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Abstract In this work, a Pleasure-Arousal-Dominance

(PAD) three-dimensional brain-like emotion generation

system is proposed by simulating the brain tissue struc-

tures involved in emotion generation in the brain’s lim-

bic system. The system utilizes volatile memristors to

simulate the activation and recovery process of neurons,

and non-volatile memristors to simulate the synaptic

weight changes. It combines the brain emotion learn-

ing (BEL) model and the biological long short-term

memory (B-LSTM) model to simulate the emotion gen-

eration process in the brain. The system employs the

Dempster-Shafter (D-S) evidence theory for multimodal

feature fusion, ultimately representing the generated

human-like emotions in the PAD three-dimensional emo-

tion expression space. Considering the differences in

emotional information represented in each dimension
of the PAD emotion expression space, this work pro-

poses the use of the D-S evidence theory to calculate the

weight values of multimodal evidence and each dimen-

sion of emotion signals. The system performs weighted

summation for multimodal feature fusion, which is more

biologically-inspired and realistic. As a result, the gen-

erated emotion signals are more accurate, and the PAD

three-dimensional emotion expression model enhances

the capability and richness of emotion expression. The

system processes multimodal input signals (text, speech,

visual signals) to generate three-dimensional emotion
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signals (pleasure, arousal, and dominance signals), which

correspond to specific emotions in a three-dimensional

space. These signals can be visually represented as fa-

cial images using MATLAB. The simulation results from

PSPICE indicate a non-linear mapping relationship be-

tween the system’s input and output. It shows that

different inputs can generate distinct human-like emo-

tions.
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1 Introduction

With the development of artificial intelligence, it has

been comparable to or even more than human beings in
computational intelligence and perceptual intelligence,

but there is still a certain gap with human beings in

cognitive intelligence. To realize artificial intelligence

at the human level, it is necessary to learn from the

brain’s learning and memory functions and give com-

puter human wisdom. Brain-like intelligence [1, 2] re-

search has become a hot spot. Emotion, as an advanced

function of the brain, not only ensures the survival

and adaptation of organisms, but also affects individual

learning, memory and decision-making. The generation

and influence of emotion in the brain are closely re-

lated to the limbic system [3, 4]. The limbic system is

a functional anatomical system composed of the struc-

tures of the limbic lobe of the brain (parahippocam-

pus, cingulate gyrus, dentate gyrus, subcallosal gyrus)

and subcortical regions (hippocampus, amygdala, habe-

nula, anterior thalamic nucleus, mammillary body) [5].

It is involved in learning and memory activities and af-

fects and produces emotions [6]. By learning the emo-

tional generation mechanism of the brain and study-
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ing related models or algorithms, machines can be en-

dowed with human emotions and linked to perception,

cognition, motivation and action. In 2001, Morén and

Balkenius [7] proposed a brain emotion learning model

(BEL), which gives a neurally inspired computational

model of the amygdala and the orbitofrontal cortex.

The learning process is achieved by continuously adjust-

ing the weights of the amygdala and the orbitofrontal

cortex, aiming to partially replicate the same charac-

teristics as the biological system. The BEL model has

been applied to automatic control problems [8, 9] and

improved classification problems [10,11]. In order to im-

prove the generality of the BEL model, Lotfi et al. [12]

proposed brain emotional learning-based pattern recog-

nizer to solve the multiple input-multiple output clas-

sification and chaotic time series prediction problems.

To improve the performance of the BEL model, Ying

et al. [13] proposed an brain emotional learning model

combined with self-adaptive genetic algorithm (AGA)

for chaotic prediction and used AGA for parameter

optimization, which improved the prediction accuracy

and execution speed. The construction of the emotional

learning model is very important for the study of brain-

like bionic emotions. Multimodal information can learn

and generate emotions by feature fusion through the

constructed emotional learning loop.

In the field of software, people primarily achieve

human-like emotion generation through designing frame-

works and utilizing neural network [14–18] algorithms,

among other methods. Chae et al. [19] propose a method-

ology for producing robotic emotions suitable for a robot’s

utterances based on texts. Using the A-star algorithm

to generate the path of emotional change, the robot

can generate human-like emotional change patterns and

recover its emotional state. Li et al. [20] propose a

method for expressing reactive emotion by dividing the

system’s emotion into emotion categories and emotion

levels, Combining emotional categories, emotional lev-

els, and reverse channels with corresponding emotional

categories to set emotional generation rules to generate

reactive emotions. Churamani et al. [21] propose a novel

framework for affect-driven behaviour generation in so-

cial robots. The recurrent self-organising neural net-

works are used to model the affective core of the robot

and modulate the robot’s affective appraisal. Hong et

al. [22] proposed a novel multimodal emotional HRI

architecture, which determines its emotional behavior

via an innovative two-layer emotional model consist-

ing of deliberative (hidden Markov model) and reactive

(rule-based) layers. However, compared with the hard-

ware circuit to achieve the brain-like emotion genera-

tion system, the running speed of the system realized

by software is slower.

In terms of hardware, the traditional von Neumann

computing system involves separate processing and stor-

age units. The frequent access operation of data be-

tween storage and processing units brings problems such

as high power consumption and high delay [23]. As an

emerging memory device, the memristor can improve

information processing efficiency and reduce power con-

sumption by using its in-situ computing characteris-

tics [24]. In addition, the performance of memristors is

similar to that of biological neurons and synapses [25],

which can reduce the area and complexity of neuro-

morphic circuits and is very suitable for constructing

brain-like bionic systems. Memristor-based applications

are very extensive, such as memory [26, 27], memris-

tive neural networks [28–35], and memristive chaotic

circuits [36–41]. Based on the characteristics of mem-

ristor, the application of bionic emotion generation is

gradually increasing. For example, Ma et al. [42] de-

signed a neural network architecture based on mem-

ristors to simulate human emotions. They considered

the excitation and inhibition between different neurons,

achieving a simple simulation of human emotions such

as happiness and sadness. Wang et al. [43] designed

an emotion generation circuit based on memristor to

simulate the human skin sensor according to the sen-

sory mechanism of human skin, complex emotions con-

sist of four basic emotions: happiness, anger, sadness

and fear. Sun et al. [44] developed a memristive cir-

cuit based on a second-order damping system to gener-

ate certain emotions under different personality traits.

They expressed the emotions of anger, sorrow, happi-

ness, and joy through human gestures. However, they

did not draw inspiration from the emotional learning

and generation process in the brain, lacking neural and

biomimetic characteristics. Zhou et al. [45] proposed a

bionic dual-loop emotional learning circuit that simu-

lates emotional learning in the human brain. This cir-

cuit generated four types of emotions: extremely happy,

happy, sad, and particularly sad. However, with fur-

ther development of memristive brain-like emotion gen-

eration, it was found that most of their models used

discrete emotion models [46], [47] in emotional expres-

sion. The discrete emotional model uses adjective la-

bels to represent emotions as several relatively inde-

pendent sentiment categories. The advantage is sim-

ple and easy to analyze. The disadvantage is that the

types of emotional states described are limited, and the

process of emotional change cannot be intuitively re-

flected, resulting in the dimensional emotional model.

Zhang et al. [48] drew inspiration from psychology’s

theory of emotion generation through reward and pun-

ishment. They proposed an operant conditioning model

and memristive circuit implementation based on emo-
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tion generation and modulation. Using the rolls emo-

tion model, they expressed one-dimensional emotions

under four conditions: reward onset, reward termina-

tion, punishment onset, and punishment termination.

