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1 Introduction

In the past decade we have seen substantial progress in our fundamental understanding of
scattering amplitudes. Amongst the most recent advances, the advent of a new geometric
framework for scattering amplitudes, that of positive geometries [1], has led to new and impor-
tant results in various theories, see [2, 3] for comprehensive reviews. This new interpretation
has revealed a deeper understanding of the mathematical structures which govern scattering
amplitudes, including the relation to various topics in combinatorics, to positivity and to
the theory of cluster algebras, as well as new methods of computation. In this approach, as
opposed to classical methods based on Feynman diagrams, focus is placed on the kinematic
space encoding the momenta of the scattering particles, and the amplitudes are rather
obtained by studying particular algebraic data associated to subsets of the kinematic space.
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The main focus of this paper will be on scattering amplitudes in N = 4 super Yang-Mills
(sYM) for which there exist two positive geometry constructions to date: the amplituhedron [4],
and the momentum amplituhedron [5, 6], both of which have their advantages and drawbacks.
On the one hand, being defined in momentum twistor space, the amplituhedron encodes
polygonal Wilson loops, rather than scattering amplitudes, in the planar sector. But, since
the momentum twistors automatically encode momentum conservation, one works with a set
of unconstrained variables which in turn makes many calculations easier. On the other hand,
the momentum amplituhedron is defined directly in spinor helicity space and can therefore in
principle be extended beyond the planar sector. Moreover, it encodes directly the physics
of scattering amplitudes and it allows for easier access to information on the singularity
structure of amplitudes [7], on the relation of gauge theory and scalar theory amplitudes [8],
and on the relation between various color-ordered amplitudes [9].

In this paper we introduce a third positive geometry describing scattering processes in
planar N = 4 sYM which will be defined in the space of dual momenta. We claim this de-
scription combines the advantages of both the amplituhedron and momentum amplituhedron,
and will allow us to write down novel formulae for the integrands of scattering amplitudes.
More precisely, we will consider a close cousin of four-dimensional Minkowski space, the
split-signature space R2,2, into which we will translate the momentum amplituhedron. Our
construction will consist of two steps: first we will translate the tree-level momentum am-
plituhedron into dual space encoding for us the momenta of the scattering particles as a
null polygon with particular positivity conditions. Then, for each such null polygon, we will
identify a region in dual space corresponding to off-shell loop momenta, which will capture
the one-loop problem and allow us to write down new formulae for one-loop integrands at
any multiplicity and helicity. While here we will present only the one-loop case, this idea
can be naturally generalised to the higher-loop problem by considering a collection of points
in the one-loop region which satisfy additional mutual positivity conditions.

In this way of thinking about amplitudes in dual space we obtain a distinct loop geometry
for every fixed tree-level null polygon. However, if one is interested in finding the canonical
differential form for these geometries, that is in finding the scattering amplitude integrand,
many of these geometries are identical. It is therefore reasonable to classify only the distinct
loop geometries. This approach was pioneered by [10] where the loop amplituhedron geometry
for ABJM theory [11] was described as a fibration over the tree-level geometry. This
naturally led to the notion of tree-level chambers as subsets of the tree-level amplituhedron,
or momentum amplituhedron, which produce the same fibers. In particular within a given
chamber the loop geometry has the same shape and combinatorial structure and therefore
the same loop canonical form. This idea was further explored in [12], where the ABJM
amplituhedron was translated to its corresponding dual momentum space, and led to a
classification of chambers relevant for one-loop geometries for all particle multiplicities as well
as new formulae for one-loop integrands in ABJM theory. The N = 4 sYM case is similar:
various tree-level null polygons produce combinatorially inequivalent loop geometries, but
there is a finite number of chamber geometries that we will be able to classify and study.
Having found all chambers Cn,k for a given number of particles n and given helicity sector k,
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the L-loop integrand can be written as

Ωn,k,L =
∑

c∈Cn,k

Ωtree
c ∧ Ωloop

c , (1.1)

where the canonical differential form in each chamber naturally factorises as a wedge product
of tree and loop canonical forms.

One important and unexpected property of the chamber geometries is that they are
curvy versions of four-dimensional simple polytopes, i.e. polytopes for which every vertex is
incident to exactly four edges. Moreover, all vertices of the chamber geometries are either
vertices of the dual polygon or correspond to maximal (quadruple) cuts of amplitudes. This
observation will allow us to write down an explicit differential form Ωloop

c at one loop as
the sum of contributions over vertices of the chamber geometry. Importantly, the terms
coming from null polygon vertices vanish and the final answer is written purely in terms of
contributions coming from maximal cuts, making the answer manifestly compatible with the
prescriptive unitarity approach of [13]. In generalised unitarity the integrand, being a rational
function, may be expanded in some basis of rational functions multiplied by free coefficients
expressed in terms of on-shell functions [14]. The free coefficients of the ansatz are then fixed
by evaluating all possible cuts and ensuring they match the results from field theory. The
prescriptive unitarity approach of [13] takes this a step further by selecting a particularly
nice prescriptive basis. This prescriptive basis can be thought of as a diagonalization with
respect to taking residues on maximal cut solutions, i.e. each basis element contributes to a
single maximal cut solution whilst vanishes on all others. As such the coefficient of each basis
element is simply given by the maximal cut that defines it. Note that a prescriptive basis is
highly desirable as it forgoes the need of solving cumbersome linear algebra problems on the
coefficients. As we shall see through the course of this paper the new formulae we provide for
the one-loop integrand satisfy this prescriptive property. Therefore, prescriptive unitarity is
not assumed but rather emerges naturally from the underlying geometric description.

This paper is organized as follows. We start by recalling basic facts about the four-
dimensional split-signature kinematic space in section 2. In section 3 we provide the definition
of the momentum amplituhedron and translate it to the space of dual momenta. Then in
section 4 we discuss the tree-level geometry and introduce the notion of chambers. In section 5
we take a different approach on the loop geometry and describe it in terms of the null structure
of the dual space. Section 6 introduces a set of combinatorial labels that will allow us to
describe explicit examples of chamber geometries in section 7. We will also conjecture there
a general formula for one-loop integrands (7.29). In section 8 we provide a glimpse at the
relation of our results to cluster algebras. We end the paper with Conclusions and Outlook.

2 Four-dimensional positive kinematic space

The momenta of scattered particles for physically relevant amplitudes are given by elements of
Minkowski space R1,3. However, in order to use the positive geometries framework, we instead
consider the scattering data to be in the split-signature space R2,2 where we take the signature
to be (+,+,−,−). Let us begin by reviewing some basic notions about this kinematic space.
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The scattering data for n-particle massless scattering is encoded by a set of n four-
dimensional on-shell momenta pµ

i , where i = 1, . . . , n and µ = 1, . . . , 4, subject to the on-shell
condition p2 = 0 and momentum conservation

n∑
i=1

pµ
i = 0 . (2.1)

In the planar theory, this data can be equivalently encoded using dual momentum coordinates
xµ

i defined as

pµ
i = xµ

i+1 − xµ
i , (2.2)

with the xi subject to the periodic boundary condition xn+1 ≡ x1. In analogy to Minkowski
space, two points xµ, yµ ∈ R2,2 are said to be null-separated if

(x − y)2 := (x1 − y1)2 + (x2 − y2)2 − (x3 − y3)2 − (x4 − y4)2 = 0 . (2.3)

The collection of dual momenta xi defines a null polygon in R2,2, where consecutive points xi

and xi+1 are null-separated. Note that the definition of the dual coordinates (2.2) is invariant
under shifts of the xi by an arbitrary constant vector and for convenience we can choose
x1 = 0. This allows us to invert relation (2.2) to get

xµ
j =

j−1∑
i=1

pµ
i . (2.4)

Moreover, the on-shell condition p2 = 0 can be resolved by introducing spinor helicity
variables and writing

paȧ =
(

p0 + p2 p1 + p3

−p1 + p3 p0 − p2

)
= λaλ̃ȧ , (2.5)

where a = 1, 2, ȧ = 1, 2, and λ, λ̃ are real variables defined up to little group rescaling λ → tλ,
λ̃ → t−1λ̃. In the following we will make use of the familiar spinor brackets

⟨ij⟩ = λ1
i λ2

j − λ2
i λ1

j , [ij] = λ̃1
i λ̃2

j − λ̃2
i λ̃1

j , (2.6)

and Mandelstam variables

si1,i2,...,ir = (pi1 + pi2 + . . . pir)2 . (2.7)

An alternative way to encode the kinematic data of the planar theory is via momentum
twistors [15] defined as

zA
i = (λa

i , µ̃ȧ
i ) ≡ (λa

i , xaȧ
i λia) , (2.8)

where the spinor indices have been lowered using the two-dimensional Levi-Civita symbol.
The spinor helicity variables λ̃ are determined from momentum twistors via

λ̃ȧ
i =

⟨i − 1 i⟩µ̃ȧ
i+1 + ⟨i + 1 i − 1⟩µ̃ȧ

i + ⟨i i + 1⟩µ̃ȧ
i−1

⟨i − 1 i⟩⟨i i + 1⟩ , (2.9)
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allowing one to easily translate between momentum twistors z and spinor helicity variables
(λ, λ̃). Furthermore, one can write the following relation between invariant brackets in
momentum twistor space and distances in the dual space:

x2
ij := (xi − xj)2 = ⟨i − 1 i j − 1 j⟩

⟨i − 1 i⟩⟨j − 1 j⟩
, (2.10)

where ⟨ijkl⟩ = ϵIJKLzI
i zJ

j zK
k zL

l .

3 Momentum amplituhedron in dual space

Having established the necessary facts about the kinematic space, in this section we recall the
definition of the momentum amplituhedron Mn,k,L [5, 6], a positive geometry [1] which encodes
N(k−2)MHVn amplitudes in N = 4 sYM via its canonical differential form. Here we will also
translate the definition of the momentum amplituhedron into the space of dual momenta
in R2,2, which will allow us in the following sections to identify the loop level geometry by
studying the null-cone structure of a null polygon in the split-signature kinematic space.

3.1 Tree level

Let us denote by M(k, n) the space of all k × n matrices and by M+(k, n) the space
of all positive matrices in M(k, n), i.e. the subset of matrices with all ordered maximal
minors positive. We denote by G(k, n) the Grassmannian space of k-planes in n-dimensional
Euclidean space and by G+(k, n) the positive part of G(k, n) which consists of points that can
be parametrized by positive matrices. The tree-level momentum amplituhedron Mn,k,0 [5] is
defined as the image of the positive Grassmannian G+(k, n) through the map1

ΦΛ,Λ̃ : G+(k, n) → G(2, n)× G(2, n), C 7→ (λ, λ̃), (3.1)

where Λ ∈ M+(k − 2, n) and Λ̃ ∈ M+(k + 2, n) are two fixed positive matrices. Given a
matrix C = (cαi) ∈ G+(k, n), the map is defined as

λa
i =

k∑
α=1

(X⊥)a
αcαi, λ̃ȧ

i =
k+2∑
Ȧ=1

(Ỹ ⊥)ȧ
Ȧ
Λ̃Ȧ

i , (3.2)

where we have introduced

XĀ
α =

n∑
i=1

(Λ)Ā
i cαi, Ỹ Ȧ

α =
n∑

i=1
cαiΛ̃Ȧ

i . (3.3)

Here Ā = 1, . . . , k − 2, Ȧ = 1, . . . , k + 2, and X⊥ ∈ M(2, k) (resp. Ỹ ⊥ ∈ M(2, k + 2)) is
the orthogonal complement of X ∈ M(k − 2, k) (resp. Ỹ ∈ M(k, k + 2)). Importantly,
after specifying particular constraints on the (Λ, Λ̃), see [5] for further details, the following
positivity conditions for elements (λ, λ̃) ∈ Mn,k,0 are satisfied

1Here we define the momentum amplituhedron in terms of ‘bosonized spinor helicity’ variables. To see how
these purely bosonic variables relate to the (λ, λ̃, η, η̃) of non-chiral superspace we refer the reader to [5].
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• ⟨ii + 1⟩ > 0, [ii + 1] > 0 and si,i+1,...,i+r > 0 for all i, r = 1, . . . , n,

• the sequences {⟨12⟩, ⟨13⟩, . . . , ⟨1n⟩}, . . ., {⟨n1⟩, ⟨n2⟩, . . . , ⟨n n − 1⟩} have k−2 sign flips,

• the sequences {[12], [13], . . . , [1n]}, . . . , {[n1], [n2], . . . , [n n − 1]} have k sign flips.

