Sample size determination for interval estimation of trevplence of
a sensitive attribute under non-randomized response model

Abstract

A sufficient number of participants should be included tocageely address the research interest in
the surveys with sensitive questions. In this article, damjze formulas/iterative algorithms are developed
from the perspective of controlling the confidence intewalth of the prevalence of a sensitive attribute
under four non-randomized response models, i.e., CrosdMixlel, Parallel Model, Poisson Item Count
Technique and Negative Binomial Item Count Technique. Imtiast to the conventional approach for sam-
ple size determination, our sample size formulas/algangtlexplicitly incorporate an assurance probability
of controlling the width of a confidence interval within theepspecified range. The performance of the
proposed methods is evaluated with respect to the empade@rage probability, empirical assurance prob-
ability and confidence width. Simulation results show tHetaamulas/algorithms are effective and hence
are recommended for practical applications. A real exanspleed to illustrate the proposed methods.

Keywords—Assurance probability, confidence interval, non-randeahizesponse models, sample size
determination, sensitive attribute.



1 Introduction

When interviewers engage in survey research involvingisemsttributes, the direct questioning ap-
proach may introduce non-response bias and response biess@ondents may refuse to answer or provide
inaccurate responses. To address these biases and entamnekability of survey data, Warnéf[ proposed
the implementation of a randomized response technique YRIBigned to obfuscate individual responses
through the utilization of a randomizing device. In Warsetbnceptualization of the RRT, the randomized
response model presents the respondent with a binary dbefaeen two questions that are complementary in
nature. The pivotal element is that the interviewer remaimeswvare of which specific question the respondent
is answering, owing to the unpredictable nature introdumethe randomizing device. This safeguard ensures
the privacy of the interviewee. It is noteworthy that botlesfions posed within Warner's RRT framework
pertain to the sensitive attribute. Subsequently, varameptations and refinements to Warner's model have
emerged over the years to enhance its applicability andtefémess. For instance, Mangattal[2] proposed a
two-stage randomized response model that necessitatasdtaf two randomizing devices. Abul-Edd al 3]
and Bourkef] expanded Warner's model to the Randomized Response Treh(RRT) with three mutually
exclusive answers. Horvitat al[5] and Greenbergt al[6] devised a randomized response model incorporat-
ing non-sensitive questions, while Christofidgshtroduced a randomized response technique for estignatin
the proportion of respondents possessing two sensitiveactesistics simultaneously. It is noteworthy that
randomized response models are often perceived as lagqngducibility, incurring high costs, fostering low
trust, and presenting challenges in comprehension (@tai[8]). To address these limitations, Swens&hn[
introduced a combination-question technique mandatimingdependent random samples to supplant the use
of any randomization device. Takahasial[10] substituted randomization devices with neutral auxjliques-
tions, achieving non-randomization and enhanced privacteption for respondents. Yet al[11] proposed
the crosswise and triangle models. The former is regardéteason-randomized version of the Warner model,
introducing a non-sensitive binary variable and a simplevesy format. The latter represents a variant of the
crossover design model designed to mitigate its relatieéfigiency. Both models necessitate one category to
be non-sensitive (represented by Y=0) and are unsuitablsitieations involving two or more sensitive cate-
gories (represented by Y=1), such as income, number of kpantmers, and loyalty or disloyalty to a boss.
To overcome these limitations, Tidr] introduced the parallel model, considered the non-raridednversion
of the uncorrelated randomized response model proposedobyiti et al[5]. Theoretical comparisons be-
tween the parallel model and the crossover design and keiangdels demonstrate that, across most parameter
ranges, the parallel model is more efficient, affords swpgmiivacy protection, and possesses a broader range
of applications.

Miller[ 13] introduced the item count technique (ICT) as a non-randerthalternative to the randomized
response model. In this approach, respondents are randamssigned to either an experimental or control
group. The experimental group is presented with K non-tgagjuestions and one sensitive question, while
the control group is exclusively asked the K non-sensitivestjons. However, the ICT model exhibits a design
flaw, where in the true status of the respondent is inevitakyjosed when K+1 "yes" responses are obtained
from the experimental group. This compromises privacy amag elicit dishonest responses.To address this
critical issue, Tiaret al[14] proposed two novel models, namely the Poisson ICT Modeltard\egative
Binomial ICT Model. These models replace several non-figagjuestions following a binomial distribution
with a single non-sensitive question eliciting responsekié form of non-negative integers. The development
of these models is grounded in the assumption of countirgdiatribution. Experimental results demonstrate
that the proposed methods offer accurate parameter efstingaid confidence intervals, effectively mitigating
the limitations inherent in the ICT model.



Determining the optimal sample size is an essential stepmaucting survey research. Chatal[15]
proposed two methods, namely the precision analysis andmemalysis methods, to determine the sample size.
The precision analysis method predefines the maximum addegevel of the Type | error rate by specifying a
confidence interval, while the power analysis method cdmtie Type Il error ratg8 to determine the sample
size. Tianet al[8] extended the application of both methods to the Crosswisde¥] Triangular Model, and
Parallel Model introduced by Yat al[11] and Tian[L2], providing sample size calculation formulas under the
condition of expected power of-1 3. Additionally, Tian et al[14] offered approximations for determining
the sample size of two novel ICT models, namely the Poissdnd@ Negative Binomial ICT, based on the
precision and power analysis methods proposed by Gital[15]. However, several scholars have suggested
that confidence intervals are more informative than simpigothesis testing in assessing the accuracy and
precision of statistical data. Beaf]], Bristol[17], Goodmanet al[18] and Rumkel9] proposed using the
expected width of the confidence interval to determine tmepda size. Bland}0] also recommended using
the width of the confidence interval instead of power to deiee the sample size in a medical study. Zj[
suggested that the determination of the required numbeanicipants for estimating intra-class correlation
coefficient in studies of confidence level should be basecherekpected width of the confidence interval.
Ulrich et al[22] derived the statistical powers for the Wald test under \&Esnmodel, unrelated question
model, item count model and cheater detection model, tleresponding sample size requirements that can
achieve a desired power for the Wald test with a predetewirtiyyge | error rate can be readily obtained. While
determining the sample size is a crucial step in survey reBesnd to some extent, the success of a survey
depends on it, most studies have focused on determiningthpls size from the perspective of testing power
for surveys on sensitivity issues under non-random regporedels. Research on sample size determination
from the perspective of interval estimation is still lindteExpanding on this idea, Qiet al[23] computed the
width of the confidence intervaieR regutates the proportion of sensitive features at a pdati@onfidence
level for the non-randomized triangular model, and derie@pproximate formula for the sample size with a
given level of assurance. Qat al[24] further obtained sample size formulas for four random oasp models,
namely the Warner model, the unrelated question model,téme ¢ount technique model, and the cheating
detection model. In this paper, we introduce a novel appré@a@address the challenge of controlling the width
of the confidence interval for the prevalence of sensititgbates at a specific confidence level within the
context of four non-randomized response models, namelZtbeswise Model, Parallel Model, Poisson Item
Count Technique, and Negative Binomial Item Count TechmidgBpecifically, we derive closed-form sample
size formulas to achieve this objective for the former twodels. For the latter two models, which do not
allow for a closed-form formula, we propose an iterativeoalym to determine the required sample size.
Importantly, our methodology incorporates a probabitigsed framework to ensure predetermined precision.
These contributions bear significant implications foristiial inference in the estimation of sensitive attribute
prevalence.

This article is organized as follows. Sample size formalagtithms for the prevalence of a sensitive
attribute for the aforementioned models (i.e., Crosswisel®l, Parallel Model, Poisson Item Count Technique
and Negative Binomial Item Count Technique) are derivedénti®n 2 and Section 3. The performance of
the proposed methods is evaluated by simulation studiegatid® 4. In Section 5, a real example for the
investigation of premarital sexual practices in adolescdrom Bogaleet al. [25] is used to illustrate the
accuracy of the estimated sample size formulas. A brieflasion and discussion are given in Section 6.
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2 Approximate Sample Sizes under Crosswise Model and ParallModel

2.1 Crosswise Model and Parallel Model

LetY represent a binary random variable indicating a sensitiiréate of interest, such as premarital
sexual practices, where a value of 1 signifies "Have ever hachgrital sexual intercourse," and 0 denotes
"Have never had premarital sexual intercourse.” The priiyabf Y being 1 is denoted as p = Pr(Y = 1).
Additionally, let W be a non-sensitive binary attributed@pendent of Y, such as "Is the first digit of your house
number 1, 2, 3, 4, or 5?" The probability of W being 1 is knowd @&nexpressed as p = Pr(W = 1). According
to "Benford’s Law", Diekmanri}6] reported that the probability of the first digit of a housenher being 1, 2,
3,4 or5is 0.778, specificallp = PrW = 1) = 0.778.

