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Abstract

Hidden within the Gaia satellite’s multiple data releases lies a valuable cache of dark companions. To facilitate the
efficient and reliable detection of these companions via combined analyses involving the Gaia, Hipparcos, and
Tycho-2 catalogs, we introduce an astrometric modeling framework. This method incorporates analytical least-
square minimization and nonlinear parameter optimization techniques to a set of common calibration sources
across the different space-based astrometric catalogs. This enables us to discern the error inflation, astrometric
jitter, differential parallax zero-points, and frame rotation of various catalogs relative to Gaia Data Release 3
(DR3). Our findings yield the most precise Gaia DR2 calibration parameters to date, revealing notable
dependencies on magnitude and color. Intriguingly, we identify submilliarcsecond frame rotation between Gaia
DR1 and DR3, along with an estimated astrometric jitter of 2.16 mas for the revised Hipparcos catalog. In a
thorough comparative analysis with previous studies, we offer recommendations on calibrating and utilizing
different catalogs for companion detection. Furthermore, we provide a user-friendly pipeline (https://github.com/
ruiyicheng/Download_HIP_Gaia_GOST) for catalog download and bias correction, enhancing accessibility and
usability within the scientific community.

Unified Astronomy Thesaurus concepts: Astrometry (80); Astrometric exoplanet detection (2130); Astrometric
binary stars (79); Bayes factor (1919)

1. Introduction

While our solar system boasts multiple rocky planets
positioned closer to the Sun and several giant planets situated
on wider orbits, the more than 4000 known planetary systems
exhibit a variety of different configurations. The pursuit of
Earthlike planets, particularly those resembling Earth in size
and located within the habitable zone of Sunlike stars, is often
regarded as the “holy grail” of exoplanet science. Additionally,
giant planets play a crucial role in shaping planetary system
architectures (e.g., Gomes et al. 2005; Tsiganis et al. 2005) and
influencing the potential habitability of Earthlike worlds (e.g.,
Lunine 2001; Horner et al. 2010, 2020). Detecting Earthlike
planets poses challenges due to their faint signals (e.g., Hall
et al. 2018 and Ge et al. 2022), while our current capabilities
enable relatively straightforward detection of cold giants
(Wittenmyer et al. 2020; Feng et al. 2022; Laliotis et al. 2023).

The emergence of the Gaia satellite (Gaia Collaboration et al.
2016b, 2016a, 2018, 2021, 2023b) marks a golden age for the
detection of cold giants. Leveraging Gaia’s astrometric data,
combined with other astrometric and radial velocity data,
provides a powerful tool for this purpose (Snellen &
Brown 2018; Brandt et al. 2019; Feng et al. 2019; Kervella
et al. 2019). Specialized tools such as orvara (Brandt et al.
2021) and BINARYS (Leclerc et al. 2023) have been
developed to conduct combined analyses. Typically, calibration
of astrometric catalogs is performed beforehand to rectify
biases like frame rotation and zero-point parallax in these
catalogs (Brandt 2018; Kervella et al. 2019; Brandt et al. 2023).

However, in certain cases, calibration is integrated into the
analysis itself, addressing potential biases alongside companion
signals (Feng et al. 2021).
The techniques developed for exoplanet detection can also

be applied in the search for dark companions such as black
holes (e.g., El-Badry et al. 2023), neutron stars (e.g., Shahaf
et al. 2023), white dwarfs (e.g., Ganguly et al. 2023), and
brown dwarfs (e.g., Feng et al. 2022). Detecting these dark
companions opens a new window to understanding the
formation and evolution of massive stars and binaries (Heger
et al. 2003) and to test whether there is a 2–5Me mass gap
(Kreidberg et al. 2012; Lam et al. 2022; Ye & Fishbach 2022)
between neutron stars and black holes.
In the absence of Gaia epoch data, the proper-motion

anomaly derived from Gaia and Hipparcos proper motions and
positions is commonly used to constrain stellar reflex motion
with decade-long orbital periods (e.g., Kervella et al. 2019;
Brandt et al. 2021). However, this method faces significant
information loss in transforming astrometry into a proper-
motion anomaly, making it inadequate for constraining the
mass of Jupiter analogs4 and distinguishing between retrograde
and prograde orbits (Li et al. 2021). To address this limitation,
a method proposed by Feng et al. (2023) utilizes Gaia DR2 and
DR3 five-parameter astrometry, along with Hipparcos inter-
mediate astrometric data (IAD), combined with radial velocity
data. This approach successfully constrains the orbit and mass
of nearby Jupiter analogs, such as ò Eridani b, with a mass of
0.76 0.11

0.14
-
+ MJup and an orbital period of 7.36 0.05

0.04
-
+ yr. Therefore,

detecting nearby cold Jupiters is feasible, considering the
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4 A Jupiter analog is an exoplanet of Jupiterʼs mass (0.5 to 2 MJup) orbiting an
FGK star in a configuration akin to Jupiter, with a semimajor axis in the range
2.5–10 au.
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present precision of Gaia DR2 and DR3 of about 0.1 mas for
bright stars (Gaia Collaboration et al. 2023b), and the 24 yr
observational baseline established by Hipparcos and Gaia. This
feasibility is contingent upon effectively mitigating biases and
systematics in the astrometric catalogs to a comparable
precision through calibration, either a priori or a posteriori.

Despite the vast data set of one billion stars observed by
Gaia, only a small fraction (fewer than 10,000) have been
studied with high-precision spectrographs. To detect exoplanets
and other dark companions solely through astrometric data, we
have developed an efficient algorithm based on analytical χ2

minimization. This method considers various combinations of
astrometric catalogs, exploring combinations such as Gaia Data
Release 1 (GDR1; Gaia Collaboration et al. 2016a), Gaia Data
Release 2 (GDR2; Gaia Collaboration et al. 2018), Gaia Data
Release 3 (GDR3; Gaia Collaboration et al. 2023b), Tycho-2
(TYC; Høg et al. 2000), the original Hipparcos catalog (HIP1;
Perryman et al. 1997), and the revised Hipparcos catalog
(HIP2; van Leeuwen 2007).

We do not consider Gaia Early Data Release 3 (GEDR3;
Gaia Collaboration et al. 2021) since its astrometric data is the
same as GDR3. Our Bayes factor (BF) is derived from χ2

under the assumption of Laplace’s approximation (Schwarz
1978; Kass & Raftery 1995), leading to the development of a
modeling framework for combined analyses of astrometric
data. Additionally, we employ orbital solutions from the GDR3
non-single-star (NSS; Gaia Collaboration et al. 2023a;
Halbwachs et al. 2023; Holl et al. 2023) catalog and stars with
both Gaia and Hipparcos data as test sets to estimate the frame
rotations of various catalogs relative to GDR3 and the error
inflation within the astrometric catalogs.

This paper is organized as follows: Section 2 outlines the
formulae for the modeling framework applied to various
combinations of astrometric catalogs. Section 3 introduces the
calibration procedure, while Section 4 presents the calibration
outcomes. Finally, our findings and conclusions are summar-
ized in Section 5.

2. Method

In this section, we present the model framework designed for
the integrated analysis of multiple astrometric catalogs. We
introduce the circular reflex motion model and the simulation
of Gaia epoch data using the Gaia Observation Forecast Tool
(GOST) in Section 2.1. The combined modeling of astrometric
catalogs is categorized into three cases: GDR1+GDR2
+GDR3, TYC+GDR2+GDR3, and HIP+GDR2+GDR3,
which are detailed in Sections 2.2–2.4, respectively. For each
case, we elucidate the astrometric model and provide the
analytical solution for circular reflex motion. Subsequently, in
Section 2.5, we augment the modeling framework with
nonlinear orbital parameters. The determination of the thresh-
old for detecting a reflex motion signal induced by a
companion is presented in Section 2.6.

