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Abstract

Hyperchaotic systems have been widely used in the field of commu-
nication and information security to generate random numbers due
to their super-long sequences, pseudo-randomness, and unpredictabil-
ity. However, chaotic systems still have certain periodicity and security
risks. To improve the reliability of chaotic random sequences, in this
paper, a new method of generating chaotic random sequences based
on random bilateral projection is proposed. Through random bilat-
eral projection algorithm, the matrix formed by chaotic sequences is
decomposed into a noiseless low-rank matrix, sparse matrix, and noise
matrix, and the noise matrix is retained as a random sequence, which
can effectively remove the regular factors to improve the randomness
of the generated sequence. To verify the effectiveness of the proposed
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sequence generation method, we apply it to the compressive ghost imag-
ing encryption system, and through simulation verified that compared
with the existing algorithms, the proposed random sequence genera-
tion method has better efficiency and randomness, and can improve
the security and efficiency of the compressive ghost imaging system.

Keywords: bilateral random projection, hyperchaotic, image encryption,
compressive ghost imaging

1 Introduction

Random number is the core of modern cryptography. A random and
unpredictable random number is the security guarantee of modern secure
communication[1]. The generation of random numbers has been one of the
most popular research topics in recent years[2]. According to different entropy
sources, random numbers can be divided into physical random numbers and
pseudorandom numbers. The physical random number is generated by the nat-
ural unpredictability of random processes such as coin toss, dice roll, electronic
noise, and photon noise, but the noise value of the physical random num-
ber generation method is too small and difficult to extract, cannot meet the
requirements of the current communication system for long random sequence.
Common pseudorandom number generation methods include linear feedback
shift register [3, 4], Mason rotation algorithm [5], cellular automata [6], linear
congruence generator [7], etc. In the process of pseudo-random number gener-
ation, a random number sequence with a balanced distribution of ’0’ and ’1’
can be generated by adjusting the algorithm parameters, which has the advan-
tages of a high generation rate and easy access. The security of pseudo-random
numbers depends on the complexity of the algorithm. With the improvement
of computer computing ability, they are vulnerable to violent attacks and are
cracked [8, 9]. Therefore, how to find a pseudo-random number generation algo-
rithm with fast generation speed, high complexity, and not easy to be attacked
has become the focus of pseudo-random number research.

Chaotic systems, due to their complex dynamic characteristics, inher-
ent randomness, long-term unpredictability, and sensitivity to initial values
[10, 11], have become widely used in cryptography, resulting in the emer-
gence of a new research field known as chaotic cryptography [12, 13]. In
particular, chaotic systems have become a common method for generating
pseudorandom sequences. Chaotic systems can be divided into one-dimensional
chaotic systems(ODCS) and high-dimensional hyperchaotic systems(HDHS).
One-dimensional chaotic system is represented by one-dimensional logic map
[14, 15], Sine map [16], tent map [17], and Hénon Map [18], etc. A lot of
new ODCSs are generated from the above chaotic map. Hu et al. intro-
duced a coupled chaotic system based on unit transformation [19], which can
combine any two one-dimensional chaotic maps together to generate a new
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one-dimensional chaotic map with better performance. Zhou et al. proposed
a new one-dimensional chaotic system by combining two existing seed maps.
This results in larger chaotic ranges and better chaotic behavior [20].

One-dimensional chaotic system shows satisfactory chaotic behavior, but
it is vulnerable to brute force attack due to its characteristics of fewer system
parameters and simple chaotic orbit. HDHS has longer chaotic sequences and
more complex chaotic behaviors and trajectories [21, 22]. Therefore, many
stream cipher algorithms based on HDHS have been proposed[23–26]. Ghebleh
et al have proposed a stream cipher algorithm based on the three-dimensional
Arnold’s cat map[27]. This algorithm has the ability to overcome sensitivity
attacks. Chen et al have expanded the baker map to three dimensions, which
is used to speed up the image encryption process[28]. Hua et al [29] propose
a two-dimensional (2D) modular Chaotification system (2D-MCS) to improve
the chaos complexity of any 2D chaotic map. [30] presented a stream cipher
based on a two-dimensional coupled map lattice, in which the piecewise logistic
map was used as the local chaotic map.

