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Abstract—Brain-inspired neuromorphic computing architec-
tures are receiving significant attention in the consumer electron-
ics field owing to their low power consumption, high computa-
tional capacity, and strong adaptability, where highly biomimetic
circuit design is at the core of neuromorphic network research.
Myelin sheaths are crucial cellular components in building stable
circuits in biological neurons, capable of adaptively adjusting the
conduction speed of neural signals. However, current research on
neuronal circuits relies on simplified mathematical models and
overlooks the adaptive functionality of myelin sheaths. This paper
is based on the dynamic mechanism of myelination, utilizing
physical devices such as memristors and voltage-controlled vari-
able capacitors to simulate the physiological functions of myelin
sheaths, and other organelles. Furthermore, adaptive biomimetic
neuronal circuit system (ABNCS) is constructed by connecting
various devices according to the physiological structure of neu-
rons. PSpice simulations show that the ABNCS can adjust its
parameters autonomously as the number of action potentials
(APs) increase, which modifies the neuron’s activation criteria
and firing rate. Through circuit experiments, PSpice simulations
were further validated. Implementing myelin sheath functions in
the neuronal circuit improves adaptability and reduces power
consumption, and when combined with artificial synapses to
construct neural networks, can form more stable neural circuits.

Index Terms—Myelin sheath, Memristor, Neuromorphic net-
works, Ion channel, Neurodynamics, Biomimetic neuronal cir-
cuits.

I. INTRODUCTION

Developing intelligent, high-speed, and low-power con-
sumer electronics has become the primary focus of the elec-
tronics industry [1], [2]. Neuromorphic networks, which emu-
late biological systems, are gaining attention in consumer elec-
tronics for their high speed and low power consumption [3]–
[5]. As the biological foundation for the study of neuromorphic
networks, cognitive neuroscience research suggests that the
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Fig. 1. Comparison of Signal Conduction Speed between Myelinated and
Unmyelinated Neurons.

intrinsic computational capability and plasticity of neurons are
essential foundations for performing tasks involving associa-
tion, memory, and learning [6], [7], where the plasticity can
be achieved through the well known synapses, in addition to,
myelin sheaths [8], [9]. Myelin sheaths typically occur around
the axons of neurons in vertebrates and some arthropods.
Oligodendrocytes produce a substantial amount of new myelin
along the axon during the growth of neurons. The formation
and development of myelin sheaths are promoted by neuronal
activity [10]–[12] and influence the type of axons [10], [13].
The insulation formed by myelin sheaths between neurons
effectively prevents mutual interference during the process
of signal transmission and increases the speed of neuronal
signal transmission by several tens of times [14], [15], as
shown in Fig. 1. Higher vertebrates with myelin sheaths
gradually developed ultra-low power intelligence over millions
of years of evolution. A certain level of intelligence and low
power consumption are essential for electronic products like
smartphones and smart home systems.

Myelin sheaths are crucial for neuronal activity, allowing for
rapid exchange of information between brain regions, which
is essential for cognitive function and human intelligence
development [16]. The speed at which neurons transmit signals
is the basis for all neural activity over time [17], [18]. The axon
serves as the foundational conduit for high-speed transmission
of neural signals [19], and its length, diameter, and myelin
sheath layers directly influence the speed and duration of
signal transmission [14], [20], [21]. Myelin sheaths serve as
the physical foundation for the quick transmission of neural
signals [22], [23]. Spike code depends on the firing rate of sig-
nals, which is influenced by stimulus intensity, synaptic plas-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

ticity, excitatory and inhibitory regulation, as well as intrinsic
membrane properties. From a cellular structural perspective,
membrane properties are the primary factors influencing signal
firing rates [24]. The growth of myelin sheaths can alter
membrane properties, thus affecting neural signal firing rates.
In conclusion, myelin sheaths have the ability to influence the
propagation speed of neural signals and the frequency of pulse
firing. Therefore, the biological functionality of myelin sheaths
should not be overlooked in research related to neuromorphic
computing.

Artificial synapses and ion channels are often built with
memristors for their low power consumption, ease of inte-
gration [25]–[27], nonlinearity [28]–[31], consumer electron-
ics [32], [33]. Additionally, high-order memristors’ nonlinear
properties are frequently utilized with capacitors to simulate
the discharging characteristics of biological neurons [34]–[36].
Alternatively, referencing the Hodgkin-Huxley (HH) model,
memristors and other components are employed to simulate
the functions of ion channels, synapses, and other cellular
organelles, thereby constructing neuronal circuits [37]–[40].
While both neuronal circuit designs, developed through differ-
ent design approaches, have achieved considerable biomimetic
characteristics, for lack of consideration of the function of the
myelin sheath, they suffer from limitations such as fixed firing
rates, fixed excitation thresholds, and fixed signal transmission
speed. The growth of myelin sheaths accompanies the entire
brain development process [41], which implies that the same
neuron may exhibit different firing rates and signal conduction
velocities at different stages. Incorporating myelin sheath
function into neuronal circuit design will provide smarter
and low-power design methods for the consumer electronics
products.