Note that every point (λ, λ̃) generated by the map (3.1), that is to say every point inside the
tree-level momentum amplituhedron Mn,k,0, can be translated to a configuration of points
xi in dual space using (2.4) and (2.5). Therefore, every point (λ, λ̃) ∈ Mn,k,0 defines the
vertices of a null polygon whose edges encode the momenta of the scattering particles. The
configuration of dual points generated by this procedure satisfy the following conditions that
are direct translations of the conditions in momentum twistor space [16]:

• (xi − xj)2 ≥ 0 for all |i − j| > 1,

• the sequences

{⟨i+1 i+2⟩(xi − ℓ∗i+1 i+2)2, ⟨i+1 i+3⟩(xi − ℓ∗i+1 i+3)2, . . . , ⟨i+1 i− 2⟩(xi − ℓ∗i+1 i−2)2}

have k − 2 sign flips for all i = 1, . . . , n,

where we have defined

ℓ∗ij = 1
⟨ij⟩

j−1∑
l=1

⟨lj⟩λiλ̃l −
i−1∑
l=1

⟨li⟩λj λ̃l

 . (3.4)

In particular we have ℓ∗ii+1 = xi+1. This sign flip prescription can be easily derived from
the one in [16] by noticing that

(xi − ℓ∗i+1j)2 = ⟨i − 1ii + 1j⟩
⟨i − 1i⟩⟨i + 1j⟩

, (3.5)

and the fact that the brackets ⟨i − 1i⟩ are always positive. In the following we will mostly
use the sign flip definition of the momentum amplituhedron in the dual space, however,
the definition as the image through the function ΦΛ,Λ̃ is useful when generating particular
configurations of points satisfying the correct sign flip patterns.

3.2 Loop level

For a given point in the tree-level momentum amplituhedron (λ, λ̃) ∈ Mn,k,0 the loop
momentum amplituhedron map [6] is defined as

ϕλ,λ̃ : G(2, n) → R2,2

D 7→ y
(3.6)

given by

yµ = ℓµ + xµ
1 =

∑
i<j(ij)D⟨ij⟩ ℓ∗µ

ij∑
i<j(ij)D⟨ij⟩

, (3.7)

where (ij)D are 2 × 2 minors of the matrix D and the bi-spinor version of ℓ∗ij is defined
in (3.4). The one-loop momentum amplituhedron Mn,k,1 is then defined as the image of a
particular subset of matrices D, as explained in [6]. Importantly, this translates into the
following sign flip pattern: the point y ∈ R2,2 is inside Mn,k,1 if and only if
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• (y − xi)2 ≥ 0 for all i = 1, . . . , n,

• the sequences

{⟨i i + 1⟩(y − ℓ∗i i+1)2, ⟨i i + 2⟩(y − ℓ∗i i+2)2, . . . , ⟨i i + n − 1⟩(y − ℓi i+n−1)2} (3.8)

have k sign flips for all i = 1, . . . , n. We pick up a factor of (−1)k−1 for ⟨i a⟩ when
a > n due to the twisted cyclic symmetry, see [16] for details.

Therefore, the one-loop momentum amplituhedron Mn,k,1 is a particular subset of R2,2

determined by the tree-level configuration (λ, λ̃).
Moving to higher loops, the L-loop momentum amplituhedron for L > 1 consists of

points (y1, . . . , yL) ∈ (Mn,k,1)L, i.e all loop variables yl are inside the one-loop momentum
amplituhedron, that additionally satisfy the following mutual positivity conditions

(yl − ym)2 > 0 , for l ̸= m = 1, . . . , L . (3.9)

In this paper we will solely focus on the one-loop geometry, however its structure will also
have significant implications for understanding higher loops as well, a direction that we
plan to explore in the future.

4 Chambers

Ultimately, we are interested in finding explicit forms of tree-level scattering amplitudes
and integrands for loop-level amplitudes from positive geometries. For planar N = 4 sYM,
these are encoded as the canonical differential form of the momentum amplituhedron Mn,k,L.
At tree level, there exist various approaches to find the canonical differential form of the
momentum amplituhedron Mn,k,0, here we will mostly focus on triangulating it using the
BCFW recursion relations [17]. In the context of positive geometries, BCFW triangulations
mean a subdivision of Mn,k,0 into smaller pieces, each of which is the image through the
map (3.1) of a particular boundary component of the positive Grassmannian G+(k, n).
Therefore, it is useful to first recall some facts about the boundary stratification of the
positive Grassmannian. Following the work of Postnikov [18], the boundary stratification
of the positive Grassmannian G+(k, n) consists of the so-called positroid cells that are in
one-to-one correspondence with affine permutations of n elements. We will denote the
positroid cell corresponding to a permutation σ by Sσ ⊂ G+(k, n), and for its image through
the map (3.1) we use Γσ = ΦΛ,Λ̃(Sσ).

We will be particularly interested in positroid cells in G+(k, n) of dimension 2n − 4
for which the dimension2 of Γσ is also 2n − 4. We call such cells BCFW cells and their
images BCFW triangles.3 It is conjectured that the momentum amplituhedron Mn,k,0 can
be triangulated by collections of BCFW triangles. By triangulation T we mean a collection
of BCFW cells {Sσ}σ∈T such that their images {Γσ}σ∈T are pairwise disjoint and their

2There are two publicly available packages: positroids [19] and amplituhedronBoundaries [20] that allow
for an efficient calculations of the dimensions of BCFW cells and BCFW triangles.

3In literature one can also find the notion of BCFW tiles used instead of BCFW triangles.
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Figure 1. A sketch of the two BCFW triangulations of M6,3,0.

union covers Mn,k,0. Generically, one can find multiple different BCFW triangulations for
a given n and k.

As an example, we recall the simplest case of non-trivial BCFW triangulations, relevant
for the NMHV6 amplitude. There are six BCFW cells in G+(3, 6) defined as

S
{i}
6,3 = {C ∈ G+(3, 6) : (i − 1ii + 1)C = 0}, (4.1)

where (ijk)C denotes the minors of the matrix C ∈ G+(3, 6). The canonical form for M6,3,0
can be expressed in two ways

Ω6,3,0 = I{1}
6,3 + I{3}

6,3 + I{5}
6,3 = I{2}

6,3 + I{4}
6,3 + I{6}

6,3 , (4.2)

where we have defined I{i}
6,3 as the canonical form of the BCFW triangle Γ{i}

6,3 . Geometrically,
formula (4.2) translates into the fact that the momentum amplituhedron M6,3,0 can be
divided into unions of BCFW triangles in two different ways:

M6,3,0 = Γ{1}
6,3 ∪ Γ{3}

6,3 ∪ Γ{5}
6,3 = Γ{2}

6,3 ∪ Γ{4}
6,3 ∪ Γ{6}

6,3 , (4.3)

as schematically illustrated in figure 1. At higher n and k one finds many BCFW triangulations,
each of which provides an equivalent formula for the canonical differential form of the
momentum amplituhedron.

Importantly, a point in the tree momentum amplituhedron is in general an image of points
in multiple BCFW cells, suggesting a natural alternative representation of the canonical form
as a sum over the maximal intersection of BCFW cells. At six-points this decomposition of
the tree-level geometry into maximal intersections is given explicitly by

Ω6,3,0 = I{1∩2}
6,3 + I{1∩4}

6,3 + I{1∩6}
6,3 + I{3∩2}

6,3 + I{3∩4}
6,3 + I{3∩6}

6,3 + I{5∩2}
6,3 + I{5∩4}

6,3 + I{5∩6}
6,3 ,

(4.4)

where we have defined I{i∩j}
6,3 as the canonical form associated to Γ{i}

6,3 ∩ Γ{j}
6,3 , which is the

maximal non-empty intersection of the images of BCFW cells for n = 6, k = 3. Notice in
particular the absence of the intersections of the form I{i∩(i+2)}

6,3 and I{i∩(i+4)}
6,3 which follows

from non-overlapping of terms in formula (4.2). The nine maximal intersections that of
M6,3,0 are depicted in figure 2.
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5 ∩ 6
3 ∩ 6

1 ∩ 6

1 ∩ 4

1 ∩ 2
3 ∩ 4

5 ∩ 4

5 ∩ 2
3 ∩ 2

Figure 2. A sketch of the chamber decomposition of M6,3,0.

We extend the notation that we introduced in the previous paragraph to all NMHV
amplitudes by defining

S
{i1,i2,...,ip}
n,3 = {C ∈ G+(3, n) : (i1 − 1i1i1 + 1)C = . . . = (ip − 1ipip + 1)C = 0}. (4.5)

Then, we can define Γ{i1,i2,...,ip}
n,3 to be the image of S

{i1,i2,...,ip}
n,3 through the map (3.1), and

I{i1,i2,...,ip}
n,3 to be the canonical differential form of Γ{i1,i2,...,ip}

n,3 . More generally, beyond NMHV,
we will use the notation Iσ

n,k, where σ labels a positroid cell in G+(k, n), to indicate the
canonical differential form of the image of the cell Sσ

n,k.
At higher n and k, the structure of maximal intersections of BCFW cells had not been

previously studied, and we will partially fill this gap in the following. Importantly, it is much
more intricate than that of M6,3,0. In particular, the number of BCFW cells that participate
in a maximal intersection starts to vary beyond n = 6, k = 3 case. The maximal intersection
of BCFW cells have been already used in the context of the momentum amplituhedron for
ABJM theory [10] where they were termed chambers. They will also play a crucial role in
this paper when we will study the loop geometry in the dual momentum space.

We start by introducing the notion of compatibility of BCFW cells and using it for
finding chambers for NMHV amplitudes. We will later comment on how to find chambers for
k > 3. We say that two BCFW cells Sσ1 , Sσ2 ⊂ G+(k, n) are compatible4 if there exists a
point (λ, λ̃) in the momentum amplituhedron Mn,k,0 such that (λ, λ̃) = ΦΛ,Λ̃(c1) = ΦΛ,Λ̃(c2),
for some c1 ∈ Sσ1 and c2 ∈ Sσ2 . In other words two BCFW cells are compatible if their
images through the tree-level momentum amplituhedron map overlap: Γσ1 ∩ Γσ2 ̸= ∅. Notice
that if there exists a BCFW triangulation of the momentum amplituhedron that contains
both cells Sσ1 and Sσ2 , then Sσ1 and Sσ2 are not compatible. One can construct an adjacency
graph Gn,k with vertices labelling the BCFW cells such that two vertices corresponding to
cells Sσ1 and Sσ2 are adjacent if the cells are compatible. We conjecture that all chambers for
the NMHV momentum amplituhedron Mn,3,0 can be found as maximal cliques, i.e. maximal
complete subgraphs, of Gn,3. This method allows us to find all chambers for Mn,3,0 up to

4We could equivalently consider compatibility using the amplituhedron instead of momentum amplituhedron,
see appendix A for an explicit way of finding compatible BCFW cells from the NMHV amplituhedron An,1,0.
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n 5 6 7 8 9 10
# chambers 1 9 71 728 15979 1144061

# BCFW triangulations 1 2 7 40 357 4824

Table 1. Number of chambers and number of BCFW triangulations for the momentum amplituhedron
Mn,3,0.

n = 10. The number of chambers is summarised in table 1. Interestingly, if one takes the
complement of the graph Gn,3, namely the graph where vertices are connected when cells are
not compatible, then the maximal cliques provide all possible BCFW triangulations of the
momentum amplituhedron. This is a generalisation of the statement extensively explored
in [21] for the m = 2 amplituhedron. The number of BCFW triangulations of Mn,3,0, that
can be found in table 1, also agrees with the number of triangulations of a cyclic polytope
in four dimensions and the sequence can be found on OEIS [22].