2.1. Astrometry Model for Circular Orbits

In the case of unresolved binaries, Gaia observes the motion
of the system’s photocenter around the barycenter, focusing on
the displacement of the combined center of light rather than
tracking the reflex motion of individual stars within the binary
system. Given a mass–luminosity function of F(m), the angular

semimajor axis of the photocentric motion is
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where m1 and m2 are, respectively, the masses of the primary
and the secondary, F1 and F2 are the observed fluxes of the
primary and the secondary, ab is the binary semimajor axis, d is
the distance derived from parallax, and d= Au/ϖ where
Au≡ 1 au. For dark companions, F2/F1≈ 0, the photocentric
motion is equivalent to the reflex motion, and thus the angular
semimajor axis of the reflex motion is a ar p
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To derive analytical formulae for linear regression of an
astrometric model, we assume that the orbit of a star is circular
and could be described by

X a
P

tcos
2

, 2i p i⎛
⎝

⎞
⎠

( )p
f= D +

Y a
P

tsin
2

, 3i p i⎛
⎝

⎞
⎠

( )p
f= D +

where Δti= ti− tref is the time difference between epoch ti and
the reference epoch tref (GDR3 reference epoch, J2016, by
default), f is the orbital phase, and P is the orbital period. The
coordinates in the orbital plane are transformed into the sky
plane using

* B X G Y , 4r
i i ( )aD = ¢ + ¢

A X F Y , 5r
i i ( )dD = ¢ + ¢

where A¢, B¢, F¢, G¢ are scaled Thiele–Innes constants, and are
functions of inclination I, argument of periastron ωT of the
target star, and longitude of ascending node Ω. We multiply
A B F G, , ,¢ ¢ ¢ ¢ by ap to define the Thiele–Innes constants A,
B, F, G. Here we assume that the reflex motion is equivalent to
the photocentric motion as long as the mass function is not
derived from the Thiele–Innes constants, as in the case of
GDR3 NSS catalog.
For a circular orbit, ωT can be arbitrarily chosen such that

f= 0. Hence we choose fj= 0 when tj= tref and we have

* BC GS , 6i
r

i
t

i
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AC FS , 7i
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i
t

i
t ( )dD = +

where C tcosi
t

P i
2( )= Dp and S tsini

t
P i
2( )= Dp .

Relative to the reference epoch tj, the motion of the target
system barycenter (TSB) viewed from the solar system
barycenter is

* * t , 8i
b
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b
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b
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bd , j
b

,ma , and j
b
,md are,

respectively, R.A, decl., and proper motions in R.A. and decl.
at epoch tj. Here * cosm m a dº =a a . In this work, we only
model the deviation from the motion determined by the
reference astrometry. Hence the TSB relative motion is

* * * t , 10i
b

j
b

j
b

ij
ref

,
ref( ) ( ) ( )a a a m mD = - + - Da a

t , 11i
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j
b
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ref( ) ( ) ( )d d d m mD = - + - Dd d
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where * , , ,j
b

j
b

j
b

j
b

, ,( )a d m ma d represents the TSB astrometry at the

reference epoch tj. By defining * *j
b

j
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b
j
b refd d dD = - ,
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The above propagation of the TSB does not account for
second- or higher-order effects such as perspective accelera-
tion. We consider these effects a priori by subtracting them
from various catalogs. Because Gaia orbital solutions use the
along-scan (AL) coordinates of the star (i.e., abscissa or IAD),
we project the combined motion of the star onto the AL
direction to simulate abscissa.5 With the Gaia scan angle θ and
AL parallax factor f AL from GOST, the synthetic Gaia
abscissae are
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where Δti= ti− tref, S sini
p

iqº , and C cosi
p

iqº . We define the
parameters of TSB astrometry at the Gaia DR3 reference epoch as

, , , ,b b b b b b T( )b a d v m mº D D D D Da d and reflex-motion para-
meters as βr≡ (A, B, F, G)T. The coefficients of βb are defined as
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1 1 2 2( )¼ , and N is the number of data points. The

coefficient matrix of βr is S C f TS TC, , , ,b p p AL( )k =
¾ ¾

, where
Sp and Cp are one-column vectors with a length of N,
TS t S t S t S, , ,p p

N N
p

1 1 2 2( )= D D ¼ D , and TC t C t C t C, , ,p p
N N
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With these definitions, the synthetic abscissae could be written as
ξ=κbβb+κrβr.

There are five astrometric parameters for the TSB of targets
in GDR2 and GDR3. For a three-catalog combination, the
catalog crossmatched with GDR2 and GDR3 falls into one of
the following categories:

1. GDR1 five-parameter solutions (G1P5): Stars without
TYC data in GDR1 only have R.A. and decl. given. In
this case, only position is fitted to the GOST synthetic

data, denoted as , , 0, 0, 0
b T

GDR1 GDR1 GDR1
ˆ ( ˆ ˆ )b a d= D D .

The model is described in Section 2.2.
2. TYC: Given that TYC proper motions are derived

through combined analyses of TYC and previous
photographic catalogs (Høg et al. 2000), we use only
the TYC R.A. and decl. to constrain the orbital
parameters. Although the abscissae of TYC are not
provided, we model the position of TYC, and the
analytical solution is described in Section 2.3.

3. Hipparcos: For stars with Hipparcos data, GDR1
solutions are not independent of the Hipparcos data.
We utilize the Hipparcos IAD in combination with GDR2
and GDR3 catalog data to constrain binary orbits. The

detailed modeling of the Hipparcos IAD is described in
Section 2.4.

2.2. Modeling Gaia Catalog Data

The five-parameter model for synthetic abscissae for the
Gaia DRj is

, 15j
b

j j
ˆ ˆ ( )x k b=

where jb̂ is the astrometry fitted for Gaia DRj. The astrometry
of Gaia DRj relative to the reference astrometry (Gaia DR3 by
default) is βj. We define the synthetic abscissae corresponding
to the three Gaia DRs as , ,T T T T

GDR1 GDR2 GDR3( )x x x x= . Then the
residual is
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where GDRnk̃ is similar to κGDRn but the reference time is now
the reference epoch of GDRn, and
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For GDR1 targets without Tycho data, only the positions are
measured. To be compatible with GDR2 and GDR3 solutions,
the GDR1 proper motions and parallax are fixed at zero and the
covariance matrix is
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where ρ is the the correlation between α* and δ for GDR1, the
parallax uncertainty σϖ is set to 1000 mas, and the proper-
motion uncertainties, sma and smd, are set to 1000 mas yr−1.
The χ2 of the above model of abscissae is T2 1x xc d dS=x x

- ,
where Σξ is the covariance of abscissae. Assuming that the
synthetic abscissae have constant measurement errors σξ,

2cx

could be simplified as T2 2·x xc d d s=x . The minimization of
5 In this work, we define abscissae as AL coordinates relative to the reference
abscissae. Hence they are actually abscissa residual.
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2cx leads to
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Transposing both sides of the above equation leads to
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Because we do not consider perspective acceleration in the
above linear modeling of synthetic GOST data, we propagate the
GDR3 astrometry to the reference epochs of GDR1 and GDR2,
and define the astrometric data as y , , T
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We calculate the residual vector by subtracting
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ΣGDR1, ΣGDR2, and ΣGDR3 are, respectively, the covariances
for Gaia DR1, DR2, and DR3. The minimization of GDR
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The above equation array could be simplified as
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Then the optimal parameters are βbr= η−1b and the corresp-
onding covariance is Cbr= η−1. The baseline model is simply a
covariance-weighted mean of the catalog astrometry,
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1
GDR3( )

( )
b b b bS S S= + +- - -

where C b
0 GDR1

1
GDR2

1
GDR3

1 1( )S S S= + +- - - - measures the para-
meter covariance.

2.3. Modeling TYC Data

For targets with TYC positional data, the target position
relative to the barycenter is

BC GS , 29i
t

i
tˆ ( )a aD = D + +

AC FS . 30i
t

i
tˆ ( )d dD = D + +

The vectorized version is

y , 31b r
TYC TYC TYCˆ ( )l b g b= +

where

y , 32T
TYCˆ ( ˆ ˆ) ( )a d= D D

1 0 0 0 0
0 1 0 0 0

33TYC ⎡
⎣

⎤
⎦

( )l =

C S

C S

0 0

0 0
. 34i

t
i
t

i
t

i
tTYC

⎡

⎣
⎢

⎤

⎦
⎥ ( )g =

Hence the residual is

y y y , 35TYC TYC TYCˆ ( )d = -

where yTYC≡ βTYC= (ΔαTYC, ΔδTYC) is the TYC position
relative to the position propagated from Gaia DR3 to the TYC
R.A. and decl. reference epochs. With the above definitions, λ
and γ in Equation (20) become

y
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,  .
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⎥
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= =b
-

-

-

-

The optimal parameter vector for the corresponding baseline
model is

C
36

bb T
00 TYC TYC

1
TYC GDR2

1
GDR2 GDR3

1
GDR3[( ]
( )

b b b bl S S S= + +- - -

where covariance C b T
0 TYC HIAD

1
TYC GDR2

1
GDR3

1 1[ ]ll S S S= + +- - - - .

