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Abstract—The incorporation of mmWave technology
in vehicular networks has unlocked a realm of possibili-
ties, propelling the advancement of autonomous vehicles,
enhancing interconnectedness, and facilitating commu-
nication for intelligent transportation systems (ITS).
Despite these strides in connectivity, challenges such as
high path-loss have arisen, impacting existing beam man-
agement procedures. This work aims to address this issue
by improving beam management techniques, specifically
focusing on enhancing the service time between vehicles
and base stations through adaptive mmWave beamwidth
adjustments, accomplished using a Contextual Multi-
Armed Bandit Algorithm. By leveraging various condi-
tions to train the ML agent of the Contextual Multi-
Armed Bandit Algorithm, it seeks to learn about vehicle
mobility profiles and optimize the usage of different
antenna beamwidth settings to maximize seamless con-
nection time. The extensive simulation results showcase
the effectiveness of an adaptive beamwidth for mobility
profiles, extending the connection time a vehicle experi-
ences with a base station when compared to the existing
strategies.

Index Terms—beamwidth adaptation, mmWave, V2X.

I. INTRODUCTION

The utilization of high-frequency mmWave bands
and massive MIMO in 5G New Radio (NR) technol-
ogy has enabled several desirable features, including
increased speeds, low latency, high reliability, and
enhanced capacity, making it well-suited for future
connected autonomous vehicles [1], [2]. As the ve-
hicular network continues to expand with a growing
number of vehicles on the road, 5G NR proves capable
of meeting this surge in demand, as it can support 10 to
100 times more users than its predecessor, 4G LTE [3].
Despite its benefits, the deployment of 5G NR in ve-
hicular networks introduces new challenges. Vehicular

networks are characterized by a complex and dynamic
environment, with rapidly moving vehicles, infras-
tructure, and obstacles, posing potential issues for
data transmission [4]. Challenges such as radio wave
reflection, diffraction, and scattering result in multipath
propagation and signal degradation, particularly due to
the characteristics of mmWave frequencies, which ex-
hibit significant path loss and limited antenna coverage
[5]. As vehicular density and mobility increase, relying
solely on mmWave base stations might be insufficient
to ensure service continuity and wide coverage for
multiple vehicles with different mobility profiles. To
address these issues and optimize wireless connectivity
performance in vehicular networks, the adoption of
beam management techniques becomes essential [6].

Beam management encompasses procedures for
forming, controlling, and detecting beams, enabling
the system to direct highly focused beams towards tar-
get users, thereby improving signal quality and mini-
mizing interference [7], [8]. One critical beam manage-
ment technology for vehicular communication systems
is beamforming, which enhances signal quality and
increases capacity. However, traditional beamforming
with fixed beamwidths may not efficiently cope with
the dynamic nature of vehicular networks. To address
this, beamwidth adaptation has been proposed as a
solution to optimize transmission in vehicular net-
works [9]. Recent studies have extensively explored
the performance of beamwidth adaptation in vehicular
networks, emphasizing its potential to cater to the
unique challenges posed by vehicular environments
[10]–[12].

The work in [10] examines the challenges of using
highly directional antennas in mmWave cellular net-



works, particularly the need for precise beam align-
ment between a base station (BS) and user equipment
(UE). The paper proposes an approach to improve
the beam-sweeping process and reduce initial access
(IA) delay, which is caused by the necessity to sweep
over many directions due to the size of the beam. The
proposed solution involves using various beamwidths
and requiring sweeping in fewer directions. However,
using an adaptive beam could result in a weak received
signal and a higher misdetection probability, resulting
in increased IA delay. To address these concerns, the
paper presents a two-stage solution framework based
on a multi-armed bandit (MAB) approach. The results
of the experiments show that the proposed algorithm
significantly reduces IA delay by over 50% compared
to traditional fixed-beamwidth schemes. While the
study highlights that using an adaptive beamwidth
improves a part of the beam management process, it
does not explore how an adaptive beamwidth approach
can improve the connection time between a BS and
UE.