Wang et al. [49] combines the memristor with the brain

emotion generation mechanism in the limbic system

to express emotions in two-dimensional space. Simi-

larly, Wang et al. [50] considered the internal regula-

tion and external stimulation factors, which can realize

the brain’s conscious and unconscious emotional learn-

ing and generation process. In [49], [50], the Valence-

Arousal (V-A) dimension emotion model [51] is used to

describe the emotional state as a certain coordinate in

the two-dimensional space with the valence dimension

and the arousal dimension. It can track the develop-

ment and change process of emotion and measure the

similarity and differences of emotion, and the emotional

expression range is richer than the discrete emotion

model. However, the V-A model has a limited range

in expressing emotions and cannot fully capture the

breadth of human emotions. The designed emotion gen-

eration circuit does not adequately consider the dimen-

sional differences in emotions. The weight values be-

tween multimodal input signals and each dimension of

emotion signal are influenced by the emotional dimen-

sion. Therefore, it is necessary to consider multimodal

feature fusion methods to obtain more accurate emo-

tional signal results. To address these issues, we pro-

pose a memristive Pleasure-Arousal-Dominance(PAD)

three-dimensional emotion generation system based on

the D-S evidence theory. The main contributions of our

system are as follows:

1. A PAD three-dimensional emotion generation sys-

tem is proposed that uses the pleasure dimension,

arousal dimension, and dominance dimension to rep-

resent human-like emotions. The PAD emotion model

effectively explains human emotions, making the emo-

tional expression of the system more comprehensive

and accurate.

2. Taking into account the differences in information

for each dimension of emotion, we propose the use of

the D-S evidence theory to calculate the weight val-

ues between multimodal evidence and each dimen-

sion of emotion signal. The system performs multi-

modal feature fusion through weighted summation,

which is more biomimetic and realistic, resulting in

more accurate emotional signal results.

3. Leveraging the in-situ computing characteristics of

memristors, we construct synapses and neurons and

combine the BEL model and B-LSTM model to

build the brain’s cortical structure of the limbic sys-

tem of the brain. This optimization of the circuit

structure is achieved.

The rest of this article is organized as follows. Sec-

tion 2 introduces the proposed PAD three-dimensional

emotion generation system. Section 3 introduces the

volatile and non-volatile memristor models for construct-

ing synaptic and neuronal modules. Section 4 intro-

duces the specific circuit design. By simulating the hy-

pothalamus, sensory cortex, orbital frontal cortex and

amygdala module, the brain emotion generation circuit

is constructed to obtain three-dimensional emotional

signals. Section 5 shows the simulation results of the

proposed circuit and analyzes them to verify the feasi-

bility of the the designed PAD three-dimensional emo-

tion generation memristive circuit. Section 6 presents

the conclusions drawn from this work and discusses fur-

ther work.

2 PAD three-dimensional emotion generation

system

2.1 PAD emotion expression model

Commonly used dimensional emotional expression mod-

els include the V-A model [51] and the PAD model [52].

The V-A model [51] is the ’Valence-Arousal’ model, and

the PAD emotion model [52] is the ’Pleasure-Arousal-

Dominance’ model. The pleasure dimension, also known

as the valence dimension, is a measure of the degree

of pleasure of a person, from one extreme (distress)

to another extreme (ecstasy); the arousal dimension,

also known as the activation dimension, is a measure of

physiological activity and psychological alertness. For

example, sleep and boredom are low arousal, and wak-

ing and tension are high arousal; the dominance di-

mension is also called the Attention dimension or the

Power dimension. It refers to the subject’s control of

the situation and others. High dominance is a powerful

and dominant sense, while low dominance is a sense of

withdrawal and weakness.

This work uses the PAD three-dimensional emo-

tion model to represent emotions, and each dimension

is a measure of a certain aspect of emotion. The V-A

model can express most of the emotions, while the PAD

model can theoretically represent an infinite variety of

emotions. the PAD model increases the dominance di-

mension compared with the V-A model, has a stronger

ability to express the emotions, and can effectively ex-

plain human emotions, then the system’s expression of

emotions is more comprehensive and accurate. The two

emotional expression models are shown in Fig. 1.

As shown in Fig.1, fear and anger are both emotions

characterized by low pleasure and high arousal, located

in the second quadrant of the V-A two-dimensional

space. This makes it difficult to distinguish between
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Fig. 1 Emotional expression models. (a) is a V-A two-
dimensional emotional expression model, including the va-
lence dimension and arousal dimension. (b) is a PAD three-
dimensional emotional expression model, including pleasure
dimension, arousal dimension and dominance dimension, with
stronger emotional expression ability and richer emotional ex-
pression range.

these two emotions. However, in the PAD three-dimensi-

onal space, fear is characterized by low dominance and

is located in the sixth quadrant, while anger is charac-

terized by high dominance and is located in the second

quadrant. This allows for a better differentiation be-

tween these two emotions. Therefore, using the PAD

three-dimensional emotion model can provide a more

comprehensive and accurate representation of emotions.

2.2 D-S evidence theory

D-S evidence theory [53] was originally proposed by

Dempster and improved by Shafter. It uses the D-S

synthesis rule to fuse the trust functions from differ-

ent evidence bodies into a new trust function to ob-

tain more reliable decision results. Under the assump-

tion that the recognition framework θ = {c1, c2, ..., cc}
represents the set of results that can be identified by

the decision problem, a set function m : 2Θ → [0, 1]

is defined as the basic probability assignment function

(BPA) on Θ and satisfies:{
m(ϕ) = 0∑
A⊆Θ

m(A) = 1 (1)

where ϕ denotes the empty set, and m(A) denotes

the confidence of the evidence to A. Let m1, m2 be the

basic probability assignment function of different evi-

dences on Θ, then according to the combination rule of

D-S evidence theory, the fused basic probability assign-

ment function m = m1 ⊕m2 is :m(ϕ) = 0

m(c) =
∑

Ai∩Bj=ϕ

m1(Ai)m2(Bj)
1−K , c ̸= ϕ (2)

where K =
∑

Ai∩Bj=ϕ

m1(Ai)m2(Bj) is a conflict fac-

tor, reflecting the degree of conflict between evidences.

The greater the value, the greater the conflict between

evidences.

The multimodal input signals include text signals,

speech signals, and visual signals. This work uses the D-

S theory to calculate the probability distribution func-

tion after evidence fusion to obtain the weight distribu-

tion results between the multimodal signals and each

dimension of the emotional signals. Each dimension in

the PAD three-dimensional emotion model is a measure

of a certain aspect of the emotion, including pleasure,

arousal, and dominance. Therefore, this work uses the

D-S evidence theory three times to obtain weight allo-

cation results influenced by emotional signals. The use

of D-S evidence theory allows the system to more ac-

curately characterize the emotional differences of each

dimension.

2.3 Flowchart of the PAD three-dimensional emotion

generation system

In this work, a PAD three-dimensional emotion gener-

ation system is proposed. The PAD three-dimensional

emotion output signal is obtained from the multimodal

input signal, which has the stronger emotional expres-

sion ability. Combined with the D-S evidence theory,

the weighted summation method is used to fuse the

multimodal information. The weighted values of the

multimodal input signals corresponding to the three

emotional signals are different so that more accurate

and bionic emotional results can be obtained. The flow-

chart of the PAD three-dimensional emotion generation

system is shown in Fig. 2.