However, few current neuromorphic networks consider
myelin sheath function in artificial neurons, the regulation
of neuronal firing rates is achieved indirectly by increasing
stimulation and altering the connection strengths of artificial
synapses, which is not conducive to forming stable and effi-
cient neural circuits, making it difficult to establish ”muscle
memory”. Artificial neurons with fixed excitation conditions
may not activate in deep networks due to signal attenuation
or vanishing. This phenomenon is quite common in spiking
neural networks [42].

Myelination growth can alter the activation conditions of
neurons, making the neurons at the end of the neural circuit
more prone to activation. Therefore, introducing myelination
functionality into artificial neuronal circuits is crucial. This not
only enhances the computational capabilities of individual ar-
tificial neurons but also strengthens the overall adaptability of
artificial neural networks. Furthermore, it can also reduce the
power consumption of neural circuitry. This paper studies the
structure and biological characteristics of myelin sheaths and
designs a biomimetic neuronal circuit system that incorporates
myelin sheath functionality, providing a biological solution to
the above issues.

The rest of this paper is organized as follows. Section
II primarily discusses the essential biological background
knowledge, mathematical models of ion channel memristors,
voltage-controlled capacitors, and voltage-controlled resistors,

and the dynamical equations of ABNCS. Section III covers
PSpice simulations, detailing the experimental schematics and
the results and analysis of the simulation results. Section IV
involves practical circuit experiments conducted to validate the
effectiveness of simulating myelin sheath functionality using
voltage-controlled capacitors and voltage-controlled resistors,
as well as to demonstrate the adaptability of ABNCS through
controlled variable components. Section V focuses on the
applications of ABNCS. Coupling comparative experiments
further validate ABNCS’s capability to adaptively modify neu-
ral circuit discharge frequency and speed, enhancing stimulus
responsiveness. Additionally, it addresses the challenge of
forward training in pulse neural networks. Section VI is the
conclusion, summarizing the paper.

II. PRELIMINARY

In this section, we will provide a detailed introduction to the
physiological structure and signal transmission mechanism of
myelinated neurons. Additionally, we will also present math-
ematical models of memristors, variable capacitors, and other
devices constituting various cellular components of neurons.

A. Biological structure of myelinated neurons

As shown in Fig. 2(a), the myelin sheath wraps around the
surface of the axon, leaving sections of the axon exposed at
regular intervals, forming the nodes of Ranvier. Unlike un-
myelinated axons, myelinated axons do not have ion channels
on the surface of the axonal cell membrane that is wrapped by
the myelin sheath. Ionic exchange inside and outside the axon
can only occur through ion channels on the cell membrane
at the nodes of Ranvier. The physiological structure of myeli-
nated neurons forms the basis for the saltatory propagation of
neural signals.

B. The signal transmission mechanism of myelinated neurons

Neurons transmit signals by continuously altering the mem-
brane potential of the axon. As shown in Fig. 2(c), the genera-
tion of APs leads to changes in the axon membrane potential,
subsequently stimulating sodium and potassium ion channels
in the direction of signal transmission to generate new APs,
until the signal is transmitted to the axon terminal. As shown
in Fig. 2(b), due to the myelin sheath wrapping, ion channels
are only present at the nodes of Ranvier in the axon, where
APs can be generated. Therefore, the signaling transmission
in myelinated neurons occurs in a saltatory manner, and the
transmission speed is exceptionally fast. Understood from the
perspective of physical parameters, the ratio of the propagation
speed v, spatial constant λ (also referred to as “characteristic
length scale”), and time constant τ of neural signals is directly
proportional, v ∝ λ/τ [14], [43]–[45]. λ and τ are determined
by Eq. (1) and Eq. (2) [46].

λ =

√
rT

rL

=

√
RT · d
4 ·RL

, (1)

τ = RT · C, (2)
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Fig. 2. (a) the physiological structure of myelin sheath; (b) Signal trans-
mission mode of myelinated neurons; (c) Signal transmission mode of
unmyelinated neurons.

where longitudinal and transversal resistors are denoted by
RL and RT , rL and rT are the differentials of RL and RT ,
respectively. C represents the capacitance of the axonal cell
membrane, and d is the diameter of the axon.

When the axon is wrapped by multiple layers of the myelin
sheath, its effect is equivalent to multiple capacitors in series,
as shown in Fig. 2(b), which leads to a rapid decrease in axonal
capacitance C and an increase in membrane resistance RT .
According to Eq. (2), due to C decreasing faster than RT

increasing, the overall value of τ decreases, and the time for
generating an AP is shorter. Ion channels are only present
at the nodes of Ranvier, so when an AP is generated, ions
within the axoplasm can only move along the axon and cannot
freely exchange with extracellular ions. Furthermore, the AP
will decay more slowly, resulting in larger spatial leaps, as
depicted in Fig. 2(c). This significantly enhances the signal
transmission speed. The same conclusion can also be derived
from physical parameters. According to Eq. (1), myelination
increases membrane resistance RT and axon diameter d,
leading to a larger spatial constant. This allows APs to travel
further along the axon and neural signal.

