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Spinal Muscle Atrophy Disease Modelling as Bayesian 

Network 

Mohammed Ezzat Helal1, Manal Ezzat Helal2 and Professor Sherif Fadel Fahmy1 

 
Abstract. We investigate the molecular gene expressions studies and public databases for disease 

modelling using Probabilistic Graphical Models and Bayesian Inference. A case study on Spinal 

Muscle Atrophy Genome-Wide Association Study results is modelled and analyzed. The genes up 

and down-regulated in two stages of the disease development are linked to prior knowledge 

published in the public domain and co-expressions network is created and analyzed. The Molecular 

Pathways triggered by these genes are identified. The Bayesian inference posteriors distributions are 

estimated using a variational analytical algorithm and a Markov chain Monte Carlo sampling 

algorithm. Assumptions, limitations and possible future work are concluded. 

1 Introduction 

Human cells undergo cell activities that vary over time based on genetic makeup, environmental factors, 

drugs interference, disease development and recovery. These variations can be computationally 

modelled using dynamic networks over time and analysed to identify therapeutic opportunities, causal 

analysis, and various parameter estimate analyses. PGM has been applied to model human diseases as 

identified in the literature review section. However, there are inconsistencies in the results reporting of 

published papers and how they are stored in public databases and their availability for the wider 

community to apply and learn new models from them.  

 

To the best of our knowledge, many publicly available analysis algorithms and methods use toy 

examples or manually analysed datasets and encourage others to re-apply on new datasets. This work 

aims to identify a pipeline of analysis steps to achieve a disease model that can be used to add new 

evidence to create a dynamic ongoing model as more studies are reported. This paper attempts to study 

the Spinal Muscle Atrophy (SMA) disease, identify relevant Genome-Wide Association Study (GWAS) 

and build Probabilistic Graphical Models (PGM) to capture the uncertainty in gene expressions and 

estimate future expressions, identifying assumptions, limitations and challenges. The model can be 

enhanced to generalise from and resume the proposed future work to overcome the identified limitations. 

2 LITERATURE REVIEW 

2.1 Probabilistic Graphical Models 

PGM captures the joint distribution between observed random variables as the nodes of a graph/network, 

in which edges denote dependency between the variables. When the graph is directed and acyclic 

(DAG), a Bayesian Network (BN) is created, while an undirected graph creates a Markov Random 

Fields (MRF). Once a model is defined from a dataset, further analysis can be applied to it. The possible 

analysis is 1) learning the parameters of the network, such as the conditional probability distributions; 
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2) learning the structure by selecting a model that best fits the data to a probability distribution with the 

highest Bayesian score or the Bayesian information criterion (BIC), and 3) building an inference engine 

to respond to probabilistic queries [1]. PGMs may include latent variables that are linked to observed 

variables. Multilevel Hierarchical Latent Class models are useful to capture mixture models and enable 

clustering, dimensionality reduction, and latent causal inference [2].  

 

The simplest application of PGMs has been in modelling hereditary features between family members 

[3, p. 9]. DNA sequences in the living cells are inherited strings that are divided into chromosomes (23 

in humans from each parent). A basic DNA interaction cycle is defined as DNA is divided into genes 

that transcribe mRNA that translates proteins and enzymes that also interact together and with their cell 

environment and affect their future expressions. Gene products and various cell metabolites form 

networks of interactions and affect pathways or functions by inhibition or activation. This cycle 

continues with time interacting with various environmental factors that constantly change the cells’ 

contents (by increasing or decreasing) of these metabolites. These interactions can be captured in a 

hierarchical PGM, in which vertices are of different metabolite types (each type has its hierarchical 

level) and edges are the various captured interactions. Such PGM would be very high dimensional. 

Studies focus on modelling a particular disease (phenotype) and the set of genes involved in its most 

significant interactions [4].   

2.2 PGMs for GWAS Data  

 

The work in [2], [5] identifies various modelling approaches applying PGM to model diseases GWAS 

output compared to the Population Association Studies (PAS). PAS quantifies how case and control 

cases differ in their allelic frequencies identifying heredity. These kinds of studies enable PGMs to 

model pedigrees (individuals with specific phenotype groups encoded by their genotype) to model the 

heredity in the meiosis process to query simple linkage analysis and detection of quantitative trait locus. 