Researchers have proposed using memristor and neural networks to produce
hyperchaotic systems, obtaining complex dynamic behaviors and providing
new ideas for the construction of hyperchaotic systems[31–33]. Lai et al
designed a Multiscroll Memristive Hopfield Neural Network yield multi double-
scroll attractors[34]. Lin et al proposed designing multi-structure chaotic
attractors in memristive neural networks[35].

However, chaotic systems realized on digital devices are subject to dynamic
degradation. Although the generated chaotic orbit appears random, chaos is
not entirely disordered[36, 37]. Once the chaotic sequence reaches a certain
length, it becomes repetitive and predictable. As a result, the degradation
of chaos-based stream ciphers can give rise to significant security risks[38].
Researchers in cryptography and chaotic systems have been exploring ways to
eliminate repetition and achieve true randomness in chaotic sequences.

Bilateral random projection technology [39] is based on low-rank approxi-
mation, which decomposes the degenerate image matrix into low-rank matrix,
sparse matrix, and noise matrix through image decomposition technology,
where the low-rank matrix contains the regular information of the image,
so it is widely used in image denoising. The noise matrix decomposes from
the degenerate image matrix removes the regular information and has more
randomness. Through bilateral random projection technology and a chaotic
system, a new method to obtain natural random noise can be constructed.

Based on the above analysis, this paper proposes a random sequence gener-
ation method based on bilateral random projection and HDHS. This method
can effectively eliminate the regular information in the sequence, resulting in
a genuinely random generated sequence. To verify the validity of the random
sequence, we applied the generated random sequence to compressive sensing
ghost image encryption system and achieved good encryption results.

The main contributions of this paper are as follows:
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First, a method for generating random sequences using bilateral random
projection technology and chaos systems is proposed. The random sequence
generated by this method is closer to a true random sequence than that
generated by a simple chaotic system.

Second, a more e�cient compressive ghost imaging encryption architecture
is proposed, which has higher execution e�ciency and con�dentiality.

The paper is organized as follows: in section 2, we brie
y introduce the basic
techniques of bilateral random projection technology, the employed chaotic
system, and compressive ghost imaging technology; In section 3, a random
sequence generated method based on bilateral random projection and chaotic
system is proposed and veri�ed; In section 4, we apply the proposed random
sequence to the compressive ghost imaging encryption system, and carry out
experimental veri�cation and comparison; Finally, we conclude the paper.

(a) (b) (c)

Fig. 1 : Classical H�enon Maps under a=1.4 and b 2 (� 0:5; 0:5), Bifurcation
graphs(a), (b) and trajectory graphs(c).

2 The Preliminary Knowledge

2.1 Improved H�enon Map

Classical H�enon map is a widely used discrete-time dynamic system that can
produce chaotic phenomena. It is mathematically de�ned as

(
xn +1 = 1 � ax2

n + yn

yn +1 = bxn
: (1)

When the parameter values are taken asa = 1 :4 and b = 0 :3 respectively, the
chaotic system shows chaotic behavior. Whena and b take other di�erent val-
ues, the system can behave as a chaotic phenomenon, paroxysmal phenomenon,
or converge to the periodic point, as shown in Fig. 1. The behavior charac-
teristics of the system under di�erent parameters can be seen from the track
diagram.

