
Sample size determination for interval estimation of the prevalence of

a sensitive attribute under non-randomized response models

Abstract

A sufficient number of participants should be included to adequately address the research interest in

the surveys with sensitive questions. In this article, sample size formulas/iterative algorithms are developed

from the perspective of controlling the confidence intervalwidth of the prevalence of a sensitive attribute

under four non-randomized response models, i.e., Crosswise Model, Parallel Model, Poisson Item Count

Technique and Negative Binomial Item Count Technique. In contrast to the conventional approach for sam-

ple size determination, our sample size formulas/algorithms explicitly incorporate an assurance probability

of controlling the width of a confidence interval within the pre-specified range. The performance of the

proposed methods is evaluated with respect to the empiricalcoverage probability, empirical assurance prob-

ability and confidence width. Simulation results show that all formulas/algorithms are effective and hence

are recommended for practical applications. A real exampleis used to illustrate the proposed methods.

Keywords—Assurance probability, confidence interval, non-randomized response models, sample size

determination, sensitive attribute.
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1 Introduction

When interviewers engage in survey research involving sensitive attributes, the direct questioning ap-

proach may introduce non-response bias and response bias, as respondents may refuse to answer or provide

inaccurate responses. To address these biases and enhance the reliability of survey data, Warner[1] proposed

the implementation of a randomized response technique (RRT), designed to obfuscate individual responses

through the utilization of a randomizing device. In Warner’s conceptualization of the RRT, the randomized

response model presents the respondent with a binary choicebetween two questions that are complementary in

nature. The pivotal element is that the interviewer remainsunaware of which specific question the respondent

is answering, owing to the unpredictable nature introducedby the randomizing device. This safeguard ensures

the privacy of the interviewee. It is noteworthy that both questions posed within Warner’s RRT framework

pertain to the sensitive attribute. Subsequently, variousadaptations and refinements to Warner’s model have

emerged over the years to enhance its applicability and effectiveness. For instance, Mangatet al.[2] proposed a

two-stage randomized response model that necessitates theuse of two randomizing devices. Abul-Elaet al.[3]

and Bourke[4] expanded Warner’s model to the Randomized Response Technique (RRT) with three mutually

exclusive answers. Horvitzet al.[5] and Greenberget al.[6] devised a randomized response model incorporat-

ing non-sensitive questions, while Christofides[7] introduced a randomized response technique for estimating

the proportion of respondents possessing two sensitive characteristics simultaneously. It is noteworthy that

randomized response models are often perceived as lacking reproducibility, incurring high costs, fostering low

trust, and presenting challenges in comprehension (Tianet al.[8]). To address these limitations, Swensson[9]

introduced a combination-question technique mandating two independent random samples to supplant the use

of any randomization device. Takahasiet al.[10] substituted randomization devices with neutral auxiliary ques-

tions, achieving non-randomization and enhanced privacy protection for respondents. Yuet al.[11] proposed

the crosswise and triangle models. The former is regarded asthe non-randomized version of the Warner model,

introducing a non-sensitive binary variable and a simpler survey format. The latter represents a variant of the

crossover design model designed to mitigate its relative inefficiency. Both models necessitate one category to

be non-sensitive (represented by Y=0) and are unsuitable for situations involving two or more sensitive cate-

gories (represented by Y=1), such as income, number of sexual partners, and loyalty or disloyalty to a boss.

To overcome these limitations, Tian[12] introduced the parallel model, considered the non-randomized version

of the uncorrelated randomized response model proposed by Horvitz et al.[5]. Theoretical comparisons be-

tween the parallel model and the crossover design and triangle models demonstrate that, across most parameter

ranges, the parallel model is more efficient, affords superior privacy protection, and possesses a broader range

of applications.

Miller[ 13] introduced the item count technique (ICT) as a non-randomized alternative to the randomized

response model. In this approach, respondents are randomlyassigned to either an experimental or control

group. The experimental group is presented with K non-sensitive questions and one sensitive question, while

the control group is exclusively asked the K non-sensitive questions. However, the ICT model exhibits a design

flaw, where in the true status of the respondent is inevitablyexposed when K+1 "yes" responses are obtained

from the experimental group. This compromises privacy and may elicit dishonest responses.To address this

critical issue, Tianet al.[14] proposed two novel models, namely the Poisson ICT Model andthe Negative

Binomial ICT Model. These models replace several non-sensitive questions following a binomial distribution

with a single non-sensitive question eliciting responses in the form of non-negative integers. The development

of these models is grounded in the assumption of counting data distribution. Experimental results demonstrate

that the proposed methods offer accurate parameter estimation and confidence intervals, effectively mitigating

the limitations inherent in the ICT model.
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Determining the optimal sample size is an essential step in conducting survey research. Chowet al.[15]

proposed two methods, namely the precision analysis and power analysis methods, to determine the sample size.

The precision analysis method predefines the maximum acceptable level of the Type I error rate by specifying a

confidence interval, while the power analysis method controls the Type II error rateβ to determine the sample

size. Tianet al.[8] extended the application of both methods to the Crosswise Model, Triangular Model, and

Parallel Model introduced by Yuet al.[11] and Tian[12], providing sample size calculation formulas under the

condition of expected power of 1− β . Additionally, Tianet al.[14] offered approximations for determining

the sample size of two novel ICT models, namely the Poisson ICT and Negative Binomial ICT, based on the

precision and power analysis methods proposed by Chowet al.[15]. However, several scholars have suggested

that confidence intervals are more informative than simple hypothesis testing in assessing the accuracy and

precision of statistical data. Beal[16], Bristol[17], Goodmanet al.[18] and Rumke[19] proposed using the

expected width of the confidence interval to determine the sample size. Bland[20] also recommended using

the width of the confidence interval instead of power to determine the sample size in a medical study. Zou[21]

suggested that the determination of the required number of participants for estimating intra-class correlation

coefficient in studies of confidence level should be based on the expected width of the confidence interval.

Ulrich et al.[22] derived the statistical powers for the Wald test under Warner’s model, unrelated question

model, item count model and cheater detection model, their corresponding sample size requirements that can

achieve a desired power for the Wald test with a predetermined type I error rate can be readily obtained. While

determining the sample size is a crucial step in survey research and to some extent, the success of a survey

depends on it, most studies have focused on determining the sample size from the perspective of testing power

for surveys on sensitivity issues under non-random response models. Research on sample size determination

from the perspective of interval estimation is still limited. Expanding on this idea, Qiuet al.[23] computed the

width of the confidence intervalwhich regulates the proportion of sensitive features at a particular confidence

level for the non-randomized triangular model, and derivedan approximate formula for the sample size with a

given level of assurance. Qiuet al.[24] further obtained sample size formulas for four random response models,

namely the Warner model, the unrelated question model, the item count technique model, and the cheating

detection model. In this paper, we introduce a novel approach to address the challenge of controlling the width

of the confidence interval for the prevalence of sensitive attributes at a specific confidence level within the

context of four non-randomized response models, namely theCrosswise Model, Parallel Model, Poisson Item

Count Technique, and Negative Binomial Item Count Technique. Specifically, we derive closed-form sample

size formulas to achieve this objective for the former two models. For the latter two models, which do not

allow for a closed-form formula, we propose an iterative algorithm to determine the required sample size.

Importantly, our methodology incorporates a probability-based framework to ensure predetermined precision.

These contributions bear significant implications for statistical inference in the estimation of sensitive attribute

prevalence.

This article is organized as follows. Sample size formulas/algorithms for the prevalence of a sensitive

attribute for the aforementioned models (i.e., Crosswise Model, Parallel Model, Poisson Item Count Technique

and Negative Binomial Item Count Technique) are derived in Section 2 and Section 3. The performance of

the proposed methods is evaluated by simulation studies in Section 4. In Section 5, a real example for the

investigation of premarital sexual practices in adolescents from Bogaleet al. [25] is used to illustrate the

accuracy of the estimated sample size formulas. A brief conclusion and discussion are given in Section 6.
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2 Approximate Sample Sizes under Crosswise Model and Parallel Model

2.1 Crosswise Model and Parallel Model

Let Y represent a binary random variable indicating a sensitive attribute of interest, such as premarital

sexual practices, where a value of 1 signifies "Have ever had premarital sexual intercourse," and 0 denotes

"Have never had premarital sexual intercourse." The probability of Y being 1 is denoted as p = Pr(Y = 1).

Additionally, let W be a non-sensitive binary attribute, independent of Y, such as "Is the first digit of your house

number 1, 2, 3, 4, or 5?" The probability of W being 1 is known and is expressed as p = Pr(W = 1). According

to "Benford’s Law", Diekmann[26] reported that the probability of the first digit of a house number being 1, 2,

3, 4 or 5 is 0.778, specificallyp= Pr(W = 1) = 0.778.

The Crosswise Model proposed by Yuet al. [11] is reported in Table 1. In this design, each interviewee

will be instructed to provide his/her response by placing a tick in the upper circle if he/she belongs to one of

the two circles or putting a tick in the upper triangle if he/she belongs to one of the two triangles. This design

is mathematically equivalent Warner’s model, so it is the non-randomized version of Warner’s RRT. SinceW

andY are independent by design, the cell probabilities for the right side of Table 1 can be easily obtained by

multiplying the marginal probabilities.

Table 1. Crosswise Model and the corresponding cell probabilities.

Category W=0 W=1 Category W=0 W=1 Marginal

Y=0 © △ Y=0 (1−π)(1− p) (1−π)p 1−π
Y=1 △ © Y=1 π(1− p) π p π

Marginal 1− p p 1

Note: Interviewees are instructed to put a tick in the upper circle if they have never had premarital sexual intercourse

AND the first digit of their house number is not 1, 2, 3, 4 and 5. Alternatively, interviewees should put a tick in the upper

circle if they have ever had premarital sexual intercourse AND the first digit of their house number is 1, 2, 3, 4 or 5. In all

other cases, interviewees are directed to put a tick in the upper triangle.

