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Abstract 

Background 

By 2022, a total of 1,127 of Novel Psychoactive Substances (NPS) have been identified worldwide 

and officially reported by the United Nations Office on Drugs and Crime (UNODC) and the 

European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). An analysis of the surface 

web via the use of a web crawler, NPSfinder®, indicated that the number of NPS could be almost 

four times higher than that known to both the UNODC and EMCDDA. This is of particular 

concern, especially if one considers the public health risks and harms associated with NPS 

use/abuse and the paucity of data related to their pharmacological/toxicity profiles. In particular, in 

the last few years two NPS classes, i.e. novel synthetic opioids (NSOs) and designer 

benzodiazepines (DBZDs) were associated with serious side-effects and life-threatening scenarios 

(i.e., fatalities and overdoses).  

Gaps in knowledge 

Hence, with online NPS numbers exceeding those reported by official sources, there is a strong 

need to address the gap in knowledge concerning the discrepancies between the online and the 

evidence based NPS market(s); as well as the gap in knowledge concerning lack of pharmacological 

profiles for most of the newly-identified NPS. 

Objectives  

This programme of research aimed to: use data available from NPSfinder®, the UNODC and 

EMCDDA to assess the current general NPS  scenarios, and in particular for DBZDs and NSOs; use 

in silico computational techniques to predict the biological activity of the emerging NPS; use the 

predicted values to infer possible health threats associated with the consumption of these 

substances, underscoring which of the NPS identified online could indeed represent a serious threat 

to public health; assess the potential of in silico methodologies as preliminary risk assessment tools; 

and subsequently inform relevant stakeholders about the risks associated with these new NPS. 

Methods 

The NPSfinder® web crawler was used to identify NPS which are available/discussed online. A 

comparison with UNODC and EMCDDA databases was then carried out to assess the extent of the 

total NPS scenario, and the numbers of the NSOs and DBZDs classes. To appreciate and predict the 

biological activities of NSOs and DBZDs, in silico models (e.g., quantitative structure-activity 

relationship (QSAR), Molecular Docking (MD) and pharmacophore mapping) were used as 

reliable, time- and cost- effective alternatives to the classical approaches such as in vivo, in vitro or 

preclinical studies.   
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Results and Discussion 

A total of 4,231 NPS were identified on the surface web, almost four times the numbers reported by 

both UNDOC and EMCDDA databases (circa 1,127). These results suggest how the online content 

analysis should be considered as an important source for the assessment of the NPS scenario. The 

same discrepancy in the total NPS numbers was observed for each NPS class and a total of 115 

DBZDs and 371 NSOs were identified compared to 33 and 123 reported by the UNODC 

respectively. To assess pharmacological profiles of these NSOs and DBZDs identified online, 

specific QSAR models were developed in MOE® and Forge™. For the prediction of biological 

activities of DBZDs, the γ-aminobutyric acid A receptor (GABA-AR) was used; the mu opioid 

receptor (MOR) was used for the NSOs. In addition, for the DBZDs, a set of new potential ligands 

resulting from “scaffold hopping” exercises conducted with MOE® was also evaluated.  

The generated QSAR models returned good performance statistics confirming their strong 

reliability in predicting the biological activity of an unknown or a newly-identified molecule. The 

DBZDs predicted to be the most active were flubrotizolam, clonazolam, pynazolam and, 

fluclotizolam, consistently with reported literature and/or drug discussion forums. In particular with 

flubrotizolam and fluclotizolam, it was found they were discussed on drug fora but not previously 

identified either by the UNODC or EMCDDA (flubrotizolam only). This suggests the possible 

presence on the market of very potent NPS which are still unknown to international agencies, 

potentially representing a serious threat to public health. Worrisome results were also obtained for 

the class of NSOs, with the identification of new and potent analogues of carfentanyl (10,000 more 

potent than morphine), i.e., 2-methyl carfentanyl, n-methyl-carfentanyl and butyryl-carfentanyl. 

Moreover, the scaffold hopping exercise conducted for the DBZDs class, strongly suggested that 

structural replacement of the pendant phenyl moiety could increase biological activity and 

highlighted the existence of a still unexplored chemical space for this NPS class. The results 

obtained with QSAR analysis were supported by molecular docking exercises, which gave an 

indication of the binding affinity of these NPS towards their respective receptors. Moreover, the 

binding affinity of a set of DBZDs was assessed for the MOR, in an attempt to assess a possible 

multi-receptor activity of these molecules. 