However, from the mathematical equations, bifurcation diagrams, and tra-
jectories, it can be seen that H�enon map has many remarkable characteristics.
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First, their chaotic range is very narrow, the chaotic behavior is restricted to a
speci�c range of parameters. As the number of parameters increases, the phase
planes become less compact, leading their output values to diverge to in�nity
with the evolution of the system. Second, the scope of their confusion is discon-
tinuous or even isolated. A small change in system parameters may transfer the
parameters to the non-chaotic range. In addition, their output distribution is
incomplete. Their trajectories can only access a small area on the phase plane
and have obvious patterns. These characteristics may have negative impacts
on some applications based on chaotic systems. Therefore, overcoming these
shortcomings of the existing chaotic map can promote the application based
on chaos. To solve the above problems, Hua et al. proposed a two-dimensional
modular chaos system (2D-MCS) to improve the chaos complexity of any two-
dimensional chaotic map[29]. Modular operation is a bounded operation, which
can convert any input value into the range [0, N). Therefore, 2D-MCS can
signi�cantly improve the chaotic complexity of the existing two-dimensional
chaotic map expand the chaotic range, and overcome the weaknesses of the
existing two-dimensional chaotic map. H�enon's 2D-MCS can be expressed as

(
xn +1 = (1 � âx2

n + yn ) mod N

yn +1 = b̂xn mod N
: (2)

(a) (b) (c)

Fig. 2 : Classical Zeraoulia-Sprott maps under a=3.8 andb 2 (� 1:5; 1:5),
Bifurcation graph (a), (b) and trajectory graph.

2.2 Improved Zeraoulia-Sprott Map

Zeraoulia-Sprott map designed by Zeraoulia and Sprott is a simple two-
dimensional chaotic map, that can be denoted as Eq. (3), wherea and b are its
system parameters. As shown in Fig. 2, Zeraoulia-Sprott map has a rational
fraction when a = 3 :8 and b = 0 :6, it shows classical chaotic behavior.

8
<

:

xn +1 =
� axn

1 + y2
n

yn +1 = xn + byn

: (3)
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Similarly, Zeraoulia-Sprott's 2D-MCS can be expressed as

8
><

>:

xn +1 =
� âxn

1 + y2
n

mod N

yn +1 = ( xn + b̂yn ) mod N
: (4)

2.3 Bilateral Random Projection

Given a bilateral random projection (BRP) of a dense matrix X 2
Rm � n (m>n ), that is, Y1 = XA 1 and Y2 = X T A2, where A1 2 Rm � r

and A2 2 Rn � r are Gaussian random matrices. Construct a fast rank-r
approximation matrix L of X :

L = Y1(AT
2 Y1) � 1Y T

2 : (5)

To improve the approximation accuracy of L , we use the original right
random projection Y1 to optimize the left projection matrix A2, and then
use Y2 to optimize A1. In particular, after Y1 = XA 1 , we update A2 = Y1,
calculate the left random projection Y2 = X T A2, then update A1 = Y2, and
calculate the right random projection Y1 = XA 1. Apply the new Y1 and Y2

to the above formula L , and a better low-rank approximation L will result.
Here, the power scheme model is employed for optimization. Use matrixeX =
(XX T )qX instead of X to calculate bilateral random projection:

Y1 = eXA 1; Y2 = eX T A2: (6)

Then L is updated to eL:

eL = Y1(AT
2 Y1) � 1Y T

2 : (7)

To further optimize the speed and accuracy of low-rank approximation
to obtain the approximate value of X with rank r , we perform the QR
decomposition ofY1 and Y2, namely:

Y1 = Q1R1; Y2 = Q2R2: (8)

Then the low-rank approximation of L can be rewritten as:

L = ( eL)
1

2q+1 = Q1[R1(AT
2 Y1) � 1RT

2 ]
1

2q+1 QT
2 ; (9)

where q represents the number of cycles.
According to the low-rank decomposition theory, the degraded image

matrix X can be decomposed into the sum of low-rank matrixL , sparse matrix
S, and noise matrix N . The data before degradation can be approximated by
low-rank matrix:

X = L + S + N: (10)
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In the formula (11), (12), k � k F is the Frobenius norm, rank is the matrix
rank, and card is the number of matrix components.L t and St are the low-
rank part and sparse part after t iterations respectively. St depends on the
hard threshold of X � L t , i.e.,