Note that the Crosswise Model necessitates one category to be non-sensitive, rendering it unsuitable for

situations where two categories are sensitive. To address this limitation, Tian[12] introduced the Parallel Model.

In the parallel design, Y is the binary random variable representing a sensitive attribute of interest, while U and

W are two non-sensitive dichotomous variables, such as (W):"Is the first digit of your house number 1, 2, 3, 4,

or 5?" and (U): "Is the last digit of your cell phone number odd?". It is assumed that Y, U, and W are mutually

independent, and the probability of the sensitive attribute is denoted as p = Pr(Y = 1), with known probabilities

q = Pr(U = 1) and p = Pr(W = 1).

Under the parallel design, each interviewee is instructed to provide a response by connecting two circles

with a straight line if they belong to one of the two circles, or connecting two triangles with a straight line if they

belong to one of the two triangles. This design serves as a non-randomized version of the unrelated question

model (Greenberget al.[6]). Since Y, U, and W are mutually independent by design, the cell probabilities for

the right side of Table 2 can be easily obtained by multiplying the marginal probabilities.

Table 2. Parallel Model and the corresponding cell probabilities.
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Category W=0 W=1 Category W=0 W=1 Marginal

U=0 © U=0 (1−q)(1− p) 1−q

U=1 △ U=1 q(1− p) q

Marginal 1− p p 1.0

Y=0 © Y=0 (1−π)p 1−π
Y=1 △ Y=1 π p π

Marginal 1− p p 1.0

Note: Interviewees are instructed to connect the two triangles by a straight line if the first digit of their house number is

not 1, 2, 3, 4, or 5 AND the last digit of their cell phone numberis odd. Alternatively, interviewees should connect the

two triangles by a straight line if the first digit of their house number is 1, 2, 3, 4, or 5 AND they have ever had premarital

sexual intercourse. In all other cases, interviewees are directed to connect the two circles by a straight line.

Let λ be the probability of marking the upper circle in the Crosswise Model or connecting the two triangles

by a straight line in the Parallel Model. Then,λ = ζπ +η , with ζ = 2p−1, η = 1− p for Crosswise Model

andζ = p, η = q(1− p) for Parallel Model, respectively. Therefore,π = (λ −η)/ζ for both models.

2.2 Confidence Intervals under Crosswise and Parallel Designs

Suppose thatx out ofn subjects mark the upper circle in Table 1 or connect the two triangles by a straight

line in Table 2. The maximum likelihood estimate ofλ is denoted aŝλ = x/n with the expectation E(λ̂ ) = λ
and variance Var(λ̂ ) = λ (1−λ )/n= a2

λ/n, respectively. Therefore, the maximum likelihood estimate (MLE)

of π is π̂ = (λ̂ −η)/ζ with a variance Var(π̂) = a2
λ/(nζ 2) under both models.

As shown in van den Hout, A.[27], the MLE π̂ is equal to the estimate provided by the moment estimator

as long as they are in the interior of the parameter space. While the estimatêπ may fall outside the range[0,1],

the probability ofπ̂ exceeding this boundary diminishes with an increasing sample size (Ulrichet al.[22]). Ad-

ditionally, the Expectation Maximization (EM) algorithm can be employed to obtain the Maximum Likelihood

Estimator(MLE) ofπ̂ whenπ̂ < 0 or π̂ > 1.

According to the Central Limits Theorem, the(1−α)100% Wald confidence interval (CI) forπ under the

above two models can be obtained by

[πl ,W,πu,W] = [π̂ −zα/2 ·
âλ√
n|ζ | , π̂ +zα/2 ·

âλ√
n|ζ | ], (1)

wherezα/2 is the 1−α/2 quantile of the standard normal distribution, and ˆaλ =

√
λ̂ (1− λ̂ ).

As shown in Newcombe[28] and Agresti & Coull[29], the confidence interval derived from the Wil-

son method usually outperforms the Wald interval, especially for small sample sizes. Hence, we adopt the

Wilson[30] method for constructing a(1−α)100% confidence interval for the prevalenceπ, and the Wilson

CI under the Crosswise and Parallel design is given by[πl ,Wi,πu,Wi], where

πl ,Wi =
nλ̂ +z2

α/2/2−η(n+z2
α/2)−zα/2

√
nâ2

λ +z2
α/2/4

ζ (n+z2
α/2)

and

πu,Wi =
nλ̂ +z2

α/2/2−η(n+z2
α/2)+zα/2

√
nâ2

λ +z2
α/2/4

ζ (n+z2
α/2)
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if ζ > 0. If ζ < 0, the confidence lower and upper limits are

πl ,Wi =
nλ̂ +z2

α/2/2−η(n+z2
α/2)+zα/2

√
nâ2

λ +z2
α/2/4

ζ (n+z2
α/2)

and

πu,Wi =
nλ̂ +z2

α/2/2−η(n+z2
α/2)−zα/2

√
nâ2

λ +z2
α/2/4

ζ (n+z2
α/2)

,

respectively.

2.3 Sample Size Formulas under Crosswise and Parallel Designs

The half width of the(1−α)100% Wald CI forπ is given by

zα/2 ·
âλ√
n|ζ | .

If our objective is to ensure that the half-width does not exceedω with a probability of 1−β , then the condition

is given by:

Pr(zα/2 ·
âλ√
n|ζ | ≤ ω)≥ 1−β .

It can be shown that it is equivalent to

Pr(âλ ≤ ω |ζ |
zα/2

√
n)≥ 1−β .

According to the large sample theory and delta method, it canbe shown that

âλ ∼ N(aλ ,
b2

λ
n
),

where Var(âλ ) = b2
λ/n with bλ = |1−2λ |/2 (Please see Appendix for details). Thus, we have

Pr(
âλ −aλ
bλ/

√
n
≤

ω |ζ |
zα/2

√
n−aλ

bλ/
√

n
)≥ 1−β .

Therefore, the desired sample sizen can be obtained by solving the following equation:

ω |ζ |
zα/2

√
n−aλ =

zβ bλ√
n
,

wherezβ is the 1−β quantile of the standard normal distribution.

Solving the above equation yields

nnnWWW = [
aλ +[a2

λ +4ω |ζ |zβ/zα/2 ·bλ ]
1/2

2ω |ζ |/zα/2
]2. (2)

In particular, whenβ = 0.5, it is the conventional sample size, which is given by

nnnWWW,,,000...555 =
a2

λ
[ωζ/zα/2]2

. (3)

On the other hand, given the values ofn, ζ , η andπ, the assurance probability can be obtained by

Φ(

ω |ζ |
zα/2

√
n −aλ

bλ/
√

n
),
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whereΦ(·) is the distribution function of the standard normal distribution.

Similarly, in order to control the half width of the Wilson CIfor π no larger thanω with probability 1−β ,

the half width should satisfy

Pr(
zα/2

√
nâ2

λ +z2
α/2/4

|ζ |(n+z2
α/2)

≤ ω)≥ 1−β ,

i.e.,

Pr(â2
λ ≤

4ζ 2(n+z2
α/2)

2ω2−z4
α/2

4nz2
α/2

)≥ 1−β .

By using the delta method, the variance of ˆa2
λ can be given by Var(â2

λ ) = 4a2
λ b2

λ/n , then the asymptotical

distribution ofâ2
λ is â2

λ ∼ N(a2
λ , 4a2

λ b2
λ/n) (Please see Appendix for details). Therefore, we have the following

equation:
4ζ 2(n+z2

α/2)
2ω2−z4

α/2

4nz2
α/2

−a2
λ = 2zβ

√
a2

λ b2
λ/n.

The above equation can be simplified as the following quarticequation with respect ton+z2
α/2:

a(n+z2
α/2)

4+b(n+z2
α/2)

3+c(n+z2
α/2)

2+d(n+z2
α/2)+e= 0, (4)

where
a= 16ω4ζ 4,

b=−32z2
α/2ω2ζ 2a2

λ ,

c= 8z4
α/2[2a4

λ +4ω2ζ 2a2
λ −ω2ζ 2],

d = 8z4
α/2a2

λ [z
2
α/2−4z2

α/2a2
λ −8z2

β b2
λ ], and

e= z6
α/2[16z2

α/2a4
λ +64z2

β a2
λ b2

λ −8z2
α/2a2

λ +z2
α/2].

The eigenvalue method can be used to find the roots of the abovequartic equation. Letnmax be the maximum

real root of Equation (4) with respect ton+z2
α/2, and the approximate sample size is denoted asnnnWWWiii. ThennnnWWWiii

is the minimum integer that is not smaller thannmax−z2
α/2. Especially, whenβ = 0.5, the approximate sample

sizen is given by

nnnWWWiii,,,000...555 =
z2

α/2[a
2
λ +

√
a4

λ +ω2ζ 2(1−4a2
λ )]

2ω2ζ 2 −z2
α/2. (5)

On the other hand, given the values ofn, ζ , η andπ, the assurance probability can be obtained by

Φ(
(

4ζ 2(n+z2
α/2)

2ω2−z4
α/2

4nz2
α/2

−a2
λ )

2
√

a2
λ b2

λ/n
),

whereΦ(·) is the distribution function of the standard normal distribution.

