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Abstract

Hyperchaotic systems have been widely used in the field of commu-
nication and information security to generate random numbers due
to their super-long sequences, pseudo-randomness, and unpredictabil-
ity. However, chaotic systems still have certain periodicity and security
risks. To improve the reliability of chaotic random sequences, in this
paper, a new method of generating chaotic random sequences based
on random bilateral projection is proposed. Through random bilat-
eral projection algorithm, the matrix formed by chaotic sequences is
decomposed into a noiseless low-rank matrix, sparse matrix, and noise
matrix, and the noise matrix is retained as a random sequence, which
can effectively remove the regular factors to improve the randomness
of the generated sequence. To verify the effectiveness of the proposed
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sequence generation method, we apply it to the compressive ghost imag-
ing encryption system, and through simulation verified that compared
with the existing algorithms, the proposed random sequence genera-
tion method has better efficiency and randomness, and can improve
the security and efficiency of the compressive ghost imaging system.

Keywords: bilateral random projection, hyperchaotic, image encryption,
compressive ghost imaging

1 Introduction

Random number is the core of modern cryptography. A random and
unpredictable random number is the security guarantee of modern secure
communication[1]. The generation of random numbers has been one of the
most popular research topics in recent years[2]. According to different entropy
sources, random numbers can be divided into physical random numbers and
pseudorandom numbers. The physical random number is generated by the nat-
ural unpredictability of random processes such as coin toss, dice roll, electronic
noise, and photon noise, but the noise value of the physical random num-
ber generation method is too small and difficult to extract, cannot meet the
requirements of the current communication system for long random sequence.
Common pseudorandom number generation methods include linear feedback
shift register [3, 4], Mason rotation algorithm [5], cellular automata [6], linear
congruence generator [7], etc. In the process of pseudo-random number gener-
ation, a random number sequence with a balanced distribution of ’0’ and ’1’
can be generated by adjusting the algorithm parameters, which has the advan-
tages of a high generation rate and easy access. The security of pseudo-random
numbers depends on the complexity of the algorithm. With the improvement
of computer computing ability, they are vulnerable to violent attacks and are
cracked [8, 9]. Therefore, how to find a pseudo-random number generation algo-
rithm with fast generation speed, high complexity, and not easy to be attacked
has become the focus of pseudo-random number research.

Chaotic systems, due to their complex dynamic characteristics, inher-
ent randomness, long-term unpredictability, and sensitivity to initial values
[10, 11], have become widely used in cryptography, resulting in the emer-
gence of a new research field known as chaotic cryptography [12, 13]. In
particular, chaotic systems have become a common method for generating
pseudorandom sequences. Chaotic systems can be divided into one-dimensional
chaotic systems(ODCS) and high-dimensional hyperchaotic systems(HDHS).
One-dimensional chaotic system is represented by one-dimensional logic map
[14, 15], Sine map [16], tent map [17], and Hénon Map [18], etc. A lot of
new ODCSs are generated from the above chaotic map. Hu et al. intro-
duced a coupled chaotic system based on unit transformation [19], which can
combine any two one-dimensional chaotic maps together to generate a new
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one-dimensional chaotic map with better performance. Zhou et al. proposed
a new one-dimensional chaotic system by combining two existing seed maps.
This results in larger chaotic ranges and better chaotic behavior [20].

One-dimensional chaotic system shows satisfactory chaotic behavior, but
it is vulnerable to brute force attack due to its characteristics of fewer system
parameters and simple chaotic orbit. HDHS has longer chaotic sequences and
more complex chaotic behaviors and trajectories [21, 22]. Therefore, many
stream cipher algorithms based on HDHS have been proposed[23–26]. Ghebleh
et al have proposed a stream cipher algorithm based on the three-dimensional
Arnold’s cat map[27]. This algorithm has the ability to overcome sensitivity
attacks. Chen et al have expanded the baker map to three dimensions, which
is used to speed up the image encryption process[28]. Hua et al [29] propose
a two-dimensional (2D) modular Chaotification system (2D-MCS) to improve
the chaos complexity of any 2D chaotic map. [30] presented a stream cipher
based on a two-dimensional coupled map lattice, in which the piecewise logistic
map was used as the local chaotic map.