While we do not yet have a systematic way of finding all chambers beyond the NMHV case,
it is easy to generate many chambers just by sampling points in the momentum amplituhedron
Mn,k,0. Given any point (λ, λ̃) ∈ Mn,k,0 it is easy to find all BCFW triangles to which it
belongs by finding positive solutions, i.e. all α’s positive, to the set of equations

C⊥
σ (α) · λ = 0 , Cσ(α) · λ̃ = 0, (4.6)

where Cσ(α) is a parametrisation of the positroid cell Sσ. With this procedure we can generate
a subset of chambers by performing the calculation for various points (λ, λ̃) ∈ Mn,k,0. The
important difference for k > 3 is that some of the BCFW cells now have intersection number
greater than one, i.e. generically there can be more than one solutions to the equations (4.6),
see [14] for more details. The first case where this happens is for the N2MHV8 amplitude,
where there are two positroid cells in G+(4, 8), S

{6,5,8,7,10,9,12,11}
8,4 and S

{4,7,6,9,8,11,10,13}
8,4 , with

intersection number equal two. To treat it properly we will split the cells into two parts,
for example for S

{6,5,8,7,10,9,12,11}
8,4 we have

S
{6,5,8,7,10,9,12,11}
8,4 = S

{6,5,8,7,10,9,12,11},+
8,4 ∪ S

{6,5,8,7,10,9,12,11},−
8,4 , (4.7)

where the ± indicates the sign in front of the square root in two solutions to (4.6). If we denote
by Γ{6,5,8,7,10,9,12,11},±

8,4 the images of this decomposition through the map ΦΛ,Λ̃, then we find
that Γ+ ∩Γ− ̸= ∅. This means that there can be chambers containing neither of (Γ+,Γ−), one
of them or even both. By sampling points in M8,4,0, we found that all these cases are realised.
This means that the cells with intersection number two should be treated as unions as in (4.7),
with each summand treated as an independent BCFW triangle when looking for chambers.

The crucial role of chambers becomes evident at loop level, as already pointed out in [10]
for the NMHV6 amplitude based upon similar observations for ABJM theory. We find
that for a fixed point inside the tree-level momentum amplituhedron, the shape of the loop
momentum amplituhedron varies from chamber to chamber but remains the same within
a given chamber. This means that the loop part of the canonical form Ωn,k,L is the same
within a given chamber, and the differential form of Mn,k,L factorises as the wedge product
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of the tree-form and loop-form for a given chamber. This leads to the following general
decomposition of the full canonical form as the sum over chambers:

Ωn,k,L =
∑

c∈Cn,k

Ωtree
c ∧ Ωloop

c , (4.8)

where Cn,k is the set of all chambers for Mn,k,0. As pointed out in [10], this means that
no new boundaries are introduced in the loop geometry, which is triangulated using the
tree-level geometry, and the loop forms are local and give the integrands related to the
prescriptive unitarity method of [13].

Even though we do not have a systematic way of generating chambers, in the following
sections, based on the study of examples for MHV and NMHV amplitudes, we will be able
to conjecture the general form for one-loop integrands. These integrands successfully pass
tests coming from generalized unitarity.

5 Null-cone geometry

Having defined the notion of chambers, we proceed with studying the one-loop momentum
amplituhedron geometry in dual space. To understand its explicit shape, below we will
take a slightly different approach compared to section 3.2 and will describe the one-loop
geometry using the null structure of the kinematic space R2,2, similar to the approach
pioneered in [12] for ABJM theory.

5.1 Configurations of null-cones

Let us start by defining for a given point x ∈ R2,2 its null-cone Nx as the set of all points
that are null-separated from x:

Nx = {y ∈ R2,2 : (x − y)2 = 0} . (5.1)

These are equivalent to light-cones in Minkowski space R1,3 and provide a natural gener-
alisation of the three-dimensional light-cones studied in [12]. In the following we will be
interested in configurations of multiple null-cones and therefore we start here by a detailed
study of their intersections. In the following we will use the fact that to a given point
(λ, λ̃) ∈ Mn,k,0 in the tree momentum amplituhedron we can associate a collection of points
xi ∈ R2,2, i = 1, . . . , n, forming a null polygon.

For two null-cones of generic points xi, xj ∈ R2,2, their intersection

Nxi ∩Nxj = {y ∈ R2,2 : (y − xi)2 = (y − xj)2 = 0}, (5.2)

is a union of two two-dimensional surfaces that correspond to the two solutions of the
equations (y − xi)2 = (y − xj)2 = 0. However, when the points xi and xj are null-separated,
such as xi and xi+1, the solutions linearize and the intersection Nxi ∩ Nxi+1 is a union of
two affine planes that intersect along a line, as illustrated in figure 3. Importantly, further
intersections of null-cones Nxj with Nxi ∩Nxi+1 are always linear, which means that on each
of these two-dimensional planes, a configuration of null-cones produces an arrangement of
lines on a plane. A similar picture was already developed in twistor space in [23].
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xi xi+1
xi+1

xi

xi+1

xi

Figure 3. Intersection of two null-cones Nxi
and Nxi+1 for null-separated points xi and xi+1. The

planes are labelled by the two possible types of consecutive cuts of amplitude.

e+
i−1,i,i+1

e−i−1,i,i+1

xi

Figure 4. Triple intersection of null-cones Nxi−1 ∩ Nxi ∩ Nxi+1 for consecutive points on the null
polygon.

The intersection of three null-cones

e±ijk = Nxi ∩Nxj ∩Nxk
= {y ∈ R2,2 : (y − xi)2 = (y − xj)2 = (y − xk)2 = 0} , (5.3)

is generically the union of two curves in R2,2, however, when either two of the points xi,
xj and xk are null-separated then the intersection becomes two straight lines. Particularly
interesting is the case when one takes three consecutive dual point xi−1, xi and xi+1 of the
null polygon, in which case the two lines intersect at the point xi, as illustrated in figure 4.

Finally, the null-cones of four generic points, xi, xj , xk, xl ∈ R2,2, intersect at exactly
two points

{q+
ijkl, q−ijkl} = Nxi ∩Nxj ∩Nxk

∩Nxl
, (5.4)

where the points are distinguished by the sign of the determinant5

Dijkl(q) =
∣∣∣∣∣ 1 1 1 1 1
xµ

i xµ
j xµ

k xµ
l qµ

∣∣∣∣∣ . (5.5)

5Notice that the assignment of ± depends on the ordering of points xi, xj , xk, xl. In particular, if we
permute them according to a permutation τ , the sign might change: q±

τ(i)τ(j)τ(k)τ(l) = q
sign(τ)±
ijkl .
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xi xj

xkxl
3d

q+
ijkl

q−ijkl

Figure 5. Quadruple intersection of four null-cones Nxi
∩Nxj

∩Nxk
∩Nxl

= {q+
ijkl, q−ijkl}. The blue

lines in the figure are the intersections of three null-cones and not the null-lines connecting the points
q±ijkl with x’s. One can think of the points xi, xj , xk and xl as vertices of a tetrahedron in three
dimensions.

Notice that for given xi, xj , xk, xl, the kinematic space R2,2 is divided into two halfspaces
H+

ijkl = {q ∈ R2,2 : Dijkl(q) > 0} and H−
ijkl = {q ∈ R2,2 : Dijkl(q) < 0}, with q+

ijkl ∈ H+
ijkl

and q−ijkl ∈ H−
ijkl. Geometrically, the points xi, xj , xk, xl define a three-dimensional affine

linear subspace in R2,2, and the two quadruple intersections q±ijkl sit on opposite sides of
this subspace, as illustrated in figure 5.

Related to null-cones, we also define the non-negative part and non-positive part of
the R2,2 with respect to point x:

N+
x = {y ∈ R2,2 : (x − y)2 ≥ 0} , N−

x = {y ∈ R2,2 : (x − y)2 ≤ 0} . (5.6)

Then, motivated by the construction in [12], we define

Kn,k(x) := {y ∈ R2,2 : (y − xi)2 ≥ 0 for all i = 1, . . . , n} =
n⋂

i=1
N+

xi
, (5.7)

that is the intersection of the non-negative parts N+
xi

for all xi of the null polygon. The set
Kn,k(x) is non-empty since for i = 1, . . . , n we have xi ∈ Kn,k(x). Moreover, it naturally
decomposes into two regions: compact and non-compact

Kn,k(x) = ∆n,k(x) ∪∆n,k(x). (5.8)

We claim that the compact region ∆n,k(x) is the one-loop momentum amplituhedron Mn,k,1
for the chosen tree-level configuration (λ, λ̃)! An immediate implication of this statement

– 13 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
1

is that the only vertices of ∆n,k(x) are the null-polygon points xi together with quadruple
intersections q±ijkl of null-cones. In the generic case, only a subset of the quadruple intersections
sit in the non-negative part of all xi, and therefore not all of them are vertices of the compact
region ∆n,k(x). As we will see in the examples below, the explicit set of vertices of ∆n,k(x)
will depend on the tree-level configuration of points xi that will be compatible with our
definition of tree-level chambers. In order to determine which vertex is inside the geometry
∆n,k(x) we use the sign-flip description of points (3.8). This has to be done carefully, since
by the definition of points q±ijkl, some of the distances (q±ijkl − xm)2 are zero. To resolve it,
one allows for all zero entries in the sign-flip sequences to be replaced by any combination
of positive and negative entries. If there exists a resolution of zeros that gives the proper
sign-flip pattern, then the point q+

ijkl is inside ∆n,k(x).
As an example, we will check whether ℓ∗13 = q+

1234 is a vertex of ∆4,2(x). By direct
calculation we find that

sign12 sign13 sign14
sign23 sign24 −sign21
sign34 −sign31 −sign32
−sign41 −sign42 −sign43

 =


0 0 0
0 −1 0
0 0 0
0 −1 0

 , (5.9)

where signab := sign(⟨ab⟩(ℓ∗13 − ℓ∗ab)2), and the minus signs come from twisted cyclic symmetry.
In order for ℓ∗13 to be a vertex of the geometry, we need to be able to find a resolution
of this matrix such that each row has exactly two sign-flips, taking care of the fact that
signab = −signba. In this case it is easy to see that the resolution

sign12 → 1, sign13 → −1, sign14 → 1, sign23 → 1, sign24 → −1, sign34 → 1 , (5.10)

satisfies these properties, and hence we find that ℓ∗13 is indeed one of the vertices of ∆4,2(x).
Similar calculations can be easily done for any n and k for a given configuration of points
x and a given quadruple intersection q±ijkl.