Linkage disequilibrium mapping then identifies the precise location of the gene responsible for the 

observed phenotype. Another pedigree PGM model uses random variables as any of the allelic types 

from both parents. Phenotypic PGM models on the other hand add an extra node to the individual onto 

which the phenotype prevails [2].  

 

PGMs are also modelled using Single Nucleotide Polymorphism (SNP) as the random variables 

capturing the dependencies between SNPs. Various models are discussed in [5] to query the SNP-

phenotype association. The GWAS produces a vast amount of data compared to PAS and previous PGM 

models will be intractable if applied to the complete dataset. Selecting the most significant SNPs to 

model to reduce the model’s complexity led to losing the benefits of the genome-wide analysis as the 

preselection of what to include might be incorrect. Scalable solutions include variable length Markov 

Models (VLMMs) that groups genotypes into clusters or patterns. Other models study the multilocus 

SNP-disease association by limiting the physical distance between SNPs and/or by using decomposable 

graphs such as GraphMiner. Graphical Lasso enables sparse SNP-SNP dependencies without distance 

restrictions. This is besides the gene-gene interactions (epistasis) that is modelled in DASSO-MB 

(Detection of ASSOciations using Markov Banket) models, MDR (Multifactor Dimensionality 

Reduction) and BEAM (Bayesian Epistasis Association Mapping). Another modelling approach applies 

data integration of genetics, gene expressions and proteomics to capture complete biological processes 

[4]. 

 

GWAS studies produce gene expression counts by producing fragments that are probabilistically 

assigned to specific genes. Chapter 5 in [6] explains how to create a PGM model for the GWAS data 

using Bayesian inference to estimate the gene expression parameters for one or more genes, in one or 

more samples. The model discusses the different required probability distributions of all parameters 

involved in the experiment, such as the gene expression count, random error, depth of the experiment 

and variability within groups. The model uses Markov Chain Monte Carlo (MCMC) algorithms 
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implemented in Stan to derive the full posterior distribution from the defined conditional dependence, 

priors, and likelihood functions.  

 

The work in [7] explains how to reverse engineer the Gene Regulatory Network (GRN) from GWAS 

gene counts using Hierarchical Bayesian Models including known data from candidate cis-regulatory 

modules (CRMs) and Transcription Factors (TF) regulating the genes in the experiment to infer the 

binary (on or off) and activity (activation or depression or 0) assuming Normal Distribution for all 

variables for simplicity. The latter method uses Gibbs sampling to infer for each gene the posterior 

probability of the CRMs associated with it.  

 

The work in [8] uses the Bayes Factors of Covariance Structures (BFCS) to infer gene-gene causal 

relationships from GWAS data. They aimed to derive the posterior probability of the causal relationship 

of a triplet structure connecting pairs of traits (pair of genes corresponding to the traits) and a genetic 

marker as one gene as a cause that regulates the other gene as an effect. This local search is proven faster 

and more effective than other methods, as it considers all structures at once and is inherently parallel. 

2.3 Spinal Muscle Atrophy (SMA) Modelling 

 

PGMs can model known information about diseases. Spinal Muscle Atrophy (SMA) is characterised by 

being a neurodegenerative disorder caused by the mutation in chromosome 5 at position q13.2 

identifying the gene as SMN. SMN was found to be duplicated as SMN1 and SMN2 with 5 nucleotides 

difference between them including a C to T mutation in exon 7. The normal SMN1 gene usually 

produces 100% SMN protein, while the mutated SMN2 creates an exonic splicing suppressor (ESS) that 

leads to skipping of exon 7 during splicing and production of truncated, non-functional SMN protein. 

The SMN2 gene can still produce around 10% of full-length mRNA. The copy number of SMN2 has 

been correlated with the disease severity, with SMA Type I and II commonly have two or three copies 

of SMN2 creating 20:30% of needed SMN. SMA Type III has four copies creating 40% of the needed 

SMN protein. 50% of SMN protein is identified as sufficient to have normal function [9]. 

  

SMA has been modelled using PGM in [10] using hierarchical nodal structures and links between model 

parameters. The model was created by expert knowledge and observational studies, without publishing 

their results. An SMA GWAS study in a fruit fly model (Drosophila) was conducted in [11] collecting 

gene expressions variations between control (normal) and case (SMN mutants) in the second and third 

instar larval stages. The motility defects usually prevail between these two stages. The gene expressions 

have been collected from brain and muscle tissues in fold change with a cut-off of 1.5. The experimental 

setup, equipment, and standardisation parameters are further detailed in [11].  