Conclusions 

 The online identification of a great number of NPS, including very potent central nervous system 

depressants, represents a serious challenge, in particular if one considers that DBZDs and NSOs are 

usually consumed either together or in combination with stimulants for recreational purposes and 

self-medication. The high numbers of available molecules, their patterns of use and the paucity of 

pharmacological data could lead to worrisome outcomes, including the synergy of each NPS class 
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side-effects, which could (and are) increasing the likelihood of respiratory depression, coma, and 

deaths. 

To retrieve an extensive picture of the current NPS drug scenario, the online analysis has proven 

very useful, if not fundamental. Its ability to identify novel mentioned NPS, in a timely manner, 

makes it a very important tool for a range of activities, including informing law-enforcement and 

public health stakeholders, supporting the European and United Nations Early Warning Systems 

impacting and influencing law-making and guiding monitoring/surveillance. Moreover, in silico 

methodologies, proven as reliable tools for a fast prediction of biological activity, could be used in 

describing the activity/toxicity profile of novel NPS, aiming at supporting both law enforcement in 

scheduling process and public health stakeholders in drafting treatment/management educational 

packages. Finally, the combination of online and in silico analysis could support and improve the 

risk assessment procedures currently in place for NPS. 
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Chapter 1 Introduction 

 

1.1 Research Background  

The Novel Psychoactive Substances (NPS) phenomenon with its current and future trends is the 

context within which this programme of research stands. Results obtained by an ongoing analysis of 

the surface web, started in November 2017, indicate that the number of NPS available online could 

be much higher than those reported by both the United Nations Office on Drugs and Crime 

(UNODC) and the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via 

their evidence-based identification and early warning systems. These innovative results can be 

considered very worrisome evidence of, and suggestion for, internet-based knowledge to be used in 

assessing “real-world” NPS scenarios. Moreover, they highlight the need to develop a fast and 

reliable approach in evaluating the possible health treats associated with these NPS, for which very 

few information is available on pharmacological/toxicological profiles. Looking into the use of in 

silico methodologies could be of great relevance in finding alternative methods to the classical in 

vitro and in vivo pharmacology approaches  

 

1.2 New Psychoactive Substances  

1.2.1 What are NPS? 

The term NPS, which was adopted in Europe in the early 2000 and used in 2005 in the new EU 

legislation (Council of the European Union, 2005; EMCDDA, 2022a), defines a general class of 

substances which were created to resemble/mimic the effects of classical drugs of abuse (e.g. 

cocaine, heroin, amphetamine, cannabis). NPS can be either analogues of existing controlled drugs 

or newly synthesized chemicals (Council of the European Union, 2005; EMCDDA, 2022a). 

The UNODC defines these molecules as ‘substances of abuse, either in a pure form or a 

preparation, that are not controlled by international drug conventions, but which may pose a public 

health threat’ (UNODC, 2013); while the EMCDDA adopts a different definition: ‘a new narcotic 

or psychotropic drug, in pure form or in preparation, that is not controlled by the United Nations 

drug conventions, but which may pose a public health threat comparable to that posed by substances 

listed in these conventions’(EMCDDA, 2022b). 

In this context, the term "novel" does not necessarily refer to new inventions but to substances that 

have newly become available in specific markets. Indeed, molecules deriving from old 

pharmaceutical patents or failed clinical studies are often being repurposed in the recreational drug 
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markets together with molecules already well established (decades) on the therapeutic market 

(UNODC, 2021a).    
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1.2.2 NPS Classification  

At present 1,127 NPS have been reported by the UNODC, identified by 134 countries and 

territories worldwide (UNODC, 2022a), against the 880 NPS reported in Europe for the same 

period (EMCDDA, 2022c). Due to the high diversity of pharmacological profile and chemical 

structure that characterise this group of substances, the classification of NPS is a very difficult and 

complex task. The latter is complicated by the drug market highly dynamic nature which sees 

different molecules appearing every week and increases the difficulty of allocating one substance to 

a defined class with no overlap or confusion (UNODC, 2019a).  

There are multiple ways in which an NPS can be categorised, for example, NPS can be grouped for 

their origin – whether natural (e.g. fungi or plant based) or synthetic, for their psychotropic effects, 

or for their chemical structure. 