The system can be described by the following for-

mula:

Ei1 = fi(Vtext)wi1 (3)

Ei2 = fi(Vspeech)wi2 (4)

Ei3 = fi(Vvisual)wi3 (5)

Ei =

3∑
j=1

Eij , (i = 1, 2, 3) (6)

VP = g1(E1) (7)

VA = g2(E2) (8)

VD = g3(E3) (9)

where Vtext, Vspeech, and Vvisual represent the voltages

of input text, speech, and visual signals, respectively,

wij represents the weight values for the fusion of mul-

timodal features, which are obtained from the calcu-

lated fusion probability using the D-S synthesis rule.
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Fig. 2 Flowchart of the PAD three-dimensional emotion gen-
eration system. The multimodal input signals include text sig-
nal Vtext, speech signal Vspeech, and visual signal Vvisual.
The multimodal input voltages are processed by the fi(·)
function, multiplied by the respective weight wij , and then
summed to obtain the multimodal emotional learning signal
Eij . After passing through the gi(·) function, Eij yields the
emotional signal voltages, including VP , VA, and VD. The
weights wij are calculated using the D-S evidence theory,
and (VP ,VA,VD) correspond to a specific emotion in the PAD
three-dimensional emotional space.

fi(·) is a function that satisfies the working mecha-

nism of emotional learning in the limbic system of the

brain. Eij represents the single modal emotion learn-

ing signal, that is, the result of the single modal in-

put signal after passing through the brain-like system

and then multiplying with the weight. Ei represents a

multimodal emotional learning signal. gi(·) is a func-

tion that satisfies the working mechanism of emotion

generation. VP , VA, and VD represent the final out-

put emotional signals, including the pleasure signal,

arousal signal and dominance signal. The fi(·) and gi(·)
functions corresponding to each dimension of the emo-

tional signal are different, which is more in line with the

emotional learning and generation process of the brain.

The three-dimensional coordinate system consists of

Vpleasure, Varousal and Vdominance, and (VP ,VA,VD) rep-

resenting the final PAD three-dimensional emotional

signal result.

3 Memristor model

As a two terminal ionic device that uses resistance states

to represent information, memristor has rich switching

dynamics, which is very suitable for simulating biolog-

ical synapses and neurons.

3.1 Volatile Memristor Model

The volatile memristors (VM ) [54] have a forgetting

effect in which the memristance changes when voltage is

applied, and the memristance automatically returns to

its original state when the applied voltage disappears.

In this work, VM model in (10)-(14) is used to simulate

neurons from an active state to a resting state, while

also ensuring that the circuit can only operate normally

when a voltage is applied.

i = (1− x)α(1− e−βv) + xγsinh(δv); (10)

ẋ = (λ[eη1v − e−η2v]− x− ε

τ
)f (x) ; (11)

ε̇ = σ(eη1v − e−η2v)f(x); (12)

τ̇ = θ(eη1v − e−η2v); (13)

f (x) =

(sign (v) + 1)(sign(1− x) + 1) + (sign(−v) + 1)(sign(x) + 1)

4
;

(14)

where i is the current and v is the applied voltage

of VM ; x denotes the Ohmic-like conducting channel

which is normalized to be [0,1], x = 0 indicates fully

Schottky-dominated conduction while x = 1 indicates

fully tunneling-dominated conduction, and it is equiva-

lent to conductance actually; α is the barrier height for

Schottky barrier; β is the depletion width in the Schot-

tky barrier region; γ is the barrier height for tunnel-

ing; δ is the effective tunneling distance in the conduct-

ing region; η1 and η2 are the interface effect with posi-

tive voltage and negative voltage, they are all positive-

valued fitting parameters determined by material prop-

erties and dependent on x; ε is the retention of the

Ohmic-like conducting channel, which is in [0,1]; λ is a

positive constant to control the change rate of x; τ is the

diffusion time; σ and θ are the corresponding parame-

ters for ε and τ , which are determined by the material;

f(x) is the window function for better elaborating the

memristor dynamics. The parameters of VM model

Table 1 THE PARAMETERS OF VM MODEL

Parameters of VM α β γ δ η1

Settings 0.5e-6 0.5 1e-3 1 8

Parameters of VM η2 λ σ θ

Settings 8 0.006 0.04 0.03
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used in this work are listed in Table 1. The initial mem-

ristance of VM is ROFF (the highest memristance). As

shown in Fig. 3, if the applied voltage is positive, mem-

ristance of VM will decrease; after the applied voltage

disappears, memristance of VM will increase automat-

ically. Here a small voltage of 0.05 V is used to read the

memristance currently when there is no applied voltage.

In order to better test the characteristics of VM, VM is

connected in series with a 1 kΩ resistor in the simula-

tion. Fig. 3(a) shows the change in the memristance of

the VM when the applied voltage is 1 V, and Fig. 3(b)

shows the change in the memristance of the VM when

the applied voltage is 0.6 V. Since the voltage obtained

by the VM is proportional to the applied voltage, it is

observed that the greater the applied voltage, the faster

the rate of change in the memristance, and the faster

it approaches RON (minimum memristance) within the

same time, the longer it takes to recover to the initial

memristance. Therefore different applied voltages cause

changes in VM.
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Fig. 3 Memristances change of VM model in different ap-
plied voltages. A voltage of 1.0 V and 0.6 V is applied at
0-1.0 s, respectively, the memristance of VM gradually de-
creases from the high resistance. Between 1.0-5.0 s, there is
no applied voltage in addition to a small read voltage, it can
be seen that the memristance of VM automatically increases.
The small voltage of 0.05 V is used to read the memristance
currently.

3.2 Nonvolatile Memristor Model

Nonvolatile memristors are particularly suitable for the

realization of neuromorphic systems due to the great

plasticity in memristance. The non-volatile memristance

can be reduced (increased) during the application of

the potentiation (depression) voltage. In this work, the

characteristics of the synaptic model of memristor are

used to realize the learning and generation functions of

emotions. A drift speed adaptive memristor (DSAM )

model [55] that matches the conductive property of

AgInSbTe memristor is used in this work. If the ap-

plied voltage exceeds the threshold, the memristance of

the device will change, else it remains unchanged. The

expression for the DSAM model is described as:

dx(t)

dt
=


konv(t) · f(x), v(t) > von > 0;

0 , voff ≤ v(t) ≤ von;

koff · v(t) · f(x), v(t) < voff < 0,

(15)

f(x) =

{
(a · (1− x))p, v(t) > 0;

(a · x)p, v(t) < 0,
(16)

v(t) = [Ronx+Roff (1− x)] · i(t) (17)

where state variable x is a normalized width of the

conducting layer, whose derivative is matched to mem-

ristor current-voltage data. f(x) is a speed adaptive

state variable function. von, voff are positive and nega-

tive threshold voltages respectively. kon, koff represent

the average ion mobility of oxygen vacancies. a, p are

scaling parameters, which determine the indirect effect

drift speed. kon, koff , a and p are fitting parameters

that can be adjusted to describe different memristive

devices. Ron and Roff are the bounds of device resis-

tance, whose corresponding state variable is x(t) = 1

and x(t) = 0. The change of state variable occurs only

when the threshold voltage is surpassed.