2.4. Modeling Hipparcos Intermediate Data

Because the astrometric offset parameters shown in
Equation (14) are defined with respect to GDR3, the Hipparcos
raw IAD (ξraw) are transformed into relative Hipparcos IAD
following

, 37b b
HIAD raw HIAD HG˜ ( )x x k b= +

where b
HGb is the difference between Hipparcos astrometry and

the astrometry propagated from the GDR3 epoch to the
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Hipparcos epoch. After this correction, the Hipparcos abscissa
model is the same as that in Equation (14). The Gaia scan angle
θ is complementary to the Hipparcos scan angle ψ, i.e., θ=
π/2− ψ. The residual is

. 38b rb r
HIAD HIAD HIAD HIAD( ) ( )x x k b k bd = - +

Here we use b
HIADk (with GDR3 as the reference epoch) instead

of b
HIADk̃ because the Hipparcos abscissae are already modified

to be compatible with the GDR3 solution in Equation (37).
The χ2 for δξHIAD is

, 39T
HIAD
2

HIAD HIAD
1

HIAD ( )x xc d dS= -

where HIAD
1S- is the covariance matrix of Hipparcos IAD. This

covariance is diag , , , N1
2

2
2 2

HIAD
( )s s s¼ , where NHIAD is the

number of Hipparcos epochs. The minimization of χ2 leads to

, 40

b b b r

r b r r
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⎢
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⎥

( ) ( )
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·

( ) ·
( ) ·

( )

k k k k
k k k k

b

k x
k x

S S
S S

=

- -

- -

where ,br b r T( )b b b= . To model Hipparcos IAD together
with Gaia DRs, we insert Equation (40) into the definition of λ
in Equation (20), γ in Equation (21), 1Sb

- in Equation (24) and
y in Equation (23) as follows:

y
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With these new definitions, Equation (27) is still valid to find
solutions of βb and βr. The optimal parameter vector for the
corresponding baseline model becomes

C

, 41

b bb T
00 HIAD HIAD

1
HIAD GDR2

1
GDR2

GDR3
1

GDR3

[( )
] ( )

b k x b

b

S S

S

= +

+

- -

-

where covariance C b b bT
0 HIAD HIAD

1
HIAD GDR2

1
GDR3

1 1[( ) ]k kS S S= + +- - - - .

2.5. Modeling Eccentric Orbits

By sampling orbital periods and minimizing χ2 for each
period, we find astrometric signals with circular orbits. This
linear least-square optimization provides initial parameters for
more robust nonlinear regressions to find solutions for eccentric
orbits. The Keplerian motion of the system photocenter in the
orbital plane is

X a E e

Y a e E

X
a

P

E

e E

Y
a

P
e

E

e E

cos ,

1 sin ,

2 sin

1 cos
,

2
1

cos

1 cos
, 42

i p i

i p i

i
p i

i

i
p i

i

2

2

( )

( )

( )





p
v

p
v

= -

= -

=-
-

= -
-

where P is orbital period, e is eccentricity, and Ei is the
eccentric anomaly at time ti and can be determined by solving
the Kepler equation:

M E e Esin , 43i i i ( )= -

where Mi is the mean anomaly at ti. The mean anomaly is

M M
t

P

2
, 44i

i
0 ( )p

= +
D

where M0 is the mean anomaly at the reference epoch.
Compared with circular orbits, a Keplerian orbit has two
nonlinear parameters, e and M0, in addition to orbital period P.
Hence there would be three nonlinear parameters for a
Keplerian model. We define this set of nonlinear Keplerian
parameters as P e M, ,n T

0( )b º . Hence the parameter vector
for a full astrometry model is

. 45brn

b

r

n

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

( )b
b
b
b

=

For a given βn, Ci
t and Si

t in Equation (7) are replaced by
C E ecosi

tr
iº - and S e E1 sini

tr
i

2º - , respectively. Fol-
lowing the procedures introduced in Sections 2.2, 2.4, and 2.5,
the linear parameters can be analytically optimized for a given
βn. Thus we only need to optimize βn nonlinearly using
algorithms such as the Levenberg–Marquardt optimization
algorithm (Levenberg 1944; Marquardt 1963). The Thiele–
Innes elements A, B, F, and G can be converted to the
Campbell elements, ap, I,ωT, and Ω although ωT and Ω are
degenerated with ωT+ π and Ω+ π, respectively.

2.6. Detection Threshold

The preceding subsections outline the analytical formulae for
computing optimal parameters through χ2 minimization.
Assuming uniform priors for model parameters and employing
Laplace’s approximation (Schwarz 1978; Kass & Raftery
1995), we transform the minimum χ2 of two models into the
logarithmic Bayes factor (lnBF) using the following equations:

  N

N

lnBF ln ln
1

2
ln

1

2

1

2
ln . 46

21 2 1

1
2

2
2( ) ( )

n

c c n

= - -

= - -

Here, 1 and 2 represent the maximum likelihood for
models 1 and 2, while 1

2c and 2
2c denote the respective

minimum χ2 values for models 1 and 2. The variable ν stands
for the number of extra free parameters in model 2 compared to
model 1, and N represents the number of data points. We
consider lnBF > 5 as the threshold for identifying statistically
significant signals. This is based on Section 3.2 and Table 2 of
Kass & Raftery (1995), where the criteria for decisive evidence
in favor of a hypothesis are stated as 2lnBF > 10 or lnBF > 5
or BF > 150. We also note that Feng et al. (2016) shows that
lnBF > 5 is suitable for identifying signals across various noise
properties, particularly in the context of exoplanet detection.
However, we note that our study, not yet having developed the
modeling framework into a periodogram for signal detection, is
not highly sensitive to the choice of threshold. We include a
detection threshold primarily for the sake of completeness.
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3. Catalog Calibration

3.1. Calibration Sources

The models introduced in Section 2 assume unbiased catalog
data, a presumption that might not hold true, especially in
combined analyses of different catalogs. While it is possible to
model bias concurrently with stellar reflex motion on a case-by-
case basis, as demonstrated in Feng et al. (2019), such bias
models often involve nonlinear parameters, impeding analytical
optimization and diminishing the efficiency of periodogram
computation. Consequently, we proactively address potential
astrometric bias through calibration, leveraging both GDR3
NSS and single-star (SS) catalogs. While we opt for both NSS
and SS as representations of distinct astrometric solutions, it is
important to note that our choice of calibration sources lacks
comprehensiveness in terms of capturing various magnitudes,
colors, sky positions, and other pertinent parameters. In
Section 4.3, we will evaluate the extent of contamination from
undetected binaries in the SS catalogs by examining the
correlation between calibration parameters and the renorma-
lized unit weight error (RUWE; Lindegren et al. 2018).

In the calibration using the NSS catalog, our attention is
directed toward the 134,598 NSS targets within the GDR3
nss_two_body_orbit table of the Orbital type,6

collectively referred to as “G3NS.” We crossmatch G3NS
with GDR2 and catalog CAT1 to create a hybrid calibration
catalog. CAT1 encompasses two-parameter GDR1 (G1P2),
five-parameter GDR1 (G1P5), TYC, the original (HIP1), or the
revised (HIP2) Hipparcos catalogs, resulting in hybrid samples
with 130,096, 116,271, 13,825, 14,947, 142, and 142 targets,
respectively. The barycentric astrometry for a G3NS target at
the GDR3 reference epoch can be either the G3NS catalog’s
provided barycentric value (G3NSB) or calculated by subtract-
ing the photocentric motion from the target’s photocentric
astrometry (G3NST). This leads to designations such as NST,
NSTP2, NSTP5, NSTT, NSTH2, and NSTH1 for G3NST
crossmatched with GDR2, G1P2, G1P5, TYC, HIP1, and
HIP2, respectively. Similarly, we define NSB, NSBP2, NSBP5,
NSBT, NSBH2, and NSBH1 for G3NSB crossmatched with
GDR2, G1P2, G1P5, TYC, HIP1, and HIP2, respectively.

Recognizing that Gaia systematics may vary with solution types
(Lindegren et al. 2021a), we crossmatch the GDR3 single-star
catalog (G3SS)7 with GDR2 and the Hipparcos catalog to obtain
a sample of 77,138 single-star targets (termed “G3SS”) for the
calibration of bright and nearby stars. This sample is further
crossmatched with GDR2, G1P2, G1P5, TYC, HIP1, and
HIP2, resulting in SS2, SS2P2, SS2P5, SS2T, SS2H2, and
SS2H1 catalogs, encompassing 77,138, 6,763, 70,676, 74,216,
77,136, and 77,138 targets, respectively. Because the Hipparcos

and TYC sources were observed by Gaia while most of the Gaia
NSS sources were not observed by Hipparcos or TYC, the SS
calibration catalogs have similar sample sizes while the NSS
calibration catalogs have quite different sample sizes.

3.2. Calibration Models

We employ the calibration sources introduced in the previous
section to ascertain the relative frame rotation and offset between
GDR3 and other catalogs. Given the primary objective of this
series of papers—to identify companions using multiple astro-
metric catalogs—our focus lies solely on the differential frame
rotation and parallax zero-point. Considering that our typical
detection involves companions closer than 1 kpc, the absolute
parallax zero-point of GDR3, approximately 0.05mas (Lindegren
et al. 2021a), does not significantly impact the detection process.
The relative difference between two reference frames is

measured by a rotation vector ω and a constant offset vector ò:

 t t t t , 47GDR3 GDR3( ) ( ) ( ) ( )w= + -

where tGDR3 is the reference epoch of GDR3. We denote ò(tGDR3)
by    , ,x y z

T
0 ( )º . Additionally, the parallax zero-point is

found to be nonzero for Gaia catalogs (Arenou et al. 2018;
Lindegren et al. 2018, 2021a). Without using quasars to calibrate
the parallax zero-point like Lindegren et al. (2021a), we derive the
differential zero-point parallax (δϖ) of a catalog relative to GDR3.
The astrometric bias caused by the differential frame rotation

and zero-point parallax is

  
 

48

t t t

t t

cos cos sin sin sin cos ,

sin cos ,

cos sin sin sin cos ,

sin cos .