In [11], the authors aim to enhance the initial access
process for mmWave uplink systems, by using the
estimated location of UE to reduce the broad full
beam sweep for the beam direction toward UEs. The
proposed approach optimizes the IA algorithm by
estimating the distance and determining an optimal
beamwidth that maximizes the connection probabil-
ity. Compared to the conventional fixed beamwidth
(15° in the simulation) procedure, the proposed op-
timal beamwidth scheme with the new IA and beam
adaptation (BA) algorithm achieves up to 1.5 times
higher channel gain. By improving the beam sweeping
process, this study significantly enhances the beam
management process. However, it does not investigate
the effects of having a dynamic beamwidth setting.

[12] proposes a beamwidth-aware mmWave
scheduling scheme for V2V (Vehicle-to-Vehicle) com-
munications on four lanes highway, supported by
sub-6GHz V2X (Vehicle-to-Everything). The proposed
scheme enables mmWave transmitters to schedule
a mmWave transmission (usually completed sequen-
tially), to several neighbouring vehicles simultane-
ously by adapting the beamwidth configuration (divid-
ing the beam into several sectors). To achieve this,
the study utilizes information from sub-6GHz V2X
transmissions to identify the location of neighbouring
vehicles and determine the minimum beamwidth for
mmWave transmissions. The results demonstrate that
this proposal helps increase the amount of mmWave
data transmitted to neighbouring vehicles, leading to
improved throughput. However, this paper does not
consider the effects of antenna gain, coverage area,
channel state, scheduling conflicts and interference.

From the literature papers above, it is clear that
adapting the beamwidth in vehicular networks can im-
prove the beam management process. However, most
research primarily focuses on improving the beam

alignment process through several considerations, e.g.
location or reduced sweeping. After a thorough search
of the available literature, no existing literature di-
rectly address to adaptively decide best beamwidth
configuration for maximumum seamless connection
time by incorporating vehicle mobility context under a
realistic vehicular mobility environment. In this paper,
the research problem is to identify which ”sequence
of beams” to use so that we can serve vehicles con-
tinuously with the longest connection time. This work
investigates the impact of beamwidth on connectivity
and coverage performance and proposes a machine
learning approach to find best beamwidth configura-
tion for a seamless and robust connection for mobile
vehicles. The remainder of the paper is organized as
follows: Section II describes the considered scenario
and formulation of the beamwidth adaptation problem.
In Section III, the proposed beamwidth selection al-
gorithm based on Contextual MAB (C-MAB) [13] is
elaborated. The experimental results are explained in
Section IV to show the effectiveness of our proposed
algorithm. Finally, we draw important conclusions in
Section V.

II. SCENARIO SETUP AND PROBLEM
FORMULATION

In this study, we focus on a mmWave small cell
BS that is deployed to enhance data transfer rates
and increase network capacity. The small cell BS
considered in our analysis consists of an array of
antennas, which are directed towards specific prede-
termined directions. We assume that the antenna can
reconfigure its beamwidth setting to produce different
radiation footprints. Fig. 1 illustrates four beamwidth
configurations that a small cell BS can operate, each
of which has a different coverage. The mmWave small
cell BS base is located at a junction in Guildford
town center, UK, serving traffic travelling from various
directions.

In our scenario, the pathloss model for the 28 GHz
mmWave channel is based on [14] which is expressed
as

PL(d) = PL(d0) + 10n log10(d/d0) +Xg, (1)

where d is the distance between the transmitter and
receiver antennas in meters, n is the pathloss expo-
nent which is set tp 3.4. The channel fading effect,
represented by Xg , is not considered in our analysis.
The free space path loss (FSPL) in dB, denoted as
PL(d0), depends on the carrier frequency fc and is
given by the formula 10 log10((4πd0fc/c)

2), where
d0 = 1m. Additionally, there is a height difference of
5m between the small cell BS and the vehicle antennas.
Consequently, the distance d̂ between the two nodes
is related to d by the equation d =

√
d̂2 + 52.