The Crosswise Model proposed by ¥tial. [11] is reported in Table 1. In this design, each interviewee
will be instructed to provide his/her response by placin@lain the upper circle if he/she belongs to one of
the two circles or putting a tick in the upper triangle if heddelongs to one of the two triangles—Fhis-€design
is-mathematicallveguivaleprt-\Warrersmede o—tistha-rmdomized-vrersior-of-\Warrer's RRT. Singe
andY are independent by design, the cell probabilities for tghtrside of Table 1 can be easily obtained by
multiplying the marginal probabilities.

Table 1. Crosswise Model and the corresponding cell prdibabi

Category wW=0 w=1 Category W=0 w=1 Marginal
Y=0 O A Y=0 1-m(1-p) (1-mp 1-m
Y=1 A O Y=1 n(l—p) mp m

Marginal 1-p p 1

Note: Interviewees are instructed to put a tick in the upjretecif they have never had premarital sexual intercourse
AND the first digit of their house number is not 1, 2, 3, 4 and Be/atively, interviewees should put a tick in the upper
circle if they have ever had premarital sexual intercours®Ahe first digit of their house numberis 1, 2, 3, 4 or 5. In all

other cases, interviewees are directed to put a tick in tipewugiangle.

Note that the Crosswise Model necessitates one categowy mof-sensitive, rendering it unsuitable for
situations where two categories are sensitive. To addneskritation, Tian[LZ] introduced the Parallel Model.
In the parallel design, Y is the binary random variable repnéing a sensitive attribute of interest, while U and
W are two non-sensitive dichotomous variables, such as'(MAhe first digit of your house number 1, 2, 3, 4,
or 57" and (U): "Is the last digit of your cell phone number ®ddt is assumed that Y, U, and W are mutually
independent, and the probability of the sensitive attabsitdenoted as p = Pr(Y = 1), with known probabilities
g=Pr(U=1)and p=Pr(W=1).

Under the parallel design, each interviewee is instruatgardvide a response by connecting two circles
with a straight line if they belong to one of the two circlesconnecting two triangles with a straight line if they
belong to one of the two triangles. This design serves as aamomized version of the unrelated question
model (Greenbergt al[6]). Since Y, U, and W are mutually independent by design, gieprobabilities for
the right side of Table 2 can be easily obtained by multigytine marginal probabilities.

Table 2. Parallel Model and the corresponding cell proliadsl
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Category W=0 w=1 Category W=0 w=1 Marginal

U=0 O U=0 (1-a)(1-p) 1-q
u=1 A u=1 q(1-p) q
Marginal 1-p p 1.0
Y=0 O Y=0 (1-mp 1-m
Y=1 A Y=1 p T
Marginal 1-p p 1.0

Note: Interviewees are instructed to connect the two ttemigy a straight line if the first digit of their house numkber i
not1, 2, 3, 4, or 5 AND the last digit of their cell phone numisendd. Alternatively, interviewees should connect the
two triangles by a straight line if the first digit of their h@einumberis 1, 2, 3, 4, or 5 AND they have ever had premarital

sexual intercourse. In all other cases, interviewees aeetdid to connect the two circles by a straight line.

LetA be the probability of marking the upper circle in the Cros@aWodel or connecting the two triangles
by a straight line in the Parallel Model. Theh,= {m+n, with { =2p—1, n = 1— p for Crosswise Model
and{ = p, n = q(1— p) for Parallel Model, respectively. Therefore= (A —n)/{ for both models.

2.2 Confidence Intervals under Crosswise and Parallel Desig

Suppose that out of n subjects mark the upper circle in Table 1 or connect the tisogies by a straight
line in Table 2. The maximum likelihood estimatebfs denoted ag = x/n with the expectation é\) =A
and variance Va(ﬁ) =A(1—A)/n=a; /n, respectively. Therefore, the maximum likelihood estien@LE)
of rtis fr= (A — )/ with a variance Va(ft) = &2 /(n2) under both models.

As shown in van den Hout, A2[7], the MLE fTis equal to the estimate provided by the moment estimator
as long as they are in the interior of the parameter spaceleWta estimater may fall outside the rang, 1],
the probability offr exceeding this boundary diminishes with an increasing $&&sipe (Ulrichet al[22]). Ad-
ditionally, the Expectation Maximization (EM) algorithnarc be employed to obtain the Maximum Likelihood
Estimator(MLE) offtwhenfr < 0 or fr > 1.

According to the Central Limits Theorem, the— o)100% Wald confidence interval (Cl) far under the
above two models can be obtained by

. N . N

wherez, /, is the 1—- a /2 quantile of the standard normal distribution, @jd=" 5\(1—5\).

As shown in Newcomb@B] and Agresti & CoullR9], the confidence interval derived from the Wil-
son method usually outperforms the Wald interval, esplgcfat small sample sizes. Hence, we adopt the
Wilson[30] method for constructing &1 — a)100% confidence interval for the prevalerceand the Wilson
Cl under the Crosswise and Parallel design is givefvbyi, ,wil, where

M +25 /2= N(N+725 5) = Zaj2\ /1& + 2 /4

Tiwi = Z(n+2§,/2) and
nf\+z§/2/2—n(n+2§/2)+za/2,/né§+Z§/2/4
Thywi =
{(n+7 )



if { > 0. If { <0, the confidence lower and upper limits are

M +22 5/2=N(N+22 ) +Za 2\ /N8 +22 /4

MTwi = Z(rH-Zi/z) and
n + 2 2/2= NN+ 25 ) =~ Zajay /N85 +2; /4
TE.I,Wi = )
{(n+75,,)

respectively.

2.3 Sample Size Formulas under Crosswise and Parallel Desig

The half width of the(1— )100% Wald CI forrtis given by

&
RVl
If our objective is to ensure that the half-width does notesxdzo with a probability of 1— 3, then the condition
is given by: A
a)
Pri ——<w)>1-0.

It can be shown that it is equivalent to

According to the large sample theory and delta method, ibeashown that

. b2
a ~ N(a)h?/\)v

where Vafa, ) = b2 /nwith by = [1—2A|/2 (Please see Appendix for details). Thus, we have

Z
a4 —a ;)J_/z‘\/ﬁ_a)‘
by/vn = by/yn

Therefore, the desired sample sizean be obtained by solving the following equation:

Pr( )>1-p.

O g = B2
Za/zﬁ » vn'’

wherezg is the 1—- 3 quantile of the standard normal distribution.
Solving the above equation yields

a +[a; +4w\Z]zB/za/2-bA]1/2]2

Nw = 2
| 2010 /202 @
In particular, wher3 = 0.5, it is the conventional sample size, which is given by
&
W05 = 52— 3

On the other hand, given the valuesp, n andrr, the assurance probability can be obtained by

wldl

q)(M)
by/vin 7

6



where®(-) is the distribution function of the standard normal disition.
Similarly, in order to control the half width of the Wilson @&ir 1T no larger tharw with probability 1— (3,

the half width should satisfy
Za/24/ naj +251/2/4
Pr( S O.)) 2 1- B>
Z|(n+Z ,)

R 7 e TR

4nz, /2 B

Pr(&; <

>N

By using the delta method, the varianceagf can be given by V4&2) = 4a2b? /n , then the asymptotical
distribution ofa? is 8 ~ N(aZ, 4a3 b3 /n) (Please see Appendix for details). Therefore, we haveditafing

equation:
422(n+ 2 ) w? -2,
:n/zz 92 _ g8 — 275, /8202 /n.

a/2

The above equation can be simplified as the following quadication with respect to+ zi/z:

an+2z )" + b(n+z§/2)3+c(n+z§/2)2 +d(n+z§/2) +e=0, (4)

where

a=16w*Z%,

b= 322 /szzzaﬁ,

C = 87 (28] +4w*(%a; — (7,

d= 84/251% 7 /2 — 47 1285 — 8Z3b5], and

e=125 (162, 8} +64zza5 b} — 8z, 8 +7; 5.
The eigenvalue method can be used to find the roots of the ap@réic equation. Letnax be the maximum
real root of Equation4) with respect ton+ Z¢21 /20 and the approximate sample size is denotelygs Thenny;
is the minimum integer that is not smaller tha.x — zi/z. Especially, wher3 = 0.5, the approximate sample
sizenis given by

%ol + /8 + P-4
20272 - fajz

On the other hand, given the valuespf, n andm, the assurance probability can be obtained by

Nwi,0.5 = 5)

A2(n+2 ) 20P— 2

S P
/2

b );
2,/asbs /n

where®(-) is the distribution function of the standard normal disition.