X Y Z

X Y

X Y Z

X Y

( )

( ˜ ) ( ) ( ) ( )
˜ ( ) ( )

˜
˜
˜

a a d a d a d d
d d a a

v v dv
m m w a d w a d w d
m m w a w a

- = + -
- =- +
- =
- = + -
- =- +

a a

d d

where ˜ denotes astrometric parameters measured in a given frame
while astrometric parameters without this sign above them denote
parameters measured in the GDR3 frame. Note that we define the
differential rotation and parallax zero-point in a convention such
that the bias is subtracted from the given catalog.
We vectorize the above equations and get the differential

astrometric bias (yd) caused by the differential frame rotation
and parallax zero-point,

y
0

49dd d
GDR23

GDR23⎡
⎣

⎤
⎦

· ( )k b k b= =

where

and

  

51
, , , , , , .x y z x y z

GDR23 GDR23 GDR23 GDR23 GDR23 GDR23 GDR23 GDR23

( )
( )b w w w dv=

50

t t t
t t

cos sin sin sin cos cos sin sin sin cos 0
sin cos 0 sin cos 0 0

0 0 0 0 0 0 1
0 0 0 cos sin sin sin cos 0
0 0 0 sin cos 0 0

GDR23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )k

a d a d d a d a d d
a a a a

a d a d d
a a

=

- D D -D
- -D D

-
-

6 This catalog is for NSS orbital models for sources compatible with an
orbital model for an astrometric binary with Campbell orbital elements, or the
Vizier catalog with a designation of I/357/tbooc.
7 The G3SS samples comprise GDR3 targets not included in the Gaia NSS
catalog.
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The differential frame rotation and parallax zero-point should
be subtracted from the original data y to get the corrected data
in the GDR3 reference frame.

Because we only consider the differential frame rotation and
parallax zero-point, GDR3 astrometry is treated as “unbiased”
and thus the last seven elements in βd and the last five rows in
κd are all zeros. To model the systematics of GDR1 and GDR2
relative to GDR3 simultaneously, we can respectively add
βGDR13 and κGDR13 to βd and κd. Hence Equation (49)
becomes

y
0

0
0 0

. 52d d d

GDR13

GDR23
GDR13

GDR23

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

· ( )k b
k

k
b
b

= =

When CAT1 is G1P5, κGDR13 is a 5× 7 matrix like κGDR23,
and βGDR13 is a seven-element vector like βGDR23. If CAT1 is
G1P2,

cos sin sin sin cos
sin cos 0

53GDR13 ⎡
⎣

⎤
⎦

( )k a d a d d
a a

= -
-

and

  , , . 54x y z
GDR13 GDR13 GDR13 GDR13( ) ( )b =

When CAT1 is TYC, κGDR13 and βGDR13 are, respectively,
replaced by κTYC and βTYC while the forms of Equations (52)
and (53) do not change. If CAT1 is HIP1 or HIP2, the
Hipparcos abscissae (HIAD) induced by frame rotation are

, 55d dHIAD ( )x k b=

and

, 56bHIAD HIP ( )k k k=

where κHIP has the same form as κGDR23.

Then Equation (23) becomes

y y y . 57d r d( ) ( )lb gbd = - + +

When G3NST is used for calibration, β r is given by the catalog
and is subtraced from the catalog astrometry, y y rgb¢ = - ,
and Equation (57) becomes

y y . 58db d( ) ( )lb k bd = ¢ - +

When G3NSB is used, the barycentric astrometry is already
given, and thus the GDR3 part of the data vector would not
change, i.e., y yGDR3 GDR3¢ = . If G3SS is used, the data vector
would not change, i.e., y y¢ = .
We infer the differential calibration parameters β d as well as

the barycentric astrometry βb for a number of calibration
sources simultaneously. The data vector for a sample of n
calibration sources is y y y y, , , n

T
sample 1 2( )¢ = ¢ ¢ ¢ . The residual

is

y y , 59b d d
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Similar to Equation (27), the linear regression of the
astrometric model leads to

b , 60bd
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where CAT1 could be G1P2, G1P5, TYC, HIP1, or HIP2. If no
CAT1 is provided,

. 62i
i

i

1 ,GDR2
1

,GDR3
1

⎡

⎣
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⎤

⎦
⎥ ( )S

S

S
=-

-

-

Considering that the covariance given by a catalog is probably
underestimated, we model the error inflation and jitter using a
and b, respectively. The covariance of a given target becomes

a b a bjk jk j k
2 2 2 2 2 2s ss r= + + , where ρ is the correlation

matrix.
Finally, by minimizing

y y , 63T
sample
2

sample sample
1

sample ( )c d dS= -

we get the optimal calibration parameters βd. The corresp-
onding formulae for the above χ2 minimization is similar to
that shown in Equation (27).

The lnBF for models with (model 2) and without (model 1)
parameters of frame rotation and parallax zero-point (i.e., βd) is

n NlnBF
1

2
ln , 64d21 1, sample

2
2, sample
2

sample( ) ( )c c= - -

where nb≡ nbd− nb, nd, and nbd are, respectively, the number
of parameters in b

sampleb , d
sampleb , and bd

sampleb , Nsample= n×
Nsingle is the total number of data points for a sample of n
calibration sources, and Nsingle is the number of data points for
a single source. If CAT1 in Equation (61) is not given, the
differential frame rotation and parallax zero-point of GDR2
relative to GDR3 will be modeled by seven parameters (i.e.,
nd= 7). If CAT1 is G1P5, HIP1, or HIP2, there would be seven
calibration parameters in addition to the GDR2 calibration
parameters. If GDR2 calibration parameters are fixed at their
optimal values, only seven parameters need to be optimized,
nd= 7. If CAT1 is G1P2 or TYC, the proper motion of CAT1
is unknown. Hence only the offset between frames and the
differential parallax zero-point at the reference epoch (i.e., òx,
òy, òz, and δϖ) would be considered, and nd= 4.

3.3. Calibration Procedure

We derive the calibration parameters for catalogs through the
following sequential steps:

1. Data collection: gather GOST and catalog data for
various calibration sources.

2. Matrix and vector calculations: compute the matrices and
vectors introduced in Sections 2 and 3.2.

3. Random subsampling: Randomly select 100 targets from
the entire sample to create a subsample. Repeat this
subsampling process at least 1000 times to generate an
ensemble of subsamples;

4. Error inflation and jitter sampling: sample error inflation
(1� a� 2) and jitter (0� b� 2 mas or mas yr−1)8

parameters, creating a grid with a bin size of 0.02.
5. Optimization and χ2 calculation: For each subsample and

bin, infer optimal parameters and calculate the corresp-
onding χ2 values for both the combined model of
barycentric astrometry and calibration (Model 2) and the

model of barycentric astrometry alone (Model 1).
Eliminate subsamples with χ2 values exceeding the
median χ2 of the entire ensemble of subsamples for
each bin.

6. Maximum lnBF calculation: calculate the maximum lnBF
for each bin according to Equation (64), identify the
optimal (a, b) at the globally maximum lnBF (lnBF max),
and determine the uncertainty of (a, b) based on the range
that satisfies lnBFmax − lnBF <0.5 (equivalent to a 1σ
confidence level, assuming Laplace’s approximation).

7. Parameter distribution calculation: With a and b fixed at
their optimal values, repeat step 5 at least 10 times to
obtain the distribution of optimal d

sampleb . Calculate the
mode, 16%, and 84% quantiles for each parameter.

