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Abstract

Phylogenetic methods have long been used in biology and more recently have been extended to other fields—for
example, linguistics and technology—to study evolutionary histories. Galaxies also have an evolutionary history
and fall within this broad phylogenetic framework. Under the hypothesis that chemical abundances can be used as
a proxy for the interstellar medium’s DNA, phylogenetic methods allow us to reconstruct hierarchical similarities
and differences among stars—essentially, a tree of evolutionary relationships and thus history. In this work, we
apply phylogenetic methods to a simulated disk galaxy obtained with a chemodynamical code to test the approach.
We found that at least 100 stellar particles are required to reliably portray the evolutionary history of a selected
stellar population in this simulation, and that the overall evolutionary history is reliably preserved when the typical
uncertainties in the chemical abundances are smaller than 0.08 dex. The results show that the shapes of the trees are
strongly affected by the age–metallicity relation, as well as the star formation history of the galaxy. We found that
regions with low star formation rates produce shorter trees than regions with high star formation rates. Our analysis
demonstrates that phylogenetic methods can shed light on the process of galaxy evolution.

Unified Astronomy Thesaurus concepts: Galaxy abundances (574); Galaxy chemical evolution (580); Galaxy
stellar content (621); Interdisciplinary astronomy (804)

1. Introduction

Several areas of evolutionary science investigate evolution-
ary histories with phylogenetic methods, including biology,
language, and astronomy (Baum et al. 2005; Gray et al. 2009;
Ricker et al. 2014; Jofré et al. 2017; Yaxley & Foley 2019;
Jackson et al. 2021; Bromham et al. 2022). Phylogenetic
methods were originally developed in the context of biology
studies, when Charles Darwin described patterns of descent
among organisms as an evolutionary tree (Darwin 1859). It was
a century later that DNA was identified as the information that
is passed from one generation to the next, connecting different
life forms in the hierarchical way that Darwin had illustrated.
This happens because the DNA replication between progenitor
and offspring is not perfect, e.g., the new DNA is modified.
Modifications accumulate over time, causing the life forms to
differ more with time. If one population is divided and each
subgroup is isolated, their evolution and cumulative modifica-
tion will occur independently. This process is named
diversification and produces a hierarchy. Nowadays, DNA is

widely used as an input to estimate phylogenetic trees, allowing
the exploration of the shared evolutionary histories of an
immense variety of living organisms (Bromham 2008;
Yang 2014).
This approach considers two main concepts. The first concept is

heritability and the second is descent with modification.
Heritability considers that there is information passed from one
generation to the next one. Descent with modification stands for
the knowledge that a characteristic transferred from one generation
to the next one suffers small changes. These changes accumulate
over time and if there is also diversification, a hierarchy in
similarity is formed. Due to hierarchical similarity, related
organisms have more similar characteristics.
The chemical evolution of galaxies respects both the

concepts of heritability and descent with modification.
Chemical evolution in galaxies is linked to stellar nucleosynth-
esis (Burbidge et al. 1957; Tinsley 1979; Matteucci 2012). At
the last stages of evolution, stars pollute the interstellar medium
(ISM) with the chemical elements they synthesized during their
lifetimes, causing the modification of the chemical composition
of the ISM of their parent galaxy. The enriched ISM will later
be the origin of new generations of stars that are chemically
altered with respect to the previous generation. A large fraction
of the stars formed in each episode are low-mass objects, hence
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they live longer than this cycle of new stars forming and their
atmospheres preserve the chemical composition of their birth
environment. In this way, the chemical abundances of low-
mass stars can be considered as a proxy for the ISM’s DNA
(Freeman & Bland-Hawthorn 2002) and are very important to
unveil the history of the Galaxy.

Luckily, chemical abundances on an industrial scale are now
available, which is revolutionizing the field of Galactic
archeology, both due to direct discoveries from the data, as
well as because they are necessary to validate chemical
evolution models. In particular, thanks to surveys such as
GALAH (Buder et al. 2020), APOGEE (Majewski et al. 2017;
Abolfathi et al. 2018; Holtzman et al. 2018), and Gaia (Gaia
Collaboration et al. 2016a, 2016b, 2018; Brown et al. 2021;
Eyer et al. 2023; Recio-Blanco et al. 2023), chemical
abundances up to millions of stars are now available to better
explore the processes that shaped the Galaxy.

As an example of the power of chemical abundances to
unveil the past of the Milky Way, it is possible to remark on the
ongoing extensive search for the building blocks of the Milky
Way. Nissen & Schuster (2010) found two different sequences
in halo stars: one sequence containing stars enhanced in α
elements (attributed to an ancient disk or bulge, which had its
orbit heated due to a past merger event) and another sequence
that is α-poor (an accreted dwarf galaxy). Hawkins et al. (2015)
found a population of α-poor stars with abundances of Al,
C+N, and Ni that is different from α-rich stars, indicating that
the population had a different chemical enrichment history
from the bulk of the Milky Way. Later works found evidence
of a major-merger event using, among other information,
chemical abundances. This major-merger event is believed to
have occurred between the Milky Way and a galaxy whose
remnant stellar population is now known as the Gaia Enceladus
Sausage (GES; Belokurov et al. 2018; Helmi et al. 2018).
Carrillo et al. (2022) studied the chemical abundances of 62
stars accreted from GES, considering a wide wavelength range
from the optical to the infrared. They report that accreted stars
have enhanced neutron capture abundances when compared
with Milky Way stars, in particular of Eu, indicating
differences in the chemical evolution of GES when compared
with the Milky Way (see also Aguado et al. 2021; Matsuno
et al. 2021; De Brito Silva et al. 2022, D. de Brito Silva 2023,
in preparation). Buder et al. (2022) used GALAH chemical
abundances to study accreted stars and concluded that they are
chemically different from stars born in situ in terms of Cu, Mg,
Si, Na, Al, Mn, Fe, and Ni. Horta et al. (2023) used data from
Gaia and APOGEE to characterize 12 halo substructures,
which were candidates to have accreted origins. We note that
these are only a few examples, but numerous other works have
made remarkable contributions to this topic.

It is undeniable how important chemical abundances are in order
to understand the evolution of the Milky Way. However, several
open questions still remain, such as the unknown
number of building blocks (i.e., accreted galaxies) that constitute
the Milky Way. The building blocks are also not fully
characterized. Their detailed chemical abundance distributions,
masses, star formation histories (SFHs), and age–metallicity
relations (AMRs) are still not defined. Some of the accreted stellar
populations attributed to different progenitor galaxies could
actually be from the same galaxy, considering the caveats
associated with their selection (see Buder et al. 2022; Horta
et al. 2023). Currently, multiple works are starting to approach

these questions using numerical simulations (e.g., Bignone et al.
2019; Monachesi et al. 2019; Amarante et al. 2022; Carrillo et al.
2024). In this paper, we resort to a novel approach to contribute to
answering open questions in Galactic Archeology by applying
phylogenetic concepts to galaxy formation.
Phylogeny applied to the chemistry of low-mass stars can be

referred to as stellar phylogeny. It was proposed in Jofré et al.
(2017), where the authors used 17 chemical elements to
perform a phylogenetic study of 22 solar neighborhood stars.
They found three groups that had different chemical enrich-
ment rates measured from the relations between the age and
other phylogenetic properties. A second stellar phylogenetic
study of the Milky Way was performed in Jackson et al. (2021),
where they used 78 solar neighborhood stars and 30 chemical
elements to explore the Milky Way disk. The goal of that study
was to test if more stars and elements would help to understand
how the three groups found in Jofré et al. (2017) were related to
each other. With the aid of new Gaia data (Gaia Collaboration
et al. 2016a, 2016b, 2018; Brown et al. 2021; Eyer et al. 2023),
they proposed that one of the three groups was an ancestral
population of the groups associated to the thin disk, having a
significantly higher star formation rate (SFR), due to perhaps a
starburst during the first epochs of the thin-disk formation.
While studies have explored stellar phylogenies in observed

data, using simulated data has become key to helping the
interpretation of trees. The advantage of working with
numerical simulations for these purposes is that they provide
the full evolution of baryons as the gas is transformed into stars
and chemical elements are produced and injected into the ISM
where the stars evolve. Since the chemical evolution is known
and the simulated stellar populations can be traced back in
time, phylogenetic trees estimated from simulated stellar
populations can be directly compared to the true evolution, to
learn which particular features of the trees can be related to
events in the formation and evolution of galaxies. In this paper,
we propose to use simulated galaxies to advance the
development of stellar phylogeny.
In addition, simulations allow the assessment of the

maximum chemical abundance uncertainties for which a
phylogenetic signal is sufficiently preserved to provide
phylogenetic trees that portray reliable evolutionary histories.
Furthermore, with simulated data, it is possible to assess for
selection effects, since we have information about the entire
galaxy.
Stellar phylogeny is still a very new approach and multiple

questions about its applicability and interpretation remain open.
Some of these questions can be best addressed by using
simulations of galaxies. In this work, we use for the first time
phylogenetics applied to a simulated disk galaxy in order to
answer three specific questions. First, how many stellar
particles are required to estimate phylogenetic trees that
robustly portray the evolutionary history of this simulated
galaxy? Second, how do the uncertainties in the chemical
abundance data impact the robustness of the evolutionary
history represented by phylogenetic trees? And third, can
phylogenetic trees from different regions of a simulated galaxy,
which have different histories of formation, illustrate the
different evolutionary histories?
In Section 2, we describe how the phylogenetic trees are

estimated and how we compare them. In Section 3, we describe
the simulation used in this work, as well as the selection of
stellar particles used to approach the different specific questions

2

The Astrophysical Journal, 962:154 (18pp), 2024 February 20 de Brito Silva et al.



proposed. In Section 4, we present the results and interpretation
of our findings. Finally, in Section 6, we present our summary
and conclusions.

