ∈ S : (x)φ′0 6= (x)φ′1} is open and so S is left semitopological with respect to the
Zariski topology.

The proof that S is right semitopological with respect to the Zariski topology is dual. �

See Fig. 1 for the Hassé diagram of the containment of the Hausdorff-Markov, Fréchet-Markov, Zariski,
and minimal T1 topology that is semitopological for a given semigroup.

An anti-homomorphism from a semigroup S to a semigroup T is a function φ : S −→ T such that
(st)φ = (t)φ (s)φ for all s, t ∈ S. An anti-automorphism of a semigroup S is a bijective anti-homomorphism
from S to S.

Proposition 2.3. Let S be a semigroup, let φ : S −→ S be an automorphism or anti-automorphism, and
let T be a topology on S. Then the following hold:

(i) if T is semitopological for S, then (T )φ = {(U)φ : U ∈ T } is semitopological for S;
(ii) if T is topological for S, then (T )φ is topological for S;
(iii) if B is a subbasis for T , then {(B)φ : B ∈ B} is a subbasis for (T )φ.
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Proposition 2.1

Proposition 2.2

Proposition 2.1

inverse Hausdorff-Markov

inverse Zariski inverse Fréchet-MarkovHausdorff-Markov

Zariski Fréchet-Markov

least T1 (inverse) semitopological

Figure 1. A diagram of containments of the Hausdorff-Markov, Fréchet-Markov, and
Zariski topologies for a given (inverse) semigroup; a line from one topology to another
indicates that for every (inverse) semigroup the topology below is contained in the one
above. Note that the absence of a line does not necessarily indicate that one topology is
not contained in the other. A label on an edge shows where the indicated containment
is shown in the paper, trivial containments are not labelled. It is shown that the least
T1 topology that is semitopological for an inverse semigroup S coincides with the least T1
topology that is inverse semitopological for S in Corollary 2.5.

Proof. We will prove the proposition in the case when φ is an anti-automorphism. The other case is even
more straightforward.

(i). We will show that (T )φ is right semitopological. The proof that (T )φ is left semitopological follows
by symmetry. Let U ∈ T be arbitrary. If (s)φ, (t)φ ∈ S are such that (s)φ (t)φ ∈ (U)φ, then, since φ is an
anti-automorphism, (s)φ (t)φ = (ts)φ ∈ (U)φ and so ts ∈ U . Since T is left semitopological for S, there
exists an open neighbourhood Vs ∈ T of s, such that tVs ⊆ U . Thus (Vs)φ is an open neighbourhood of
(s)φ under (T )φ and (Vs)φ (t)φ = (tVs)φ ⊆ (U)φ.

(ii). Let U ∈ T be arbitrary. If (s)φ, (t)φ ∈ S are such that (s)φ (t)φ ∈ (U)φ, then, since φ is an anti-
automorphism, (s)φ (t)φ = (ts)φ ∈ (U)φ and so ts ∈ U . Since T is a semigroup topology, there exist open
neighbourhoods Vs, Vt ∈ T of s and t, respectively, such that VtVs ⊆ U . Thus (Vs)φ and (Vt)φ are open
neighbourhoods of (s)φ and (t)φ under (T )φ and (Vs)φ (Vt)φ = (VtVs)φ ⊆ (U)φ.

(iii). By definition, {(B)φ : B ∈ B} ⊆ (T )φ. Furthermore, φ is a bijection, so the unions and (finite)
intersections of images are images of unions and (finite) intersections. �

Proposition 2.4. Every automorphism, or anti-automorphism, of a semigroup S is continuous with respect
to each of the Zariski, Fréchet-Markov, and Hausdorff-Markov topologies for S, as well as the least T1
topology that is semitopological for S.
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Proof. We first consider the Zariski topology. It suffices to show that the image of an elementary algebraic
set under an automorphism or anti-automorphism is also elementary algebraic. Let

F = {s ∈ S : t0st1s · · · tk−1s = u0su1s · · ·ul−1s}

be an elementary algebraic set. Let φ : S −→ S be an anti-automorphism. Then

(F )φ = {(s)φ ∈ S : t0st1s · · · tk−1s = u0su1s · · ·ul−1s}

= {s ∈ S : t0(sφ
−1)t1(sφ

−1) · · · tk−1(sφ
−1) = u0(sφ

−1)u1(sφ
−1) · · ·ul−1(sφ

−1)}

= {s ∈ S : (t0(sφ
−1)t1(sφ

−1) · · · tk−1(sφ
−1))φ = (u0(sφ

−1)u1(sφ
−1) · · ·ul−1(sφ

−1))φ}

= {s ∈ S : stk−1φs · · · t1φst0φ = sul−1φs · · ·u1φsu0φ},

which is elementary algebraic. Similarly if φ is an automorphism of S, then (F )φ is also elementary
algebraic.

Let φ be an automorphism or anti-automorphism of S. If T is any T1 semigroup topology on S, then,
by Proposition 2.3, (T )φ is also a T1 semigroup topology for S. If T is the collection of all T1 semigroup
topologies on S, then

(

⋂

T ∈T

T

)

φ =
⋂

T ∈T

(T φ) =
⋂

T ∈T

T

and thus φ is continuous with respect to the Fréchet-Markov topology, which equals
⋂

T ∈T
T . The proofs

for the Hausdorff-Markov topology and the least T1 topology that is semitopological for S are similar (the
latter using Proposition 2.3(i). �

The analogue of Proposition 2.4 holds for the inverse Zariski, inverse Fréchet-Markov, and inverse
Hausdorff-Markov, and the proof is similar.

Corollary 2.5. If S is an inverse semigroup, then inversion is continuous in each of the Zariski, Fréchet-
Markov, and Hausdorff-Markov topologies on S, as well as the least T1 topology that is semitopological for
S.

As mentioned above, if a topological group is T0, then it is T3 1
2
, and hence being T0 and T3 1

2
is equivalent

for such topologies. On the other hand, every topology is a semigroup topology, and so no such implication
holds for topological semigroups, in general. It is natural to ask if there is any implication among separation
axioms for certain classes of semigroups, such as the inverse semigroups. We show, in Example 2.6, that
there is a topological inverse semigroup which is T1 but not T2. In fact, we find a inverse semigroup such
that its Fréchet-Markov and its Hausdorff-Markov topologies are not equal.

Let ≤ be a total order on a set X . Then the order topology on X is the topology with subbasis consisting
of the sets {y ∈ X : x < y} and {y ∈ X : x > y}. Moreover, X together with the operation max forms a
commutative inverse semigroup.

Example 2.6. Let X be an infinite set, let ≤ be a total order on X , and endow X with the structure of
a semigroup by taking multiplication to be max. Then:

(i) the Hausdorff-Markov topology and the Zariski topology on X coincide with the order topology on
X ;

(ii) the sets of the form
Bx,U := {y ∈ U : y > x}

where U is a cofinite subset of X and x ∈ X1 is arbitrary, form a basis for the Fréchet-Markov
topology on X .

Proof. (i). The elementary algebraic sets for the Zariski topology are precisely Va,b := {x ∈ X :
max{x, a} = max{x, b}} and Wa,b := {x ∈ X : max{x, a} = b} where a, b ∈ X1 are arbitrary.

If a, b ∈ X are arbitrary, then the following hold:

(1) if a = b, then Va,b = X and Wa,b = {x ∈ X : x ≤ a};
(2) if a < b, then Va,b = {x ∈ X : x ≥ b} and Wa,b = {b};
(3) if a > b, then Va,b = {x ∈ X : x ≥ a} and Wa,b = ∅.

Hence the complements of the sets Va,b and Wa,b are subbasic open sets for the order topology on X and
are a basis for the Zariski topology, and so these two topologies coincide.

The order topology is also a Hausdorff semigroup topology for X . It is routine to verify that X is
Hausdorff. We now show that the order topology is indeed a semigroup topology. Suppose that max{a, b} =
b ∈ U for some subbasic open U . If a, b ∈ U , then UU = U . If a 6∈ U , then U = {y ∈ X : x < y} for
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some x < b, and so if V = {y ∈ X : b > y}, then V U ⊆ U . Finally, the order topology, being equal to the
Zariski topology, is contained in the Hausdorff-Markov topology, which is contained in the order topology
by above.

(ii). Let T be the topology on X with the sets Bx,U as a basis. Note that B1,U = U for all U where
1 ∈ X1 is the adjoined identity. Hence the cofinite sets are basic open in T , and so T contains the cofinite
topology, and it is T1. Let S be a T1 semigroup topology for X . We show that T ⊆ S. Since S is T1, the
singletons are closed in S and hence

(X\{x})λ−1
x = {y ∈ X : max{x, y} 6= x} = {y ∈ X : y > x} ∈ S

for all x ∈ X . If x ∈ X is arbitrary and U is a cofinite subset of X , then

Bx,U = {y ∈ X : y > x} ∩ U,

and so T ⊆ S. It follows that T is contained in the Fréchet-Markov topology for X , and hence it suffices
to show that T contains the Fréchet-Markov topology. We will show that T is a semigroup topology for
X .

Let Bs,U ∈ T be an arbitrary basic open set and let a, b ∈ X be such that max{a, b} ∈ Bs,U . We show
that there are open neighbourhoods Ua, Ub of a and b respectively, such that UaUb ⊆ Bs,U . If a = b then
we choose Ub = Ua = Bs,U . Otherwise assume without loss of generality that a < b. Let Ub := Bmax{a,s},U

and Ua := U ∪{a}. If a′ ∈ Ua and b′ ∈ Ub then either max{a′, b′} = b′ ∈ Ub ⊆ Bs,U or a′ > b′ > max{a, s},
in which case max{a′, b′} = a′ ∈ Bmax{a,s},U ⊆ Bs,U as required. �

The topology defined in Example 2.6(i) can be distinct from the topology defined in Example 2.6(ii).
For example, if X = Z, then every open set in the Fréchet-Markov topology is unbounded above, whereas
some of the basic open sets in the Hausdorff-Markov topology are bounded above by definition. It follows
that Fréchet-Markov topology for a semigroup can be strictly contained in its Hausdorff-Markov topology,
even if we only consider commutative inverse semigroups.

2.3. Open questions. We end this section with some open problems.

Question 2.7. Is the Fréchet-Markov topology always contained in the Zariski topology?

Question 2.8. Is the semigroup version of the Zariski topology applied to a group equal to the group
version of the Zariski topology applied to the same group?

We will determine the Zariski topologies on several well-known classes of semigroups. Notably absent
from this list is the symmetric inverse monoid, and so we ask the following question also.

Question 2.9. What is the Zariski topology of the symmetric inverse monoid?

3. Property X

In this section, we introduce a property that will be central to this paper. If S is a semitopological
semigroup and A is a subset of S, then we say that S satisfies property X with respect to A if the following
holds:

for every s ∈ S there exists fs, gs ∈ S and ts ∈ A such that s = fstsgs and for every
neighbourhood B of ts the set fs(B ∩ A)gs is a neighbourhood of s.

Although somewhat technical, property X is the crucial ingredient in many of the proofs in this paper
where we determine unique or maximal Polish topologies on a semigroup S, or show automatic continuity
for S with respect to the class of second countable topological semigroups.

Theorem 3.1. Let S be a semigroup, let T be a topology with respect to which S is semitopological, and
let A ⊆ S. If S has property X with respect to A, then the following hold:

(i) if T is a semitopological semigroup and φ : S −→ T is a homomorphism such that φ|A is continuous,
then φ is continuous;

(ii) if T ′ is a topology with respect to which S is semitopological and T ′ induces the same topology on A
as T , then T ′ is contained in T ;

(iii) if T is Polish and A is a Polish subgroup of S, then T is maximal among the Polish topologies with
respect to which S is semitopological;

(iv) if A is a semigroup which has automatic continuity with respect to a class C of topological semigroups,
then the semigroup S has automatic continuity with respect to C also.
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To prove Theorem 3.1, we require the notion of a Borel measurable function between topological spaces.
Recall that a σ-algebra on a set X is a collection of subsets of X containing ∅ and which is closed
under complements and countable unions (and hence also closed under countable intersections). If X is a
topological space, then a set B is Borel if it belongs to the least σ-algebra containing the open sets in X .
If X and Y are topological spaces, then f : X −→ Y is Borel measurable if the pre-image of every Borel
set is Borel. We require the following propositions which follows from Theorem 9.10, Proposition 11.5, and
Corollary 15.2 in [41].

Proposition 3.2. If G and H are Polish semitopological groups and f : G −→ H is a Borel measurable
homomorphism, then f is continuous.

Proposition 3.3. If X and Y are Polish spaces and f : X −→ Y is a Borel measurable bijection, then
f−1 is Borel measurable also.

Proof of Theorem 3.1. (i). We denote the topology on T by T ′. We will show that φ is continuous at an
arbitrary s ∈ S. Suppose that U ∈ T ′ is an open neighbourhood of (s)φ. By propertyX, there are fs, gs ∈ S
and ts ∈ A such that s = fstsgs. Since φ is a homomorphism, (s)φ = (fstsgs)φ = (fs)φ (ts)φ (gs)φ and so
(ts)φ ∈ V where

V = (U)(λ(fs)φ ◦ ρ(gs)φ)
−1.

In particular, since T is semitopological, V is an open neighbourhood of (ts)φ in T ′ and

((fs)φ)V ((gs)φ) ⊆ U.

Since φ|A is continuous, (V )φ−1 ∩A is open in the subspace topology on A induced by T . Hence (V )φ−1 ∩
A = W ∩ A for some W ∈ T . By property X, there exists an open neighbourhood B of s such that
B ⊆ fs(W ∩A)gs. Then

(B)φ ⊆ (fs(W ∩ A)gs))φ =
(

fs((V )φ−1 ∩ A)gs
)

φ ⊆
(

fs((V )φ−1)gs
)

φ ⊆ ((fs)φ)V ((gs)φ) ⊆ U,

and so φ is continuous at s.

(ii). Let T ′ be a semitopological semigroup topology for S that induces the same subspace topology as T
on A. Then the restriction of the identity homomorphism id : (S, T ) → (S, T ′) to A is continuous. Thus
id : (S, T ) → (S, T ′) is continuous by part (i) and so T ′ ⊆ T , as required.

(iii). Suppose that T ′ is a Polish semitopological semigroup topology on S and that T ⊆ T ′. We will
show that T ′ ⊆ T , and so T is maximal. As in the previous part, it suffices to show that the restriction
id |A of the identity function id : (S, T ) −→ (S, T ′) is continuous.

Since A is a Polish subspace of S with respect to T , it follows that A is Gδ in T , and so A is Gδ in T ′

also. Hence A is a Polish subspace of S with respect to T ′. Since id |−1
A is a Borel measurable bijection

between Polish spaces, it follows from Proposition 3.3 that id |A is a Borel measurable function between
(S, T ) and (S, T ′). Therefore, by Proposition 3.2, id |A is continuous.

(iv). Suppose that T is a topological semigroup belonging to the class C and that φ : S −→ T is a
homomorphism. It follows that φ|A is a homomorphism from A to T which is therefore continuous by
automatic continuity. It follows from part (i) that φ is continuous. �

We end this section by observing that “having property X with respect to a subset” is a transitive
relation.

Lemma 3.4. Let S be a topological semigroup and let A ≤ T ≤ S. If S has property X with respect to T
and T has property X with respect to A, then S has property X with respect to A.

Proof. Let s ∈ S. Since S has property X with respect to T , there exist fs, gs ∈ S and ts ∈ T such that
fstsgs = s and fs(B

′ ∩ T )gs is a neighbourhood of s for every neighbourhood B′ of ts. Similarly, there
exist tts ∈ A and fts , gts ∈ T such that ts = ftsttsgts and fts(B ∩ A)gts is a neighbourhood of ts in T for
every neighbourhood B of tts .

If B is any neighbourhood of tts in S, then fts(B∩A)gts is a neighbourhood of ts in T . Hence there is a
neighbourhood B′ of ts in S such that B′∩T = fts(B∩A)gts . In particular, fsfts(B∩A)gtsgs = fs(B

′∩T )gs
is a neighbourhood of s and s = fsftsttsgtsgs, and S has property X with respect to A. �
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4. Automatic continuity and the small index property

The notions of automatic continuity for semigroups and groups, as defined in the introduction, are
superficially different. The former is defined with respect to a class of topological semigroups, and the
latter with respect to a class of topological groups. Of course, a class of topological groups is also a
class of topological semigroups. We will use the automatic continuity of the symmetric group, and the
homeomorphisms of the Cantor space, with respect to the class of second countable semigroups in Sections 5
and 6, and so we require the following proposition.

Proposition 4.1. Let G be a semitopological group. Then G has automatic continuity with respect to the
class of second countable topological semigroups if and only if G has automatic continuity with respect to
the class of second countable topological groups.

Proof. (⇐) Let S be a second countable topological semigroup and let φ : G −→ S be a homomorphism.
Then H := (G)φ is a subgroup of S and the induced topology on H is a second countable paratopological
group topology for H ; we denote this topology by T . If T −1 := {U−1 : U ∈ T }, then, by Proposition 2.3,
T −1 is a semigroup topology on H and, since T −1 is homeomorphic to T , it is second countable. It then
follows that the topology T ′ generated by T and T −1 is also a second countable paratopological group
topology for H . Since the topology T ′ is generated by an inverse closed collection of sets, it follows that the
inverse operation of H is continuous under this topology, and thus (H, T ′) is a second countable topological
group. Since φ is a homomorphism, φ is continuous with respect to T ′ and the topology on G. If U ∈ T ,
then U ∈ T ′ and so (U)φ−1 is open in G by the continuity of φ : G −→ (H, T ′).

(⇒) This is immediate as second countable topological groups are second countable topological semi-
groups. �

Corollary 4.2. The symmetric group Sym(N) and the group H(2N) of homeomorphisms of the Cantor
space 2N have automatic continuity with respect to the class of second countable topological semigroups.

Proof. It is known that the given groups both have automatic continuity with respect to the class of second
countable topological groups (see [42] and [65]), and so the result follows immediately by Proposition 4.1.

�

A topological group G has the small index property if every subgroup of index at most ℵ0 is open;
some authors assume this condition for subgroups of index less than 2ℵ0 . A topological group G has the
small index property if and only if every homomorphism from G to Sym(N) with the pointwise topology is
continuous. However, having the small index property is strictly weaker than having automatic continuity
with respect to the class of the second countable topological groups. In particular, in Example 4.6, we give
an example of a group satisfying the small index property but that does not have automatic continuity
with respect to the class of second countable topological groups.

We define a notion analogous to small index property for topological semigroups. A topological semi-
group S is said to have the right small index property if every right congruence on S with countably many
classes is open in S×S with the product topology. Similarly, S is said to have the left small index property
if every left congruence on S with countably many classes is open. If G is a topological group, then G has
the left small index property if and only if G has the right small index property.

In Proposition 5.18, we show that the notions of left and right small index property are distinct, by
exhibiting an example which has one property but not the other. If a topological semigroup S has automatic
continuity, then S has both left and right small index property (Corollary 4.5). In Proposition 4.3, we will
show that a topological monoid S has the right small index property if and only if every homomorphism
from S to NN with the topology of pointwise convergence is continuous.

Proposition 4.3. A topological monoid M has the right small index property if and only if every homo-
morphism from M to NN with the pointwise topology is continuous.

Proof. First note that an equivalence relation on a topological space is open if and only if all of its
equivalence classes are open.

We start by assuming that M has the right small index property. Let φ : M −→ NN be a semigroup
homomorphism. Recall that the pointwise topology on NN has a subbasis consisting of the sets Ui,j = {f ∈
NN : (i)f = j} over all i, j ∈ N. Note that Ui,j is an equivalence class under the right congruence

ρ := {(f, g) ∈ NN : (i)f = (i)g}.

Since φ is a homomorphism, the relation ρ′ := {(f, g) ∈ M : (fφ, gφ) ∈ ρ} on M is a right congruence on
the monoid M and ρ′ has at most as many classes as ρ. Since M has the right small index property, ρ′ is



12 L. ELLIOTT, J. JONUŠAS, Z. MESYAN, J. D. MITCHELL, M. MORAYNE, AND Y. PÉRESSE

open. The preimage of Ui,j under φ is an equivalence class of ρ′ and hence open. Since Ui,j is an arbitrary
subbasic open set, it follows that φ is continuous.

Now suppose that every semigroup homomorphism φ : M −→ NN is continuous. Let ρ be a right
congruence on M with countably many classes. We define a homomorphism φ :M −→ (M/ρ)(M/ρ) by

(g/ρ)((f)φ) = gf/ρ.

The semigroup (M/ρ)(M/ρ), together with the pointwise topology, is topologically isomorphic to NN and
thus φ is continuous with respect to these topologies. Let m/ρ be an arbitrary equivalence class of ρ. It
suffices to show that m/ρ is an open subset of M . The set {(f)φ ∈ (M)φ : (1M/ρ)(f)φ = m/ρ} is open in

(M)φ under the subspace topology inherited from M/ρ
M/ρ

and

{(f)φ ∈ (M)φ : (1M/ρ)((f)φ) = m/ρ}φ−1 = {(f)φ ∈ (M)φ : f/ρ = m/ρ}φ−1 = m/ρ.

Since φ is continuous, it follows that m/ρ is indeed open as required. �

By symmetry, we obtain the following corollary to Proposition 4.3.

Corollary 4.4. A topological monoid M has the left small index property if and only if every homomor-
phism from M to NN with left actions is continuous.

The following corollary follows straight from the definition of automatic continuity, Proposition 4.3, and
Corollary 4.4.

Corollary 4.5. If a topological monoid has automatic continuity with respect to the class of second count-
able topological semigroups, then it has both the left and right small index properties.

The converse of Corollary 4.5 is not true. We give an example which demonstrates that the small index
property is strictly weaker than automatic continuity even in the case of abelian Hausdorff topological
groups.

Example 4.6. Define the topology T on the group of real numbers R under addition by choosing the
cosets of all countable index subgroups as a subbasis. This subbasis is actually a basis as the intersection
of finitely many subgroups of countable index is another subgroup of countable index. Moreover, T is a
group topology since for every countable index subgroup G of R we have (G+ x) + (G+ y) ⊆ (G+ x+ y)
and −(G+ x) = (G− x) for all x, y ∈ R. By its definition, T clearly gives (R,+) the small index property.

Since T is a group topology, to show that T is Hausdorff, it suffices to show that T is T0. We will show
that for all x ∈ R\{0} there is a countable index subgroup of R which does not contain x. Let x ∈ R\{0}.
By Zorn’s Lemma we can extend the set {x} to a basis B for R as a vector space over Q. Let G be the
subspace spanned by B\{x}. As B is linearly independent, x 6∈ G. But as G is a codimension 1 subspace
of a vector space over a countable field, it follows that G has countable index as required.

To see that (R,+) under T does not have automatic continuity, we will show that the identity map from
R under T to R with the standard topology is not continuous. The interval (−1, 1) is not open in T since
all non-empty open sets in T contain a translation of a non-trivial group, and are thus unbounded.

In Proposition 5.18 we give an example of a topological semigroup which has the right small index
property but not the left small index property, so in particular it also does not have automatic continuity.
Moreover, this shows that the right and left small index properties are not equivalent in general.

Although Example 4.6 shows that the small index property is strictly weaker than automatic continuity
for topological groups in general, we ask if these notions are equivalent for Polish groups.

Question 4.7. If G is a Polish group and G has the small index property, then does G have automatic
continuity with respect to the class of second countable groups?

5. Classical monoids

In this section, we consider several monoids that have been extensively studied in the literature which
we refer to collectively as classical monoids.