4. Results

4.1. Global Calibration

The error inflation and jitter parameters for GDR3, denoted as
(aGDR3, bGDR3), are respectively determined as 1.00 , 0.000.00

0.04
0.00
0.00( )-

+
-
+ ,

1.00 , 0.000.00
0.00

0.00
0.00( )-

+
-
+ , and 1.00 , 0.000.00

0.40
0.00
0.00( )-

+
-
+ for the NST,

NSB, and SS calibration sources. These values are obtained
through the simultaneous optimization of (aGDR2, bGDR2) and
(aGDR3, bGDR3) using the NST, NSB, and SS calibration sources.
The corresponding (aGDR2, bGDR2) and the differential calibration
parameters of GDR2 relative to GDR3 (βGDR23) are also
determined utilizing the NST, NSB, and SS calibration sources
and are detailed in Table 1.
Figures 1 and 2 illustrate the lnBF distributions over (a, b)

and the distribution of βGDR23 based on analyses of the NST,
NSB, and SS calibration sources, respectively. Notably, the
preference for zero jitter and no error inflation holds true for
both GDR2 and GDR3, and this conclusion remains robust
across different choices of calibration sources, as demonstrated
in Table 1.
The analysis of NST, NSB, and SS calibration sources

reveals significant frame rotation and parallax offset for GDR2
relative to GDR3. The SS values align with those reported by
Brandt (2018), Lindegren (2020), and Lunz et al. (2023). While
NST-based and NSB-based calibrations yield similar values for
δβGDR23, SS-based calibration results in slightly different
values, suggesting a dependency of βGDR23 on stellar
parameters, as briefly mentioned in Lindegren et al. (2021a).
A detailed investigation of this dependence is presented in
Section 4.2.
Having set (aGDR2, bGDR2), (aGDR3, bGDR3), and βGDR23 to

their optimal values, we proceed to optimize the calibration
parameters for CAT1 using various combinations of CAT1,
GDR2, and GDR3-based catalogs. The analysis, detailed in
Table 1 and depicted in Figure 7, reveals negligible error
inflation and jitter for G1P2 and G1P5 across different
calibration sources. The G1P2 frame exhibits an offset of
−0.13 0.03

0.05
-
+ mas relative to GDR3 along the y-axis, as

determined through NSTP2 analysis. This result is consistent
with values obtained from NSTP2 and notably more precise
than those derived from SSP2. This precision improvement is
likely attributed to SSP2 having fewer calibration sources
compared to NSTP2 and NSBP2.
The G1P5 frame exhibits a consistent offset of   , ,x y z( ) =

0.39 , 0.17 , 0.120.05
0.04

0.07
0.05

0.06
0.05( )--

+
-
+

-
+ mas relative to GDR3, as

determined through analysis of SSP5, as depicted in Figure 2.
Notably, the frame-rotation speed ω of G1P5 relative to GDR3

8 If the optimal solution of b is found to exceed 2, we sample b from 0 to 4
instead.
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Table 1
Calibration Parameters Determined for Different Calibration Sources

Source/Catalog CAT1/References òx òy òz ωx ωy ωz δϖ a b N
(mas) (mas) (mas) (mas yr−1) (mas yr−1) (mas yr−1) (mas) (mas, mas yr−1)

CAT1+GDR2+G3NST

NST L 0.08 0.01
0.01- -

+ 0.02 0.02
0.02- -

+ 0.01 0.02
0.01- -

+ 0.00 0.02
0.02

-
+ 0.07 0.01

0.03- -
+ 0.01 0.02

0.02
-
+ 0.020.00

0.01+ 1.00 0.00
0.06

-
+ 0.00 0.00

0.00
-
+ 130,127

NSTP2 G1P2 0.00 0.04
0.05

-
+ 0.13 0.03

0.05- -
+ 0.01 0.05

0.05- -
+ L L L L 1.02 0.02

0.00
-
+ 0.00 0.00

0.02
-
+ 116,271

NSTP5 G1P5 0.15 0.47
0.70

-
+ 0.45 0.61

0.46- -
+ 0.05 0.78

0.63- -
+ 0.05 0.52

0.92- -
+ 0.35 0.66

0.52- -
+ 0.05 0.99

0.67- -
+ 0.01 0.04

0.03
-
+ 1.00 0.00

0.00
-
+ 0.00 0.00

0.02
-
+ 13,825

NSTT TYC 1.00 6.00
6.80

-
+ 3.00 9.11

5.10
-
+ 1.00 8.71

7.85- -
+ L L L L 1.94 0.00

0.00
-
+ 0.60 0.00

0.00
-
+ 14,947

NSTH2 HIP2 8.25 3.57
4.78- -

+ 12.50 6.39
5.32

-
+ 23.50 19.58

2.84
-
+ 0.16 0.08

0.09- -
+ 0.25 0.12

0.10
-
+ 0.45 0.38

0.05
-
+ 0.25 0.07

0.14- -
+ 1.00 0.00

0.00
-
+ 2.16 0.00

0.12
-
+ 142

NSTH1 HIP1 85.00 46.08
59.53- -

+ 5.00 47.92
53.35- -

+ 75.00 70.87
37.50

-
+ 1.70 0.91

1.23- -
+ 0.10 1.15

0.89
-
+ 1.50 1.39

0.79
-
+ 0.15 1.05

0.67- -
+ 1.00 0.00

0.00
-
+ 0.08 0.00

0.00
-
+ 142

CAT1+GDR2+G3NSB

NSB L 0.07 0.01
0.01- -

+ 0.02 0.01
0.01- -

+ 0.01 0.01
0.01- -

+ 0.00 0.01
0.02

-
+ 0.06 0.02

0.03- -
+ 0.01 0.02

0.02
-
+ 0.02 0.01

0.01
-
+ 1.00 0.00

0.00
-
+ 0.00 0.00

0.02
-
+ 130,127

NSBP2 G1P2 0.02 0.13
0.12

-
+ 0.11 0.07

0.20- -
+ 0.03 0.02

0.24- -
+ L L L L 1.00 0.00

0.04
-
+ 0.02 0.02

0.00
-
+ 116,271

NSBP5 G1P5 0.02 0.47
0.65

-
+ 0.52 0.34

0.65- -
+ 0.05 0.66

0.58
-
+ 0.05 0.67

0.71- -
+ 0.33 0.49

0.61- -
+ 0.15 0.65

0.84- -
+ 0.00 0.03

0.04
-
+ 1.00 0.00

0.18
-
+ 0.04 0.04

0.00
-
+ 13,825

NSBT TYC 0.50 4.64
4.10

-
+ 0.50 3.61

4.69
-
+ 0.50 5.86

4.10
-
+ L L L L 1.30 0.00

0.10
-
+ 1.70 0.00

0.00
-
+ 14,947

NSBH2 HIP2 13.50 2.61
11.06- -

+ 7.50 4.05
20.53- -

+ 33.00 23.54
4.31

-
+ 0.25 0.05

0.20- -
+ 0.09 0.09

0.34- -
+ 0.58 0.40

0.11
-
+ 0.17 0.09

0.12- -
+ 1.00 0.00

0.00
-
+ 0.48 0.00

0.00
-
+ 142

NSBH1 HIP1 13.00 27.72
9.64

-
+ 2.50 16.80

20.33
-
+ 82.50 11.82

48.90- -
+ 0.28 0.56

0.20
-
+ 0.02 0.24

0.49- -
+ 1.65 0.25

0.97- -
+ 0.27 0.20

0.19
-
+ 1.00 0.00

0.10
-
+ 0.20 0.10

0.90
-
+ 142

CAT1+GDR2+G3SS

SS L 0.18 0.01
0.01- -

+ 0.18 0.01
0.01- -

+ 0.03 0.01
0.01- -

+ 0.08 0.02
0.01- -

+ 0.12 0.01
0.02- -

+ 0.03 0.02
0.02- -

+ 0.03 0.01
0.01

-
+ 1.00 0.00

0.00
-
+ 0.00 0.00

0.00
-
+ 77,138

SSP2 G1P2 2.50 27.09
36.30

-
+ 2.50 26.74

27.42
-
+ 2.50 19.31

33.98- -
+ L L L L 1.00 0.00

0.02
-
+ 0.02 0.00

0.00
-
+ 6,763

SSP5 G1P5 0.39 0.05
0.04

-
+ 0.17 0.07

0.05- -
+ 0.12 0.06

0.05
-
+ 0.02 0.05

0.06
-
+ 0.03 0.07

0.05- -
+ 0.02 0.06

0.06
-
+ 0.00 0.03

0.02
-
+ 1.00 0.00

0.06
-
+ 0.02 0.02

0.00
-
+ 70,676

SST TYC 0.25 2.37
1.75

-
+ 0.25 1.75

2.30- -
+ 0.25 2.03

2.21- -
+ L L L L 1.00 0.00

0.14
-
+ 0.44 0.44

1.42
-
+ 74,216

SSH2 HIP2 5.00 11.24
10.94

-
+ 9.00 9.73

11.82- -
+ 2.50 15.96

9.62- -
+ 0.13 0.26

0.20
-
+ 0.13 0.25

0.21- -
+ 0.17 0.22

0.32- -
+ 0.13 0.22

0.15
-
+ 1.00 0.00

0.00
-
+ 0.06 0.00

0.00
-
+ 70,358

SSH1 HIP1 10.00 85.39
107.76- -

+ 10.00 95.88
97.87- -

+ 10.00 101.15
101.38- -

+ 0.25 1.68
2.21- -

+ 0.25 2.37
1.54

-
+ 0.25 2.00

2.08- -
+ 0.30 1.75

1.22
-
+ 1.00 0.00

0.02
-
+ 0.02 0.00

0.00
-
+ 77,136

Values in Literatureb

ICRF3- GDR3 L23c 0.226 ± 0.165 0.327 ± 0.213 0.168 ± 0.128 0.022 ± 0.024 0.065 ± 0.024 −0.016 ± 0.024 L L L 55
HG-GDR3 L21d L L L 0.017 ± 0.024 0.095 ± 0.024 −0.028 ± 0.024 L L L ∼90,000
ICRF3-GDR2 L23c 0.093 ± 0.180 0.463 ± 0.243 0.028 ± 0.141 −0.056 ± 0.046 −0.113 ± 0.058 0.033 ± 0.053 L L L 55
VLBI-GDR2 L20e −0.347 ± 0.137 0.358 ± 0.245 0.050 ± 0.045 −0.077 ± 0.051 −0.096 ± 0.042 −0.002 ± 0.036 L L L 26
HG2-GDR2 B18f L L L −0.081 −0.113 −0.038 L 1.743 L 83,034
HG2-HIP12 B18f L L L −0.098 0.170 0.089 L L 0.226 83,034
GDR3-HIP1 F21g L L L L L L −0.089 ± 0.003 L L 62,484
ICRF2-HIP1 L16h −2.99 ± 0.04 4.39 ± 0.04 1.81 ± 0.04 −0.126 ± 0.03 0.185 ± 0.03 0.076 ± 0.03 L L L 262
HG3-HIP2 B23i L L L L L L L L 2.25 ± 0.04 62,484