L t = arg min
rank (L ) � r

kX � L � St � 1k2
F ; (11)

St = arg min
card (S) � k

kX � L t � Sk2
F ; (12)

St = wp k (X � L t ); (13)

where wpk (X � L t ) is the matrix element hard threshold operator, which
retains the largest k elements injX � L t j and sets the other elements to 0.
Repeat the above formula (11) to (13), until kX � L t � St k2

F =kX k2
F is less than

the set threshold, or the maximum number of iterations tmax is reached, the
low-rank matrix L of X can be obtained.

2.4 Compressive Ghost Imaging

Fig. 3 : Compressive ghost imaging scheme.

As shown in Fig. 3, an arbitrary phase mask matrix ' (x; y) is introduced
into the spatial light modulator (SLM), and the spatial laser beam is trans-
mitted through the SLM to generate a spatial incoherent beam[40]. Given the
distribution of random phase and incident light �eld Uin (x; y), we can evaluate
the distribution of light intensity Ui (x; y) after SLM:

Ui (x; y) = Uin (x; y) ei' i (x;y ) : (14)

After Fresnel di�raction, the light propagates to the object plane where the
distance space modulator isz. The light �eld distribution of the signal light in
front of the object plane is the same as that of the reference light. The object
is a compressed image that has already been compressed using compressive
sensing algorithms.

The speckle light �eld intensity I i (x; y) can be calculated according to Eq.
(15),

I i (x; y) = jUi (x; y) 
 hz (x; y)j2; (15)
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which is de�ned as the reference light, wherehz (x; y) is the transfer function
at the distance z in the spatial domain, and 
 represents the convolution
operation.

The transfer function T(x; y) of the object is used to represent the signal
light intensity received by the bucket detector placed behind the object. This
function modulates the light �eld, as shown in Eq. (16).

B i (x; y) =
Z

dxdyI i (x; y)T(x; y): (16)

To reconstruct the transmission function T(x; y) of the object, the receiver
correlates the calculated reference light intensity I i (x; y) with the received
signal light intensity B i (x; y), which can be described as:

G(x; y) =
1
N

NX

i =1

(B i (x; y) � B (x; y)) I i (x; y); (17)

where G(x; y) represents the recovered object information, (1=N)
P

� calcu-
lates the ensemble average of N measurements, andB represents the average
value of the measured componentB i .

(a) (b) (c)

(d) (e) (f)

Fig. 4 : Bifurcation and trajectory diagrams of 2D-MCS, (a)-(c)H�enon's 2D-
MCS, (d)-(f)Zeraoulia-Sprott's 2D-MCS.
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2.5 Orthogonal Matching Pursuit Algorithm

The basic principle of the OMP algorithm: For a non-homogeneous linear
system of equations, givenA and b, to recover x, it is necessary to fully utilize
the sparsity of x, where b is a linear combination of the column vectors of
matrix A, which is the result obtained by weighting x with the column vectors
of matrix A. Due to the sparsity of x, it indicates that only a few column
vectors in A contribute to b. Identify these column vectors that contribute
signi�cantly to b, and at the same time, based on the positions of the column
vectors in A, the positions of the non-zero elements inx can be determined.

The detailed process of the OMP algorithm is as follows:
The inputs of the algorithm are the measurement matrix X 2 RN � d, the

observation vector y 2 RN , and the sparsity W of the signal x under sparse
transformation basis 	. The output of the algorithm is the estimated value ex
of the ideal signal. � m (m = 1 ; 2; :::; d) is an index set, and residualr m 2 RN .

Step 1: Initialize the residual r 0 = y, index set � 0 = ; , measurement
matrix � = ; , iteration number t = 1, and the result of signal x after sparse
transformation is s.

Step 2: Search for index � t . By solving formula (18), the index � t

corresponding to subscriptt can be found.