Table 2 THE PARAMETERS OF DSAM MODEL

Parameters of DSAM Setting 1 Setting 2

a 2.1 2.1
p 1.8 1.8

kon 50 20
koff 30 10

von(V) 0.3 0.5
voff (V) -0.3 -0.5
Ron(kΩ) 1 1
Roff (kΩ) 10 10

The parameters of DSAM model used in this work

are listed in Table 2. As shown in Fig. 4, different

parameters will lead to different memristance change

rates. If the applied voltage is higher than the posi-

tive threshold voltage, the memristances of DSAM will

decrease. If the applied voltage is lower than the nega-

tive threshold voltage, the memristances of DSAM will

increase. In other cases, the memristances of DSAM

remain unchanged. The initial memristance and mini-

mum memristance of DSAM are set according to the

actual situation, which will be described in the follow-

ing work.
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Fig. 4 Memristances change of DSAM memristors in two
kinds of parameter settings. The black line represents the
change of memristance in setting 1, and the red line represents
the change of memristance in setting 2. If the applied volt-
age is higher than the positive threshold voltage, the mem-
ristances of DSAM will decrease. If the applied voltage is
lower than the negative threshold voltage, the memristances
of DSAM will increase.

4 Memristive circuit design of PAD

three-dimensional emotion generation

4.1 The overall framework of emotion generation

circuit

Brain tissue structures such as thalamus, sensory cor-

tex, orbitofrontal cortex, and amygdala in the limbic

system affect and produce biological emotions [5]. In or-

der to design a bionic brain emotion generation system,

this work uses the brain emotion learning model (BEL)

[7] and the biological long short-term memory model

(B-LSTM) [56,57]. The BEL model can simulate the in-

teraction between organs related to emotional response,

and establish a rapid emotional response mechanism for

external stimuli based on the short reflex pathway of

the brain. The B-LSTM model is constructed based on

two types of synaptic plasticity inspired by brain mem-

ory. In this work, the volatile memristor model is used

to achieve short-term plasticity, while the non-volatile

memristor model is used to achieve long-term plastic-

ity. The B-LSTM model can selectively remember long-

term information without paying a great price, and is

suitable for dimensional sentiment analysis.

Based on the basic models mentioned above, this

work designs a complete PAD three-dimensional emo-

tion generation memristive circuit. As shown in Fig. 5,

the sensor obtains text, speech, and visual data, which

are then processed by emotion algorithms to extract

multimodal input signals. The multimodal input sig-

nals are modeled using the BEL model, which includes

the thalamus module, the sensory cortex module, the

orbitofrontal cortex module, to obtain the output of the

pleasure dimension in the emotion signal. Similarly, to

obtain the arousal dimension output, the multimodal

input signals are modeled using the BEL model, but

Text 
data

Speech 
data

Visual 
data

thalamus Sensory
cortex

Orbitofrontal
cortex

amygdala
Polarity

judgment Pleasure

Sensory
cortex

Orbitofrontal
cortex

amygdala Polarity
judgment Arousal

B-LSTM
module

Polarity
judgment Dominance

Mutimodal
input

PAD modification and 
face visualization

Pleasure signal

Arousal signal

Dominance signal

Fig. 5 The overall framework of the PAD three-dimensional
emotion generation memristive circuit. The multimodal input
includes text mode, speech mode and visual mode. The BEL
model, B-LSTM model, D-S evidence theory and polarity
judgment module are used to generate pleasure signal, arousal
signal and dominance signal. The results correspond to the
emotions in the three-dimensional PAD emotional space, and
finally the visual face map is obtained.

without the thalamus module, allowing for faster gen-

eration of arousal signals and increased sensitivity to

external inputs [50]. Meanwhile, the multimodal input

signals are modeled using a B-LSTM model including

a short-time memory module and a long-time memory

module to obtain the dominance signal. Importantly,

in the amygdala module, the D-S evidence theory is

used to weight the previous signals to obtain more accu-

rate emotional signal results. In addition, the obtained

pleasure signal, arousal signal, and dominance signal

are numerical results of the emotion signal, while po-

larity requires separate determination. Therefore, the

polarity judgment module are added to handle the de-

termination of polarity. Therefore, the overall frame-

work of this work is: First, the sensors acquire text,

speech and visual data, which are then processed by

software algorithms to obtain the corresponding input

signals. Next, brain-like emotion generation circuits are

utilized to obtain the outputs of the three dimensional

emotion space, which expresses a variety of emotions.

Finally, the obtained three dimensional emotion signals

are processed and visualized for output.

4.2 Memristive circuit design

This work proposes a PAD three-dimensional emotion

generation system based on D-S evidence theory and

designs a brain-like emotion generation memristive cir-

cuit. It includes the multimodal input module, three

emotional signals (pleasure signal, arousal signal, dom-

inance signal) generation module and facial emotion vi-

sualization module. Next, it will be introduced in three
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parts. The first part is multimodal input, the second

part is weighted summation to generate emotional sig-

nals, and the third part is PAD emotional space repre-

sentation and visual output.

4.2.1 Multimodal input

The text, speech, and visual sensors collect environmen-

tal data, and the corresponding emotional numerical

scoring results are obtained by the emotion recognition

algorithm respectively. The results are sent to the sig-

nal generator to obtain the pulse signal with the peak

value of the emotional value, which is the multimodal

input signal of the circuit. The range of emotional scor-

ing results is [0, 1]. The closer to the maximum value,

the more positive the emotion is. On the contrary, the

closer to the minimum value, the more negative the

emotion is. The frequency of the pulse signal generated

by the signal generator is set to 20 Hz. Brain waves are

some spectral bands with a strong correlation between

activity and mental and emotional states in EEG [53],

which can be divided into five categories. The frequency

of β wave is about 13 Hz to 30 Hz, and the human

state is thinking and conscious. β wave is the most

common wave band in waking, which is very important

in conscious states such as cognitive reasoning, calcu-

lation, reading, communication, and thinking. Higher

levels of β waves have been found to have a stimulat-

ing and awakening effect, leading to anxiety, an inabil-

ity to relax, elevated levels of adrenaline, and increased

stress. Lower levels of β waves can result in depression,

poor cognitive abilities, and lack of concentration. On

the other hand, an optimal range of β waves is asso-

ciated with consistent attention, strong memory, and

high problem-solving abilities. Therefore, in this work,

the circuit is designed with a multimodal input signal

frequency of 20Hz, which better aligns with the normal

wakeful state of humans.

4.2.2 Weighted summation generates emotional signals

In this work, the BEL model is used to obtain the plea-

sure signal, and the polarity is consistent with the po-

larity of the text signal. The BEL model without the

thalamus module is used to obtain the arousal signal,

and the polarity is consistent with the polarity of the

speech signal. The B-LSTM model is used to obtain the

dominant signal, which is consistent with the polarity

of the visual signal.

As shown in Fig. 6, the range of multimodal in-

put signals of text, speech, and visual is [0V, 1V]. The

multimodal input signals undergo a series of process-

ing stages, including the thalamus module, sensory cor-

tex module, orbitofrontal cortex module and amygdala

module. In the amygdala module, the signals are sub-

jected to weighted operations, resulting in numerical

values for pleasure signals. These weights are calculated

using the D-S evidence theory. The signals are then fur-

ther processed in the pleasure signal generation mod-

ule through summation operations. Subsequently, they

pass through the polarity judgment module to align the

pleasure signal with the polarity of the text signal, ul-

timately producing the pleasure signal result. The out-

put of this process is utilized for visualizing subsequent

facial expressions. The range of the pleasure signal is [-

1V, 1V]. BEL model and D-S evidence theory can sim-

ulate the information processing structure with emo-

tional function in the brain’s limbic system, and com-

plete the emotional generation process more bionically.
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Fig. 6 Pleasure signal generating circuit. This circuit utilizes
non-volatile memristors and volatile memristors to simulate
synapses and neurons, respectively. It is modeled using the
BEL model, replicating certain brain tissue structures within
the limbic system, such as the thalamus module, sensory cor-
tex module, orbitofrontal cortex module, and amygdala mod-
ule. The amygdala module performs weighted operations with
the weights calculated using the D-S evidence theory. The
pleasure signal generation module performs summation oper-
ations to obtain absolute value results of the pleasure signal,
and the resulting signal is then passed through the polarity
judgment module to ensure that the pleasure signal is consis-
tent with the polarity of the text signal, ultimately outputting
the pleasure signal result.