Hence, if there exists a general relationship between thential probabilityA and the probability of a
sensitive attributat for any (non)randomized response design, expressad=ag i1+ n with { andn being
known, the sample size formula explicitly incorporatingeesurance probability to control the width of a Wald
Confidence Interval (Cl) within the pre-specified range canglven by Equation2) or (3). Furthermore,
sample size estimation based on a Wilson Cl can be obtainsdlbbyng Equation 4). In these formulas, it is
sufficient to calculate the variances v;hb and Va4, ) to obtaina andb?.



3 Approximate Sample Sizes under Poisson ICT and Negative Bomial ICT

3.1 Poisson ICT and Negative Binomial ICT

Obviously, for the item count technique proposed by Mill&}[ the respondent’s sensitive characteristic
is inevitably exposed wheld + 1 "yes" responses are obtained from the experimental gifcapitem count
design consists oK non-sensitive questions and one sensitive question. Tdnerelian et al[14] changed
the K neutral questions to a single neutral question, and praptise following design:n. respondents are
randomly assigned to the control group and receive a negtrastion, for example, "How many times did
you travel abroad last year?" or "How many online resumesaloneed to submit to receive one interview
invitation?". While theng respondents are randomly assigned to the experimentgb giodi receive the same
neutral question together with the sensitive question &Haw ever had sexual intercourse?", for example,
"How many times did you travel abroad last year?" or "How maniine resumes do you need to submit to
receive one interview invitation?". L&t be the answer to the sensitive question with- 1 if the respondent
possesses the sensitive characteristicard0 otherwise, an be the answer to the neutral question. Then,
the respondents’ answers under the experimental and tgntngps areZ =Y + X and X, respectively. The
parameter of interest ig = Pr(Y = 1). Given that the variablX is a non-negative integer, we can assume that
X follows either a Poisson distribution with parameteor a Negative Binomial distribution with parameters
r(> 0) andp, denoted a¥X ~ Poissoift) with probability distribution:

e T

Pr(X =x) = ” X=0,12,---

or X ~ NBinomial(r, p) with probability distribution:

M(x+r
Pr(x :X) = )f'ri(r))(l_ p)rpX7X:071727"' .

The corresponding models are named as Poisson Item Coumtidjae (i.e., Poisson ICT) and Negative Bino-
mial Item Count Technique (i.e., Negative Binomial ICT)spectively.

3.2 Confidence Intervals under Poisson and Negative BinomiéCTs

Let {x}, and{z }?e:l be the observed data in the control and experimental groeppectively. Thus,
the moment estimate of is given by

Zj—— ) X (6)

and the variance afris Var(f1) = Var(Z) /ne+ Var(X) /nc. SinceX is independent of and Va(Z) = Var(X) +
Var(Y) = o2 + r(1— 1), we have
oe+nl-m of ml-m o1 1

Var(f) = X2————~ e Sl ATS (i
() Ne JrnC Ne + X(nc+ne

).

It is obvious that the above moment estiméatenay fall outside the intervdD, 1]. Therefore, we apply
the EM algorithm to find the MLE oft by adding a latent datéyis = {yx,.-.,Yn.}, Which is the answer to the
sensitive question in the experimental group. Thereftiecomplete-data Bcom = {Zobs, Zmis}, WhereZops=
{Xt,...,%n.;21,...,2Zn,} denotes the observed data. Hence, the complete-datddikelifunction is

ne . ne ., Ne Xig—T Ne +Zj—YjaT
L (75, T | Zobs, Zmis) = =1V (1- ﬂ)ne_zjzlyl X (l_l re ) (”i) ]
i=

Xi! = (Zj—yj)!




for Poisson ICT and
L(TL, P | Zobs Zamis) 0 75111 (1— ™~ 3700 x (1 p) (Pt pEieaX 3% (3 )

for Negative Binomial ICT, respectively. According to theetihods proposed by Bliss & Fish@d], the
unknown parameter can be estimated by = x2/(s> — X}, wherex = ¥, x/n is the sample mean, and
& =5, (% —X)?/(nc — 1) is the sample variance. The complete-data MLE=,af and p are given by

10 X+ (Z-Y) X+ Y0 (Z-Y)
n:_zy]> = ) = o N . Ne ] N
Ne (5 Nc+Ne (Nc+ne)F+321 % + 3521 (Z —Yj)

(7)

respectively. The E-step replacégsj }Tezl by their conditional expectations

ZjH

E(Yj | Zobs TT,T) = Znetl—m)

j:17"'7ne (8)

for Poisson ICT, and
zjn

E(YJ ’ZObS7n7p) = ZJ7T+(1—7T)(ZJ+f—1)p

5 j::l.,...ne (9)

for Negative Binomial ICT, respectively. The estimatiorisr) T and p which are obtained by the above EM
algorithm are denoted &%\, Tem and P, respectively. Thus, the variance @tan be estimated by

— . Mem(1— T 1 1
Var(y = "M TR | g Ty

Ne Ne  Ne

),

for Poisson ICT and Negative Binomial ICT, whedg is the estimation ob?, i.e., 62 = Ty for Poisson ICT
andd? = fpem/(1— Pem)? for Negative Binomial ICT.

Therefore, thé1— a)100% Wald confidence interval faris given by[ri w, T,w], where
Em(l-Tem)  , 1 1

+ () a3

TTw = Tem — Za/z[ o o ne

and

TEm(1—TE 1 1. ..
MEETEW) (2 g

Tuw = Tem + Zg /2] o ntn

The (1— a)100% Wilson confidence interval faris given by wi, Tuwi], where

NeTEM +Z(2,/2/2—Za/2[ne7ATEM(1— Tem) + (1+ %)(ne+z§/2)6)(2+2§/2/4]1/2
ne+z§/2

T wi =

and
NeTEm +Z§,/2/2‘|‘ Za2[NeTeEm(1— Tem) + (1+ ﬂ—ﬁ)(ne+2§/2)5x2+2§/2/4]1/2

%+%p

Tywi =

3.3 Sample Size Determination Algorithm under Poisson and &bative Binomial ICTs

It is noted that the half widths of the. — a)100% Wald Cl and Wilson ClI are given by

TEm(1-TE 1 1 .
20 ol M= TE) . ) +(—+ )G (10)
e e C

and
Zy j2[NeTEM (L1 — TEEm) + (1 + ﬂ—i)(ne+2§,/2)5)<2+2§/2/4]1/2

Ne+25 5

: (11)

9



respectively.
To control the half widths of the Wald CI and Wilson CI no lardkan w with probability 1— 3, the
desired sample sizes should satisfy

em(1— 7 1 1. .
Pr(Za/z[MJr(n—Jrn—)aﬂl/ZSw)21—13 (12)
e e C
e Za/Z[neﬁEM(l— ﬁEM) + (l+ %)(ne+zi/2)a-><2+zi/2/4]l/2
Pr( : <w)>1-B, (13)
ne—i—zfx/z
respectively.

To simplify the calculation, we just consider the balanceo/sy design (i.efe = 0.5 andN = nc + ne).
The approximate sample sidéthat is required to achieve the desired probability ef g at levela can be
obtained by solving Equatiori®) and (L3), respectively. However, no closed forms exist. Hencefdtewing
algorithm is developed to find the solutions.

Algorithm 1 Algorithm of Sample Size Determination
Require: N, A, w,K,[3
Step 1: GenerateK random samplem = {x1,...,Xn.;Z,...,Z,} for givenN, 1, w, T (for Poisson ICT) or
(r, p) (for Negative Binomial ICT).
Step 2: Approximate the half-widths and the assurance probadsligiven in {0)-(11) and (2)-(13) based
on the data generated in Step 1.
for k=1toK do
Approximate the half-width agx(N)
end for
Approximate the probability ag*(N) = Pr (|a(N) — w| < 0.001)
Step 3: Repeat Steps 1 and 2 via increase (or decrédigg)Bisection method if the approximate probability
p*(N) is less (or greater) than-1p.
Step 4: Repeat Step 3 until the approximate probabilip/(N) is close to 1- 3, i.e., N =
min{N : |p*(N) — (1— )| < 0.001}. The resulting\ is the approximate sample size.