Let X be any set. A binary relation on X is just a subset of X×X . We will denote the set of all binary
relations on X by BX . If f, g ∈ BX , then their composition f ◦ g is defined by

(x, y) ∈ f ◦ g if (x, z) ∈ f and (z, y) ∈ g for some z ∈ X.

The set BX with composition of binary relations is the full binary relation monoid on X . If f ∈ BX , then
we define the inverse of f to be f−1 = {(y, x) : (x, y) ∈ f}. The relation f−1 is not always an inverse for
f , in the sense of inverse semigroups or groups, since f ⊆ ff−1f , and this containment may be strict.
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If Σ ⊆ X and f ∈ BX , then the image of Σ under f is the set

(Σ)f = {y ∈ X : (x, y) ∈ f for some x ∈ Σ}.

The domain and image of f are dom(f) = (X)f−1 and im(f) = (X)f .
We will also consider the following natural subsemigroups of BX : the partial transformation monoid

PX = {f ∈ BX : |({x})f | ≤ 1 for all x ∈ X};

the full transformation monoid

XX = {f ∈ PX : |({x})f | = 1 for all x ∈ X};

the symmetric inverse monoid

IX = {f ∈ PX : |({x})f−1| ≤ 1 for all x ∈ X};

the monoid of injective functions

Inj(X) = {f ∈ XX : |({x})f−1| ≤ 1 for all x ∈ X};

the monoid of surjective functions

Surj(X) = {f ∈ XX : (X)f = X}.

These monoids have been extensively studied in the literature in both the finite and infinite cases; see, for
example, [19, 32, 53, 54, 55, 56] and the references therein. Of course, (partial) functions are sets of pairs,
and so we may write (x, y) ∈ f ∈ PX to denote that x ∈ dom(f) and (x)f = y. Similarly, we may write
that f ⊆ g where f, g ∈ PX and g|dom(f) = f .

In Section 5.6, we will also briefly consider certain, so-called, diagram monoids. The definition of these
monoids is more involved, and as it turns out, studying them as topological monoids is less fruitful than
the monoids defined above. For these reasons we delay the definitions of these monoids to Section 5.6.

5.1. The full transformation monoid. Recall that a subbasis for the pointwise topology on XX , where
X is any infinite set, consists of the sets

Ux,y = {f ∈ XX : (x)f = y}

for all x, y ∈ X . This semigroup topology on XX is essentially the only such topology considered in the
literature. While it is possible to define further semigroup topologies on XX , we will show that every such
semigroup topology on XX either fails to be T1 or contains the pointwise topology. If X is countable, then
we will show that the pointwise topology is the unique T1 second countable semigroup topology on XX ;
this may account, at least in part, for the absence of alternative topologies in the literature. Furthermore,
XX has automatic continuity with respect to the pointwise topology and the class of second countable
topological semigroups. We show that the pointwise topology coincides with the Zariski topology and
characterise those topological semigroups that topologically embed into XX when X is countable.

We begin this subsection with a technical lemma that we will use repeatedly later on.

Lemma 5.1. Let X be an infinite set, and let S be a subsemigroup of PX such that S contains all of the
constant transformations (defined everywhere on X), and for every x ∈ X there exists fx ∈ S such that
(x)f−1

x = {x} and (X)fx is finite. If T is a topology which is semitopological for S, then the following are
equivalent:

(i) T is Hausdorff;
(ii) T is T1;
(iii) {f ∈ S : (y, z) ∈ f} and {f ∈ S : t 6∈ dom(f)} are open with respect to T for all y, z, t ∈ X;
(iv) {f ∈ S : (y, z) ∈ f} and {f ∈ S : t 6∈ dom(f)} are closed with respect to T for all y, z, t ∈ X.

Proof. (i) ⇒ (ii). This follows since every Hausdorff space is T1.

(ii) ⇒ (iii). Suppose that y, z ∈ X , and g, h ∈ S are such that h is the constant transformation with
value y, and g is arbitrary. Then y /∈ dom(g) or (y)g 6= z if and only if hgfz is ∅ or a constant with
value belonging to (X)fz \ {z}. Since (X)fz is finite by assumption, it follows that {f ∈ S : (y, z) 6∈ f}
is the preimage under left multiplication by h and right multiplication by fz of the finite set consisting
of the empty function and those constant transformations whose image belongs to (X)fz \ {z}. Hence
{f ∈ S : (y, z) 6∈ f} is closed.

Similarly, y ∈ dom(g) if and only if hgfy is a constant with the value belonging to (X)fy. In this case,
we obtain {f ∈ S : y ∈ dom(f)} as the preimage under left multiplication by h and right multiplication by
fy of the finite set consisting of those constant transformations whose image belongs to (X)fy.



14 L. ELLIOTT, J. JONUŠAS, Z. MESYAN, J. D. MITCHELL, M. MORAYNE, AND Y. PÉRESSE

In the two cases above, we showed that the sets {f ∈ S : (y, z) 6∈ f} and {f ∈ S : t ∈ dom(f)} are closed,
and so their complements are open, as required.

(iii) ⇒ (i). If f, g ∈ S are such that f 6= g, then there is y ∈ X with (y)f 6= (y)g or dom(f) 6= dom(g). In
the first case, {s ∈ S : (y)s = (y)f} and {s ∈ S : (y)s = (y)g} are the required disjoint neighbourhoods of f
and g, respectively. In the second case, we may assume that there is y ∈ dom(f) \ dom(g), and so the sets
{s ∈ S : y ∈ dom(s)} =

⋃

z∈X{s ∈ S : (y, z) ∈ f} and {s ∈ S : y /∈ dom(s)} are disjoint neighbourhoods of
f and g.

(iii) ⇒ (iv) This follows from the equalities

S\{f ∈ S : (y, z) ∈ f} =
⋃

t∈X\{z}

{f ∈ S : (y, t) ∈ f} ∪ {f ∈ S : y /∈ dom(f)}

and

S\{f ∈ S : y /∈ dom(f)} =
⋃

t∈X

{f ∈ S : (y, t) ∈ f}.

(iv) ⇒ (ii). Let g ∈ S be arbitrary. From the equality

{g} =
⋂

y∈dom(g)

{f ∈ S : (y, (y)g) ∈ f} ∩
⋂

y∈X\ dom(g)

{f ∈ S : y /∈ dom(f)}.

it follows that the singleton sets are closed in T . �

Corollary 5.2. Let X be an infinite set, and let S be a subsemigroup of XX such that S contains all of
the constant transformations, and for every x ∈ X there exists fx ∈ S such that (x)f−1

x = {x} and (X)fx
is finite. Then the pointwise topology coincides with the Hausdorff-Markov, Fréchet-Markov, and Zariski
topologies for S.

Proof. Since the pointwise topology is a Hausdorff semigroup topology for S, the Hausdorff-Markov topol-
ogy is contained in the pointwise topology. By Fig. 1, the Zariski and Fréchet-Markov topologies are
contained in the Hausdorff-Markov topology, and hence in the pointwise topology.

On the other hand, Lemma 5.1 implies that the minimum T1 topology that is semitopological for S
contains the pointwise topology, and hence, by Fig. 1, the Hausdorff-Markov, Fréchet-Markov, and Zariski
topologies contain the pointwise topology too. �

Lemma 5.3. Let X be an infinite set and let S be a subsemigroup of XX such that for every x ∈ X there
exist a, b, c0, . . . , cn−1 ∈ S for some n ∈ N such that the following hold:

(i) (y)a = (y)b if and only if y 6= x;
(ii) x ∈ im(ci) for all i;
(iii) for every s ∈ S and every y ∈ X \ {(x)s} there is i ∈ {0, . . . , n− 1} so that im(ci) ∩ (y)s−1 = ∅.

Then the Zariski topology of S is the pointwise topology.

Proof. The pointwise topology is Hausdorff, and so it contains the Zariski topology by Proposition 2.1.
Hence it remains to show that the Zariski topology contains the pointwise topology.

We begin by observing that if x ∈ X is arbitrary, then there exist a, b ∈ S satisfying part (i) of the
hypothesis and so

S \ {f ∈ S : x ∈ im(f)} = {f ∈ S : x /∈ im(f)} = {f ∈ S : fa = fb}.

Hence {f ∈ S : x ∈ im(f)} is open in the Zariski topology.
If x ∈ X is arbitrary, then there exist c0, . . . , cn−1 ∈ S satisfying part (ii) of the assumption of the

lemma. Since the Zariski topology is semitopological, by Proposition 2.2, the map λci is continuous for
every i ∈ {0, . . . , n− 1}. If y ∈ X is arbitrary, then the set

Ui := {f ∈ S : there is w ∈ im(ci) with (w)f = y} = {f ∈ S : y ∈ im(f)}λ−1
ci

is also open in Zariski topology for every i ∈ {0, . . . , n − 1}. It suffices to show that
⋂n−1
i=0 Ui is equal to

the subbasic open set {f ∈ S : (x)f = y} in the pointwise topology.
By definition,

n−1
⋂

i=0

Ui = {f ∈ S : there exist wi ∈ im(ci) with (w0)f = · · · = (wn−1)f = y}.
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Let f ∈
⋂n−1
i=0 Ui, and let w0, . . . , wn−1 be such that (w0)f = . . . = (wn−1)f = y where wi ∈ im(ci) for all

i. Then im(ci)∩ (y)f−1 6= ∅ for every i ∈ {0, . . . , n− 1}, and so by the assumption of the lemma, it follows

that y = (x)f . Hence
⋂n−1
i=0 Ui ⊆ {f ∈ S : (x)f = y}. The converse follows immediately from the fact that

x ∈
⋂n−1
i=0 im(ci). �

In the next theorem, we show that the pointwise topology on XX is the unique Polish (even T1 second
countable) semigroup topology on XX ; and XX with pointwise topology has automatic continuity with
respect to the class of second countable topological semigroups.

Theorem 5.4. If X is an infinite set, then the following hold:

(i) XX with the pointwise topology has property X with respect to Sym(X);
(ii) the pointwise topology is the only T1 semigroup topology on XX which induces the pointwise topology

on Sym(X);
(iii) the pointwise topology coincides with the Hausdorff-Markov, Fréchet-Markov, and Zariski topologies

for XX;
(iv) if X is countable, then XX with the pointwise topology has automatic continuity with respect to the

class of second countable topological semigroups;
(v) if X is countable, then the pointwise topology on XX is the unique T1 second countable semigroup

topology.

Proof. (i). Let ψ : X −→ X ×X be a bijection, and let π1 : X ×X −→ X be defined by (x, y)π1 = y. We
define f, g ∈ XX by

(x)f = (x, x)ψ−1 and (x)g = (x)ψπ1.

Let s ∈ XX and let t ∈ Sym(X ×X) be any permutation such that

(x, x)t = (x, (x)s)

for all x ∈ X . We then define ts ∈ XX to be ψtψ−1. From the definitions of f , g, and ts,

(x)ftsg = (x, x)ψ−1ψtψ−1ψπ1 = (x, x)tπ1 = (x, (x)s)π1 = (x)s

for all x ∈ X . Let B be a basic open neighbourhood of ts. Then there exist x0, x1, . . . , xn ∈ X such that
ts ∈

⋂n−1
i=0 {f ∈ XX : (xi)f = (xi)ts} = B. If

V := {k ∈ XX : (x)k = (x)s for all x such that (x, x) ∈ {(x0)ψ, (x1)ψ, . . . , (xn−1)ψ}},

then V is an open neighbourhood of s and so it suffices to show that V ⊆ f(B ∩ Sym(X))g. For every
x ∈ X , we choose distinct zx ∈ X which is also distinct from the first coordinate of every element of
{(x0)ψt, (x1)ψt, . . . , (xn−1)ψt}. Let k ∈ V . Then there exists p ∈ Sym(X ×X) such that

(xi)ψp = (xi)ψt

for all i, and

(x, x)p = (zx, (x)k),

for all x ∈ X for which (x, x) /∈ {(x0)ψ, (x1)ψ, . . . , (xn−1)ψ}. We then define tk to be ψpψ−1. By the
choice of p, it follows that (xi)tk = (xi)ψpψ

−1 = (xi)ψtψ
−1 = (xi)ts for every i, and so tk ∈ B ∩ Sym(X).

Thus

(x)ftkg = (x, x)ψ−1ψpψ−1ψπ1 = (x, x)pπ1 =

{

(x, x)tπ1 if (x, x) ∈ {(x0)ψ, (x1)ψ, . . . , (xn−1)ψ}

(zx, (x)k)π1 otherwise.

In the first case, (x)ftkg = (x, (x)s)π1 = (x)s = (x)k and in the second case, (x)ftkg = (zx, (x)k)π1 = (x)k
also. Hence k = ftkg ∈ f(B ∩ Sym(X))g and so, since k was arbitrary, V ⊆ f(B ∩ Sym(X))g, as required.

(ii). By Lemma 5.1 every T1 topology on XX contains the pointwise topology. By part (i) together with
Theorem 3.1(ii), this is also the largest topology which induces the pointwise topology on Sym(X).

(iii). This follows immediately from Corollary 5.2.

(iv). This follows from part (i), Theorem 3.1(iv), and the automatic continuity of Sym(X) when X is
countable.

(v). By part (iii), every second countable semigroup topology for XX is contained in the pointwise
topology. By Lemma 5.1 every T1 topology on NN contains the pointwise topology. �
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In some sense, every group is a group of permutations, since every group can be embedded into the
symmetric group Sym(X) for some set X . Similarly, every semigroup embeds as a subsemigroup of XX

for some set X . Given that XX has a canonical semigroup topology, it is natural to ask which topological
semigroups embed in XX with the pointwise topology.

It is well-known that a T1 topological group G is topologically isomorphic to a subgroup of Sym(N) if
and only if G has a countable neighbourhood basis of the identity 1G consisting of countable index open
subgroups. This latter condition is referred to as G being non-archimedean by some authors; see, for ex-
ample, [11, Theorem 1]. In the next theorem, we prove an analogue of this result for T0 left semitopological
semigroups. In [11, Theorem 2], another analogous characterisation is given of those topological monoids
that are topologically isomorphic to closed submonoids of NN. There are many topological monoids that
are topologically isomorphic to non-closed submonoids of NN. For example, if D is a countable dense subset
of NN, then the least submonoid 〈D〉 of NN containing D is countable and dense also. It follows that 〈D〉 is
not Gδ, and hence not Polish. It follows that 〈D〉 is not topologically isomorphic to any closed submonoid
of NN, but it is obviously (topologically isomorphic to) a submonoid of NN. Of course, not every Polish
semigroup is topologically isomorphic to a subsemigroup of NN. For example, the reals R under addition
form a connected Polish group, but NN is totally disconnected, and so (R,+) cannot be topology embedded
in NN.

Even though the statement of Theorem 5.5 is superficially different from that of [11, Theorem 2], the
proof of Theorem 5.5 is essentially contained in the proof of [11, Theorem 2]. We include Theorem 5.5
because we will use it in Section 5.5 and we include the proof for the sake of completeness.

Theorem 5.5 (cf. Theorem 2 in [11]). If S is a T0 left semitopological semigroup, then the following are
equivalent:

(i) there is a sequence {ρi : i ∈ N} of right congruences of S, each having countably many classes, such
that {m/ρi : m ∈ S, i ∈ N} is a subbasis for S;

(ii) there is a sequence {σi : i ∈ N} of right congruences of S, each having countably many classes, such
that {m/σi : m ∈ S, i ∈ N} is a basis for S;

(iii) S is topologically isomorphic to a subsemigroup of NN (with the pointwise topology and right actions).

Proof. We will show that (i) ⇒ (iii) ⇒ (ii) ⇒ (i).

(ii) ⇒ (i). This implication follows immediately from the definitions of bases and subbases for topological
spaces.

(iii) ⇒ (ii). Assume without loss of generality that S is a subsemigroup of NN. If we define ρi = {(f, g) :
(i)f = (i)g} for every i ∈ N, then clearly every ρi is a right congruence with the properties given in (i).
If σn =

⋂

i≤n ρi, for every n ∈ N, then {x/σn : x ∈ S, n ∈ N} is a basis for the topology on S with the
required properties.

(i) ⇒ (iii). We give S1 the disjoint union topology of S and {1}. If ρ is any right congruence on S, then
ρ∪{(1, 1)} is a right congruence on S1. It follows that S1 satisfies the hypothesis of (i). Let {ρi : i ∈ N} be a
sequence of right congruences of S1, each having countably many classes, such that {m/ρi : m ∈ S1, i ∈ N}
is a subbasis for S1.

By assumption, X = {m/ρi : m ∈ S1, i ∈ N} is countable, and we will show that S1 is topologically
isomorphic to a subsemigroup of XX with the pointwise topology, from which it will follow that S is
also topologically isomorphic to a subsemigroup of NN. When i 6= j, we will consider classes of ρi and
classes of ρj as different elements of X , even if they should happen to be the same subset of S. We define
φ : S1 −→ XX such that (m)φ ∈ XX is defined by

(n/ρi)(m)φ = (nm)/ρi.

It is sufficient to show that φ is a well-defined, injective, continuous, homomorphism such that if U is open
in S1, then (U)φ is open in (S1)φ with the subspace topology.

If (a, b) ∈ ρi for some i ∈ N and m ∈ S1, then (a/ρi)(m)φ = (am)/ρi = (bm)/ρi = (b/ρi)(m)φ, since ρi
is a right congruence. It follows that φ is well-defined.

Suppose that m,n ∈ S1 are such that (m)φ = (n)φ. It follows that m/ρi = (1/ρi)(m)φ = (1/ρi)(n)φ =
n/ρi for all i ∈ N. In other words, (m,n) ∈ ρi for all i ∈ N. But since {m/ρi : m ∈ S1, i ∈ N} is a subbasis
for S1, and S1 is T0 it follows that

⋂

i∈N
ρi = {(s, s) : s ∈ S1}. Hence m = n and φ is injective.

Let a,m, n ∈ S1 and i ∈ N be arbitrary. Then

((a/ρi)(m)φ)(n)φ = (amn)/ρi = (a/ρi)(mn)φ
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and so φ is a homomorphism.
To show that φ is continuous it is sufficient to show that the preimage under φ of every subbasic open

set in XX is open in S1. Let S be the subbasis for XX consisting of the sets

[α, β] = {f ∈ XX : (α)f = β}

where α, β ∈ X . Suppose that [α, β] ∈ S. Then α = a/ρi and β = b/ρj for some a, b ∈ S1 and i, j ∈ N.
If [a/ρi, b/ρj] ∩ (S1)φ 6= ∅, then i = j by the definition of φ. Hence we may suppose that without loss of
generality that α = a/ρi and β = b/ρi. It follows that

[α, β]φ−1 = {m ∈ S1 : (α)(m)φ = β}

= {m ∈ S1 : (a/ρi)(m)φ = b/ρi}

= {m ∈ S1 : (am)/ρi = b/ρi}

= {m ∈ S1 : am ∈ b/ρi}

= (b/ρi)λ
−1
a .

Since S1 is left semitopological, λa is continuous and since b/ρi is open, so too is [α, β]φ−1. Hence φ is
continuous.

If m ∈ S1 and i ∈ N are arbitrary, then

(m/ρi)φ = {(n)φ : n ∈ S1, mρi = nρi}

= {(n)φ : n ∈ S1, (1/ρi)(n)φ = mρi}

= [1/ρi,mρi].

Hence every subbasic open set in S1 is mapped to a subbasic open set in (S1)φ and so φ is open. �

We prove an analogue of Theorem 5.5 for semitopological inverse monoids and the symmetric inverse
monoid in Theorem 5.21.

Uspenskĭı’s Theorem [41, Theorem 9.18] and [79] states that every Polish group is isomorphic to a (nec-
essarily closed) subgroup of the group H([0, 1]N) of homeomorphisms of the Hilbert cube [0, 1]N. A similar
result holds for separable metrizable compactifiable semigroups, every such semigroup is topologically
isomorphic to a subsemigroup of C([0, 1]N); see [51, Theorem 5.2].

Question 5.6. Is every countable Polish semigroup topologically isomorphic to a subsemigroup of NN? 1

5.2. The full binary relation monoid. Unlike XX which is probably better known as a topological
space than as a semigroup, there is no obvious candidate for a semigroup topology on the full binary
relation monoid BX . In this section, we prove that a dichotomy exists for semigroup topologies on BX :
either such a topology is so coarse that it is not T1, or it is so fine that it is not second countable. In
particular, BX possesses no Polish semigroup topologies. We exhibit two semigroup topologies on BX
which are, in some sense, canonical for the poles of the dichotomy.

The natural starting point is to consider a topology which induces the pointwise topology on XX . This
is the subject of the next theorem.

Theorem 5.7. Let X be an infinite set and let

Ux,y = {f ∈ BX : (x, y) ∈ f}

for all x, y ∈ X. If B1 is the topology on BX with subbasis {Ux,y : x, y ∈ X}, then the following hold:

(i) B1 is a semigroup topology for BX and inversion of binary relations f 7→ f−1 is continuous;
(ii) B1 is T0 but not T1, and the subspace topology induced by B1 on the symmetric inverse monoid IX is

not T1;
(iii) the topological semigroup BX with the topology B1 has property X with respect to Sym(X);
(iv) every topology that is semitopological for BX and that induces the pointwise topology on Sym(X) is

contained in B1;
(v) if X is countable, then BX with the topology B1 has automatic continuity with respect to the class of

second countable topological semigroups.

1Addendum: S. Bardyla, L. Elliott, J. D. Mitchell, and Y. Péresse recently showed that the answer to this question is no,
see [4].
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Proof. Note that a basis for B1 is given by the collection of sets {h ∈ BX : f ⊆ h} where f ∈ BX is finite,
since such sets are precisely the finite intersections of subbasic sets in B1.

(i). Let x, y ∈ X and f, g ∈ BX be such that fg ∈ Ux,y, i.e. (x, y) ∈ fg. Then there exists z ∈ X such
that (x, z) ∈ f and (z, y) ∈ g. Conversely, for every f ′, g′ ∈ BX with (x, z) ∈ f ′ and (z, y) ∈ g′ we have
that (x, y) ∈ f ′g′. In other words, f ∈ Ux,z, g ∈ Uz,y and

Ux,zUz,y ⊆ Ux,y.

Hence multiplication is continuous.

The map f 7→ f−1 is a homeomorphism since (Ux,y)
−1

= Uy,x.

(ii). If f, g ∈ BX are distinct, then either f 6⊆ g or g 6⊆ f . Without loss of generality assume that f 6⊆ g.
Then there exists (x, y) ∈ X ×X such that (x, y) ∈ f \ g and so f ∈ Ux,y but g 6∈ Ux,y. Hence B1 is T0.

On the other hand, suppose that f, g ∈ IX and g ( f . Then every subbasic open set Ux,y containing g
also contains f . Thus every open set containing g contains f and so B1 is not T1 (even when restricted to
IX).

(iii). Let Y ⊆ X be such that |Y | = |X \ Y | = |X |. Enumerate X as X = {xi : i ∈ |X |} and let
{Xi : i ∈ |X |} be a partition of X \ Y such that |Xi| = |X | for every i ∈ |X |. Define f ∈ BX by

f = {(xi, y) ∈ X ×X : i ∈ |X | and y ∈ Xi}.

Let s ∈ BX be arbitrary. A binary relation t ∈ BX satisfies ftf−1 = s if and only if t has the following
property:

(1) for all i, j ∈ |X | : (Xi ×Xj) ∩ t 6= ∅ if and only if (xi, xj) ∈ s.