Hence, if there exists a general relationship between the binomial probabilityλ and the probability of a

sensitive attributeπ for any (non)randomized response design, expressed asλ = ζπ +η with ζ andη being

known, the sample size formula explicitly incorporating anassurance probability to control the width of a Wald

Confidence Interval (CI) within the pre-specified range can be given by Equation (2) or (3). Furthermore,

sample size estimation based on a Wilson CI can be obtained bysolving Equation (4). In these formulas, it is

sufficient to calculate the variances Var(λ̂ ) and Var(âλ ) to obtaina2
λ andb2

λ .
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3 Approximate Sample Sizes under Poisson ICT and Negative Binomial ICT

3.1 Poisson ICT and Negative Binomial ICT

Obviously, for the item count technique proposed by Miller[13], the respondent’s sensitive characteristic

is inevitably exposed whenK +1 "yes" responses are obtained from the experimental group if an item count

design consists ofK non-sensitive questions and one sensitive question. Therefore, Tianet al.[14] changed

the K neutral questions to a single neutral question, and proposed the following design:nc respondents are

randomly assigned to the control group and receive a neutralquestion, for example, "How many times did

you travel abroad last year?" or "How many online resumes do you need to submit to receive one interview

invitation?". While thene respondents are randomly assigned to the experimental group and receive the same

neutral question together with the sensitive question "Have you ever had sexual intercourse?", for example,

"How many times did you travel abroad last year?" or "How manyonline resumes do you need to submit to

receive one interview invitation?". LetY be the answer to the sensitive question withY = 1 if the respondent

possesses the sensitive characteristic andY = 0 otherwise, andX be the answer to the neutral question. Then,

the respondents’ answers under the experimental and control groups areZ = Y+X andX, respectively. The

parameter of interest isπ = Pr(Y = 1). Given that the variableX is a non-negative integer, we can assume that

X follows either a Poisson distribution with parameterτ or a Negative Binomial distribution with parameters

r(> 0) andp, denoted asX ∼ Poisson(τ) with probability distribution:

Pr(X = x) =
τxe−τ

x!
,x= 0,1,2, · · ·

or X ∼ NBinomial(r, p) with probability distribution:

Pr(X = x) =
Γ(x+ r)
x!Γ(r)

(1− p)r px,x= 0,1,2, · · · .

The corresponding models are named as Poisson Item Count Technique (i.e., Poisson ICT) and Negative Bino-

mial Item Count Technique (i.e., Negative Binomial ICT), respectively.

3.2 Confidence Intervals under Poisson and Negative Binomial ICTs

Let {xi}nc
i=1 and{zi}ne

j=1 be the observed data in the control and experimental groups,respectively. Thus,

the moment estimate ofπ is given by

π̂ =
1
ne

ne

∑
j=1

zj −
1
nc

nc

∑
i=1

xi (6)

and the variance of̂π is Var(π̂) = Var(Z)/ne+Var(X)/nc. SinceX is independent ofY and Var(Z) = Var(X)+

Var(Y) = σ2
x +π(1−π), we have

Var(π̂) =
σ2

x +π(1−π)
ne

+
σ2

x

nc
=

π(1−π)
ne

+σ2
x (

1
nc

+
1
ne
).

It is obvious that the above moment estimateπ̂ may fall outside the interval[0,1]. Therefore, we apply

the EM algorithm to find the MLE ofπ by adding a latent dataZmis = {y1, . . . ,yne}, which is the answer to the

sensitive question in the experimental group. Therefore, the complete-data isZcom= {Zobs,Zmis}, whereZobs=

{x1, . . . ,xnc;z1, . . . ,zne} denotes the observed data. Hence, the complete-data likelihood function is

L(π,τ | Zobs,Zmis) = π∑ne
j=1 yj (1−π)ne−∑ne

j=1 yj ×
(

nc

∏
i=1

τxi e−τ

xi !

)(
ne

∏
j=1

τzj−yj e−τ

(zj −y j)!

)
.
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for Poisson ICT and

L(π, p | Zobs,Zmis) ∝ π∑ne
j=1 yj (1−π)ne−∑ne

j=1 yj × (1− p)(nc+ne)r p∑nc
i=1 xi+∑ne

j=1(zj−yj)

for Negative Binomial ICT, respectively. According to the methods proposed by Bliss & Fisher[31], the

unknown parameterr can be estimated by ˆr = x̄2/(s2 − x̄), where ¯x = ∑nc
i=1xi/nc is the sample mean, and

s2 = ∑nc
i=1(xi − x̄)2/(nc−1) is the sample variance. The complete-data MLEs ofπ, τ andp are given by

π =
1
ne

ne

∑
j=1

y j , τ =
∑nc

i=1xi +∑ne
j=1(zj −y j)

nc+ne
, p=

∑nc
i=1xi +∑ne

j=1(zj −y j)

(nc+ne) r̂ +∑nc
i=1xi +∑ne

j=1(zj −y j)
, (7)

respectively. The E-step replaces
{

y j
}ne

j=1 by their conditional expectations

E (Yj | Zobs,π,τ) =
zjπ

zjπ + τ(1−π)
, j = 1, . . . ,ne (8)

for Poisson ICT, and

E (Yj | Zobs,π, p) =
zjπ

zjπ +(1−π)(zj + r̂ −1) p
, j = 1, . . .ne (9)

for Negative Binomial ICT, respectively. The estimations of π, τ and p which are obtained by the above EM

algorithm are denoted aŝπEM, τ̂EM and p̂EM, respectively. Thus, the variance ofπ̂ can be estimated by

V̂ar(π̂) =
π̂EM(1− π̂EM)

ne
+ σ̂2

x (
1
nc

+
1
ne
),

for Poisson ICT and Negative Binomial ICT, whereσ̂2
x is the estimation ofσ2

x , i.e., σ̂2
x = τ̂EM for Poisson ICT

andσ̂2
x = r̂ p̂EM/(1− p̂EM)

2 for Negative Binomial ICT.

Therefore, the(1−α)100% Wald confidence interval forπ is given by[πl ,W,πu,W], where

πl ,W = π̂EM−zα/2[
π̂EM(1− π̂EM)

ne
+(

1
nc

+
1
ne
)σ̂2

x ]
1/2

and

πu,W = π̂EM+zα/2[
π̂EM(1− π̂EM)

ne
+(

1
nc

+
1
ne
)σ̂2

x ]
1/2.

The(1−α)100% Wilson confidence interval forπ is given by[πl ,Wi,πu,Wi], where

πl ,Wi =
neπ̂EM+z2

α/2/2−zα/2[neπ̂EM(1− π̂EM)+ (1+ ne
nc
)(ne+z2

α/2)σ̂
2
x +z2

α/2/4]1/2

ne+z2
α/2

and

πu,Wi =
neπ̂EM+z2

α/2/2+zα/2[neπ̂EM(1− π̂EM)+ (1+ ne
nc
)(ne+z2

α/2)σ̂
2
x +z2

α/2/4]1/2

ne+z2
α/2

.

3.3 Sample Size Determination Algorithm under Poisson and Negative Binomial ICTs

It is noted that the half widths of the(1−α)100% Wald CI and Wilson CI are given by

zα/2[
π̂EM(1− π̂EM)

ne
+(

1
ne

+
1
nc
)σ̂2

x ]
1/2 (10)

and
zα/2[neπ̂EM(1− π̂EM)+ (1+ ne

nc
)(ne+z2

α/2)σ̂
2
x +z2

α/2/4]1/2

ne+z2
α/2

, (11)
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respectively.

To control the half widths of the Wald CI and Wilson CI no larger than ω with probability 1− β , the

desired sample sizes should satisfy

Pr(zα/2[
π̂EM(1− π̂EM)

ne
+(

1
ne

+
1
nc
)σ̂2

x ]
1/2 ≤ ω)≥ 1−β (12)

and

Pr(
zα/2[neπ̂EM(1− π̂EM)+ (1+ ne

nc
)(ne+z2

α/2)σ̂
2
x +z2

α/2/4]1/2

ne+z2
α/2

≤ ω)≥ 1−β , (13)

respectively.

To simplify the calculation, we just consider the balanced survey design (i.e.ne
n = 0.5 andN = nc+ne).

The approximate sample sizeN that is required to achieve the desired probability of 1− β at levelα can be

obtained by solving Equation (12) and (13), respectively. However, no closed forms exist. Hence, thefollowing

algorithm is developed to find the solutions.

Algorithm 1 Algorithm of Sample Size Determination
Require: N,π,λ ,ω ,K,β

Step 1: GenerateK random samplesmmm= {x1, . . . ,xnc;z1, . . . ,zne} for givenN, π, ω , τ (for Poisson ICT) or

(r, p) (for Negative Binomial ICT).

Step 2: Approximate the half-widths and the assurance probabilities given in (10)-(11) and (12)-(13) based

on the data generated in Step 1.

for k= 1 toK do

Approximate the half-width asωk(N)

end for

Approximate the probability asp∗(N) = Pr (|ωk(N)−ω | ≤ 0.001)

Step 3:Repeat Steps 1 and 2 via increase (or decrease)N by Bisection method if the approximate probability

p∗(N) is less (or greater) than 1−β .

Step 4: Repeat Step 3 until the approximate probabilityp∗(N) is close to 1− β , i.e., N =

min{N : |p∗(N)− (1−β )| ≤ 0.001}. The resultingN is the approximate sample size.

The approximate sample sizes based on Wald CI and Wilson CI obtained by the above algorithm are

denoted asnnnWWW andnnnWWWiii , respectively. Whenβ = 0.5, the corresponding sample sizes are denoted asnnnWWW,,,000...555 and

nnnWWWiii,,,000...555, respectively.

4 Simulation Study

In this section, we evaluate the proposed methods for samplesize determination via simulation studies.

We consider different parameter settings at the confidence level 1−α = 0.95 and assurance probability 1−
β = 0.95 or 0.50 for the four non-randomized models. Ulrichet al.([22]) considered the parameter settings

p = 0.3,0.6,0.8 for the randomization probabilityp to assess the statistical power of randomized response

models (i.e., Warner’s model, unrelated question model). Similar to Ulrich et al.([22]), we also consider the

same settings for the probability of non-sensitive binary attribute (i.e.,p) for Crosswise and Parallel Models.