Researchers have proposed using memristor and neural networks to produce
hyperchaotic systems, obtaining complex dynamic behaviors and providing
new ideas for the construction of hyperchaotic systems[31–33]. Lai et al
designed a Multiscroll Memristive Hopfield Neural Network yield multi double-
scroll attractors[34]. Lin et al proposed designing multi-structure chaotic
attractors in memristive neural networks[35].

However, chaotic systems realized on digital devices are subject to dynamic
degradation. Although the generated chaotic orbit appears random, chaos is
not entirely disordered[36, 37]. Once the chaotic sequence reaches a certain
length, it becomes repetitive and predictable. As a result, the degradation
of chaos-based stream ciphers can give rise to significant security risks[38].
Researchers in cryptography and chaotic systems have been exploring ways to
eliminate repetition and achieve true randomness in chaotic sequences.

Bilateral random projection technology [39] is based on low-rank approxi-
mation, which decomposes the degenerate image matrix into low-rank matrix,
sparse matrix, and noise matrix through image decomposition technology,
where the low-rank matrix contains the regular information of the image,
so it is widely used in image denoising. The noise matrix decomposes from
the degenerate image matrix removes the regular information and has more
randomness. Through bilateral random projection technology and a chaotic
system, a new method to obtain natural random noise can be constructed.

Based on the above analysis, this paper proposes a random sequence gener-
ation method based on bilateral random projection and HDHS. This method
can effectively eliminate the regular information in the sequence, resulting in
a genuinely random generated sequence. To verify the validity of the random
sequence, we applied the generated random sequence to compressive sensing
ghost image encryption system and achieved good encryption results.

The main contributions of this paper are as follows:
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First, a method for generating random sequences using bilateral random
projection technology and chaos systems is proposed. The random sequence
generated by this method is closer to a true random sequence than that
generated by a simple chaotic system.

Second, a more efficient compressive ghost imaging encryption architecture
is proposed, which has higher execution efficiency and confidentiality.

The paper is organized as follows: in section 2, we briefly introduce the basic
techniques of bilateral random projection technology, the employed chaotic
system, and compressive ghost imaging technology; In section 3, a random
sequence generated method based on bilateral random projection and chaotic
system is proposed and verified; In section 4, we apply the proposed random
sequence to the compressive ghost imaging encryption system, and carry out
experimental verification and comparison; Finally, we conclude the paper.

(a) (b) (c)

Fig. 1: Classical Hénon Maps under a=1.4 and b ∈ (−0.5, 0.5), Bifurcation
graphs(a), (b) and trajectory graphs(c).

2 The Preliminary Knowledge

2.1 Improved Hénon Map

Classical Hénon map is a widely used discrete-time dynamic system that can
produce chaotic phenomena. It is mathematically defined as{

xn+1 = 1− ax2
n + yn

yn+1 = bxn
. (1)

When the parameter values are taken as a = 1.4 and b = 0.3 respectively, the
chaotic system shows chaotic behavior. When a and b take other different val-
ues, the system can behave as a chaotic phenomenon, paroxysmal phenomenon,
or converge to the periodic point, as shown in Fig. 1. The behavior charac-
teristics of the system under different parameters can be seen from the track
diagram.

However, from the mathematical equations, bifurcation diagrams, and tra-
jectories, it can be seen that Hénon map has many remarkable characteristics.
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First, their chaotic range is very narrow, the chaotic behavior is restricted to a
specific range of parameters. As the number of parameters increases, the phase
planes become less compact, leading their output values to diverge to infinity
with the evolution of the system. Second, the scope of their confusion is discon-
tinuous or even isolated. A small change in system parameters may transfer the
parameters to the non-chaotic range. In addition, their output distribution is
incomplete. Their trajectories can only access a small area on the phase plane
and have obvious patterns. These characteristics may have negative impacts
on some applications based on chaotic systems. Therefore, overcoming these
shortcomings of the existing chaotic map can promote the application based
on chaos. To solve the above problems, Hua et al. proposed a two-dimensional
modular chaos system (2D-MCS) to improve the chaos complexity of any two-
dimensional chaotic map[29]. Modular operation is a bounded operation, which
can convert any input value into the range [0, N). Therefore, 2D-MCS can
significantly improve the chaotic complexity of the existing two-dimensional
chaotic map expand the chaotic range, and overcome the weaknesses of the
existing two-dimensional chaotic map. Hénon’s 2D-MCS can be expressed as{

xn+1 = (1− âx2
n + yn) mod N

yn+1 = b̂xn mod N
. (2)