2. Phylogenetic Tree Construction and Analysis

In this section, we describe how the phylogenetic trees are
estimated and compared. An exhaustive analysis of the
suitability of phylogenetic trees for the reconstruction of the
ISM history is given by C. J. L. Eldridge et al. (2023, in
preparation).

2.1. Tree Concepts

To interpret the phylogenetic trees presented in this paper,
we focus on key concepts from the trees that involve the
branching pattern, the root, and the branch lengths. Extensive
explanations of these concepts and their applicability can be
found in the seminal books on trees and phylogenetics, such as
those by Felsenstein (2004), Hall (2004), Lemey et al. (2004),
Baum et al. (2005), and Yang (2014).

The branching pattern is related to the structure or topology
of the tree. In biology, the tips represent present-day species,
while the internal nodes represent the last common ancestor of
all the tips that descend from it. In our case, the tips represent
the stellar particles, which are stellar populations with a given
age and chemical abundances. Most of these stellar particles are
fossil records of an ISM that is now extinct.

The ancestral form of all the objects considered in a tree is
the root. We note that estimating a tree with the algorithm we
used does not provide a rooted tree, even if many tree
reconstruction methods might display trees in rooted form. To
root a phylogenetic tree is a delicate procedure, because
depending on the root chosen, the ancestor–descendant
temporal relationship of the tree changes and so does the
reconstruction of the history. There are few ways to find the
root, but most of them rely on an evolutionary model
developed for biology. As a consequence, we need to consider
an alternative approach. Since we are working with a simulated
galaxy, and therefore we know the origin of each stellar
particle, we can consider the most ancient ones that existed as
soon as the ISM started evolving due to chemical enrichment
for rooting. Therefore, we set the outgroup as the most ancient
stellar particle in the simulation that is related to the ingroup
(all other sampled particles) and place the root in the branch
that connects that ancient stellar particle with the rest of
the tree.

The length of a branch represents the amount of chemical
change or chemical divergence between nodes. A tree showing
only the topology without the branch length information can be
referred to as a cladogram, while a tree that specifies the branch
lengths can be referred to as a phylogram. This is important
here, because that differs from the usage of dendrograms or
some other mathematical tree graphs widely used in astronomy
to perform data analysis, such as clustering or classifications:
for example, HDBSCAN by Campello et al. (2013); t-SNE by
Van der Maaten & Hinton (2008); and random forest by Ho
(1995). We can associate a relation of branch length and the
age between two tips or between the root and the tips as a
measure of the chemical enrichment rate (see also Jofré et al.
2017).

2.2. Estimating Phylogenetic Trees

We use the same methodology thoroughly described in
Jackson et al. (2021), which was adapted from Jofré et al.
(2017). Briefly, it consists of three steps: (i) the selection of
evolutionary traits; (ii) estimating the phylogenetic tree; and
(iii) evaluating its robustness.
Encoding evolutionary traits is fundamental, since this has a

direct impact on the tree topology and its interpretation. In
modern biology, most trees are inferred from sequences of
DNA, with each site in the sequence acting as an independent
and discrete observation (Drummond & Rambaut 2007;
Maddison & Maddison 2009; Hall 2013). In our case, the
chemical abundances of stars are continuous. Fortunately, there
are methods that use distances matrices and it is possible to
calculate distances from continuous data.
Distance matrices are used to quantify the differences of

traits between observations. In the case of our study, our traits
are the chemical abundances of each single stellar population,
as mentioned above (see also Section 3.1), which in the
simulations are represented by stellar particles. The distance
matrix is formed by the difference in chemical abundance (or
chemical distance) of all the stellar particles we used to
estimate a tree in relation to all the other particles. In order to
calculate the pairwise distance of the stellar particles, we used
the Euclidean distance. The total chemical distance between
the stellar particles i and j was calculated as =Di,j

([ ] ) ([ ] )å -= X H X Hk
N

k i k j1
2 2 . For more details about che-

mical distances and distance matrices, we refer the reader to
Jofré et al. (2017).
From the distance matrices, the phylogenetic trees are

estimated with the neighbor-joining (NJ; Saitou & Nei 1987;
Gascuel & Steel 2006) algorithm, which assesses the distances to
find the most probable evolutionary sequence. This algorithm,
unlike others available in the literature, does not compel equal
distance between the root of the tree and any of the tips. This is
an important consideration, because it is known that chemical
evolution differs from place to place and from chemical element
to chemical element (e.g., Matteucci 2012; Maiolino &
Mannucci 2019; Johnson et al. 2023). Apart from this
assumption that agrees with our knowledge of the chemical
evolution of galaxies, NJ methods can be used to infer
phylogenies from distance matrices (Kuhner & Felsenstein 1994;
Atteson 1997; Lemey et al. 2004; Mihaescu et al. 2009; Jofré
et al. 2017; Jackson et al. 2021). The NJ method has the
advantage of being very fast and simple to implement, which
satisfies our needs, since we aim to empirically test phylogenetic
approaches in a data set that is not one governed by the
biological law of evolution. For more fundamental discussion
about the usage of NJ trees in galaxy evolution, we refer to C. J.
L. Eldridge et al. (2023, in preparation).

2.3. Comparing Phylogenetic Trees

2.3.1. Robinson–Foulds Distance

One common method to compare trees is the widely used
measure of topological distance between two trees, as defined
by Robinson & Foulds (1981), which is referred to as the
Robinson–Foulds distance (RFD).
The RFD evaluates how similar two trees are by matching

the similarity between a partition or split in one tree and its pair
on the second tree. The partition distance is defined as the total
number of splits that exist in one tree but not on the other. It
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can be equivalently defined as the number of contractions and
expansions needed to transform one tree into the other.
Removing an internal branch by reducing its length to zero is
a contraction, while creating an internal branch is an expansion.
For a rooted tree with n tips and (n− 2) internal nodes, the
partition distance ranges between 0 and ( )= -D n2 2max (see
Yang 2014 for extensive discussion). The RFD considers a
performance parameter = -P D D1 max to assess the simi-
larity between trees. We note that the RFD varies between 0
and 1, where the smaller the value, the more similar two
phylogenetic trees are.

There are a few limitations on using the RFD. First, as it only
focuses on splits in the trees, it does not consider the branch
length as information for similarity. Second, some deep
relationships in the tree might be neglected for trees in which
the splits of the outer nodes are different, despite sharing
internal nodes. This implies that while the performance of the
RFD ranges between 0 and 1, two random trees normally differ
by 80%.

We comment that the RFD parameter can only be calculated
for a tree estimated from the same set of objects. It serves thus
to compare different input data, but not to compare different
sets of objects, since the identification of splits in different trees
cannot be matched. In order to calculate the RFD, we used the
R library treedist15 (Smith 2020a, 2020b, 2022) and the
module TreeDistance, which follows Smith (2020a) and
uses the concepts of entropy and information described in
MacKay & Mac Kay (2003).

2.3.2. Consensus Tree

While tree distances are a measure of how different trees are,
consensus trees summarize common features about a collection
of trees. In the same way as the RFD, a consensus tree can be
obtained when the set of objects used to estimate trees is
the same.

In this work, we consider the majority-rule consensus tree,
which shows the branches and splits that are present in the
majority of the trees. Majority is defined as more than 50%. A
consensus tree is a summary tree that essentially selects the
nodes that appear in at least half of the trees and rejects all other
nodes. Rejected nodes are transformed in polytomies, e.g.,
there are more than two branches connecting a given node with
a tip (Baum et al. 2005). There are two types of polytomies:
hard and soft. Hard polytomies are associated with multi-
furcations in the tree, while soft polytomies are associated with
unresolved relationships in the tree. Soft polytomies are an
indication of lower phylogenetic resolution in the tree. Hence,
polytomies can imply a particular extreme event that might
give rise to several evolutionary paths, but in a consensus tree
they might illustrate a lack of accuracy in the data to solve the
branching pattern of the historical events. Therefore, while
consensus trees are not ideal to study the evolutionary history
of a galaxy, they are extremely useful to study the global
properties of a set of phylogenetic trees, since they display their
common features.