And we consider the following parameter settings for different models:

(a) The Crosswise Model: (i)p= 0.3,0.6,0.8; (ii) π = 0.04(0.04)0.16; (iii) ω = 25% or 50% ofπ; i.e., a

total of 3×4×2= 24 parameter combinations.

10



(b) The Parallel Model:p= 0.75 and (i)q= 0.2(0.3)0.8; (ii) π = 0.04(0.04)0.16; (iii) ω = 25% or 50%

of π; i.e., a total of 3×4×2= 24 parameter combinations.

(c) The Poisson ICT Model: (i)τ = 2,3,4; (ii) π = 0.04(0.04)0.16; (iii) ω = 25% or 50% ofπ; i.e., a total

of 3×4×2= 24 parameter combinations.

(d) The Negative Binomial ICT Model:r = 2 and (i) p = 0.6,0.7,0.8; (ii) π = 0.04(0.04)0.16; (iii)

ω = 25% or 50% ofπ; i.e., a total of 3×4×2= 24 parameter combinations.

According to the approximate sample formulas or iterative algorithms given in Section 2, the estimated

sample sizes can be obtained. Based on the estimated sample sizes, we can evaluate the performance of the

estimated sample sizes by using the empirical coverage probability (ECP), empirical assurance probability

(EAP), left non-coverage probability (LNCP) and right non-coverage probability (RNCP) of a 100(1−α)% CI

for π. The confidence level is 1−α = 0.95 and the number of replications is set to K= 4000. These indices

providing an assessment of the precision of the sample size formulas are given by

(i) Empirical Assurance Probability (EAP)

EAP=
1
K

K

∑
k=1

I
(

π(k)
u −π(k)

l ≤ ω
)
,

where
(

π(k)
l ,π(k)

u

)
is the CI for π at thekth replication, andI(·) is the indicator function of the event that

π(k)
u −π(k)

l ≤ ω .

(ii) Empirical Coverage Probability (ECP)

ECP=
1
K

K

∑
k=1

I
(

π ∈
(

π(k)
l ,π(k)

u

))
.

(iii) Left and Right Non-coverage Probability (LNCP and RNCP)

LNCP=
1
K

K

∑
k=1

I
(

π ≤ π(k)
l

)
, RNCP =

1
K

K

∑
k=1

I
(

π ≥ π(k)
u

)

Simulation results for the Crosswise Model, Parallel Model, PICT and NBICT are reported in Tables 3-6,

respectively.

=================================

Insert Table 3-6 about here

=================================

According to Tables 3-6, all sample size determination methods for each model perform well in the sense

that all CIs produce satisfactory empirical coverage probabilities and empirical assurance probabilities, and

have balance left and right non-coverage probabilities based on the estimated sample sizes.

The simulation studies described above rely on the assumption that the expected prevalence is equal to

the actual prevalence. In fact, we do not know the true prevalence before we conduct the trials. Therefore, we

investigate the performance of the proposed methods when the expected prevalence is different from the true

prevalence. We consider the following parameter settings:true prevalenceπ = 0.165, the expected prevalence

πe = rπ with r = 0.40,0.60,0.80,1.20, and the half-widths of CIω = 0.05,0.10. For other parameters of each

models, we consider: (i) Crosswise Model:p = 0.3; (ii) Parallel Model: p = 0.7 andq = 0.5; (iii) Poisson

ICT Model: τ = 3; (iv)Negative Binomial ICT Model:p = 0.7. The confidence level 1−α = 0.95 and the

assurance probability 1−β = 0.95. Simulation results are reported in Table 7.

=================================

Insert Table 7 about here

=================================
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According to Table 7, we have the following observations: (i) ECPs of all CIs are very close to the pre-

specified confidence level for each model; (ii) almost all CIshave satisfactory interval locations because the

balanced left- and right- tailed errors; (iii) ECPs of the CIs may be influenced by the difference between the

expected and true prevalence rates, i.e., the ECP of the CI decreases when the difference between the expected

and true prevalence rates increases ; (iv) ECP of the CI is also influenced by the expected half-width of the

interval (i.e.,ω), i.e., the ECP of the CI increases with the increasing of thehalf-width.

5 Numerical Example

To illustrate the practicality and effectiveness of the proposed methods, we examine a study on premarital

sexual practices among adolescents (refer to Bogale & Seme [25]). In this scenario, an AIDS researcher collects

survey data to evaluate premarital sexual practices among in-school youths. The researcher estimates that

approximately 19% of adolescents have had premarital sexual intercourse (i.e.,π = 0.19 ). We then compute

the required sample size for a new study, aiming for a 95% chance (i.e.,β = 0.05) that the half-width of the 95%

confidence interval (i.e.,α = 0.05) is no greater than 25% of the point estimate (i.e.,ω = 0.25π), considering

various models discussed in this article.

5.1 Crosswise Model

Under the Crosswise Model, let us assume that two independent binary classification questionsY andW

are considered, where the sensitive issue (Y) is "Have you ever had sexual intercourse?"and the non-sensitive

issue (W) is "Is the first digit of your house number 1, 2, 3, 4 or 5?". The probability of the sensitive attribute is

π = 0.19 and the probability of the non-sensitive issue isp= 0.778. Based on the formulas given in Section 2,

the approximate sample sizennnW = 1255 based on Wald CI andnnnWi = 1251 based on Wilson CI, respectively.

The corresponding ECPs (EAPs) are 95.5% (96.6%) and 95.23% (95.84%) for Wald and Wilson methods,

respectively. In contrast, for the conventional sample sizes (i.e., the assurance probability 1−β = 50%) required

for a two-sided 95% confidence interval with expected widthω = 0.25π arennnW,0.5 = 1213 andnnnWi,0.5 = 1210,

the corresponding ECPs (EAPs) are 95.42% (50.16%) and 94.97% (49.89%) for Wald and Wilson method,

respectively.

5.2 Parallel Model

Under the Parallel Model, let us assume that three mutually independent binary classification questions

Y, W andU are considered, where the sensitive issue (Y) is "Have you ever had sexual intercourse?", and

the non-sensitive issues (W) are "Is the first digit of your house number 1, 2, 3, 4 or 5?" and (U ) "Is the

last digit cell phone number of your’s is odd?"(i.e., p = 0.778,q = 0.5). With π = 0.19, the approximate

sample sizennnW = 581 based on Wald CI andnnnWi = 578 based on Wilson CI, respectively. The corresponding

ECPs (EAPs) are 94.38% (96.23%) and 95.21% (96.25%) for Wald and Wilson CIs, respectively. In contrast,

for the conventional sample sizes (i.e., the assurance probability 1−β = 50%) required for a two-sided 95%

confidence interval with expected widthω = 0.25π arennnW,0.5 = 540 andnnnWi,0.5 = 537, the corresponding ECPs

(EAPs) are 94.79% (48.68%) and 94.68% (52.71%) for Wald and Wilson method, respectively.

5.3 Poisson ICT Model

Under Poisson ICT, let us assume that the researcher uses a neutral question that follows a Poisson distri-

bution with parameterτ = 2, for example,"How many times did you travel abroad last year?". The number of
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respondents in control group is the same as that in experimental group, i.e.,nc = ne =
1
2N. With π = 0.19, the

approximate sample sizennnW = N = 14292 based on Wald CI andnnnWi = N = 14275 based on Wilson CI, re-

spectively. The corresponding ECPs (EAPs) are 95.14% (94.38%) and 95.08% (94.18%) for Wald and Wilson

methods, respectively. In contrast, the conventional sample sizes (i.e., the assurance probability 1−β = 50%)

required for a two-sided 95% confidence interval only with expected widthω = 0.25π arennnW,0.5 = N = 14148

and nnnWi,0.5 = N = 14129, the corresponding ECPs (EAPs) are 94.83% (50.61%) and 95.09% (51.03%) for

Wald and Wilson CIs, respectively.

5.4 Negative Binomial ICT

Under Negative Binomial ICT, let us assume that the researcher uses a neutral question that follows a

negative binomial distribution with parametersr = 2 and p = 0.7, for example,"How many online resumes

do you need to submit to receive one interview invitation?". The number of respondents in the control group

is the same as that in experimental group, i.e.,nc = ne =
1
2N. With π = 0.19 , the approximate sample size

nnnW = N = 9325 based on Wald CI andnnnWi = N = 9365 based on Wilson CI, respectively. The corresponding

ECPs (EAPs) are 95.22% (94.98%) and 94.92% (95.16%) for Wald and Wilson CIs, respectively. In contrast,

the conventional sample sizes (i.e., the assurance probability 1 − β = 50%) required for a two-sided 95%

confidence interval only with expected widthω = 0.25π arennnW,0.5 = N = 8875 andnnnWi,0.5 = N = 8836; the

corresponding ECPs (EAPs) are 95.14% (48.91%) and 94.82% (51.12%) for Wald and Wilson CIs, respectively.

It is worth noting that the recommended sample sizes based onthe Crosswise Model, Poisson ICT Model,

and Negative Binomial ICT are greater than the number of actual participants (i.e., 826), as recruited in the study

by Bogale & Seme [25]. In contrast, the recommended sample size based on the Parallel Model is smaller than

826. With a sample size of 826 in the study by Bogale & Seme [25], the actual Empirical Coverage Probabilities

ECPs, ECWs, and EAPs of various CIs forπ under the considered parameter settings in the aforementioned

studies for each model are reported in Table 8.