The approximate sample sizes based on Wald Cl and Wilson tainad by the above algorithm are
denoted asw andnw;, respectively. Whe = 0.5, the corresponding sample sizes are denot@gyass and

Nwi 0.5, respectively.

4 Simulation Study

In this section, we evaluate the proposed methods for sasig#edetermination via simulation studies.
We consider different parameter settings at the confidemad IL— a = 0.95 and assurance probability—1
B = 0.95 or Q50 for the four non-randomized models. Ulrieth al([22]) considered the parameter settings
p = 0.3,0.6,0.8 for the randomization probabilitp to assess the statistical power of randomized response
models (i.e., Warner's model, unrelated question modehil& to Ulrich et al([22]), we also consider the
same settings for the probability of non-sensitive binatgikaute (i.e.,p) for Crosswise and Parallel Models.
And we consider the following parameter settings for défégrmodels:

(a) The Crosswise Model: (p = 0.3,0.6,0.8; (ii) 1= 0.04(0.04)0.16; (i) w = 25% or 50% ofrT; i.e., a
total of 3x 4 x 2 = 24 parameter combinations.

10



(b) The Parallel Modelp = 0.75 and (i)q = 0.2(0.3)0.8; (ii) 7= 0.04(0.04)0.16; (iii) w = 25% or 50%
of m; i.e., a total of 3x 4 x 2= 24 parameter combinations.

(c) The Poisson ICT Model: (i = 2,3,4; (ii) 1= 0.04(0.04)0.16; (iii) w = 25% or 50% ofrt, i.e., a total
of 3x 4 x 2= 24 parameter combinations.

(d) The Negative Binomial ICT Modelr = 2 and (i) p = 0.6,0.7,0.8; (ii) 7= 0.04(0.04)0.16; (iii)

w = 25% or 50% ofrr; i.e., a total of 3x 4 x 2= 24 parameter combinations.

According to the approximate sample formulas or iteratigmi@thms given in Section 2, the estimated
sample sizes can be obtained. Based on the estimated sdrgdevge can evaluate the performance of the
estimated sample sizes by using the empirical coverageapildlp (ECP), empirical assurance probability
(EAP), left non-coverage probability (LNCP) and right ncoverage probability (RNCP) of a 1QD- o )% Cl
for . The confidence level is-+ a = 0.95 and the number of replications is set ta=k4000. These indices
providing an assessment of the precision of the sample aingufas are given by

(i) Empirical Assurance Probability (EAP)

EAP=

(- < ).

M =

1
K

k=1

where (rq(k),rék)> is the CI for mt at thekth replication, and (-) is the indicator function of the event that

"9~ < o

(i) Empirical Coverage Probability (ECP)
ECP:31§I<HE<¢HJ#O).
K&
(i) Left and Right Non-coverage Probability (LNCP and RRC
18 K) 18 K)
LNCP=—-SI(n< JRNCP == S I (>
<2, (m=n") <2, (m=n)

Simulation results for the Crosswise Model, Parallel Mo&8CT and NBICT are reported in Tables 3-6,
respectively.

Insert Table 3-6 about here

According to Tables 3-6, all sample size determination wdstfor each model perform well in the sense
that all Cls produce satisfactory empirical coverage podli@s and empirical assurance probabilities, and
have-balaneceleftand-right nen-coverageprebabilitieedan the estimated sample sizes.

The simulation studies described above rely on the assamfiat the expected prevalence is equal to
the actual prevalence. In fact, we do not know the true peexal before we conduct the trials. Therefore, we
investigate the performance of the proposed methods wlheeaxibected prevalence is different from the true
prevalence. We consider the following parameter settitrge: prevalencer = 0.165, the expected prevalence
e = rrrwith r = 0.40,0.60,0.80,1.20, and the half-widths of G = 0.05,0.10. For other parameters of each
models, we consider: (i) Crosswise Modgl:= 0.3; (ii) Parallel Model: p = 0.7 andq = 0.5; (iii) Poisson
ICT Model: T = 3; (iv)Negative Binomial ICT Model:p = 0.7. The confidence level 2 a = 0.95 and the
assurance probability-1 8 = 0.95. Simulation results are reported in Table 7.

Insert Table 7 about here
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According to Table 7—we-have-thefollowinrg-ebservatipn$:ECPs of all Cls are very close to the pre-
specified confidence level for each model; {ilalmestal-dse-satisfactory-intervraHocationsbecause the
balancedeft—and-right—tailed-errprs; (iii) ECPs of thes@lay be influenced by the difference between the

~vected and true prevalence rates, i.e., the ECP of thed@akes when the difference between the expected
«wd true prevalence rates increases ;,(iv) ECP of the Cl dsiaftienced by the expected half-width of the
interval (i.e.,w), i.e., the ECP of the Cl increases with the increasing ohtdéwidth.

5 Numerical Example

To illustrate the practicality and effectiveness of thegased methods, we examine a study on premarital
sexual practices among adolescents (refer to Bogale & S&s)e [n this scenario, an AIDS researcher collects
survey data to evaluate premarital sexual practices ammisghiool youths. The researcher estimates that
approximately 19% of adolescents have had premarital s@xieacourse (i.e.jt=0.19 ). We then compute
the required sample size for a new study, aiming for a 95%a#héire., = 0.05) that the half-width of the 95%
confidence interval (i.eqg = 0.05) is no greater than 25% of the point estimate (ue= 0.257), considering
various models discussed in this article.

5.1 Crosswise Model

Under the Crosswise Model, let us assume that two indepémitesry classification questions andw
are considered, where the sensitive iss(eig "Have you ever had sexual intercoursedtid the non-sensitive
issue YV) is "Is the first digit of your house number 1, 2, 3, 4 ot 5Phe probability of the sensitive attribute is
= 0.19 and the probability of the non-sensitive issug is 0.778. Based on the formulas given in Section 2,
the approximate sample sing, = 1255 based on Wald Cl amgy; = 1251 based on Wilson ClI, respectively.
The corresponding ECPs (EAPs) are®5 (96.6%) and 923% (95.84%) for Wald and Wilson methods,
respectively. In contrast, for the conventional samplessize., the assurance probability B = 50%) required
for a two-sided 95% confidence interval with expected wigth: 0.25rT areny o5 = 1213 andiyios = 1210,
the corresponding ECPs (EAPs) are4®% (50.16%) and 997% (49.89%) for Wald and Wilson method,
respectively.

5.2 Parallel Model

Under the Parallel Model, let us assume that three mutuatigpendent binary classification questions
Y, W andU are considered, where the sensitive isstipi¢ "Have you ever had sexual intercourse2hd
the non-sensitive issuegVj are"Is the first digit of your house number 1, 2, 3, 4 or'&hd ) "Is the
last digit cell phone number of your’s is odd®'e., p=0.778 g = 0.5). With 7= 0.19, the approximate
sample sizeny = 581 based on Wald Cl amily; = 578 based on Wilson Cl, respectively. The corresponding
ECPs (EAPs) are 938% (96.23%) and 931% (96.25%) for Wald and Wilson Cls, respectively. In castr
for the conventional sample sizes (i.e., the assuranceapilily 1 — 3 = 50%) required for a two-sided 95%
confidence interval with expected widih= 0.25rT areny o5 = 540 andnwi o5 = 537, the corresponding ECPs
(EAPS) are 9479% (48.68%) and 988% (52.71%) for Wald and Wilson method, respectively.

5.3 Poisson ICT Model

Under Poisson ICT, let us assume that the researcher usegral meiestion that follows a Poisson distri-
bution with parameter = 2, for example,How many times did you travel abroad last yearThe number of
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respondents in control group is the same as that in expetaingroup, i.e.nc = ne = %N. With m=0.19, the
approximate sample siagy = N = 14292 based on Wald Cl amgy; = N = 14275 based on Wilson Cl, re-
spectively. The corresponding ECPs (EAPS) ard 8% (94.38%) and 968% (94.18%) for Wald and Wilson
methods, respectively. In contrast, the conventional $asipes (i.e., the assurance probability B = 50%)
required for a two-sided 95% confidence interval only withented widthw = 0.25Tareny gs = N = 14148
andnwios = N = 14129, the corresponding ECPs (EAPs) are88% (50.61%) and 969% (51.03%) for
Wald and Wilson Cls, respectively.