It is worth noting that polytomies in a consensus tree are a
way to illustrate uncertainties, and do not represent a particular
evolutionary event that could cause a large divergence of
lineages. It is therefore not encouraged to interpret evolutionary

histories with consensus trees because the polytomies can
easily lead to wrong interpretations.

3. Simulated Data

In this work, we use the data of a simulated disk galaxy. The
information available from the simulation will be used to
characterize the level of agreement between the evolutionary
history traced by the phylogenetic trees and the history of the
simulated galaxy. This way, we will take numerous advantages
of the information provided by using hydrodynamical simula-
tions. First, chemical abundances and ages for a large number
of stellar particles are available. This allows the consideration
of selection biases that are common when working with
observed data. Second, it provides the opportunity to examine
in detail the places and times different stellar particles were
formed, which allows an assessment of the reliability of the
phylogenetic trees to assign connections. Finally, the simula-
tion provides information about the galaxy studied, from its
SFR through time to its AMR and the nucleosynthetic channels
that produce different chemical elements. Therefore, by using
simulated data, we can estimate phylogenetic trees for which
reverse engineering of the evolutionary history traced is
possible.

3.1. Simulations

For this paper, we use a preprepared simulation of an
isolated disk galaxy. This simple initial condition allows us to
perform the construction and analysis of the phylogenetic trees
in a system that does not receive material (gas inflows or
mergers) from the the surroundings. It is simple enough to be
used as a first test bed for phylogenetic trees. Therefore, this
simulated disk galaxy is not expected to represent a real galaxy.
From this starting point, we will build up more complex galaxy
formation scenarios until reaching maturity in the technique, to
adequately apply phylogenetic trees in a cosmological context
in future works.
The analyzed simulation was performed by using a version

of the P-GADGET-3 code (Springel 2005), which includes a
multiphase model for the gas component, metal-dependent
cooling, star formation, and supernova feedback, as described
in Scannapieco et al. (2005) and Scannapieco et al. (2006). A
Chabrier Initial Mass Function is assumed, with a lower
and upper mass cutoff of 0.1 and 40 Me respectively,
(Chabrier 2003).
The chemical evolution model includes enrichment by Type

Ia (SNe Ia) and Type II (SNe II) supernovae (Mosconi et al.
2001; Scannapieco et al. 2006). The SNe Ia events are assumed
to originate from CO white-dwarf binary systems, in which the
explosion is triggered when the primary star, due to mass
transfer from its companion, exceeds the Chandrasekhar limit.
For simplicity, the lifetimes of the progenitor systems (delay
times) are assumed to be randomly distributed over the range
[0.7, 1.1] Gyr. This simple model for the lifetime distribution
produces consistent results with the single-degenerated model
(Jimenez et al. 2015). The nucleosynthesis yields of SNe Ia
correspond to Iwamoto et al. (1999). SNe II originate from
massive stars with lifetimes estimated according to Raiteri et al.
(1996). Their nucleosynthesis products are derived from the
metal-dependent yields of Woosley & Weaver (1995). The
chemical model traces the following 12 different chemical
elements: H (hydrogen), 4He (helium), 12C (carbon), 14N

15 See https://cran.r-project.org/web/packages/TreeDist/TreeDist.pdf for
details.
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(nitrogen), 16O (oxygen), 20Ne (neon), 24Mg (magnesium), 28Si
(silicon), 32S (sulfur), 40Ca (calcium),56Fe (iron), and 62Zn
(zinc). Initially, the gas component is assumed to have
primordial abundances, i.e., XH= 0.76, YHe= 0.24, and Z =0.

The initial conditions correspond to a disk galaxy composed
of a dark matter (DM) halo, a stellar bulge component, and an
exponential disk, with a total baryonic mass of mb∼ 5.2×
1010M☉. The halo and bulge components were modeled by a
Navarro–Frenk–White profile (Navarro 1996) and a Hernquist
profile (Hernquist 1990), respectively. The gas component is
distributed in the disk and accounts for 50% of the total disk
mass. The initial gas-mass particle is mgas= 1.96× 105M☉.
The gravitational softening (i.e., a numerical length introduced
to avoid unrealistic gravitational forces during particles' close
encounters) adopted is 200 pc for the gas and star particles and
320 pc for the DM component.

Each stellar particle represents a single stellar population with
the same age and chemical abundances. Hereafter, we will use
the standard definition * *[ ] ( )–( )☉ ☉=X H H Hlog X log X10 10 ,
where X and H are the abundances of the elements X and H,
respectively. Hence, for each stellar particle, the abundances can be
defined by combining the chemical elements described above.

3.2. Data

The simulated galaxy has a strong initial starburst that, while
widely spread, is more intense in its central region. After the
initial starburst, the star formation activity decreases. We chose
to follow the evolution of the system until this time as this
allows SNe Ia to take place in the simulation. Since the
simulation starts with primordial gas, the first stellar particles
that formed will have Z= 0, where Z is the so-called metallicity
that quantifies the abundances of elements heavier than He.
However, this simulation does not include a model for the
formation of such stellar particles, which are known to be
different from second-generation ones. Considering this and the
fact that chemical abundances are the input parameters to
estimate phylogenetic trees, we excluded the stellar particles

that have been formed from primordial gas. The stellar particles
selected for the analysis have ages �1.5 Gyr and −3.0�
[Fe/H]� 0.5, approximately. We used these particles to create
different subsamples that were used to explore the different
specific questions concerning this analysis.

3.2.1. Stellar Samples

For our study, we perform different selections of stellar
particles from different regions of the simulated disk galaxy, as
described above. We refer to them as deterministic, noise,
Group 01, Group 02, Group 03, and Group 04. They are
summarized in Table 1 and explained below.
The deterministic sample is our primary sample and was

created to explore the phylogenetic signal based on the number
of stellar particles used to estimate the phylogenetic trees (see
Section 4.2) and also the impact that uncertainties on the
chemical abundances have in this kind of study (see
Section 4.3). We wanted this sample to have a history in
which older populations directly contributed to the chemistry of
the younger populations. In order to select these particles, we
defined a sphere of 1 kpc of radius around the galaxy’s center
of mass at the snapshot that corresponds to 1.5 Gyr. The radius
of the sphere is larger than three gravitational softening lengths,
but small enough to maximize the possibility that the stellar
particles represent populations that have a common chemical
history of evolution. Then we chose only the stellar particles
whose progenitor gas particle was also in the same region since
the beginning of the simulation. We adopt a time of 0.016 Gyr,
which corresponds to the first snapshot available of the
simulation. Finally, we chose only the stellar particles whose
birth radii were also inside the sphere. The central location of
the deterministic sample also considers that the particles have
low probabilities of experiencing significant migration, since
they are located at the center of the gravitational potential well.
The noise sample was built by replacing the chemical

abundances of the deterministic sample by random chemical
abundances. The random chemical abundances were generated

Table 1
Descriptions of the Different Samples of Stellar Particles Used in This Work

Sample Name Description Sample Size Used In

Deterministic Sphere of 1 kpc of radius centered at the position (0,0,0). We only
consider stellar particles where progenitor gas particles were inside the
sphere at the beginning of the simulation and have remained within

the same region since they were born.

761 Section 4.2. Phylogenetic Signal in Numerical Simu-
lations. Section 4.3. Phylogenetic Signal Considering

Uncertainties.

Noise Built using chemical abundances randomly created, without any
astrophysical meaning. The synthetic chemical abundances created
respect the range of the distribution as observed in the simulation.

10, 50, 100
and 200

Section 4.2. Phylogenetic Signal in Numerical
Simulations.

Group 01 Sphere with center at (0,0,0), without the other constraints considered
in the deterministic sample (birthplace or location of progenitor gas

particle).

2365 Section 4.4. Evolutionary History Considering Differ-
ent Regions of the Galaxy.

Group 02 Sphere with center at (3,3,0). 324 Section 4.4. Evolutionary History Considering Differ-
ent Regions of the Galaxy.

Group 03 Sphere with center at (−3,3,0). 478 Section 4.4. Evolutionary History Considering Differ-
ent Regions of the Galaxy.

Group 04 Sphere with center at (−5,5,0). 159 Section 4.4. Evolutionary History Considering Differ-
ent Regions of the Galaxy.

Note. We note that the total number of stellar particles (sample size) refers to the global number of the entire sample and not the number of stellar particles used to
estimate the phylogenetic trees. All of the spheres used to select Groups 01, 02, 03, and 04 and the deterministic sample have a radius of 1 kpc.
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within the range of the deterministic sample. Therefore, the
noise sample has stellar particles whose chemical abundances
have no astrophysical meaning. This sample was included in
this study in order to compare how phylogenetic trees from
data compare to trees from random chemical abundances and to
evaluate the presence of the phylogenetic signal.