Since the compact region ∆n,k(x) coincides with the one-loop momentum amplituhedron,
it is paramount to understand the properties of this region. Using the positroids package [19]
for Mathematica, we can generate matrices C whose image under the map (3.1) gives points
xi in dual space corresponding to various different chambers. Using the procedure outlined
above, we can then find the vertex set of ∆n,k(x). Once the vertex set is known, we find
the set of edges to consist of: the sections of null-rays connecting xi to xi+1, the sections
of null-rays connecting xi to a vertex q±i−1ii+1⋆, and the edges e±ijk defined in (5.3) between
vertices q±ijk⋆ and q±ijk⋆̃. We have done an exhaustive study of examples to arrive at the
following set of properties of ∆n,k(x) which we have verified for all MHV geometries, all
NMHV chambers up to n = 9, and many randomly selected chambers for k > 3. First of all,
we find that every vertex of ∆n,k(x) has exactly four edges meeting at the vertex, see figure 6.
This statement is rather trivial for the quadruple intersections q±ijkl ∈ ∆n,k(x), for which the
edges incident to q±ijkl are {e±ijk, e±ijl, e±ikl, e±jkl} where e± are defined in (5.3). Less trivially, for
all ∆n,k(x) that we studied, we find that for every i = 1, . . . , n exactly two vertices of the
form q

sj

i−1ii+1j for some j = ⋆, ⋆̃ and sj = ±, are inside ∆n,k(x). Then the four edges incident
to the vertex xi are: two sections of the lines e±i−1ii+1 connecting xi to vertices q

sj1
i−1ii+1⋆ and
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e±jkl
e±ikl

e±ijle±ijk

qijkl

e±i−1ii+1

e±i−1ii+1

xi

xi−1 xi+1

q±i−1ii+1⋆

q±i−1ii+1⋆̃

Figure 6. Local geometry around points q±ijkl and xi with null lines indicated in red.

q
sj2
i−1ii+1⋆̃ respectively, together with two edges of the null polygon that connect xi to xi−1

and xi+1. Since all vertices have four incident edges, we can think of ∆n,k(x) as a curvy
version of a simple polytope in four dimensions. Importantly, in contrast to ordinary simple
polytopes, each vertex might be incident to less than four facets of the geometry, which will
have important implications for the canonical form that we will associate to ∆n,k(x).

5.2 Differential forms

Similar to the ABJM construction developed in [12], the fact that ∆n,k(x) is a curvy version
of a simple polytope motivates us to write its canonical differential form as the sum of
contributions coming from all vertices of the geometry:

Ω [∆n,k(x)] =
∑

v∈V(∆n,k(x))
ωv, (5.11)

where V(∆n,k(x)) denotes the set of all vertices of ∆n,k(x). In particular, the set V(∆n,k(x))
contains all vertices xi and a subset of the quadruple intersections of null-cones q±ijkl. The
points q±ijkl contribute a differential form that is a wedge product of d log forms associated
to each facet meeting at that point:

ωijkl = d log(x − xi)2 ∧ d log(x − xj)2 ∧ d log(x − xk)2 ∧ d log(x − xl)2. (5.12)

The forms ωijkl have unit residues at both points q+
ijkl and q−ijkl, and in order to remove the

contribution from one of them we need to find another differential form with residues ±1
on vertices q±ijkl. The natural candidate is the box integrand

ω□
ijkl = ±d log (x − xi)2

(x − q±ijkl)2 ∧ d log (x − xj)2

(x − q±ijkl)2 ∧ d log (x − xk)2

(x − q±ijkl)2 ∧ d log (x − xl)2

(x − q±ijkl)2 , (5.13)

= 4∆(xi − xk)2(xj − xl)2 d4x

(x − xi)2(x − xj)2(x − xk)2(x − xl)2 , ∆ =
√
(1− u − v)2 − 4uv, (5.14)

where u = (xi−xj)2(xk−xl)2

(xi−xk)2(xj−xl)2 and v = (xj−xk)2(xi−xl)2

(xi−xk)2(xj−xl)2 are two cross-ratios. It is a straightforward
generalisation of the triangle integral used for ABJM theory in [12]. We can therefore define
the following combination

ω±
ijkl =

1
2(ω

□
ijkl ± ωijkl), (5.15)
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which has the desired property of having non-vanishing residue only on one of the points
q±ijkl. In particular, we have the following properties

Res
x=q±

ijkl

ω±
ijkl = 1 , Res

x=q±
ijkl

ω∓
ijkl = 0 . (5.16)

Importantly, for the vertices of the null polygon xi we find ωxi = 0 since less than
four facets meet at these vertices. This means that the dual points xi do not contribute
to the sum in (5.11). At first look it is quite surprising since naively it would indicate
that the form Ω [∆n,k(x)] has vanishing residues at points xi. However, we notice that
the forms ω±

i−1ii+1j have a non-zero (composite) residue on points xi, coming from the box
integrands, that evaluates to

Res
x=xi

ω±
i−1ii+1j = 1

2 . (5.17)

Since, as we already pointed out, exactly two points of the form q±i−1ii+1j for i = 1, . . . , n are
vertices of ∆n,k(x), the differential form on ∆n,k(x) has residues equal to 1 for all vertices
of the geometry, as they should to be a positive geometry.

Given these properties of the differential forms ω±
ijkl, we arrive at a simple formula for

the canonical form of ∆n,k(x)

Ω [∆n,k(x)] =
∑

q±
ijkl

∈V(∆n,k(x))

sgnijkl ω±
ijkl . (5.18)

The factor sgnijkl denotes a relative sign between the terms in this sum, which can be
determined by requiring that the form is projectively invariant [24]. We say that the form
Ω [∆n,k(x)] is projectively invariant if it is invariant under local GL(1) transformations

(x − v)2 → Λ(x)(x − v)2 , (5.19)

where v is any vertex of ∆n,k(x) and Λ(x) is any function of x. This is essentially the
same as requiring that Ω [∆n,k(x)] can be written purely in terms of ratios of distances
(x−v1)2

(x−v2)2 . From its explicit expression (5.13) it is clear that ω□
ijkl is manifestly projectively

invariant, we are thus only concerned with the relative signs of ωijkl. We have done extensive
checks for k = 2 (for all n) and k = 3 (up to n = 9), and to a lesser extent for k = 4,
and found that the forms Ω [∆n,k(x)] are projectively invariant if sgnijkl = 1 for all i, j, k, l!
Interestingly, this is the same statement as was found for ABJM theory in [12]. We thus
arrive at the following compact result

Ω [∆n,k(x)] =
∑

q±
ijkl

∈V(∆n,k(x))

ω±
ijkl . (5.20)

To find an explicit form for a given ∆n,k(x), it is therefore sufficient to find the vertex
set V(∆n,k(x)), a simple task when we know the explicit positions of points xi. Let us
emphasise that the forms ω±

ijkl do not contain any spurious singularities and as such (5.20)
is a purely local expression.
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We conclude this section by introducing the so-called parity-odd pentagon integrands [13]
that will be useful in the following sections:

ωDijklm = d log (x − xi)2

(x − xm)2 ∧ d log (x − xj)2

(x − xm)2 ∧ d log (x − xk)2

(x − xm)2 ∧ d log (x − xl)2

(x − xm)2

= d4x ϵ(x, i, j, k, l, m)
(x − xi)2(x − xj)2(x − xk)2(x − xl)2(x − xm)2 , (5.21)

where

ϵ(x, i, j, k, l, m) =

∣∣∣∣∣∣∣
0 (x − xi)2 (x − xj)2 (x − xk)2 (x − xl)2 (x − xm)2

1 1 1 1 1 1
xµ xµ

i xµ
j xµ

k xµ
l xµ

m

∣∣∣∣∣∣∣ . (5.22)

The pentagon integrands are cyclically symmetric

ωDijklm = ωDjklmi = . . . = ωDmijkl (5.23)

and satisfy

ωDijklm = ωijkl − ωijkm + ωijlm − ωiklm + ωjklm , (5.24)

where the expansion (5.24) can be obtained by simply expanding the determinant (5.22)
with respect to the first row. Importantly, the pentagon integrands integrate to zero on the
Minkowski contour and therefore do not contribute to the integrals for physical amplitudes
(and are therefore often neglected). We will however see in our construction that these
integrands naturally arise from the null-cone geometry.

6 Graphical representations of points in chamber geometries

Before proceeding with studying explicit examples of geometries ∆n,k(x), in this section we
introduce certain graphs encoding combinatorial information that will allow us to enumerate
particular subsets of points in ∆n,k(x), including its boundaries.

Let us consider an n-gon with boundary vertices labelled 1, 2, . . . , n clockwise we call
corners: these represent the vertices xi of ∆n,k(x). A marked point y in the interior of the
n-gon represents a point y inside ∆n,k(x). An edge internal to the n-gon connecting the
marked point y to a corner i indicates that (y − xi)2 = 0, namely that the momentum y − xi

is on-shell. Placing the difference y − xi on-shell is usually referred to as cutting a propagator,
and therefore the internal edges in our labels correspond to cuts. It is important to notice
that an off-shell momentum in four dimensions can only be cut four times and therefore there
will be at most four internal edges in our diagrams. If there are two or more internal edges,
the n-gon will be subdivided into several smaller polygons Pa. To each of these polygons
we associate a helicity ka, which is an integer ka ∈ {2, . . . , m − 2}, where m is the number
of vertices of Pa. Polygons Pa with three edges, namely triangles, are an exception to this
rule and they are allowed to have helicity 1 or 2. Additionally, we do not allow triangles
with the same helicity to share an edge. This would imply a collinear limit, and therefore a
specific kinematic configuration, while here we only consider generic kinematics. Later in
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d = 4

1

23

4

2
× 1

d = 3

1

23

4

3
× 4

d = 2

1

23

4

13 × 4

1

23

4

22 × 4

1

23

4

2
2 × 2

d = 1

1

23

4

2 × 4

1

23

4

1
2

2

× 8

d = 0

1

23

4

2 × 4

1

23

4

1

2

1

2

× 2

Table 2. Graphs associated to all boundaries of ∆4,2, where ‘×n’ refers to the number of diagrams of
each type.

this section we will explain how to assign helicities to each of the polygons Pa. We further
define the total helicity of the diagram to be the sum of helicities of all polygons Pa minus
the number of internal edges. A graph with n corners and total helicity k is said to be of
type (n, k). Its dimension equals four minus the number of internal edges, and represents
the number of degrees of freedom of point y in this configuration.

Additionally, we introduce two special types of graphs: a zero-dimensional diagram with
the marked point on a corner of the polygon, which represents the case when y = xi, and a
one-dimensional diagram without a marked point, but with a marked edge connecting two
adjacent corners of the polygon, which represents a configuration where y is on the null-edge
between xi and xi+1. We conjecture that every boundary of ∆n,k(x) can be labelled by a
diagram of type (n, k). For example, all boundaries of ∆4,2(x) are depicted in table 2. We
note that ∆4,2(x) has the same boundary structure as G+(2, 4), as expected.

We will make a particular use of the zero-dimensional graphs with four internal edges
connected to corners i, j, k, l that correspond to the position of y at the quadruple intersection
y = q±ijkl. First, let us observe that to each such graph, one can associate an on-shell
diagram. The connection is established by replacing each internal m-gon by an m-valent
vertex, and connecting all vertices whose polygons share an edge. The triangles with helicity

– 18 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
1

�

�

��

� �

�
�

�

�

�

��

�

Figure 7. A simple example illustrating the relation between a quadruple intersection diagram and
an on-shell graph.

Figure 8. An example which illustrates that the permutation associated to the above diagram has
σ(1) = 4. The full permutation associated to this diagram is {4, 5, 7, 6, 8, 9}.

1(2) correspond to white (black) trivalent vertices, while larger m-gons with helicity h should
be replaced by the on-shell diagram associated to the top cell of the positive Grassmannian
G+(h, m). An example of this association between n-gon labels and on-shell diagrams can
be seen in figure 7.