Since |Y | = |Xi| = |X |, there exists ts ∈ Sym(X) satisfying (1).
Suppose that V is a basic open neighbourhood of ts. Then there exist finite k ∈ BX such that V =

{h ∈ BX : k ⊆ h}. If U := {h ∈ BX : fkf−1 ⊆ h}, then U is open since fkf−1 is finite. We show that
s ∈ U ⊆ fV f−1. As k ⊆ ts and ftsf

−1 = s it is clear that s ∈ U . It remains to show that

U ⊆ fV f−1.

Let u ∈ U be arbitrary. As in (1) we need only find t ∈ V ∩ Sym(X) with

for all i, j ∈ |X | : (Xi ×Xj) ∩ t 6= ∅ if and only if (xi, xj) ∈ u.

If i, j ∈ |X | and (Xi ×Xj) ∩ k 6= ∅, then (xi, xj) ∈ fkf−1 ⊆ u. Therefore, as k is finite, we can extend k
to an element t of V ∩ Sym(X) with the desired property. So u = ftf−1 ∈ f(V ∩ Sym(X))f−1 and

U ⊆ f(V ∩ Sym(X))f−1,

as required.

(iv). The subbasis for B1 induces the usual subbasis for the pointwise topology on Sym(X), and so the
topology on Sym(X) induced by B1 is the pointwise topology. Since BX has property X with respect to
Sym(X), by part (iii), it follows from Theorem 3.1(ii) that if T is a topology that is semitopological for
BX , then T is contained in B1.

(v). This follows from part (iii), Theorem 3.1(iv), and the automatic continuity of Sym(X). �

As an immediate consequence of Theorem 5.7(iii), there is no T1 topology that is semitopological for BX
and that induces the pointwise topology on Sym(X). If instead of trying to extend the pointwise topology,
as we did in Theorem 5.7, we look for the weakest T1 topology that is semitopological for BX , then we
obtain the following theorem.

Theorem 5.8. Let X be an infinite set and let B2 be the topology on BX generated by the sets

Ux,y = {h ∈ BX : (x, y) ∈ h} and VY,Z = {h ∈ BX : (Y )h ⊆ Z}

for all x, y ∈ X and Y, Z ⊆ X. Then the following hold:

(i) B2 is a Hausdorff semigroup topology for BX and inversion of binary relations f 7→ f−1 is continuous;
(ii) every T1 topology that is semitopological for BX contains B2;
(iii) B2 is not contained in any second countable topology;
(iv) B2 strictly contains B1;
(v) if X is countable, then B2 coincides with the Fréchet-Markov, Hausdorff-Markov, and Zariski topolo-

gies for BX .
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Proof. (i). If f, g ∈ BX are distinct, then without loss of generality, there exist x, y ∈ X such that
(x, y) ∈ f but (x, y) 6∈ g. Then f ∈ Ux,y and g ∈ V{x},X\{y}. Since these two open sets are disjoint, B2 is
Hausdorff.

The topology generated by the sets Ux,y is just B1 as defined in Theorem 5.7. Since B1 is a semigroup
topology, it suffices to show that the pre-images under multiplication and inversion of the subbasic sets
VY,Z are open.

For any Y ⊆ X and f, g ∈ BX , we clearly have f ∈ VY,(Y )f and g ∈ V(Y )f,(Y )fg. Moreover, if
f ′ ∈ VY,(Y )f and g′ ∈ V(Y )f,(Y )fg, then (Y )f ′g′ ⊆ (Y )fg′ ⊆ (Y )fg. Thus if fg ∈ VY,Z , then f

′g′ ∈ VY,Z
and so multiplication is continuous.

Since

(VY,Z)
−1

= VX\Z,X\Y

it follows that f 7→ f−1 is also continuous under B2.

(ii). Suppose that T is a T1 topology under which BX is semitopological. We will show that the subbasic
open sets of B2 are open in T and so, in particular, B2 ⊆ T .

For any Y, Z ⊆ X and f ∈ BX consider the product

(Y × Y ) ◦ f ◦ ((X \ Z)× (X \ Z)) = g.

Either (Y )f ⊆ Z and g = ∅, or (Y )f 6⊆ Z and g = Y × (X \ Z). Thus

({Y × (X \ Z)})
(

λY×Y ◦ ρ(X\Z)×(X\Z)

)−1
= {f ∈ BX : (Y )f 6⊆ Z} = BX \ VY,Z

and

({∅})
(

λY×Y ◦ ρ(X\Z)×(X\Z)

)−1
= {f ∈ BX : (Y )f ⊆ Z} = VY,Z

as the continuous pre-images of finite sets, are closed in T . Hence VY,Z and BX \ VY,Z are open in T . If
x, y ∈ X , we may let Y = {x} and Z = X \ {y}, and then

BX \ VY,Z = {f ∈ BX : (Y )f 6⊆ Z} = {f ∈ BX : (x, y) ∈ f} = Ux,y

and so Ux,y is clopen in T also.

(iii). If X is uncountable, then the collection

{VX,{x} ∩ Ux,x : x ∈ X} ⊆ B2

consists of pairwise disjoint open sets and is uncountable. Hence, if X is uncountable, then B2 is not
contained in any second countable topology.

Suppose that X is countable and that {Xi : i ∈ I} is a family of subsets of X with cardinality 2ℵ0 such
that Xi 6⊆ Xj whenever i 6= j. For every i ∈ I, choose fi ∈ BX such that (X)fi = Xi. If U is a basis
of any topology containing B2, then, for every i ∈ I, there exists Ui ∈ U such that fi ∈ Ui ⊆ VX,Xi

. If
fi ∈ Uj ⊆ VX,Xj

, then Xi = (X)fi ⊆ Xj and so i = j. In other words, i 6= j implies that fi 6∈ Uj . Thus

|U| ≥ |I| = 2ℵ0 and so no topology containing B2 is second countable.

(iv). The subspace topology on Sym(X) induced by B1 is the pointwise topology. On the other hand, if
Y and Z are two infinite sets with infinite complements, then VY,Z ∩ Sym(X) is not open in the pointwise
topology on Sym(X).

(v). Since the minimal T1 topology that is semitopological for BX coincides with the Hausdorff-Markov
topology, by parts (i) and (ii), it follows that the Fréchet-Markov, Hausdorff-Markov and Zariski topologies
all equal B2; see Fig. 1. �

We obtain the following corollary to Theorem 5.8(iii).

Corollary 5.9. Let X be an infinite set. Then no second countable T1 topology is semitopological for BX .
In particular, BX possesses no Polish semigroup topologies.

5.3. The partial transformation monoid. A natural way of defining a semigroup topology on the
partial transformation monoid PX , where X is an arbitrary set, is to embed PX into the full transformation
monoid XX , and use the subspace topology induced by the pointwise topology on XX . We will show that,
when X is infinite, this topology is simultaneously the weakest T1 semigroup topology on PX and the finest
extension of the pointwise topology of Sym(X) to PX .
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Roughly speaking, the natural way of embedding PX into XX is to add a new element � to X that
will represent “not defined”. More precisely, if X is a set, � 6∈ X , and Y = X ∪ {�}, then the function
φ : PX −→ Y Y defined by

(2) (x)((f)φ) =

{

(x)f if x ∈ dom(f)

� if x 6∈ dom(f)

is an embedding. Note that, in particular, if g = (f)φ, then (�)g = �. We will refer to φ as the natural
embedding of PX into Y Y .

Theorem 5.10. Let X be an infinite set and let P be the topology on PX generated by the sets

Ux,y = {h ∈ PX : (x, y) ∈ h} and Wx = {h ∈ PX : x 6∈ dom(h)}

for all x, y ∈ X. Then the following hold:

(i) the topology P is the subspace topology on PX induced by the pointwise topology on Y Y and the natural
embedding φ : PX −→ Y Y defined in (2);

(ii) P is a Hausdorff semigroup topology for PX ;
(iii) P coincides with the Hausdorff-Markov, Fréchet-Markov, and Zariski topologies for PX ;
(iv) PX has property X with respect to P and Sym(X);
(v) if T is a topology that is semitopological for PX and T induces the pointwise topology on Sym(X),

then T is contained in P;
(vi) the topology P is the unique T1 topology that induces the pointwise topology on Sym(X) and that is

semitopological for PX ;
(vii) if X is countable, then PX with the topology P has automatic continuity with respect to the class of

second countable topological semigroups;
(viii) if X is countable, then P is the unique Polish topology that is semitopological for PX ;
(ix) if X is countable, then P is the unique T1 second countable semigroup topology for PX .

Proof. (i). The image of PX under the natural embedding φ defined in (2) is the set

{h ∈ Y Y : (�)h = �}.

The pointwise topology on Y Y is generated by the sets Ax,y = {f ∈ Y Y : (x, y) ∈ f} for all x, y ∈ Y . Hence
the topology induced on (PX)φ is generated by the sets Ax,y ∩ (PX)φ. Note that A�,� ∩ (PX)φ = (PX)φ
and A�,y ∩ (PX)φ = ∅ for all y ∈ X = Y \ {�}. If x, y ∈ X , then

Ax,y ∩ (PX)φ = {h ∈ (PX)φ : (x, y) ∈ h} = (Ux,y)φ

and

Ax,� ∩ (PX)φ = {h ∈ (PX)φ : (x,�) ∈ h} = (Wx)φ.

Hence φ is a homeomorphism between P and the topology generated by Ax,y ∩ (PX)φ.

(ii). Since Y Y is a Hausdorff topological semigroup under the pointwise topology, it follows from part (i)
that PX is a Hausdorff topological semigroup under P .

(iii). The proof of this part is similar to the proof of Corollary 5.2, it is included for the sake of completeness.
By part (ii), P is a Hausdorff semigroup topology for PX . Hence the Hausdorff-Markov topology is
contained in P . By Fig. 1, the Zariski and Fréchet-Markov topologies are contained in the Hausdorff-
Markov topology, and hence in P .

On the other hand, Lemma 5.1 implies that every T1 topology that is semitopological for PX contains
P , and such topologies include the Hausdorff-Markov, Fréchet-Markov, and Zariski topologies.

(iv). We will show that PX has property X with respect to XX , from which it will follow, by Lemma 3.4
and Theorem 5.4(i), that PX has property X with respect to Sym(X). Let b ∈ X be fixed and let
ψ : X −→ X\{b} be a bijection. If s ∈ PX is arbitrary, then we define f = ψ, g = ψ−1, and define ts ∈ XX

by

(x)ts =

{

b if (x)ψ−1 /∈ dom(s) or x = b

(x)ψ−1sψ if (x)ψ−1 ∈ dom(s).

It follows, from the definitions, that s = ftsg for every s ∈ PX .
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Suppose that s ∈ PX is arbitrary but fixed for the remainder of the proof. Let B be an arbitrary basic
open neighbourhood of ts. Then there exist x0, x1, . . . , xn−1 ∈ X , n ≥ 1, such that

B =

n−1
⋂

i=0

{

t ∈ PX : (xi)t = (xi)ts
}

.

Let V be the finite intersection of all of the following subbasic open sets:

(a) U(xi)ψ−1,(xi)tsψ−1 for every xi ∈ {x0, x1, . . . , xn−1}\{b} such that (xi)ts ∈ im(ψ); and
(b) W(xi)ψ−1 for every xi ∈ {x0, x1, . . . , xn−1}\{b} such that (xi)ts = b.

Then V is open and we will show that s ∈ V . If xi ∈ {x0, x1, . . . , xn−1}\{b} and (xi)ts ∈ im(ψ), then
(xi)ψ

−1 ∈ dom(s) and ((xi)ψ
−1)s = ((xi)ts)ψ

−1. This implies that s ∈ U(xi)ψ−1,(xi)tsψ−1 . Similarly, if

xi ∈ {x0, x1, . . . , xn−1}\{b} and (xi)ts = b, then (xi)ψ
−1 /∈ dom(s). Hence s ∈ W(xi)ψ−1 for such xi. We

conclude that s ∈ V .
It remains to show that V ⊆ fs(B ∩XX)gs. Let k ∈ V be arbitrary. We will show that ts and tk agree

on {x0, x1, . . . , xn−1}, or, in other words, tk ∈ B. By the definitions of ts and tk (b)ts = b = (b)tk. Suppose
that xi ∈ {x0, x1, . . . , xn−1}\{b}. If (xi)ts = b, then (xi)ψ

−1 /∈ dom(s) and, since k ∈ W(xi)ψ−1 , (xi)ψ
−1 /∈

dom(k). Hence (xi)ts = b = (xi)tk. On the other hand, if (xi)ts 6= b, then (xi)ts ∈ im(ψ). It follows from
the fact that k ∈ U(xi)ψ−1,(xi)tsψ−1 that (xi)ψ

−1k = (xi)tsψ
−1, and so (xi)ts = (xi)ψ

−1kψ = (xi)tk and so

tk ∈ B. Since tk ∈ XX by definition, and so k = ftkg ∈ f(B ∩XX)g, as required.

(v). Suppose that T is a topology that is semitopological for PX and that T induces the pointwise topology
on Sym(X). SinceWx∩X

X = {h ∈ PX : x 6∈ dom(h)}∩XX = ∅, the topology induced by P on Sym(X) is
just the pointwise topology. Hence T and P induce the same topology on Sym(X). Since PX has property
X with respect to P and Sym(X), it follows that T ⊆ P by Theorem 3.1(ii).

(vi). This follows from Lemma 5.1 and part (v).

(vii). This follows immediately from part (iv), Theorem 3.1(iv) and the automatic continuity of Sym(X).

(viii). Let X be countable. By part (i), PX is homeomorphic to its image under φ. It is easy to see that
(PX)φ is a closed subset of Y Y under the pointwise topology. Thus PX under P is homeomorphic to a
closed subspace of a Polish space and is hence Polish.

Suppose that T is a Polish topology that is semitopological for PX . Then T is T1 and so P ⊆ T by
Lemma 5.1. Since P is Polish and Sym(X) is a Polish subgroup of PX , it follows from Theorem 3.1(iii)
that T ⊆ P . Hence T = P , as required.

(ix). Suppose that T is a T1 second countable semigroup topology for PX . By Lemma 5.1, P is contained
in T . Applying (vii) to the identity function from PX with P to PX with T shows that T is contained in
P also. �

Since PX ⊆ BX , the topologies B1 and B2 on BX , given in Theorem 5.7 and Theorem 5.8, induce
semigroup topologies on PX . It is natural to ask how the topology P from Theorem 5.10 relates to the
semigroup topologies on PX induced by B1 and B2.

Proposition 5.11. If X is an infinite set, then P strictly contains the subspace topology on PX induced
by B1 and P is strictly contained in the subspace topology on PX induced by B2.

Proof. Clearly from the definitions of B1 and P , the subspace topology induced by B1 on PX is contained
in P . This containment is strict because P is T1 but B1 is not T1 on IX ⊆ PX by Theorem 5.7(ii).

The second containment follows since

{h ∈ PX : x 6∈ dom(h)} = {h ∈ BX : ({x})h ⊆ ∅} ∩ PX and {h ∈ BX : ({x})h ⊆ ∅} ∈ B2

for all x ∈ X . The topology P induces the pointwise topology on Sym(X). On the other hand, if B2 induced
the pointwise topology on Sym(X), then B2 ⊆ B1, by Theorem 5.7(iv), contradicting Theorem 5.8(iv). �

5.4. The symmetric inverse monoid. In this section we consider semigroup and inverse topologies on
the symmetric inverse monoid IX where X is any infinite set. One natural way to obtain a Hausdorff
semigroup topology on IX is to consider it as a subspace of PX with the topology defined in Section 5.3.
In Theorem 5.13, we will show that this topology is minimal among the T1 semigroup topologies on IX
but that inversion is not continuous. If U is open in the subspace topology, then the homeomorphic
topology generated by the sets U−1 = {f ∈ IX : f−1 ∈ U} is also minimal among the T1 semigroup
topologies on IX and again inversion is not continuous. Moreover, every T1 semigroup topology on IX
contains one or the other of these two topologies. This contrasts with the results of Sections 5.1, 5.2,
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and 5.3 where it was shown that each of the full transformation monoid, the full binary monoid, and
the partial transformation monoid have unique minimal T1 semigroup topologies. On the other hand, IX
has a minimum inverse semigroup topology, the topology generated by the two minimal T1 semigroup
topologies (see Theorem 5.15). Arguably, this topology is the best candidate, among those we exhibit, for
a canonical topology on IX . With this viewpoint in mind, we conclude this section by proving an analogue
of Theorem 5.5 which characterises those topological inverse semigroups that are topologically isomorphic
to inverse subsemigroups of IX , when X is countable.

We begin by constructing the least T1 topology that is semitopological for IX .

Theorem 5.12. Let X be an infinite set and let I1 denote the topology on IX generated by the sets

Ux,y = {h ∈ IX : (x, y) ∈ h} and Vx,y = {h ∈ IX : (x, y) 6∈ h}

for all x, y ∈ X. Then the following hold:

(i) the topology I1 is compact, Hausdorff, and semitopological for IX and inversion is continuous;
(ii) I1 is the least T1 topology that is semitopological for IX ;
(iii) if X is countable, then I1 is Polish.

Proof. (i). The sets Ux,y generate the subspace topology on IX induced by the topology B1 on BX defined
in Theorem 5.7. Hence, by Theorem 5.7(i), the subspace topology induced by B1 on IX is a semigroup
topology where inversion is continuous also. Hence to prove that IX is semitopological and inversion is
continuous with respect to I1, it suffices consider the subbasic open sets Vx,y, x, y ∈ X .

Suppose that x, y ∈ X are fixed. If ι : IX −→ IX is defined by (f)ι = f−1, then (Vx,y)ι = {h ∈
IX : (y, x) 6∈ h} = Vy,x is open in I1, and hence ι is continuous. Suppose that f ∈ IX is arbitrary. If

x 6∈ dom(f), then (x, y) 6∈ fg for all g ∈ IX . Hence (Vx,y)λ
−1
f = IX is open. If x ∈ dom(f) and fg ∈ Vx,y

for some g ∈ IX . Then ((x)f, y) 6∈ g. Thus g ∈ V(x)f,y ⊆ (Vx,y)λ
−1
f and so (Vx,y)λ

−1
f is open. Hence λf is

continuous for every f ∈ IX . Since ρf = ιλf−1 ι is a composition of continuous functions, ρf is continuous
also.

It remains to show that IX is Hausdorff and compact with respect to I1. We do this by identifying
IX with a subset of {0, 1}X×X with the product topology. It will follow that IX is homeomorphic to a
closed subspace of the compact Hausdorff space {0, 1}X×X and is thus compact and Hausdorff. If f ∈ IX
is arbitrary, then we identify f with the function from X ×X to {0, 1} defined by

(a, b) 7→

{

1 if (a, b) ∈ f

0 if (a, b) /∈ f,

for all (a, b) ∈ X × X . We may, therefore, identify IX with a subset of {0, 1}X×X. Viewed in this way,
the topology I1 is precisely the subspace topology inherited from the product space {0, 1}X×X. The
complement of IX in {0, 1}X×X is the union of the open sets

{

f ∈ {0, 1}X×X : (a, b)f = (a, c)f = 1
}

and
{

f ∈ {0, 1}X×X : (b, a)f = (c, a)f = 1
}

for all a, b, c ∈ X with b 6= c.

(ii). Let T be a T1 topology that is semitopological for IX . Let x, y ∈ X and let f ∈ IX be arbitrary.
Then

{(x, x)} ◦ f ◦ {(y, y)} = ∅ if and only if f ∈ Vx,y

and
{(x, x)} ◦ f ◦ {(y, y)} = {(x, y)} if and only if f ∈ Ux,y.

Since T is T1, the singletons {∅} and {{(x, y)}} are closed in T . Thus their respective pre-images Vx,y and
Ux,y under λ{(x,x)} ◦ ρ{(y,y)} are closed in S. Hence Ux,y and Vx,y are both open in T , as they are mutual
complements. Thus I1 ⊆ T , as required.

(iii). In the proof of part (i) we showed that IX is homeomorphic to a closed subspace of the Cantor space
{0, 1}X×X. It follows that IX is a compact metrisable space and is thus Polish.

An explicit complete metric on IX can be obtained by choosing any metric compatible with the topology
on {0, 1}X×X and translating it to IX via the homeomorphism given in part (i). If we choose X = N, then
one such example is given by

d(f, g) =
1

m+ 1
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where m = min{n ∈ N : (n× n) ∩ f 6= (n× n) ∩ g}. �

We will show that there are precisely two minimal T1 semigroup topologies on IX . The first is just the
topology induced by the minimal T1 semigroup topology on PX (see Theorem 5.10) and the second consists
of the inverses U−1 = {f−1 : f ∈ U} of the open sets U of the first one. In Proposition 5.14, we will show
that the two topologies introduced in the next theorem do not coincide with I1 from the previous theorem.
It will follow that the topology I1 from Theorem 5.12 is not a semigroup topology on IX .

Theorem 5.13. Let X be an infinite set, let I2 be the topology on the symmetric inverse monoid IX
generated by the collection of sets

Ux,y = {h ∈ IX : (x, y) ∈ h} and Wx = {h ∈ IX : x 6∈ dom(h)}

and let I3 be the topology on IX generated by the sets

Ux,y = {h ∈ IX : (x, y) ∈ h} and W−1
x = {h ∈ IX : x 6∈ im(h)}

for all x, y ∈ X. Then the following hold:

(i) I2 and I3 are distinct and both contain the topology I1 defined in Theorem 5.12;
(ii) IX with I2 and IX with I3 are homeomorphic Hausdorff topological semigroups;
(iii) every T1 semigroup topology for IX contains I2 or I3;
(iv) I2 ∩ I3 coincides with the Hausdorff-Markov and Fréchet-Markov topologies for IX ;
(v) if X is countable, then I2 and I3 are Polish.

Proof. (i). Let x ∈ X be fixed. We will show that the set W−1
x is not open in I2. Seeking a contradiction,

suppose that W−1
x is open in I2. It follows that there are finite f ∈ IX and Y ⊆ X such that

∅ ∈





⋂

(a,b)∈f

Ua,b



 ∩





⋂

y∈Y

Wy



 ⊆W−1
x

and so f = ∅. Furthermore, if b ∈ X , is distinct from every element of Y , then

{(b, x)} ∈





⋂

(a,b)∈f

Ua,b



 ∩





⋂

y∈Y

Wy



 ,

but {(b, x)} /∈W−1
x , a contradiction.

The fact that I1 is contained in both I2 and I3 follows since

Vx,y =





⋃

z 6=x

Uz,y



 ∪Wx =





⋃

z 6=y

Ux,z



 ∪W−1
y .

(ii). The Hausdorff semigroup topology P on PX defined in Theorem 5.10 induces I2 on IX . Hence IX is
a Hausdorff topological semigroup under I2.

The map f 7→ f−1 defines an anti-automorphism of IX . The images of the subbasic open sets for
I2 under inversion give the subbasis for I3. By Proposition 2.3, it follows that (IX , I3) is a topological
semigroup homeomorphic to (IX , I2).

(iii). Let T be any T1 semigroup topology for IX . By Theorem 5.12(ii), T contains the topology I1 with
subbasis

Ux,y = {h ∈ IX : (x, y) ∈ h} and Vx,y = {h ∈ IX : (x, y) 6∈ h}

for all x, y ∈ X . It remains to show that either {h ∈ IX : x 6∈ dom(x)} ∈ T for all x ∈ X or {h ∈ IX : y 6∈
im(h)} ∈ T for all y ∈ X .