Notes. (a, b) for NST, NSB, and SS represent the error inflation and jitter for GDR2 while (a, b) for other calibration sources are for the corresponding CAT1.
a The asymmetry in the uncertainty of parameters a and b is attributable to the restricted bin size of 0.02 employed during the sampling process.
b The first column displays the differential rotation and parallax zero-point between the RF0 and RF1 frames. For example, RF0-RF1 means that the astrometric offset induced by βd should be added to the astrometry in
the RF1 frame to derive the astrometry in the RF0 frame. In this work, the data (y) in the original reference frame of CAT1 is subtracted by κdβd to derive the astrometry in the GDR3 frame, which can be represented by
CAT1-GDR3.
c GDR3: using optically bright radio stars observed by very long baseline interferometry (VLBI), Lunz et al. (2023) measure the rotation of the GDR3 frame (equivalent to GEDR3 frame) relative to the Third
International Celestial Reference Frame (ICRF3; Charlot et al. 2020) at reference epoch J2016.0.
d Lindegren et al. (2021b) conduct an ad hoc calibration using the difference between Hipparcos and GDR3 proper motions.
e This calibration is conducted by Lindegren (2020) using the VLBI observations of 26 radio stars. Hence the parameters shown in this row measure the frame rotation of GDR2 bright sources relative to the frame
determined by the 26 radio stars at epoch J2015.5.
f The parameters are determined by Brandt (2018) by mixing HIP2 and HIP1 with a ratio of 60/40 (HIP12) and calibrating the proper motions of HIP12 and GDR2 using their positional differences (HG2). They claim
negligible uncertainties on the parameters.
g The value is obtained from Table 1 of Fabricius et al. (2021).
h The parameters measure the frame rotation of the original Hipparcos catalog relative to the ICRF2 (Fey et al. 2015) realized by radio observation of 262 sources (Lindegren et al. 2016) at epoch J1991.25. However, ò
and ω cannot be used together to correct for bias in the Hipparcos data because they are calculated under different assumptions.
i Brandt et al. (2023) calibrate the HIP2 IAD using Hipparcos-GEDR3 (HG3) long-term proper motions and parallax differences.

9

T
h
e
A
stro

ph
y
sica

l
Jo
u
rn

a
l
S
u
pplem

en
t
S
eries,

271:50
(21pp),

2024
A
pril

F
eng

et
al.



aligns with zero. The NSTP5 and NSBP5 calibration sources,
however, do not ascertain these parameters with the same high
precision, likely due to their limited sample size and the

inappropriate subtraction of a photocentric motion from TGAS
proper motions derived partially from TYC (Michalik et al. 2015).
Given the potential “contamination” from TYC, we recommend

Figure 1. Distribution of lnBF over the error inflation and jitter of GDR2 (first row), GDR3 (second row), G1P2 (third row), and G1P5 (fourth row) based on analyses
of various calibration sources. The color encodes the value of lnBF of the calibration model relative to the model without calibration. The panels in the first and second
rows are zoomed-in versions of distributions over a bigger grid with 1 � a � 2 and 0 � b � 2, shown in the lower panels.
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Figure 2. Distribution of calibration parameters for GDR2 and G1P5 based on 10,000 draws of 100 samples from various calibration sources. The parameter range is
divided into 50 bins. The red dashed lines represent the modes of the distributions. The upper panels show the Pearson correlation value (Corr) and its significance
indicated by the number of star symbols. The p-values of less than 0.1, 0.05, 0.01, and 0.001 are indicated by “.,” “

*,” “
**,” and “

***,” respectively. No symbol is
shown if the p-value is higher than 0.1.
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utilizing only the reference position in G1P5 for detecting
companions.

As indicated in Table 1, the error inflation and jitter for TYC
are not in alignment with zero at the 1σ level based on analyses
of NSTT and NSBT. However, upon inspecting the lnBF
distributions for NSTT and NSBT depicted in Figure 6, it
becomes evident that these distributions exhibit significant non-
Gaussian characteristics, with a seemingly random occurrence
of high lnBF regions. In contrast, the lnBF distribution for SST
appears smoother, with lnBF variations consistently below 3,
indicative of negligible error inflation and jitter. The frame
rotation of TYC relative to GDR3 is also found to be consistent
with zero, as detailed in Table 1 and illustrated in Figure 7.

HIP2 exhibits negligible error inflation, aligning with the
less than 20% error inflation previously determined by
Perryman et al. (1997) and Brandt et al. (2023). An analysis
of NSTH2 reveals a jitter of 2.16 0.00

0.12
-
+ mas (or mas yr−1) for

HIP2, a result consistent with the value of 2.25± 0.04 mas (or
mas yr−1) reported by Brandt et al. (2023). Figure 6 illustrates
that NSBH2 and SSH2 also exhibit elevated lnBF around
b= 2 mas (or mas yr−1), although not as prominently as
NSTH2. As presented in Table 1 and Figure 8, the differential
calibration parameters of HIP2 deviate from zero at the 2σ level
and align with the values provided by Lindegren et al. (2016) at
the 1.5σ level. Additionally, our analysis indicates a negative
differential zero-point parallax based on NSTH2 and NSBH2
calibrations, consistent with the value determined by Fabricius
et al. (2021).

As outlined in Table 1, the error inflation of HIP1 is
negligible, while the jitter of HIP1 is determined to be 0.08,
0.20, and 0.02 mas (or mas yr−1) based on analyses conducted
with NSTH1, NSBH1, and SSH1, respectively. Examining
Figure 6, it is evident that the (a, b) values for HIP1 are largely
consistent with (1, 0). However, it is noteworthy that the

differential calibration parameters for HIP1 are not as precisely
determined as those for HIP2. Conversely, Figures 2 and 8
reveal a pronounced correlation between ω and ò for G1P5,
HIP1, and HIP2. This correlation is likely influenced by the
24 yr positional difference between TYC, HIP2, HIP1, and
GDR3, which imposes a more stringent constraint on βd than
the difference in proper motion does. This leads to a
degeneracy between ω and ò (see Equation (48)).
In Figure 3, we juxtapose the calibration parameters derived

in this study with values reported in the literature. Given that
literature values for frame rotation and zero-point parallax are
referenced to specific realizations of the International Celestial
Reference Frame (ICRF), we adjust the literature values by
subtracting the GDR3 values determined by Lunz et al. (2023)
for a meaningful comparison. Notably, due to the absence of
literature calibration for the frame rotation of TYC and GDR1,
our comparison in Figure 3 focuses solely on calibration
parameters for GDR2 and Hipparcos.
In the left panel, it is evident that the values of βGDR23

obtained through analyses of NST, NSB, and SS calibration
sources align well with those from previous studies within a 2σ
range. Importantly, our parameters exhibit higher precision
compared to previous studies, underscoring the robustness of
our calibration methodology. Noteworthy consistency is
observed between NST and NSB, as expected since both
correct GDR3 astrometry to the binary barycenter albeit with
different methods. While NST (or NSB) and SS yield similar
values for òz, ωx, ωy, ωz, and δϖ, they diverge in òx and òy,
indicating a potential dependence of frame rotation on
calibration sources.
The right panel of Figure 3 reveals significant scatter in ω

and δϖ for NSTH1, NSTH2, NSBH1, NSBH2, SSH1, and
SSH2 in our study. In contrast, Lindegren et al. (2016) provide
more precise values for these parameters by comparing

Figure 3. Comparison of differential calibration parameters determined in this work and in literature. The left panel shows the values of βGDR23 while the right panel
shows βd of HIP1 and HIP2 relative to GDR3. Because Brandt (2018) determines the calibration parameters for a hybrid of HIP1 and HIP2, the same B18 values are
presented for both HIP1 and HIP2.
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Hipparcos with VLBI observations of 262 radio stars.
Additionally, Brandt (2018) presents similar values for ω by
comparing the Hipparcos catalog with long-term proper motion
derived from the positional difference between Hipparcos and
Gaia, although the fitting does not include ò.