Using the relation between quadruple-cut graphs and on-shell diagrams, we can associate
a permutation σ to each such graph. To find σ(i), we follow a path that starts between
corners i and i + 1, and each time we enter an internal polygon we take the hth left turn,
where h is the helicity of the polygon. If we exit the diagram between corners j and j + 1,
then σ(i) = j. This is illustrated in 8 for a particular case. Starting from any n-gon with
a quadruple cut and total helicity k, its associated permutation σ labels a positroid cell in
G+(k, n), which we call the positroid cell associated to the graph. In all cases we studied, we
found that if we take a point C in a positroid cell associated to the graph of a quadruple
intersection q±ijkl, the associated configuration of points xi in dual space has the quadruple
intersection point q±ijkl as one of the vertices of ∆n,k(x)!

Finally, for the quadruple-cut graphs, there is an alternative way to label them, more
familiar to the usual labels used in this context. If we take any quadruple-cut graph, then
its dual graph looks exactly like a quadruple cut of a box integral, see figure 9 for a 7-point
example.
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Figure 9. Relation between our graphs and the notation for quadruple cuts of box integrals.

Refinements of graphs. The graphs that we introduced above are actually very close
to a true configuration of points in dual space. Let us focus on a particular quadruple cut
q±ijkl and let us assume that 1 ≤ i < j < k < l ≤ n. Since q±ijkl is null-separated from
vertices xi, xj , xk and xl, it naturally splits the null polygon of x’s into four null polygons
(P1, P2, P3, P4) with vertices:

P1 : {q±ijkl, xi . . . , xj} , P2 : {q±ijkl, xj . . . , xk} ,

P3 : {q±ijkl, xk . . . , xl} , P4 : {q±ijkl, xl . . . , xn, x1, . . . xi} , (6.1)

respectively. Each such null polygon can be associated with a configuration of dual momenta
for some amplitude with given number of particles m < n and helicity h ≤ k. Therefore, the
quadruple-cut graph with y = q±ijkl represents a two-dimensional projection of the configuration
of points xi and q±ijkl, with all internal and external edges in the graph corresponding to
null segments in the polygons (6.1). In the remaining part of this section we explain how
to assign the helicities ha to the smaller polygons Pa in the case of a quadruple cut. While
we consider this case as it will be relevant in the following sections, the same procedure can
be used to assign helicities for graphs with a smaller number of cuts.

Let us start by considering the case where the polygon Pa is a triangle with fixed
kinematic configuration (y, xi, xi+1). For this case we can determine if it has helicity 1 or 2
by numerically checking whether the null momentum of the cut is proportional to λ or λ̃, i.e.

ϵαβλβ
i (qαα̇

i,i+1,j,k − xαα̇
i ) = 0 or ϵα̇β̇λ̃β̇

i (qαα̇
i,i+1,j,k − xαα̇

i ) = 0. (6.2)

In the first case ha = 1, while in the second ha = 2. For polygons Pa with four vertices, the
only allowed helicity is ha = 2, since these correspond to MHV (sub)amplitudes. For higher
number of vertices of Pa, we can find their helicities by working recursively. If Pa is formed
of vertices (y, xi, . . . , xi+m−2) then it should correspond to an m-particle configuration. We
can determine all quadruple cuts for this configuration and consider any one of them that is
inside ∆n,k(x). The graph associated to this cut is divided into four polygons with number
of vertices smaller than m. In this way we can reduce the problem of finding the helicities
ha to simply checking one of the two conditions (6.2).

– 20 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
1

Let us look at an explicit example for n = 8 and k = 3. First consider the point in
the momentum amplituhedron M8,3,0 with

λ =
(
−96 −576 −960 −814 −526 150 1302 0
152 478 652 −194 −216 −780 0 434

)
,

λ̃ =
(
−62294 −9962 7736 6858 0 −3704 1418 17576
56248 −5774 −11716 0 6858 2248 −4534 11714

)
, (6.3)

whose corresponding configuration of dual points are given by

x =
(

0 7264960 8754030 1221334 −1569872 −2310536 −3465056 −2541938
0 2034440 6078270 9180014 9845240 8041586 6765626 3813992
0 −1284736 2964306 3070442 279236 1019900 1618820 2541938
0 −7434248 −8152254 −6638 −671864 −2475518 −862358 −3813992

)
, (6.4)

where the coordinates of xi can be read from the i-th column. This point lies in the
chamber defined by the intersection of six BCFW cells in G+(3, 8) associated to the following
permutations:

{{3, 5, 7, 6, 8, 9, 12, 10}, {3, 6, 5, 7, 8, 9, 12, 10}, {5, 4, 7, 6, 8, 9, 11, 10},

{6, 4, 5, 7, 8, 9, 11, 10}, {3, 4, 7, 6, 8, 9, 10, 13}, {3, 4, 5, 7, 8, 9, 10, 14}} . (6.5)

By checking the sign flip patterns, we find that the vertices of the geometry ∆n,k(x) associated
to this chamber are

{q+
1234, q+

1245, q+
1256, q+

1268, q+
2345, q+

2356, q+
2368, q+

3456,

q+
3468, q+

4567, q+
1678, q−1238, q−1348, q−1457, q−1478, q−1567, q−4678} , (6.6)

together with the points x1, . . . , x8.
We wish to assign the correct helicity labels to the graph associated with e.g. the

quadruple cut q+
1256. The graph is an octagon with an internal marked point y = q+

1256
and edges connecting it to points (1, 2, 5, 6). The quadruple cut splits the octagon into two
triangles and two pentagons, as depicted on the left of figure 10, which we label by

P1 : {q+
1256, x1, x2}, P2 : {q+

1256, x5, x6}, P3 : {q+
1256, x2, x3, x4, x5}, P4 : {q+

1256, x6, x7, x8, x1}.

(6.7)

The helicity of both triangles can be fixed by simply evaluating

ϵαβλβ
1 (q+ αα̇

1256 − xαα̇
1 ) = ϵαβλβ

1 (q+ αα̇
1256 − xαα̇

2 ) = 0 → h1 = 1 ,

ϵαβλβ
5 (q+ αα̇

1256 − xαα̇
5 ) = ϵαβλβ

5 (q+ αα̇
1256 − xαα̇

6 ) = 0 → h2 = 1 . (6.8)

However, the helicities of the pentagons are as of yet undetermined. To determine them
we can for instance consider the quadruple cuts {q+

1678, q+
2345} which both lie in the chamber

geometry ∆8,3(x) for this chamber. These quadruple cuts further decompose each pentagon
into three triangles and one quadrilateral, as depicted in the middle of figure 10, labelled by

P3,1 : {q+
2345, x2, x3}, P3,2 : {q+

2345, x3, x4}, P3,3 : {q+
2345, x4, x5}, P3,4 : {q+

2345, x5, q+
1256, x2},

P4,1 : {q+
1678, x6, x7}, P4,2 : {q+

1678, x7, x8}, P4,3 : {q+
1678, x8, x1}, P4,4 : {q+

1678, x1, q+
1256, x6}.

(6.9)
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Figure 10. Illustration of the process of assigning helicity labels to the graph associated to the
quadruple cut q+

1256.

As mentioned above the helicity of the quadrilateral is always 2, i.e. h3,4 = h4,3 = 2, and
the helicity of the six triangles are again fixed using the conditions (6.2), to find the graph
labels as displayed in the middle of figure 10. Having assigned helicities to all subpolygons
we can read of the helicity of the pentagons to be h3 = 2 and h4 = 3 respectively, as shown
on the right of figure 10.

Even though, at this point, we have already fixed the correct helicity configuration, it
is instructive to decompose the two quadrilaterals further in order to see the connection
to on-shell diagrams. This can be achieved by considering either of the points from each
of the following intersections:

Nq+
1256

∩Nq+
2345

∩Nx2 ∩Nx5 = {q+
1245, q+

2356},

Nq+
1256

∩Nq+
1678

∩Nx1 ∩Nx6 = {q+
1268, q−1567}, (6.10)

which all lie in the chamber geometry. Let us choose {q+
1245, q+

1268}. This decomposes P3,4
and P4,4 further into

P3,4,1 : {q+
1245, q+

1256, x2}, P3,4,2 : {q+
1245, x2, q+

2345},

P3,4,3 : {q+
1245, q+

2345, x5}, P3,4,4 : {q+
1245, x5, q+

1256},

P4,4,1 : {q+
1268, q+

1678, x1}, P4,4,2 : {q+
1268, x1, q+

1256},

P4,4,3 : {q+
1268, q+

1256, x6}, P4,4,4 : {q+
1268, x6, q+

1678}, (6.11)

whose helicities can be calculated as above and are encoded in figure 11. Since the original
octagon is now fully divided into triangles with helicities 1 or 2, we can also depict the
dual trivalent graph where black (respectively white) vertex corresponds to the triangle
with helicity 1 (respectively 2). Moreover, we can associate the affine permutation σ to this
on-shell diagram using the standard methods and we get σ = {3, 4, 5, 7, 8, 9, 10, 14}, that
was one of the permutations defining the chamber (6.5).
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Figure 11. The plabic graph dual to the refinement of the quadruple cut q+
1256. From top left to bottom

right the red points are given respectively by the quadruple intersections {q+
1678, q+

1268, q+
1256, q+

1245, q+
2345}.

7 Examples

In this section we will discuss the one-loop momentum amplituhedron geometries ∆n,k(x)
in more detail. In particular, we provide a detailed structure of the geometry for small n

and conjecture how the geometry looks for all n. We then conjecture a general one-loop
integrand expression for any n and k. It naturally agrees with the predictions obtained
using the prescriptive unitarity methods [13].

7.1 MHV amplitudes

The null-cone geometries for MHV amplitudes are particularly basic because, at fixed n,
all configurations of dual points xi give geometries that are combinatorially identical. This
comes from the fact that for the MHV case there exists only one chamber, and therefore the
shape of ∆n,2 ≡ ∆n,2(x) is independent of the positions of xi. In this section we start by
considering low number of points n, for which we provide explicit formulae for the canonical
forms of Mn,2,1, and then conjecture a general formula for generic n. Since there is only
one chamber, the final formula for the differential form will be the wedge product of the
one-loop form with the tree-level one:

Ωn,2,1 = Ωn,2,0 ∧ Ω [∆n,2] . (7.1)

MHV3. Three-particle one-loop geometries are trivial since they are not fully dimensional.
Indeed, in the n = 3 case one cannot construct any quadruple intersections of null-cones since
the geometry is spanned by three points x1, x2 and x3. Therefore ∆3,2 is a triangle embedded
in four-dimensional space. We can still associate a differential form to this geometry

Ω [∆3,2] = d log ⟨ℓ1⟩
⟨ℓ3⟩ ∧ d log ⟨ℓ2⟩

⟨ℓ3⟩ . (7.2)

However, it is not a top-dimensional form and therefore it integrates to 0 on any four-
dimensional contour. This correctly leads to a vanishing three-point one-loop amplitude
which is a well-established result.

– 23 –



J
H
E
P
0
3
(
2
0
2
4
)
0
0
1

1 2

34

1 2

12

1 2

34

2 1

21

Figure 12. Quadruple cuts contributing to the geometry ∆4,2.
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Figure 13. Quadruple cuts corresponding to the quadruple-intersection vertices of ∆5,2.

MHV4. The four-particle MHV geometry ∆4,2 is just an embedding of the positive Grass-
mannian G+(2, 4) in the kinematic space R2,2. In particular, the vertices of ∆4,2 are the
four dual momenta xi, i = 1, 2, 3, 4 and two quadruple intersections q±1234 corresponding
to the quadruple cuts, see figure 12. The boundaries of ∆4,2 of other dimensions can be
naturally labelled by the set of graphs we introduced in the previous section, which in this
case is in one-to-one correspondence with the set of on-shell graphs associated to G+(2, 4),
see table 2 for details.