C. Electronic device equivalent replacement for neurocellular
organelles

From a cellular structure perspective, neurons are, in fact,
high-order chaotic systems composed of various nonlinear
organelles. If higher-order nonlinear devices are adopted for
neuronal functionality in order to achieve greater integration,
it is likely that certain biological characteristics and robustness

of neurons will be compromised. Therefore, we utilize various
devices to simulate the functions of different organelles and
refer to the HH model to construct a neuronal circuit system,
to achieve more closely the biomimetic characteristics.

Ion channels are crucial cellular components for generating
APs, and their characteristics are similar to those of high-speed
memristors. Hence, we simulate ion channels by utilizing high-
speed memristor models. Neurons generate APs in response
to stimuli. APs are classified as either excitatory postsynaptic
potentials (EPSPs) or inhibitory postsynaptic potentials (IP-
SPs) depending on the stimulus type. Na+, K+, and Ca2+

ion channels are involved in the generation of EPSP or IPSP
[47]–[49]. Hence, we employ high-speed memristor models to
simulate these three types of memristors. The Na+ channels
involved in generating APs possess characteristics of rapid
activation and inactivation, with an activation threshold of
approximately −55mV . K+ and Ca2+ channels exhibit fast
activation and slow inactivation characteristics, with activation
thresholds of approximately 20mV and −80mV , respectively.
The biological characteristics of Na+ and Ca2+ channels
are similar, thus requiring parameter adjustments to implement
their functions using the same memristor model. The dynamic
equation of this memristor model is described by Eq. (3), (4),
and (5). Eq. (3) depicts the variation in memristor resistance,
Eq. (4) describes the switching speed between high and low
resistance states, and Eq. (5) characterizes the nonlinearity of
the memristor.

V (t) = Roff − x ·∆R · i(t), (3)

dx

dt
=


q1 · kb1on · f(x) · i(t) ·∆R, V (t) > Vth1

0 , Vth2 < V (t) ≤ Vth1

q2 · kb2off · f(x) · i(t) ·∆R, V (t) ≤ Vth2,

(4)

f(x) = a · (1 + x)p, (5)

where V (t) represents the voltage across the memristor’s two
terminals, Roff is the high resistance value of the memristor,
and △R is the difference between the high resistance value
Roff and the low resistance value Ron. The x is the resistance
adjustment coefficient, i(t) is the current passing through the
memristor and f(x) is the window function. The q1, q2, a1,
a2, koff , kon, a, and p are all parameters. Vth1 and Vth2

represent the activation threshold and inactivation threshold,
respectively.

Compared to Na+ and Ca2+ channels, K+ channels
exhibit relatively unique inactivation characteristics, which re-
quires the usage of a different memristor model. The dynamic
equation of this memristor is described by Eq. (3), (5), and
(6). The b1 and b2 are both parameters, in Eq. (6).

dx

dt
=


q1 · kb1on · f(x) · i(t) ·∆R, V (t) > Vth1

0 , Vth1 ≥ V (t) > Vth2

kb2off · f(x) · i(t)q2 ·∆R, V (t) ≤ Vth2.

(6)

Due to differences in ion concentrations inside and out-
side the neuron, a resting membrane potential is established.
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Function of the cell membrane is akin to that of a capacitor.
As shown in Fig. 2(b), a single layer of cell membrane is
equivalent to a capacitor, and the growth of the myelin sheath
leads to the stacking of multiple layers of membranes, which is
equivalent to multiple capacitors connected in series. Process
of myelin sheath growth is also known as myelination. Myeli-
nation alters membrane capacitance and membrane resistance
to modify the firing frequency and speed of neurons.

Adaptive adjustment of membrane permeability and mem-
brane capacitance is crucial for achieving myelin sheath
functionality. We employ voltage-controlled variable resistors
and variable capacitors to simulate myelination. With each
discharge, there is a subtle adjustment of resistance and capac-
itance values, thereby regulating the firing frequency, speed,
and activation conditions of biomimetic neurons, mimicking
the process of neuronal myelin sheath growth. The dynamic
equation of the voltage-controlled variable capacitor is jointly
described by Eq. (7), (8), and (9). Eq. (8) is obtained by
substituting Eq. (7) into q = c · v, q represents charge, c is
capacitance, and v stands for voltage. Eq. (7) describes the
variation pattern of the variable capacitor’s capacitance, while
Eq. (9) characterizes the speed and nonlinearity of the variable
capacitor’s capacitance variation.