In the thalamus module, the multimodal input sig-

nals pass through volatile memristors VM1-VM3 re-

spectively, causing a decrease in their memristances and

an increase in the voltages across A1-A3. When the

voltages reach the threshold voltages of COMP1-COMP3

at 0.2V, the outputs are 1V, otherwise, the outputs

are 0V. That is to say, only when the memristances

of VM1-VM3 decrease to a certain value and VA1-VA3

are greater than the threshold voltage, do the thalamus

module have outputs. The signals then pass through

the multipliers Mult1 -Mult3 to ensure that there are

outputs when there are inputs. In the sensory cortex
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module, the pulse signals output from the thalamus

module are passed through the non-volatile memris-

tors DSAM1-DSAM3 (parameters are Setting 1 in Ta-

ble 2, Rinit=9.9 kΩ, Ron=1 kΩ), and the input pulse

signals are further processed by changing the memris-

tances. R4-R6 convert the current signals into the volt-

age signals. The orbitofrontal cortex module is used to

regulate the input signals of the sensory cortex. R7-

R9 and C1 achieve the mean value operation, namely

VC = (VB1 + VB2 + VB3)/3. DSAM4 (parameters are

Setting 1 in Table 2,Rinit=3.1 kΩ,Roff=10 kΩ) is con-

nected inversely, and then through an inverse amplifier,

following VD = −(R10/DSAM4) ∗ VC , the output re-

sults are fed back to the sensory cortex module through

the adders. The amygdala module is very important in

emotion generation. DSAM5-DSAM7 (parameters are

Setting 1 in Table 2,Rinit=9.9 kΩ,Ron=2 kΩ) simulate

the function of synapses. VB1-VB3 pass through three

inverse amplifiers respectively, and then pass through

the in-phase amplifier to achieve weighted operation,

namely VE1 = 0.64 ∗ (−R11/DSAM5), VE2 = 0.2 ∗
(−R12/DSAM6), VE3 = 0.16 ∗ (−R13/DSAM7).

Table 3 THE BPA OF PLEASURE SIGNAL

X1 X2 X3

P1 0.8 0.2 0.3
P2 0.1 0.5 0.3
P3 0.1 0.3 0.4

Using D-S evidence theory, the pleasure signal is

divided into three parts, namely the hypothesis recog-

nition framework θ = {P1, P2, P3}. The evidence from
text mode, speech mode, and visual mode are X1, X2,

and X3 after passing through the inverse amplifiers in

the amygdala module. BPA is shown in Table 3. Let

P1 ∩ P2 ∩ P3 = P , calculate the normalization coeffi-

cient:

K =
∑
P ̸=ϕ

m1(P1)m2(P2)m3(P3)

= 0.8× 0.2× 0.3 + 0.1× 0.5× 0.3 + 0.1× 0.3× 0.4

= 0.075

(18)

After information fusion, the probability distributions
of P1, P2, and P3 are:

(m1 ⊕m2 ⊕m3)P1 =
1

K

∑
P=P1

m1(P1)m2(P2)m3(P3)

=
1

0.075
× 0.1× 0.5× 0.3

= 0.64

(19)

(m1 ⊕m2 ⊕m3)P2 =
1

K

∑
P=P2

m1(P1)m2(P2)m3(P3)

=
1

0.075
× 0.1× 0.3× 0.4

= 0.2

(20)

(m1 ⊕m2 ⊕m3)P3 =
1

K

∑
P=P3

m1(P1)m2(P2)m3(P3)

=
1

0.075
× 0.8× 0.2× 0.3

= 0.16

(21)

The polarity of the pleasure signal is consistent with

the polarity of the text signal. When the text signal is

greater than 0.5V, the pleasure polarity is positive; oth-

erwise, it is negative. In the polarity judgment module,

the text signal is connected to an NMOS tube with

a threshold voltage of 5.5V. When the polarity of the

text signal is positive, the NMOS tube is turned on,

and the signal is inverted and output as a 5V voltage.

The signal then passes through an AND gate, and po-

larity judgment module ultimately outputs a high-level

signal. Conversely, when the polarity of the text sig-

nal is negative, the polarity judgment module outputs

a low-level signal.

In the pleasure signal generation module, firstly, the

emotional signals input by the amygdala module are

summed, that is, V f = −(V e1+V e2+V e3), and then

the signal is further processed by DSAM8 (parameters

are Setting 2 in Table 2, Rinit=9.9 kΩ, Ron=4 kΩ) and

R30 to obtain the amplitude of the pleasure signal, and

then the polarity is corrected. The NMOS and PMOS

tubes are used as switches. When the input signal of

the polarity judgment module is high, the NMOS tube

is turned on and the PMOS tube is cut off. The emo-

tion signal VG is then passed through two inverters and

input into the adder Add4 at IN2, where it is added to

the positive polarity pleasure signal IN2 with a value of

0V at IN1. Finally, the resulting positive polarity plea-

sure signal is output from the OUT port. When the

input signal of the polarity judgment module is low,

the NMOS tube is cut off, the PMOS tube is turned

on, the IN2 port of the adder Add4 is input 0V, and

the emotional signal VG passes through an inverter to

obtain a negative pleasure signal, which is input to the

IN1 port of the adder Add4, and finally the OUT port

outputs a negative pleasure signal. In this way, the po-

larity adjustment of the pleasure signal is realized and

the correct pleasure signal is finally obtained.

As shown in Fig. 7, the arousal signal generation cir-

cuit uses a BEL model that does not pass through the

thalamus module, making the brain-like system respond
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Fig. 7 Arousal signal generation circuit. This circuit is mod-
eled using the BEL model, including the sensory cortex mod-
ule, orbitofrontal cortex module, and amygdala module. The
amygdala module performs weighted operations with the
weights calculated using the D-S evidence theory. The arousal
signal generation module performs summation operations to
obtain absolute value results of the arousal signal, and the
resulting signal is then passed through the polarity judgment
module to ensure that the arousal signal is consistent with
the polarity of the speech signal, ultimately outputting the
arousal signal result.

more quickly to the stimulation of the input signal. The

range of multimodal input signals of text, speech, and

visual is [0V, 1V]. The multimodal input signals un-

dergo a series of processing stages, including sensory

cortex module, orbitofrontal cortex module and amyg-

dala module. In the amygdala module, the signals are

subjected to weighted operations, resulting in numerical

values for arousal signals. These weights are calculated

using the D-S evidence theory. The signals are then

further processed in the arousal signal generation mod-

ule through summation operations. Subsequently, they

pass through the polarity judgment module to align the

arousal signal with the polarity of the speech signal, ul-

timately producing the arousal signal result. The out-

put of this process is utilized for visualizing subsequent

facial expressions. The range of arousal signal is [-1V,

1V].