=================================

Insert Table 8 about here

=================================

According to our results, the ECPs of CIs forπ under all models are very close to the pre-assigned nominal

confidence level (i.e., 95%). However, the probabilities ofcontrolling the half width of the CI such that it is not

larger thanω = 0.25π = 0.0475 are 0.0 for the Crosswise Model, Poisson ICT Model, and Negative Binomial

ICT Model. Under the Parallel Model, however, the probability of controlling the half width of a CI that is not

larger thanω = 0.25π is 1.0. In fact, the actual half widths of CIs for the Crosswise Model, Poisson ICT Model,

and Negative Binomial ICT Model with a sample size of 826 are much greater thanω = 0.25π = 0.0475, but

that of the CI for the Parallel Model is less thanω = 0.25π = 0.0475. Specifically, our findings suggest that

when the assurance probability is not incorporated into thesample size estimation, the width of CIs cannot be

controlled within the specified width, even if the coverage probability is close to the nominal confidence level.

6 Summary and Discussion

The determination of sample size is a critical aspect of research, particularly when investigating the preva-

lence of sensitive attributes through surveys. Within the context of survey sampling, determining sample size

based on interval estimation is a fundamental objective. This study focuses on sample size determination using

interval width control, specifically considering two typesof confidence intervals (CIs): Wald CIs and Wil-

son CIs. The analysis encompasses four distinct non-randomized response models, i.e., the Crosswise Model,
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Parallel Model, Poisson ICT Model, and Negative Binomial ICT Model. The derived sample size formulas

aim to control the width of a confidence interval at a specifiedconfidence level, with an assurance probabil-

ity of achieving the predetermined precision. Simulation results demonstrate the accuracy and effectiveness

of all formulated algorithms based on Wald and Wilson CIs, asevidenced by empirical coverage probability

(ECP) and empirical assurance probability (EAP). Notably,sample size formulas/algorithms based on Wilson

CIs outperform their Wald CI counterparts across various non-randomized response models, with the former

exhibiting ECPs and EAPs closer to the pre-specified levels.The sample size formulas/algorithms presented

in this study can assist researchers in determining a samplesize that achieves a pre-specified precision with a

given assurance probability in survey studies aimed at detecting meaningful prevalence rates. The numerical

examplesareprovided in Section 4, concerning premarital sexual practices among in-school youths, offer clear

illustrations of how to estimate the required sample size through interval width control in the preliminary stages

of a survey before embarking on a full study.

In the domain of sample size determination, two predominantmethodologies are commonly utilized: hy-

pothesis testing and confidence interval estimation. The former involves considerations of both the Type I error

rate and power, while the latter does not explicitly involvepower. To ensure that sample size estimation based

on expected confidence interval width provides high assurance in achieving the desired precision, we incor-

porate an assurance probability into the sample size determination process, aiming to control the width of a

confidence interval. In other words, sample size can be estimated by controlling the width of a confidence in-

terval at a specified assurance probability. While the four non-random response models addressed in this study

have previously been examined in terms of sample size determination from a power perspective, sample size

formulas based on confidence interval width are not currently available in the existing literature. It is notewor-

thy that the non-randomized response models covered in thispaper exclusively focus on designs for a single

dichotomous sensitive attribute. However, in many randomized response applications, more than one sensitive

question is asked. For instance, Sayedet al.[32] developed a non-saturated multinomial model for the analysis

of randomized response "ever" and "last year" questions. Determining sample size for more than one sensitive

question could be an interesting area for future research. In this article, we have also developed R codes to

compute the estimated sample sizes, which are made available to readers in the online supplementary material.

Appendix

Proof of the asymptotic distributions of âλ and â2
λ

Let âλ = f (λ̂ ) =
√

λ̂ (1− λ̂ ), and we expand it at̂λ = λ by using Taylor expansion formula to obtain its

first-order approximation as follows.

âλ = f (λ̂ )≈
√

λ (1−λ )+
1
2
[λ (1−λ )]−1/2(1−2λ )(λ̂ −λ ) = aλ +

1
2

a−1
λ (1−2λ )(λ̂ −λ ).

Thus, it’s expectation isE(âλ ) ≈ aλ and it’s variance is Var[âλ ] ≈ (1−2λ)2

4a2
λ

Var(λ̂ ). Since that Var(λ̂ ) = a2
λ/n,

then Var(âλ ) =
(1−2λ)2

4n =
b2

λ
n . According to the Large Sample Theory, we have

âλ ∼ N

(
aλ ,

b2
λ
n

)
.

Similarly, expanding ˆa2
λ at λ̂ = λ by using Taylor expansion formula, we have ˆa2

λ ≈ a2
λ +(1− 2λ )(λ̂ − λ ).

Thus,E(â2
λ )≈ a2

λ , Var(â2
λ )≈ (1−2λ )2 Var(λ̂ ) = 4a2

λ b2
λ/n. Therefore, we have

â2
λ ∼ N

(
a2

λ ,4a2
λ b2

λ/n
)
.
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Table 3. Performance of the sample size formula with 1−β assurance probability for Crosswise Model under

(i) β = 0.5 and (ii)β = 0.05 with p= 0.3,0.6,0.8.
Wald Wilson

π ωb n† ECP(L,R)%‡ EAP n ECP(L,R)% EAP
(i) β = 0.5

p= 0.3
0.04 25 51894 95.07 ( 2.36 , 2.57 ) 49.76 51891 95.26 ( 2.46 , 2.28 ) 50.07

50 12974 95.65 ( 2.11 , 2.24 ) 49.94 12970 95.45 ( 2.32 , 2.23 ) 49.60
0.08 25 13312 94.74 ( 2.68 , 2.58 ) 50.93 13308 95.13 ( 2.56 , 2.31 ) 50.44

50 3328 94.75 ( 2.44 , 2.81 ) 49.23 3325 94.97 ( 2.47 , 2.56 ) 51.29
0.12 25 6053 95.22 ( 2.50 , 2.28 ) 49.93 6049 95.07 ( 2.67 , 2.26 )49.57

50 1513 94.84 ( 2.50 , 2.66 ) 50.02 1510 94.85 ( 2.59 , 2.56 ) 50.72
0.16 25 3474 95.20 ( 2.46 , 2.34 ) 50.59 3470 94.86 ( 2.58 , 2.56 )49.66

50 868 95.23 ( 2.20 , 2.57 ) 48.68 865 94.94 ( 2.56 , 2.50 ) 49.01
p= 0.6

0.04 25 231963 94.75 ( 2.61 , 2.64 ) 49.96 231959 95.07 ( 2.42 , 2.51 ) 50.68
50 57991 94.83 ( 2.42 , 2.75 ) 50.09 57987 94.65 ( 2.70 , 2.65 ) 49.44

0.08 25 58329 94.97 ( 2.42 , 2.61 ) 50.58 58325 95.00 ( 2.55 , 2.45 ) 50.33
50 14582 95.38 ( 2.22 , 2.40 ) 49.73 14578 95.24 ( 2.41 , 2.35 ) 49.27

0.12 25 26060 95.17 ( 2.40 , 2.43 ) 49.29 26057 95.00 ( 2.60 , 2.40 ) 49.86
50 6515 94.86 ( 2.17 , 2.97 ) 49.72 6511 94.91 ( 2.52 , 2.57 ) 50.11

0.16 25 14728 94.92 ( 2.61 , 2.47 ) 50.55 14724 94.99 ( 2.50 , 2.51 ) 50.16
50 3682 94.74 ( 2.67 , 2.59 ) 50.39 3678 94.60 ( 2.49 , 2.91 ) 49.36

p= 0.8
0.04 25 18548 94.96 ( 2.43 , 2.61 ) 49.14 18546 95.02 ( 2.57 , 2.41 ) 49.67

50 4637 95.18 ( 2.33 , 2.49 ) 49.00 4635 95.15 ( 2.39 , 2.46 ) 50.47
0.08 25 4975 95.04 ( 2.32 , 2.64 ) 49.72 4973 94.74 ( 2.81 , 2.45 )50.49

50 1244 95.21 ( 2.02 , 2.77 ) 50.44 1241 95.32 ( 2.62 , 2.06 ) 48.98
0.12 25 2348 94.74 ( 2.51 , 2.75 ) 49.47 2345 95.30 ( 2.35 , 2.35 )49.66

50 587 94.84 ( 2.33 , 2.83 ) 49.76 584 94.84 ( 2.86 , 2.30 ) 49.22
0.16 25 1390 95.12 ( 2.17 , 2.71 ) 51.14 1387 94.59 ( 3.01 , 2.40 )50.23

50 347 95.48 ( 1.85 , 2.67 ) 49.82 344 94.93 ( 2.63 , 2.44 ) 47.98
(ii) β = 0.05
p= 0.3

0.04 25 52190 95.08 ( 2.50 , 2.42 ) 94.80 52187 94.87 ( 2.46 , 2.67 ) 95.18
50 13121 95.07 ( 2.15 , 2.78 ) 95.67 13118 94.93 ( 2.79 , 2.28 ) 95.12

0.08 25 13447 94.82 ( 2.41 , 2.77 ) 95.52 13443 95.08 ( 2.48 , 2.44 ) 95.57
50 3395 94.55 ( 2.49 , 2.96 ) 95.91 3392 94.85 ( 2.76 , 2.39 ) 95.59

0.12 25 6134 95.08 ( 2.24 , 2.68 ) 95.78 6131 95.10 ( 2.59 , 2.31 )95.35
50 1554 95.43 ( 2.09 , 2.48 ) 96.56 1550 95.69 ( 2.11 , 2.20 ) 96.37

0.16 25 3528 95.13 ( 2.42 , 2.45 ) 95.92 3525 94.56 ( 2.50 , 2.94 )95.77
50 896 94.79 ( 2.48 , 2.73 ) 97.04 892 94.73 ( 3.07 , 2.20 ) 96.51

p= 0.6
0.04 25 232259 95.16 ( 2.48 , 2.36 ) 95.35 232255 95.54 ( 2.08 , 2.38 ) 95.57