The vehicles involved in the communication are
equipped with steerable beam antennas that can track
and adjust their orientation towards the BS during the



Fig. 1. Illustration of various beam configurations of a mmWave
small cell base station.

communication. With this setup, the signal-to-noise
ratio (SNR) of a given vehicle being served can be
calculated using the following formula

SNR = p0 − PL(d) +Gtx +GBF (∆θ) +Grx −N,
(2)

where p0 is the transmit power. Gtx and Grx are the
transmitter and receiver antenna gains, respectively. N
is the noise, including thermal noise and the receiver
noise figure. We follow the mmWave beamforming
model used in [15]. In the study, the beamforming gain
GBF of the antenna is calculated based on [16] by

GBF (∆θ) =
2π

B3dB
10

−0.1η
(

∆θ
B3dB

)2

(3)

where B3dB is the beamwidth of 3dB of the antenna,
∆θ is the off-center angle which measures the angle
between the beam center direction and its pointing
direction to the serving vehicle within its beam sector,
and η is a constant carrying a value of 12. Four
different beamwidth settings are used in our scenario.

The utilization of mmWave small cells for V2X
communication poses a unique challenge, as fast-
moving vehicles served by narrow beams leads to short
duration of a vehicle’s presence within the beam. Con-
sequently, frequent handovers and signaling overheads
are resulted. To optimize data transmission between
the small cell BS and the vehicles it serves, the radio
resource allocation strategy should prioritize serving
vehicles that remain within a beam for the longest
possible duration. This strategy aims to minimize han-
dovers and signaling overheads, ensuring more stable
and efficient communication for V2X scenarios using
mmWave small cells [13].

Given the ability of beamwidth reconfiguration, it
is possible to identify matching beamwidth setting for

TABLE I
DOWNLINK COMMUNICATION PARAMETERS USED IN OUR

STUDY.

Parameter Value
Center frequency, fc 28 GHz
Channel bandwidth 50 MHz
Transmit power, p0 30 dBm
Transmitter antenna gain, Gtx 12 dB
Thermal noise -97.2 dBm
Noise figure 7 dB
SNR threshold -5 dB
Beamwidth settings, B3dB 17.5, 35, 70, 105 degree

some vehicle profiles such that the vehicles can be
served with the longest duration while travelling within
the small cell BS coverage. In other words, when the
small cell BS is ready to serve a vehicle, we aim to
find which pair of beam configuration and vehicle to
be assigned for service that can maintain the longest
connectivity duration. We measure the connectivity
duration from the time when the vehicle is assigned
a beam, until the vehicle can no longer be served by
the small cell BS. During the downlink service, if the
vehicle has left the coverage of the existing beam,
the BS may reconfigure its beam to continue to serve
the vehicle, until none of the configurations can reach
the vehicle, then the service is considered ended. The
duration of the service is also called vehicle sojourn
time.

While performing downlink transmission, the BS
adaptively adjusts the modulation and coding scheme
(MCS) to achieve maximum data rate transmission.
The supported maximum data rate for a downlink
transmission is given in [17]. Table I summarizes the
parameters used in our study for downlink communi-
cation from the small cell BS to the serving vehicle.

In order to maximize its service duration for a
vehicle, upon departure of a vehicle, the BS imme-
diately selects an available vehicle within its coverage
to serve. The BS can unbiasedly select an available
vehicle for its next service, or greedily choose a vehicle
with the highest SNR. However, based on our earlier
work [18], we demonstrated the importance of vehicle
profiles for beam-vehicle pairing as vehicle mobility
follows local street layout which is predictable. In this
work, we further show that vehicle profiles are also
critical for reconfigurable antenna when pairing with
vehicles. The mobility information used for profiling
vehicles shall include vehicle orientation, distance
from the BS which can be derived from signal quality,
angle of transmission to the vehicle, and the travelling
velocity of the vehicle.