In the sensory cortex module, when the multimodal

input signals are greater than the threshold of DSAM9-

DSAM11 (parameters are Setting 1 in Table 2, Ron=1

kΩ),Rinit=9.9 kΩ, the memristances decrease, the volt-

ages at H1-H3 points increase, and the signals are in-

put into the orbitofrontal cortex module and amygdala

module. The orbitofrontal cortex module is used to reg-

ulate the input signals of the sensory cortex, DSAM12

(parameters are Setting 1 in Table 2, Rinit=3.1 kΩ,

Roff=10 kΩ) is connected inversely. The amygdala mod-

ule is used to further generate emotional signals. The

H1-H3 points voltage signals are respectively passed

through DSAM13-DSAM15 (parameters are Setting 1

in Table 2, Rinit=9 kΩ, Ron=1 k Ω) and an inverse

amplifier, and then weighted by the in-phase ampli-

fier, that is, VK1=0.14∗(-R49/ DSAM13), VK2 = 0.5 ∗
(−R50/DSAM14), VK3 = 0.36 ∗ (−R51/DSAM15).

Using D-S evidence theory, the arousal signal is di-

vided into three parts, namely the hypothesis recogni-

tion framework θ = {A1, A2, A3}. The evidence from

text mode, speech mode, and visual mode are Y 1, Y 2,

and Y 3 after passing through the inverse amplifiers in

the amygdala module. BPA is shown in Table 4. Let

A1 ∩ A2 ∩ A3 = A, calculate the normalization coeffi-

cient:

Table 4 THE BPA OF AROUSAL SIGNAL

Y 1 Y 2 Y 3

A1 0.4 0.1 0.3
A2 0.3 0.7 0.2
A3 0.3 0.2 0.5

K =
∑
A ̸=ϕ

m1(A1)m2(A2)m3(A3)

= 0.4× 0.1× 0.3 + 0.3× 0.7× 0.2 + 0.3× 0.2× 0.5

= 0.084

(22)

After information fusion, the probability distributions
of A1, A2, and A3 are:

(m1 ⊕m2 ⊕m3)A1 =
1

K

∑
A=A1

m1(A1)m2(A2)m3(A3)

=
1

0.084
× 0.4× 0.1× 0.3

= 0.14

(23)

(m1 ⊕m2 ⊕m3)A2 =
1

K

∑
A=A2

m1(A1)m2(A2)m3(A3)

=
1

0.084
× 0.3× 0.7× 0.2

= 0.5

(24)

(m1 ⊕m2 ⊕m3)A3 =
1

K

∑
A=A3

m1(A1)m2(A2)m3(A3)

=
1

0.084
× 0.3× 0.2× 0.5

= 0.36

(25)

The polarity of the arousal signal is consistent with

the polarity of the speech signal. When the speech sig-

nal is greater than 0.5V, the arousal polarity is positive;
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otherwise, it is negative. In the arousal signal genera-

tion circuit, the output signals of the amygdala module

are summed, namely, VL = −(VK1 + VK2 + VK3), and

then the signal is further processed by DSAM16 (pa-

rameters are setting 2 in Table 2, Rinit=9 kΩ, Ron=2

kΩ) and R68, the amplitude of the pleasure signal is

VM = R68 ∗ VL/(R68 +DSAM16). The polarity judg-

ment process of the arousal signal is similar to the plea-

sure signal and is finally output by the adder Add8.
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Fig. 8 Dominance signal generation circuit. The B-LSTM
model is used to simulate biological short-term memory and
long-term memory. The long-term memory module performs
weighted operations and the weights calculated using the D-
S evidence theory. The dominance signal generation module
performs summation operations to obtain absolute value re-
sults of the dominance signal, and the resulting signal is then
passed through the polarity judgment module to ensure that
the dominance signal is consistent with the polarity of the
visual signal, ultimately outputting the dominance signal re-
sult.

As shown in Fig. 8, the range of multimodal input

signals of text, speech, and visual is [0V, 1V]. VM4-

VM6 and R80-R82 are used to simulate short-term

memory function. When there are inputs, the mem-

ristances of the volatile memristors decrease, and the

N1-N3 point voltages increase. When there are no in-

puts, the memristances of VM4-VM6 automatically re-

turn to their original state. Then the signals are in-

put into the long-term memory module and the mem-

ristances of DSAM17-DSAM19 (parameters are Set-

ting 1 of table 2, Rinit=8 kΩ, Ron=2 kΩ) change.

When there are no input signals, the memristance will

not return to the original state, that is, the long-term

memory function is simulated. Similar to the previous

amygdala module, the in-phase amplifier is used to re-

alize the weighting function. That is VO1 = 0.125 ∗
(−R83/DSAM17), VO2 = 0.125 ∗ (−R84/DSAM18),

VO3 = 0.75 ∗ (−R97/DSAM19).

Using D-S evidence theory, the dominance signal is

divided into three parts, namely the hypothesis recog-

nition framework θ = {D1, D2, D3}. The evidence from
text mode, speech mode, and visual mode are Y 1, Y 2,

Table 5 THE BPA OF DOMINANCE SIGNAL

Z1 Z2 Z3

D1 0.4 0.3 0.1
D2 0.3 0.4 0.1
D3 0.3 0.3 0.8

and Y 3 after passing through the inverse amplifiers in

the amygdala module. BPA is shown in Table 5. Let

D1 ∩D2 ∩D3 = D, calculate the normalization coeffi-

cient:

K =
∑
D ̸=ϕ

m1(D1)m2(D2)m3(D3)

= 0.4× 0.3× 0.1 + 0.3× 0.4× 0.1 + 0.3× 0.3× 0.8

= 0.096

(26)

After information fusion, the probability distributions

of D1, D2, and D3 are:

(m1 ⊕m2 ⊕m3)D1 =
1

K

∑
D=D1

m1(D1)m2(D2)m3(D3)

=
1

0.096
× 0.4× 0.3× 0.1

= 0.125

(27)

(m1 ⊕m2 ⊕m3)D2 =
1

K

∑
D=D2

m1(D1)m2(D2)m3(D3)

=
1

0.096
× 0.3× 0.4× 0.1

= 0.125

(28)

(m1 ⊕m2 ⊕m3)D3 =
1

K

∑
D=D3

m1(D1)m2(D2)m3(D3)

=
1

0.096
× 0.3× 0.3× 0.8

= 0.75

(29)

The polarity of the dominance signal is consistent

with the polarity of the visual signal. When the visual

signal is greater than 0.5V, the dominance polarity is

positive; otherwise, it is negative. In the dominance sig-

nal generation circuit, the output signals of the long-

term memory module are summed, that is, the value of

the pleasure signal is VP = −(VO1 + VO2 + VO3). The

principle of the polarity judgment module is the same

as the previous emotional signal so that the polarity of

the dominance signal is consistent with the polarity of

the visual signal, and the final result is output through

the adder Add9. The range of the dominant signal is

[-1V, 1V].
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4.2.3 PAD emotional space representation and

visualization

Based on the above basic theory and circuit design,

the multimodal input signals of text, speech, and visual

generate the emotional signals of the PAD emotional

model, that is, the pleasure signal, the arousal signal,

and the dominance signal. The range of the signal is

[-1V, 1V]. The three signals form the final emotion in

the PAD three-dimensional space, and the coordinate

origin (0V, 0V, 0V) in the space is neutral emotion.

To represent emotions more intuitively and specifi-

cally, this work inputs the final output of the circuit’s

pleasure signal, arousal signal, and dominance signal

results into MATLAB to realize facial emotion visual-

ization. The neutral emotional face is shown in Fig. 9.

Fig. 9 Natural face image. The output of the PAD model
is (0V, 0V, 0V) corresponding to the neutral emotional face
image.

Using eyebrows, eyes, nose, and mouth to express

emotions. The pleasure signal represents the degree of

psychological pleasure. When the pleasure signal po-

larity is positive, the nose appears thinner. When the

pleasure signal polarity is negative, the nose is wider.