5.4 Negative Binomial ICT

Under Negative Binomial ICT, let us assume that the researabes a neutral question that follows a
negative binomial distribution with parameters- 2 andp = 0.7, for example,"How many online resumes
do you need to submit to receive one interview invitationPe number of respondents in the control group
is the same as that in experimental group, N+ Ne = %N. With m= 0.19 , the approximate sample size
nyw = N = 9325 based on Wald Cl amgy; = N = 9365 based on Wilson ClI, respectively. The corresponding
ECPs (EAPSs) are 982% (94.98%) and 992% (95.16%) for Wald and Wilson Cls, respectively. In casty
the conventional sample sizes (i.e., the assurance piitpabi- 3 = 50%) required for a two-sided 95%
confidence interval only with expected widih= 0.25rT areny s = N = 8875 andnwios = N = 8836; the
corresponding ECPs (EAPs) are B5% (48.91%) and 982% (51.12%) for Wald and Wilson Cls, respectively.

It is worth noting that the recommended sample sizes baséiiedbrosswise Model, Poisson ICT Model,
and Negative Binomial ICT are greater than the number ohgarticipants (i.e., 826), as recruited in the study
by Bogale & SemeZ5]. In contrast, the recommended sample size based on thiiePitadel is smaller than
826. With a sample size of 826 in the study by Bogale & Serbg fhe actual Empirical Coverage Probabilities
ECPs, ECWs, and EAPs of various Cls foiunder the considered parameter settings in the aforenmestio
studies for each model are reported in Table 8.

Insert Table 8 about here

According to our results, the ECPs of Cls founder all models are very close to the pre-assigned nominal
confidence level (i.e., 95%). However, the probabilitiesaftrolling the half width of the CI such that it is not
larger thanw = 0.25r1= 0.0475 are M@ for the Crosswise Model, Poisson ICT Model, and NegativeBiial
ICT Model. Under the Parallel Model, however, the prob&pitif controlling the half width of a Cl that is not
larger tharw = 0.251tis 1.0. 4afagf, the actuat-hatwidths of Cls for the Crosswise Mip&@oisson ICT Model,
and Negative Binomial ICT Model with a sample size of 826 ateimgreater thaw = 0.25r1 = 8:04+5-bt
that-ef-the-CHerthe-RaralleHMedeHsHess-than= 025/ = 8:0475. Specifically, our findings suggest that
when the assurance probability is not incorporated intas#raple size estimation, the width of Cls cannot be
controlled within the specified width, even if the coveragelability is close to the nominal confidence level.

6 Summary and Discussion

The determination of sample size is a critical aspect ofarese particularly when investigating the preva-
lence of sensitive attributes through surveys. Within thetext of survey sampling, determining sample size
based on interval estimation is a fundamental objectivés Study focuses on sample size determination using
interval width control, specifically considering two typet confidence intervals (Cls): Wald Cls and Wil-
son Cls.—Fhe-analysis-encempagses four distinct non-razddmesponse modegls—e., the Crosswise Model,
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Parallel Model, Poisson ICT Model, and Negative Binomial IMlodel. The derived sample size formulas
aim to control the width of a confidence interval at a specifiedfidence level, with an assurance probabil-
ity of achieving the predetermined precision. Simulatieaults demonstrate the accuracy and effectiveness
of all formulated algorithms based on Wald and Wilson Clseddenced by empirical coverage probability
(ECP) and empirical assurance probability (EAP). Notabdynple size formulas/algorithms based on Wilson
Cls outperform their Wald CI counterparts across various-ramdomized response models, with the former
exhibiting ECPs and EAPs closer to the pre-specified levEi® sample size formulas/algorithms presented
in this study can assist researchers in determining a sasig@iehat achieves a pre-specified precision with a
given assurance probability in survey studies aimed atctetemeaningful prevalence rates—Fhe-rudmerical

a mplessrepreovided-n o -4 oncarnina-nram a NeastpmoenRa N hoo a h a erclear

illustrations of how to estimate the required sample sireuth interval width control in the preliminary stages
of a survey before embarking on a full study.

In the domain of sample size determination, two predominagthodologies are commonly utilized: hy-
pothesis testing and confidence interval estimation. Thadoinvolves considerations of both the Type | error
rate and power, while the latter does not explicitly invob@ver. To ensure that sample size estimation based
on expected confidence interval width provides high asseram achieving the desired precision, we incor-
porate an assurance probability into the sample size digtetion process, aiming to control the width of a
confidence interval. In other words, sample size can be atgiirby controlling the width of a confidence in-
terval at a specified assurance probability. While the famm-random response models addressed in this study
have previously been examined in terms of sample size digtation from a power perspective, sample size
formulas based on confidence interval width are not cuyrevihilable in the existing literature. It is notewor-
thy that the non-randomized response models covered ipé#psr exclusively focus on designs for a single
dichotomous sensitive attribute. However, in many randechiresponse applications, more than one sensitive
guestion is asked. For instance, Saged/[32] developed a non-saturated multinomial model for the aisly
of randomized response "ever" and "last year" questiongerbBéning sample size for more than one sensitive
guestion could be an interesting area for future reseanctihis article, we have also developed R codes to
compute the estimated sample sizes, which are made aeditat#aders in the online supplementary material.

Appendix
Proof of the asymptotic distributions of &, and é&
Letd, = f(?\) = 5\(1—5\), and we expand it & =2 by using Taylor expansion formula to obtain its
first-order approximation as follows.
a =1fA)~ )\(l—)\)+%[)\(l—)\)]’l/z(l—Z)\)(f\ —A)=a +%a;1(1—22\)(} —A).
Thus, it's expectation i& (4, ) ~ a, and it's variance is Va#, | ~ “Zla—zz’\)ZVar(f\). Since that Va(rf\) =az/n,
A

(1—2)\)2
4n

b2 ,
= 2. According to the Large Sample Theory, we have

Similarly, expandingaﬁ‘ atA = A by using Taylor expansion formula, we haaf@é aﬁ +(1- 2)\)(5\ —A).
Thus,E (&) ~ a2, Var(&2) ~ (1— 2))?Var(A) = 4a2b? /n. Therefore, we have

then Va(g, ) =

& ~ N (a3,4a3b3 /n).
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Table 3. Performance of the sample size formula with@ assurance probability for Crosswise Model under

(i) B = 0.5 and (ii) 8 = 0.05 with p= 0.3,0.6,0.8.