Small n large p problem prevails in these experiments, as only two cell types and two disease 

development stages were tested, for many gene expressions. Moreover, not all genes were expressed in 

all stages, creating a sparse matrix. These gene expressions as the observed variables can be used to 

construct PGM to infer the distribution of latent variables representing the biological processes or 

functions or pathways these genes are involved in [12]. 

3 METHODOLOGY 

3.1 Pre-processing 

 

The GWAS SMA study in [11] produced 3158 genes’ expression in the fold change values in two 

different time intervals and two different cell types (Brain and Muscle) in different files divided by up 

and down-regulated genes. The first pre-processing step was collecting the data per gene, per stage and 

per tissue type, and consider downregulation as -ve values of the change fold. This step produced an n 

× p data matrix X, comprising n observations, which are cell types and time step or stage in the 

experiment, for p molecular variables, which are genes.  
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The second step was to find the Entrez Ref Sequence ID through python Bio package code, which 

searches for the gene name in the nuccore database. Preference was given to IDs starting with “NM_” 

then “XM_” prefix to favour protein-coding transcribed mRNA over predicted ones and other entries 

containing the query name as produced from the GWAS. This collection of IDs was generated from a 

sequence of searches from the most preferred RefSeq and mRNA and animal organisms to the most 

unrestricted search, then compared to select the most relevant as possible [13]. The difficulty in this step 

was in the availability of many variants and many different types of the same organism. This is because 

many studies do not report full details about the organism, or the specific gene variant. This reduced the 

genes to 3149 genes with RefSeq ID [11]. 

 

The third pre-processing step was to do Pathway Enrichments to reduce dimensionality. The genes were 

enriched using the Reactome knowledgebase [14] to identify the pathways they are involved in. Only 

the genes regulating some pathways were used in the analysis. This step was processed using the 

KNIME platform pipeline for gene expression enrichments [15]. The workflow started by identifying 

the Fold Change of the counts of genes in several samples using the edgeR Bioconductor tool to identify 

the significantly differentially expressed genes. This step was already done in the produced files of the 

SMA GWAS study in [11]. The significantly expressed genes as illustrated in Figure 1 were then 

clustered hierarchically based on their expression pattern. This step produced a heatmap as illustrated in 

Figure 2 and a dendrogram as illustrated in Figure 3 containing 23 significant genes that have common 

expression patterns. A pathway enrichment analysis step identified the pathways the significantly 

expressed genes are involved in as illustrated in Figure 4. The most significant pathway was the 

Xenobiotics on the top of Figure 4, which is a metabolism activity that handle foreign compound in the 

organism such as drug or poison. The second pathway affects the growth of the child which is expected 

in SMA disease. 

 

 
 

 
Figure 2: Heatmap for significantly expressed genes 

across samples from Whole Larves, Brain, and Muscle in 

stage three as compared to the Control in stage two 

 

 
Figure 4: Identified Pathways related to significantly 

expressed genes. 

 

 
Figure 1: Over- and under-expressed Genes 

 

 
Figure 3: Dendrogram for significantly expressed genes based on 

similar expression patterns 
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3.2 PGM – dependence decomposition 

One of the feasible PGM models to create from the observed genes’ expressions is one that aims to 

reverse engineer the Gene Regulatory Network (GRN) regulating the genes expressed in the experiment. 

As a result, we needed to embed existing known biological knowledge to create the network that 

identifies a parent gene to a child gene (parent gene regulates the expression of a child gene). We 

searched GeneMania [16] for gene interactions using the most significant gene identified in the previous 

step. Only 19 genes were identified by GeneMania and their network was extracted as illustrated in 

Figure 5. An arrow connecting these genes explains a co-expression ranked by maximizing the Pearson 

correlation coefficient for the query gene pair. This score represents the expression level similarity 

across several experiments. Co-expression does not mean causality or distinguish between regulatory 

and regulated genes. To identify causality, more data need to be added such as sequence motif analysis, 

protein-protein interaction, Transcription Factors (TF) and target interactions, and methylome data such 

as the work presented in [7] and [8]. These data are readily available in public databases identified in 

these studies and can be integrated into future work. 