The polarity of the arousal signal represents the level of

psychological alertness. When the polarity of the plea-

sure signal is positive, the eyes are larger, and when

the polarity is negative, the eyes are smaller. The dom-

inance signal represents the degree of subjective control

of the emotional state and affects the curved shape of

eyebrows and mouths. The specific visual face image

will be explained in detail in the next section.

5 Circuit simulation and analysis of memristive

PAD three-dimensional emotion generation

5.1 Simulation results

The text signal, speech signal, and visual signal are

pulse signals with a frequency of 20Hz, where the am-

plitude represents the intensity of emotions. The signal

range is [0V, 1V]. When the signal is greater than 0.5V,

the polarity is considered positive, otherwise, it is neg-

ative. Text, speech, and visual signals can have eight

polarity combinations, namely eight input modes, as

shown in Table 6. ’+’ means the polarity of the input

signal is positive, and ’-’ means the polarity of the input

signal is negative. Each mode is simulated in PSPICE

to verify the feasibility of the circuit.

Table 6 THE AMPLITUDE OF INPUT SIGNALS

Input mode Text signal Speech signal Visual signal

1 0.95(+) 0.75(+) 0.51(+)
2 0.75(+) 0.30(-) 0.99(+)
3 0.78(+) 0.85(+) 0.15(-)
4 0.38(-) 0.79(+) 0.95(+)
5 0.80(+) 0.15(-) 0.10(-)
6 0.40(-) 0.80(+) 0.40(-)
7 0.30(-) 0.45(-) 0.86(+)
8 0.22(-) 0.28(-) 0.35(-)

Using the first input mode from Table 6 as an ex-

ample, we observe the change in memristance of the

eight non-volatile memristors to simulate the process

of brain-like emotion generation. Through this simula-

tion, we can obtain the pleasure signal, arousal signal,

and dominance signal. Fig.10 shows the pulse waveform

of the signals in the first input mode, and the results

of the three emotional signals: pleasure signal, arousal

signal and dominance signal.
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Fig. 10 The first input mode. The amplitudes of the text,
speech and visual pulse signals are 0.95V, 0.75V and 0.51V,
respectively. The final pleasure signal, arousal signal and
dominance signal are 0.782V, 0.673V and 0.451V, respec-
tively.

The memristance changes of non-volatile memris-

tors DSAM1-DSAM8 in the pleasure signal generation

module is shown in Fig.11. The input signals pass through

the thalamus module to obtain the outputs of mult1 -

mult3. The larger the amplitude of the input pulse sig-

nals, the larger the output signals. In the sensory cor-

tex module, the output signals exceed the threshold

of DSAM1-DSAM3, resulting in the decrease of their

memristances, and the results of VB1-VB3 change ac-

cordingly. The memristance of DSAM4 in the orbitofrontal
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cortex module increases to obtain the VD that regulates

the emotional signal. The orbitofrontal cortex module

feeds back the VD signal to the sensory cortex module

to indirectly regulate the emotional signal. The VB1-

VB3 signals pass through the amygdala module, which

reduces the memristances of DSAM5-DSAM7, and is

weighted by the proportional circuit to obtain VE1-VE3.

They are then summed by pleasure signal generation

module, so that the memristance of DSAM8 is reduced,

and the pleasure signal amplitude result VG is obtained.

The polarity judgment module judges pleasure signal

as positive, and finally outputs the the pleasure signal

Vpleasure.
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Fig. 11 In the first input mode, the memristance change
of non-volatile memristors DSAM1-DSAM8 in the pleasure
signal generation module.

The memristance changes of the non-volatile mem-

ristors DSAM9-DSAM16 in the arousal signal genera-

tion module is shown in Fig. 12. In the sensory cor-

tex module, the input signals exceed the threshold of

DSAM9-DSAM11, resulting in the decrease of their mem-
ristances, and the results of VH1-VH3 change accord-

ingly. In the orbitofrontal cortex module, the mem-

ristance of DSAM12 increases to obtain the VJ that

regulates the emotional signal. The orbitofrontal cor-

tex module feeds back the VJ signal to the sensory

cortex module to indirectly regulate the regulation of

emotional signals. The VH1-VH3 signals pass through

the amygdala module, which reduces the memristances

of DSAM13-DSAM15, and is weighted by the propor-

tional circuit to obtain VK1-VK3. They are then summed

by the arousal signal generation module, so that the

memristance of DSAM16 is reduced, and the amplitude

result VM of arousal signal is obtained. The polarity

judgment module judges the arousal signal as positive,

and finally outputs the arousal signal Varousal.

The memristance changes of non-volatile memris-

tor DSAM17-DSAM19 in the dominance signal gener-

ation module is shown in Fig. 13. The input signals

pass through the short-term memory module to obtain

VN1-VN3. In the long-term memory module, VN1-VN3
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Fig. 12 In the first input mode, the memristance change
of non-volatile memristors DSAM9-DSAM16 in the arousal
signal generation module.

are greater than the threshold of DSAM17-DSAM19,

resulting in a decrease in their memristances. Then the

signals are weighted by the proportional circuit to ob-

tain VO1-VO3. They are then summed by the dominance

signal generation module, and combine the results of

the polarity judgment module to finally output the pos-

itive dominance signal Vdominance.
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Fig. 13 In the first input mode, the memristance change of
non-volatile memristors DSAM17-DSAM19 in the dominance
signal generation module.

The simulation results of other input modes in Ta-

ble 6 are shown in Fig. 14- 20. It can be found that

the eight input signal polarity combinations can obtain

emotional results scattered in eight quadrants in three-

dimensional space. Eight emotional results are shown

in Table 7. PAD three-dimensional emotional space re-

sults are shown in Fig. 21.

Table 7 emotional results of simulation experiments
under eight input modes

Vpleasure(V) Varousal(V) Vdominance(V) emotion

0.782 0.673 0.451 Happy
0.655 -0.654 0.844 Relaxed
0.595 0.524 -0.197 Dependent
-0.503 0.781 0.797 Anger
0.470 -0.035 -0.103 Meek
-0.17 0.389 -0.146 Fear
-0.136 -0.306 0.601 Contemptuous
-0.01 -0.03 -0.058 Sad
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Fig. 14 In the second input mode in Table 6, the waveform of
input signals and emotional signals in the brain-like emotion
generation memristive circuit. The amplitudes of the text,
speech and visual pulse signals are 0.75V, 0.3V and 0.99V, re-
spectively. The final pleasure signal, arousal signal and dom-
inance signal are 0.655V, -0.654V and 0.844V, respectively.
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Fig. 15 In the third input mode in Table 6, the waveform
of input signals and emotional signals in the brain-like emo-
tion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.78V, 0.85V and
0.15V, respectively. The final pleasure signal, arousal signal
and dominance signal are 0.595V, 0.524V and -0.197V, re-
spectively.
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Fig. 16 In the fourth input mode in Table 6, the waveform
of input signals and emotional signals in the brain-like emo-
tion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.38V, 0.79V and
0.95V, respectively. The final pleasure signal, arousal signal
and dominance signal are -0.503V, 0.781V and 0.797V, re-
spectively.