The canonical differential form on ∆4,2 is easily found from (5.20):

Ω [∆4,2] = ω+
1234 + ω−

1234 = ω□
1234 , (7.3)

which is simply the massless box integrand, as expected. Importantly, one can check
using (5.12) and (5.17) that Ω [∆4,2] has unit residues at all six vertices of ∆4,2.

MHV5. The five-point case is the first time when not all quadruple intersections are inside
of the loop geometry ∆5,2. Using the sign-flip description, see section 5, one finds that
only the points of the form q+

ii+1i+2i+3 are vertices of ∆5,2, while the remaining vertices are
located outside. Therefore, the vertices of ∆5,2 are the five points xi, i = 1, . . . , 5 together
with five quadruple intersections:

V(∆5,2) = {xi, q+
1234, q+

2345, q+
3451 = q−1345, q+

4512 = q+
1245, q+

5123 = q−1235} , (7.4)

with their quadruple cut labels depicted in figure 13.
The canonical differential form on ∆5,2 can be again found from formula (5.20):

Ω [∆5,2] = ω+
1234 + ω+

2345 + ω−
1345 + ω+

1245 + ω−
1235

= 1
2
(
ω□

1234 + ω□
2345 + ω□

1345 + ω□
1245 + ω□

1235 + ωD12345

)
, (7.5)
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Figure 14. All quadruple-cut diagrams that contribute to MHV integrands. The associated vertex is
q+

i i+1 j j+1.

where we used (5.15) and (5.24) to arrive at the second line. Notice that the contributions
coming from the differential forms ωijkl naturally combine into the pentagon integrand ωD12345,
making the differential form projectively invariant.

MHV6. For the MHV geometry ∆6,2 coming from a null hexagon, we find that the set of
its vertices consists of the six points xi, i = 1, . . . , 6 and nine quadruple intersections:

V(∆6,2) = {xi, q+
1234, q+

2345, q+
3456, q+

4561 = q−1456, q+
1256, q+

6123 = q−1236, q+
1245, q+

2356, q+
6134 = q−1346} .

(7.6)
Notice that all quadruple intersections are of the form q+

ii+1jj+1. The explicit formula for
the canonical form on ∆6,2 is:

Ω [∆6,2] = ω+
1234 + ω+

2345 + ω+
3456 + ω−

1456 + ω+
1256 + ω−

1236 + ω+
1245 + ω+

2356 + ω−
1346 (7.7)

= 1
2
(
ω□

1234 + ω□
2345 + ω□

3456 + ω□
1456 + ω□

1256 + ω□
1236 + ω□

1245 + ω□
2345 + ω□

1346

+ωD12345 + ωD12356 + ωD13456

)
, (7.8)

where as before we have recombined all differential forms ωijkl into pentagon integrands.
Notice that there is no unique way to do this, and there is an equivalent version of this answer

Ω [∆6,2] =
1
2
∑
i<j

ω□
ii+1jj+1 +

1
2
(
ωD12346 + ωD12456 + ωD23456

)
, (7.9)

that only differs by pentagon integrands.
It is easy to check that the formula (7.7) possesses all required properties that we demand

from the canonical form on ∆6,2: it is projectively invariant and the residues evaluated at
each vertex of ∆6,2 equal one.

General MHV amplitudes. Proceeding in the same way for MHV geometries for n > 6,
we find a general pattern allowing us to conjecture the behaviour of these geometries at any
n. First, we find that there is only a single family of quadruple-cut diagrams that contribute
to MHVn. These are of the type q+

i i+1 j j+1, see figure 14, and all these diagrams have the
same associated permutation with σ(i) = i + 2, i.e. the top cell of G+(2, n). Therefore, using
the fact that we know all vertices of ∆n,2, we can write the following general formula for
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differential forms for k = 2 and any n:

Ω [∆n,2] =
∑
i<j

ω+
ii+1jj+1 = 1

2
∑
i<j

ω□
ii+1jj+1 +

1
2
∑

1<i<j

ωD1ii+1jj+1 , (7.10)

where the answer is recast in terms of box and pentagon integrands making it manifestly
projectively invariant. Moreover, notice that the forms with indices ω□

i−1ii+1j for some j

appear exactly twice in this expression, namely we have ω□
i−1ii+1i+2 and ω□

i−2i−1ii+1, and
therefore, using (5.17), the residues of Ω [∆n,2] at xi are always equal to one.

7.2 MHV amplitudes

The answers for all MHV amplitudes can be obtained by parity operation acting on the MHV
amplitudes, that exchanges all signs (+ ↔ −). In particular, only points xi and q−ii+1jj+1 are
vertices of the geometries ∆n,n−2 ≡ ∆n,n−2(x). The canonical form for any n becomes:

Ω [∆n,n−2] =
1
2
∑
i<j

ω□
ii+1jj+1 −

1
2
∑

1<i<j

ωD1ii+1jj+1 . (7.11)

7.3 NMHV amplitudes

NMHV amplitudes are the simplest case where the one-loop geometry does depend on the
details of the tree-level configuration of points xi. In particular, for distinct configurations
of xi in Mn,3,0 one might get a different subset of vertices q±ijkl that are vertices of the
geometry. This splits the space of possible tree-level configurations into subsets — the
chambers. However, for any configuration of xi within a given chamber, the loop differential
form remains the same and we can use formula (4.8) to calculate Ωn,3,1.

NMHV6. We start this section by recalling the results found in [10] for the NMHV6
amplitude. It was already pointed out there that the loop geometry naturally introduces the
notion of chambers, and an explicit expression for the canonical form as a sum over chambers
of the wedge products of the tree and loop parts was found to be

Ω6,3,1 =
∑

i∈{2,4,6}
j∈{1,3,5}

I{i∩j}
6,3 ∧ Ω̃{i∩j}

6,3 . (7.12)

Here, I{i∩j}
6,3 denotes the tree-level canonical form associated to the chamber Γ{i}

6,3 ∩ Γ{j}
6,3 , that

is the maximal intersection of the BCFW triangles Γ{i}
6,3 and Γ{j}

6,3 , and Ω̃{i∩j}
6,3 is the canonical

form for the loop geometry associated to this chamber. In [10] this was found to be

Ω̃{i∩j}
6,3 =

∑
a∈{1,2}
b∈{i,j}

(
I1mb

a (b) + I2mh
a (b)

)
+

6∑
i=1

I
(i)
tri , (7.13)

where the integrals are the familiar one-mass box, two-mass hard and triangle integrals.
Importantly, every term in formula (7.13) depends on an auxiliary bi-twistor which cancels
in the total sum. In the following, we will rederive Ω6,3,1 using the geometry ∆6,3(x).
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By a careful study of all tree-level configurations of points xi, we find that there are exactly
nine distinct geometries ∆{i∩j}

6,3 with i = 1, 3, 5 and j = 2, 4, 6, as expected from the discussion
about chambers in section 4. Moreover, if we take a configuration in a given chamber {i, j},
we find that the geometry has exactly the same shape and combinatorial structure for all
configurations of xi in this chamber, as conjectured. In particular, the set of vertices of ∆{i∩j}

6,3
contains the points xi together with the quadruple cuts in the set Qi

6,3 ∪ Qj
6,3 where

Qi
6,3 = {q+

i−1ii+1i+2, q−i+2i+3i+4i+5, q+
i+1i+2i+3i+5, q−i−2i−1ii+2} . (7.14)

Since the sets Qi
6,3 and Qj

6,3 are disjoint for i ̸= j, this immediately allows us to find the
canonical form associated to ∆{i∩j}

6,3 in each chamber using (5.20):

Ω
[
∆{i∩j}

6,3

]
= ω+

i−1ii+1i+2 + ω−
i+2i+3i+4i+5 + ω+

i+1i+2i+3i+5 + ω−
i−2i−1ii+2

+ ω+
j−1jj+1j+2 + ω−

j+2j+3j+4j+5 + ω+
j+1j+2j+3j+5 + ω−

j−2j−1jj+2

= Ω{i}
6,3 +Ω{j}

6,3 , (7.15)

where we defined

Ω{i}
6,3 = ω+

i−1ii+1i+2 + ω−
i+2i+3i+4i+5 + ω+

i+1i+2i+3i+5 + ω−
i−2i−1ii+2 . (7.16)

To illustrate this result, let us consider the chamber {1 ∩ 2} as an example. The quadruple-
intersection vertices in the chamber geometry ∆{1∩2}

6,3 are depicted in figure 15 and the
differential form is

Ω
[
∆{1∩2}

6,3

]
= ω−

6123 + ω+
3456 + ω−

2346 + ω+
1356 + ω−

1234 + ω+
4561 + ω−

3451 + ω+
2461

= 1
2
(
ω□

1236 + ω□
3456 + ω□

2346 + ω□
1356 + ω□

1234 + ω□
1456 + ω□

1345 + ω□
1246

+ ωD13456 − ωD12346

)
, (7.17)

which is manifestly projectively invariant. We can now add the results from all chambers
to get the full one-loop answer. After including the tree-level contributions we find the full
one-loop differential form for the NMHV6 case

Ω6,3,1 =
∑

i∈{2,4,6}
j∈{1,3,5}

I{i∩j}
6,3 ∧ Ω

[
∆{i∩j}

6,3

]

=
∑

i∈{2,4,6}
j∈{1,3,5}

I{i∩j}
6,3 ∧

(
Ω{i}

6,3 +Ω{j}
6,3

)
=

6∑
i=1

I{i}
6,3 ∧ Ω{i}

6,3 , (7.18)

where in the last equality I{i}
6,3 is the canonical form of the BCFW cell Γ{i}

6,3 , and we used the
fact that chambers subdivide BCFW cells. This implies that we can directly associate loop
differential forms, and therefore quadruple cuts, to positroid cells S

{i}
6,3 . We notice that, while

Ω
[
∆{i∩j}

6,3

]
is projectively invariant, the differential forms Ω{i}

6,3 are not. We have checked that
formula (7.18) agrees up to a trivial numerical factor with Ω6,3,1 given by (7.12).
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Figure 15. Quadruple cuts corresponding to quadruple-intersection vertices in the chamber geometry
∆{1∩2}

6,3 .

Finally we mention that it is also possible to rewrite formula (7.18) in terms of box
and pentagon integrands:

Ω6,3,1 = 1
2
(
I{1}

6,3 + I{4}
6,3

)
∧
(
ω□

1236 + ω□
3456 + ω□

2346 + ω□
1356

)
+ 1

2
(
I{2}

6,3 + I{5}
6,3

)
∧
(
ω□

1234 + ω□
1456 + ω□

1345 + ω□
1246

)
+ 1

2
(
I{3}

6,3 + I{6}
6,3

)
∧
(
ω□

1256 + ω□
2345 + ω□

1235 + ω□
2456

)
+ 1

2
(
I{1}

6,3 − I{4}
6,3

)
∧
(
ωD12356 − ωD23456

)
+ 1

2
(
I{2}

6,3 − I{5}
6,3

)
∧
(
ωD12345 − ωD23456

)
, (7.19)

where we used the tree-level relation (4.2) to be able to recast the answer into a manifestly
projectively invariant form.