 
Figure 5: Genes Interactions Network extracted from GeneMania 

One approach to infer the posterior from the data is to apply a Variational Bayesian Inference (VI) 

method to analytically estimate the network parameters and latent variables from the observed variables 

using the Expectation Maximisation (EM) algorithm. The approach estimates the parameters that fit the 

given data by alternating between estimating the parameters' values, and maximizing the posterior 

estimation (MAP) until convergence. The pre-processed 19 genes and their known co-expression were 

used to build a probabilistic factor graph network (FGN) as described in [17], to infer the marginal 

posterior distribution of the latent variables (biological function maintained by the messages 

communicated by the gene expressions). This method applied a discretisation step using a mixture of 

Gaussian distribution to model the relations between continuous observations on a gene variable and its 

discrete logical state and EM algorithm to infer the posterior distributions and re-estimate the mixture 

statistics until convergence. Then a variational algorithm known as a loopy-belief propagation (LBP) 

was applied to estimate the marginal posterior distributions on all gene logical variables and compared 

its predicted marginals with the genes observed states from the input network. 

3.3 PGM – Bayesian Inference 

Another experiment was conducted using sampling algorithms to infer the posterior. Bayesian Inference 
requires estimating the parameters of the distributions of the likelihood and the priors used to 
calculate the posterior. This is performed by iterating through the data and sampling new similarly 
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distributed data. Sampling algorithms such as the MCMC algorithm, the Hamiltonian Monte Carlo 
implementation in Stan code as described in [6] was used.  
 

Bayesian inference generally starts by identifying the parameters to infer. The parameter to infer is the 

posterior probability distribution of the gene expression θi for the ith gene in a given transcriptome in a 

given sample in an experiment such as [11]. Having the joint priors and conditional decomposition, we 

can apply the probability chain rule to infer θi as follows: 

𝑃(𝜃1, 𝜃2, … , 𝜃𝑛) =  ∏ {
𝑃(𝜃𝑖)                                   𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡𝑙𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟

𝑃(𝜃𝑖| 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝜃𝑖)) 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑠)

𝑛

𝑖−1

 

The posterior distribution is conjugate, which means it is the same as the prior distribution of the gene 

expressions. The model in [6] uses the Binomial Distribution for one gene (and Multinomial for GWAS) 

for the posterior distribution. The conjugate Beta distribution for one gene (and Dirichlet Distribution 

for N genes) for the prior distribution since it is suitable to the random behaviour of percentages and 

proportions capturing the uncertainty in the expression levels of the various genes.  

The next step is to identify the available dataset as follows: Gene expressions, number of genes in the 

model (19 the identified significant genes), number of samples (two conditions – control vs SMN 

mutant), number of tissues (three: Whole larvae, Brain and Muscle Tissues). 

 

The identification of the priors requires subjective evaluation of gene expression. This case study adopts 

the model in [6], by using uninformative distribution such as Beta that can accommodate various 

distributions by estimating both its parameters from the given data: 

𝐵𝑒𝑡𝑎 (𝛼, 𝛽) =  ∫ 𝜃𝛼−1. (1 − 𝜃)𝛽−1𝑑𝜃
1

0

 

 
For a single gene: 𝑃(𝜃𝑖) = 𝐵𝑒𝑡𝑎 (𝛼, 𝛽) 

For all the genes at one closed-form: 𝑃(𝜃) = 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (�⃗�) 
 

Then we need to identify the likelihood function based on the identified distributions: 

𝑃(𝑘𝑖|𝑛, 𝜃𝑖) = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑘𝑖|𝑛, 𝜃𝑖) =  (
𝑘𝑖

𝑛
) 𝜃𝑖

𝑘𝑖  (1 − 𝜃𝑖)𝑛−𝑘𝑖 

𝑃(�⃗⃗�|𝜃) = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (�⃗⃗�|𝜃) 

Finally, the posterior is Dirichlet distribution as well: 

𝑃(𝜃|�⃗⃗�) =  
𝑃(�⃗⃗�|𝜃) ×  𝑃(𝜃)

𝑃(�⃗⃗�)
= 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (�⃗� + �⃗⃗�) 

However, because we are modelling the variation in gene expressions across samples in different 
conditions, the variability in gene counts in each condition is expected to be high. This justifies using a 
Negative Binomial distribution as the discrete version of Gamma distribution that is more suitable in 
modelling waiting times such as survival analysis. We start from an informed prior model “alpha” with 
a common distribution that is described by two other parameters, μα, σα (mu_alpha and sigma_alpha 
in the code). The following are the parameters to estimate simplifying them to normal distributions: 
 

• μ⃗⃗ represents the gene expression across every gene in the transcriptome, corresponding to 𝜃 
in the general framework explained above. 