C(t) =
1

1
Coff

+ xc·k
∆C

, (7)

Vc(t) =

∫
ic(t) dt

1
Coff

+ xc·k
∆C

, (8)

dx

dt
=

{
g · nm · (1 + x)e, V (t) > V c

th

0 , V (t) ≤ V c
th,

(9)

where, C(t) is the real-time capacitance of the voltage-
controlled variable capacitor, Coff is the initial capacitance,
and ∆C is the capacitance associated with each layer of the
myelin sheath. The Vc(t) and ic(t) represent the voltage and
current across the variable capacitor, respectively, while k
denotes the number of myelin sheath layers. The xc is the
capacitance adjustment coefficient. The g, n, m, k, and e are
parameters that control the rate of capacitance variation and
nonlinearity. The V c

th represents the triggering threshold. As
for the voltage-controlled variable resistor, it is essentially a
simplified memristor, and its dynamics can be fully described
by Eq. (3), (5), and (10).

dx

dt
=

{
q1 · kb1on · f(x) · i(t) ·∆R, V (t) > Vth1

0 , V (t) ≤ Vth1.
(10)

D. Dynamics of adaptive biomimetic neuronal circuit systems

Fig. 3 depicts the adaptive biomimetic neuronal circuit and
the corresponding electronic components as cell organelles.
As shown in Fig. 3(a), memristors RNa, RK , and RCa are
used to simulate the functions of Na+, K+, and Ca2+

channels, while the variable capacitor Ci(i = 1, 2, 3.) is used
to substitute for the biological functions of the cell membrane
and myelin sheath. The variable resistor RM is employed to
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Fig. 3. (a) Corresponding electronic components as cell organelles; (b)
Adaptive biomimetic neuronal circuits.

simulate the remaining non-voltage-gated, constitutively open
ion channels while also simulating changes in cell membrane
permeability caused by myelin sheath wrapping. The VNa,
VK , and VCa represent the Nernst potentials generated by the
concentration difference of sodium, potassium, and calcium
ions inside and outside the neuron. The VM is the Nernst
potential generated by the concentration difference of the
remaining ions, primarily functioning to regulate the potential
difference between the inside and outside of the neuron to
around −71mV .

The dynamic equations of the adaptive biomimetic neuronal
circuit system are constructed according to Kirchhoff’s laws.
The conservation of electric charge on a piece of membrane
implies that the applied current I(t) may be split into a
capacitive current IC which charges the capacitor C and
further components Ik which pass through the ion channels.
Thus

I(t) =
∑
n

Ic(t) +
∑
k

Ik(t), (11)

where the sum runs over all ion channels. From the definition
of a capacity C = q/u where q is a charge and u the voltage
across the capacitor, we find the charging current IC = C ·
du/dt. Furthermore, the growth of the myelin sheath leads to
changes in capacitance values, IC = dc · du/d2t. Hence from
Eq. (12). ∑

n

Ic(t) =
(dc1 + dc2 + dc3) · du

d2t
, (12)

where u represents the total Nernst potential generated by the
concentration difference of ions inside and outside the cell,
namely membrane potential, which is the potential difference
between equipotential lines 1 and 2 in Fig. 3(b). The total
charge leakage from all ion channels is described by Eq. (13).
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TABLE I
PARAMETERS OF ION CHANNEL MEMRISTORS.

ID Ion CH Roff Ron Vth1 Vth2 a b1 b2 p kon q1 q2 Dynamical Eq.

1 Na+ CH 1MΩ 200Ω −110mV −119.5mV 1 15 2 4 2 1 1 (3), (4), (5)
2 K+ CH 1MΩ 20Ω 97mV 7mV 1 18 −9.8 4 2 1.05 −0.51 (3), (5), (6)
3 Ca2+ CH 1MΩ 10kΩ −195mV −120mV 1 7 5 1.2 2 1 1 (3), (4), (5)
4 Other(M) CH 10KΩ 3kΩ 10mV − 1 10 − 1.2 − 1 − (3), (4), (10)

Note1 : In all memristors, the value of koff is 2.
Note2 : The symbol ’-’ represents an empty value.
Note3 : VNa = 55mV , VNa = −77mV , VCa = 122mV , VM = −71mV .

TABLE II
PARAMETERS OF VOLTAGE-CONTROLLED VARIABLE CAPACITOR.

i Coff ∆C Vc
th k g n m e Dynamical Eq.

1 3µF 3µF 10mV 5 1 2 1.5 2 (7), (8), (9)
2 3µF 3µF 10mV 5 1 2 1.5 2 (7), (8), (9)
3 3µF 3µF 10mV 5 1 2 0.5 2 (7), (8), (9)

∑
k

Ik = gNa · (u− ENa) + gK · (u− EK)+

gCa · (u− ECa) + gM · (u− EM ).

(13)

Parameters gNa, gK , and gCa denote conductance of Na+,
K+, and Ca2+ throughout the process of AP generation. The
values of these variables are determined collectively by Eq.
(3), (4), (5), (6), and (10). Conductance of leakage channel
are represented by gM . Parameters ENa, EK , ECa, and EM

are the reversal potentials. Parameters gNa, gK , gCa, and gM
are all determined by the respective ion channel’s dynamic
equations.