Finally, groups 01, 02, 03, and 04 are used to explore the
evolutionary histories of different regions of the galaxy (see
Section 4.4). We selected stellar particles in four different
spheres at different galactic radii. All the spheres have 1 kpc of
radius, like the deterministic sample. Unlike the deterministic
sample, however, here we perform no further selections on the
birth radii or the location of their progenitor gas particles, hence
allowing the particles to come from outside the corresponding
sphere. Group 01 was built from a sphere centered at (x, y,
z)= (0, 0, 0) kpc. Group 02 was built around the position (x, y,
z)= (3, 3, 0) kpc. Group 03 is from a sphere centered at (x, y,
z)= (−3, 3, 0) kpc. Group 04 was selected around the position
(x, y, z)= (−5, 5, 0) kpc. Groups 02 and 03 were selected to
assess possible azimuthal variations, in which only Group 03
selected stellar particles from a spiral arm.

Figure 1 shows the spatial distribution of the four regions
studied. Group 01 (green) contains 2365 stellar particles. Group
02 (blue) contains 324 stellar particles. Group 03 (pink) has
478 stellar particles. Finally, Group 04 has 159 stellar particles.
The colors associated with each group are respected in the rest

of this work. In gray, we show the spatial distribution of all
stellar particles at 1.5 Gyr. The difference in the number of
particles in these regions is due to the different gas densities in
the simulation, which follows an exponential profile. This has
an impact on the SFH and therefore the chemical enrichment.
The deterministic and noise samples are used to assess the

dependence of the phylogenetic signal on the number of stellar
particles selected to estimate the trees. Hence, we created
subsamples containing 10, 50, 100, and 200 stellar particles.
Groups 01–04 are used to study the physical information that
can be retrieved by the phylogenetic trees. For these groups, we
selected 100 stellar particles to represent the stellar population
of the corresponding region, based on the results of the analysis
of the deterministic and noise samples. We applied a
Kolmogorov–Smirnov test (K-S test) to guarantee that every
subsample of 100 stellar particles provided a fair representation
of the properties of their parent sample. We rejected the null
hypothesis if the p-value was lower than 0.05. The K-S test
considered the distributions of [Fe/H], [O/Fe], and star
formation time.

3.2.2. Input Information for Trees

We used the chemical abundances of 10 chemical elements
in order to estimate the phylogenetic trees. The chemical
elements are: O, Mg, Ca, Si, Ne, S, Fe, Zn, C, and N. They

Figure 1. Face-on (upper panel) and edge-on (lower panel) spatial distribution of the stellar populations in the four defined groups: Group 1 (green), Group2 (blue),
Group 3 (pink), and Group 4 (red). The gray points represent the whole distribution of stellar populations in the simulated galaxy. We note that volumes mapped by
the selected groups represent a sphere of 1 kpc radius.
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trace different nucleosynthetic channels and provide important
information about the chemical evolution processes in the
simulation. O, Mg, Ca, Si, and Ne, for example, are α
elements, produced mainly by SNe II, while Fe and Zn are
iron-peak elements produced mainly by SNe Ia. In the case of
C and N in this simulation, the production is done only by SN
Ia and SN II, as winds from asymptotic giant branch (AGB)
stars are not included in our simulation.

The chemical abundances were defined in relation to
hydrogen and the Sun, in the format [X/H], as defined in
Section 3.1. We chose this format in order to have a more direct
parallel between the abundances in this work and the
observational works on the chemical evolution of the Milky
Way. Another reason for this choice is to have Fe as an
independent element to estimate phylogenetic trees. We note
that a galaxy that might experience the inflow of pristine gas
can have a trend of [X/H], which is not monotonic. In the case
of this simulated galaxy, there is no inflow of pristine gas,
therefore the ratio [X/H] can be used without that concern.

The chemical abundances provided by the simulation do not
have intrinsic uncertainties, therefore each tree we estimate is
the result of one distance matrix that is the result of the
simulated abundances. When studying the impact of uncertain-
ties on the evolutionary history provided by the phylogenetic
trees, we varied the original abundance value considering a
normal distribution. In order to do so, we created normal
distributions where their mean was the original abundance
value and the uncertainties (σ) were 0.01, 0.05, 0.08, 0.1, 0.2,
and 0.3 dex. The widths of the normal distribution were chosen
in order to investigate uncertainties found in standard
observational studies (e.g., 0.1, 0.2, and 0.3 dex) and also in
high-precision studies (e.g., 0.01 and 0.05 dex), while
considering intermediate cases to better delimit the maximum
uncertainties possible for which a phylogenetic signal is mostly
preserved (e.g., 0.08 dex).

4. Results and Interpretation

In this section, we present the results we obtained in three
tests, performed using the different samples discussed in
Section 3.2.1. The astrophysical properties of the samples used
here are discussed in Section 4.1. In our first test, we explore
the phylogenetic signal provided by trees when we vary the
number of stellar particles (Section 4.2). Then, we investigate
the impact of the chemical abundance uncertainties on the
evolutionary history traced by the trees and in the phylogenetic
signal (Section 4.3). Finally, we explore the evolutionary
history found in different regions of the simulated galaxy and
its connection with the AMR and SFH of the location
(Section 4.4).

4.1. Astrophysical Properties of the Different Samples Used

In order to explore the astrophysical properties of the
different samples used in this work, their SFHs, AMRs, and
[O/Fe] versus [Fe/H] distributions are considered. Oxygen is a
chemical element mostly deposited in the ISM due to SNe II,
which are explosions of massive stars, while the production of
Fe by SNe Ia and SNe II varies according to the yields adopted.
Hence, the deviation of [O/Fe] from what is typically found in
SNe II ejecta represents the contribution from low-mass stars.
As a consequence, the ratio [O/Fe] is a powerful diagnosis of
the low- and high-mass star contributions to the chemical

evolution of the ISM, which happen over different timescales
because of stellar evolution. The AMR relation is also key,
since it shows how the metallicity of the environment changes
with time. Finally, from the SFH, we can identify when star
formation, hence chemical enrichment, has been most promi-
nent in the simulation, or how star formation might vary in the
different samples studied. We therefore use the [O/Fe] versus
[Fe/H] distribution, the AMR, and the SFH to guide the
interpretation of the evolutionary history traced by the
phylogenetic trees.
Figure 2 shows the cumulative stellar-mass fraction as a

function of the stellar ages of the populations within each
analyzed sample. The deterministic sample is in yellow, and
Groups 01, 02, 03, and 04 are in green, blue, pink, and red,
respectively. The dashed horizontal lines represent the 50th and
80th percentiles of the stellar-mass contribution. This figure
allows us to compare the SFHs of the different samples. We
note that Group 04 forms 80% of its stellar mass in a
considerably shorter timescale than Group 01, reflecting that
the outskirts of the galaxy formed the majority of their stellar
mass faster than the center of the galaxy at the given time. We
also observe that Group 03 also creates 80% of its stellar mass
faster than Group 02.
In Figure 3, we show the SFH, the AMR, and the [O/Fe]

versus [Fe/H] diagrams for the different samples studied here.
Each row of the figure is a different sample. The gray
background points correspond to all the 31,807 stellar particles
at 1.5 Gyr that passed our first selection criterion (i.e., have Z
higher than 0) and are therefore the same in all rows. In color,
we show all stellar particles selected for each sample. The
stellar symbols enclosed correspond to a random selection of
100 particles that are referred to as example samples. We make
this selection because we can only estimate trees with a limited
number of stellar particles, to avoid visual cluttering, therefore
we need to assess if these selections are a good representation
of the entire sample. These are the 100 particles selected
considering a K-S test and displayed in the trees of the
following sections, and we can see that in every sample, they
are well distributed with respect to the main sample.
Looking at the left columns of Figure 3, we see that the peak

of the star formation happened at the start of the galaxy’s
evolution. This peak is seen across the different samples,

Figure 2. Cumulative stellar-mass fraction as a function of age of all samples
considered in this work (see Table 1). The orange, green, blue, pink, and red
lines refers to the deterministic and Group 01, 02, 03, and 04 samples. The
horizontal lines indicate the 50th and 80th percentiles of the stellar-mass
contribution.
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Figure 3. Example of astrophysical properties of the samples studied. Each line represents the following samples, respectively: deterministic, Group 01, Group 02,
Group 03, and Group 04. Left: star formation history (SFH) Center: age–metallicity relation (AMR). Right: [O/Fe] vs. [Fe/H] relation. Gray: all stellar particles with
chemical abundances available in the simulation at 1.5 Gyr. The dark colors represent all possible stellar particles from each sample. The star symbols represent the
chosen 100 particles used to estimate phylogenetic trees in this work.
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although it lasts for longer in the central part of the galaxy. One
can see that both the deterministic and the Group 01 samples
have an SFH that peaks at 1.4 Gyr and decreases gradually over
approximately 0.3 Gyr, while Groups 02, 03, and 04 have
peaks that lasts only for about 0.1 Gyr. There is still star
formation happening during the rest of the history of this
galaxy across all regions, but at a much lower rate.