50 58139 95.13 ( 2.51 , 2.36 ) 95.45 58135 95.20 ( 2.39 , 2.41 ) 95.27
0.08 25 58464 94.95 ( 2.75 , 2.30 ) 95.09 58460 95.09 ( 2.37 , 2.54 ) 95.52

50 14650 95.03 ( 2.32 , 2.65 ) 96.09 14646 95.21 ( 2.20 , 2.59 ) 96.15
0.12 25 26142 95.62 ( 2.21 , 2.17 ) 95.93 26138 95.41 ( 2.31 , 2.28 ) 95.53

50 6556 95.08 ( 2.53 , 2.39 ) 95.96 6552 94.80 ( 2.64 , 2.56 ) 96.12
0.16 25 14783 94.82 ( 2.69 , 2.49 ) 95.85 14779 95.19 ( 2.59 , 2.22 ) 95.70

50 3709 95.03 ( 2.36 , 2.61 ) 96.81 3706 95.45 ( 2.19 , 2.36 ) 97.14
p= 0.8

0.04 25 18844 94.85 ( 2.37 , 2.78 ) 95.24 18840 95.44 ( 2.20 , 2.36 ) 95.50
50 4784 94.92 ( 2.30 , 2.78 ) 95.69 4781 94.85 ( 2.52 , 2.63 ) 95.31

0.08 25 5110 95.13 ( 2.51 , 2.36 ) 95.25 5106 94.93 ( 2.74 , 2.33 )95.29
50 1311 95.13 ( 2.07 , 2.80 ) 95.89 1307 95.32 ( 2.50 , 2.18 ) 95.46

0.12 25 2429 95.19 ( 2.24 , 2.57 ) 95.98 2425 94.72 ( 2.85 , 2.43 )94.90
50 627 94.99 ( 2.09 , 2.92 ) 96.39 623 94.86 ( 2.72 , 2.42 ) 95.30

0.16 25 1444 95.07 ( 2.21 , 2.72 ) 95.73 1440 95.02 ( 2.41 , 2.57 )95.74
50 374 94.36 ( 2.38 , 3.26 ) 96.99 371 95.27 ( 2.49 , 2.24 ) 96.83

b Half width (i.e.,ω) of a CI as given by the value ofπ, i.e., 25% and 50% ofπ.
†n denotes the estimated sample size; ‡(L,R) denotes (LNCP, RNCP).
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Table 4. Performance of the sample size formula with 1−β assurance probability for Parallel Model under

(i) β = 0.5 and (ii)β = 0.05 withq= 0.2,0.5,0.8.

Wald Wilson
π ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
q= 0.2

0.04 25 5026 95.22 ( 2.10 , 2.68 ) 51.82 5032 94.96 ( 2.74 , 2.30 )50.58
50 1257 94.67 ( 1.67 , 3.66 ) 49.90 1262 94.77 ( 2.96 , 2.27 ) 48.82

0.08 25 1671 94.62 ( 2.03 , 3.35 ) 49.30 1674 95.02 ( 2.42 , 2.56 )50.34
50 418 95.08 ( 1.36 , 3.56 ) 47.79 420 94.91 ( 2.89 , 2.20 ) 53.74

0.12 25 914 94.81 ( 2.23 , 2.96 ) 52.10 914 94.92 ( 2.66 , 2.42 ) 49.35
50 228 93.66 ( 1.71 , 4.63 ) 47.51 229 95.61 ( 2.49 , 1.90 ) 54.78

0.16 25 602 95.05 ( 1.92 , 3.03 ) 51.10 601 94.69 ( 2.56 , 2.75 ) 51.73
50 151 94.30 ( 2.04 , 3.66 ) 49.40 150 95.21 ( 2.87 , 1.92 ) 51.31

q= 0.5
0.04 25 8945 94.70 ( 2.75 , 2.55 ) 49.27 8944 94.64 ( 2.78 , 2.58 )50.16

50 2236 94.73 ( 1.97 , 3.30 ) 49.96 2236 95.09 ( 2.26 , 2.65 ) 50.99
0.08 25 2574 94.93 ( 2.52 , 2.55 ) 51.15 2573 95.09 ( 2.58 , 2.33 )50.75

50 644 94.20 ( 2.21 , 3.59 ) 51.32 642 95.04 ( 2.64 , 2.32 ) 49.30
0.12 25 1281 95.29 ( 2.15 , 2.56 ) 50.69 1279 94.54 ( 3.02 , 2.44 )50.97

50 320 95.02 ( 2.02 , 2.96 ) 48.63 318 94.44 ( 2.76 , 2.80 ) 51.54
0.16 25 790 95.50 ( 1.93 , 2.57 ) 50.34 787 94.66 ( 2.59 , 2.75 ) 49.00

50 197 94.67 ( 1.95 , 3.38 ) 51.94 195 94.71 ( 2.48 , 2.81 ) 49.34
q= 0.8

0.04 25 12095 95.19 ( 2.35 , 2.46 ) 49.07 12092 95.14 ( 2.30 , 2.56 ) 50.88
50 3024 94.61 ( 2.40 , 2.99 ) 50.26 3021 95.24 ( 2.46 , 2.30 ) 49.02

0.08 25 3285 95.19 ( 2.21 , 2.60 ) 50.46 3282 94.86 ( 2.42 , 2.72 )51.11
50 821 94.69 ( 2.56 , 2.75 ) 50.04 819 94.83 ( 2.61 , 2.56 ) 51.92

0.12 25 1562 95.06 ( 2.41 , 2.53 ) 49.27 1559 94.97 ( 2.60 , 2.43 )48.91
50 391 94.96 ( 2.14 , 2.90 ) 50.89 388 94.99 ( 2.32 , 2.69 ) 50.31

0.16 25 929 94.44 ( 2.56 , 3.00 ) 51.36 926 95.15 ( 2.42 , 2.43 ) 51.57
50 232 94.27 ( 2.48 , 3.25 ) 51.81 229 95.16 ( 2.31 , 2.53 ) 51.91

(ii) β = 0.05
q= 0.2

0.04 25 5381 95.19 ( 1.85 , 2.96 ) 95.32 5380 95.07 ( 2.43 , 2.50 )95.10
50 1431 95.61 ( 1.52 , 2.87 ) 96.16 1430 94.84 ( 2.88 , 2.28 ) 94.85

0.08 25 1835 94.34 ( 2.42 , 3.24 ) 94.95 1833 94.51 ( 3.04 , 2.45 )95.14
50 498 94.55 ( 2.03 , 3.42 ) 96.23 496 95.35 ( 2.55 , 2.10 ) 95.32

0.12 25 1014 94.72 ( 2.23 , 3.05 ) 95.89 1011 95.64 ( 2.44 , 1.92 )95.51
50 278 95.29 ( 1.67 , 3.04 ) 96.39 275 94.30 ( 3.21 , 2.49 ) 95.59

0.16 25 671 94.69 ( 1.98 , 3.33 ) 96.15 668 94.74 ( 2.89 , 2.37 ) 95.52
50 184 94.53 ( 1.52 , 3.95 ) 96.25 181 95.19 ( 3.33 , 1.48 ) 95.22

q= 0.5
0.04 25 9239 94.84 ( 2.50 , 2.66 ) 95.09 9236 94.70 ( 2.65 , 2.65 )95.06

50 2382 95.22 ( 1.92 , 2.86 ) 95.53 2379 94.66 ( 2.68 , 2.66 ) 95.38
0.08 25 2708 94.77 ( 2.39 , 2.84 ) 95.35 2705 95.28 ( 2.39 , 2.33 )95.48

50 710 94.76 ( 2.17 , 3.07 ) 95.86 707 95.45 ( 2.44 , 2.11 ) 95.46
0.12 25 1361 94.79 ( 2.11 , 3.10 ) 95.76 1358 95.05 ( 2.53 , 2.42 )95.32

50 360 93.54 ( 2.50 , 3.96 ) 95.87 357 94.73 ( 2.91 , 2.36 ) 96.10
0.16 25 843 94.48 ( 2.22 , 3.30 ) 96.14 840 95.02 ( 2.61 , 2.37 ) 95.70

50 224 94.11 ( 2.01 , 3.88 ) 97.10 221 95.14 ( 2.65 , 2.21 ) 97.35
q= 0.8

0.04 25 12326 95.48 ( 2.14 , 2.38 ) 95.44 12322 94.91 ( 2.52 , 2.57 ) 95.27
50 3139 94.95 ( 2.11 , 2.94 ) 95.76 3135 95.15 ( 2.47 , 2.38 ) 95.38

0.08 25 3387 94.85 ( 2.33 , 2.82 ) 95.18 3384 94.96 ( 2.75 , 2.29 )95.62
50 872 95.02 ( 2.29 , 2.69 ) 96.09 869 94.88 ( 2.61 , 2.51 ) 95.77

0.12 25 1622 94.62 ( 2.45 , 2.93 ) 95.82 1618 94.89 ( 2.85 , 2.26 )95.23
50 420 94.93 ( 2.28 , 2.79 ) 96.51 417 95.02 ( 2.44 , 2.54 ) 96.91

0.16 25 967 95.53 ( 2.00 , 2.47 ) 96.59 964 94.91 ( 2.65 , 2.44 ) 96.31
50 251 95.06 ( 2.04 , 2.90 ) 97.22 248 94.64 ( 3.21 , 2.15 ) 97.69
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Table 5. Performance of the sample size algorithm with 1−β assurance probability for Poisson ICT under

(i) β = 0.5 and (ii)β = 0.05 with τ = 2,3,4.