• β⃗⃗ represents the differences in the expression level between stages 1 and 2. 

• hyperparameter σ⃗⃗⃗, (sigma in the code) which will describe the expected variability of the 
observed changes in expression between both stages. 

• hyperparameter σβ will describe the expected variability of the observed changes in expression 

and is the expected standard deviation for β⃗⃗. 
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4 Results And Discussions 
The FGN as described in [17] performance is illustrated in Figure 6. It shows that the algorithm 

converged after six iterations only by plotting the correlation coefficient against the increasing iterations. 

This step produced joint probability for each gene on/off status. The result for the SMA network is 

illustrated in Figure 7 showing the predicted vs actual states with Correlation coefficient r=0.85 and P-

value 9.28e-12. In this model, we used two-quantization levels with values 0,1 states. However, genes 

may not be on/off only, they can also be in various states such as severely under/overexpressed, 

moderately under/overexpressed, normal or any other number of states as required by the analyst. This 

is interpreted as each state (i.e., Gaussian component) may correspond to a different range of gene-

expression levels for different genes, defined by the estimated parameters of the Gaussian mixture model 

(GMM). 

 
Figure 6: Pearson correlation plots of LBP message-

passing convergence with increasing iteration for 2-

states discretization levels in SMA response network 

 
Figure 7: Pearson correlation plots between proportions 

of observed states and FGN inferred marginal posteriors 

for SMA response network: 2-states discretization, P-

value 9.2836e-12 Correlation coefficient r is given in the 

plot 

 

Table 1 lists the alpha parameters convergence values and Table 2 lists the beta parameters convergence 

values after the MCMC sampling using the given Bayesian model explained in the previous section and 

adopted in [6]. Further performance evaluations could have evaluated the error if we had a third stage 

gene expressions’ counts or subjective evaluations by a medical expert. Figures 8 to 12 illustrate the 

same results showing median only and distributions for every parameter for visualisation of the 

performance of each of the 19 genes. 
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Table 1: Posterior Statistics for alpha parameters 

Gene Variable/Symbol Median Mean StdDev 

 mu_alpha μα -0.4192 -0.4193 0.0294 

 sigma_alpha σα  0.1071 0.1094 0.0206 

CG13060/ 
CG13041 alpha[1] μ1 0.4646 -0.4635 0.0340 

CG17544 alpha[2] μ2 0.4610 -0.4600 0.0305 

CG18528 alpha[3] μ3 0.4885 -0.4881 0.0337 

CG32732 alpha[4] μ4 0.3697 -0.3709 0.0340 

CG5853 alpha[5] μ5 0.2903 -0.2919 0.0337 

CG5902 alpha[6] μ6 0.3647 -0.3616 0.0353 

CG6724 alpha[7] μ7 0.4812 -0.4797 0.0341 

CG7009 alpha[8] μ8 0.3815 -0.3799 0.0308 

CG8128 alpha[9] μ9 0.4308 -0.4336 0.0379 

CG9410 alpha[10] μ10 0.2364 -0.2373 0.0336 

CG9422 alpha[11] μ11 0.4142 -0.4143 0.0303 

CG9505 alpha[12] μ12 0.3700 -0.3695 0.0298 

cycle alpha[13] μ13 0.5665 -0.5639 0.0351 

Cyp6a21 alpha[14] μ14 0.2250 -0.2255 0.0318 

Dm 
Derlin01 alpha[15] μ15 0.4493 -0.4493 0.0324 

fascin alpha[16] μ16 0.6003 -0.5989 0.0300 

roughex alpha[17] μ17 0.4786 -0.4771 0.0323 

Rs1 alpha[18] μ18 0.4659 -0.4666 0.0330 

wurst alpha[19] μ19 0.4659 -0.4642 0.0309 

Table 2: Posterior Statistics for beta parameters 

Gene Variable/Symbol Median Mean StdDev 

      