 In the early days of the NPS emergence (for a timeline please refer to Ch 1.2.3), the UNODC 

noticed that these molecules seemed to mimic the effects of the six main groups of substances 

controlled under the international drug conventions (LSS/RAB/DPA/UNODC, 2016); and 

proceeded to use the pharmacological activity as a criterion for classification. The following classes 

were adopted: stimulants, opioids, synthetic cannabinoid receptor agonists, dissociatives, classic 

hallucinogens and sedatives/hypnotics. Any NPS reported that did not fit in any of these six classes 

were labelled as not yet assigned (UNODC, 2022a, 2022b). Here is reported the 2021 NPS 

distribution at the global level, by effect group as per UNODC data (Figure 1.1).  

 

Figure 1.1 Distribution of NPS reported to the UNODC by effect group.  

Data reproduced with permission of the UNODC (UNODC, 2022a) 
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The classification by effect adopted by the EMCDDA divides all the NPS into two categories: 

psychotropic substance or narcotic drug (EDND, 2021), in line with the Single Convention on 

Narcotic Drugs of 1961 and the Convention on Psychotropic Substances of 1971 (UNODC, 2022c). 

These two very different ways of categorising NPS substances could be considered the result of the 

highly independent work of these two international agencies. 

Grouping NPS according to their pharmacological effects, however, can be a very challenging task, 

especially for newly identified substances, because no information regarding their 

pharmacology/toxicological profile is usually available. Hence, the UNODC and EMCDDA 

adopted an ulterior categorisation based on chemical structure. In particular the UNODC identifies a 

total of 11 NPS substance groups and the EMCDDA a total of 13 (Table 1.1). For clarity in this 

document we will refer to substance groups as classes. 

Table 1.1. Number of identified NPS per class by the UNODC (2009-2020) and EMCDDA (2010-2020)*.  

UNODC EMCDDA 

NPS Class No (2009-2020) NPS Class No (2010-2020) 

Aminoindanes 9 Aminoindanes 6 

Fentanyl analogues  79 Arylalkylamines 41 

Benzodiazepines 30 Arylciclohexilamines 27 

Phencyclidine-type substances  26 Benzodiazepines 33 

Phenethylamines 176 Cannabinoids 224 

Piperazines 27 Cathinones 162 

Plant-based substances 22 Opioids 73 

Synthetic cannabinoids 324 Phenethylamines 106 

Synthetic cathinones 201 Piperazines 18 

Tryptamines 60 Piperidines/pyrrolidines 15 

Others (including opioids) 173 Plant-based 9 

    Tryptamines  57 

    Others 115 

*The classes are listed in alphabetical order. To be noted that NPS opioids which are not fentanyl analogues 

have been included by the UNODC in the “others” class.  
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1.2.3  NPS phenomenon 

While records of NPS can be dated back to the mid-90s (Dargan and Wood, 2013), one could argue 

that the NPS phenomenon started in 1997 with the establishment of the EU Early Warning system 

and the ‘joint action concerning the information exchange, risk assessment and control of new 

synthetic drugs’ (Dargan and Wood, 2013; EMCDDA, 2022a). Indeed, in 1998 the first risk 

assessment on a NPS (MBDB (N-methyl-1-(1,3-benzodioxol- 5-yl)-2-butanamine)) was produced 

(EMCDDA, 1999). Between 1998 and 2007 however only a small number of NPS (roughly 60 in 

Europe) appeared on the market (EMCDDA, 2009a). These were then known as “new synthetic 

drugs” or “herbal highs” and were predominantly stimulants and hallucinogens/psychedelics 

molecules produced in small illicit European laboratories. In 2007 the appearance on the market of 

“Spice”, a mixture containing synthetic cannabinoids, and mephedrone started the era of “legal 

highs” and “research chemical”, which saw a rapid expansion of the number and type of NPS and 

the shift in production from the Europe to the China (EMCDDA, 2015, 2009b, 2009a). At that time, 

the term ‘legal highs’ was properly used to underscore the lack of any legal restriction concerning 

their possession, usage and marketing as well as implying the safety of the product. After this rapid 

expansion (EMCDDA, 2011), which, up to 2016, saw more than 800 “legal highs” and “research 

chemical” openly sold in physical shops and on the internet via very attractive marketing strategies 

(colourful packages, attractive names, and low prices) (Corazza et al., 2014b), the market(s) for 

NPS changed again towards different chemical classes, and towards a stabilisation in their numbers. 