For every x ∈ X , the set Vx,x = {h ∈ IX : (x, x) 6∈ h} is an open neighbourhood of ∅ in T . Since
∅ ◦ ∅ = ∅ ∈ Vx,x and T is a semigroup topology, there exists an open neighbourhood U of ∅ such
that U ◦ U ⊆ Vx,x. In other words, (x, x) 6∈ uv for any u, v ∈ U . If z ∈ X is arbitrary such that
z 6∈ {y ∈ X : (x, y) 6∈ u for all u ∈ U} and z 6∈ {y ∈ X : (y, x) 6∈ u for all u ∈ U}, then there exist u, v ∈ U
such that (x, z) ∈ u and (z, x) ∈ v, and so (x, x) ∈ uv, a contradiction. Hence every z ∈ X belongs to one
of the sets:

{y ∈ X : (x, y) 6∈ u for all u ∈ U} or {y ∈ X : (y, x) 6∈ u for all u ∈ U}

and so one of these two sets has cardinality |X |.
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Suppose that |{y ∈ X : (x, y) 6∈ u for all u ∈ U}| = |X |. It follows that there exists Y ⊆ X with
|Y | = |X \ Y | such that (x, y) 6∈ u for all y ∈ Y and u ∈ U . Let p ∈ Sym(X) be any involution such that
(Y )p = X \ Y , and so (X \ Y )p = Y . Then for any u ∈ U and any y ∈ X \Y since (y)p ∈ Y it follows that
(x, (y)p) 6∈ u and so (x, y) 6∈ up. Let V = U ∩Up. Then V is an open neighbourhood of ∅ and x 6∈ dom(f)
for all f ∈ V . Let g ∈ IX be arbitrary. If x ∈ dom(g), then x ∈ dom({(x, x)} ◦ g) and so {(x, x)} ◦ g 6∈ V .
On the other hand, if x 6∈ dom(g), then {(x, x)} ◦ g = ∅ ∈ V . Thus

(V )λ−1
{(x,x)} = {g ∈ IX : {(x, x)} ◦ g ∈ V } = {g ∈ IX : x 6∈ dom(g)}

is open in T . Since x ∈ X was arbitrary, it follows that I2 ⊆ T .
If |{y ∈ X : (y, x) 6∈ u for all u ∈ U}| = |X |, then I3 ⊆ T by an analogous argument.

(iv). These follow directly from parts (ii), (iii), and Fig. 1.

(v). It is shown in Theorem 5.10(ii) and (viii) that the partial transformation monoid PX forms a Polish
semigroup with the topology P defined in that theorem. The topology induced by P on IX is I2. It is
routine to verify that IX is a closed subset of PX under the topology P , and so I2 is Polish also. Thus I3
is Polish as it is homeomorphic to I2. �

We remark that complete metrics on IN, that induce I2 and I3 from Theorem 5.13, can be defined using
the natural embedding φ defined in (2) of Section 5.3:

(3) d1(f, g) =

{

0 if f = g
1

m+1 if f 6= g
where m = min{x ∈ N : (x)(f)φ 6= (x)(g)φ}

and

(4) d2(f, g) =

{

0 if f = g
1

m+1 if f 6= g
where m = min{x ∈ N : (x)

(

f−1
)

φ 6= (x)
(

g−1
)

φ}.

Next, we show that the Hausdorff-Markov and Fréchet-Markov topology I2∩I3 is not equal to the least
T1 semitopological semigroup topology I1.

Proposition 5.14. If Z is the Zariski topology on the symmetric inverse monoid IX , then Z properly
contains I1 and so I1 is properly contained in I2 ∩ I3.

Proof. Since I1 is the least T1 topology which is semitopological for IX (Theorem 5.12(ii)) and I2 ∩ I3 is
the Hausdorff-Markov topology (Theorem 5.13(iv)), it follows from Fig. 1 that

I1 ⊆ Z ⊆ I2 ∩ I3.

It therefore suffices to show that Z 6⊆ I1. Let x ∈ X be arbitrary and consider the set

U = {s ∈ IX : {(x, x)}s2 6= {(x, x)}} ∈ Z.

We will show that the element ∅ ∈ U does not have an open neighbourhood in I1 which is contained in U .
If V is a basic open neighbourhood of ∅ in I1, then V is of the form V = {s ∈ IX : h∩s = ∅} for some finite
h ∈ IX . Since h is finite, there exists y ∈ X such that y 6∈ dom(h) ∪ im(h). Then {(x, y), (y, x)} ∈ V \ U
and so V 6⊆ U , as required. �

In the next theorem we consider the topology generated by the union of the two minimal T1 semigroup
topologies I2 and I3 on IX .

Theorem 5.15. Let X be an infinite set and let I4 be the topology on the symmetric inverse monoid IX
generated by the collection of sets

Ux,y = {h ∈ IX : (x, y) ∈ h}, Wx = {h ∈ IX : x 6∈ dom(h)}, and W−1
x = {h ∈ IX : x 6∈ im(h)}.

Then the following hold:

(i) the topology I4 is a Hausdorff inverse semigroup topology for IX ;
(ii) I4 is the Hausdorff-Markov inverse and the Fréchet-Markov inverse topology for IX ;
(iii) the inverse Zariski topology for IX is I4;
(iv) IX has property X with respect to I4 and Sym(X);
(v) if T is a topology that is semitopological for IX and T induces the pointwise topology on Sym(X),

then T is contained in I4;
(vi) I4 is the unique T1 inverse semigroup topology on IX inducing the pointwise topology on Sym(X);
(vii) if X is countable, then IX with the topology I4 has automatic continuity with respect to the class of

second countable topological semigroups;
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(viii) if X is countable, then I4 is the unique T1 second countable inverse semigroup topology on IX ;
(ix) if X is countable, then I4 is the unique Polish inverse semigroup topology on IX .

Proof. The topology I4 is the topology generated by the union I2 ∪ I3 defined in Theorem 5.13.

(i). Since I4 is generated by the Hausdorff semigroup topologies I2 and I3 (by Theorem 5.13(ii)), it follows
that I4 is a Hausdorff semigroup topology for IX . If U is any of the subbasic open sets defining I4, then
U−1 = {f−1 : f ∈ U} is also a subbasic open set, and so I4 is an inverse semigroup topology.

(ii). The topology I4 is Hausdorff by (i). Thus both the Fréchet-Markov inverse semigroup topology, and
the inverse Hausdorff-Markov topology for IX are contained in I4.

For the converse, suppose that T is any T1 inverse semigroup topology for IX . By Theorem 5.13(iii),
T contains either I2 or I3. Since inversion is continuous with respect to T and {U−1 : U ∈ I2} = I3,
it follows that T contains I4. Thus the Fréchet-Markov inverse semigroup topology, and the inverse
Hausdorff-Markov topology for IX are contained in I4.

(iii). By Fig. 1 and part (ii), the inverse Zariski topology is contained in I4. On the other hand, the
subbasic open sets of I4 of the form Ux,y are open in the least T1 topology I1 that is semitopological for
IX , as shown in Theorem 5.12(ii). Since I1 is contained in the inverse Zariski topology by Fig. 1, it only
remains to show that the subbasic open sets of the form Wx and W−1

x of I4 are open in the inverse Zariski
topology.

Let x ∈ X and s ∈ IX be arbitrary. Then {(x, x)}ss−1 = {(x, x)} if x ∈ dom(s) and {(x, x)}ss−1 = ∅

otherwise. Hence

Wx = {s ∈ IX : x 6∈ dom(s)} = {s ∈ IX : {(x, x)}ss−1 6= {(x, x)}}

is open in the inverse Zariski topology. Similarly, W−1
x = {s ∈ IX : s−1s{(x, x)} 6= {x, x}} and so the

inverse Zariski topology coincides with I4, as required.

(iv). Suppose that s ∈ S is arbitrary. Let f ∈ IX be any element satisfying dom(f) = X and |X \ im(f)| =
|X |. Then t ∈ Sym(X) satisfies ftf−1 = s if and only if

(x, (x)s) ∈ ftf−1 for all x ∈ dom(s) and x 6∈ dom(ftf−1) for all x ∈ X \ dom(s),

which is equivalent to

(5) (x)ft = (x)sf for all x ∈ dom(s) and (x)ft ∈ X \ im(f) for all x ∈ X \ dom(s).

If φ0 : (X\ dom(s))f −→ X\ im(f) is any injection such that |(X\ im(f))\ im(φ0)| = |X |, and φ1 :
X\ im(f) −→ (X\ im(sf))\ im(φ0) is a bijection, then t : X −→ X defined by

(x)t =











(x)f−1sf if x ∈ (dom(s))f

(x)φ0 if x ∈ (X\ dom(s))f

(x)φ1 if x 6∈ im(f)

belongs to Sym(X) and, by (5), ftf−1 = s.
We will define a basis B for I4 and then show that if U ∈ B contains t, then f(U ∩ Sym(X))f−1 ∈ B,

and so property X holds. If k ∈ IX is finite, and Y and Z are finite subsets of X , then we define

Rk,Y,Z = {h ∈ IX : k ⊆ h and Y ∩ dom(h) = Z ∩ im(h) = ∅}.

Since

Rk,Y,Z =
⋂

x∈dom(k)

Ux,(x)k ∩
⋂

y∈Y

Wy ∩
⋂

z∈Z

W−1
z

the sets Rk,Y,Z are open in I4. On the other hand, any finite intersection of subbasic open sets for I4 is of
the form Rk,Y,Z for some finite k, Y , and Z. Hence the collection B of all such sets Rk,Y,Z forms a basis
for I4. Let U ∈ B be any such basic open neighbourhood of t. By definition, U is one of the sets of the
form Rk,Y,Z but since t ∈ Sym(X), dom(t) = im(t) = X , it follows that U = Rk,∅,∅ for some finite k.
Hence

f(U ∩ Sym(X))f−1 = {fgf−1 : g ∈ Sym(X) and k ⊆ g}.

It suffices to show that

f(U ∩ Sym(X))f−1 = Rfkf−1,Y,Z

where

Y = {(y)f−1 : y ∈ dom(k) and (y)k 6∈ dom(f−1)}
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and

Z = {(z)f−1 : z ∈ im(k) and (z)k−1 6∈ dom(f−1)}.

If fgf−1 ∈ f(U ∩ Sym(X))f−1, then fkf−1 ⊆ fgf−1 since g ∈ U = Rk,∅,∅. If (y)f−1 ∈ Y is
arbitrary, then y ∈ dom(k) and (y)k 6∈ dom(f−1). Hence (y)f−1fkf−1 = (y)kf−1 is not defined and
so (y)f−1fgf−1 = (y)gf−1 = (y)kf−1 is not defined. In other words, (y)f−1 6∈ dom(fgf−1) and so
Y ∩dom(fgf−1) = ∅. Similarly, if (z)f−1 ∈ Z is arbitrary, then z ∈ im(k) and (z)k−1 6∈ dom(f−1). Hence
(z)f−1fk−1f−1 = (z)k−1f−1 is not defined, or, in other words, (z)f−1 /∈ dom(fg−1f−1) = im(fgf−1). It
follows that Z ∩ im(fgf−1) = ∅. Hence every fgf−1 ∈ f(U ∩ Sym(X))f−1 belongs to Rfkf−1,Y,Z, and so
f(U ∩ Sym(X))f−1 ⊆ Rfkf−1,Y,Z .

Conversely, suppose that u ∈ Rfkf−1,Y,Z is arbitrary. We define φ2 : (X\ dom(u))f −→ (X\ im(f))\{(x)k :
x ∈ X\ dom(f)} is an injection which agrees with k when they are both defined and |(X\ im(f))\ im(φ2)| =
|X |, and φ3 : X\ im(f) −→ (X\ im(uf))\ im(φ2) is a bijection which agrees with k when they are both
defined. We define g : X −→ X by

(x)g =











(x)f−1uf if x ∈ (dom(u))f

(x)φ2 if x ∈ (X\ dom(u))f

(x)φ3 if x 6∈ im(f).

Then g ∈ Sym(X) and k ⊆ g. Hence g ∈ U . Finally, g satisfies condition (5) (where s and t are replaced
by u and g, respectively), and so u = fgf−1 ∈ f(U ∩ Sym(X))f−1, as required.

(v). This follows from (iv) together with Theorem 3.1(ii).

(vi). This follows straight from (ii) and (v).

(vii). This follows from part (iv), Theorem 3.1(iv) and the automatic continuity of Sym(X).

(viii). If X is countable, then the subbasis for I4 is countable also. Thus I4 is second countable. On the
other hand, if T is any T1 second countable, inverse semigroup topology for IX , then, by part (ii), I4 ⊆ T .
By part (vi), we also have T ⊆ I4 and so T = I4, as required.

(ix). Suppose that X = N. We only need to show that I4 is completely metrizable, since separability
and uniqueness then follow from part (viii). Let φ be the natural embedding defined in (2) of IN into
N ∪ {�}N∪{�}. We define the metric d on IN by d(f, f) = 0 and if f 6= g, then d(f, g) = 1

m+1 where

m = min{y ∈ N : (y)((f)φ) 6= (y)((g)φ) or (y)((f−1)φ) 6= (y)((g−1)φ)}.

It is routine to show that d is a metric on IN. (In fact, d is the maximum of the metrics d1 and d2 defined
in (3) and (4).)

We will now show that the topology induced by d is I4. As in the proof of part (iv), the sets

Rk,Y,Z = {f ∈ IN : k ⊆ f and Y ∩ dom(f) = Z ∩ im(f) = ∅}

where f ∈ IN is finite and Y and Z are finite subsets of X , form a basis B for I4.
For any f ∈ IN and m ∈ N, we have that

B

(

f,
1

m+ 1

)

=
{

g ∈ IN : (x)((f)φ) = (x)((g)φ) and (x)((f−1)φ) = (x)((g−1)φ) for all x ∈ m
}

= Rk,Y,Z

where k = (f ∩ (m × N)) ∪ (f ∩ (N ×m)), Y = m \ dom(f), and Z = m \ im(f). Hence every open ball
under d is open in I4 and so the topology induced by d is contained in I4.

Suppose that f ∈ IN is finite, Y, Z are finite subsets of X , and

M = max (dom(f) ∪ im(f) ∪ Y ∪ Z) ∈ N.

If g ∈ Rf,Y,Z , then B(g, 1/M) ⊆ Rf,Y,Z and so Rf,Y,Z is open in the topology induced by d. We have
shown that I4 coincides with the topology induced by d.

To show that d is complete, suppose that f0, f1, f2, . . . ∈ IN is a Cauchy sequence. For everym ∈ N, there
existsM ∈ N such that i, j ≥M implies that d(fi, fj) < 1/m. So if x ≤ m, then (x)((fi)φ) = (x)((fj)φ) and

(x)((f−1
i )φ) = (x)((f−1

j )φ) for all i, j ≥M . In particular, the sequences ((x)((f0)φ), (x)((f1)φ), (x)((f2)φ), . . . )

and ((x)((f−1
0 )φ), (x)((f−1

1 )φ), (x)((f−1
2 )φ), . . . ) are eventually constant with values (x)F and (x)F−1, re-

spectively. This defines F ∈ IN and the sequence f0, f1, f2, . . . converges to F . Therefore the metric d is
complete. �
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Corollary 5.16. The semigroup and inverse semigroup Zariski topologies on the symmetric inverse monoid
IN are distinct.

Proof. By Theorem 5.15(iii), the inverse semigroup Zariski topology on IN is I4. On the other hand, the
semigroup Zariski topology is contained in I2 ∩ I3 by Proposition 5.14. Theorem 5.13(i) implies that
I2 ∩ I3 is strictly contained in I4, and so the semigroup and inverse semigroup Zariski topologies must be
distinct. �

By Theorem 5.13(iii), every Polish semigroup topology on IN contains I2 or I3 and, by Theorem 5.15(iv),
is contained in I4.

Question 5.17. Are I2, I3 and I4 the only Polish semigroup topologies on IN?
2

We can now give an example to demonstrate that the right small index property is really distinct from
the left small index property.

Proposition 5.18. The topological semigroup IN with I2 has the right small index property but not the
left small index property.

Proof. We start by showing that (IN, I2) does not have the left small index property. Let x ∈ N be fixed.
We define a left congruence on IN by

σ := {(f, g) ∈ IN : (x /∈ im(f) ∪ im(g)) or
(

x ∈ im(f) ∩ im(g) and (x)f−1 = (x)g−1
)

}.

The classes of this left congruence are the sets Uy,x for y ∈ N and W−1
x . In the proof of Theorem 5.13(i),

it was shown that the set W−1
x is not open in I2. Hence IN with the topology I2 does not have the left

small index property.
We next show that IN with I2 has the right small index property. Let ρ be a right congruence on IN

with countably many classes. By Theorem 5.15(vii) together with Corollary 4.5, ρ is open with respect to
I4. It suffices to show that f/ρ is open in I2 for an arbitrary f ∈ IN. In particular, we need only find an
open neighbourhood U of f in I2 such that U ⊆ f/ρ. Let

V = {g ∈ IN : h ⊆ g,X ∩ dom(g) = ∅, Y ∩ im(g) = ∅},

where h ⊆ N × N and X,Y ⊆ N are finite, be a basic open neighbourhood of f in I4 such that V ⊆ f/ρ.
We define

U := {g ∈ IN : h ⊆ g,X ∩ dom(g) = ∅}.

The set U is an open neighbourhood of f in I2. It therefore suffices to show that U ⊆ f/ρ. Let g ∈ U be
arbitrary. Let k ∈ IN be such that k|im(h) is the identity function, dom(k) = N, and im(k) ⊆ N\Y . Since

dom(k) = N, kk−1 is the identity of IN. Furthermore, fk ∈ V ⊆ f/ρ and also gk ∈ V ⊆ f/ρ. It follows
that gk/ρ = f/ρ = fk/ρ, and so g/ρ = gkk−1/ρ = fkk−1/ρ = f/ρ, as required. �

The symmetric inverse monoid IN is the natural analogue of the full transformation monoid NN, in that
every countable inverse monoid can be embedded in IN. We will now prove the inverse monoid analogue
of Theorem 5.5, characterising those inverse monoids that embed as topological inverse submonoids of IN
with its unique Polish inverse semigroup topology I4.

If S is an inverse monoid with identity 1S and ρ is a right congruence, then we will say that ρ is
Vagner-Preston if for every s ∈ S either: t ∈ s/ρ implies tt−1/ρ = 1S/ρ; or st/ρ = s/ρ for all t ∈ S.

Lemma 5.19. Let ρ be a Vagner-Preston right congruence on an inverse monoid S with identity 1S. If
f, g ∈ S satisfy ff−1/ρ 6= 1S/ρ and gg−1/ρ 6= 1S/ρ, then f/ρ = g/ρ.

Proof. Since ρ is Vagner-Preston, ff−1/ρ 6= 1S/ρi 6= gg−1/ρi implies that fs/ρi = f/ρi and gs/ρi = g/ρi
for all s ∈ S. Hence

f/ρ = ff−1gg−1/ρ = gg−1ff−1/ρ = g/ρi

since ff−1, gg−1 ∈ S are idempotents, and idempotents commute in inverse semigroups. �

Lemma 5.20. Let S be a semitopological inverse monoid and let ρ be an open Vagner-Preston right
congruence on S. If a ∈ S satisfies aa−1/ρ = 1S/ρ, then {f ∈ S : a/ρ = aff−1/ρ} is clopen.

2Addendum: S. Bardyla, L. Elliott, J. D. Mitchell, and Y. Péresse recently showed that the answer to this question is no,
and there are infinitely many Polish semigroup topologies on IN.
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Proof. Throughout this proof, let a ∈ S satisfy aa−1/ρ = 1S/ρ. If f ∈ S is arbitrary, then

a/ρ = aff−1/ρ⇒ 1S/ρ = aa−1/ρ = aff−1a−1/ρ = (af)(af)−1/ρ

and
1S/ρ = (af)(af)−1/ρ⇒ a/ρ = aff−1a−1a/ρ = aa−1aff−1/ρ = aff−1/ρ.

Hence a/ρ = aff−1/ρ if and only if 1S/ρ = (af)(af)−1/ρ and so

{f ∈ S : a/ρ = aff−1/ρ} = {f ∈ S : (af)(af)−1/ρ = 1S/ρ}

= {f ∈ S : (af)(af)−1 ∈ 1S/ρ}

= {f ∈ S : ff−1 ∈ 1S/ρ}λ
−1
a

= {f ∈ S : ff−1/ρ = 1S/ρ}λ
−1
a .

Since S is semitopological, it now suffices to show that U = {f ∈ S : ff−1/ρ = 1S/ρ} is clopen. We
will do so by showing that U is a union of classes of the open equivalence relation ρ. Let f ∈ U , i.e.
ff−1/ρ = 1S/ρ. Since ρ is Vagner-Preston, either tt−1/ρ = 1S/ρ for all t ∈ f/ρ or ft/ρ = f/ρ for all
t ∈ S. In the first case, clearly f/ρ ⊆ U . In the second case t ∈ f/ρ implies that

tt−1/ρ = ft−1/ρ = f/ρi = ff−1/ρ = 1S/ρ

and so, again, f/ρ ⊆ U , as required. �

Theorem 5.21. If S is a T0 semitopological inverse monoid, then the following are equivalent:

(i) there is a sequence {ρi : i ∈ N} of right Vagner-Preston congruences on S, each with countably many
classes, such that the set {s/ρi, (s/ρi)

−1 : s ∈ S, i ∈ N} is a subbasis3 for the topology on S;
(ii) S is topologically isomorphic to an inverse subsemigroup of IN with the topology I4;
(iii) S is topologically isomorphic to an inverse submonoid of IN with the topology I4.

Proof. Obviously (iii) implies (ii) . So it suffices to show that (i) and (ii) are equivalent, and that (ii)
implies (iii).

(ii) ⇒ (i). Assume without loss of generality that S is an inverse subsemigroup of IN. We will show that
S with the subspace topology induced by I4 satisfies the conditions in (i). For every i ∈ N, we define
ρi ⊆ S × S so that

f/ρi = {g : i ∈ dom(g), (i)f = (i)g} = Ui,(i)f
if i ∈ dom(f) and

f/ρi = {g : i 6∈ dom(g)} =Wi

if i 6∈ dom(f), where Ui,(i)f and Wi are the subbasic open sets for I4 defined in Theorem 5.15. It is routine
to verify that ρi is a right congruence for every i ∈ N. Clearly,

(f/ρi)
−1 = {g : i ∈ im(g), (i)f−1 = (i)g−1} = U(i)f−1,i

if i ∈ im(f) and
(f/ρi)

−1 = {g : i 6∈ im(g)} =W−1
i

if i 6∈ im(f).
It remains to prove that the right congruence ρi, for every i ∈ N, is Vagner-Preston. If 1S is the identity

of S, then 1S is not necessarily 1N. However, 1S is an idempotent satisfying dom(s), im(s) ⊆ dom(1S) for
all s ∈ S. Suppose that s ∈ S and i ∈ N are arbitrary. If i ∈ dom(s) and t ∈ s/ρi, then i ∈ dom(t)
and (i)tt−1 = i. Hence tt−1/ρi = 1S/ρi. If i 6∈ dom(s) and t ∈ S is arbitrary, then i 6∈ dom(st) and so
st/ρi = s/ρi. Hence every ρi is Vagner-Preston, as required.

(i) ⇒ (ii). Let X = {a/ρi : i ∈ N, a ∈ S}. When i 6= j, we will consider classes of ρi and classes of ρj as
different elements of X , even if they should happen to be the same subset of S.