(a) (b) (c)

Fig. 2: Classical Zeraoulia-Sprott maps under a=3.8 and b ∈ (−1.5, 1.5),
Bifurcation graph (a), (b) and trajectory graph.

2.2 Improved Zeraoulia-Sprott Map

Zeraoulia-Sprott map designed by Zeraoulia and Sprott is a simple two-
dimensional chaotic map, that can be denoted as Eq. (3), where a and b are its
system parameters. As shown in Fig. 2, Zeraoulia-Sprott map has a rational
fraction when a = 3.8 and b = 0.6, it shows classical chaotic behavior.xn+1 =

−axn
1 + y2

n

yn+1 = xn + byn

. (3)
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Similarly, Zeraoulia-Sprott’s 2D-MCS can be expressed asxn+1 =
−âxn
1 + y2

n

mod N

yn+1 = (xn + b̂yn) mod N

. (4)

2.3 Bilateral Random Projection

Given a bilateral random projection (BRP) of a dense matrix X ∈
Rm×n(m>n), that is, Y1 = XA1 and Y2 = XTA2, where A1 ∈ Rm×r
and A2 ∈ Rn×r are Gaussian random matrices. Construct a fast rank-r
approximation matrix L of X:

L = Y1(AT2 Y1)−1Y T2 . (5)

To improve the approximation accuracy of L, we use the original right
random projection Y1 to optimize the left projection matrix A2, and then
use Y2 to optimize A1. In particular, after Y1 = XA1 , we update A2 = Y1,
calculate the left random projection Y2 = XTA2, then update A1 = Y2, and
calculate the right random projection Y1 = XA1. Apply the new Y1 and Y2

to the above formula L, and a better low-rank approximation L will result.
Here, the power scheme model is employed for optimization. Use matrix X̃ =
(XXT )qX instead of X to calculate bilateral random projection:

Y1 = X̃A1, Y2 = X̃TA2. (6)

Then L is updated to L̃:

L̃ = Y1(AT2 Y1)−1Y T2 . (7)

To further optimize the speed and accuracy of low-rank approximation
to obtain the approximate value of X with rank r, we perform the QR
decomposition of Y1 and Y2, namely:

Y1 = Q1R1, Y2 = Q2R2. (8)

Then the low-rank approximation of L can be rewritten as:

L = (L̃)
1

2q+1 = Q1[R1(AT2 Y1)−1RT2 ]
1

2q+1QT2 , (9)

where q represents the number of cycles.
According to the low-rank decomposition theory, the degraded image

matrix X can be decomposed into the sum of low-rank matrix L, sparse matrix
S, and noise matrix N . The data before degradation can be approximated by
low-rank matrix:

X = L+ S +N. (10)
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In the formula (11), (12), ‖ • ‖F is the Frobenius norm, rank is the matrix
rank, and card is the number of matrix components. Lt and St are the low-
rank part and sparse part after t iterations respectively. St depends on the
hard threshold of X − Lt, i.e.,

Lt = arg min
rank(L)≤r

‖X − L− St−1‖2F , (11)

St = arg min
card(S)≤k

‖X − Lt − S‖2F , (12)

St = wpk(X − Lt), (13)

where wpk (X − Lt) is the matrix element hard threshold operator, which
retains the largest k elements in |X − Lt| and sets the other elements to 0.
Repeat the above formula (11) to (13), until ‖X−Lt−St‖2F /‖X‖2F is less than
the set threshold, or the maximum number of iterations tmax is reached, the
low-rank matrix L of X can be obtained.

2.4 Compressive Ghost Imaging

Fig. 3: Compressive ghost imaging scheme.