III. SIMULATION OF THE ADAPTIVE BIOMIMETIC
NEURONAL CIRCUIT SYSTEM

In this section, we constructed circuit models on PSpice
based on the dynamic equations of memristors, variable resis-
tors, and variable capacitors mentioned in the previous section.
Additionally, we built the adaptive biomimetic neuronal circuit
system according to Fig. 3(b). It can be observed, either from
the Eq. (11), (12) and (13) or from the circuit diagram in Fig.
3(b), that the ABNCS is a high-dimensional circuit system. For
biological neurons, adding each type of ion channel requires
introducing an additional set of variables to describe their mi-
crodynamics. Therefore, biological neurons are, in fact, more
complex systems with higher dimensions. Hence, to attain
more specific and comprehensive biomimetic characteristics,
designing high-complexity neuronal circuit systems becomes
inevitable.

The circuit for the simulation was constructed strictly
according to Fig. 3(b), and the relevant parameters for the
memristors, voltage-controlled variable resistors, and voltage-
controlled variable capacitors used are listed in Tables I and
II. The simulations were conducted using PSpice software. In
the simulations, we applied continuous positive and negative
current stimuli to the ABNCS, and the results are shown in
Fig. 4. Analyzing Fig. 4(a) reveals that in the initial phase
of continuous excitatory stimulation to the ABNCS, its firing
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Fig. 4. Simulation results of the adaptive biomimetic neuronal circuit system.
(a) The response of ABNCS to excitatory stimuli; (b) Response of ABNCS
to inhibitory stimuli; (c) The relationship between the number of APs and
ABNCS firing rate under excitatory stimulation; (d) The relationship between
the number of APs and ABNCS firing rate under inhibitory stimulation.

rate is relatively low. With an increase in the number of
APs, the ABNCS’s firing rate gradually increases, indicating
that the signal transmission speed accelerates accordingly.
Observing Fig. 4(c), it can also be noted that as the number
of APs generated by the ABNCS increases, the firing rate also
significantly rises, indicating a linear relationship between the
two. Inhibitory stimuli can also induce APs, leading to an
increase in the ABNCS’s firing rate, as shown in the Fig.
4(b). One noteworthy point is that, compared to excitatory
stimuli, inhibitory stimuli of the same intensity have a greater
impact on the ABNCS, resulting in a higher number of APs
generated by the ABNCS within a unit of time. The increase
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TABLE III
PERFORMANCE COMPARISON BETWEEN HH AND ABNCS.

Model Iin RM Ci(i = 1, 2, 3) Q f

HH Initial 10µA 3kΩ 3.5µF 794.9nC 24.69Hz
Mature 10µA 3kΩ 3.5µF 794.9nC 24.69Hz

ABNCS Initial 10µA 3kΩ 3.5µF 794.9nC 24.69Hz
Mature 10µA 9kΩ 1.5µF 289.9nC 73.04Hz

Note1 : Iin represents the magnitude of the input current; Q represents
the amount of charge required to emit an AP; The f is the spike firing
frequency.

in firing rate is more pronounced, as can be observed in Fig.
4(d). Comparing the ABNCS’s responses to excitatory and
inhibitory stimuli, it can be observed that the ABNCS exhibits
different responses to different types and intensities of stimuli,
similar to biological neurons.

Charge required and the firing frequency for a single spike
emission in HH and ABNCS are presented in the Table III.
energy consumption Q is calculated according to Eq. (14).
From the Table. III, it is evident that in the initial stage,
the fundamental parameters of HH and ABNCS are identical,
with equivalent energy consumption and peak firing rates.
However, after ABNCS emits a certain number of spikes, it
undergoes growth, adaptively adjusting its parameters. As a
result, the spike firing rate significantly increases while the
energy consumption decreases substantially. HH lacks growth
characteristics, so its properties remain consistent with the
initial stage.

Q =

∫ t2

t1

IMdt+ n · (VP − VR) · C, (14)

where, Q represents the amount of charge required to emit an
AP. Interval (t1, t2) represents the time interval for emitting
an AP. IM is the current in branch ‘a’ in Fig. 3(b). VP

and VR respectively represent the spike peak potential and
resting potential. C is the capacitance of the capacitor, which
is cell membrane substitute. The n represents the number of
capacitors.

IV. HARDWARE EXPERIMENTS AND
VERIFICATION

A. Experimental setup

In order to further investigate the reasons for changes in the
ABNCS’s firing rate and excitation difficulty and to validate
the ABNCS’s reliability, we conducted practical experiments
using memristor circuits to replace memristors. Fig. 5 de-
picts the practical experimental setup and the substituting
circuits for the three ion channel memristors. The ion channel
memristors are designed based on bidirectional controllable
silicon with connection-holding capability. Taking the sodium
ion channel memristor circuit as shown in Fig. 5(b) as an
example, when the voltage at the input and output termi-
nals reaches the triggering threshold, power is supplied to
the control terminal of the bidirectional controllable silicon,
causing the bidirectional controllable silicon to conduct, and
a continuous current flows through it. Due to the connection-
holding characteristics of the bidirectional controllable silicon,
even if the power supply to the control terminal is removed, the