� t = arg max
j =2 � t � 1

jhr t � 1; ' j ij ; (18)

where ' j (j = 1 ; 2; :::; d) is the column vector of the measurement matrix � =
[' 1 ' 2:::' d].

Step 3: Update index set and measurement matrix. �t = � t � 1 [ � t , � t =
[� t � 1 ' � t ].

Step 4: Using the least squares method to solve formula (19):

st = arg min
s

k� t es � yk2: (19)

Step 5: Update residualr t = y � � t est , t = t + 1.
Step 6: If t < W , return to step 2.
Step 7: The estimated value of the �nal output s is es = est , and the estimated

value of the signal ex is obtained using formula (20).

ex = 	 es: (20)
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3 Random Sequence Generation Method and
Its Application

3.1 Random Sequence Generation Method

In this part, an improved H�enon Map, an improved Zeraoulia-Sprott map, and
a bilateral random projection algorithm are employed to construct a really
random sequence.

3.1.1 Performance Analysis of Chaotic System

In Fig. 4. (a)-(c) are the bifurcation diagrams and trajectory diagrams of
H�enon's 2D-MCS, and (d)-(f) are the bifurcation diagrams and trajectory
diagrams of Zeraoulia-Sprott's 2D-MCS, both number of mod operations is 5.
It can be seen that under all given parameter settings, the variables x and y can
randomly access the entire region of the phase plane, and the output can be
randomly distributed on the entire phase plane. This shows that the improved
2D - MCS chaotic map has more complex chaotic behavior and wider chaotic
range than the original chaotic map, and can achieve robust chaotic behavior.

The Lyapunov Exponent (LE) represents the numerical characteristics of
the average exponential divergence rate of adjacent trajectories in phase space.
Fig. 5 (a) (b) show the LE of classical H�enon and Zeraoulia-Sprott, and Fig.
5 (c) (d) show the LE of H�enon's 2D-MCS and Zeraoulia-Sprott's 2D-MCS.
The improved chaotic system not only has positive and more extensive LEs
in all parameter settings but also has two positive LEs, showing hyperchaotic
behavior.

3.1.2 Random Sequence Generation Process

Assume that the original image size isM � M . As shown in Fig 6, there are
5 steps in the random sequence process.

Step 1: Set the initial value, and iteratively generate four pseudorandom
sequences with the length ofM + R, whereR = M � M=4. The �rst M of each
pseudorandom sequence will be discarded to eliminate the transient e�ect;

Step 2: Discard the �rst M of each pseudorandom sequence, and then
combine the four pseudorandom sequences to generate a sequenceX with a
length of R � 4, and reconstruct the sequenceX into a matrix with a size of
M � M . According to section 2.3, initialize low-rank matrix L , sparse matrix
S, and Gaussian random matrix A1, set L = X , S = 0.

Step 3: Optimize L̂ = [( X � St � 1)(X � St � 1)T ]q(X � St � 1). Calculate the
right random projection matrix Y1 = LA 1, and update A2 = Y1. Calculate
the left random projection matrix Y2 = L T A2, and update A1 = Y2. If the
number of cycles does not reachq + 1 (To simplify the calculation, q is set to
1.), cyclically update Y1 and Y2. Otherwise, proceed to the next step.
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(a) (b)

(c) (d)

Fig. 5 : Two LEs of di�erent 2D chaotic systems. (a)H�enon map, (b)Zeraoulia-
Sprott map, (c)H�enon's 2D-MCS, (d)Zeraoulia-Sprott's 2D-MCS.

Step 4: Calculate the QR decomposition ofY1 and Y2 to further solve
L = ( eL)

1
2q+1 = Q1[R1(AT

2 Y1) � 1RT
2 ]

1
2q+1 QT

2 . Make S = jX � L j, keep the
elements larger than 140 injX � L j, and set other elements to 0.

Step 5: Calculate the noise matrixN = X � L � S as the random sequence.
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Fig. 6 : Flow chart of random sequence generation.