As shown in Fig. 3, an arbitrary phase mask matrix ϕ(x, y) is introduced
into the spatial light modulator (SLM), and the spatial laser beam is trans-
mitted through the SLM to generate a spatial incoherent beam[40]. Given the
distribution of random phase and incident light field Uin(x, y), we can evaluate
the distribution of light intensity Ui(x, y) after SLM:

Ui (x, y) = Uin (x, y) eiϕi(x,y). (14)

After Fresnel diffraction, the light propagates to the object plane where the
distance space modulator is z. The light field distribution of the signal light in
front of the object plane is the same as that of the reference light. The object
is a compressed image that has already been compressed using compressive
sensing algorithms.

The speckle light field intensity Ii(x, y) can be calculated according to Eq.
(15),

Ii(x, y) = |Ui(x, y)⊗ hz(x, y)|2, (15)
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which is defined as the reference light, where hz(x, y) is the transfer function
at the distance z in the spatial domain, and ⊗ represents the convolution
operation.

The transfer function T (x, y) of the object is used to represent the signal
light intensity received by the bucket detector placed behind the object. This
function modulates the light field, as shown in Eq. (16).

Bi(x, y) =

∫
dxdyIi(x, y)T (x, y). (16)

To reconstruct the transmission function T (x, y) of the object, the receiver
correlates the calculated reference light intensity Ii(x, y) with the received
signal light intensity Bi(x, y), which can be described as:

G(x, y) =
1

N

N∑
i=1

(Bi(x, y)−B(x, y))Ii(x, y), (17)

where G(x, y) represents the recovered object information, (1/N)
∑
· calcu-

lates the ensemble average of N measurements, and B represents the average
value of the measured component Bi.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Bifurcation and trajectory diagrams of 2D-MCS, (a)-(c)Hénon’s 2D-
MCS, (d)-(f)Zeraoulia-Sprott’s 2D-MCS.
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2.5 Orthogonal Matching Pursuit Algorithm

The basic principle of the OMP algorithm: For a non-homogeneous linear
system of equations, given A and b, to recover x, it is necessary to fully utilize
the sparsity of x, where b is a linear combination of the column vectors of
matrix A, which is the result obtained by weighting x with the column vectors
of matrix A. Due to the sparsity of x, it indicates that only a few column
vectors in A contribute to b. Identify these column vectors that contribute
significantly to b, and at the same time, based on the positions of the column
vectors in A, the positions of the non-zero elements in x can be determined.

The detailed process of the OMP algorithm is as follows:
The inputs of the algorithm are the measurement matrix X ∈ RN×d, the

observation vector y ∈ RN , and the sparsity W of the signal x under sparse
transformation basis Ψ. The output of the algorithm is the estimated value x̃
of the ideal signal. Λm(m = 1, 2, ..., d) is an index set, and residual rm ∈ RN .

Step 1: Initialize the residual r0 = y, index set Λ0 = ∅, measurement
matrix Φ = ∅, iteration number t = 1, and the result of signal x after sparse
transformation is s.

Step 2: Search for index λt. By solving formula (18), the index λt
corresponding to subscript t can be found.

λt = arg max
j /∈Λt−1

|〈rt−1, ϕj〉|, (18)

where ϕj(j = 1, 2, ..., d) is the column vector of the measurement matrix Φ =
[ϕ1ϕ2...ϕd].

Step 3: Update index set and measurement matrix. Λt = Λt−1 ∪ λt, Φt =
[Φt−1ϕλt

].
Step 4: Using the least squares method to solve formula (19):

st = arg min
s
‖Φts̃− y‖2. (19)

Step 5: Update residual rt = y − Φts̃t, t = t+ 1.
Step 6: If t < W , return to step 2.
Step 7: The estimated value of the final output s is s̃ = s̃t, and the estimated

value of the signal x̃ is obtained using formula (20).

x̃ = Ψs̃. (20)
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3 Random Sequence Generation Method and
Its Application

3.1 Random Sequence Generation Method

In this part, an improved Hénon Map, an improved Zeraoulia-Sprott map, and
a bilateral random projection algorithm are employed to construct a really
random sequence.