Hyperparam sigma_beta σβ 0.0537 0.0558 0.0152 

CG13060 / 
CG13041 beta[1] β1 0.0147 -0.0144 0.0298 

CG17544 beta[2] β2 0.0159 -0.0153 0.0259 

CG18528 beta[3] β3 0.0161 -0.0160 0.0300 

CG32732 beta[4] β4 0.0226 -0.0215 0.0241 

CG5853 beta[5] β5 0.0159 -0.0167 0.0250 

CG5902 beta[6] β6 0.0165 -0.0162 0.0241 

CG6724 beta[7] β7 0.0144 -0.0143 0.0262 

CG7009 beta[8] β8 0.0090 -0.0088 0.0290 

CG8128 beta[9] β9 0.0131 -0.0148 0.0309 

CG9410 beta[10] β10 0.0030 -0.0025 0.0260 

CG9422 beta[11] β11 0.0183 -0.0188 0.0289 

CG9505 beta[12] β12 0.0366 -0.0344 0.0251 

cycle beta[13] β13 0.1282 0.1270 0.0358 

Cyp6a21 beta[14] β14 0.0026 0.0031 0.0276 

Dm 
Derlin01 beta[15] β15 0.0101 -0.0091 0.0264 

fascin beta[16] β16 0.1004 0.0995 0.0326 

roughex beta[17] β17 0.0601 0.0596 0.0296 

Rs1 beta[18] β18 0.0389 0.0394 0.0332 

wurst beta[19] β19 0.0039 -0.0054 0.0254 

 

 

 
Figure 8: Posterior Converged Values for μα, σα, μ1, μ2, μ3 parameters. 
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Figure 9: Posterior Converged Values for μ4, μ5, μ6, μ7, 

μ8, μ9, μ10, μ11, μ12, μ13 parameters. 

 
Figure 10: Posterior Converged Values for μ14, μ15, μ16, 

μ17, μ18, μ19, σβ, β1, β2, β3, β4 parameters. 

 
Figure 11: Posterior Converged Values for β5, β6, β7, β8, 

β9, β10, β11, β12, β13, β14 parameters. 

 
Figure 12: Posterior Converged Values for β15, β16, β17, 

β18, β19 parameters 

5 Conclusion 

This experiment shows how to semi-automate the pre-processing of the GWAS generated gene 

expressions data to model a PGM to reverse engineer the GRN co-expression patterns in two different 

development stages of a disease. The previous PGM SMA model was hand modelled by experts in  [10] 

without publishing the details of the model and evaluate its performance. The PGM we automatically 

created from GWAS, is enriched with prior biological knowledge extracted from public databases that 

summarize biological experiments. Pathways linked to the most significantly expressed genes are 

identified. Adopting the methods described in [17] for the SMA dataset shows how a variational 

Bayesian method such as the loopy-belief propagation (LBP) is applied to analytically infer the 

posterior. The work in [5] was adopted to use an iterative sampling method such as MCMC using the 

Hamiltonian Monte Carlo algorithm to infer the parameters’ estimates of the posterior distribution of 

each gene and can be used for prediction. MCMC approaches are computationally expensive but have 

no bias and produce more accurate results than VI algorithms. VI approaches introduce a bias but 

performs a reasonable optimisation process suitable to very large-scale problems.  
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Both methods require some performance evaluations, whether computationally by having values for the 

third stage counts, or medically by checking if these results are sound or not. The experiment will benefit 

from bigger datasets, preferably on several stages/conditions of a disease progression or controlled drug 

administration experiments. Having a posterior distribution for gene expressions over two stages of 

disease development can be used to infer causality or predictions. The accuracy of these causalities or 

predictions will increase with having bigger datasets, over many stages of disease development or drug 

administration or condition to be investigated. The work shows how data science using open-source 

software and public databases can model biological and medical experiments data for further analysis 

and prediction.  

 

Future work can aim to further connect with drugs databases such as ChEMBL [18] for drugs that are 

known to target these genes expressions and pathways. Another suitable type of PGM is the Higher-

Order Dynamic Bayesian Network (HO-DBN) and the implementation discussed in [19] to benefit from 

the current SMA gene expressions that were collected in two different time steps. The current limitation 

is that the minimum required for this method is three-time steps. This is not available in the SMA GWAS 

experiment in [11].  

 

Further future work can proceed to add various hierarchies for the linked pathways, CRMs, TFs such as 

explained in [7], or the cause/effect relationships between genes such as is explained in [8]. The 

uncertainty of the chosen priors is always overridden by feeding the model with more data. If public 

hospitals worldwide publish their gene expressions data for various case/control studies at various 

disease development stages, or various controlled drug administration stages, the models like these 

generated in the experiments we conducted, or the ones identified in the future work, will achieve higher 

predictive accuracy for further investigation and data integration. 
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