On the positive polarity of each dimension of the

PAD three-dimensional emotion model, the neutral emo-

tion value is 0V, and the maximum value is 1V. Tak-

ing the pleasure signal as an example, the value of the
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Fig. 17 In the fifth input mode in Table 6, the waveform
of input signals and emotional signals in the brain-like emo-
tion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.80V, 0.15V and
0.10V, respectively. The final pleasure signal, arousal signal
and dominance signal are 0.470V, -0.035V and -0.103V, re-
spectively.
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Fig. 18 In the sixth input mode in Table 6, the waveform
of input signals and emotional signals in the brain-like emo-
tion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.40V, 0.80V and
0.40V, respectively. The final pleasure signal, arousal signal
and dominance signal are -0.170V, 0.389V and -0.146V, re-
spectively.
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Fig. 19 In the seventh input mode in Table 6, the wave-
form of input signals and emotional signals in the brain-like
emotion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.30V, 0.45V and
0.86V, respectively. The final pleasure signal, arousal signal
and dominance signal are -0.136V, -0.306V and 0.601V, re-
spectively.

emotional signal is from 0V to 1V, indicating that the

emotion is more excited. In the negative polarity of each

dimension, the minimum value is -1V and the maximum
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Fig. 20 In the eighth input mode in Table 6, the waveform
of input signals and emotional signals in the brain-like emo-
tion generation memristive circuit. The amplitudes of the
text, speech and visual pulse signals are 0.22V, 0.28V and
0.35V, respectively. The final pleasure signal, arousal signal
and dominance signal are -0.01V, -0.03V and -0.058V, respec-
tively.
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Fig. 21 PAD three-dimensional emotional space results un-
der eight input modes. Eight emotions in three-dimensional
space are distributed in eight quadrants.

value is 0V. Taking the pleasure signal as an example,

when the value of the emotional signal is from -1V to 0V

(not included), it means that the emotion is sadder and

sadder. It can be seen that through the proposed circuit,

different input signals can produce different emotions in

different environments.

Finally, according to the experimental results of the

emotional signals, the data are imported into MAT-

LAB for simulation, and the corresponding face images

are obtained to realize the visual outputs, as shown in

Fig. 22.

Happy relaxed dependent anger

meek fear contemptuous sad

Fig. 22 The corresponding emotional visualization output
face images under the eight input modes in Table 6.

5.2 Analysis

By analyzing the input signals in Table 6 and the simu-

lation results in Table 7, it can be observed that the

proposed PAD three-dimensional emotion generation

memristive system is able to generate different emo-

tions like human beings, and there exists a nonlinear

mapping relationship between circuit inputs and out-

puts. This proves that the proposed circuit has bionic

brain-like emotion generation ability, and the emotional

results are more accurate and the emotional expression

range is larger. Figure 23 draws the complete experi-

mental flowchart of this work. The sensors acquire mul-

timodal data, and then the signal generators produce

pulse signals, and the pulse signals are input into the

proposed brain-like bionic circuit to obtain the emo-

tion signals. In this work, the pleasure signal is consid-

ered to have the same polarity as the text signal, the

arousal signal is considered to have the same polarity as

the speech signal, the dominance signal is considered to

have the same polarity as the visual signal. The emotion

signals pass through the polarity judgment module to

get the final output signals. Taking the first mode as an

example, the input pulse signal amplitudes are (0.95V,

0.75V, 0.51V), and the generated emotion signal results

are (0.782V, 0.673V, 0.451V). Since all the input signal

amplitudes are greater than 0.5V, the output signals

have positive polarity, resulting in the final output sig-

nals of (0.782V, 0.673V, 0.451V). This indicatesa posi-

tive, highly active, subjective emotion, i.e., the emotion

”happy”. The facial expression associated with ”happy”

includes raised eyebrows, widened eyes, narrowed nos-

trils, and upward-turned corners of the mouth. Further

analysis of the other seven simulation results leads to

the following conclusions:

Text data

Speech 
data

Visual 
data

Signal 
Generator

Signal 
Generator

Signal 
Generator

BEL 
model

B-LSTM 
model

BEL 
modele

pleasureV
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0.5VTextV 

positive

0.5VSpeechV 

positive

0.5VVisualV 

pleasureV

arousalV

dominanceV

Happy
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arousalV

dominanceV

0

Input data Input signals
PAD 3D emotion 

generation system

emotional 

signals

Polarity 

judgment
Output signals

Emotion and face maps 

in PAD 3D space

Fig. 23 Flowchart of the complete experiment based on the
proposed system.

1. The multimodal input signals are pulse signals. The

amplitude of the text signal, speech signal and visual
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signal affects the amplitude of the pleasure signal,

arousal signal and dominance signal. The weights

of multimodal input signals corresponding to three-

dimensional emotional signals are different. In this

work, the BEL model, B-LSTM model and D-S ev-

idence theory are used to obtain more bionic and

more accurate emotional signal amplitude results.

2. The polarity of the pleasure signal, arousal signal

and dominance signal is related to the value of the

text signal, speech signal and visual signal respec-

tively. Using the PAD three-dimensional emotion

model, the eight input modes of this work can be

distributed in eight spaces, dividing emotions more

completely and accurately.

3. According to the amplitude and polarity of the plea-

sure signal, the arousal signal and the dominance

signal, eight face images can be obtained from the

eight simulation results to visualize the emotions,

making the results more intuitive.

Table 8 COMPARISON BETWEEN THE PROPOSED
WORK WITH THE OTHER WORKS

Implementation
way

Brain-Like
mechanism

Emotional
expression model

Dimensional
differences

[21] software NO V-A(2D) NO
[22] software NO discrete NO
[42] analog NO discrete NO
[44] analog NO discrete NO
[45] analog YES discrete NO
[48] analog YES Rolls(1D) NO
[49] analog YES V-A(2D) NO

this work analog YES PAD(3D) YES

Table 8 compares the proposed work with other

studies related to emotion generation. It can be ob-

served that this work simulates parts of biological mech-

anisms of brain emotion generation, using memristors

to simulate synapses and neurons, constructing brain

tissue structures, optimizing circuit architecture, and

hardware to realize a more bionic brain-like emotion

generation function. The PAD three-dimensional emo-

tion expression model better conforms to human-like

emotions, and the D-S evidence theory effectively ex-

presses the emotional differences of the PAD model.

The system utilizes the weighted summation method

for feature fusion to obtain more accurate emotion re-

sults.

6 Conclusion

In this work, a PAD three-dimensional brain-like emo-

tion generation system is proposed, and an emotion

generation memristive circuit is designed according to

the system. The circuit can generate emotions like hu-

man beings under the influence of text features, speech

features and visual features, and express emotions in

three-dimensional space, namely, pleasure dimension,

arousal dimension and dominance dimension. The cir-

cuit uses memristors to simulate synapses and neurons

and combines the BEL model and B-LSTM model to

simulate the emotional generation mechanism and bio-

logical memory theory of the limbic system of the brain,

making the circuit structure bionic and concise. The

circuit is also combined with D-S evidence theory to

simulate the influence of multimodal input signals on

the weight of each dimensional emotional signal, which

makes the circuit more bionic and emotional expres-

sion more accurate. Each dimension in the PAD three-

dimensional emotion model is a measure of a certain

aspect of emotion, which can effectively explain human

emotions and have a wider range of emotional expres-

sions. This work also realizes the visual expression of

emotion, which is more intuitive. In addition, the sys-

tem receives external features from the sensor, gener-

ates emotional signals in the circuit, and finally obtains

a visual face image. It is a complete bionic simulation

system that can be used in specific scenarios. For ex-

ample, for people who need emotional companionship,

designing emotional robots can more accurately gen-

erate emotions and interact with them. Next, we can

optimize the circuit structure, consider personality fac-

tors, etc., to achieve a more bionic, better performance,

and larger brain-like emotion generation system.
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