Wald Wilson
π ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
τ = 2

0.04 25 310266 95.58 ( 1.93 , 2.50 ) 51.18 310280 95.13 ( 2.53 , 2.35 ) 50.80
50 77560 94.78 ( 2.40 , 2.83 ) 49.83 77556 94.78 ( 2.53 , 2.70 ) 49.83

0.08 25 78234 95.35 ( 2.30 , 2.35 ) 49.48 78234 94.80 ( 2.33 , 2.88 ) 50.67
50 19565 94.88 ( 2.58 , 2.55 ) 52.48 19548 94.85 ( 2.48 , 2.68 ) 49.48

0.12 25 35053 95.18 ( 2.43 , 2.40 ) 50.60 35039 94.78 ( 2.95 , 2.28 ) 49.40
50 8763 95.63 ( 2.18 , 2.20 ) 52.80 8750 95.38 ( 2.18 , 2.45 ) 48.88

0.16 25 19851 94.95 ( 2.60 , 2.45 ) 50.10 19841 95.40 ( 2.35 , 2.25 ) 49.15
50 4963 94.70 ( 2.50 , 2.80 ) 51.85 4955 94.28 ( 2.98 , 2.75 ) 52.38

τ = 3
0.04 25 463912 94.33 ( 3.13 , 2.55 ) 49.73 463923 94.40 ( 2.90 , 2.70 ) 49.85

50 115988 95.83 ( 1.75 , 2.43 ) 50.65 115984 94.33 ( 2.75 , 2.93 )51.79
0.08 25 116653 95.38 ( 2.48 , 2.15 ) 50.68 116658 94.73 ( 2.70 , 2.58 ) 51.48

50 29158 95.40 ( 2.23 , 2.38 ) 49.83 29158 95.50 ( 2.43 , 2.08 ) 52.10
0.12 25 52114 94.68 ( 2.70 , 2.63 ) 49.05 52120 95.35 ( 2.30 , 2.35 ) 49.53

50 13028 95.20 ( 2.53 , 2.28 ) 50.99 13018 95.33 ( 2.30 , 2.38 ) 49.48
0.16 25 29455 95.33 ( 2.48 , 2.20 ) 50.43 29447 95.15 ( 2.45 , 2.40 ) 50.50

50 7361 95.10 ( 2.33 , 2.58 ) 49.45 7355 95.48 ( 2.30 , 2.23 ) 49.30
τ = 4

0.04 25 617596 94.68 ( 2.88 , 2.45 ) 52.55 617570 95.08 ( 2.55 , 2.38 ) 49.28
50 154404 95.43 ( 2.33 , 2.25 ) 51.83 154386 94.68 ( 2.93 , 2.40 )49.43

0.08 25 155070 94.90 ( 2.63 , 2.48 ) 50.70 155059 94.73 ( 2.70 , 2.58 ) 50.05
50 38765 95.28 ( 2.23 , 2.50 ) 49.93 38753 95.53 ( 2.15 , 2.33 ) 48.60

0.12 25 69192 95.10 ( 2.63 , 2.28 ) 51.25 69185 95.08 ( 2.58 , 2.35 ) 49.48
50 17297 95.40 ( 2.50 , 2.10 ) 51.88 17291 95.35 ( 2.35 , 2.30 ) 51.63

0.16 25 39062 95.05 ( 2.45 , 2.50 ) 51.70 39059 95.43 ( 2.73 , 1.85 ) 52.60
50 9763 95.03 ( 2.63 , 2.35 ) 49.93 9755 95.23 ( 2.30 , 2.48 ) 50.65

(ii) β = 0.05
τ = 2

0.04 25 310947 95.00 ( 2.85 , 2.15 ) 95.50 310884 94.80 ( 2.88 , 2.33 ) 94.45
50 77886 95.00 ( 2.28 , 2.73 ) 94.85 77893 94.85 ( 2.93 , 2.23 ) 95.63

0.08 25 78604 94.73 ( 2.70 , 2.58 ) 95.85 78541 94.33 ( 2.50 , 3.18 ) 94.43
50 19722 94.75 ( 2.73 , 2.53 ) 95.70 19703 95.03 ( 2.53 , 2.45 ) 94.10

0.12 25 35277 94.38 ( 2.80 , 2.83 ) 95.98 35252 95.05 ( 2.68 , 2.28 ) 95.20
50 8872 94.88 ( 2.40 , 2.73 ) 95.70 8860 95.93 ( 2.18 , 1.90 ) 95.38

0.16 25 20019 94.05 ( 3.05 , 2.90 ) 95.40 20014 94.45 ( 2.85 , 2.70 ) 95.23
50 5043 95.55 ( 2.05 , 2.40 ) 94.57 5032 95.30 ( 2.73 , 1.98 ) 94.33

τ = 3
0.04 25 464611 94.85 ( 2.65 , 2.50 ) 96.02 464561 94.88 ( 2.43 , 2.70 ) 95.38

50 116296 94.83 ( 2.63 , 2.55 ) 94.74 116310 95.15 ( 2.33 , 2.53 )96.45
0.08 25 116987 95.60 ( 2.00 , 2.40 ) 95.35 116976 94.83 ( 2.68 , 2.50 ) 95.30

50 29313 95.38 ( 2.30 , 2.33 ) 94.15 29321 94.95 ( 2.63 , 2.43 ) 95.23
0.12 25 52335 95.23 ( 2.63 , 2.15 ) 94.18 52325 95.28 ( 2.40 , 2.33 ) 94.70

50 13139 94.68 ( 2.70 , 2.63 ) 95.07 13134 95.33 ( 2.55 , 2.13 ) 95.74
0.16 25 29615 94.75 ( 2.73 , 2.53 ) 94.33 29619 95.38 ( 2.45 , 2.18 ) 95.73

50 7445 94.70 ( 2.93 , 2.38 ) 95.73 7441 94.93 ( 2.25 , 2.83 ) 95.70
τ = 4

0.04 25 618247 95.40 ( 2.33 , 2.28 ) 95.74 618222 94.50 ( 2.43 , 3.08 ) 94.93
50 154708 94.65 ( 2.63 , 2.73 ) 94.54 154704 94.85 ( 2.58 , 2.58 )95.00

0.08 25 155388 94.65 ( 2.90 , 2.45 ) 94.43 155392 95.33 ( 2.33 , 2.35 ) 95.53
50 38931 94.43 ( 2.63 , 2.95 ) 95.47 38922 94.58 ( 2.93 , 2.50 ) 95.18

0.12 25 69408 94.90 ( 2.70 , 2.40 ) 95.03 69404 95.50 ( 2.45 , 2.05 ) 95.28
50 17400 94.83 ( 2.63 , 2.55 ) 94.13 17399 94.95 ( 2.68 , 2.38 ) 94.68

0.16 25 39219 95.03 ( 2.83 , 2.15 ) 94.80 39219 94.45 ( 2.88 , 2.68 ) 94.90
50 9848 94.70 ( 2.70 , 2.60 ) 95.73 9837 95.68 ( 2.20 , 2.13 ) 95.18
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Table 6. Performance of the sample size algorithm with 1−β assurance probability for Negative Binomial ICT under

(i) β = 0.5 and (ii)β = 0.05 with p= 0.6,0.7,0.8.

Wald Wilson
π ω n ECP(L,R)% EAP n ECP(L,R)% EAP

(i) β = 0.5
p= 0.6

0.04 25 344424 94.90 ( 2.45 , 2.65 ) 50.45 344397 95.25 ( 2.25 , 2.50 ) 50.83
50 86115 95.55 ( 2.10 , 2.35 ) 51.21 86097 95.25 ( 2.23 , 2.53 ) 50.03

0.08 25 86771 94.85 ( 2.85 , 2.30 ) 49.45 86793 95.00 ( 2.33 , 2.68 ) 52.35
50 21702 95.10 ( 2.15 , 2.75 ) 51.30 21677 94.98 ( 2.73 , 2.30 ) 50.25

0.12 25 38847 95.13 ( 1.95 , 2.93 ) 51.40 38828 95.95 ( 2.08 , 1.98 ) 49.70
50 9714 94.23 ( 2.48 , 3.30 ) 51.93 9708 95.23 ( 2.50 , 2.28 ) 50.83

0.16 25 21985 94.95 ( 2.35 , 2.70 ) 51.50 21996 95.40 ( 2.23 , 2.38 ) 51.48
50 5500 95.23 ( 2.33 , 2.45 ) 51.60 5494 95.18 ( 2.33 , 2.50 ) 51.48

p= 0.7
0.04 25 191114 94.95 ( 2.65 , 2.40 ) 50.78 191090 95.40 ( 2.25 , 2.35 ) 51.25

50 47785 95.10 ( 2.35 , 2.55 ) 51.75 47796 94.80 ( 2.53 , 2.68 ) 51.35
0.08 25 48461 94.75 ( 2.70 , 2.55 ) 50.53 48451 95.75 ( 2.48 , 1.78 ) 50.13

50 12103 95.48 ( 2.25 , 2.28 ) 48.78 12105 95.43 ( 2.68 , 1.90 ) 49.13
0.12 25 21794 95.25 ( 2.75 , 2.00 ) 48.03 21795 94.80 ( 2.40 , 2.80 ) 49.08

50 5450 95.10 ( 2.20 , 2.70 ) 49.50 5451 94.88 ( 2.63 , 2.50 ) 51.43
0.16 25 12402 94.68 ( 2.80 , 2.53 ) 49.60 12393 95.00 ( 2.25 , 2.75 ) 49.33

50 3106 95.05 ( 2.25 , 2.70 ) 51.28 3089 95.03 ( 2.50 , 2.48 ) 49.76
p= 0.8

0.04 25 99009 94.50 ( 2.38 , 3.13 ) 48.83 98971 95.55 ( 2.18 , 2.28 ) 48.98
50 24747 94.90 ( 2.55 , 2.55 ) 50.83 24745 95.10 ( 2.68 , 2.23 ) 50.06

0.08 25 25425 94.60 ( 2.78 , 2.63 ) 49.75 25408 94.55 ( 2.70 , 2.75 ) 49.45
50 6360 95.10 ( 2.58 , 2.33 ) 51.03 6351 95.13 ( 2.55 , 2.33 ) 50.57