III. PROPOSED CONTEXTUAL MULTI-ARMED
BANDIT LEARNING DESIGN

We use Contextual MAB (C-MAB) machine learn-
ing technique to optimize the selection of vehicles for
service. The objective is to select the best combination
of beamwidth configuration and vehicle that can yield



the longest sojourn time. Thus, the reward for the C-
MAB model is the connection duration experienced
by a serviced vehicle. Additionally, we consider the
mobility information of the vehicle as the context for
learning and exploitation.

In our design, the small cell BS can operate using
one of the four beamwidth configurations. When the
BS is available to perform a downlink transmission, it
picks one of the beamwidth configurations to service
a vehicle within the beam coverage. The bandwidth
of a beam is set to 50 MHz. The BS may be given
a bandwidth wider than 50 MHz. In this case, we
consider that the BS can serve multiple vehicles inde-
pendently by partitioning the bandwidth into multiple
50 MHz bands. Without loss of generality, we focus
on a particular 50 MHz frequency band.

Our C-MAB operates in either exploration or ex-
ploitation modes. We use explore-first strategy with
sufficient exploration for the learning. During the ex-
ploration, the BS randomly picks a beamwidth setting
and a vehicle within the beam coverage to perform
a downlink transmission. The mobility profile of the
picked vehicle is also captured. With full buffer as-
sumption, the BS continues to transmit the data using
appropriate MCS to achieve supported maximum data
rate transmission as derived in [17]. If the vehicle has
left the beam coverage, the BS attempts to reconnect
the vehicle immediately using a different beamwidth
setting. If none of the beamwidth settings can reach the
vehicle, the vehicle is said to have left the BS, and the
downlink service is considered ended. The duration
of the service is measured and used as the reward
associated with the mobility profile of the served
vehicle. The ML agent continues to learn the reward
of various mobility profiles during the exploration.

Once the exploration phase is completed, the ML
agent switches to exploitation. In the exploitation
phase, whenever the BS is ready to perform the next
service, it picks the vehicle that can yield the highest
reward among other vehicles. Precisely, the ML agent
ranks the learned profiles based on their rewards, and
it searches for an available vehicle whose profile has
the highest reward in the ranked profiles. The available
vehicle will then be served by the beamwidth setting
based on the ranked profile accordingly. If none of
the available vehicles have a profile matching that in
the ranked profiles, a random selection of an available
vehicle is performed. In this case, the ML agent will
learn this unseen profile.

We use mobility information as the context of C-
MAB for profiling vehicles. The mobility informa-
tion consists of vehicle orientation, signal strength
for the distance from the BS, angle of transmission,
and travelling velocities of the vehicle. The following
elaborates our design of vehicle mobility profiling:

• Vehicular Orientation: four directions are con-
sidered, which are ‘North’, ‘East’, ‘South’ and
‘West’.

• Vehicular Speed: the vehicle is considered ‘Slow’
if the speed is below 25 km/h. Otherwise, it is
considered ‘Fast’.

• Signal Strength: it is measured by Reference
Signal Received Power (RSRP) in dBm. Four
levels are used, which are ‘Excellent’ if RSRP >
−70, ‘Good’ if RSRP ∈ [−70,−80), ‘Fair’ if
RSRP ∈ [−80,−90), or ‘Poor’ is RSRP ≤
−90.

• Angle of Transmission: it measures the transmis-
sion angle from the BS to the vehicle relative
to the BS pointing direction. Three categories are
used. If the vehicle is within ±45 of the BS point
direction, it is considered as ‘Center’. Otherwise,
if the vehicle is more than ±45 from the BS point
direction residing on the left (resp. right) side of
the BS pointing direction, it is said to be on the
‘Left’ (resp. ‘Right’).

Given the above vehicle mobility profiling scheme,
we can derive 96 unique profiles to describe the
vehicle mobility. The objective of ML agent is to
learn the reward of each profile when served by a
beam with a specific beamwidth setting. As the context
space is relatively small, we use explore-first as our
exploration-exploitation strategy. The aim during the
exploration phase is to establish as much knowledge
as possible about the profiles and their corresponding
reward. During the exploitation, if the learning is
insufficient where the ML agent cannot identify a
vehicle to serve, it will perform exploration to fill its
learning gap. The online learning feature of C-MAB
can continue to acquire new knowledge or reinforce
its learning as it exploit the learned knowledge.