Since X is countable, it suffices to find a topological isomorphism φ from S to an inverse subsemigroup
of IX with the topology I4. This φ : S −→ IX is defined by

(a/ρi)(f)φ =

{

af/ρi if aa−1/ρi = 1S/ρi and a/ρi = aff−1/ρi;

undefined otherwise.

We need to show that the partial function (f)φ ∈ IX is well-defined and injective, that φ is a continuous
homomorphism, and that if U is open in S, then (U)φ is open in (S)φ with subspace topology.

3The term “subbasis” cannot be replaced with “basis” here, unlike in Theorem 5.5.
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To see that (f)φ is a well-defined partial function from X to X , let a, b ∈ S such that a/ρi = b/ρi for
some i ∈ N. Suppose that aa−1/ρi = 1S/ρi and a/ρi = aff−1/ρi. Since ρi is a right congruence and
a/ρi = b/ρi, b/ρi = bff−1/ρi. By the assumption of the theorem, either bb−1/ρi = 1S/ρi or bs/ρi = b/ρi
for all s ∈ S. In the latter case, as/ρi = bs/ρi = b/ρi = a/ρi and so taking s = a−1, it follows that
a/ρi = aa−1/ρi = 1S/ρi. Hence, right multiplying 1S and a by bb−1, we obtain bb−1/ρi = abb−1/ρi and
applying as/ρi = a/ρi when s = bb−1 yields

bb−1/ρi = abb−1/ρi = a/ρi = 1S/ρi.

So in either case, bb−1/ρi = 1S/ρi. We have shown that a/ρi = b/ρi and (a/ρi)(f)φ being defined implies
that (b/ρi)(f)φ is defined also. That φ is well-defined follows from (a/ρ)(f)φ = af/ρi = bf/ρi = (b/ρ)(f)φ.

To see that (f)φ is injective, let a/ρi, b/ρj ∈ dom((f)φ) such that (a/ρi)(f)φ = (b/ρj)(f)φ. By the
definition of (f)φ, it follows that i = j, aff−1/ρi = a/ρi and bff

−1/ρi = b/ρi. Hence

(a/ρi)(f)φ = (b/ρi)(f)φ ⇒ af/ρi = bf/ρi ⇒ aff−1/ρi = bff−1/ρi ⇒ a/ρi = b/ρi.

We conclude that (f)φ is injective and hence (f)φ ∈ IX .
To prove that φ is injective, suppose that (f)φ = (g)φ for some f, g ∈ S. We will show that f/ρi = g/ρi

for all i ∈ N. If f/ρi 6= 1S/ρi and g/ρi 6= 1S/ρi, then f/ρi = g/ρi, by Lemma 5.19. So, without loss
of generality, assume that ff−1/ρi = 1S/ρi. Then 1S/ρi = ff−1/ρi ∈ dom((f)φ) = dom((g)φ) and so
f/ρi = (1S/ρi)(f)φ = (1S/ρi)(g)(φ) = g/ρi. We have shown that f/ρi = g/ρi for all i ∈ N. It follows that
(f/ρi)

−1 = (g/ρi)
−1, and since {a/ρi, (a/ρi)

−1 : a ∈ S, i ∈ N} is a subbasis for a T0 topology on S, we
conclude that f = g, and so φ is injective.

To prove that φ is a homomorphism, let f, g ∈ S be arbitrary. The key step in showing that (fg)φ =
(f)φ (g)φ is to show that dom((fg)φ) = dom((f)φ (g)φ). By definition, a/ρi ∈ dom((fg)φ) if and only if

(6) aa−1/ρi = 1S/ρi and a/ρi = a(fg)(fg)−1/ρi.

On the other hand, a/ρi ∈ dom((f)φ (g)φ) if and only if a/ρi ∈ dom((f)φ) and af/ρi ∈ dom((g)φ) if and
only if

(7) aa−1/ρi = 1S/ρi = (af)(af)−1/ρi, aff−1/ρi = a/ρi, and af/ρi = afgg−1/ρi.

To show that (6) and (7) are equivalent, first assume that a ∈ S satisfies (6). Then aa−1/ρi = 1S/ρi and

aff−1/ρi = (a(fg)(fg)−1)ff−1/ρi = afgg−1f−1ff−1/ρi = afgg−1f−1/ρi

= a(fg)(fg)−1/ρi = a/ρi.

Hence

1S/ρi = aa−1/ρi = (aff−1)a−1/ρi = (af)(af)−1/ρi,

and

af/ρi = (a(fg)(fg)−1)f/ρi = afgg−1f−1f/ρi = aff−1fgg−1/ rhoi = afgg−1/ρi.

Thus (6) implies (7). Now assume that a ∈ S satisfies (7). Then aa−1/ρi = 1S/ρi and

a/ρi = aff−1/ρi = (afgg−1)f−1/ρi = a(fg)(fg)−1/ρi.

Hence (7) implies (6) and so the domains of (fg)φ and (f)φ (g)φ coincide. If a/ρi ∈ dom((fg)φ) =
dom((f)φ (g)φ), then

(a/ρi)(f)φ (g)φ = (af/ρi)(g)φ = afg/ρi = (a/ρi)(fg)φ.

It follows that (fg)φ = (f)φ (g)φ and so φ is a homomorphism.
To show that φ is continuous we need to prove that the preimages of the subbasic open sets Ua/ρi,b/ρj ,

Wa/ρi and W−1
a/ρi

of I4 are open in S.

If Ua/ρi,b/ρj ∩ (S)φ 6= ∅, then i = j and aa−1/ρi = 1S/ρi. Thus
(

Ua/ρi,b/ρi
)

φ−1 = {f ∈ S : (a/ρi, b/ρi) ∈ (f)φ}

= {f ∈ S : a/ρi ∈ dom((f)φ) and af/ρi = b/ρi}

= {f ∈ S : a/ρi ∈ dom((f)φ)} ∩ {f ∈ S : af/ρi = b/ρi}

= {f ∈ S : a/ρi = aff−1/ρi} ∩ {f ∈ S : af ∈ b/ρi}.

The set {f ∈ S : a/ρi = aff−1/ρi} is clopen by Lemma 5.20 and {f ∈ S : af ∈ b/ρi} = (b/ρi)λ
−1
a is open

since b/ρi is open and S is semitopological. It follows that
(

Ua/ρi,b/ρi
)

φ−1 is open.
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Now consider (Wa/ρi )φ
−1 = {f ∈ S : a/ρi 6∈ dom((f)φ)}. If aa−1/ρi 6= 1S/ρi, then (Wa/ρi)φ

−1 = S. If

aa−1/ρi = 1S/ρi, then

(Wa/ρi)φ
−1 = {f ∈ S : a/ρi 6= aff−1/ρi} = S \ {f ∈ S : a/ρi = aff−1/ρi}.

Hence (Wa/ρi )φ
−1 is open as {f ∈ S : a/ρi = aff−1/ρi} is clopen (again by Lemma 5.20). Since φ is a

homomorphism

(Wa/ρi
−1)φ−1 =

(

(Wa/ρi )φ
−1
)−1

,

which is open since inversion is continuous in S.
It only remains to prove that if U is open in S, then (U)φ is open in (S)φ. Since φ : S → (S)φ is a

bijection, it is enough to show that the images of the subbasic open sets a/ρi and (a/ρi)
−1 are open. Let

(f)φ ∈ (a/ρi)φ = {(g)φ ∈ IX : g ∈ a/ρi} be arbitrary. We need to find an open neighbourhood U of (f)φ
such that U ∩ (S)φ ⊆ (a/ρi)φ. Since φ is injective, f ∈ a/ρi and so (a/ρi)φ = (f/ρi)φ = {(g)φ ∈ IX :
g/ρi = f/ρi}. It therefore suffices to show that there exists an open set U in I4 such that

(8) (f)φ ∈ U and U ∩ (S)φ ⊆ {(g)φ ∈ IX : g/ρi = f/ρi}.

If ff−1/ρi = 1S/ρi, then 1S/ρi ∈ dom((f)φ) and we let U = U1S/ρi,f/ρi . Then (f)φ ∈ U and if
(g)φ ∈ U ∩ (S)φ, then g/ρi = (1S/ρi)(g)φ = f/ρi. Hence U satisfies (8).

If ff−1/ρi = 1Sff
−1/ρi 6= 1S/ρi, then 1S/ρi 6∈ dom((f)φ). In this case, let U = W1S/ρi . Then

(f)φ ∈ U and if (g)φ ∈ U∩(S)φ, then 1S/ρi 6∈ dom((g)φ). Hence gg−1/ρi 6= 1S/ρi, and so, by Lemma 5.19,
f/ρi = g/ρi. It follows that U satisfies (8). We have shown that (a/ρi)φ is open in (S)φ for all i ∈ N and
a ∈ S.

Since φ is a homomorphism and inversion is continuous (and hence open) in S and in IX , it follows that

((a/ρi)
−1)φ = ((a/ρi)φ)

−1

is open in (S)φ. We have shown that φ is open, which concludes the proof of this part of the theorem.

(ii) ⇒ (iii). Without loss of generality, we assume that the inverse monoid S is a subsemigroup of IN with
the topology I4, and the subspace topology. We define X to be dom(1S) and note that:

X = dom(1S) =
⋃

s∈S

dom(s) =
⋃

s∈S

im(s) = im(1S).

It is clear that S is a submonoid of IX , the symmetric inverse monoid on the set X . There are two cases
to consider: when X is finite, and when X is infinite.

Suppose that X is infinite. In this case, since X is countable, IX is isomorphic to IN. It is also the case
that IN and IX with the subspace topology induced by I4 (on IN) are topologically isomorphic. Indeed,
the subbasis for I4 on IN given in Theorem 5.15, when restricted to IX gives the subbasis for I4 on IX .
Alternatively, the unique T1 second countable inverse semigroup topology on IN, and hence IX , is I4
(Theorem 5.15(viii)). Hence, by either route, S is topologically isomorphic to an inverse submonoid of IN.

If X is finite, then S is finite and hence discrete, since I4 is T1. The map

s 7→ s ∪ {(x, x) : x ∈ N \X}

embeds S as an inverse submonoid of IN. The embedding is topological, since the domain and range are
both finite and hence discrete. �

5.5. Injective and surjective transformations. In this section we consider the submonoids Inj(X), of
injective, and Surj(X), of surjective, transformations in XX . If X is countable, then Inj(X) and Surj(X)
are Gδ subsets of XX with the pointwise topology, and so these submonoids are Polish semigroups with
the subspace topology. However, in contrast to the monoids considered up to this point in the paper, we
will show that both of Inj(X) and Surj(X) have infinitely many distinct Polish semigroup topologies when
X is countably infinite. In the case of Inj(X), when X is countably infinite, we show that the pointwise
topology is the minimum Polish semigroup topology on Inj(X), and we show that there is a maximum
Polish semigroup topology on Inj(X) given by an explicit subbasis.

Since Inj(X) is a closed submonoid of the symmetric inverse monoid IX with its unique Polish inverse
semigroup topology I4 (see Theorem 5.15), one natural Polish topology on Inj(X) is the subspace topology
induced by I4. A subbasis for this topology comprises the subbasic open sets

(9) {f ∈ Inj(X) : (x)f = y} and {f ∈ Inj(X) : y 6∈ im(f)} for all x, y ∈ X.

Although natural, this topology does not play a central role in this section. We will show that this topology
is one of infinitely many Polish semigroup topologies on Inj(X) between the minimum and maximum Polish
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semigroup topologies on Inj(X). The topology with subbasis given in (9) coincides with the subspace
topology induced by the topology I3 on IX from Theorem 5.13. The topology on Inj(X) induced by I2
from Theorem 5.13, is the pointwise topology.

Theorem 5.22. Let X be an infinite set and let J be the topology on Inj(X) generated by the pointwise
topology and the sets

{f ∈ Inj(X) : x 6∈ im(f)} and {f ∈ Inj(X) : |X \ im(f)| = n}

for every x ∈ X and for every cardinal n ≤ |X |. Then the following hold:

(i) there are infinitely many distinct semigroup topologies on Inj(X) containing the pointwise topology
and contained in J including J itself;

(ii) Inj(X) has property X with respect to J and Sym(X);
(iii) if T is any semigroup topology on Inj(X) and T induces the pointwise topology on Sym(X), then T

is contained in J ;
(iv) the Zariski topology for Inj(X) is the pointwise topology;
(v) if X is countable, then Inj(X) has automatic continuity with respect to J and the class of second

countable topological semigroups;
(vi) if X is countable, then there are infinitely many distinct Polish semigroup topologies on Inj(X) con-

taining the pointwise topology and contained in J including J itself;
(vii) if X is countable, then the pointwise topology is the minimum, and J is the maximum, Polish semi-

group topology on Inj(X).

Proof. (i). If κ is any cardinal such that κ ≤ |X |, then we define

Fκ = {f ∈ Inj(X) : |X \ im(f)| = κ}.

Let S0 be the subspace topology on Inj(X) induced by the topology I4 on IX . A subbasis for S0 is given in
(9). If n ∈ N and n > 0, then we define Sn to be the topology generated by Sn−1 and Fn−1. It follows that
Sn is the least topology containing S0 and every set Fm where m < n. The topology J is the topology
generated by S0 and the collection of all Fκ where κ ≤ |X |.

We begin by showing that J and every Sn, n ∈ N, is a semigroup topology on Inj(X). It follows from
the definition of S0 that S0 is a semigroup topology. Suppose that T is J or Sn where n ∈ N. To show
that T is a semigroup topology, it suffices to show that if Fκ ∈ T , then the preimage of Fκ under the
multiplication function is open in Inj(X)× Inj(X) with the product topology induced by T . Note that

|X \ im(fg)| = |X \ im(f)|+ |X \ im(g)|

for all f, g ∈ Inj(X). Suppose that Fκ ∈ T for some κ such that κ ≤ |X |. If f, g ∈ Inj(X) are such that
fg ∈ Fκ, then |X \ im(f)| = α and |X \ im(g)| = β for some cardinals α, β ≤ κ such that α+ β = κ. Thus
f ∈ Fα, g ∈ Fβ , and FαFβ ⊆ Fκ, and so T is a semigroup topology.

Next, we will show that the topologies S0,S1, . . . and J are distinct. Suppose that n ∈ N is arbitrary.
If f ∈ Fn is arbitrary and B is any basic open neighbourhood of f in Sn, then f 6∈ Fm for every m 6= n,
and so B is a basic open set for S0. In other words,

B = {g ∈ Inj(N) : h ( g and im(g) ∩ Y = ∅}

for finite h ∈ IN and finite Y ⊆ N. It is routine to verify that there exists g ∈ B such that g 6∈ Fn, and
hence Fn is not open in Sn for every n ∈ N. It follows that the topologies S0,S1, . . . are distinct. Clearly, J
contains the strictly ascending chain of topologies S0,S1, . . . and hence J is distinct from every Sn, n ∈ N.

(ii). Let s ∈ Inj(X) be arbitrary. We show that there exist fs, gs ∈ Inj(X) and as ∈ Sym(X) such that
s = fsasgs and for every basic open neighbourhood B of as there exists an open neighbourhood U of s
such that U ⊆ fs(B ∩ Sym(X))gs.

Let fs = s, as = 1Inj(X), and gs = 1Inj(X) and let B be a basic open neighbourhood of as. As as = 1Inj(X)

there is some finite Y ⊆ X such that

B ∩ Sym(X) = {h ∈ Sym(X) : (y)h = y for all y ∈ Y }.

Then h ∈ Inj(X) is an element of fs(B ∩ Sym(X))gs if and only if

(1) y /∈ im(h) for all y ∈ Y \ im(fs);
(2) ((y)s−1, y) ∈ h for all y ∈ Y ∩ im(fs);
(3) |X\ im(s)| = |X\ im(h)|.
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So fs(B ∩ Sym(X))gs is an open neighbourhood of s as required.

(iii). This follows by part (ii) together with Theorem 3.1(ii).

(iv). This part of the theorem follows from Lemma 5.3.

(v). This follows by part (ii) together with Theorem 3.1(iv) and the automatic continuity of Sym(X).

(vi). We will show that, when X is countable, the topologies S0,S1, . . . and J from the proof of part (i)
are Polish. As already discussed at the start of this section, S0 is Polish. To show that Sn is Polish we
proceed by induction. Given that Sn−1 is Polish, for some n > 0, it suffices by [41, Lemma 13.2] to show
that Fn is closed in Sn. The complement of Fn in Inj(X) is given by

Inj(X) \ Fn = {f ∈ Inj(X) : |X \ im(f)| 6= n}

= {f ∈ Inj(X) : |X \ im(f)| > n} ∪ {f ∈ Inj(X) : |X \ im(f)| < n}.

The set {f ∈ Inj(X) : |X \ im(f)| > n} is open in S0 and hence is open in Sn. The set

{f ∈ Inj(X) : |X \ im(f)| < n} =
n−1
⋃

m=0

Fm

is also open by assumption. Hence the complement of Fn is open, and so Fn is closed. Therefore Sn is
Polish also. Hence the topology generated by

⋃∞
n=0 Sn is Polish by [41, Lemma 13.3]. Finally, by a similar

argument, Fℵ0
is closed in the topology generated by

⋃∞
n=0 Sn, so by applying [41, Lemma 13.2] again, J

is Polish.
Although it is not strictly necessary, we note that a complete metric on Inj(N) that induces J is:

d(f, g) =











0 if f = g;

1 if |N \ im(f)| 6= |N \ im(g)|
1

m+1 otherwise;

where m = min{n ∈ N : (n× n) ∩ f 6= (n× n) ∩ g}.

(vii). This part of the theorem follows immediately from parts (iv) and (v), respectively. �

Theorem 5.23. Let X be an infinite set, let S1 denote the topology on Surj(X) generated by the pointwise
topology and the set Sym(X), and let S2 be the topology generated by the pointwise topology together with
the collection of sets

Uκ,x := {f ∈ Surj(X) : |(x)f−1| = κ}

for all x ∈ X and cardinals κ ≤ |X |. Then the following hold:

(i) the pointwise topology and S1 are distinct semigroup topologies on Surj(X);
(ii) if X is countable, then S1 and S2 are Polish semigroup topologies;
(iii) if X is countable, then there are infinitely many distinct Polish semigroup topologies on Surj(X)

containing the pointwise topology and contained in S2;
(iv) if X is countable, then Surj(X) with the topology S1 embeds into NN with the pointwise topology.

Proof. (i). Since the pointwise topology is a semigroup topology for XX , it is also a semigroup topology
for Surj(X). If X is countable, then Surj(X) is Gδ in XX , and so it follows that the pointwise topology is
a Polish semigroup topology on Surj(X).

Since Inj(X) is closed in XX , it follows that Sym(X) = Inj(X) ∩ Surj(X) is closed in Surj(X) with
respect to the pointwise topology. To show that S1 is compatible with the multiplication in Surj(X), it
suffices to show that {(f, g) : fg ∈ Sym(X)} is open in Surj(X) × Surj(X). It is routine to verify that
Surj(X) \ Sym(X) is an ideal in Surj(X). Hence if f, g ∈ Surj(X) are such that fg ∈ Sym(X), then
f, g ∈ Sym(X). Hence Sym(X)× Sym(X) = {(f, g) : fg ∈ Sym(X)} is open, as required.

(ii). Since Sym(X) is closed in Surj(X) with respect to the pointwise topology, it follows by [41, Lemma
13.2], that S1 is Polish for countable X .

It remains to show that S2 is a Polish semigroup topology when |X | = ℵ0. We may assume without loss
of generality that X = N. First note that for all f, g ∈ Surj(N) and n ∈ N we have that

|(n)(fg)−1| =
∑

i∈(n)g−1

|(i)f−1|.

If fg ∈ Um,n, then there are three cases to consider: m ∈ N; m = ℵ0 = |(n)g−1|; and m = ℵ0 6= |(n)g−1|.



AUTOMATIC CONTINUITY, UNIQUE POLISH TOPOLOGIES, AND ZARISKI TOPOLOGIES 33

(1) If m ∈ N, then

fg ∈





⋂

i∈(n)g−1

U|(i)f−1|,i



 ·



U|(n)g−1|,n ∩
⋂

i∈(n)g−1

{h ∈ Surj(N) : (i)h = (i)g}



 ⊆ Um,n.

(2) If m = ℵ0 and |(n)g−1| = m, then

fg ∈ Surj(X) · Um,n ⊆ Um,n.

(3) If m = ℵ0 and |(n)g−1| 6= ℵ0, then there is some i ∈ (n)g−1 such that |(i)f−1| = ℵ0 and so

fg ∈ Uℵ0,i · {h ∈ Surj(N) : (i)h = n} ⊆ Uℵ0,n.

To show that S2 is Polish, we define Tm,n to be the topology generated by the pointwise topology together
with the sets Ui,n for i ≤ m and for all m,n ∈ N. We show by induction on m, that Tm,n is Polish for all
m,n ∈ N.

By the definition of Surj(N), U0,n = ∅ for all n ∈ N. It follows that, T0,n is the pointwise topology,
which is Polish, for all n ∈ N. This establishes the base case of the induction.

For the inductive step, suppose that m > 0 and Tm−1,n is Polish for all n ∈ N. The topology Tm,n is
generated by Tm−1,n and Um,n. To apply [41, Lemma 13.2] and conclude that Tm,n is Polish, it suffices to
show that Um,n is closed in Tm−1,n. By the definition of Um,n,

Surj(N)\Um,n = {f ∈ Surj(N) : |(n)f−1| < m} ∪ {f ∈ Surj(N) : |(n)f−1| > m}.

The set V = {f ∈ Surj(N) : |(n)f−1| < m} is the union of the open sets {f ∈ Surj(N) : |(n)f−1| = i} = Ui,n,
for all i < m, and so V is open in Tm−1,n. The set W = {f ∈ Surj(N) : |(n)f−1| > m} is the union of the
open sets

{f ∈ Surj(N) : (y)f = n for all y ∈ Y }

in the pointwise topology, for all finite subsets Y of N with at least m+1 elements, and so W too is open.
Therefore Surj(N)\Um,n is open and so Um,n is closed.

We have shown that Tm,n is Polish for every m,n ∈ N. For every m ∈ N, we define Tm to be the least
topology containing Tm,n for all n ∈ N. By [41, Lemma 13.3], Tm is Polish for all m ∈ N. By considering
only case (1) in the proof that S2 is a semigroup topology, it follows that Tm is also a semigroup topology
for all m ∈ N.

If T is the least topology containing Tm for all m ∈ N, then, by [41, Lemma 13.3] again, T is Polish. If
n ∈ N is arbitrary, then

Surj(N) \ Uℵ0,n = {f ∈ Surj(N) : |(n)f−1| < ℵ0}

which is the union of all of the open sets Ui,n, i ∈ N, as in the inductive step above, is open in T . Hence the
topology generated by T and any of the sets Uℵ0,n, n ∈ N, is a Polish topology. The topology generated
by the (countable) union of all such topologies is S2, and so, by applying [41, Lemma 13.3] one last time,
S2 is Polish.

(iii). By the proof of part (ii), it suffices to show that Ti and Tj are distinct for all i 6= j. Furthermore,
since Ti ⊆ Tj whenever i ≤ j, it suffices to show that Ti 6= Ti+1 for every i ∈ N. We show that Ui+1,0 is
not open in Ti. Suppose that f ∈ Ui+1,0 is arbitrary. Every basic open neighbourhoods of f in Ti is of the
form

⋂

(m,n)∈Z

Um,n ∩ {g ∈ Surj(N) : h ⊆ g} = {g ∈ Surj(N) : h ⊆ g and m = |(n)g−1| for all (m,n) ∈ Z},

where h ∈ PN and Z ⊆ {1, 2 . . . , i} × N are finite. In particular, every basic open neighbourhood of f
contains g ∈ Surj(N) such that |(0)g−1| > i + 1 and hence no basic open neighbourhood of f is contained
in Ui+1,0.