0.12 25 11584 95.35 ( 2.60 , 2.05 ) 51.88 11554 94.88 ( 2.45 , 2.68 ) 48.08
50 2894 94.73 ( 2.40 , 2.88 ) 51.73 2882 95.15 ( 2.70 , 2.15 ) 49.20

0.16 25 6648 95.03 ( 2.48 , 2.50 ) 50.90 6638 94.20 ( 3.15 , 2.65 )50.76
50 1657 94.75 ( 2.40 , 2.85 ) 49.75 1654 94.98 ( 2.70 , 2.33 ) 50.41

(ii) β = 0.05
p= 0.6

0.04 25 346752 95.05 ( 2.50 , 2.45 ) 94.48 346700 94.55 ( 2.88 , 2.58 ) 95.81
50 87125 94.80 ( 2.63 , 2.58 ) 95.38 87214 94.95 ( 2.25 , 2.80 ) 95.37

0.08 25 87841 94.65 ( 2.78 , 2.58 ) 95.08 87943 94.58 ( 2.55 , 2.88 ) 95.40
50 22221 95.48 ( 2.15 , 2.38 ) 95.28 22201 95.35 ( 2.43 , 2.23 ) 95.43

0.12 25 39521 94.90 ( 2.65 , 2.45 ) 95.15 39622 95.45 ( 2.15 , 2.40 ) 94.98
50 10084 95.58 ( 2.28 , 2.15 ) 95.18 10077 95.73 ( 2.00 , 2.28 ) 95.56

0.16 25 22551 94.98 ( 2.38 , 2.65 ) 95.93 22535 94.53 ( 2.80 , 2.68 ) 95.47
50 5779 95.38 ( 2.45 , 2.18 ) 95.85 5773 95.23 ( 2.55 , 2.23 ) 95.98

p= 0.7
0.04 25 192699 94.35 ( 2.78 , 2.88 ) 96.38 192892 95.10 ( 2.33 , 2.58 ) 95.09

50 48570 95.25 ( 2.40 , 2.35 ) 95.90 48718 95.30 ( 2.35 , 2.35 ) 94.28
0.08 25 49332 95.03 ( 2.50 , 2.48 ) 95.13 49381 95.18 ( 2.55 , 2.28 ) 95.43

50 12562 94.85 ( 2.68 , 2.48 ) 95.30 12584 95.05 ( 2.53 , 2.43 ) 95.80
0.12 25 22370 95.10 ( 2.50 , 2.40 ) 95.04 22330 95.38 ( 2.33 , 2.30 ) 94.95

50 5769 94.40 ( 2.83 , 2.78 ) 94.20 5748 94.73 ( 2.68 , 2.60 ) 96.22
0.16 25 12868 94.50 ( 2.55 , 2.95 ) 95.10 12851 95.43 ( 2.38 , 2.20 ) 94.98

50 3310 94.93 ( 2.50 , 2.58 ) 95.65 3298 94.50 ( 2.98 , 2.53 ) 95.01
p= 0.8

0.04 25 100552 94.65 ( 2.70 , 2.65 ) 95.88 100509 95.08 ( 2.20 , 2.73 ) 95.53
50 25488 95.45 ( 2.10 , 2.45 ) 94.93 25541 95.25 ( 2.15 , 2.60 ) 94.50

0.08 25 26148 94.88 ( 2.63 , 2.50 ) 94.43 25999 95.23 ( 2.55 , 2.23 ) 94.83
50 6722 95.55 ( 2.00 , 2.45 ) 95.87 6697 94.65 ( 2.70 , 2.65 ) 95.01

0.12 25 12017 95.38 ( 2.65 , 1.98 ) 95.13 12042 95.05 ( 2.65 , 2.30 ) 95.36
50 3089 94.80 ( 2.28 , 2.93 ) 94.53 3123 95.08 ( 2.63 , 2.30 ) 96.00

0.16 25 7017 95.63 ( 2.13 , 2.25 ) 94.43 6999 94.80 ( 2.38 , 2.83 )95.82
50 1816 94.95 ( 2.40 , 2.65 ) 95.78 1817 95.05 ( 2.45 , 2.50 ) 94.76

21



Table 7. Performance of the sample size formula with 95% assurance probability for various models

when the expected prevalence (i.e.,πe ) differs from the true prevalence (i.e.,π ).

Wald Wilson
ω πc

e n ECP(L,R)% EAP n ECP(L,R)% EAP
Crosswise Model

0.05 0.40 2167 95.28 ( 2.38 , 2.35 ) 1.38 2163 94.60 ( 2.73 , 2.68) 1.60
0.60 2205 94.53 ( 2.50 , 2.98 ) 19.63 2201 95.05 ( 2.83 , 2.13 ) 17.80
0.80 2240 95.25 ( 2.53 , 2.23 ) 69.15 2236 95.23 ( 2.43 , 2.35 ) 67.53
1.20 2300 94.33 ( 2.68 , 3.00 ) 99.98 2296 94.63 ( 2.48 , 2.90 ) 99.93

0.10 0.40 556 95.03 ( 2.28 , 2.70 ) 46.65 552 95.68 ( 2.03 , 2.30 )45.43
0.60 564 95.73 ( 1.80 , 2.48 ) 71.35 560 94.95 ( 2.80 , 2.25 ) 68.68
0.80 572 94.50 ( 2.48 , 3.03 ) 89.13 568 95.25 ( 2.40 , 2.35 ) 89.63
1.20 585 95.10 ( 2.13 , 2.78 ) 99.65 581 95.20 ( 2.43 , 2.38 ) 99.55

Parallel Model
0.05 0.40 549 94.40 ( 2.18 , 3.43 ) 2.08 546 95.03 ( 2.58 , 2.40 ) 1.88

0.60 587 94.33 ( 2.80 , 2.88 ) 19.03 584 95.05 ( 2.70 , 2.25 ) 18.25
0.80 622 94.70 ( 2.38 , 2.93 ) 65.33 619 95.35 ( 2.70 , 1.95 ) 64.15
1.20 682 94.73 ( 2.05 , 3.23 ) 99.88 679 95.53 ( 2.55 , 1.93 ) 99.90

0.10 0.40 150 94.65 ( 1.58 , 3.78 ) 41.38 147 94.70 ( 2.98 , 2.33 )41.25
0.60 159 94.63 ( 1.93 , 3.45 ) 66.70 156 94.88 ( 2.83 , 2.30 ) 71.73
0.80 167 94.30 ( 1.88 , 3.83 ) 88.95 164 94.75 ( 2.80 , 2.45 ) 89.43
1.20 180 94.38 ( 1.83 , 3.80 ) 99.70 177 95.08 ( 2.65 , 2.28 ) 99.75

Poisson ICT
0.05 0.40 12612 94.75 ( 2.85 , 2.40 ) 10.78 12599 95.43 ( 2.50 , 2.08 ) 9.58

0.60 12697 95.00 ( 2.68 , 2.33 ) 40.63 12678 95.10 ( 2.65 , 2.25 )37.78
0.80 12772 96.10 ( 2.18 , 1.73 ) 76.75 12771 94.70 ( 2.55 , 2.75 )78.53
1.20 12907 94.38 ( 3.10 , 2.53 ) 99.03 12907 94.95 ( 2.60 , 2.45 )99.23

0.10 0.40 3184 94.80 ( 2.70 , 2.50 ) 56.83 3177 95.03 ( 2.83 , 2.15 ) 57.75
0.60 3204 94.95 ( 2.65 , 2.40 ) 75.05 3202 95.48 ( 2.33 , 2.20 ) 79.88
0.80 3224 94.95 ( 2.48 , 2.58 ) 89.68 3214 94.58 ( 3.10 , 2.33 ) 87.70
1.20 3260 94.55 ( 3.05 , 2.40 ) 98.23 3245 95.28 ( 2.40 , 2.33 ) 96.48

Negative Binomial ICT
0.05 0.40 8056 95.33 ( 2.20 , 2.48 ) 71.65 8042 94.88 ( 2.63 , 2.50 ) 69.75

0.60 8113 94.98 ( 2.55 , 2.48 ) 79.05 8139 95.30 ( 2.18 , 2.53 ) 83.75
0.80 8222 95.28 ( 2.35 , 2.38 ) 92.35 8188 94.85 ( 2.38 , 2.78 ) 88.58
1.20 8359 95.50 ( 2.13 , 2.38 ) 97.55 8337 95.23 ( 2.40 , 2.38 ) 97.30

0.10 0.40 2104 94.60 ( 2.45 , 2.95 ) 87.50 2097 95.38 ( 2.30 , 2.33 ) 87.75
0.60 2110 94.83 ( 2.28 , 2.90 ) 89.08 2110 95.30 ( 2.08 , 2.63 ) 90.48
0.80 2154 94.88 ( 2.50 , 2.63 ) 94.45 2134 95.03 ( 2.65 , 2.33 ) 93.15
1.20 2179 95.10 ( 2.15 , 2.75 ) 97.18 2166 95.28 ( 2.50 , 2.23 ) 96.90

c Expected prevalenceπe is given by the values ofπ, i.e.,πe = (0.4,0.6,0.8,1.2)π.

Table 8. ECPs(%), ECWs and EAPs(%) of CIs forπ under various models

with the actual sample size (i.e.,826 participants) for thestudy of pre-marital sexual practices among adolescents.

Wald Wilson

Model ECP(ECW) EAP ECP(ECW) EAP

Crosswise Model 95.58(0.129) 0 94.95(0.128) 0

Parallel Model 94.82(0.083) 1 94.96(0.081) 1

Poisson ICT 95.03(0.279) 0 94.48(0.277) 0

Negative Binomial ICT 95.58(0.223) 0 95.40(0.223) 0
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