Wald Wilson
T P n' ECP(L,R)%" EAP n ECRL,R)% EAP
(i) =05
p=0.3
0.04 25 51894 95.07 (2.36,2.57) 49.76 51891 95.26 (2.468,)2.2 50.07
50 12974 95.65(2.11,2.24) 49.94 12970 95.45(2.32,2.23) .6049
0.08 25 13312 94.74 (2.68,2.58) 50.93 13308 95.13 ( 2.56L,)2.3 50.44
50 3328 94.75(2.44,2.81) 49.23 3325 94.97 (2.47 ,2.56) %H1.2
0.12 25 6053 95.22 (2.50,2.28) 49.93 6049 95.07 (2.67, 2.264p.57
50 1513 94.84 (2.50,2.66) 50.02 1510 94.85(2.59,256) 250.7
0.16 25 3474 95.20(2.46,2.34) 50.59 3470 94.86 (2.58 , 2.5640.66
50 868 95.23(2.20,2.57) 48.68 865 94.94 (2.56,2.50) 49.01
p=0.6
0.04 25 231963 94.75(2.61,2.64) 49.96 231959 95.07 (2.484,)2 50.68
50 57991 94.83(2.42,2.75) 50.09 57987 94.65 (2.70, 2.65) .4449
0.08 25 58329 94.97 (2.42,2.61) 50.58 58325 95.00 (2.5%,)2.4 50.33
50 14582 95.38(2.22,2.40) 49.73 14578 95.24 (2.41,2.35) .2749
0.12 25 26060 95.17 (2.40,2.43) 49.29 26057 95.00 (2.6M,)2.4 49.86
50 6515 94.86 (2.17,2.97) 49.72 6511 94.91 (2.52,2.57) 150.1
0.16 25 14728 94.92 (2.61,2.47) 50.55 14724 94.99 (2.5Q,)2.5 50.16
50 3682 94.74 (2.67,2.59) 50.39 3678 94.60(2.49,291) 649.3
p=0.8
0.04 25 18548 94.96 (2.43,2.61) 49.14 18546 95.02 (2.571,)2.4 49.67
50 4637 95.18 (2.33,2.49) 49.00 4635 95.15(2.39,2.46) 750.4
0.08 25 4975 95.04 (2.32,2.64) 49.72 4973 94.74 (2.81, 2.4550.49
50 1244 95.21(2.02,2.77) 50.44 1241 95.32(2.62,2.06) 848.9
0.12 25 2348 94.74 (2.51,2.75) 49.47 2345 95.30 (2.35, 2.354P.66
50 587 94.84 (2.33,2.83) 49.76 584 94.84 (2.86,2.30) 49.22
0.16 25 1390 95.12 (2.17,2.71) 51.14 1387 94.59 (3.01, 2.4060.23
50 347 95.48 (1.85,2.67) 49.82 344 94.93(2.63,2.44) 47.98
(i) B=0.05
p=0.3
0.04 25 52190 95.08 (2.50,2.42) 94.80 52187 94.87 (2.467,)2.6 95.18
50 13121 95.07 (2.15,2.78) 95.67 13118 94.93 (2.79,2.28) .1295
0.08 25 13447 94.82(2.41,2.77) 95.52 13443 95.08 (2.481,)2.4 95.57
50 3395 9455 (2.49,2.96) 9591 3392 94.85(2.76,2.39) 955
0.12 25 6134 95.08 (2.24,2.68) 95.78 6131 95.10 (2.59, 2.3196.35
50 1554 95.43(2.09,2.48) 96.56 1550 95.69(2.11,2.20) 796.3
0.16 25 3528 95.13(2.42,2.45) 95.92 3525 94.56 (2.50, 2.9495.77
50 896 94.79(2.48,2.73) 97.04 892 94.73(3.07,2.20) 96.51
p=0.6
0.04 25 232259 95.16(2.48,2.36) 95.35 232255 95.54 (2.(8B,)2 95.57
50 58139 95.13(2.51,2.36) 95.45 58135 95.20(2.39,2.41) .2795
0.08 25 58464 94.95(2.75,2.30) 95.09 58460 95.09 (2.3%4,)2.5 95.52
50 14650 95.03(2.32,2.65) 96.09 14646 95.21 (2.20, 2.59) .1596
0.12 25 26142 95.62(2.21,2.17) 95.93 26138 95.41 (2.318,)2.2 95.53
50 6556 95.08 (2.53,2.39) 95.96 6552 9480 (2.64,256) 296.1
0.16 25 14783 94.82(2.69,2.49) 95.85 14779 95.19 (2.59,)2.2 95.70
50 3709 95.03(2.36,2.61) 96.81 3706 95.45(2.19,2.36) 497.1
p=0.8
0.04 25 18844 94.85(2.37,2.78) 95.24 18840 95.44 (2.2(,)2.3 95.50
50 4784 94.92 (2.30,2.78) 95.69 4781 94.85(2.52,2.63) 195.3
0.08 25 5110 95.13(2.51,2.36) 95.25 5106 94.93 (2.74 , 2.3396.29
50 1311 95.13(2.07,2.80) 95.89 1307 95.32(2.50,2.18) 6954
0.12 25 2429 95.19(2.24,257) 95.98 2425 94.72 (2.85, 2.4394.90
50 627 94.99 (2.09,2.92) 96.39 623 94.86 (2.72,2.42) 95.30
0.16 25 1444 95.07 (2.21,2.72) 95.73 1440 95.02 (2.41,2.57p.74
50 374 94.36 (2.38,3.26) 96.99 371 95.27 (2.49,2.24) 96.83

b Half width (i.e.,w) of a Cl as given by the value af, i.e., 25% and 50% ofr.
tn denotes the estimated sample siz&;, R) denotes (LNCP, RNCP).

18



Table 4. Performance of the sample size formula with@lassurance probability for Parallel Model under

(i) B = 0.5 and (ii) 8 = 0.05 withq = 0.2,0.5,0.8.

Wald Wilson
T w n ECRL,R)% EAP n ECRL,R)% EAP
(i) =05
qg=02
0.04 25 5026 95.22(2.10,2.68) 51.82 5032 94.96 (2.74 , 2.3060.58
50 1257 94.67 (1.67,3.66) 49.90 1262 94.77 (2.96,2.27) 248.8
0.08 25 1671 94.62 (2.03,3.35) 49.30 1674 95.02 (2.42, 2.5660.34
50 418 95.08 (1.36,3.56) 47.79 420 94.91(2.89,2.20) 53.74
0.12 25 914 94.81(2.23,2.96) 52.10 914 94.92 (2.66,2.42) .3549
50 228 93.66 (1.71,4.63) 47.51 229 95.61(2.49,1.90) 54.78
0.16 25 602 95.05(1.92,3.03) 51.10 601 94.69 (2.56,2.75) .7361
50 151 94.30(2.04,3.66) 49.40 150 95.21(2.87,1.92) 51.31
g=0.5
0.04 25 8945 94.70 (2.75,2.55) 49.27 8944 94.64 (2.78 , 2.58).16
50 2236 94.73(1.97,3.30) 49.96 2236 95.09 (2.26,2.65) 950.9
0.08 25 2574 94.93(2.52,255) 51.15 2573 95.09 (2.58, 2.33%K0.75
50 644 94.20(2.21,3.59) 51.32 642 95.04 (2.64,2.32) 49.30
0.12 25 1281 95.29(2.15,2.56) 50.69 1279 94.54 (3.02, 2.4450.97
50 320 95.02(2.02,2.96) 48.63 318 94.44 (2.76,2.80) 51.54
0.16 25 790 95.50(1.93,257) 50.34 787 94.66 (2.59,2.75) .0049
50 197 94.67 (1.95,3.38) 51.94 195 94.71 (2.48,2.81) 49.34
g=0.8
0.04 25 12095 95.19(2.35,2.46) 49.07 12092  95.14 (2.3(,)2.5 50.88
50 3024 94.61(2.40,2.99) 50.26 3021 95.24 (2.46,2.30) 249.0
0.08 25 3285 95.19(2.21,2.60) 50.46 3282 94.86 (2.42,2.751.11
50 821 94.69 (2.56,2.75) 50.04 819 94.83(2.61,256) 51.92
0.12 25 1562 95.06 (2.41,253) 49.27 1559 94.97 (2.60, 2.4348.91
50 391 94.96 (2.14,2.90) 50.89 388 94.99 (2.32,2.69) 50.31
0.16 25 929 94.44 (2.56,3.00) 51.36 926 95.15(2.42,2.43) .5751
50 232 94.27 (2.48,3.25) 51.81 229 95.16 (2.31,2.53) 51.91
(i) B=0.05
g=0.2
0.04 25 5381 95.19(1.85,2.96) 95.32 5380 95.07 (2.43,2.5096.10
50 1431 95.61(1.52,2.87) 96.16 1430 94.84 (2.88,2.28) 594.8
0.08 25 1835 94.34 (2.42,3.24) 94.95 1833 94.51 (3.04,2.4%96.14
50 498 94.55(2.03,3.42) 96.23 496 95.35(2.55,2.10) 95.32
0.12 25 1014 94.72 (2.23,3.05) 95.89 1011 95.64 (2.44,1.929p6.51
50 278 95.29(1.67,3.04) 96.39 275 94.30(3.21,2.49) 95.59
0.16 25 671 94.69(1.98,3.33) 96.15 668 94.74 (2.89,2.37) .5205
50 184 9453 (1.52,3.95) 96.25 181 95.19(3.33,1.48) 95.22
g=0.5
0.04 25 9239 94.84 (2.50,2.66) 95.09 9236 94.70 (2.65, 2.6595.06
50 2382 95.22(1.92,2.86) 95.53 2379 94.66 (2.68,2.66) 895.3
0.08 25 2708 94.77 (2.39,2.84) 95.35 2705 95.28 (2.39, 2.3396.48
50 710 94.76 (2.17,3.07) 95.86 707 95.45(2.44,2.11) 95.46
0.12 25 1361 94.79(2.11,3.10) 95.76 1358 95.05 (2.53, 2.4296.32
50 360 93.54 (2.50,3.96) 95.87 357 94.73(2.91,2.36) 96.10
0.16 25 843 94.48 (2.22,3.30) 96.14 840 95.02 (2.61,2.37) .7095
50 224 94.11(2.01,3.88) 97.10 221 95.14 (2.65,2.21) 97.35
g=0.8
0.04 25 12326 95.48(2.14,2.38) 95.44 12322 9491 (2.5Z,)2.5 95.27
50 3139 94.95(2.11,2.94) 95.76 3135 95.15(2.47,2.38) 895.3
0.08 25 3387 94.85(2.33,2.82) 95.18 3384 94.96 (2.75, 2.296.62
50 872 95.02(2.29,2.69) 96.09 869 94.88 (2.61,2.51) 95.77
0.12 25 1622 94.62(2.45,2.93) 95.82 1618 94.89 (2.85, 2.2605.23
50 420 94.93(2.28,2.79) 96.51 417 95.02 (2.44,254) 96.91
0.16 25 967 95.53(2.00,2.47) 96.59 964 94.91 (2.65,2.44) .3196
50 251 95.06 (2.04,2.90) 97.22 248 94.64 (3.21,2.15) 97.69
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Table 5. Performance of the sample size algorithm withBlassurance probability for Poisson ICT under
(i) B =0.5and (i) 8 = 0.05 with = 2,3, 4.