3.1.1 Performance Analysis of Chaotic System

In Fig. 4. (a)-(c) are the bifurcation diagrams and trajectory diagrams of
Hénon’s 2D-MCS, and (d)-(f) are the bifurcation diagrams and trajectory
diagrams of Zeraoulia-Sprott’s 2D-MCS, both number of mod operations is 5.
It can be seen that under all given parameter settings, the variables x and y can
randomly access the entire region of the phase plane, and the output can be
randomly distributed on the entire phase plane. This shows that the improved
2D - MCS chaotic map has more complex chaotic behavior and wider chaotic
range than the original chaotic map, and can achieve robust chaotic behavior.

The Lyapunov Exponent (LE) represents the numerical characteristics of
the average exponential divergence rate of adjacent trajectories in phase space.
Fig. 5 (a) (b) show the LE of classical Hénon and Zeraoulia-Sprott, and Fig.
5 (c) (d) show the LE of Hénon’s 2D-MCS and Zeraoulia-Sprott’s 2D-MCS.
The improved chaotic system not only has positive and more extensive LEs
in all parameter settings but also has two positive LEs, showing hyperchaotic
behavior.

3.1.2 Random Sequence Generation Process

Assume that the original image size is M ×M . As shown in Fig 6, there are
5 steps in the random sequence process.

Step 1: Set the initial value, and iteratively generate four pseudorandom
sequences with the length of M+R, where R = M×M/4. The first M of each
pseudorandom sequence will be discarded to eliminate the transient effect;

Step 2: Discard the first M of each pseudorandom sequence, and then
combine the four pseudorandom sequences to generate a sequence X with a
length of R × 4, and reconstruct the sequence X into a matrix with a size of
M ×M . According to section 2.3, initialize low-rank matrix L, sparse matrix
S, and Gaussian random matrix A1, set L = X, S = 0.

Step 3: Optimize L̂ = [(X − St−1)(X − St−1)T ]q(X − St−1). Calculate the
right random projection matrix Y1 = LA1, and update A2 = Y1. Calculate
the left random projection matrix Y2 = LTA2, and update A1 = Y2. If the
number of cycles does not reach q + 1 (To simplify the calculation, q is set to
1.), cyclically update Y1 and Y2. Otherwise, proceed to the next step.
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(a) (b)

(c) (d)

Fig. 5: Two LEs of different 2D chaotic systems. (a)Hénon map, (b)Zeraoulia-
Sprott map, (c)Hénon’s 2D-MCS, (d)Zeraoulia-Sprott’s 2D-MCS.

Step 4: Calculate the QR decomposition of Y1 and Y2 to further solve

L = (L̃)
1

2q+1 = Q1[R1(AT2 Y1)−1RT2 ]
1

2q+1QT2 . Make S = |X − L|, keep the
elements larger than 140 in |X − L|, and set other elements to 0.

Step 5: Calculate the noise matrix N = X−L−S as the random sequence.
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Fig. 6: Flow chart of random sequence generation.

3.2 Compressive Ghost Image Encryption Scheme

The encryption process is as follows:
Step 1: Input the plaintext image and key, sparsely represent the original

image using the KSVD algorithm[40], and obtain the dictionary matrix D and
the sparse image.

Step 2: Construct the phase mask matrix N of SLM with the random
sequence generated in section 3.1.2 and perform phase modulation on the laser
beam.

Step 3: The distance between the image and the SLM is z. By Fresnel
diffraction, the light field intensity Ii(x, y) can be obtained before the image
according to formula (15).

Step 4: After the light is irradiated onto the image, the barrel detector
receives the total light intensity. Total light intensity Bi(x, y) is calculated
according to formula (16).

Step 5: If Measurement K times, repeat step 2-4 K times. To obtain K
phase mask matrixes and K signal intensities.

Step 6: The initial value of the chaotic system is transmitted through a
private channel as the transmission key. Bi(x, y) is transmitted through a
common channel.

Decryption process:
Step 1: The receiver receives the transmission key through a private channel

and calculates N random phase mask matrices using the received transmission
key according to the method in section 3.1.2.

Step 2: Obtain N random phase mask matrices, to get the same light field
intensity Ii(x, y) with the Fresnel diffraction theorem as step 3 in section 3.2.
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Step 3: Associate the calculated light field intensity Ii(x, y) with the total
light intensity received from the common channel according to formula (17),
and reconstruct the original image using the OMP algorithm and dictionary D.