NMHV7. For NMHV7, the chamber structure of the tree-level momentum amplituhedron
M7,3,0 was not previously known. In the following we will first find all chambers and their
corresponding chamber geometries that will allow us to write down a novel formula for the
one-loop integrand of the NMHV7 amplitude. We will use the method explained in section 4
based on the notion of BCFW cells adjacency. Importantly, the BCFW cells adjacency
graph G7,3 can be easily constructed using a variety of methods, see the appendix A for
one possibility. Then using the software IGraphM [25] one can immediately find 71 maximal
cliques, and therefore 71 chambers ca, a = 1, . . . 71. They are organised in 11 families with
members related by cyclic symmetry, see (A.13). For each chamber ca we find tree-level
configurations xi and construct the corresponding chamber geometry ∆ca

7,3. Then, we can
find all points in ∆ca

7,3 and therefore find the canonical forms Ω
[
∆ca

7,3

]
. After summing over

all chambers we find a surprisingly simple one-loop integrand for NMHV7 amplitude:

Ω7,3,1 =
∑

i1<i2

I{ii,i2}
7,3 ∧ Ω{i1,i2}

7,3 +
7∑

i=1
I{i}

7,3 ∧ Ω{i}
7,3 , (7.20)
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where

Ω{1,2}
7,3 = ω−

1347 + ω−
1467 + ω−

4567 + ω+
3457 ,

Ω{1,3}
7,3 = ω+

2357 ,

Ω{1,4}
7,3 = ω−

1367 + ω−
3567 ,

Ω{1}
7,3 = ω−

1237 , (7.21)

and cyclically rotated answers for other indices. Again, this implies that the quadruple
intersection vertices of chamber geometries can be directly associated to positroid cells.
The tree-level differential forms I{i,j}

7,3 and I{i}
7,3 are defined as canonical differential forms

associated to positroid cells S
{i,j}
7,3 and S

{i}
7,3 defined in (4.5), respectively. We also have

the following relation

I{1}
7,3 = I{1,2}

7,3 + I{1,4}
7,3 + I{1,6}

7,3 = I{1,3}
7,3 + I{1,5}

7,3 + I{1,7}
7,3 . (7.22)

NMHV8. We can repeat the construction from the previous case for n = 8 and k = 3. We
find that there are 728 maximal cliques of the graph G8,3 and therefore 728 chambers for
M8,3,0. For each chamber we can construct the chamber geometry ∆ca

8,3 for a = 1, . . . , 728
and find all their vertices. This allows us to write the explicit form of the differential form
for these chamber geometries. Similar as in the case when n = 7, after we add all chamber
canonical forms, the final answer can be rewritten using only contributions coming from
positroid cells as follows:

Ω8,3,1 =
∑

i1<i2<i3

I{i1,i2,i3}
8,3 ∧ Ω{i1,i2,i3}

8,3 +
8∑

i=1
I{i,i+1}

8,3 ∧ Ω{i,i+1}
8,3 +

8∑
i=1

I{i}
8,3 ∧ Ω{i}

8,3 , (7.23)

where

Ω{1,2,3}
8,3 = ω−

1458 + ω−
1578 + ω+

4568 + ω−
5678 ,

Ω{1,2,4}
8,3 = ω+

3468 ,

Ω{1,3,4}
8,3 = ω+

2368 ,

Ω{1,4,5}
8,3 = ω−

1378 + ω+
3678 ,

Ω{1,2,5}
8,3 = ω−

1478 + ω−
4678 ,

Ω{1,4,6}
8,3 = ω−

3568 ,

Ω{1,2}
8,3 = ω−

1348 ,

Ω{1}
8,3 = ω−

1238 , (7.24)

and non-zero contributions with other indices can be obtained by cyclic shifts. It is easy to
check that this differential form has all correct maximal cuts.

General NMHV amplitudes. For general NMHV amplitudes, we find that only two
families of quadruple cuts shown in figure 16 can be vertices of the geometries ∆n,3(x). Then
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Figure 16. The two types of quadruple-cut diagrams that contribute to NMHV integrands. The
associated vertices are q+

i i+1 j j+1 (left), and q+
i i+1 j k (right).

the canonical form for any n can be written as the sum over positroid cells

Ωn,3,1 =
∑

i1<...<in−5

I{i1,...,in−5}
n,3 ∧ Ω{i1,...,in−5}

n,3 +
n−7∑
p=0

n∑
i=1

I{i,i+1,...,i+p}
n,3 ∧ Ω{i,i+1,...,i+p}

n,3 , (7.25)

where ΩI
n,3 can be derived for all n by finding all vertices in the geometries associated to

positroid cell SI
n,3.

7.4 Beyond NMHV

N2MHV8. Before proposing a general one-loop integrand, we study one more non-trivial
example: n = 8, k = 4. This is the first time where positroid cells with intersection numbers
larger than one can be found. We do not know the complete classification of chambers in this
case, however, using the methods outlined in the previous sections, we were able to generate
many of them to confirm that the chamber geometries possess the same properties as for
MHV and NMHV amplitudes. In particular, the canonical forms of ∆8,4(x) are projectively
invariant in all cases we investigated.

The only case which needs special attention is when the positroid cells have intersection
number equal two. As we already mentioned in section 4 there are two such cells and their
images intersect inside the momentum amplituhedron M8,4,0. Therefore, we need to treat
them as two independent cells when looking for chambers. After taking this into account,
we find the following one-loop answer

Ω8,4,1 =
∑

σ∈Q(1)
8,4

Iσ
8,4 ∧ Ωσ

8,4 +
∑

σ∈Q(2)
8,4

(
Iσ,+

8,4 ∧ Ωσ,+
8,4 +Ωσ,−

8,4 ∧ Ωσ,−
8,4

)
, (7.26)

where Iσ
8,4 are the tree-level canonical forms for Γσ

8,4. Here, Q(1)
8,4 is the set of all permutations

for positroid cells with intersection number equal one that contribute to quadruple intersec-
tions, and Q(2)

8,4 = {{6, 5, 8, 7, 10, 9, 12, 11}, {4, 7, 6, 9, 8, 11, 10, 13}} are the two permutations
labelling cells with intersection number equal two. We indicated by Iσ,±

8,4 and Ωσ,±
8,4 the two

contributions coming from two quadruple cut solutions associated to intersection number
two cells. In particular

Ω{6,5,8,7,10,9,12,11},±
8,4 = ω±

2468 , Ω{4,7,6,9,8,11,10,13},±
8,4 = ω±

1357 . (7.27)
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7.5 General one-loop integrand and prescriptive unitarity

We now conjecture how this construction generalizes to any n and k. First of all, for a given
point (λ, λ̃) ∈ Mn,k,0 in a chamber c = Γσ1

n,k ∩ . . . ∩ Γσp

n,k, we can obtain a complete list of
all vertices that appear in the chamber geometry ∆c

n,k by listing all allowed quadruple cut
diagrams of type (n, k), and selecting those diagrams whose associated positroid cells are one
of those participating in the intersection: Sσ1

n,k, . . . , S
σp

n,k. This allows us to associate vertices
directly to positroid cells Sσ

n,k and write the one-loop contribution from each of them as

Ωσ
n,k =

∑
q±

ijkl

ω±
ijkl . (7.28)

The general one-loop integrand is then

Ωn,k,1 =
∑

σ∈Qn,k

Iσ
n,k ∧ Ωσ

n,k , (7.29)

where the sum runs over all permutations σ that can be associated to quadruple cuts and
Iσ

n,k is the canonical form of Γσ
n,k. If a permutation σ in (7.29) corresponds to a positroid

cell with intersection number two, we get two contributions, as in (7.26). We conjecture that
cells with intersection number larger than two do not contribute to the sum in (7.29).6 We
have verified that this formula agrees with the ones provided in the Mathematica package
attached to [26]. Formula (7.29) is the main result of this paper.

8 Cluster structure in dual space

The combinatorial labels introduced in section 6 for the quadruple cuts bare a close resemblance
to the pre-existing notion of the dual quiver associated to an on-shell diagram. As we will now
explain this connection to quivers will allow us to identify all points in dual space contained
in the one-loop MHVn geometry ∆n,2 in a cluster-like fashion i.e., starting from an ‘initial
seed’ and performing ‘mutations’ on the dual space points, we will generate all points in
the geometry. This analysis is far from complete and should be treated as an invitation to
explore the connection to cluster algebras further. In the following we assume that the reader
is familiar with basic notions related to cluster algebras, see [27] for a review.

Let us begin with the simplest case of the MHV4 geometry ∆4,2. Recall that this geometry
consists of the four points {x1, x2, x3, x4} together with the two points {q+

1234, q−1234}. As
described in section 6, these quadruple intersections can be assigned a graph related to an
on-shell diagram; for example the on-shell diagrams associated to the two points {q+

1234, q−1234}
are depicted in figure 17. In particular, this allows us to assign to each internal region of
an on-shell diagram a point in dual space q+

ijkl or q−ijkl.
As alluded to these graphs have a very close connection to the dual quivers associated to

on-shell diagrams. Given an on-shell diagram to obtain its dual quiver one first collapses all
white-white and black-black vertices to produce a bipartite graph, assigns a (frozen) node to

6For example, we checked that the cells S
{10,8,12,7,11,9,16,14,18,13,17,15}
12,6 and

S
{11,5,16,10,15,9,20,14,19,13,24,18,23,17,28,22}
16,8 with intersection number equal to 4 do not correspond to quadruple

cuts [14].
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Figure 17. On-shell diagrams associated to the quadruple cuts q+
1234 and q−1234.
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Figure 18. The dual quiver of the plabic graph.

each (external) internal region together with a cluster coordinate, and connects neighbouring
nodes by an arrow such that the black vertex is to the left of the arrow. As an example
the dual quiver for the MHV4 on-shell diagrams are depicted in figure 18. In this language
performing a square move in the on-shell diagram corresponds to performing a mutation on
the associated node in the cluster quiver. Notice that this relates the two cluster coordinates
{q̃+

1234, q̃−1234} via the exchange relation

q̃+
1234q̃−1234 = x̃1x̃3 + x̃2x̃4. (8.1)

Here we use the notation x̃ and q̃ to emphasise that we are considering the cluster coordinates of
the dual quiver rather than four-dimensional vectors in the dual space geometry. Importantly,
this allows one to generate new cluster coordinates from old.

Remarkably, when studying points in the dual space geometry we find an exchange-like
relation between various quadruple intersection points

q+
1234 + q−1234 = (x2 − x4)2(x1 + x3) + (x1 − x3)2(x2 + x4)

(x1 − x3)2 + (x2 − x4)2 . (8.2)

This relation allows us to express new dual vectors q−1234 in terms of the {q+
1234, x1, x2, x3, x4}.

As this is a relation linking vectors associated to nodes of a quiver, it is very tempting to
draw analogy between (8.2) and the mutation rules acting on g-vectors in the cluster algebra.

In the example given above the cluster algebra associated to the MHV4 on-shell diagram
consists of a single node i.e. the A1 cluster algebra. It is straightforward to extend this
analysis to all MHVn on-shell diagrams. A representative for the MHVn on-shell diagram,
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Figure 19. The on-shell diagram for MHVn. Its associated cluster is An−3. The coordinates appearing
in this cluster from left to right on this diagram are given by {q+

12n−1n, q+
12n−2n−1, . . . , q+

1245, q+
1234}.

�
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�� - �
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�

Figure 20. The triangulation of the n-gon associated to the general MHVn on-shell diagram. The
labels for the chord (i, j) for i < j is given by q+

ii+1jj+1.

together with its dual quiver An−3, is depicted in figure 19. Again we label each internal
facet (node of the dual quiver) by a point in dual space which from left to right are given by

{q+
12n−1n, q+

12n−2n−1, . . . , q+
1245, q+

1234}. (8.3)

Notice that, as is well established for the An−3 cluster algebras, each of the above dual
points can alternatively be labelled as the chord of an n-gon, where we assign to the chord
(ij) with i < j the dual point q+

ii+1jj+1. With this labelling the dual points of (8.3) are
given by the chords

{(1n − 1), (1n − 2), . . . , (14), (13)}, (8.4)

which has the nice interpretation of the triangulation of the n-gon depicted in figure 20.
Given this initial triangulation, one can perform all flips, corresponding to square moves
in the on-shell diagram, and use (8.2) to generate all possible dual points appearing in
the geometry ∆n,2.