Wald Wilson
s w n ECRL,R)% EAP n ECRL,R)% EAP
(i) =05
T=2
0.04 25 310266 95.58(1.93,2.50) 51.18 310280 95.13(2.5%%5,)2 50.80
50 77560 94.78 (2.40,2.83) 49.83 77556 94.78 (2.53,2.70) .8349
0.08 25 78234 95.35(2.30,2.35) 49.48 78234 94.80 (2.33,)2.8 50.67
50 19565 94.88 (2.58,2.55) 52.48 19548 94.85 (2.48,2.68) .4849
0.12 25 35053 95.18 (2.43,2.40) 50.60 35039 94.78 (2.98,)2.2 49.40
50 8763 95.63(2.18,2.20) 52.80 8750 95.38(2.18,2.45) 848.8
0.16 25 19851 94.95(2.60,2.45) 50.10 19841 95.40 (2.3%,)2.2 49.15
50 4963 94.70(2.50,2.80) 51.85 4955 94.28 (2.98,2.75) 82.3
T=3
0.04 25 463912 94.33(3.13,2.55) 49.73 463923  94.40 (2.9Mm,)2 49.85
50 115988 95.83(1.75,2.43) 50.65 115984  94.33 (2.75,2.93H1.79
0.08 25 116653 95.38(2.48,2.15) 50.68 116658 94.73 (2.88,2 51.48
50 29158 95.40(2.23,2.38) 49.83 29158 95.50 (2.43,2.08) .1052
0.12 25 52114 94.68 (2.70,2.63) 49.05 52120 95.35 (2.3(%,)2.3 49.53
50 13028 95.20(2.53,2.28) 50.99 13018 95.33(2.30,2.38) .4849
0.16 25 29455 95.33(2.48,2.20) 50.43 29447 95.15 (2.4%,)2.4 50.50
50 7361 95.10(2.33,2.58) 49.45 7355 95.48 (2.30,2.23) 049.3
T=4
0.04 25 617596 94.68(2.88,2.45) 52.55 617570 95.08 (2.52B,)2 49.28
50 154404 95.43(2.33,2.25) 51.83 154386  94.68 (2.93, 2.404p.43
0.08 25 155070 94.90(2.63,2.48) 50.70 155059 94.73 (2.A8,2 50.05
50 38765 95.28 (2.23,2.50) 49.93 38753 95.53(2.15,2.33) .6048
0.12 25 69192 95.10(2.63,2.28) 51.25 69185 95.08 (2.58%,)2.3 49.48
50 17297 95.40(2.50,2.10) 51.88 17291 95.35(2.35,2.30) .6351
0.16 25 39062 95.05(2.45,250) 51.70 39059 95.43 (2.7%,)1.8 52.60
50 9763 95.03(2.63,2.35) 49.93 9755 95.23(2.30,2.48) 550.6
(i) B=0.05
T=2
0.04 25 310947 95.00(2.85,2.15) 95.50 310884 94.80 (2.88,)2 94.45
50 77886 95.00(2.28,2.73) 94.85 77893 94.85 (2.93,2.23) .6395
0.08 25 78604 94.73(2.70,2.58) 95.85 78541 94.33 (2.5(8,)3.1 94.43
50 19722 94.75(2.73,2.53) 95.70 19703 95.03 (2.53,2.45) .1094
0.12 25 35277 94.38(2.80,2.83) 95.98 35252 95.05 (2.68,)2.2 95.20
50 8872 94.88 (2.40,2.73) 95.70 8860 95.93(2.18,1.90) 895.3
0.16 25 20019 94.05(3.05,2.90) 95.40 20014 94.45 (2.89,)2.7 95.23
50 5043 95.55(2.05,2.40) 94.57 5032 95.30(2.73,1.98) 394.3
T=3
0.04 25 464611 94.85(2.65,2.50) 96.02 464561  94.88 (2.40,)2 95.38
50 116296 94.83(2.63,2.55) 94.74 116310 95.15(2.33, 2.5396.45
0.08 25 116987 95.60(2.00,2.40) 95.35 116976 94.83 (2.68,)2 95.30
50 29313 95.38(2.30,2.33) 94.15 29321 94.95 (2.63,2.43) .2395
0.12 25 52335 95.23(2.63,2.15) 94.18 52325 95.28 (2.4(8,)2.3 94.70
50 13139 94.68 (2.70,2.63) 95.07 13134 95.33(2.55,2.13) .7495
0.16 25 29615 94.75(2.73,253) 94.33 29619 95.38 (2.48,)2.1 95.73
50 7445 94.70(2.93,2.38) 95.73 7441 94.93(2.25,2.83) 5.7
T=4
0.04 25 618247 95.40(2.33,2.28) 95.74 618222 94.50 (2.48B,)3 94.93
50 154708 94.65(2.63,2.73) 94.54 154704  94.85 (2.58, 2.585.00
0.08 25 155388 94.65(2.90,2.45) 94.43 155392 95.33(2.35,2 95.53
50 38931 94.43 (2.63,2.95) 95.47 38922 94.58 (2.93,2.50) .1895
0.12 25 69408 94.90(2.70,2.40) 95.03 69404 95.50 (2.4%,)2.0 95.28
50 17400 94.83(2.63,2.55) 94.13 17399 94.95 (2.68,2.38) .6894
0.16 25 39219 95.03(2.83,2.15) 94.80 39219 94.45 (2.88,)2.6 94.90
50 9848 94.70(2.70,2.60) 95.73 9837 95.68 (2.20,2.13) 895.1
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Table 6. Performance of the sample size algorithm withBlassurance probability for Negative Binomial ICT under
(i) B =0.5 and (ii) 3 = 0.05 with p=0.6,0.7,0.8.