4 Simulation Results and Security Analysis

To verify the feasibility of the proposed solution, we conducted simulations
using MATLAB R2016a.

4.1 Simulation Results

Select ”Lena”, ”Pepper”, and ”Baboon” grayscale images with a size of 128
* 128 as the original images for testing, as shown in Fig. 7. (a)-(c). Obtain K
different random phase mask matrices according to the method proposed in
section 3.1.2, where the random phase mask matrix is shown in Fig 7. (d)-(f).
Fig. 7. (g)-(i) show their sparse matrix respectively. Fig. 7. (j)-(l) shows the
reconstruction results of this scheme, and it can be seen that the reconstruction
effect is good.

4.2 Key Sensitivity Analysis

The key sensitivity of chaotic ciphers refers to the sensitivity of the initial
state of the chaotic map and the sensitivity of the control parameters. During
the encryption and decryption process, if there is a slight change in the initial
key, information related to the plaintext image cannot be obtained, resulting
in image reconstruction failure. This paper sets the initial private keys to
x0=3.11; y0 = 0.566; z0 = 3; w0=0.5. During the decryption process, modify
the private keys to x0 = 3.11 + 10−15; y0 = 0.566; z0 = 3; w0 = 0.5. As shown
in Fig 8, it is evident that when the initial key is slightly changed, the original
image cannot be restored, satisfying the key sensitivity requirements.

4.3 Correlation Analysis

The correlation coefficient is the linear description of the degree of approxi-
mation between the two. Generally speaking, the closer to 1, the more closely
the two have a linear relationship, and the better the imaging effect. The qual-
ity of the reconstructed image can be evaluated by calculating the correlation
coefficient between the reconstructed image G and the plaintext image T using
the formula,

rTG =
E(T − E(T ))(G− E(G))√

D(T )D(G)
, (21)

where D(T ), and D(G) are the variances of the reconstructed image and the

original image, respectively. D(x) = (1/K)
∑K

i=1(xi − E(x))2 and E(x) =

(1/K)
∑K

i=1 xi. Fig. 9 shows the reconstructed images under different measure-
ment times, with rTG values from (a) to (d) being 0.2829, 0.5041, 0.8618, and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7: Encryption and decryption results of different samples, where (a)-(c)
are the original images, (d)-(f) are the random phase mask matrices, (g)-(i)
are sparse matrixes of original images, (j)-(l) are reconstruction images.
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(a) (b) (c)

Fig. 8: Result of key sensitivity analysis. (a) Original image pepper, (b)
Reconstructed image with correct keys, (c) Reconstructed image with error
keys.

0.9978. It can be indicated that the closer rTG is to 1, the better the recon-
structed image effect.

(a) (b)

(c) (d)

Fig. 9: Reconstructed images under different measurement times. (a)
Measurement times=1000, (b) Measurement times=2000, (c) Measurement
times=2800, (d) Measurement times=3000.
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4.4 Sparse Method Analysis

We compare compressed sensing sparse methods KSVD with DCT and DFT.
Fig. 10 shows the comparison results. It can be observed that after approxi-
mately 2700 reconstructions, the reconstruction effect based on KSVD sparse
representation is outstanding. When the number of reconstructions reaches
around 3000, the rTG value of the reconstructed image based on KSVD sparse
representation can achieve an almost perfect score of 1, while the rTG value
of the reconstructed image based on DCT and DFT sparse representation is
less than 0.8. This is sufficient to demonstrate that the image reconstruction
scheme based on KSVD is excellent.

Fig. 10: Relationship curve of correlation coefficient and measurement
frequency based on sparse representations of KSVD, DCT, and DFT.
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(a) Baboon original image (b) Based on KSVD

(c) Based on DCT (d) Based on DFT

Fig. 11: Reconstructed image based on KSVD, DCT, DFT sparse represen-
tation.

Fig. 11 shows the reconstructed images based on different sparse methods
for 3000 measurements, with the rTG values of 1, 0.6442, and 0.8433 for (b)-(d)
respectively.