b. Sodium ion channel 
     memristor  circuit

Ina

R
4

R
6

R
5

R
2

R
3

R
8R

7

R
1

DC
2

DC
1

DC
3DC

4

Q
1

PMOS
1

ab

c

d

e

Input

Output

T
1

PMOS
2

PMOS
3

c. Calcium ion channel 
    memristor  circuit

Ica

Input OutputNMOS
1

DC
1

R
1

T
1PMOS

1

KT

DC
2

DC
3

R
2

R
3

R
4

R
5

R
6

DC
4

DC
5

b

a

c

d

e

d. Potassium ion channel 
    memristor  circuit

R
1

NMOS
1

T
1

DC
3

DC
2

DC
1

R
2

Input Outputa

b

NMOS
2

IkOn threshold  circuit
Off threshold  circuit

a. Memristor neuron circuit

Input Output

Fig. 5. Experimental setup and the corresponding memristor circuits for
each ion channel. (a)Practical Experimental Scenarios and Some Experimental
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bidirectional controllable silicon can maintain its conducting
state as long as the current passing through it does not
approach zero or reverse. When the voltage at the input and
output terminals reaches the shutdown threshold, the current
flowing through the bidirectional controllable silicon is cut off
by the MOSFET, thus preventing the bidirectional controllable
silicon from conducting. The principles of the remaining two
ion channel memristor circuits are similar to the sodium ion
channel memristor circuit, and will not be further elaborated
here. The parameters involved in all memristor circuits are
shown in Table IV.

B. The impact of membrane permeability on firing character-
istics

Analyzing Fig. 3(b), it can be observed that for charges
within the ABNCS to flow to the outside of the ABNCS, they
must pass through four pathways: a, b, c, and d. Adjusting
the value of RM in a pathways of Fig. 3(b) can effectively
simulate changes in the permeability of neuronal cell mem-
branes. The condition for the ABNCS to generate APs is
that the voltage across Ci(i = 1, 2, 3.) reaches the discharge
threshold to trigger the ion channel memristor. Therefore, the
charging time t of Ci(i = 1, 2, 3.) is related to the firing
rate, with shorter t resulting in a higher firing rate in a linear
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TABLE IV
PARAMETERS OF THE MEMRISTOR CIRCUIT.

Category R1 R2 R3 R4 R5 R6 R7 R8 DC1 DC2 DC3 DC4 DC5

Na+ CH circuit 2MΩ 0.1MΩ 1MΩ 0.2kΩ 10kΩ 1kΩ 1.11MΩ 0.39MΩ 6.3V 4V 5.5V 10V -
K+ CH circuit 5Ω 2MΩ - - - - - - 7.7V 2.5V 9V - -

Ca2+ CH circuit 10kΩ 10Ω 100Ω 10Ω 2MΩ 50Ω - - 11.8V 15V 13V 15V 5V

Note1 : The symbol ’-’ represents an empty value.
Note2 : The KT stands for electromagnetic relay.

relationship between the two. To reduce the charging time
t of the capacitor, efforts can be made from two aspects:
increasing the value of RM or decreasing the capacitance value
of Ci(i = 1, 2, 3.). From a physical formula perspective, this
actually involves increasing the spatial constant λ or reducing
the time parameter τ , as shown in Eq. (1) or (2).

In order to investigate the impact of the amount of charge
flowing out of the system, namely Membrane permeability, on
the ABNCS’s discharge, we gradually increased the values of
RM in Fig. 3 and observed the ABNCS’s output response. In
practical experiments, the memristors in the ABNCS were all
replaced by memristor circuits. Because it is easier to observe
the impact of RM variations on the ABNCS response under
short current stimulation, we designed ABNCS with different
RM values and subjected them to fixed-duration short current
stimuli. The experimental results are shown in Fig. 6. In Fig.
6 and 7, the value of the ABNCS’s RM is the same for each
column, and the value of Ci(i = 1, 2, 3.) is the same for each
row, with C1 = C2 = C2. Observing the first row of Fig. 6,
namely Fig. 6(a), 6(b), 6(c), and 6(d), it can be noted that as R
gradually increases, the duration of potential changes produced
under the same stimulus also increases. The ABNCS requires
more time to return to its initial state. The same conclusion
can also be obtained from Eq. (1). According to Eq. (15), as
RM increases, RT also increases, leading to an increase in
the spatial constant. This implies that the changes in potential
can propagate over a greater distance, hence resulting in an
extended duration of potential changes.

RT =
1

1
RM

+ 1
RNa

+ 1
RK

+ 1
RCa

. (15)

In addition, under the same stimulus intensity, compared
to the ABNCS with a small RM , the ABNCS with a larger
RM only requires a shorter stimulus duration to generate APs.
This suggests that as RM increases, the ABNCS becomes
more active and is more prone to generating APs. As the
capacitance C decreases, the ABNCS with high R is the first
to initiate APs, and in some cases, it even triggers two APs
under the same stimulus intensity. This phenomenon can be
observed in Fig. 6. In an intuitive sense, as RM increases, it is
similar to a decrease in the permeability of the cell membrane.
This restricts the flow of charge from inside the ABNCS to
the outside, allowing more charge to accumulate for charging
Ci(i = 1, 2, 3.). This lowers the requirements for the ABNCS
to generate APs.