IV. RESULT DISCUSSION

In this section, we present the simulation results and
show the effectiveness of our beanwidth adaptation
using ML technique. We utilize our custom-developed
Python Mobility Simulation Platform (PyMoSim) to
conduct the simulations and obtain the results. The
simulation involves a large number of vehicles of
over a hundred continuously moving on the map. We
simulate 6 hours of operation, during which the BS
undergoes a two-phase operation. In the first 2 hours,
the BS performs full exploration for learning purposes.
Subsequently, it switches to full exploitation. By im-
plementing the Explore-First strategy in this manner,
we can concentrate on studying the effectiveness of the
learning acquired during the initial exploration phase.
This approach allows us to focus on the learning phase
impact on the performance and efficiency of C-MAB
models, as exploration is no longer considered after
the learning phase is completed.

To show the performance benefit of considering
vehicle mobility profiles for beamwidth setting, we
compare the C-MAB solution with random selection
and BestSNR strategy. The Best SNR strategy is a
commonly used technique in BSs to greedily serve



users. Fig. 2 presents the average service duration of
vehicles over the simulation time. As can be seen,
during the exploration phase, all methods produce
similar results where the average service duration is
around 17 seconds. During this phase, C-MAB uses
random selection to acquire knowledge, and hence the
performance is similar to that of the random selection.
Interestingly, the BestSNR strategy also produces sim-
ilar results. During exploitation phase, the ML agent
utilizes its learned knowledge to select the vehicle that
can yield the highest reward. As a result, the service
duration of C-MAB jumps to above 25 seconds on
average which is more than 40% improvement, and it
records peak service duration of over 30 seconds.

In Fig. 3, we further compare the average downlink
transmission data rate between the random selection,
BestSNR strategy and our proposed C-MAB solution.
We see that BestSNR yields slightly higher data rate
than others due to its design of selecting the vehicle
with the highest SNR for service, the C-MAB solution
gives comparative data rate performance during the
exploitation. The results suggest that while C-MAB
attempts to maximize the service duration, its decision
does not sacrifice the data rate performance. The
BestSNR strategy often picks vehicles near the BS to
begin its service, while C-MAB picks vehicles near
the beam-edge. Although the vehicles picked by C-
MAB begins from the beam-edge, they often travel
towards the BS which allows them to enjoy high
data rate transmission while they travel near the BS.
Consequently, C-MAB solution not only produces the
longest service duration, the data rate performance is
comparable to that of the BestSNR strategy.
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Fig. 2. Service duration versus simulation time for random selection,
BestSNR strategy and C-MAB solution.

V. CONCLUSION

In this paper, we considered a mmWave small cell
BS with adaptive beamwidth settings. We developed
a machine learning technique to adaptively adjust
beamwidth settings to provide the longest service
duration to vehicles. We applied Contextual Multi-
Armed Bandit (C-MAB) machine learning technique
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Fig. 3. Data rate performance comparison between random selec-
tion, BestSNR strategy and C-MAB solution.

to learn how vehicle mobility information influence the
service duration performance under various beamwidth
settings and utilize the learned knowledge to identify
the available vehicle that can potentially offer the
longest service duration with the best beamwidth set-
ting. In our design, we profiled vehicle mobility using
various information including the vehicle travelling
direction and speed, received signal strength, angle of
transmission from the BS to the vehicle. Our profil-
ing produced 96 unique mobility profiles which are
relative small for efficient learning. We demonstrated
that with the profiling approach in C-MAB, our ML
solution achieves over 40% improvement in the service
duration and we also showed that the average data
rate during the service is comparable to that of the
BestSNR which aims to achieve the highest data rate
transmission.
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