It is expected that a galaxy that evolved in isolation would
not present further enhancement of the star formation after the
first peak, which is driven by the formation of the arms in this
simulation. The newborn stellar populations tend to be
concentrated in the central regions following the initial gas
density distribution, but they will also populate the denser
regions of arms. After this, the star formation self-regulates,
consuming the remaining gas (recall that there are no external
gas inflows or mergers in this isolated case) into stars, which
subsequently injects SN feedback into the ISM. The energy
increases the temperature and pressure and contributes to
regulate the star formation activity, producing a more
continuous star formation activity with the same weak star
formation bursts.

The AMR relations in the middle panels show the relation
between chemical enrichment and the SFH. Since a lot of
stellar particles are formed at the beginning of the galaxy’s
history, it is expected that chemical enrichment will happen
quickly, particularly in the central regions where the gas
density is highest. The AMR is therefore expected to be steep
for stellar particles formed at the epoch of the star formation
peak. We observe that happening in all regions. Once the star
formation has slowed down, the metallicity slightly increases.
We can note some differences among regions. The AMR
relation in the central regions increases more monotonically,
which is an effect of more significant star formation happening
over a longer period of time with respect to the outer regions.
This can also be seen from the cumulative mass ratio of
Figure 2, where the central region forms 50% or 80% of its
stellar particles later than the outer regions. The level of metal
enrichment reached by each stellar population is also different,
with the central regions being systematically more enriched, as
expected.

The AMRs of Groups 02, 03, and 04 show a breaking point
around 1.3 Gyr, which is related to the abrupt change of star
formation activity at that time. The AMR of Group 04 has very
few stellar particles with ages younger than about 1.2 Gyr. In
fact, from Figure 2, we see that 80% of the stellar mass in that
region was formed 1.2 Gyr ago. It is thus more difficult to
attribute these stellar particles as a population that is following
one chemical evolution path through an ancestor–descendant
relationship.

In all the analyzed samples, we observe a decrease of [O/Fe]
with the increase of [Fe/H], as expected according to the
chemical evolution of galaxies. In the first stages of the
evolution of the simulation, multiple SNe II occur, producing O
in great quantity. SNe Ia progenitors have longer lifetimes,
therefore only at later stages is Fe deposited in the ISM in a
more substantial way, decreasing [O/Fe]. This is seen in every
panel.

It is worth commenting on the differences between the
deterministic and the Group 01 samples, since both concern the
same region in the galaxy, namely the central one. We note that
the deterministic sample is a subset of Group 01, since we
impose that both the stellar and the gas particles residing at the

end of the simulation must have stayed in the inner region. This
results in removing most of the younger particles of Group 01,
which shows how much gas flow is ongoing in the central
region of the simulation. In Figure 2, it is possible to see how
the deterministic sample assembles 80% of its stellar particles
around 1.2 Gyr, while Group 01 does it about 0.3 Gyr later.
Groups 02 and 03 are also worth commenting on, since they

are selected to study possible asymmetric effects in the disk. It
is customary to assume that because of the galactic rotation,
disks are asymmetric, and therefore only the galactic radius is
considered as a variable for studying variations in galactic
structure and evolution, but the presence of the spiral arms
might cause some asymmetries. Here, we see that the SFH,
AMR, and [O/Fe] versus [Fe/H] have very similar distribu-
tions in Figure 3. But we also note that the total number of
stellar particles in both regions is different, which is related to
the different densities across the arms. Group 03 is located on a
spiral arm. This has an impact on the SFR, as seen from the
cumulative mass fraction of Figure 2, where Group 02
assembles 80% of its stellar particles about 0.4 Gyr later than
Group 03.
As a consequence of the SFHs, [Fe/H] has a quick increase

during the first 0.5 Gyr, but after 1.2 Gyr, it is approximately
constant, with a weak increase in some regions depending on
the SFH and local characteristics of the ISM. That delayed
enrichment of SNe Ia relative to SNe II causes [O/Fe] to
decrease as metallicity increases across the entire galaxy, as a
result of the interplay between the chemical production of O
and Fe caused by stars of different lifetimes. We also show in
Figure 3 that our selection of 100 particles from our samples is
a fair representation of the particles in that sample. We estimate
the trees to explore the impacts of these different SFHs and
AMRs in these regions in the following sections.

4.2. Phylogenetic Signal in Numerical Simulations

In this section, we focus on the deterministic sample to study
if there is a phylogenetic signal in our simulation. To do so, we
first compare our trees with the noise sample, to ensure we are
obtaining results that are different than a random distribution,
and then interpret our trees in the context of historical
reconstruction. We used as the root of the trees the oldest
stellar particle for which chemical abundances were available,
as discussed in Section 2.1.

4.2.1. Trees from Chemical Abundances Obtained from Simulated
Data or from a Random Distribution

In this section, we investigate the dependence of the
phylogenetic signal on the population density, specifically the
number of stellar particles used to construct it within a given
volume. This analysis is highly relevant, as it allows us to
determine the minimum number of stellar particles necessary to
extract a signal that surpasses numerical noise in the simulation
as well as natural stochasticity.
Figure 4 shows an example of a tree estimated using the

deterministic sample and one tree estimated using the noise
sample. Both trees were estimated by using subsamples of 100
stellar particles selected at random from the corresponding
volume (see Table 1 for detailed definitions of these
subsamples). In this figure, we can see that the two trees are
very different from each other in their general aspect.
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The most notable difference between the trees is the
branching pattern; in particular, the number of main branches.
The tree from the deterministic sample shows one main branch,
e.g., the tree is very asymmetric or imbalanced. Moreover, the
branch lengths that connect the tips to nodes are very short. We
recall that nodes in biology reflect the last common ancestor of
the descendant lineages. Here, since almost all the nodes have
at least one descendant lineage that connects directly to a tip,
one might attribute that we are sampling the ancestral states and
directly tracing the ancestor–descendant relationships of the
stellar particles.

The noise tree, on the contrary, has long branches, especially
at the tips. All nodes are therefore a representation of a state
that is very different to the tips and not directly sampled in the
data. Moreover, the internal branches are shorter than the
external ones, which is a reflection of the differences in this
sample being driven by randomness and not by internal
hierarchical structures, since this branching pattern shows that
much of the chemical distance between the stellar particles is
not explained by the inferred phylogenetic relationship and it is
then deposited in the tips. The tree shows an even distribution
of branches that bifurcate from nodes from the root to the tips
(e.g., it is a symmetric or balanced tree).

As discussed in Jackson et al. (2021), imbalanced trees
happen when there is gradual evolution of a single lineage
through time. Differences between traits can therefore be traced
as information passed through generations, but they still might
represent the evolution of the same population. Balanced trees
might reflect rather the differentiation of populations and
processes that cause populations to evolve independently from
each other. In astronomy, so far stars or stellar particles whose
chemical abundances are the result of a shared chemical
evolution history produce very imbalanced trees. That was
found in Jackson et al. (2021), in Walsen et al. (2023), and in
K. J. Yaxley et al. (2023, in preparation; both with solar twin
observed data), in C. J. L. Eldridge et al. (2023, in preparation),
and throughout this article.

Based on these findings, we can report that the trees
constructed from the simulated chemical abundances success-
fully capture a discernible phylogenetic signal that deviates
from noise. We will now investigate the minimum number of

members required in the sample to attain this objective and,
hence, justify the use of 100 members as adopted above.
Figure 5 shows the RFD (see Section 2.3) between the

deterministic and noise samples. Here we attempt to quantify
the difference between a tree estimated from the deterministic
sample and from the noise sample (e.g., comparing the trees
displayed in Figure 4). We consider trees estimated using 10,
50, 100, and 200 stellar particles. We compare 1000 times this
difference by randomly selecting particles from the determi-
nistic sample and the noise sample. The yellow distribution
represents these 1000 RFD estimates. This figure also shows
the RFD obtained between two noise samples. In the same
fashion as with the deterministic sample, we randomly select
particles 1000 times from the noise sample and compare them.
The RFD distribution in this case is represented with the gray
color. We recall that the higher the RFD, the more different the
trees are from each other. Therefore, when the mean RFD of
the yellow distribution is larger than the mean RFD of the gray
distribution, we consider we have a phylogenetic signal. Also,
to have trees that are generally different from noise, it is
preferable that both distributions do not overlap.
In the case of estimating trees with 10 stellar particles, the

distributions of the RFD of the deterministic and noise samples
overlap. The mean RFD for the deterministic sample is 0.77,
while for the noise sample alone, the mean is 0.75. The
standard deviations (SDs) are respectively 0.08 and 0.09.
Hence, we interpret that trees estimated from noise containing
10 stellar particles are not more similar to each other than they
are to trees estimated from simulated data. When using 50
stellar particles to estimate trees, the distributions of the RFD
become more different, but the tails in the distributions still
overlap. The mean RFD for the comparison between the
deterministic sample is 0.90, while the mean for the noise
sample alone is 0.85. The SDs are 0.01 and 0.02, respectively.
With 50 stellar particles, we interpret that phylogenetic trees
estimated from noise are more similar among each other than
they are compared to a tree estimated using abundances from
simulated data.
In the cases of 100 and 200 stellar particles, the distributions

of the RFD do not overlap, but the mean of the deterministic
distributions increases. In both cases, the RFDs are on average

Figure 4. Left: example tree estimated from the deterministic selected stellar particles. The stellar particles represent a single stellar population. Right: example tree
estimated from the noise sample (see Table 1). In order to estimate both trees, we included an outsider stellar particle that corresponds to the oldest stellar particle in
the simulation for which chemical abundances are available. Both the trees presented in the left and right panels were rooted in this stellar particle, for a better
comparison. The scale at the bottom of each panel refers to the branch length (total chemical difference).
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larger in the comparison of trees made from the deterministic
and noise samples than among trees from only the noise
sample. This indicates that phylogenetic trees estimated from
noise are more similar to each other than they are to
phylogenetic trees from simulated data containing 100 and
200 stellar particles. In the case of 100 stellar particles, the
mean of the RFD between the random and deterministic
samples is 0.93 and in the case of 200 particles that mean is
0.94. The SDs are respectively 0.01 and 0.01. The mean RFDs
of the noise against noise particles are 0.87 (with an SD of
0.01) and 0.88 (with an SD of 0.01) for 100 and 200 stellar
particles, respectively.