(iv). We will show that the topology S1 on Surj(N) satisfies Theorem 5.5(i), and so it is possible to
topologically embed Surj(N) with the topology S1 into NN with the pointwise topology. Suppose that σ is
the equivalence relation of Surj(N) with classes Sym(N) and Surj(N)\Sym(N). Then σ is a right congruence
on Surj(N) (even a two-sided congruence, but this is not important here). If {ρi : i ∈ N} is a sequence
of right congruences on Surj(N) such that {m/ρi : m ∈ Surj(N)} is a subbasis for the pointwise topology,
then {m/ρi : m ∈ Surj(N)} ∪ {σ} satisfies Theorem 5.5(i). �
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5.6. Diagram Monoids. In this section we consider topologies on the infinite partition monoid; see
[20, 21, 24] for previous literature on partition monoids. The so-called diagram monoids, including the
partition monoid, arose as the multiplicative monoids of certain algebras in representation theory [28]. In
some sense, diagram monoids are also a generalisation of transformation monoids, in a somewhat different
direction than monoids of binary relations. The results of this section are rather negative, in the sense
that, we will show that no second countable T1 topology is semitopological for the partition monoid.

For a set X we define the partition monoid PX as follows. The underlying set of PX is the set of
partitions of X×{0, 1}. We will use partitions and the corresponding equivalence relations interchangeably.
We define Diag(s, t) to be the least equivalence relation on X × {0, 1, 2} containing

{((x, a), (y, b)) ∈ (X × {0, 1, 2})2 : ((x, a), (y, b)) ∈ s or ((x, a − 1), (y, b− 1)) ∈ t}.

The product of s and t is defined to be

{((x, a), (y, b)) ∈ (X × {0, 1})2 : ((x, 2a), (y, 2b)) ∈ Diag(s, t)}

and is denoted st. It is possible to show that this multiplication is associative, and that the identity is

{{(x, 0), (x, 1)} : x ∈ X}.

To prove the main theorem in this section we require the following technical lemma.

Lemma 5.24. Let X be a set, and let SLX := X ∪ {0} where 0 6∈ X be the semigroup with multiplication
defined by

st =

{

s if s = t

0 if s 6= t

(SLX is a meet semilattice where every pair of non-zero elements is incomparable). If SLX is a T1
semitopological semigroup, then the minimum size of a basis for SLX is at least |X |.

Proof. Suppose that T is a T1 topology that is semitopological for SLX . Let x ∈ X . Then {0}ρ−1
x =

SLX\{x}. As T is T1, it follows that {x} is open. Thus the subspace topology on X is the discrete
topology and so the minimum size of a basis is |X |. �

Theorem 5.25. Let X be an infinite set. Then the following hold:

(i) if X is countable, then PX admits a second countable T0 semigroup topology;
(ii) no second countable T1 topology is semitopological for PX .

Proof. (i). We define T to be the topology on PX with subbasis consisting of sets of the form:

{f ∈ PX : (a, b) ∈ f}

for all a, b ∈ X × {0, 1}.
This topology is clearly T0. It is also second countable as it has been defined by a countable subbasis.

Let f, g ∈ PX and let U := {h ∈ PX : (a, b) ∈ h} be an arbitrary subbasic open neighbourhood of fg.
It suffices to find neighbourhoods Uf and Ug of f and g, respectively, such that UfUg ⊆ U . From the
definition of the multiplication in PX there is a finite path in Diag(f, g) f and g connecting a to b. We
can now choose Uf to be those elements of PX which share all pairs belonging to f that are involved in
this path. We may define Ug analogously.

(ii). For any partition P of X , we define the partition P ′ of X×{0, 1} to consist of the blocks B×{0, 1}
for every block B of P . If S is the subsemigroup of PX consisting of those partitions P ′ with at most two
parts, then it is easy to verify that S is a semilattice isomorphic to SL2|X| . Thus, by Lemma 5.24, PX is
not second countable. �

It might be worth noting that Theorem 5.25(ii) holds for the dual symmetric inverse monoid and the
factorisable dual symmetric inverse monoid, the definitions of which are even longer than their names, and
hence are omitted.
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6. Monoids of continuous functions

If X is a topological space, then we denote by C(X) the monoid of continuous functions from X to X .
The Cantor set is 2N and the Hilbert cube is [0, 1]N where [0, 1] is the closed unit interval in R. In this
section, we consider semigroup topologies on the monoids C([0, 1]N) and C(2N).

One standard topology on C(X) is the compact-open topology, which we now define. If X and Y are
topological spaces, then the compact-open topology on C(X,Y ) (the space of all continuous functions from
X to Y ) is the topology generated by the subbasis consisting of the sets:

[K,U ] = {f ∈ C(X,Y ) : (K)f ⊆ U},

where K ⊆ X is compact, and U ⊆ Y is open.
If X is compact and metrizable with compatible metric d, then C(X,X) = C(X) is separable with

respect to the compact-open topology, and the topology is induced by

(10) d∞(f, g) = sup{d((x)f, (x)g) : x ∈ X};

see [80, Proposition 1.3.3]. The space X is complete since it is compact, and d∞ is therefore complete also,
meaning that C(X) with the compact-open topology is Polish.

Theorem 6.1. Let X and Y be compact metrizable spaces. If C(X,Y ) is first countable and Hausdorff
with respect to some topology T , and a : X × C(X,Y ) −→ Y defined by

(p, f)a = (p)f

is continuous, then T contains the compact-open topology.

Proof. It suffices to show that if K is compact in X and U is open in Y , then the complement F = {f ∈
C(X,Y ) : ∃k ∈ K, f(k) 6∈ U} of [K,U ] is closed in T .

Suppose that f0, f1, . . . ∈ F converges to f ∈ C(X,Y ) with respect to T . For every i ∈ N, there exists
xi ∈ K such that (xi)fi 6∈ U . Since K is compact, it follows that (xi)i∈N contains a convergent subsequence
(x(i)y)i∈N. If x is the limit of this subsequence, then

(x)f = (x, f)a =
(

lim
i−→∞

x(i)y , lim
i−→∞

f(i)y

)

a = lim
i−→∞

(x(i)y , f(i)y)a = lim
i−→∞

(x(i)y)f(i)y ∈ Y \ U

and so f ∈ F , and F is closed in T , as required. �

Lemma 6.2. Let X be topological space and suppose that C(X) is a first countable Hausdorff topological
semigroup with respect to a topology T . Then the set F of constant functions in C(X) is closed in T .

Proof. It is routine to verify that F is the set of right zeros in C(X). If f ∈ C(X) and (ki)i∈N is a sequence
in F that converges to k ∈ C(X), then fk = limi−→∞ fki = limi−→∞ ki = k and so k ∈ F . �

6.1. The Hilbert cube. In this section, we show that the compact-open topology is the unique Polish
semigroup topology on the monoid C(Q) of continuous functions on the Hilbert cube Q = [0, 1]N. Since
the compact-open topology is Polish on the group of homeomorphisms of any compact metric space (see,
for example, [80, Proposition 1.3.3]), it follows that the group of homeomorphisms H(Q) of the Hilbert
cube is a Polish subgroup of C(Q) with the compact-open topology. In fact, it was shown by Kallman [39]
that the compact-open topology is the unique Polish topology on H(Q).

We will use the following metric on Q:

(11) d((x0, x1, . . .), (y0, y1, . . .)) =

∞
∑

i=0

|xi − yi|

2i+1
,

which is bounded above by 1, and so the corresponding d∞ is also bounded above by 1.
We require Theorem 5.2.4 from [80], which we state for the sake of completeness.

Proposition 6.3 (Theorem 5.2.4 in [80]). Let K1 and K2 be compact subsets of (0, 1)N and let k : K1 −→
K2 be a homeomorphism with d∞(k, idK1

) < ε. Then there exists a homeomorphism hk ∈ H(Q) such that
d∞(hk, idQ) < ε and hk|K1

= k.

The next proposition provides a key step in the proof of the result of this section.

Proposition 6.4. Suppose that C(Q) is a Polish semigroup with respect to some topology. Then the
function a : Q× C(Q) −→ Q defined by

(p, f)a = (p)f

is continuous.
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Proof. Let T denote the given Polish semigroup topology on C(Q). Suppose that F denotes the set of
constant functions in C(Q) and that φ : F −→ Q is the function that sends f ∈ F to the unique value in
(Q)f .

We will show that φ is a homeomorphism, which will allow us to conclude the proof as follows. If
γ : Q×C(Q) −→ C(Q)×C(Q) is defined by (p, f)γ = (pφ−1, f), then γ is continuous since it is continuous
in each coordinate, and if M : C(Q) × C(Q) −→ C(Q) is the multiplication function on C(Q), then M is
continuous also. Thus (p, f)γMφ = (pφ−1, f)Mφ = (pφ−1 ◦ f)φ and (p)φ−1 ∈ F is constant with value p,
and so pφ−1 ◦ f is constant with value (p)f , and, finally, (pφ−1 ◦ f)φ = (p)f = (p, f)a. In other words,
a : Q× C(Q) −→ Q as a composite of the continuous functions γ, M , and φ, is itself continuous.

We start by showing that φ is continuous. If U is an open set in Q, it suffices to show that (U)φ−1 =
{f ∈ F : (Q)f = {q}, q ∈ U} is open in F . If f : Q −→ Q is defined by

(q)f = (d(q,Q \ U), d(q,Q \ U), . . .),

then since f is continuous in every coordinate, f is continuous. Since C(Q) is T1, F is T1, and so the
singleton set containing the constant function g : Q −→ Q with value (0, 0, . . .) is closed. Hence {g}ρ−1

f ∩F

is closed in F (recall that ρf : C(Q) −→ C(Q) is defined by (h)ρf = h ◦ f for all h ∈ C(Q)), and so

F \ ({g}ρ−1
f ) is open. If h ∈ F \ ({g}ρ−1

f ), then there exists q ∈ Q such that

(q)hf 6= (0, 0, . . .)

and so (q)h ∈ U by the definition of f . On the other hand, if h ∈ F is such that (q)h ∈ U , then
(q)hf 6= (0, 0, . . .), and so F \ ({g}ρ−1

f ) = (U)φ−1 = {f ∈ F : (Q)f = {q}, q ∈ U} is open, as required.

Next, we show that φ−1|(0,1)N : (0, 1)N −→ F is continuous also. Since F is closed in C(Q) with
respect to T , by Lemma 6.2, it follows that F is Polish. Since φ is continuous, φ is Borel measurable, and
so by Proposition 3.3, φ−1 is Borel measurable also. It suffices, by Proposition 3.2, to endow (0, 1)N and
((0, 1)N)φ−1 ⊆ F with Polish semitopological group structures such that φ−1|(0,1)N : (0, 1)N −→ ((0, 1)N)φ−1

is a homomorphism. With the operation of component-wise addition, RN is an abelian topological group,
and RN is homeomorphic to (0, 1)N. Therefore we may endow (0, 1)N with the additive group structure of
RN corresponding to an order-isomorphism between R and (0, 1). We define ∗ on ((0, 1)N)φ−1 by x ∗ y =
((x)φ+ (y)φ)φ−1. It remains to show that ((0, 1)N)φ−1 with ∗ is right topological. That ((0, 1)N)φ−1 with
∗ is left topological will then follow immediately since RN is abelian. Suppose that g = (g0, g1, . . .) ∈ (0, 1)N

is arbitrary. Then ρg : (0, 1)
N −→ (0, 1)N is continuous since (0, 1)N is a topological group. We extend ρg to

ρ′g : Q −→ Q so that the ith coordinate of (x0, x1, . . .)ρ
′
g is xi + gi if xi ∈ (0, 1) and xi if xi = 0 or xi = 1.

Since ρ′g is an order-isomorphism onto [0, 1] in every component, it follows that ρ′g is continuous in every
component, and is hence continuous, i.e. ρ′g ∈ C(Q). Thus x 7→ x ◦ ρ′g, where x ∈ C(Q) is continuous,

and so, in particular, x 7→ x ◦ ρ′g restricted to x ∈ ((0, 1)N)φ−1 is also continuous (on ((0, 1)N)φ−1 with

the subspace topology). If x ∈ ((0, 1)N)φ−1 ⊆ F is arbitrary, then x is a constant function with value
(x0, x1, . . .) ∈ (0, 1)N and so

x ∗ (g)φ−1 = ((x)φ + g)φ−1 = (x)φρgφ
−1

by the definition of ∗ and ρg. Recall that (x)φ = (x0, x1, . . .) ∈ (0, 1)N by the definition of φ. But

(x)φρgφ
−1 = (x0, x1, . . .)ρgφ

−1 = (x0 + g0, x1 + g1, . . .)φ
−1

and (x0 + g0, x1 + g1, . . .)φ
−1 is the constant function from Q to Q with value (x0 + g0, x1 + g1, . . .), which

is equal to (x) ◦ ρg. Therefore

x ∗ (g)φ−1 = ((x)φ + g)φ−1 = (x)φρgφ
−1 = x ◦ ρg = x ◦ ρ′g

and since x 7→ x ◦ ρ′g is continuous on ((0, 1)N)φ−1, it follows that ((0, 1)N)φ−1 with ∗ is a right topological
group.

To conclude the proof, we must show that φ−1 : Q −→ F is continuous. We define θ : [0, 1] −→ [1/4, 3/4]
by (x)θ = x/2 + 1/4 and let θ ∈ C(Q) be the function that applies θ in every coordinate of Q. If

θ′ : [0, 1] −→ [0, 1] is any continuous extension of θ−1, and θ′ ∈ C(Q) applies θ′ in every coordinate,
then θθ′ = idQ and φ−1 = θφ−1|(0,1)Nρθ′ . Hence φ−1 being the composite of the continuous functions θ,

φ−1|(0,1)N , and ρθ′ is itself continuous. �

Theorem 6.5. The monoid C(Q) of continuous functions on the Hilbert cube Q = [0, 1]N has the following
properties:

(i) C(Q) has property X with respect to its group of units H(Q);
(ii) the compact-open topology is the unique Polish semigroup topology on C(X);
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(iii) if the group of homeomorphisms H(Q) has automatic continuity with respect to a class of topological
semigroups, then C(Q) has automatic continuity with respect to the same class.

Proof. (i). If S is C(Q) with the compact-open topology, B is the basis for the compact-open topology on
C(Q) consisting of open balls with respect to the d∞ metric on C(Q), and T is H(Q), then, we show that
there exist f, g ∈ C(Q) and ts ∈ H(Q) such that s = ftsg and for every ball B = Bd∞(ts, ε) ∈ B there
exists δ > 0 such that Bd∞(s, δ) ⊆ f(B ∩H(Q))g.

Suppose that s ∈ C(Q) is arbitrary. We define the required f, g ∈ C(Q) via two continuous functions
f ′, g′ : [0, 1] −→ [0, 1] that are defined by:

(x)f ′ =
2x+ 1

4
, (x)g′ =











0 if x ≤ 1
4

4x−1
2 if 1

4 ≤ x ≤ 3
4

1 if x ≥ 3
4 .

Then both f ′ and g′ are continuous, and, moreover, f ′g′ is the identity function id[0,1]. We define f, g, h ∈
C(Q) by applying f ′ and g′ in certain coordinates, as follows:

(x0, x1, . . .)f = ((x0)f
′, (x1)f

′, . . .)

(x0, x1, . . .)g = ((x1)g
′, (x3)g

′, . . .)

(x0, x1, . . .)h = ((x0)g
′, (x1)g

′, . . .).

Since f ′g′ = id[0,1], it follows that fh = idQ. Let A = [1/4, 3/4]N. Of course, A is homeomorphic to Q,

and A is a compact subset of (0, 1)N. To find ts ∈ H(Q) such that ftsg = s, we show that there exists
a homeomorphism t′s from A into a subspace of A, that can be extended to a homeomorphism of Q by
Proposition 6.3. We denote by πi : Q −→ [0, 1] the ith projection of Q, that is,

(x0, x1, . . .)πi = xi

for any (x0, x1, . . .) ∈ Q. If ~x = (x0, x1, . . .) ∈ A and k ∈ C(Q) is arbitrary, then we define t′k : A −→ A by

(12) (~x)t′k = (x0, x1, . . .)t
′
k = (x0, (~x)hkπ0f

′, x1, (~x)hkπ1f
′, . . .).

From the definition of t′k, if ~x ∈ Q is arbitrary, then

(~x)ft′kg = (x0, x1, . . .)ft
′
sg

= ((x0)f
′, (x1)f

′, . . .)t′sg

= ((x0)f
′, (~x)fhkπ0f

′, (x1)f
′, (~x)fhkπ1f

′, . . .)g

= ((x0)f
′, (~x)kπ0f

′, (x1)f
′, (~x)kπ1f

′, . . .)g

= ((~x)kπ0f
′g′, (~x)kπ1f

′g′, . . .)

= ((~x)kπ0, (~x)kπ1, . . .)

= (~x)k

and so k = ft′kg.
Since t′k is continuous in every component, t′k is continuous, and it is clearly a bijection onto its image.

Since A is compact, and every bijective continuous function between compact Hausdorff spaces is a home-
omorphism, it follows that t′k is a homeomorphism for every k ∈ C(Q). By our choice of metric for Q in
(11), d∞(t′s, idA) < 2. Hence by Proposition 6.3, we may extend t′s to ts ∈ H(Q).

If ε ∈ R, ε > 0, is arbitrary, then we will show that Bd∞(s, ε) ⊆ f(Bd∞(ts, ε) ∩H(Q))g.
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If a ∈ Bd∞(s, ε) and t′a : A −→ A is defined as in (12), then ft′ag = a. Since f ′ : [0, 1] −→ [0, 1] is a
contraction and d∞(a, s) < ε, it follows that

d∞(t′a, t
′
s) = sup{d(~xt′s, ~xt

′
a) : ~x ∈ A}

= sup

{

∑

i∈N

|~xhsπif
′ − ~xhaπif

′|

22i+2
: ~x ∈ A

}

≤ sup

{

∑

i∈N

|~xhsπi − ~xhaπi|

22i+2
: ~x ∈ A

}

= sup

{

∑

i∈N

|~xsπi − ~xaπi|

22i+2
: ~x ∈ (A)h = Q

}

≤ sup

{

∑

i∈N

|~xsπi − ~xaπi|

2i+1
: ~x ∈ Q

}

= d∞(a, s) < ε.

Then, since (t′s)
−1 : (A)t′s −→ A is a surjective function,

d∞((t′s)
−1t′a, id(A)t′a

) = d∞((t′s)
−1t′a, (t

′
s)

−1t′s) = d∞(t′a, t
′
s) < ε,

and so, by Proposition 6.3, there exists φ ∈ H(Q) extending (t′s)
−1t′a such that d∞(φ, idQ) < ε. It follows

that tsφ ∈ Bd∞(ts, ε) and ftsφg = ft′sφg = ft′ag = a and so a ∈ f(Bd∞(ts, ε) ∩H(Q))g.

(ii). It follows immediately from Theorem 6.1 and Proposition 6.4, that every Polish semigroup topology
on C(Q) contains the compact-open topology. It therefore suffices to show that no Polish semigroup
topology for C(Q) contains the compact-open topology properly. This follows from part (i) together with
Theorem 3.1(iii).

(iii). This follows immediately from part (i) and Theorem 3.1(iv). �

6.2. The Cantor space. In this section, we show that the monoid of continuous functions C(2N) on
the Cantor space 2N has a unique Polish semigroup topology – the compact-open topology. The proof is
analogous to, but not the same as, the proof of the uniqueness of the Polish semigroup topology on the
Hilbert cube given in the last section.

To prove that the compact-open topology is also a maximal Polish semigroup topology on 2N we require
an analogue of Proposition 6.3. We were not able to locate such an analogue in the literature, and so we
provide our own, the proof of which is similar to the proof of Proposition 6.3 given in [80]. In the following
proposition, we require the d∞ metric on C(2N) for which we ought to fix a metric on 2N. Since 2N is a
subset of the Hilbert cube, we can define the metric d on 2N to be the restriction of the metric on the
Hilbert cube defined in (11). Then

d((x0, x1, . . .), (y0, y1, . . .)) =

∞
∑

i=0

|xi − yi|

2i+1
,

where (x0, x1, . . .), (y0, y1, . . .) ∈ 2N. We also require a metric on 2N × 2N which we define by

ρ((a0, a1), (b0, b1)) = max{d(a0, b0), d(a1, b1)}.

Let the associated metric ρ∞ be defined as in (10). If n > 0, we denote the finite sequence of length n
consisting solely of 0 by 0n, and we denote the infinite sequence consisting solely of the value 0 by 0∞.

Proposition 6.6. Suppose that A and B are closed subsets of 2N such that there exists a homeomorphism
φ : A −→ B such that d∞(φ, idA) < ε. Then there exists a homeomorphism φ′ : 2N × 2N −→ 2N × 2N such
that (a, 0∞)φ′ = (aφ, 0∞) for all a ∈ A, and ρ∞(φ′, id2N×2N) < ε.

Proof. It is well-known that if F is a non-empty closed subset of the Cantor space, then there exists a
continuous function gF : 2N −→ F such that (x)gF = x for all x ∈ F (see, for example, the proof of [2,
Lemma 3.59]).

Let ε ∈ R, ε > 0, be fixed, and let n ∈ N be such that
∑∞

i=n
1

2i+1 < ε. We will view 2N×2N as 2N×(2n×2N)
in the obvious way, but continue using the metric ρ. Moreover, let + and − be componentwise addition
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and subtraction modulo 2 on 2N. Define φ0, φ1, φ2 : 2N × 2N −→ 2N × 2N by

(a, (b, c))φ0 = (a, (b, c+ a))

(a, (b, c))φ1 = (a− (c)gA + (c)gAφ, (b, c))

(a, (b, c))φ2 = (a, (b, c− (a)gBφ
−1)).

Then φ0, φ1, and φ2 are continuous, since they are continuous in each component, and φ−1
0 , φ−1

1 , and φ−1
2

are well-defined and continuous. Hence φ0, φ1, and φ2 are homeomorphisms. The required homeomorphism
φ′ : 2N × 2N −→ 2N × 2N is φ′ = φ0φ1φ2 since for a ∈ A

(a, 0∞)φ0φ1φ2 = (a, (0n, a))φ1φ2

= (a− (a)gA + (a)gAφ, (0
n, a))φ2

= ((a)φ, (0n, a))φ2

= ((a)φ, (0n, a− ((a)φgBφ
−1)))

= ((a)φ, 0∞).

It remains to show that ρ∞(φ′, id2N×2N) = sup{ρ((x, y)φ′, (x, y)) : x, y ∈ 2N} < ε. By definition,

ρ((x, y)φ′, (x, y)) = max{d((x, y)φ′π0, x), d(((x, y)φ
′π1, y)},

where π0, π1 : 2N × 2N −→ 2N are the projection functions. By the assumption on n, and the fact that in
the definitions of φ0, φ1, and φ2 the first n terms in the second component are not altered, it follows that

d((x, y)φ′π1, y) <
∞
∑

i=n

1

2i+1
< ε.