It is important to note that RM cannot increase indefinitely
due to the permeability of the cell membrane. Excessively
large RM values can impede or interrupt the flow of charge
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Fig. 6. The influence of changes in RM and Ci(i = 1, 2, 3.) on ABNCS
response under short current stimulus.

across both ends of Ci(i = 1, 2, 3.), causing the capacitor to
charge too slowly or even preventing it from charging, and
lead to an ABNCS failure. According to Eq. (2) and (15),
it can also be inferred that excessively large RM values will
increase the time constant τ , prolonging the time required for
the capacitor to charge.

However, if RM is too small, a large amount of injected
charge will flow into the ground node through branch ‘a’ in
Fig. 3(b), which cannot effectively charge the capacitor, and
lead to rapid discharge of the capacitor, reducing the space
constant and diminishing the distance over which potential
changes can propagate. Therefore, the variation of the RM

value must be set within an appropriate range to ensure the
normal and efficient operation of the ABNCS. After repeated
experiments, we have set the range of RM variation to be
[3kΩ, 10kΩ]. This range ensures that changes in RM have
a significant impact on the ABNCS’s excitation while still
maintaining normal ABNCS operation.
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C. The influence of membrane capacitance on firing charac-
teristics

The capacitance Ci(i = 1, 2, 3.), namely neural cellmem-
brane capacitance, has a significant impact on the discharge
rate and discharge speed of the ABNCS. Observing Fig. 6,
it can be seen that as the capacitance value continues to
decrease, even when RM is very small, the ABNCS is still
capable of generating APs. To further observe the impact of
Ci(i = 1, 2, 3.) variation on the ABNCS, we designed a new
practical experiment with the same foundational setup as the
previous one but utilized continuous current stimulation for
the ABNCS.

The practical experimental results are shown in Fig. 7, it can
be observed that as Ci(i = 1, 2, 3.) decreases, the ABNCS’s
firing rate increases. The smaller the value of Ci(i = 1, 2, 3.),
the more pronounced the increase. Charging a capacitor fol-
lows the physical law q = c · v, where q is the charge, c is
the capacitance, and v is the voltage. A smaller capacitance
implies that a smaller amount of charge is needed to quickly
raise the voltage across the capacitor. Additionally, according
to Eq. (2), as the capacitance decreases, the time constant
decreases. This can effectively explain the phenomenon where
decreasing capacitance leads to an increase in the ABNCS’s
firing rate. One important point to note is that in Fig. 7, as R
gradually increases, the firing rate also shows a slight increase.
This once again underscores that the signal propagation speed
is jointly regulated by the time constant τ and the spatial
constant λ, namely v ∝ λ/τ . An increase in RM leads to an
increase in RT , subsequently resulting in an increase in the
spatial constant λ, as indicated by Eq. (1). Although, according
to Eq. (2), an increase in RT leads to a decrease in the time
constant τ , within a certain range, an increase in RT still
results in a higher ratio of spatial constant λ to time constant
τ . This, in turn, leads to an increase in discharge rate and
a faster signal transmission speed. This phenomenon further
illustrates that the variation in the ABNCS’s discharge rate is
in line with the biological characteristics of neurons.

V. THE APPLICATION AND FUTURE OF THE ABNCS

A. Application of the ABNCS

To evaluate the performance of ABNCS in constructing
neural networks, we designed coupled simulations. In the
biological nervous system, information is transmitted between
two neurons through synaptic connections. When the signal
reaches the axon terminal, the presynaptic membrane releases
neurotransmitters into the synaptic cleft, and receptors on
the postsynaptic membrane of the next neuron receive the
neurotransmitters and generate a response, completing the
signal transmission.

Because of the unique structure and transmission mode of
synapses, the signal transmission between neurons is discon-
tinuous, with an approximate time interval of 6 milliseconds
between neurons [50]. Currently, bio-inspired neural circuits
primarily rely on artificial synapses for coupling. However,
mainstream artificial synapses tend to focus on simulating
synaptic plasticity while overlooking the unique signal delay
transmission mechanism of biological synapses [51], [52]. In
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Fig. 7. The influence of changes in RM and Ci(i = 1, 2, 3.) on ABNCS
response under prolonged current stimulus. The f is firing rate.

the biological nervous system, this intermittent signal trans-
mission mode in the biological nervous system effectively pre-
vents mutual interference between adjacent neurons. However,
due to the continuous transmission of signals between neuronal
circuits, employing artificial synapses for signal transmission
inevitably leads to mutual interference between bio-inspired
neural circuitry.

We employ RC circuits to simulate synaptic coupling.
While the use of RC circuits as synapses results in continuous
signal transmission, the charging of the capacitors introduces
a certain degree of delay in signal propagation, which can
mitigate mutual interference between neural circuits. Since our
experimental focus is primarily on observing the plasticity of
ABNCS itself, we construct RC circuits using conventional
resistors and capacitors, rendering artificial synapses non-
plastic, as shown in Fig. 8(a). Two sets of experiments are
designed, one set involves coupling two HH model circuits,
serving as the control group, while the other set involves
coupling two ABNCS circuits, serving as the experimental
group. The input and collection points of the signals are
marked with pointers of different colors in Fig. 8(a).