4.2. Dependence of Calibration Parameters on Magnitude and
Color

The relationship between calibration parameters in Gaia DRs
and stellar magnitude and color has been explored in previous
studies (e.g., Lindegren et al. 2021a and Cantat-Gaudin &
Brandt 2021). Given the notably precise determination of
calibration parameters for GDR2 relative to GDR3 (βGDR23)
compared to other catalogs, our investigation focuses exclusively

on exploring the dependence of βGDR23 on the G magnitude and
BP−RP color of Gaia sources. This dependence is illustrated for
NST and SS calibration sources in Figure 4.
The top two panels exhibit the correlation between

calibration parameters and G magnitude. Notably, the faint
NST calibration sources display more pronounced parameter
variations than their bright SS counterparts. A distinct shift in
GDR2-GDR3 frame offsets is observed around G= 13 mag, a
phenomenon also noted by Brandt (2018), Lindegren et al.
(2018), and Cantat-Gaudin & Brandt (2021). This abrupt
change is likely attributed to Hipparcos being unable to serve
as a reference catalog for calibrating GDR3 for targets with
11<G< 13 mag (Cantat-Gaudin & Brandt 2021). Specifi-
cally, we identify a frame offset of òGDR23= (0.14, 0.19,
0.03)± (0.01, 0.02, 0.02) mas between the faint (G> 13 mag)
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Figure 4. Dependence of differential calibration parameters (βGDR23) on G magnitude (top) and BP − RP color (bottom) for the SS (left) and NST (right) calibration
sources. Different colors represent different parameters.
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and bright (G< 13 mag) frames of GDR2 relative to GDR3.
However, the bright frame does not exhibit a sudden change in
the rate of frame rotation (i.e., ω) relative to the faint frame of
GDR2, despite continuous variation across the G magnitude
range. In comparison to NST calibration sources, the SS
sources do not demonstrate a significant dependence of
differential calibration on G magnitude.

The lower panels of Figure 4 illustrate the color-dependent
behavior of the differential calibration parameters for both SS
and NST sources. Specifically, the color-dependent variations
for SS and NST are, respectively, (0.02, 0.02, 0.02, 0.03, 0.02,
0.02, 0.03) mas (or mas yr−1) and (0.04, 0.05, 0.02, 0.02, 0.03,
0.02, 0.01) mas (or mas yr−1), exhibiting a significance level of
approximately 3σ. Notably, we observe a consistent monotonic
decrease in the zero-point parallax (δϖ) with BP−RP for the
SS sources, aligning with the color-dependent trend of δϖ
depicted in the top-left panel of Lindegren et al. (2021a).

Following a thorough comparison of various calibration
results, we offer the following differential calibration recom-
mendations relative to GDR3 for different catalogs:

1. For straightforward calibration of GDR2 data, employ
SS-based values for sources with G< 10.5 mag and NST-
based values for sources with G> 10.5 mag.

2. For precise calibration of GDR2 data, utilize the Python
scripts provided in Appendix B to address bias on a case-
by-case basis.

3. Calibrate the two-parameter GDR1 solutions using
parameters determined with NSTP2.

4. For GDR1 targets with five-parameter solutions, use the
SSP5 values to calibrate G< 10.5 mag stars and use the
NSTP2 values to calibrate G> 10.5 mag stars.

5. Use TYC positions without correction, in conjunction
with GDR2 and GDR3, to constrain orbits.

6. Calibrate HIP1 and HIP2 data using either nonzero ò or
nonzero ω given by Lindegren et al. (2016) but not both;
the ICRF2 could be transformed to the GDR3 frame
using the calibration parameters given by Charlot et al.
(2020) and Lunz et al. (2023).

7. Quadratically add an astrometric jitter of 2.16 mas (or
mas yr−1) to HIP2 astrometry.

These recommendations are automatically implemented in the
Python script provided in Appendix B.

4.3. Dependence of Calibration Parameters on RUWE

Investigating potential biases in the SS astrometric solutions
arising from undetected binaries, we examine the impact of the
RUWE parameter on calibration parameters. RUWE serves as
an indicator of binarity or significant excess noise. Similar to
the approach outlined in Section 4.2, we categorize the SS
calibration sources into subsamples based on different RUWE
values.
Specifically, we partition the RUWE range of SS sources

into five bins: [0, 0.8], [0.8, 1], [1, 1.2], [1.2, 1.4], and [1.4, 60].
The corresponding subsample sizes are 987, 34,743, 31,762,
5073, and 5338, respectively. For each subsample, we derive
the calibration parameters using linear regression.

Figure 5. Dependence of differential calibration parameters (βGDR23) on GDR3 RUWE for the SS calibration sources. Different colors represent different parameters.
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The dependence of calibration parameters on RUWE is
visually represented in Figure 5. Remarkably, the parameters
derived from the SS subsamples demonstrate minimal
sensitivity to RUWE, indicating that our SS-based calibration
remains largely unbiased even in the presence of undetected
binaries. However, the uncertainty associated with calibration
parameters increases, particularly for RUWE values exceeding
1.2. This outcome aligns with expectations, as sources with
higher RUWEs or elevated astrometric jitters contribute
substantial uncertainty to the calibration parameters. This
reinforces the robustness of our approach as an effective
calibration method.

5. Conclusion

In order to identify dark companions and binaries across
multiple Gaia DRs, we have developed an astrometric
modeling framework, designed for the combined analysis of
Gaia, Hipparcos, and Tycho-2 catalogs. To address biases
inherent in these catalogs, we ascertain error inflation,
astrometric jitter, differential frame rotation, and parallax
zero-points relative to GDR3. This involves utilizing calibra-
tion sources selected from GDR3, both with and without orbital
solutions. Through the simultaneous fitting of calibration
parameters and barycentric astrometry to the calibration
sources, our analysis reveals negligible error inflation across
all catalogs. Notably, a significant jitter of 2.16 mas is identified
for HIP2 IAD, a frame offset ranging from 0.12 to 0.26 mas,
and a frame rotation of 0.07–0.15 mas yr−1 for GDR2 relative
to GDR3. Additionally, a substantial frame offset of approxi-
mately −0.12 mas along the y-axis is observed between G1P2
and GDR3. While our estimation of calibration parameters for
HIP1 and HIP2 aligns with previous studies, it is worth noting
that the precision of values determined in this work falls short
compared to those derived from VLBI observations of radio
stars, as demonstrated by Lindegren et al. (2016).

Given the higher precision with which we determine the
differential calibration parameters for GDR2 in this study
compared to prior research, we delve deeper into investigating
the dependency of these parameters on G magnitude and
BP−RP color. Our findings reveal a magnitude-dependent
frame offset of 0.08± 0.02 mas and frame rotation of
0.26± 0.02 mas yr−1 for faint stars (G> 11 mag) in GDR2.
Additionally, we identify a noteworthy 0.24 mas offset between
bright (G< 13 mag) and faint (G> 13 mag) frames, aligning
closely with findings from earlier studies such as Brandt
(2018), Lindegren et al. (2018), and Cantat-Gaudin & Brandt
(2021). Additionally, a significant dependence of zero-point
parallax on color is found in the SS calibration sources,
consistent with previous studies by Lindegren et al. (2021a). A
pipeline to calculate the magnitude-and-color dependence of
calibration parameters is provided in Appendix B.

After comparing the calibration conducted in this study with
previous research, we propose the utilization of NST and SS
values for the global calibration of GDR2. For the calibration
of G1P2 and G1P5, we suggest employing NSTP2 values.