Since φ0 and φ2 do not change the first coordinate of their arguments, it suffices to check that d((a, (b, c))φ1π0, a) <
ε for all (a, (b, c)) ∈ 2N × 2N. If (a, (b, c)) ∈ 2N × 2N is arbitrary, then the map x 7→ (c)gA − a + x is an
isometry on 2N, with respect to the metric d, and so

d(a, (a, (b, c))φ1π0) = d(a, a− (c)gA + (c)gAφ)

= d(((c)gA − a) + a, ((c)gA − a) + a− (c)gA + (c)gAφ)

= d((c)gA, (c)gAφ)

< ε,

since d∞(φ, idA) < ε. �

Theorem 6.7. The monoid C(2N) of continuous functions on the Cantor set together with the compact-
open topology has property X with respect to its group of units H(2N).

Proof. Similarly to the proof of Theorem 6.5(i), we will show that for every s ∈ C(2N), there exist f, g ∈
C(2N) and ts ∈ H(2N) such that s = ftsg and for every ball B = Bd∞(ts, ε) there exists δ > 0 such that
Bd∞(s, δ) ⊆ f(B ∩H(2N))g.

Let Φ : 2N −→ 2N×2N be a homeomorphism. If ε > 0, then since Φ is homeomorphism between compact
metric spaces, Φ and Φ−1 are uniformly continuous, and so there exists r(ε) ∈ R such that r(ε) > 0 and
the following conditions hold:

(i) d(a, b) < r(ε) implies that ρ((a)Φ, (b)Φ) < ε for any a, b ∈ 2N;
(ii) ρ(a, b) < r(ε) implies that d((a)Φ−1, (b)Φ−1) < ε for all a, b ∈ 2N × 2N.

Let s ∈ C(2N) be arbitrary, and let f, g ∈ C(2N) be defined by:

(x)f =
(

(x, x)Φ−1, 0∞
)

Φ−1(13)

(x)g = (x)Φπ0Φπ0,(14)

where, as defined in the proof of Proposition 6.6, π0 : 2N × 2N −→ 2N is the projection function. Note that
fg is the identity on 2N. Next, we will show that there exists ts ∈ H(2N) such that s = ftsg.

Let s′,∆ : 2N −→ 2N × 2N be defined by

(15) (x)s′ = ((x)s, x)

and (x)∆ = (x, x). Clearly ∆ is a homeomorphism from 2N to (2N)∆, and, s′ is injective and continuous,
since it is continuous in each component, and the inverse of s′ is also continuous because ((x)s, x) 7→ x
is a projection. Hence s′ is a homeomorphism between 2N and (2N)s′. If φ = Φ∆−1s′Φ−1 and x ∈ 2N is
arbitrary, then

(16) (x, x)Φ−1φ = (x, x)Φ−1Φ∆−1s′Φ−1 = (x)s′Φ−1 = ((x)s, x)Φ−1
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and so φ is a homeomorphism from A = (2N)∆Φ−1 = {(x, x)Φ−1 : x ∈ 2N} to B = (A)φ. By Proposi-
tion 6.6, there exists a homeomorphism ζ : 2N × 2N −→ 2N × 2N such that

((x, x)Φ−1, 0∞)ζ = ((x, x)Φ−1φ, 0∞)(17)

for all x ∈ 2N.
We will show that the required homeomorphism of 2N is

(18) ts = ΦζΦ−1.

If x ∈ 2N is arbitrary, then

(x)ftsg = ((x, x)Φ−1, 0∞)Φ−1tsg by (13)
= ((x, x)Φ−1, 0∞)ζΦ−1g by (18)
= ((x, x)Φ−1φ, 0∞)Φ−1g by (17)
= ((x, x)Φ−1φ, 0∞)Φ−1Φπ0Φπ0 by (14)
= (x, x)Φ−1φΦπ0
= ((x)s, x)Φ−1Φπ0 by (16)
= (x)s.

Suppose that ε > 0 is arbitrary. It remains to show that there exists δ > 0 such that Bd∞(s, δ) ⊆
f(Bd∞(ts, ε) ∩ H(2N))g. We set δ = r(r(ε)). Let u ∈ Bd∞(s, δ). We define u′ : 2N −→ 2N × 2N by
(x)u′ = ((x)u, x) for all x ∈ 2N, and, similar to the proof above for s′, u′ is a homeomorphism from 2N to
(2N)u′. Then ρ∞(u′, s′) = d∞(u, s) < δ. Hence

ρ∞(id(2N)s′ , (s
′)−1u′) = ρ∞((s′)−1s′, (s′)−1u′) = ρ∞(u′, s′) = d∞(u, s) < δ

since left multiplication by (s′)−1 is an isometry. It follows that

d∞(Φ id(2N)s′ Φ
−1,Φ(s′)−1u′Φ−1) < r(ε)

by (i) and (ii), from the second paragraph of this proof.
By Proposition 6.6 applied to the homeomorphism Φ(s′)−1u′Φ−1 : (2N)s′Φ−1 −→ (2N)u′Φ−1, there

exists γ ∈ H(2N × 2N) such that

(19) (a, 0∞)γ = (aΦ(s′)−1u′Φ−1, 0∞)

and ρ∞(γ, id2N×2N) < r(ε). Since left multiplication by Φ−1tsΦ is an isometry of C(2N × 2N),

ρ∞(Φ−1tsΦγ,Φ
−1tsΦ) = ρ∞(γ, id2N×2N) < r(ε)

and so
d∞(tsΦγΦ

−1, ts) = d∞(ΦΦ−1tsΦγΦ
−1,ΦΦ−1tsΦΦ

−1) < ε.

Hence f(tsΦγΦ
−1)g ∈ f(Bd∞(ts, ε) ∩H(2N))g. We conclude the proof by showing that f(tsΦγΦ

−1)g = u.
Suppose that x ∈ 2N is arbitrary. Then

(x)f(tsΦγΦ
−1)g = ((x, x)Φ−1, 0∞)Φ−1tsΦγΦ

−1g by (13)
= ((x, x)Φ−1, 0∞)ζγΦ−1g by (18)
= ((x, x)Φ−1φ, 0∞)γΦ−1g by (17)
= ((x)s, x)Φ−1, 0∞)γΦ−1g by (16)
= (((x)s, x)Φ−1Φ(s′)−1u′Φ−1, 0∞)Φ−1g by (19)
= (((x)s, x)(s′)−1u′Φ−1, 0∞)Φ−1g
= ((x)u′Φ−1, 0∞)Φ−1g by (15)
= (((x)u, x)Φ−1, 0∞)Φ−1g
= (((x)u, x)Φ−1, 0∞)Φ−1Φπ0Φπ0 by (14)
= ((x)u, x)Φ−1Φπ0
= (x)u,

which concludes the proof. �

Theorem 6.8. The monoid of continuous functions on the Cantor set 2N together with the compact-open
topology has automatic continuity with respect to the class of second countable topological semigroups.

Proof. This follows from Theorem 6.7, Theorem 3.1, and the automatic continuity of the group of homeo-
morphisms of the Cantor set. �

Proposition 6.9. Suppose that T is a second countable Hausdorff semigroup topology on C(2N). Let F be
the subspace of constant functions in C(2N) and let φ : F −→ 2N (with the usual topology) be the function
mapping every f ∈ F to the unique value in (2N)f . Then φ is a homeomorphism.
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Proof. Suppose that B is any basis for 2N consisting of clopen sets and such that 2N 6∈ B.
To show that φ is continuous, suppose that U ∈ B. It suffices to show that (U)φ−1 = {f ∈ F : (2N)f =

{q}, q ∈ U} is open in F . If y 6∈ U , then we define f : 2N −→ 2N such that

(x)f =

{

x if x ∈ U

y if x 6∈ U.

Since U and 2N \ U are open, and f is continuous when restricted to either of the sets, it follows that
f is continuous. Since C(2N) is T1, F is T1, and so the singleton set containing the constant function
g : 2N −→ 2N with value y is closed. Hence {g}ρ−1

f ∩F is closed in F , and so F \ ({g}ρ−1
f ) is open in F . If

h ∈ F \ ({g}ρ−1
f ), then there exists x ∈ 2N such that

(x)hf 6= y

and so (x)h ∈ U by the definition of f . On the other hand, if h ∈ F is such that (x)h ∈ U , then (x)hf 6= y,
and so F \ ({g}ρ−1

f ) = (U)φ−1 = {f ∈ F : (2N)f = {q}, q ∈ U} is open, as required.

Next, we show that φ−1 : 2N −→ F is continuous also. Note that the topology induced on F by the
compact-open topology is precisely the standard topology on 2N (when viewing an element of F as its
image under φ). It therefore suffices to show that the topology induced on F by T is contained in the
topology induced on F by the compact-open topology. This follows immediately from Theorem 6.8. �

Proposition 6.10. Suppose that C(2N) is a second countable Hausdorff semigroup with respect to some
topology. Then the function a : 2N × C(2N) −→ 2N defined by

(p, f)a = (p)f

is continuous.

Proof. Let T denote the given second countable Hausdorff semigroup topology on C(2N); F denote the set
of constant functions in C(2N); and φ : F −→ 2N be the function that sends f ∈ F to the unique value in
(2N)f . By the same argument as given in the second paragraph of the proof of Proposition 6.4, it suffices
to show that φ is a homeomorphism, which follows by Proposition 6.9. �

As immediate corollaries of the last proposition together with Theorem 6.1, we obtain the following.

Corollary 6.11. Every second countable Hausdorff semigroup topology on the monoid of continuous func-
tions on the Cantor space 2N contains the compact-open topology.

Corollary 6.12. The compact-open topology is the unique second countable Hausdorff semigroup topology
on the monoid of continuous functions on the Cantor set.

Proof. By Corollary 6.11 every such topology contains the compact-open topology and by Theorem 6.8
every such topology is contained in the compact-open topology. �

If S is a semigroup, then we denote by S† the dual semigroup of S, that is, S† is the set S together with
the operation ∗ where s ∗ t is defined to be the product of t and s in S for all s, t ∈ S. If T is topological
for the semigroup S, then, by Proposition 2.3, T is also topological for S†.

Proposition 6.13. Let C be a class of topological semigroups, and let C† denote the class of dual semigroups
of semigroups in C. If S is a topological semigroup, then the following are equivalent:

(i) S has automatic continuity with respect to C;
(ii) the dual semigroup S† has automatic continuity with respect to C†;
(iii) every anti-homomorphism from S to a semigroup in C† is continuous.

Proof. The identity function ι : T −→ T † is an anti-isomorphism from T to its dual semigroup T †. The
proof can be completed using Proposition 2.3 and the fact that the composite of continuous functions is
continuous. �

A Stone space (also called a Boolean space) is a compact Hausdorff topological space with a basis of
clopen sets. A classical result of Stone [74] gives a correspondence between Stone spaces and Boolean
algebras. In modern terminology, this is an equivalence, called Stone duality, between the category of
Boolean algebras and homomorphisms, and the dual category of Stone spaces and continuous functions;
see, for example, [27, Theorem 34] for more details. Up to isomorphism, there is only one countably infinite
atomless Boolean algebra which we denote by B∞. This object is the Fräıssé limit of the class of non-trivial
finite Boolean algebras. The countably infinite atomless Boolean algebra B∞ is also the Stone dual object
of the Cantor space 2N and thus End(B∞) is anti-isomorphic to the monoid C(2N).
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Theorem 6.14. If B∞ is the countably infinite atomless Boolean algebra, then the following hold:

(i) the pointwise topology is the unique second countable Hausdorff semigroup topology on End(B∞);
(ii) End(B∞) has automatic continuity with respect to the pointwise topology and the class of second

countable topological semigroups.

Proof. (i). Since End(B∞) is anti-isomorphic to C(2N), from Proposition 2.3 and Corollary 6.12, it follows
that End(B∞) has a unique second countable Hausdorff semigroup topology. The pointwise topology is a
second countable and Hausdorff semigroup topology on End(B∞), and hence the only one.

(ii). The automatic continuity then follows from Proposition 6.13 and Theorem 6.8 as any homomorphism
from End(B∞) can be factored into an anti-isomorphism to C(2N) followed by an anti-homomorphism from
C(2N). �

7. A little foray into the land of clones

Further examples of function clones which have automatic homeomorphicity with respect to close sub-
clones of ON can be found:

• the countable generic posets (P,≤) and (P,<);
• the rational Urysohn space;
• the rational Urysohn sphere;
• the countable random graph with all the loops added.

In this section we will extend some of the results in the preceding sections from monoids to clones, which
are introduced in the following subsections.

7.1. Function clones. If C is any set, g : Cm −→ C for some m ∈ N \ {0} and f1, . . . , fm : Cn −→ C for
some n ∈ N \ {0}, then we define (f1, . . . , fm) ◦m,n g : Cn −→ C by

(x1, . . . , xn) 7→ ((x1, . . . , xn)f1, . . . , (x1, . . . , xn)fm) g.

If the values of m and n are clear from the context, then we write ◦ instead of ◦m,n. We denote by
πni : Cn −→ C the i-th projection of Cn which is defined by

(x1, . . . , xn) 7→ xi.

A (function) clone C with domain C is a set of functions of finite arity from C to C which is closed
under composition and also contains all projections. More precisely, the following hold:

(i) if g ∈ C is m-ary and f1, . . . , fm ∈ C are n-ary, then (f1, . . . , fm) ◦ g ∈ C ;
(ii) πni ∈ C for every n ∈ N and every i ∈ {1, . . . , n}.

If C is a function clone with domain C and T is a topology on C, then we will say that T is topological
for C , or T is a clone topology, on C if the composition function ◦m,n is continuous for every m,n ∈ N;
see [9] for more information.

Let OX denote the full function clone on a set X , that is, the set of all finite arity functions from X to
itself. In the definition of OX given here, following [9, 43, 81], nullary functions are not permitted. Some
authors, see, for example, [5, 50, 75], allow nullary operations in the definition of OX .

We define the topology of pointwise convergence on OX in a similar way to its namesake for the full
transformation monoid XX , with the subbasic opens sets of the form

U(a1,...,an),b = {f ∈ OX : (a1, . . . , an)f = b}

for some fixed a1, . . . , an, b ∈ X . Similarly to the monoid case, if X is countably infinite, this topology is
Polish and topological for the full function clone OX .

A polymorphism of a structure X is a homomorphism from some finite and positive power of X into X.
The set of all polymorphisms of X forms a function clone on the set X which is closed in OX . This clone
is called the polymorphism clone of X and denoted by Pol(X).

By restricting to the morphisms in a fixed category, we can extend this definition to obtain a clone of
polymorphisms, for any object, in any category of sets and functions which allows finite products. For
example we consider the clone Pol(2N) of continuous maps from finite, positive powers of the Cantor space
to itself.

A clone homomorphism is a map between function clones which preserves arities, maps projections to
corresponding projections, and preserves the composition maps ◦m,n for every n andm. A topological clone
C is said to have automatic continuity with respect to a class of topological clones, if every homomorphism
from C to a member of that class is continuous. The following observation and lemma associate a semigroup
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to each clone. They will be used to show that several clones have automatic continuity by using the
automatic continuity of the associated semigroups.

Let C be a function clone which is topological with respect to the topology T . Define a semigroup SC

in the following way: the elements of SC are the functions in C ; and the binary operation ∗ on SC is given
by

(x1, . . . , xn)f ∗ g = ((x1, . . . , xn)f, . . . , (x1, . . . , xn)f)g

for all x1, . . . , xn ∈ C, whenever f is an n-ary function in C . It is routine to verify that ∗, as defined above,
is associative, and so SC is indeed a semigroup. Moreover, all clone homomorphisms from a function clone
to a function clone are also homomorphisms of the corresponding semigroups. Observe also, that if both
f and g are unary functions, then ∗ is simply the usual composition of functions. Finally, it follows from
the fact that composition of functions in C is continuous under T , that T makes SC into a topological
semigroup.

Lemma 7.1. Let C be a topological clone, and suppose that SC has automatic continuity with respect to the
topology on C and the class of second countable topological semigroups. Then C has automatic continuity
with respect to the class of second countable topological clones.

Proof. Suppose that A is a second countable topological clone. Let f : C −→ A be a clone homomorphism.
It follows from the definitions of SC and SA that f is also a homomorphism between these semigroups.
The semigroups SC and SA are topological with respect to the topologies on C and A , respectively, as
discussed before the lemma. Thus by the assumption that SC has automatic continuity, the map f is
continuous. �

7.2. The full function clone on a countably infinite set. Let X be a countably infinite set. In
Section 5.1 it was shown that the pointwise topology is the unique Polish semigroup topology on the full
transformation monoid XX and that XX under the pointwise topology has automatic continuity with
respect to the class of second countable topological semigroups. We will now show that the full function
clone OX has the analogous properties for clones.

Theorem 7.2. Let X be a countably infinite set. The topological clone OX with the pointwise topology has
automatic continuity with respect to the class of second countable topological clones.

Proof. As discussed above, the topology of pointwise convergence P makes the semigroup SOX
into a

topological semigroup. Moreover, Sym(X) ⊆ OX and it has automatic continuity under the subspace
topology of P . Therefore, by Theorem 3.1(iv), it suffices to show that SOX

satisfies property X with
respect to Sym(X). In order to do so fix s ∈ OX of arity n ≥ 1.

Let f be any injective n-ary function such that the setX\im(f) is infinite, and let g be a unary surjective
function such that (x)g−1 is infinite for every x ∈ X . It is now routine to define a unary ts such that
s = ftsg. In particular, choose t′, an injective partial transformation on X , such that ((x)f) t′ ∈ ((x)s) g−1

for ever x ∈ Xn. Since t′ could have been chosen so that the sets X \ dom(t′) and X \ im(t′) are both
countably infinite, t′ can be extended to ts ∈ Sym(X), so that s = ftsg.

Let B be a basic open ball containing ts, that is,

B = {h ∈ XX : (x)h = (x)ts for all x ∈ F}

for some fixed finite set F ⊆ X . Next, we will show that the open neighbourhood U = {u ∈ XXn

: (x)u =
(x)s for all x ∈ (F )f−1} of s is contained in f(B ∩ Sym(X))g. Let u ∈ U . Similarly to before, let b′ be
an injective partial transformation on X such that ((x)f) b′ ∈ ((x)u) g−1 for all x ∈ Xn. Moreover, this
can be done in such a way that (x)b′ = (x)ts for all x ∈ F . Since F is finite, we may assume that b′ was
chosen so that the sets X \ dom(b′) and X \ im(b′) are countably infinite. Hence b′ can be extended to
b ∈ Sym(X), and therefore u = fbg ∈ f(B ∩ Sym(X))g, as required. �

The proof of the next lemma is very similar to the proof of Lemma 5.1(ii) ⇒ (iii) and omitted.

Lemma 7.3. Let C be a function clone on an infinite set X containing all of the constant functions and
such that for every x ∈ X there exists a unary fx ∈ C such that (x)f−1

x = {x} and (X)fx is finite. If T
is a T1 clone topology of C , then {f ∈ C : (a1, . . . , an)f = b} is open in T for all n ≥ 1 and all a, b ∈ X.

Combining the lemmas above we obtain the following result.

Corollary 7.4. Let X be a countably infinite set. The topology of pointwise convergence is the unique
Polish topology which makes OX into a topological clone.
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7.3. The Horn clone. Having considered OX , the analogue of the semigroup of all transformations on
X , we now consider the analogue of the monoid Inj(X) of injective functions from X to X . The function
clone HX is defined to be the subclone of OX generated by the injective n-ary function for every arity
n ∈ N \ {0}. In the literature, this object is referred to as the Horn clone; see [7, 9].

In this section, we show that the pointwise topology can be extended to infinitely many Polish topologies
for HX when X is countably infinite. Among these Polish topologies on HX there is a maximum one, and
HX has automatic continuity with respect to this topology and the class of second countable topological
clones. The main theorem, and its proof, in this section are similar to Theorem 5.22.

For n-ary f ∈ HX , there exists a non-empty subset If of {1, . . . , n} such that

(x)f = (y)f if and only if (x)πni = (y)πni for all i ∈ If

for all x,y ∈ Xn. The elements of HX are exactly characterised by the existence of such a non-empty set.
Since nullary operations are vacuously injective, if they were permitted in the definition of OX , then

the sets If in the definition of HX could be empty. Although we have opted to disallow nullary functions
in the definition of OX , and consequently require the sets If to be non-empty in the definition of HX , the
results in this paper hold regardless for the other versions of HX .

The following is the main result of this section.

Theorem 7.5. Let X be a countably infinite set and let H be the topology on the Horn clone HX generated
by the pointwise topology together with the sets

Vy := {f ∈ HX : y /∈ im(f)} and Fn := {f ∈ HX : |X\ im(f)| = n}

for y ∈ X and n ∈ N ∪ {ℵ0}. Then the following hold:

(i) HX admits infinitely many distinct Polish clone topologies, including the pointwise topology and H;
(ii) SHX

has property X with respect to H and Sym(X);
(iii) HX has automatic continuity with respect to the topology H and the class of second countable topo-

logical clones;
(iv) H is the maximum Polish clone topology on HX ;
(v) if T is any clone topology on HX and T induces the pointwise topology on Sym(X), then T is

contained in H.

We require the following three lemmas in the proof of Theorem 7.5.

Lemma 7.6. If X is countably infinite, f ∈ H
(n)
X , and x ∈ X is such that (x)f−1 is non-empty, then

(x)f−1 = T1 × · · · × Tn where |Ti| = 1 if i ∈ If and Ti = X otherwise.

Proof. Let T = (x)f−1 be non-empty and let x ∈ T . If y ∈ Xn, then, by the definition of If , (y)f = (x)f
if and only if (x)πi = (y)πi for all i ∈ If . We define Ti to be X if i 6∈ If and {(x)πi} otherwise. Hence

(x)f−1 = {y ∈ Xn : (y)f = (x)f} = {y ∈ Xn : (y)πi = (x)πi for i ∈ If} = T1 × · · · × Tn,

as required. �

Lemma 7.7. If X is countably infinite, then the sets

H
(n)
X := {f ∈ HX : arity(f) = n} and WS,n := {f ∈ H

(n)
X : If = S}

are open in the pointwise topology on HX for all n ∈ N, and all finite S ⊆ N.

Proof. For n ∈ N, let x ∈ Xn be fixed. Then the set H
(n)
X is the union of the subbasic open sets

Ux,y = {f ∈ HX : (x)f = y} (for the pointwise topology) for all y ∈ X . Hence H
(n)
X is open in the

pointwise topology.
Let n ∈ N be arbitrary and S ⊆ {1, . . . n} be finite. For every i ∈ {1, . . . n}, we let xi,yi ∈ Xn be such

that (xi)π
n
j 6= (yi)π

n
j if and only if i = j (xi and yi disagree only in their ith component). We will now

show that

WS,n =

(

⋂

i∈S

{g ∈ H
(n)
X : (xi)g 6= (yi)g}

)

∩





⋂

i∈{1,...,n}\S

{g ∈ H
(n)
X : (xi)g = (yi)g}



 .

We denote the intersection in the previous displayed equations by J . Note that if f ∈ H
(n)
X , then

(20) (xi)f 6= (yi)f if and only if i ∈ If .
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If f ∈ WS,n, then f ∈ H
(n)
X and If = S. Hence (xi)f 6= (yi)f if and only if i ∈ S. Hence f ∈ J .

Conversely, if f ∈ J , then f ∈ H
(n)
X and so If is well-defined. If i ∈ S, then, since f ∈ J , (xi)f 6= (yi)f

and so i ∈ If by (20). Similarly, if i 6∈ S, then (xi)f = (yi)f and so i 6∈ If . It follows that If = S and we
have shown that WS,n = J . �

Lemma 7.8. Let X be countably infinite, and let H1 be the topology on HX generated by the pointwise
topology and the sets Vy = {f ∈ HX : y /∈ im(f)} for all y ∈ X. Then the set

PT,y,n := {f ∈ H
(n)
X : (y)f−1 = T }

is open in H1 for every y ∈ X, n ∈ N, and T ⊆ Xn.