The results of the two sets of experiments are shown in
Fig. 8(b) and 8(c), with the colors of the pointers in Fig.
8(a) corresponding to the colors of the output result curves.
To better assess whether the ability of the neural circuit to
transmit signals can be modulated based on the number of
pulses emitted by the circuit, we used short currents, long
currents, and short currents of equal duration as inputs, as
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shown in Fig. 8(b) and 8(c).
As shown in Fig. 8(b), in the neural circuit composed of the

HH circuit model, the first short current did not trigger an AP,
while the long current elicited a series of APs in the first and
second neurons. Due to the factor of signal attenuation, the
second neuron exhibited slightly fewer APs in response. The
second short current also failed to elicit APs, and both neurons
responded to it almost identically to the first short current. This
indicates that the internal parameters of the neural circuit do
not change with the quantity of transmitted signals.

In the second set of experiments, we replaced HH model
with ABNCS while keeping all other settings identical to
the first set. Observing Fig. 8(c), namely the red curve, it
is evident that the firing frequency of the second neuron’s
APs increases as the number of APs rises, and the second
short current also successfully triggered APs. This indicates
that the neural circuit constructed using ABNCS is capable
of adaptively adjusting its parameters with the increase in the
number of APs, enhancing the circuit’s responsiveness to the
initial stimulus.

Higher vertebrates achieve specific actions by stimulat-
ing specific neural circuits. Repeatedly training a particular
action by stimulating the corresponding neural circuit can
lead to faster signal transmission along this circuit and an
improvement in its responsiveness, resulting in what is known
as muscle memory. Memory formation also occurs through

wij wij

Adaptive firing frequency，
Adaptive neural signal transmission speed，

Easier to form stable neural circuits.

New characteristic in future:

Beneficial for development

Intelligent butler robots

a

b

Fig. 9. Applications of ABNCS. (a) Characteristics of a Spiking Neural
Network Constructed with ABNCS; (b) Conceptual diagram of an intelligent
robot smart home system built with ABNCS.

similar mechanisms. While synaptic plasticity plays an im-
portant role in the processes mentioned above, synapses have
little impact on the signal firing of neurons themselves. In
contrast, myelin sheath growth can regulate the firing rate
of neurons themselves, and when combined with synapses, it
can form more stable neural circuits, greatly enhancing both
signal transmission speed and efficiency. Therefore, ABNCS
designed based on the characteristics of myelin sheath growth
contribute to enhancing the signal transmission speed and effi-
ciency of neural networks, thus simulating biological features
akin to muscle memory. The comparative experiments depicted
in Fig. 8 effectively validate this point.

B. Future of the ABNCS

As shown in Fig. 9(a), due to the biomimetic characteristics
of ABNCS, spiking neural networks constructed using it can
adaptively adjust firing rates, and signal transmission speed,
form stable circuits, and enhance stimulus responsiveness. The
spiking neural network constructed based on ABNCS relies
on the number of APs to adjust parameters, and this method
of modifying parameters belongs to feedforward regulation.
This, to some extent, alleviates the challenge of conducting
feedback training in spiking neural networks while expand-
ing the training methods, thereby bringing the operational
mechanism of spiking neural networks closer to that of the
human brain. Furthermore, due to the adaptability of ABNCS,
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it can lower the excitation threshold of artificial neural circuits,
enabling effective training of neurons in deep spiking neural
networks. The adaptability and growth potential of ABNCS
makes it possible to develop intelligent butler robots and
smart home systems with emotions, memories, associations,
and consciousness, as illustrated in Fig. 9(b).

VI. CONCLUSION

This paper proposes a high firing rate and high signal
transmission speed adaptive neuronal circuit system (ABNCS)
based on myelin sheath functionality. First, ion channel mem-
ristors are constructed based on the biological characteristics
of various ion channels involved in generating APs. Second,
voltage-controlled variable capacitors and voltage-controlled
variable resistors are employed to simulate myelin sheath
growth while also substituting for the function of the cell mem-
brane in isolating ions. Finally, ABNCS is constructed based
on neuron structure. PSpice simulations and circuit experi-
ments indicate that the firing frequency and signal transmission
rate of ABNCS are linearly correlated with the number of APs,
both in EPSP and EPSP. Neural circuit coupling comparative
experiments demonstrate that neural circuits constructed with
ABNCS do not need to rely on synaptic structures and can
adjust the circuit’s connection strength based on the number
of APs, enhancing the stimulus responsiveness of the entire
circuit. Therefore, the proposed ABNCS can effectively pro-
mote the research of high-speed, low-power biomimetic pulse
neural networks and their applications in consumer electronics
products. In our future work, biomimetic synapses will be
researched to achieve a high-biomimetic pulse neural network.
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