Stimulants (i.e., cathinones and phenethylamines), hallucinogens (mostly tryptamines), synthetic 

cannabinoid receptor agonists (SCRAs), synthetic benzodiazepines and opioids became the most 

popular NPS groups (UNODC, 2022b).  

These new NPS contributed to a greater complexity of the markets characterised as well by the 

emergence of less but still highly potent NPS (in particular fentanyl-like and benzimidazole opioids 

and synthetic benzodiazepines), associated with more problematic patterns of use and more long-

term, marginalised users (EMCDDA-Europol, 2019). Parallel to this, there was a growing 

integration between the NPS and the illicit drug markets, which showed predominantly in the use of 

NPS as counterfeit/falsified prescription drugs (e.g., Valium, Xanax (alprazolam)) (EMCDDA, 

2022a). Another shift in the geography of production was observed as well, with India becoming 

one of the top manufacturing countries (Patil et al., 2016). 

As a result, over the last decade a dramatic increase in the number of new psychoactive substances 

detected across the world has been observed, with a market that has been confirmed highly dynamic 

(UNODC 2022a). As of June 2022, the UNODC, through the Early Warning Advisory (EWA) on 

NPS (UNODC, 2022d), identified 1,127 individual new psychoactive substance reported by a total 
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of 134 countries (UNODC, 2022a), with an average of 100 substances reported by each country; 

while the EMCDDA via the Early Warning System (EWS) (EMCDDA, 2021a) reported a total of 

884 NPS, of which 52 were formally notified in 2021 (EMCDDA, 2022a, 2022c).  

The number of NPS notified in 2021 matches the trend of roughly 50 new molecules per year 

observed since 2016, down from the 100 identified in 2014 and 2015. Despite this decrease in 

numbers, at date the NPS class is still fast-evolving, very volatile and often diversified, and includes 

a variety of substances with different (il)legitimate use, composition and position in the global drug 

markets.  

Differing from the controlled “traditional” drugs, NPS usually do not have established or long-

lasting markets and they often display a rapid “life cycle” (Corkery et al., 2017). Indeed, the 

majority of NPS emerges and stays on the market only for a short period (e.g. months to a year), 

usually because they either do not generate enough interest (hence demand), are outshined by other 

rival NPS or are quickly banned due to their high potency often associated with high popularity 

(UNODC, 2022b) (EMCDDA, 2022a). However, for a small number of NPS, evidence of market 

stabilisation has been recently reported (i.e., synthetic opioids, synthetic benzodiazepines) 

(UNODC, 2021b, 2020a, 2020b, 2019b, 2019a, 2017a). Lower NPS turnover and a more stable 

markets could suggest how NPS have become more users targeted and a longer-term class of 

recreational drugs. However, despite the decrease of first-time detections, NPS still pose serious 

health risks worldwide with serious health emergencies (mass intoxications and deaths) reported 

due to synthetic opioids, designer benzodiazepines and synthetic cannabinoids (Adamowicz et al., 

2019; Adams et al., 2017; Armenian et al., 2018; Darke et al., 2022; Elliott and Hernandez Lopez, 

2018; EMCDDA, 2019a; Jalal and Burke, 2021; Koch et al., 2018).  

 

1.2.4 NPS legal status  

Per definition, NPS fall outside the global drug control system and are not included in the schedules 

of the 1961 or 1971 Conventions. As a result, the number and diversity of NPS identified 

worldwide in recent years have been posing considerable challenges for policymakers, both from 

international and national points of view.  

At the national level, efforts in controlling the open sale of NPS has resulted in innovative legal 

responses and interventions designed to cover the time gap necessary for a permanent update on the 

drug law control. In particular, three types of responses can be identified (EMCDDA, 2016a, 2016b; 

UN, 2022):  
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• ‘Controls using consumer safety or medicines legislation’ (EMCDDA, 2016a), e.g. the 

requirement for which food and goods for sale need to be clearly labelled with their 

expected usage, the lack of which has been used to confiscate NPS 

• ‘Extending and adapting existing laws and processes’ (EMCDDA, 2016a), e.g. the enact of 

temporary class drug orders to quickly control named NPS for a period up to one year.  