4.5 Noise Attack Analysis

In practical situations, the system operation process may be affected by
environmental factors such as noise attacks. Therefore, we need to test the
robustness of the system to demonstrate that the scheme has good noise
resistance performance. To simulate the situation of the phase mask matrix
under noise attack, we added Gaussian noise to the phase mask matrix. Fig.
12 shows the reconstructed image of the phase mask matrix under Gaussian
noise attack with a mean of 0 and different variances for 3000 measurements
(the variances of Gaussian noise added to the phase mask matrix from left to
right for each row of images are 0.05, 0.1, and 0.2 respectively).

Observing the decrypted image, it can be seen that the scheme has high
robustness and can effectively resist noise attacks.

From the relationship curve in Fig. 10, it can be seen that as the number of
measurements increases, the correlation coefficient increases. Therefore, when
the noise is high, we can also increase the number of measurements appro-
priately to reduce the impact of noise. Gaussian noise with a mean of 0 and
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(a) rTG=0.9959 (b) rTG=0.9912 (c) rTG=0.8741

(d) rTG=0.9961 (e) rTG=0.9923 (f) rTG=0.9863

(g) rTG=0.9964 (h) rTG=0.9908 (i) rTG=0.9236

Fig. 12: Reconstructed images of phase mask matrices under Gaussian noise
attacks with 0.05, 0.1, and 0.2 variances (from left to right).

a variance of 0.5 was added to the phase mask matrix, as shown in Fig. 13.
When the number of measurements reached 4000, the reconstruction effect was
significantly improved compared to 3000.
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(a) K=3000, rTG=0.6429 (b) K=4000, rTG=0.9377

(c) K=3000, rTG=0.6430 (d) K=4000, rTG=0.9208

Fig. 13: Reconstructed images under high Gaussian noise interference.

Fig. 14: Comparison curve of encryption system running time.
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4.6 Efficiency Analysis

This paper enhances the randomness of chaotic sequences by using bilateral
random projection algorithm, which also improves its execution efficiency. To
demonstrate, we compared system execution time with reference [40], which
used DNA encoding and decoding method to generate SLM. As shown in Fig.
14, two curves represent the time it takes for the entire system to run after
using DNA diffusion and the method proposed in this paper to process chaotic
sequences under the same number of measurements. The encryption system
proposed in this paper has greatly improved its operational efficiency.

4.7 NIST Statistical Testing

The NIST random number testing method is a standardized testing method
used to evaluate the quality of random number generators. This testing method
includes a series of statistical tests to detect whether a random number
sequence has characteristics such as uniformity, independence, and long peri-
odicity. Through these tests, it can be determined whether a random number
generator is safe and reliable enough. We use the NIST SP 800-22 random
number test set to verify the quality of the random number generator [41, 42].
The test results are shown in Table. 1. All P-Values are greater than 0.01, pass
the NIST request.

Table 1: NIST statistical test result

Statistical test P-Value Result

Frequency 0.739918 Passed
Block frequency 0.355920 Passed
Cumulative sums 0.534146 Passed

Runs 0.519628 Passed
Longest run 0.696792 Passed

Rank 0.739918 Passed
FFT 0.532620 Passed

Non-overlapping template 0.350485 Passed
Overlapping template 0.122325 Passed

Universal 0.213309 Passed
Approximate entropy 0.267986 Passed
Random excursions 0.159079 Passed

Random excursions variant 0.173900 Passed
Serial test-1 0.066882 Passed
Serial test-2 0.510663 Passed

Linear complexity 0.416601 Passed

5 Conclusion

This paper proposed a bilateral random projection based hyperchaotic random
sequence generation method. The method first employs hyperchaotic systems
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to generate original random sequences, then utilizes bilateral random pro-
jection and low-rank decomposition theory to enhance the randomness, by
removing regular factors from the sequence. We employed the random sequence
generation method to realize the compressive ghost imaging encryption system.
The experiment result shows that the proposed random sequence generation
method can generate high randomness sequences. The generated random phase
mask matrix is applied to the compressive ghost imaging encryption system
based on KSVD sparse representation, and compared with the previous work
the scheme proposed in this paper can reduce the system running time, improve
imaging efficiency, and has higher robustness.
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