To see this in action let us focus on the explicit example of MHV5. Its associated on-shell
diagram and dual quiver is given on the left of figure 21 and corresponds to the triangulation
of the n-gon with all chords emanating from 1. The dual points/chords associated to this
triangulation are

{(14), (13)} ≡ {q+
1245, q+

1234}. (8.5)
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Figure 21. (Left) A representative on-shell diagram for MHV5 along with the dual A2 quiver. The
nodes on the dual quiver are from left to right are q+

1245 and q+
1234 corresponding to the triangulation

with all chords emanating from 1. (Right) The five triangulations of the pentagon whose corresponding
dual points are given by {{q+

1245, q+
1234}, {q+

1234, q−1345}, {q−1345, q−1235}, {q−1235, q+
2345}, {q+

2345, q+
1245}}.

By performing flips on the chords, and reading off the labels, the five triangulations are given by

{{q+
1245, q+

1234}, {q+
1234, q−1345}, {q−1345, q−1235}, {q−1235, q+

2345}, {q+
2345, q+

1245}}, (8.6)

as depicted on the right of figure 21 starting at the top and going clockwise. Note that
the minus signs arise from reordering the labels i.e. using our prescription the chords in
the bottom right triangulation are given by

{(35), (25)} ≡ {q+
3451, q+

2351} = {q−1345, q−1235}. (8.7)

This procedure generates the five points in dual space given by

{q+
1234, q−1345, q−1235, q+

2345, q+
1245}, (8.8)

exactly those appearing in the geometry ∆5,2.

9 Conclusions and outlook

In this paper we have presented a new perspective on the tree- and loop-level positive
geometries for planar N = 4 sYM. In particular, we translated the momentum amplituhedron
positive geometry to the space of dual momenta. This allowed us to describe the loop
geometries based on the null structure of the R2,2 kinematic space built from the tree-level
configuration of points specified by a null polygon. As a result, we proposed a novel formula
for the one-loop integrand Ωn,k,1 for any n and k.

Our construction of the positive geometry in dual momentum space relevant for planar
N = 4 sYM opens many possible avenues of further research. The most pressing one is to
explore this construction beyond one loop. As we already mentioned in the main text, to
generalise it to more loops we simply need to study collections of L points inside Mn,k,1 (or
equivalently ∆n,k(x)) that are additionally positively separated from each other. Since the
prescriptive unitarity method can be applied beyond one loop, we expect that the geometry
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for higher loops will have similar properties to the ones we studied at one loop, with the
maximal cut contributions coming from the vertices of higher loop geometry. It has also been
suggested in [28] that additional simplifications come from considering negative geometries
and we hope that it will be possible in our constructions as well.

Another very interesting problem is to understand the dual momentum amplituhedron,
following the lines of [23] where the dual geometry was explored for one-loop MHV amplitudes.
In particular, the authors of [23] identified regions in the amplituhedron space corresponding
to the contributions from box integrands and chiral pentagon integrands, and used projective
duality to explore the dual geometry. A similar analysis can be done in our construction
for the box integrands and parity-odd pentagons for any helicity. We leave the details of
this to future work.

Various other questions remain open and deserve further investigation. The first question
is how to find a complete classification of chambers beyond NMHV geometries. In particular,
it would be interesting to check whether our prescription using maximal cliques of adjacent
BCFW cells works beyond the NMHV sector. Moreover, while integrating the differential
forms on the Minkowski contour gives the amplitude, a natural question to address is whether
it would be meaningful to integrate it over the chamber geometry ∆n,k(x), and what would
be the relation of such obtained result to the amplitude. Finally, we have only hinted at the
possible cluster algebra structures which emerges from our construction, and it would be
very interesting to see whether it can be generalised to all helicity sectors. Another related
direction would be to study whether our construction relates to the symbol alphabet and
cluster adjacencies at the level of the integrated answer, see for instance [29, 30]. A prime
candidate being the case of N2MHV8, the first example where chambers containing cells of
intersection number two appear, it would be interesting to see whether a full analysis of the
chamber structure in this case would shed light on the cluster adjacency properties of square
root letters appearing in the symbol of eight point amplitudes [31–33].
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A NMHV chambers

In this appendix we provide an efficient strategy for determining the compatibility of cells in
the case of NMHV amplitudes which is most easily described using the original definition
of the amplituhedron [4]. At tree level the amplituhedron for NMHV amplitudes, An,1,0,
is the positive geometry in G(1, 5) defined by the map

Y I =
n∑

a=1
caZI

a , a = 1, . . . , n, I = 1, . . . , 5, (A.1)
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where ca are the matrix elements of C = (c1, . . . , cn) ∈ G+(1, n), and ZI
a are the matrix

elements of the positive matrix Z ∈ M+(5, n). The BCFW cells relevant for triangulating
An,1,0 are the four-dimensional cells of G+(1, n), we will label these cells by (a1 . . . a5) where
the indices specify the location of the non zero entries. Furthermore, we shall denote the
collection of all BCFW cells as

ΣNMHVn =
{
(a1 . . . a5)|(a1 . . . a5) ∈

(
[n]
5

)}
, (A.2)

where [n] = {1, 2, . . . , n} and
(

[n]
k

)
denotes k element subsets of [n]. As an example at

six-points we have six BCFW cells

ΣNMHV6 = {(23456), (13456), (12456), (12356), (12346), (12345)}, (A.3)

where for instance cell (23456) is parameterised as

C(23456) =
(
0 α2 α3 α4 α5 α6

)
. (A.4)

The boundaries of the BCFW cells take the form ⟨Y ijkl⟩ = 0 and are split into two types:
the physical boundaries of An,1,0 which take the form ⟨Y ii + 1jj + 1⟩ = 0; and all other
boundaries not of this form which are referred to as spurious boundaries. As an example
for n = 6 the six spurious boundaries are given by

{⟨Y 1235⟩ = 0, ⟨Y 1245⟩ = 0, ⟨Y 1345⟩ = 0, ⟨Y 1356⟩ = 0, ⟨Y 2346⟩ = 0, ⟨Y 2456⟩ = 0} . (A.5)

We say two BCFW cells (a1 . . . a5) and (b1 . . . b5) are compatible if their images through the
C · Z map intersect.7 We will be interested in finding the maximal sets of compatible BCFW
cells referred to as chambers in the main text. As we shall now explain the compatibility of
BCFW cells, or rather the incompatibility, is succinctly encoded in the sign patterns of the
invariants ⟨Y ijkl⟩ associated to spurious boundaries evaluated on each BCFW cell.

To see why this is the case recall that each spurious boundary slices An,1,0 into two
regions depending on the sign of ⟨Y ijkl⟩. If two BCFW cells lie on opposite sides of this
boundary they are hence incompatible. Consider again n = 6 and the spurious boundary
invariant ⟨Y 1235⟩ which tells us that the following BCFW cells

(12356) : ⟨Y 1235⟩ = α6⟨12356⟩ ≥ 0,

(12345) : ⟨Y 1235⟩ = −α4⟨12345⟩ ≤ 0, (A.6)

are incompatible. By constructing these sets of mutually incompatible cells for all possible
spurious boundaries ⟨Y ijkl⟩ we arrive at the full list of incompatible cells.

The incompatibility conditions for each spurious boundary ⟨Y ijkl⟩, with i < j < k < l,
follow a simple combinatorial rule which we now describe. We begin by defining two subsets
of the set of labels

[n]+ijkl = {1 ≤ a < i} ∪ {j < a < k} ∪ {l < a ≤ n}, [n]−ijkl = {i < a < j} ∪ {k < a < l},

(A.7)
7Note that depending on the external data some of the chambers may in fact be empty.
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Figure 22. The positive and negative regions of label space for the spurious boundary ⟨Y ijkl⟩.
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Figure 23. (Left) The compatibility graph for BCFW cells ΣNMHV6 whose maximal cliques correspond
to chambers. (Right) The incompatibility graph whose maximal cliques correspond to triangulations
of A6,1,0.

such that for all a± ∈ [n]±ijkl we have

±sgn⟨a±ijkl⟩ ≥ 0 , (A.8)

see figure 22. It follows that the following subsets of BCFW cells

S±
ijkl =

{
(a1 . . . a5)|(a1 . . . a5) ∈

(
[n]±

ijkl

5

)}
⊂ ΣNMHVn , (A.9)

live on opposite sides of the spurious boundary ⟨Y ijkl⟩ = 0 and are hence mutually incom-
patible. Specifying this to n = 6 the mutually incompatible sets of BCFW cells for each
spurious boundary are given by

S+
1235 = {(12356)}, S−

1235 = {(12345)},

S+
1246 = {(12346)}, S−

1246 = {(12456)},

S+
1345 = {(13456)}, S−

1345 = {(12345)},

S+
1356 = {(13456)}, S−

1356 = {(12356)},

S+
2346 = {(12346)}, S−

2346 = {(23456)},

S+
2456 = {(12456)}, S−

2456 = {(23456)}. (A.10)

These incompatibilities can be encoded in a graph as depicted on the right of figure 23 where
we have introduced the notation {i} ≡ ([6] \ {i}). The maximal cliques of this incompatibility
graph encode the two BCFW triangulations of A6,1,0

Ω6,1,0 = I{1}
6,3 + I{3}

6,3 + I{5}
6,3 = I{2}

6,3 + I{4}
6,3 + I{6}

6,3 . (A.11)
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Alternatively, we can look at the maximal cliques of the complement graph, depicted on the
left of figure 23, which encode the chambers of A6,1, given explicitly by

C6,1 = {{1} ∩ {2}, {1} ∩ {4}, {1} ∩ {6}
{3} ∩ {2}, {3} ∩ {4}, {3} ∩ {6}
{5} ∩ {2}, {5} ∩ {4}, {5} ∩ {6}}. (A.12)

This procedure can be carried out for any n and we find 9, 71, 728, 15979, 1144061 chambers
for n = 6, . . . 10, respectively. For example, this leads to the following explicit chamber
structure for NMHV7

C7,1 = {{1, 2} ∩ {1, 3} ∩ {2, 3},

{1, 2} ∩ {1, 5} ∩ {2, 5},

{1, 2} ∩ {1, 3} ∩ {2, 5} ∩ {3, 5},

{1, 2} ∩ {1, 3} ∩ {2, 7} ∩ {3, 7},

{1, 3} ∩ {1, 4} ∩ {3, 7} ∩ {4, 7},

{1, 2} ∩ {1, 5} ∩ {2, 7} ∩ {5, 7},

{1, 2} ∩ {1, 3} ∩ {2, 7} ∩ {3, 5} ∩ {5, 7},

{1, 3} ∩ {1, 4} ∩ {2, 4} ∩ {2, 5} ∩ {3, 5},

{1, 3} ∩ {1, 4} ∩ {3, 5} ∩ {4, 7} ∩ {5, 7},

{1, 3} ∩ {1, 4} ∩ {2, 4} ∩ {2, 7} ∩ {3, 5} ∩ {5, 7},

{1, 3} ∩ {1, 6} ∩ {2, 4} ∩ {2, 7} ∩ {3, 5} ∩ {4, 6} ∩ {5, 7}}, (A.13)

where we explicitly included only cyclic representatives of each family. Again we use the
notation {i, j} ≡ ([7] \ {i, j}).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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