Wald Wilson
T w n ECRL,R)% EAP n ECRL,R)% EAP
(i) =05
p=0.6
0.04 25 344424 9490 (2.45,2.65) 50.45 344397 95.25(2.Z2®,)2 50.83
50 86115 95.55(2.10,2.35) 51.21 86097 95.25 (2.23,2.53) .0350
0.08 25 86771 94.85(2.85,2.30) 49.45 86793 95.00 (2.33,)2.6 52.35
50 21702 95.10(2.15,2.75) 51.30 21677 94.98 (2.73,2.30) .2550
0.12 25 38847 95.13(1.95,2.93) 51.40 38828 95.95 (2.08,)1.9 49.70
50 9714 94.23(2.48,3.30) 51.93 9708 95.23(2.50,2.28) 350.8
0.16 25 21985 94.95(2.35,2.70) 5150 21996 95.40 (2.238,)2.3 51.48
50 5500 95.23(2.33,2.45) 51.60 5494 95.18(2.33,250) &1.4
p=0.7
0.04 25 191114 94.95(2.65,2.40) 50.78 191090 95.40 (2.235,2 51.25
50 47785 95.10(2.35,2.55) 51.75 47796 94.80 (2.53,2.68) .3551
0.08 25 48461 94.75(2.70,2.55) 50.53 48451 95.75 (2.48,)1.7 50.13
50 12103 95.48 (2.25,2.28) 48.78 12105 95.43(2.68,1.90) .1349
012 25 21794 95.25(2.75,2.00) 48.03 21795 94.80 (2.40,)2.8 49.08
50 5450 95.10(2.20,2.70) 49.50 5451 94.88 (2.63,2.50) 3>H1.4
0.16 25 12402 94.68 (2.80,2.53) 49.60 12393 95.00 (2.25,)2.7 49.33
50 3106 95.05(2.25,2.70) 51.28 3089 95.03(2.50,2.48) 649.7
p=0.8
0.04 25 99009 94.50(2.38,3.13) 48.83 98971 95.55 (2.18,)2.2 48.98
50 24747 94.90 (2.55,2.55) 50.83 24745 95.10 (2.68, 2.23) .0650
0.08 25 25425 94.60 (2.78,2.63) 49.75 25408 94.55 (2.7(5,)2.7 49.45
50 6360 95.10(2.58,2.33) 51.03 6351 95.13(2.55,2.33) 70.5
0.12 25 11584 95.35(2.60,2.05) 51.88 11554 94.88 (2.48,)2.6 48.08
50 2894 94.73(2.40,2.88) 51.73 2882 95.15(2.70,2.15) 049.2
0.16 25 6648 95.03(2.48,2.50) 50.90 6638 94.20 (3.15, 2.6550.76
50 1657 94.75(2.40,2.85) 49.75 1654 94.98 (2.70,2.33) 1504
(i) B=0.05
p=0.6
0.04 25 346752 95.05(2.50,2.45) 94.48 346700 94.55(2.88,)2 95.81
50 87125 94.80 (2.63,2.58) 95.38 87214 94.95 (2.25,2.80) .3795
0.08 25 87841 94.65(2.78,2.58) 95.08 87943 94.58 (2.58,)2.8 95.40
50 22221 95.48 (2.15,2.38) 95.28 22201 95.35(2.43,2.23) .4395
0.12 25 39521 94.90 (2.65,2.45) 95.15 39622 95.45 (2.1%),)2.4 94.98
50 10084 95.58 (2.28,2.15) 95.18 10077 95.73 (2.00, 2.28) .5695
0.16 25 22551 94.98 (2.38,2.65) 95.93 22535 94.53 (2.8(8,)2.6 95.47
50 5779 95.38 (2.45,2.18) 95.85 5773 95.23(2.55,2.23) 895.9
p=07
0.04 25 192699 94.35(2.78,2.88) 96.38 192892  95.10 (2.3B,2 95.09
50 48570 95.25(2.40,2.35) 95.90 48718 95.30(2.35,2.35) .2894
0.08 25 49332 95.03(2.50,2.48) 95.13 49381 95.18 (2.58,)2.2 95.43
50 12562 94.85(2.68,2.48) 95.30 12584 95.05 (2.53,2.43) .8095
012 25 22370 95.10(2.50,2.40) 95.04 22330 95.38 (2.33,)2.3 94.95
50 5769 94.40 (2.83,2.78) 94.20 5748 94.73 (2.68,2.60) 296.2
0.16 25 12868 94.50 (2.55,2.95) 95.10 12851 95.43 (2.38),)2.2 94.98
50 3310 94.93(2.50,2.58) 95.65 3298 94.50(2.98,2.53) 195.0
p=0.8
0.04 25 100552 94.65(2.70,2.65) 95.88 100509 95.08 (2.2Z18,)2 95.53
50 25488 95.45(2.10,2.45) 94.93 25541 95.25(2.15,2.60) .5094
0.08 25 26148 94.88 (2.63,2.50) 94.43 25999 95.23 (2.5%,)2.2 94.83
50 6722 95.55(2.00,2.45) 95.87 6697 94.65(2.70,2.65) 195.0
0.12 25 12017 95.38(2.65,1.98) 95.13 12042 95.05 (2.69,)2.3 95.36
50 3089 94.80(2.28,2.93) 94.53 3123 95.08 (2.63,2.30) 6.0
0.16 25 7017 95.63(2.13,2.25) 94.43 6999 94.80 (2.38, 2.8396.82
50 1816 94.95(2.40,2.65) 95.78 1817 95.05(2.45,2.50) 694.7
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Table 7. Performance of the sample size formula with 95%rasase probability for various models
when the expected prevalence (im ) differs from the true prevalence (i.ert,).

Wald Wilson
w e n ECRHL,R)% EAP n ECRL,R)% EAP
Crosswise Model

0.05 0.40 2167 95.28 (2.38,2.35) 1.38 2163 94.60 (2.73,)2.681.60
0.60 2205 9453 (2.50,2.98) 19.63 2201 95.05(2.83,2.13) .8017
0.80 2240 95.25(2.53,2.23) 69.15 2236 95.23(2.43,2.35) .5367
1.20 2300 94.33(2.68,3.00) 99.98 2296 94.63 (2.48,2.90) .9399

0.10 0.40 556 95.03(2.28,2.70) 46.65 552 95.68 (2.03, 2.3046.43
0.60 564 95.73(1.80,2.48) 71.35 560 94.95(2.80,2.25) 8&8.6
0.80 572 94.50(2.48,3.03) 89.13 568 95.25(2.40,2.35) 39.6
1.20 585 95.10(2.13,2.78) 99.65 581 95.20(2.43,2.38) 59.5

Parallel Model

0.05 0.40 549 94.40 (2.18,3.43) 2.08 546 95.03(2.58,2.40).88 1
0.60 587 94.33(2.80,2.88) 19.03 584 95.05(2.70,2.25) 518.2
0.80 622 94.70 (2.38,2.93) 65.33 619 95.35(2.70,1.95) 564.1
1.20 682 94.73(2.05,3.23) 99.88 679 95.53(2.55,1.93) 9.9

0.10 0.40 150 94.65(1.58,3.78) 41.38 147 94.70 (2.98,2.33411.25
0.60 159 94.63(1.93,3.45) 66.70 156 94.88 (2.83,2.30) 371.7
0.80 167 94.30(1.88,3.83) 88.95 164 94.75(2.80,2.45) 3B9.4
1.20 180 94.38(1.83,3.80) 99.70 177 95.08 (2.65,2.28) 999.7

Poisson ICT

0.05 0.40 12612 94.75(2.85,2.40) 10.78 12599 9543 (2.518,)2 9.58
0.60 12697 95.00(2.68,2.33) 40.63 12678 95.10(2.65, 2.2537.78
0.80 12772 96.10(2.18,1.73) 76.75 12771 94.70 (2.55, 2.7578.53
1.20 12907 94.38(3.10,2.53) 99.03 12907 94.95(2.60, 2.4599.23

0.10 0.40 3184 94.80 (2.70,2.50) 56.83 3177 95.03 (2.8%,2.1 57.75
0.60 3204 94.95(2.65,2.40) 75.05 3202 95.48 (2.33,2.20) .8879
0.80 3224 94.95(2.48,2.58) 89.68 3214 94.58 (3.10,2.33) .7087
1.20 3260 94.55(3.05,2.40) 98.23 3245 95.28 (2.40, 2.33) .4896

Negative Binomial ICT

0.05 0.40 8056 95.33(2.20,2.48) 71.65 8042 94.88 (2.63,2.5 69.75
0.60 8113 94.98 (2.55,2.48) 79.05 8139 95.30 (2.18,2.53) .7583
0.80 8222 95.28(2.35,2.38) 92.35 8188 94.85 (2.38,2.78) .5838
1.20 8359 95.50(2.13,2.38) 97.55 8337 95.23 (2.40,2.38) .3097

0.10 0.40 2104 94.60 (2.45,2.95) 87.50 2097 95.38 (2.3®,2.3 87.75
0.60 2110 94.83(2.28,2.90) 89.08 2110 95.30 (2.08,2.63) .480
0.80 2154 94.88 (2.50,2.63) 94.45 2134 95.03 (2.65,2.33) .1593
1.20 2179 95.10(2.15,2.75) 97.18 2166 95.28 (2.50, 2.23) .9096

¢ Expected prevalenca is given by the values af, i.e., & = (0.4,0.6,0.8,1.2) .

with the actual sample size (i.e.,826 participants) forstiuely of pre-marital sexual practices among adolescents.

Table 8. ECPs(%), ECWs and EAPs(%) of Cls founder various models

Wald Wilson
Model ECP(ECW) EAP ECRECW) EAP
Crosswise Model 95.58(0.129) 0 94.95(0.128) 0
Parallel Model 94.82(0.083) 1 94.96(0.081) 1
Poisson ICT 95.03(0.279) 0 94.48(0.277) 0
Negative Binomial ICT 95.58(0.223) 0 95.40(0.223) 0
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