Proof. If T = ∅, then PT,y,n = Vy which is open in H1. If T 6= ∅ and f ∈ PT,y,n, then, by Lemma 7.6,
T = T1 × · · · × Tn where Ti is a singleton for i ∈ If and Ti = X for i 6∈ If . Note that T does not depend
on the choice of f ∈ PT,y,n, and so, in particular, If = Ig for all f, g ∈ PT,y,n. We denote this set by Y
and fix any x ∈ T . Therefore PT,y,n = Ux,y ∩WY,n, where Ux,y is one of the sub-basic open sets in the
definition of the pointwise topology, and WY,n is open in the pointwise topology by Lemma 7.7. �

Proof of Theorem 7.5. (i). First, we demonstrate that HX is a closed subset of OX in the pointwise
topology. Let f ∈ OX \ HX be n-ary. Then for every non-empty S ⊆ {1, . . . , n} there are xS ,yS ∈ Xn

such that (xS)f = (yS)f if and only if there exists i ∈ S such that (xS)πi 6= (yS)πi. Hence

⋂

∅ 6=S⊆{1,...,n}

UxS,(xS)f ∩ UyS,(yS)f

is an open neighbourhood of f contained in OX \ HX . Thus OX \ HX is open in the pointwise topology,
and so HX is closed in OX . Hence HX with the pointwise topology is a Polish clone.

Next, we show that H is a clone topology by showing that ◦n,m : (H
(n)
X )m×H

(m)
X → HX is continuous

for every n,m ∈ N. Since HX is a Polish clone with respect to the pointwise topology, the set (Ux,y)◦
−1
n,m

is open in the pointwise topology, and hence in H. It suffices to consider f1, . . . , fm ∈ H
(n)
X and g ∈ H

(m)
X

such that (f1, f2, . . . , fm)◦g belongs to a subbasic open set B and either B = Vy for some y ∈ X or B = Fn
for some n ∈ N∪ {ℵ0}. We will find a neighbourhood of ((f1, . . . , fm), g) which is mapped into B by ◦n,m.

Suppose that y ∈ X is such that (f1, . . . , fm) ◦n,m g ∈ Vy. Then either: y /∈ im(g) or

((z)f1, . . . , (z)fm) 6∈ (y)g−1

for all z ∈ Xn. In the former case, (H
(n)
X )m × (H

(m)
X ∩ Vy) is the required neighbourhood.

In the latter case, it follows from Lemma 7.6, that (y)g−1 = T1 × · · · × Tm where |Ti| = 1 if i ∈ Ig and
Ti = X if i 6∈ Ig. Hence if z ∈ Xn is arbitrary, then ((z)f1, . . . , (z)fm) 6∈ (y)g−1 and so there exists i ∈ Ig
such that {(z)fi} 6= Ti. In other words,

⋂

i∈Ig
(Ti)f

−1
i = ∅. If i ∈ Ig and hi ∈ P(Ti)f

−1

i ,Ti,n
, which is an

open set by Lemma 7.8, then (Ti)h
−1
i = (Ti)f

−1
i , and so

⋂

i∈Ig
(Ti)h

−1
i =

⋂

i∈Ig
(Ti)f

−1
i = ∅. Hence

(

m
∏

i=1

Ai

)

× P(y)g−1,y,m,

where Ai = P(Ti)f
−1

i
,Ti,n

if i ∈ Ig and Ai = H
(n)
X if i 6∈ Ig, is the required open neighbourhood of

((f1, . . . , fm), g).
Suppose that κ ≤ ℵ0 and (f1, . . . , fm) ◦n,m g ∈ Fκ. Note that

κ = |X \ im((f1, . . . , fm) ◦n,m g)|

= |X \ im(g)|+ |{x ∈ im(g) : ((y)f1, . . . , (y)fm) /∈ (x)g−1 for all y ∈ Xn}|.

Denote the second cardinal in the sum above by λ. Then, by Lemma 7.6,

λ = |{x ∈ im(g) : ((y)f1, . . . , (y)fm) /∈ (x)g−1 for all y ∈ Xn}|

= |{x ∈ im(g) : for each y ∈ Xn there is i ∈ Ig such that (y)fi /∈ (x)g−1πi}|

= |{x ∈ im(g) : there is no y ∈ Xn with (y)fi ∈ (x)g−1πi for all i ∈ Ig}|.
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For every x ∈ im(g), define αx ∈ XIg to be such that (i)αx is the unique element in (x)g−1πi for every
i ∈ Ig. Then, by definition of Ig, the map Φ: im(g) −→ XIg , given by x 7→ αx, is an injection. Therefore

λ = |{αx ∈ XIg : x ∈ im(g) and there is no y ∈ Xn with (y)fi ∈ (x)g−1πi for all i ∈ Ig}|

= |{αx ∈ XIg : x ∈ im(g) and there is no y ∈ Xn with (y)fi = (i)αx for all i ∈ Ig}|

Moreover, suppose α ∈ XIg is such that there is no y ∈ Xn with (y)fi = (i)α for all i ∈ Ig. Then we
can choose z ∈ Xn such that (z)πi = (i)α for all i ∈ Ig. Hence α = αx where x = (z)g and there is
no y ∈ Xn with (y)fi = (i)αx for all i ∈ Ig, and so the sets {αx ∈ XIg : x ∈ im(g) and there is no y ∈
Xn with (y)fi = (i)αx for all i ∈ Ig} and {α ∈ XIg : there is no y ∈ Xn with (y)fi = (i)α for all i ∈ Ig}
are equal. Therefore,

(21) κ = |X\ im(g)|+ |{α ∈ XIg : there is no y ∈ Xn with (y)fi = (i)α for all i ∈ Ig}|.

There are 4 cases to consider. Since g ∈ HX , Ig 6= ∅.

Case α. Suppose that Ig = {i} for some i ∈ {1, . . . ,m}. Then κ = |X\ im(g)| + |X\ im(fi)| by (21).
Hence

(

n
∏

k=1

Ak

)

×
(

WIg ,m ∩ F|X\im(g)|

)

,

where Ai = F|X\ im(fi)| ∩ H
(n)
X and Ak = H

(n)
X if k 6= i, is the required neighbourhood.

Case β. Suppose there are distinct i, j ∈ Ig with Ifi ∩ Ifj 6= ∅. We will show that κ = ℵ0.
Suppose that k ∈ Ifi ∩ Ifj . Let (xr)r∈N be an infinite sequence of pairwise distinct tuples in Xn such

that (xa)πl = (xb)πl for all a, b ∈ N and all l 6= k. There is at most one a ∈ N with (x1)fi = (xa)fj as
(xa)fj 6= (xb)fj whenever a 6= b. For each a with (x1)fi 6= (xa)fj we choose anm-tuple ya whose ith entry is
(x1)fi and whose jth entry is (xa)fj . Suppose that there is z ∈ Xn such that (ya)g = ((z)f1, . . . , (z)fm)◦g.
Then (x1)fi = (ya)πi = (z)fi and (xa)fj = (ya)πj = (z)fj since i, j ∈ Ig . Moreover, it follows that
(x1)πk = (z)πk = (xa)πk since k ∈ Ifi ∩ Ifj , which is a contradiction if a > 1. Therefore, the points (ya)g
are distinct and not in the image of (f1, . . . , fm) ◦ g for a > 1, and thus κ = ℵ0.

Then
(

m
∏

k=1

WIfk ,n

)

×WIg ,m

is the required neighbourhood.

Case γ. Suppose that |Ig | ≥ 2 and Ifi ∩ Ifj = ∅ for all distinct i, j ∈ Ig , and suppose further that fi is

surjective for all i ∈ Ig. Then for every α ∈ XIg we may find y ∈ Xn such that (y)fi = (i)α for all i ∈ Ig,
by simply choosing the appropriate values on each set of coordinates Ifi separately. Hence κ = |X\ im(g)|

by (21). Let Ak =WIfk ,n
∩ F0 for k ∈ Ig and let Ak = H

(n)
X for k /∈ Ig. Then

(

m
∏

k=1

Ak

)

× (WIg ,m ∩ F|X\ im(g)|)

is the required neighbourhood.

Case δ. Suppose that |Ig| ≥ 2 and Ifi ∩ Ifj = ∅ for all distinct i, j ∈ Ig, and suppose further that fi is

not surjective for some i ∈ Ig. Then ℵ0 ≥ κ ≥ |X\ im(g)| + |(X\ im(fi)) ×X |Ig|−1| = ℵ0 by (21). Hence
κ = ℵ0, and so

(

m
∏

k=1

WIfk ,n
∩ F|X\ im(fk)|

)

× (WIg ,m ∩ F|X\ im(g)|)

is the required neighbourhood. Therefore, concluding the argument that H is a clone topology.
For each y ∈ X , the set Vy is closed in the pointwise topology. It follows by [41, Lemma 13.2] that for

each y ∈ X the topology generated by the pointwise topology and Vy is Polish, hence by [41, Lemma 13.3]
the topology H1 generated by the pointwise topology together with all of them is Polish.

As in the proof of Theorem 5.22, we can now define a sequence of topologies S0 = H1,S1, . . . where
Sn+1 is generated by Sn and Fn. By an argument similar to the one in the proof of Theorem 5.22, it can
be shown that Fn is closed in Sn and Fℵ0

is closed in the topology generated by
⋃∞
n=0 Sn. Hence all of

these topologies S1,S2, . . . as well as H are Polish. Moreover, it follows from the proof that H is a clone
topology that S0,S1, . . . are also clone topologies. Finally, when restricted to Inj(X), the topologies in this
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proof agree with the corresponding topologies in Theorem 5.22, which are all distinct. It follows that the
clone topologies in this proof are distinct also.

(ii). Let s ∈ SHX
be n-ary for some n ∈ N. We show that there exist fs, gs ∈ SHX

and as ∈ Sym(X) such
that s = fsasgs and for every basic open neighbourhood B of as there exists an open neighbourhood U of
s such that U ⊆ fs(B ∩ Sym(X))gs.

Let fs = s, let as and gs both be the identity map on X , and let B be a basic open neighbourhood of
as. Then there is some finite Y ⊆ X such that

B ∩ Sym(X) = {h ∈ Sym(X) : (y)h = y for all y ∈ Y }.

It can be shown that h ∈ H
(n)
X is an element of fs(B ∩ Sym(X))gs = s(B ∩ Sym(X) if and only if the

following hold

(1) y /∈ im(h) for all y ∈ Y \ im(s);
(2) (y)s−1 = (y)h−1 for all y ∈ Y ∩ im(s);
(3) |X\ im(s)| = |X\ im(h)|;
(4) Ih = Is.

In the reverse implication, the required element of B∩Sym(X) can be chosen to be any bijection extending
the partial bijection mapping x ∈ im(s) to the single point in the set (x)s−1h.

It follows that

fs(B ∩ Sym(X))gs =
⋂

y∈Y \im(fs)

Vy ∩
⋂

y∈Y ∩im(fs)

P(y)s−1,y,n ∩ F|X\im(s)| ∩WIs,n,

and so fs(B ∩ Sym(X))gs is an open neighbourhood of s in H, as required.

(iii). From part (ii) the monoid SHX
has property X with respect to Sym(X) and the topology H.

Property X implies automatic continuity by Theorem 3.1, and so SHX
has automatic continuity with

respect to the class of second countable topological semigroups. It follows from Lemma 7.3 that HX has
automatic continuity with respect to the class of second countable topological clones.

(iv). This follows immediately from part (iii).

(v). Let T be a clone topology for HX that induces the pointwise topology on Sym(X). Every clone
topology for HX is also a semigroup topology for SHX

. By part (ii) and Theorem 3.1, every semigroup
topology on SHX

which induces the pointwise topology on Sym(X), such as T , is contained in H. �

7.4. The clones of the Cantor space and the countably infinite atomless Boolean algebra. In
this section, we consider the polymorphism clone of the Cantor space 2N which is defined as

Pol(2N) :=
⋃

n∈N\{0}

C((2N)n, 2N),

where C(X,Y ) denotes the set of continuous functions from a topological space X to a space Y . The
polymorphism clone of the countably infinite atomless Boolean algebra, which is

Pol(B∞) :=
⋃

n∈N\{0}

Hom((B∞)n, B∞)

where Hom((B∞)n, B∞) denotes the set of homomorphisms from (B∞)n to B∞. For more information on
this Boolean algebra see [27].

The compact-open topology on Pol(2N) is defined so that for each n ∈ N\{0} we consider the function
space C((2N)n, 2N) with the compact-open topology (as defined previously) and view Pol(2N) as the disjoint
union of these spaces with the union topology. One can verify that this topology makes Pol(2N) a topological
clone.

The clone Pol(2N) is an analogue of the monoid C(2N) of continuous functions on the Cantor space 2N.
In Theorem 6.8, it is shown that C(2N) with the compact-open topology has automatic continuity with
respect to the class of second countable topological semigroups and that the compact-open topology is
the unique second countable Hausdorff semigroup topology on C(2N). The Stone duality theorem gives
an anti-isomorphism (see, for example, [27, Theorem 34]) between the (topological) semigroups C(2N) and
End(B∞), which was used in Theorem 6.14 to prove analogues of the results about C(2N) for End(B∞).



48 L. ELLIOTT, J. JONUŠAS, Z. MESYAN, J. D. MITCHELL, M. MORAYNE, AND Y. PÉRESSE

Stone duality associates products of Boolean algebras with coproducts (disjoint unions) of Stone spaces.
Although the Stone dual of End(B∞) is C(2N), the Stone dual of Pol(B∞) is not Pol(2N). Instead, the
Stone dual Pol(B∞)† of Pol(B∞) is the disjoint union

(22)
⋃

n∈N\{0}

C(2N, 2N × {1, . . . , n}),

and operation •n,m defined by

(x)
(

f •n,m (g1, . . . , gn)
)

= ((x)fπ1)g(x)fπ2

for every f ∈ C(2N, 2N × {1, . . . , n}), g1, . . . , gn ∈ C(2N, 2N × {1, . . . ,m}) and x ∈ 2N such that (x)f =
((x)fπ1, (x)fπ2) ∈ 2N × {1, . . . , n}. In this context, for every n ∈ N, the Stone dual of Hom(Bn∞, B∞) is
C(2N, 2N×{1, . . . , n}). Moreover, the Stone duality translates the pointwise topology to the compact-open
topology and vice-versa. While the results in this section are stated in terms of Pol(2N) and Pol(B∞),
one of the proofs related to Pol(B∞) is given in terms of Pol(B∞)†, which is the reason for introducing
Pol(B∞)†. It seems to the authors of this paper that the two clones Pol(2N) and Pol(B∞) are in fact
meaningfully distinct.

To prove the main theorem of this section, we require the following proposition, which is similar to Propo-
sition 6.10.

Proposition 7.9. Suppose that Pol(2N) is a second countable Hausdorff topological clone with respect to
some topology T . Then for all n ∈ N the function an : (2N)n × C((2N)n, 2N) −→ 2N defined by

(x, f)an = (x)f

is continuous where (2N)n × C((2N)n, 2N) has the product topology given by the subspace topology on
C((2N)n, 2N) induced by T and the usual topology on 2N.

Proof. If we restrict Pol(2N) to its elements of arity 1, then we obtain C(2N). By Proposition 6.9, if F
denotes the set of constant maps of arity 1, and φ : F −→ 2N is the function that sends g ∈ F to the unique
value in (2N)g, then φ is a homeomorphism.

Let α : (2N)n −→ Fn be defined by (x1, x2, . . . , xn)α = ((x1)φ
−1, (x2)φ

−1, . . . , (xn)φ
−1). Then α is

continuous since it is continuous in every component. If β : (2N)n ×C((2N)n, 2N) −→ Fn ×C((2N)n, 2N) is
defined by (x, f)β = ((x)α, f) for all x ∈ (2N)n, f ∈ C((2N)n, 2N), then β is also continuous. Then an is the
composite of the continuous functions β, the function clone ◦1,n, and φ, and hence, an is continuous. �

Theorem 7.10. Let K be the compact-open topology on Pol(2N). Then the following hold:

(i) SPol(2N) has property X with respect to K and C(2N);

(ii) the clone Pol(2N) has automatic continuity with respect to the class of second countable topological
clones;

(iii) K is the only second countable Hausdorff clone topology on Pol(2N).

Proof. (i). Let s ∈ Pol(2N) be arbitrary and of arity n. Let fs : (2N)n −→ 2N be a homeomorphism,
ts := f−1

s s and gs := 12N (the identity function on 2N). Then fstsgs = fsf
−1
s sgs = s, fs, gs ∈ Pol(2N) and

ts ∈ C(2N). Let B be a neighbourhood of ts in C(2N). Then

ts ∈

k
⋂

i=1

[Ki, Ui] ⊆ B,

for some compact Ki, open Ui, and k ∈ N. Hence

s = fsts ∈ fs

k
⋂

i=1

[Ki, Ui] and so
k
⋂

i=1

[(Ki)f
−1
s , Ui] = fs

k
⋂

i=1

[Ki, Ui] ⊆ fsB = fsBgs.

Since each of [(Ki)f
−1
s , Ui] is a subbasic open set, fsBgs is a neighbourhood of s, as required.

(ii). By part (i), the semigroup SPol(2N) has property X with respect to C(2N) and the compact-open

topology. It is shown in Theorem 6.8 that C(2N) has automatic continuity with respect to the class of
second countable topological semigroups and the compact-open topology. Hence, by Theorem 3.1(iv), and
the fact SPol(2N) has automatic continuity with respect to class of second countable topological semigroups.

Therefore Lemma 7.1 implies that Pol(2N) has automatic continuity, as required.

(iii). Suppose that Pol(2N) is equipped with a second countable Hausdorff clone topology T . By part (ii),
this topology must be contained in the compact-open topology. It is shown in Theorem 6.1 that if C(X,Y )
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is first countable and Hausdorff with respect to some topology S, for arbitrary compact metrizable spaces
X and Y , and a : X × C(X,Y ) −→ Y defined by

(p, f)a = (p)f

is continuous, then S contains the compact-open topology. Hence, by Proposition 7.9, T contains the
compact-open topology. �

Theorem 7.11. The following hold:

(i) SPol(B∞) has property X with respect to End(B∞) and the pointwise topology;
(ii) Pol(B∞) has automatic continuity with respect to the pointwise topology and the class of second

countable topological clones;
(iii) the pointwise topology is the only second countable Hausdorff clone topology on Pol(B∞).

Proof. The proofs of parts (i) and (ii) of this theorem are similar to the corresponding parts of the proof
of Theorem 7.10.

(i). Let s ∈ Pol(B∞) be arbitrary and of arity n. Note that all finite non-zero powers of B∞ are isomorphic
to B∞. This can be seen by noting that they are all atomless, or by noting that every finite non-empty
disjoint union of 2N with itself is homeomorphic to 2N.

Let fs : (B∞)n −→ B∞ be an isomorphism, ts := f−1
s s, and gs := 1B∞ (the identity function on B∞).

Then fstsgs = fsf
−1
s sgs = s, fs, gs ∈ Pol(B∞) and ts ∈ End(B∞). Let B be a neighbourhood of ts in

End(B∞). Then

ts ∈
k
⋂

i=1

{h ∈ Hom(Bn∞, B∞) : (ai)h = bi} ⊆ B,

for some ai, bi ∈ B∞ and finite k. Since

s ∈

k
⋂

i=1

{h ∈ Hom(Bn∞, B∞) : ((ai)f
−1
s )h = bi} ⊆ fsBgs,

it follows that fsBgs is a neighbourhood of s.

(ii). The monoid End(B∞) has automatic continuity with respect to the pointwise topology and the class
of second countable topological semigroups; see Theorem 6.14. The proof of this part of the theorem then
follows by a similar argument to Theorem 7.10(ii).

(iii). Suppose that Pol(B∞) is equipped with a second countable Hausdorff clone topology T . By part
(ii), T is contained in the usual pointwise topology.

It remains to show that T contains the pointwise topology. Stone duality translates: the pointwise
topology on Pol(B∞) to the compact-open topology on Pol(B∞)† (defined in (22)); and the topology T to
a second countable Hausdorff topology T † on Pol(B∞)† such that •m,n is continuous with respect to T †

for all m,n ∈ N. Hence it suffices to show that the topology T † on Pol(B∞)† obtained by translating T via
Stone duality contains the compact-open topology. In other words, it is enough to fix n ∈ N and show that
the subspace topology on C(2N, 2N×{1, . . . , n}) induced by T † contains the compact-open topology. As in
the proof of Theorem 7.10(iii), by Theorem 6.1, it suffices to show that an : 2N×C(2N, 2N×{1, . . . , n}) −→
2N × {1, . . . , n} defined by

(p, f)an = (p)f

is continuous. Recall that πi : 2
N × {1, . . . , n} −→ 2N denotes the ith projection and note that (p, f)an =

((p)anπ1, (p)anπ2) for all p ∈ 2N and f ∈ C(2N, 2N × {1, . . . , n}). We conclude the proof by showing that
anπ1 and anπ2 are continuous.

By Proposition 6.9, if F denotes the set of constant maps of arity 1 in C(2N), and φ : F −→ 2N is
the function that sends g ∈ F to the unique value in (2N)g, then φ is a homeomorphism. Let 12N be the
identity function on 2N. If p ∈ 2N and f ∈ C(2N, 2N × {1, . . . , n}), then (p)φ−1fπ1 is the constant map on
2N with value (p)fπ1. Hence

(p, f)anπ1 = (p)fπ1 = (p)φ−1fπ1φ = (p)φ−1fπ112Nφ =
(

((p)φ−1f) •n,1 (12N , . . . , 12N)
)

φ

for all p ∈ 2N and f ∈ C(2N, 2N × {1, . . . , n}).
Suppose that n ∈ N and that

Mn : C(2N)× C(2N, 2N × {1, . . . , n}) −→ C(2N, 2N × {1, . . . , n})
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is defined by (f, g)Mn = f ◦ g. Then (f, g)Mn = f ◦ g = f •1,n (g) where f : 2N −→ 2N × {1} is defined

by (p)f = ((p)f, 1), and so the functions Mn are continuous with respect to T †. Since φ−1 and Mn are
continuous, the maps (p, f) 7→ (p)φ−1f and (p, f) 7→ (12N , . . . , 12N) are continuous. Moreover, •n,1 and φ
are continuous, and so anπ1 is continuous also.

Let q : 2N −→ {1, . . . , n} be continuous and surjective, and let cm : 2N −→ 2N be any constant map with
value xm ∈ (m)q−1 for all m ∈ {1, . . . , n}. Then

(p, f)anπ2 = (p)fπ2 = x(p)fπ2
q = c(p)fπ2

φq =
(

(p)φ−1f •n,1 (c1, . . . , cn)
)

φq

for all p ∈ 2N and f ∈ C(2N, 2N × {1, . . . , n}). The proof that anπ2 is continuous is then similar to the
proof that anπ1 is continuous. �
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[52] Z. Mesyan, J. D. Mitchell, and Y. H. Péresse. Topological transformation monoids, 2018, 1809.04590.
[53] Zachary Mesyan. Generating self-map monoids of infinite sets. Semigroup Forum, 75(3):648–675, 2007.
[54] Zachary Mesyan. Monoids of injective maps closed under conjugation by permutations. Israel Journal of Mathematics,

189(1):287–305, September 2011.
[55] Zak Mesyan, James Mitchell, Micha l Morayne, and Yann Péresse. The Bergman-Shelah preorder on transformation
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