We conclude that the more particles we consider, the more
our trees are different from a random distribution, but using 50
particles or less might still produce some phylogenetic trees
whose topologies are comparable with a random tree. When
using 100 particles, however, we obtain trees that are always
different from noise, therefore we use 100 particles from now
on to interpret the phylogenetic signal of our data and
reconstruct the history of our simulated galaxy. We note that
this result might differ when considering more complex cases
or a different resolution for the simulation, and it is possible
that more stellar particles might be required in those scenarios
to reliably represent the evolutionary history of the system.

4.2.2. Phylogenetic Signal from the Deterministic Sample

We consider the difference between the tree estimated from
the abundances resulting from a simulation and the tree
estimated from noise as a proxy for a phylogenetic signal. We
now investigate if our tree can help us to reconstruct the history
of the deterministic sample. Figure 6 shows an example of a
deterministic tree color-coded according to age. This is the
same tree as the one shown in Figure 4. We can see that this
tree has its internal nodes rank ordered according to age.
Moreover, the oldest particles are closer to the root, but that is
expected if we have used the most ancient particle to root the

tree. Given the AMR of this sample (see the top middle panel
of Figure 3), it does not come as a surprise that the tree will
have a clear directional evolution, since our tree uses [Fe/H] as
one of the traits in the distance matrix. The AMR is flat below
ages of approximately 1.2 Gyr, and this lack of sensitivity leads
to a worse age ranking at the top of the phylogenetic tree
relative to the base of the tree. Figure 12 shows this tree, but
with particles colored by their [O/Fe].
There is a section in the tree where the neighboring particles

do not necessarily have very similar ages. This coincides with

Figure 5. RFD distributions for the trees estimated with stellar particles selected from the deterministic sample compared to the noise (yellow histograms) and noise-
only (gray histograms) samples. The top left, top right, bottom left, and bottom right represent respectively the cases considering 10, 50, 100, and 200 stellar particles.
Each panel contains the mean (μ) RFD of the distributions. The larger the RFD, the more different the trees are from each other.

Figure 6. Example of a phylogenetic tree of the deterministic sample (the same
as presented in Figure 4), color-coded according to age.
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the sector in which [O/Fe] mixes. It is possible that this is
related to the moment in which SNe Ia events start to occur,
which changes the overall chemical enrichment rate. Consider-
ing that the distance matrix uses a mix of elements coming
from SNe II and SNe Ia, if the rates of their production vary
during the history of the galaxy, it might cause particles of
different ages to be chemically more similar than coeval
particles. This section in the tree corresponds to ages below
1.0 Gyr, which is when the star formation slows down, the
AMR becomes flatter, and the [O/Fe] reaches solar values.

It is further interesting to note the branch lengths between the
nodes in this tree become shorter along the path of the tree.
This might be related to the SFH. At earlier stages of the
history, when star formation is at its peak, there is a notable
change in chemical abundances, which is represented by the
steep AMR (see Figure 3). In the beginning, the gas is very
metal-poor, therefore any enrichment is significant compared to
its surroundings. This causes long branches. As the star
formation slows down, the difference in chemistry becomes
smaller, the AMR flatter, and the branch lengths shorter.
Therefore, the branching pattern illustrates that the rate of
chemical enrichment declines.

Because our tree is asymmetric (e.g., it presents only one
main branch) and has rank-ordered ages, it reflects the result of
one single history. This is consistent with the fact that our
simulated galaxy did not experience interaction with another
chemical-enriched galaxy, causing the mixing of preprocessed
gases or the inflow of pristine gas from filaments.

4.3. Phylogenetic Signal Considering Uncertainties

In the previous section, we defined the minimum number of
stellar particles necessary in order to have enough phylogenetic
signal to have trees that represent the evolutionary history of
our studied galaxy. In this section, we investigate the maximum
uncertainties on the chemical abundances for which the
phylogenetic trees are evolutionary informative. Using the
example tree of the deterministic sample (Section 4.2), we
explore the effect chemical abundance uncertainties have on
the phylogenetic signal and how they affect the evolutionary
history we can interpret from the tree.

For the purpose of this analysis, we perturbed the chemical
abundances of the 100 stellar particles from the deterministic
sample considering six uncertainty values: 0.01, 0.05, 0.08, 0.1,
0.2, and 0.3 dex. Abundances with precision below 0.05 dex
fall in the high-precision domain and are rather obtained when
analyzing very high-resolution and high-signal-to-noise-ratio
spectra (e.g., Nissen & Gustafsson 2018) or using machine-
learning tools when large samples of reference stars are
available for training a good model (Ness et al. 2015; Leung &
Bovy 2019; Wheeler et al. 2020; Ambrosch et al. 2023, Walsen
et al. 2023). Standard spectral analyses have abundance
precisions that are rather of the order of 0.1–0.2 dex. A
precision of 0.3 dex is understood as a large uncertainty, but is
unfortunately still very common for studies, particularly for
faint stars for which the signal-to-noise ratio is not very high,
as, for example, for halo stars.

In order to account for these uncertainties, we created new
values of chemical abundances for each stellar particle. The
new values consider a normal distribution with the mean as the
original value and the SD as the corresponding uncertainty
considered. Using the perturbed chemical abundances, we
estimated new trees for the deterministic sample, which we

compare with the original tree. In Figure 7, we show the RFD
between the original tree and the trees estimated considering
uncertainties of 0.01, 0.05, 0.08, 0.1, 0.2, and 0.3 dex with
different colors.
The RFD shows that the yellow distribution has a mean of

0.07 (and an SD of 0.03), indicating that considering
uncertainties within 0.01 dex does not significantly change
the trees. As the uncertainties increase, the RFD increases as
well, which is expected. For an uncertainty of 0.3 dex, the trees
deviate from the original one, reaching a mean RFD of 0.50
(and an SD of 0.04). We note that this value is still lower than
the mean RFD of 0.93 for the comparison of the deterministic
and the noise sample when 100 particles are considered. This
suggests that while the trees with uncertainties of 0.3 dex differ
among each other, there is still some phylogenetic signal, as
they are still distinct from pure noise. Additionally, to have a
better idea of how the trees change when the abundances are
modified, we show in Figure 8 the link between two example
trees for three cases of abundances. The left-hand trees are
always the deterministic tree, with no uncertainties in the
chemical abundances, and the right-hand trees correspond to
one example tree obtained by perturbing the abundances,
considering 0.01, 0.1, and 0.3 dex, respectively. The dashed
lines in each case connect the same particle in each tree.
From the lines shown in Figure 8, we can see that when the

abundances have an uncertainty of 0.01 dex, 24 of the 100
particles change their labeling order (locations in the tree).
Their new location is relatively close to the original tree, as
expected if the change in abundance is small. In the case of an
uncertainty distribution of 0.1 dex, 60 out of 100 stellar
particles change their places. Finally, in the case of 0.3 dex
uncertainties, 90 stellar particles change place in the tree. The
new positions are quite far from the original tree. It is
interesting to note the gradual increase of the branch lengths
when the uncertainties increase. This is also seen in the noise
tree (see Figure 4) and in Walsen et al. (2023), who compared
trees built from observed stars whose abundance measurements
have different uncertainties. This tree, however, is different to
the noise tree, as expected from the different RFD value
obtained here and in Section 4.2. The tree with 0.3 dex
uncertainty is in fact still very imbalanced, unlike the
noise tree.
While Figure 8 shows the displacement of stellar particles

when considering uncertainties, it is fundamental to evaluate if
different chemical abundances would still carry evolutionary

Figure 7. RFD when comparing the deterministic tree and those with chemical
abundance uncertainties of 0.01, 0.05, 0.08, 0.1, 0.2, and 0.3 dex. The means of
these distributions are shown in the legend. The larger the uncertainty, the more
different the trees become from the original.
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information to reconstruct the shared history of the selected
stellar particles. It is thus necessary to study the support of a
tree with uncertain abundances in this context. To do so, we
computed 1000 trees by perturbing the abundances and
collected these trees in a majority-rule consensus tree (see
Section 2.3). Figure 9 shows the consensus trees when
considering the uncertainties of 0.01, 0.05, 0.08, 0.1, 0.2, and
0.3 dex. We note that only the tree topology is shown, since the
branch lengths of consensus trees cannot be directly related to
the branch length of an actual sampled tree, which is the result
of a distance matrix.