3.2 Compressive Ghost Image Encryption Scheme

The encryption process is as follows:
Step 1: Input the plaintext image and key, sparsely represent the original

image using the KSVD algorithm[40], and obtain the dictionary matrix D and
the sparse image.

Step 2: Construct the phase mask matrix N of SLM with the random
sequence generated in section 3.1.2 and perform phase modulation on the laser
beam.

Step 3: The distance between the image and the SLM is z. By Fresnel
di�raction, the light �eld intensity I i (x; y) can be obtained before the image
according to formula (15).

Step 4: After the light is irradiated onto the image, the barrel detector
receives the total light intensity. Total light intensity B i (x; y) is calculated
according to formula (16).

Step 5: If Measurement K times, repeat step 2-4 K times. To obtain K
phase mask matrixes and K signal intensities.

Step 6: The initial value of the chaotic system is transmitted through a
private channel as the transmission key.B i (x; y) is transmitted through a
common channel.

Decryption process:
Step 1: The receiver receives the transmission key through a private channel

and calculates N random phase mask matrices using the received transmission
key according to the method in section 3.1.2.

Step 2: Obtain N random phase mask matrices, to get the same light �eld
intensity I i (x; y) with the Fresnel di�raction theorem as step 3 in section 3.2.
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Step 3: Associate the calculated light �eld intensity I i (x; y) with the total
light intensity received from the common channel according to formula (17),
and reconstruct the original image using the OMP algorithm and dictionary D.

4 Simulation Results and Security Analysis

To verify the feasibility of the proposed solution, we conducted simulations
using MATLAB R2016a.

4.1 Simulation Results

Select "Lena", "Pepper", and "Baboon" grayscale images with a size of 128
* 128 as the original images for testing, as shown in Fig. 7. (a)-(c). Obtain K
di�erent random phase mask matrices according to the method proposed in
section 3.1.2, where the random phase mask matrix is shown in Fig 7. (d)-(f).
Fig. 7. (g)-(i) show their sparse matrix respectively. Fig. 7. (j)-(l) shows the
reconstruction results of this scheme, and it can be seen that the reconstruction
e�ect is good.

4.2 Key Sensitivity Analysis

The key sensitivity of chaotic ciphers refers to the sensitivity of the initial
state of the chaotic map and the sensitivity of the control parameters. During
the encryption and decryption process, if there is a slight change in the initial
key, information related to the plaintext image cannot be obtained, resulting
in image reconstruction failure. This paper sets the initial private keys to
x0=3.11; y0 = 0.566; z0 = 3; w0=0.5. During the decryption process, modify
the private keys to x0 = 3 :11 + 10� 15; y0 = 0.566; z0 = 3; w0 = 0.5. As shown
in Fig 8, it is evident that when the initial key is slightly changed, the original
image cannot be restored, satisfying the key sensitivity requirements.

4.3 Correlation Analysis

The correlation coe�cient is the linear description of the degree of approxi-
mation between the two. Generally speaking, the closer to 1, the more closely
the two have a linear relationship, and the better the imaging e�ect. The qual-
ity of the reconstructed image can be evaluated by calculating the correlation
coe�cient between the reconstructed image G and the plaintext image T using
the formula,

rT G =
E(T � E(T))( G � E(G))

p
D(T)D(G)

; (21)

where D(T), and D(G) are the variances of the reconstructed image and the
original image, respectively. D (x) = (1 =K )

P K
i =1 (x i � E (x))2 and E(x) =

(1=K )
P K

i =1 x i . Fig. 9 shows the reconstructed images under di�erent measure-
ment times, with r T G values from (a) to (d) being 0.2829, 0.5041, 0.8618, and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7 : Encryption and decryption results of di�erent samples, where (a)-(c)
are the original images, (d)-(f) are the random phase mask matrices, (g)-(i)
are sparse matrixes of original images, (j)-(l) are reconstruction images.
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