Additionally, we recommend adopting the calibration values
provided by Lindegren et al. (2016) and Lunz et al. (2023) for
the calibration of HIP1 and HIP2. Between the two versions of
Hipparcos data, we advocate for the use of HIP2, incorporating
an astrometric jitter of 2.16 mas. To mitigate unknown
systematics in constraining stellar orbits, our recommendation
is to utilize TYC data without correction. Furthermore, for
GDR1 sources, we propose using the position instead of five-
parameter astrometry.
While we conduct global calibrations for the most widely

used astrometric catalogs, our current focus is solely on the
examination of the dependence of differential calibration
parameters on magnitude and color specifically for GDR2.
To enhance the a priori calibration of astrometric bias, future
efforts should delve into a detailed investigation of how
systematics vary with additional parameters such as position
and distance across various catalogs. However, it is important
to note that our ability to develop a comprehensive calibration
function for different catalogs is constrained. Therefore,
adopting an approach of analyzing astrometric data on a
case-by-case basis is likely the optimal solution for bias
mitigation, as demonstrated by studies such as Snellen &
Brown (2018) and Feng et al. (2019). Nonetheless, our work
ensures a robust calibration of the most prevalent all-sky
astrometric catalogs, facilitating the efficient detection of dark
companions and binaries in extensive data sets using our
algorithm.
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Appendix A
Error Inflation and Jitter Optimization

Figure 6 shows the distribution of lnBF with error inflation
and jitter for various catalogs based on analyses of different
calibration sources.
Figures 7 and 8 show the corner plots of βd for various

calibration sources.
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Figure 6. Similar to Figure 1, but for TYC (first row), HIP1 (second row), and HIP2 (third row).
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Figure 7. Similar to Figure 2, but for the distribution of optimized calibration parameters for G1P2 (left) and TYC (right) based on 10,000 draws of 100 samples from
various calibration sources.
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Figure 8. Similar to Figure 2, but for the distribution of optimized calibration parameters for HIP2 (left) and HIP1 (right) based on 10,000 draws of 100 samples from
various calibration sources.
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Appendix B
Pipeline for Downloading Data

The data used in this work is downloaded using several
scripts, which are available in the GitHub repository at https://
github.com/ruiyicheng/Download_HIP_Gaia_GOST. The
description of these scripts is as follows:

1. get_hipIAD1997.py. This code is dedicated to downloading
IAD of the Hipparcos 1997 reductions. There are a total of
118,204 entries which have nonempty Hipparcos IAD
information in the 1997 version. Using the get_hi-
pIAD1997 function, the Hipparcos IAD of the corre-
sponded source can be downloaded as a csv file. If the input
HIP entry is nonempty, this csv file will contain columns of
the orbit number, source of abscissa (FAST or NDAC),
partial derivatives of the abscissa with respect to
five astrometric parameters ( * *cos , , , ,a a d d p m m= a d),
abscissa residual in milliarcseconds, standard error of the
abscissa in milliarcseconds, correlation coefficient between
abscissae, reference great circle midepoch in years, reference
great circle midepoch in days, R.A. of the great circle pole in
degrees, and decl. of the great circle pole in degrees.
Otherwise, The Hipparcos IAD of this HIP entry
cannot be found will be printed.

2. nssGDR123HIPTYC.sql. This script is used to queue the
Gaia data via ADQL (https://gea.esac.esa.int/archive/).
It retrieves the five-parameter astrometric solution of Gaia
DR1, DR2, and DR3 for NSSs with two-body orbital
solutions. Additionally, it obtains the crossmatch results
of these stars with the Hipparcos and Tycho catalogs.

3. Obtain_GOST.py. This script is used to queue the Gaia
GOST data using the interface in https://gaia.esac.esa.
int/gost/GostServlet. It employs a similar preprocessing
method as described in Brandt et al. (2021) to convert the

server’s returned results into a human-friendly pandas
dataframe. The data is then filtered to match the GOST
results obtained through the web page interface at
https://gaia.esac.esa.int/gost/. The script requires the
path of the csv file obtained using nssGDR123HIPTYC.
sql as an argument. The results are recorded in separate
files named using the Gaia DR3 IDs.

4. frame_rotation_correction.py. This script is used to align
the astrometry of different catalogs with Gaia DR3. The
script requires the catalog astrometry, together with
source and CAT1 as shown in Table 1. The results are
recorded in a dictionary. An exception value would be
given if there is no input proper motion or parallax.

5. download_single_target.py. This script offers a user-
friendly interface for downloading and collaborating
astrometric data. Users can queue the data using HIP
id, TYC id, or Gaia DR1, DR2, DR3 source id. The Gaia
astrometric data is acquired using an ADQL script similar
to nssGDR123HIPTYC.sql. The HIP and TYC astrometry
is gathered through crossmatching with the bulk data
obtained from VizieR.9 The collaborated astrometry is
obtained using frame_rotation_correction.py with the
recommended strategy in Section 4.2. Users have the
option to download either the Hipparcos epoch data or
Gaia GOST data for their target. The results are stored in
the /results folder.

Appendix C
Symbols and Acronyms

Table 2 provides abbreviations used in the paper along with
the meaning of acronyms and symbols used.

9 https://vizier.cds.unistra.fr/
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Table 2
Symbols Used in this Work

Symbol or Acronym Meaning

a Error inflation
b Astrometric jitter
ap Semimajor axis of the photocenter relative to the mass

center
ab Binary semimajor axis
ar Semimajor axis of the reflex motion of the target
Au 1 au
A, B, F, G Thiele–Innes constants
A¢, B¢, F¢, G¢ Scaled Thiele–Innes constants
b Vector of dependent variable in the normal

equation ηβ = b
Cpi cos iq
d Heliocentric distance
e Eccentricity
E Eccentric anomaly
fi

AL Along-scan parallax factor

F1 Luminosity of the primary
F2 Luminosity of the secondary
I Inclination
m1 Mass of the primary in a binary system
m2 Mass of the secondary in a binary system
nd Number of differential calibration parameters βd

nb Number of barycentric astrometry parameters βb

nr Number of reflex-motion parameters βr

M0 Mean anomaly at the reference epoch
P Orbital period
Spi sin iq
Xi Reflex motion in the x direction of the orbital plane
y Data vector consisting of catalog data or IAD
Yi Reflex motion in the y direction of the orbital plane
α R.A.
α* cosa d
βb Linear parameters of the barycentric-motion model
βd Parameters of the calibration model
βn Nonlinear parameters of the reflex-motion model
βr Parameters of the reflex-motion model
βsample Parameters of a sample of calibration sources
γ Coefficient matrix for βr and y
η Design matrix for the normal equation ηβ = b
δ Decl.
δϖ Parallax offset between two reference frames
δξ Vector of abscissae residual
Δδ r Reflex motion projected onto the increasing decl.

direction
Δα b

* *
b refa a-

Δδ b δ b − δref

bmD a
b refm m-a a

bmD d
b refm m-d d

i
bdD Reflex-motion projection in the increasing decl.

direction at ti
i
bdD Barycentric-motion projection in the increasing decl.

direction
Δα R.A. offset, equivalent to Δα*
Δtij Time difference between epoch ti and epoch tj
ò ≡ (òx, òy, òz) Offset between two reference frames at a reference

epoch
θ Gaia scan angle
κb Coefficient matrix for βb and ξ

κd Coefficient matrix for βd and ξ

κr Coefficient matrix for βr and ξ

λ Coefficient matrix for βb and y
μα Proper motion in R.A.
μδ Proper motion in decl.

Table 2
(Continued)

Symbol or Acronym Meaning

refma μα at the reference epoch
refmd μδ at the reference epoch

μb Combination of κb of multiple catalogs
μd Combination of κd of multiple catalogs
μr Combination of κr of multiple catalogs
ν Number of extra parameters of model 2 compared

with model 1
ϖ Parallax
f Orbital phase
ψ Hipparcos scan angle and ψ = π/2 − θ

ξi Raw or synthetic abscissae
ξ Abscissae vector
ωT Argument of periastron for target reflex motion
Ω Longitude of ascending node
Σ Covariance matrix of data y

2cx χ2 for abscissae modeling

ω ≡ (ωx, ωy, ωz) Rotation between two reference frames
AL Along scan
CAT1 First catalog in a crossmatch of three catalogs
G1P2 GDR1 targets with two-parameter solutions
G1P5 GDR1 targets with five-parameter solutions
G3NS GDR3 NSS sources of the Orbital type
G3NSB G3NS sources with barycentric astrometry
G3NSP G3NS sources with target photocentric astrometry
G3SS GDR3 non-NSS sources that have Hipparcos data
GDR1 Gaia Data Release 1
GDR2 Gaia Data Release 2
GDR3 Gaia Data Release 3
GEDR3 Gaia Early Data Release 3
GOST Gaia Observation Forecast Tool
HIP1 Hipparcos catalog released in 1997
HIP2 Revised Hipparcos catalog released in 2007
IAD Intermediate astrometric data
lnBF Logarithmic Bayes factor
NSB GDR2+G3NSB
NSBH1 HIP1+GDR2+G3NSB
NSBH2 HIP2+GDR2+G3NSB
NSBP2 G1P2+GDR2+G3NSB
NSBP5 G1P5+GDR2+G3NSB
NSBT TYC+GDR2+G3NSB
NSS GDR3 non-single-star sources
NST GDR2+G3NST
NSTP2 G1P2+GDR2+G3NST
NSTP5 G1P5+GDR2+G3NST
NSTT TYC+GDR2+G3NST
NSTH1 HIP1+GDR2+G3NST
NSTH2 HIP2+GDR2+G3NST
SS GDR2+G3SS
SSH1 HIP1+GDR2+G3SS
SSH2 HIP2+GDR2+G3SS
SSP2 G1P2+GDR2+G3SS
SSP5 G1P5+GDR2+G3SS
SST TYC+GDR2+G3SS
TYC Tycho-2

Note. Some of the variations of symbols are not shown and the meaning of
symbol variations can be found in the corresponding text.
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