In this work, we aim to focus on the branching pattern of the
nodes and the age ranking of the selected nodes; we do not
focus on the branch lengths. By collapsing nodes into
multifurcations when nodes are conflicting in a sample of
phylogenetic trees, we are reducing the number of total nodes
in a tree, which essentially means reducing the resolution in
which the shared history can be extracted. It is not trivial to
define a limit of the maximum number of nodes that can be
reduced from a sampled tree to a consensus tree that means a
significant loss of the phylogenetic signal, but it is clear that if
we allow multifurcations in our trees, they should be somehow

Figure 8. Comparison between the deterministic tree (the left tree in all three examples) and a new tree estimated by perturbing the abundances (the right trees in all
three examples) within a range of 0.01 (left), 0.1 (middle), and 0.3 (right) dex. The dashed lines connect the same particle in each tree.

Figure 9. Consensus tree topologies color-coded according to age. Top: trees estimated considering chemical abundance uncertainties of the order of 0.01, 0.05, and
0.08 dex, respectively. Bottom: trees estimated considering chemical abundance uncertainties of the order of 0.1, 0.2, and 0.3 dex respectively. The polytomies in each
tree are indicated as A, B, C, D, E, F, G, and H.
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distributed along the tree, such that groups of stellar particles
can be distinguished in, e.g., their mean ages. That means a
polytomy that contains more than 50% of the particles that span
the entire age range is not evolutionary informative.

Figure 9 shows consensus trees made with sampled trees that
consider different abundance uncertainties. The top left panel
(P1) considers an abundance uncertainty of 0.01 dex and shows
that overall most nodes are present in more than 50% of the
sampled trees. That tree has very few multifurcations, with four
branches rising from a node at most. Moreover, these
polytomies are at a significant distance from the root. Overall
the age ranking of the branches remains, thus we conclude that
uncertainties of 0.01 dex do not affect the phylogenetic signal
of an evolutionary tree of these properties.

When focusing on the middle top panel of Figure 9 (P2), we
see the consensus tree topology obtained from trees sampled
considering an uncertainty of 0.05 dex. As expected, the
number and size of the polytomies increase. In this case, we
find two significant multifurcations, labeled as A and B. The
particles in polytomy B are mainly old stellar particles, while
the stellar particles in polytomy A are intermediate-age
particles. The age ranking in the tree is kept, even if the
relation of age and distance from the root is not as tight as in
the deterministic tree (see Figure 6). Polytomy B is closer to the
root than polytomy A.

The top right panel (P3) shows the consensus tree with
uncertainties of 0.08 dex. Close to the root, the tree is still
resolved, but it becomes less resolved farther out from the root.
We label three significant polytomies: C, D, and E. As in the
previous case, these polytomies contain stellar particles that
overall have different ages, with polytomy C containing young
stellar particles, D containing intermediate-age stellar particles,
and E containing old stellar particles. Polytomy E and
Polytomy B are at a similar distance from the root in the trees
presented in panels 3 and 2, respectively. We thus conclude
that while the age ranking of the nodes has a large scatter, the
ranking is still present and therefore, with uncertainties of
0.08 dex, we are still able to reconstruct a history from a
phylogenetic tree.

The situation with uncertainties above 0.1 dex is more
critical. Consensus trees with uncertainties of 0.1, 0.2, and
0.3 dex are shown in the lower panels of Figure 9, in Panels 4,
5, and 6 (P4, P5, and P6). Here we are able to label only one
significant polytomy per tree: F, G, and H, respectively. They
contain stellar particles of all ages and contain a significant
fraction of the particles of the sample. In these consensus trees,
it is not possible to arrange the star particles according to their
ages in the tree, and therefore it is not possible to reconstruct
the evolutionary history of this galaxy. We further find that as
the uncertainty increases, the polytomy becomes deeper in the
tree. For an uncertainty of 0.3 dex, the polytomy is a few nodes
away from the root.

The fact that only close to the root we are able to resolve the
tree in these cases is due to the significant change in metallicity
at old ages (see the AMR in Figure 3), which is related to the
peak in SFH. When the star formation is less extreme, and the
AMR does not present a significant change arriving at a
plateau, uncertainties above 0.1 dex in the abundance
measurements do not allow us to study the evolution of that
system using phylogenetic trees.

4.4. Evolutionary History Considering Different Regions of the
Galaxy

While in Section 4.2 we investigated the dependence of the
phylogenetic signal on the population density and in
Section 4.3 we explored the dependence of the phylogenetic
signal on the uncertainties in the chemical abundances, in this
section we explore how the AMR and SFH of different regions
of the galaxy impact the properties of phylogenetic trees.
In Section 4.2, we discussed the evolutionary history traced

by phylogenetic trees from the deterministic sample. In this
section, we repeat that analysis using phylogenetic trees from
different regions of the galaxy. We thus analyze the trees
estimated from the example samples of Groups 01, 02, 03, and
04, whose spatial distributions are shown in Figure 1 and
astrophysical properties in Figure 3, with the colors green, blue,
pink, and red, respectively. The chosen 100 stellar particles are
used to estimate and analyze the trees of this section.
Figure 10 shows the trees of each group, with the stellar

particles color-coded according to age in the top row and
according to [O/Fe] in the bottom row. Similar to the tree
estimated using the deterministic sample, these trees are
imbalanced, and show rank-ordered ages, implying that
everywhere in the galaxy we can reconstruct history. The
branching order of the ages, however, becomes weaker from
Group 01 to Group 04. This might be an effect of the SFH,
whose peak becomes narrower toward the edge of the galaxy
(see Figure 3). This translates into a flatter AMR for stellar
particles younger than about 1.2 Gyr.
All trees show the presence of an apparent second branch of

very old stellar particles, which are close to the root. The trees
here have been rooted using the oldest star particle, but that
does not imply that this particular stellar particle is a common
ancestor to the rest of the stellar population. At the beginning of
the simulation, there is significant homogeneity in the
distribution of metals in the gas, which reflects the local
distribution of the cold gas from which stars are formed. This
has an impact in how the chemical evolution due to the first
SNe enriches the ISM. At the very first stages of evolution, the
metallicity of the ISM is strongly heterogeneous. As star
formation progresses, the regions became more chemically
enriched and mixed, and the exchange of enriched material
between regions could take place (e.g SN outflows and radial
migration). However, as we moved from the central to the outer
regions, the level of enrichment systematically decreases, even
though the AMR shapes are similar. This decrease in the global
metallicity with radius is expected for galaxies with an
exponential gas density distribution like the simulated galaxy
used in this study.
In order to better quantify the different trees and so discuss

the rate of change in the chemical distance from the root to each
tip, we calculate the distances of each tip to the root. Figure 11
shows the cumulative chemical distance from the root of stellar
particles as a function of their ages in the left panel and the
distribution of distances for each sample in the remaining
panels. We can first observe that in all the four groups, there is
a sharp increase in the distance for the oldest stellar particles,
with few tips having short distances from the root. At around
1.2 Gyr, the distance reaches a more or less constant value,
which ranges between 3.5 dex and 5.5 dex approximately,
depending on the group. The point when the sharp increase in
the distance from the root stops is related to when the peak of
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star formation ends in each region, according to their SFH (see
Figure 3).

Considering that Group 01 corresponds to the galactic
center, that Group 04 corresponds to the outskirts of the galaxy,
and that Groups 02 and 03 are in the middle, it is encouraging
to notice that the largest maximum distance is reached by the
tree estimated from stellar particles in Group 01 and that the
shortest maximum distance is estimated from Group 04. From
Figure 3, we know that the SFH between Group 01 and Group
04 is different, in the sense that the central region experienced a
long peak of star formation and continued forming stellar
particles until the present date, while the outer region
experienced a short star formation peak, with an abrupt stop
and almost no recent star formation. This translates into an
AMR of a population that increases in metallicity until the
present day for Group 01, while for Group 04, the AMR is
rather flat.

It is thus expected that a tree path that is drawn from a
population with more star formation will be longer. From our
results, we find that indeed trees can be used to learn about the
SFH of galaxies, since the difference in the total length path of
the tree (i.e., the distance from the root) is large (2 dex), even if
the AMR or the [O/Fe]–[Fe/H] planes are comparable.This
shows that the tree enhances the differences. We note that
another advantage of using the tree path length to study the
efficiency of star formation is that it is not necessary to know
accurately the ages of the particles. This is an advantage,
because determining stellar ages is a challenging task.

The right-hand panel of Figure 11 shows how the
distribution of distances from the root is different for the
different groups. The group with higher and more extended
SFH reaches higher lengths than the group with lower SFH.

The latter has a wider distribution of lengths between 2 and 4
dex, reflecting also the scatter in the AMR. In the case of
Groups 02 and 03, the SFH is very similar in both cases. There
are more stellar particles formed in Group 03 than 02 due to the
higher gas density in Group 03, which is where the spiral arm
lies. From the AMR or the [O/Fe] versus [Fe/H] diagrams, the
impact on the gas density is difficult to identify, and the same
can be said considering the length of the tree.
Figure 11 can be related to the AMR, since the metallicity is

one of the traits in the tree distance matrix. It is therefore not
surprising that the age–branch length relation will be very similar
to the AMR. The tree branch lengths incorporate the other
chemical abundances, in addition to the Fe, which is why it
covers a larger range in chemistry. Since we are using all
abundances relative to hydrogen, all elements are expected to
increase with time, making the chemical distance increase in a
way that directly relates to the increase in metallicity. This is
valid for the studied system, which does not experience the infall
of pristine gas. Moreover, the distance matrix uses [Zn/H],
which are also produced by SNe Ia. They follow a comparable
evolution to [Fe/H] and cause the relation between branch
length and age observed in Figure 11.

5. Prospects and Limitations of Stellar Phylogeny

As previously mentioned, stellar phylogeny has already
being applied to observational data (Jofré et al. 2017; Jackson
et al. 2021; Walsen et al. 2023). However, this is the first time it
has been applied to simulations. As this is the first study of its
kind, using an isolated disk galaxy simulation serves as an ideal
test case and a fundamental step to maturing the method before
applying it to more complex systems, which can better
represent real galaxies.

Figure 10. Phylogenetic trees of a selection of 100 stellar particles from the groups selected in the different regions shown in Figure 1. The tips are color-coded
according to age (upper panels) and to [O/Fe] (lower panels).
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Interactions play an important role in the evolution of galaxies
(Toomre 1977; Efstathiou 1990; Barnes & Hernquist 1992). When
a galaxy undergoes mergers, for instance, both its stellar population
and gas content experience alterations (Torrey et al. 2012;
Monachesi et al. 2019). Additionally, such events can trigger
episodes of star formation, further impacting the galaxy’s chemical
composition and stellar populations (as illustrated in Di Matteo
et al. 2007). Consequently, the environment becomes more
complex, making the application of stellar phylogeny more
delicate. We expect that in more complex systems that experience
interactions, the results regarding stellar phylogeny can possibly be
impacted by the mass ratio of the galaxies and also their amounts
of available gas. While a comprehensive investigation into how
mergers affect phylogenetic trees is currently a work in progress,
we anticipate that a meticulous selection of stellar particles or stars
(in the case of observational studies) will be fundamental for
conducting stellar phylogeny in more complex systems. The
selection will be crucial not only to estimating phylogenetic trees
that are evolutionary informative, but also in order to have a robust
interpretation of the results.

Another factor that requires further characterization is how
stars born from the same molecular cloud but having different
masses can be addressed in stellar phylogenetic studies. The
inclusion of stars with a wide range of masses can introduce an
additional layer of complexity, since different stellar evolution
processes rule stars with difference masses, potentially altering
the chemical abundances in the atmospheres of stars. Using
massive stars might complicate the application and interpreta-
tion of stellar phylogeny, due to potential alterations in their
chemical abundances resulting from internal processes, such as
mass loss and mixing (Meynet & Maeder 2000; Langer 2012;
Martins et al. 2015). However, low-mass stars can also have
their chemical composition altered by processes such as atomic
diffusion and rotation (Deal et al. 2020).

A better characterization of the limits of chemical tagging
would benefit the development of stellar phylogeny. We
acknowledge the significance of exploring the effects of
studying stars from the same molecular cloud but with different
masses to better characterize this method. However, such an
investigation falls outside the scope of this work, since here the
stellar particles represent stellar populations, where such effects
are not included.

6. Summary and Conclusions

In this study, we have investigated the phylogenetic signal
within a simulated disk galaxy, addressing three specific

questions. First, we explored the dependence of the phyloge-
netic signal on population density. Second, we investigated the
dependence of the phylogenetic signal on the uncertainties
associated with the chemical abundances. Third, we studied the
dependence of the properties of the phylogenetic trees with
different regions of the simulated disk galaxy.
Approaching the first question, we explored the minimum

number of stellar particles required to obtain a phylogenetic
signal and reconstruct the galaxy’s evolutionary history. This
was done because it is fundamental to be able to differentiate a
phylogenetic signal from noise and stochasticity. In this
analysis, we varied the number of stellar particles from 10 to
200 and found that using 100 stellar particles allowed for the
reconstruction of this galaxy’s history. For 100 stellar particles,
the distributions of the RFD did not overlap when considering
trees estimated from simulated and random data. The mean
RFD considering trees from simulated samples was 0.93, with
an SD of 0.01, while the RFD considering trees from random
chemical abundances was 0.87, with an SD of 0.01. We also
observed that the topologies of the trees estimated using the
simulated and random data were different, supporting the
conclusion that phylogenetic trees from simulated data were
significantly different from random noise.
In the second question, we studied the impact of uncertain-

ties in the chemical abundances on the evolutionary history
portrayed by the phylogenetic trees. In order to do so, we
perturbed the chemical abundances of reference phylogenetic
trees considering uncertainties in the range of 0.01 and 0.3 dex.
As the uncertainties in the abundances increase, the RFD
between the original trees and the perturbed trees also
increases. Trees with uncertainties of 0.01 dex remain similar
to the original tree, having a mean RFD of 0.07 with an SD of
0.03, while those with 0.3 dex uncertainties deviate signifi-
cantly, having a mean RFD of 0.50 and an SD of 0.04.
However, even with uncertainties as high as 0.3 dex, there was
still a retrievable phylogenetic signal when considering trees
estimated from random chemical abundances. We report that
the resolution of phylogenetic trees decreased with higher
uncertainties and that the displacement of stellar particles
within the trees becomes more pronounced as the uncertainties
increase. Finally, we observed that for uncertainties below 0.08
dex, we could successfully reconstruct the galaxy’s history,
since the uncertainties do not significantly affected the age
ranking of the nodes in the tree and the polytomies are not the
domineering structure of the trees.

Figure 11. Left: cumulative distances from the root to the tip as a function of the ages of stellar particles. Groups 01, 02, 03, and 04 are represented as green, blue,
pink, and red lines, respectively. Right: cumulative percentages of stellar particles contained in bins of distance from the root. In the left panel, it is shown that the
distance from the root reaches a plateau or a region with slow increase in the same area that contains the majority of stellar particles according to the right panel.
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In the final question approached in this work, we analyzed
whether the evolutionary histories inferred from phylogenetic
trees constructed using stellar particles from different regions
of the galaxy were consistent with their AMRs and SFHs. We
observed that the trees displayed one primary branch,
indicating a gradual evolution of a single lineage over time.
Also, the trees from the different regions displayed rank-
ordered ages, with the older particles closer to the root.
However, there are differences between regions. The cumula-
tive distances from the root to stellar particles revealed that the
path lengths in the phylogenetic trees were related to the SFH.
Regions with higher and more extended star formation activity
had longer tree path lengths, while regions with lower and
shorter star formation activity exhibited shorter tree path
lengths. The observed differences of the cumulative distances
achieved a value of 2 dex. The aspect of the path length as a
function of age was also related to the AMR of the system, with
a sharp increase of the distance from the root associated with
periods of rapid chemical enrichment. These findings highlight
the potential of phylogenetic trees to capture variations in the
SFH and AMR across different regions of the simulated disk
galaxy, providing insights into its chemical history and SFH.

In summary, this work has demonstrated that it is possible to
use phylogenetic trees to reconstruct the evolutionary history of
a simulated disk galaxy. It has highlighted the relationship
between phylogenetic tree properties and the AMR and SFH.
This parallel between the phylogenetic trees and the global
properties of a galaxy will be particularly useful when applying
phylogeny to observed data of stars when the method is more
mature, since usually the SFH as well as the AMR of real
galaxies are not fully known. We also note that a natural next
step to continue this work is to explore phylogenetic trees in
more realistic simulated galaxies. These results open doors for
exploring several other exciting questions about the archeology
of galaxies and their evolution, both with simulated and
observed data applied to stellar phylogeny.
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Appendix
Tree Colored by [O/Fe]

Previously in this work, we showed the phylogenetic tree of
the deterministic sample color-coded according to the ages of
stellar particles (see Figure 6). In Figure 12, we present the

same tree, but color-coded according to [O/Fe]. In this tree, it
is possible to see that there is a section where [O/Fe] is mixed,
which might be related to the moment in which SNe Ia events
start to occur. This is the same region where the age ranking in
Figure 6 is weaker.
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