• ‘Devising new legislation to tackle new substances’ (EMCDDA, 2016a), e.g. the enact of 

new laws, such as to control the sale of NPS. In particular three different types of new 

legislation were introduced: generic legislation including a precise definition of a family of 

substances; an analogue legislation including a more generic definition of activity/structure 

similarity; and a derivative legislation including NPS deriving from other well known drug 

of abuse.  

In past years generic or “catchall” legislations have been widely (Australia, Germany, United 

Kingdom and China) adopted on NPS, which covered almost every possible variant if not all 

possible future variants of psychoactive substances (Corazza and Roman-Urrestarazu, 2017).  

Currently in the UK, unless they are already controlled under the Misuse of Drugs Act 1971, NPS 

are caught by the Psychoactive Substances Act 2016, which came into force on 26 May 2016, and 

prohibits the sale, possession and possession with intent to sell of psychoactive compounds, 

including previously legal NPS, with provision for research institutions to be exempt from the 2016 

Act (Home Office, 2018, 2016). 

On a more international level, efforts have been directed towards discretionary provisional control 

measures (e.g. mephedrone (Commission on Narcotic Drugs, 2014)), and towards prioritizing only 

the most persistent, prevalent and harmful NPS for scheduling.  

Of the 1,127 NPS identified so far, indeed only a total of 68, have been scheduled between 2015 

and 2021 at the international level, including 21 under the 1961 Convention (mostly fentanyl 

analogues) and 47 under the 1971 Convention (UNODC, 2022c). 

To help the scheduling decision process both the UNODC and the EMCDDA have legislative 

support in place and early warning systems (EMCDDA, 2020a; United Nations, 2022). The 

UNODC Early Warning Advisory (EWA) and the EMCDDA EWS indeed provide up to date 

reports on NPS, serving as global/European reference points, and aim to improve the development 

of evidence-based related policies. 

Once information on an NPS not yet scheduled is available, which suggests the need for that 

substance to be added to any of the schedules of the Conventions , such information need to be 

notified to the Commission on Narcotic Drugs and the World Health Organization (WHO) 

(UNODC, 2013). The Expert Committee on Drug Dependence (ECDD) of the WHO is responsible 
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for carrying out a risk assessment on the substance, the results of which will guide the 

recommendations on control measures (i.e. adding, transferring, removing) (WHO, 2022, 2010). 

 

1.2.5 NPS threats and challenges 

NPS have been declared a serious threat to public health (UNODC, 2022b). The number of fatalities 

and drug poisonings attributed to NPS use/abuse has been constantly rising with more than 1500 

toxicology cases, involving a total of 58 NPS, reported to the UNODC between October 2020 and 

April 2021 (UNODC, 2021b). Of these, 23% were classified as post-mortem (PM) and 55% as 

driving under the influence of drugs (DUID). Since their first emergence, NPS have challenged the 

traditional approaches to drug monitoring, surveillance, control, and public health responses aimed 

at reducing drug-related threat and harm. Despite, the many challenges linked to this class of 

substances, the latter can be mainly associated with: analytical identification; (risk) assessment; 

review, scheduling and regulatory status; and health responses (Table 1.2) (Orsolini et al., 2020; 

Schifano, 2018; Schifano et al., 2019b). 

Table 1.2 Challenges related to the NPS phenomenon grouped in form main categories (Orsolini et al., 2020; 

Schifano, 2018; Schifano et al., 2019)  

Analytical Identification 

Large number of molecules classified as NPS; everchanging nature of available NPS on the market; 

speed at which they enter and exit the market; lack of available untargeted screening methods; low 

concentrations in both biological and non-biological specimens; lack of reference standards 

(Risk)Assessment 

Definition and classification; lack of pharmacology/toxicity profile information; different potency and 

risk profiles (dependence, abuse potential, severe side effects) despite chemical similarity (EMCDDA, 

2010) 

Review, Scheduling and Regulatory status 

Pre-review; critical review; exempted preparations review; Expert Committee on Drug Dependence, 

recommendation (WHO, 2010) 

Health responses 

Polydrug use/consumption; untrained health personnel and emergency departments 

It should be noted that the challenges relative to analytical identification and (risk) assessment 

should be seen as crucial for a proper understanding and assessment of the threat associated with the 

NPS phenomenon.  
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1.2.6 NPS Risk Assessment 

Risk assessment can be defined as both the element of probability that some harm may occur 

(usually defined as ‘risk’) and the degree of seriousness of such a harm (usually defined as ‘hazard’) 

(Rausand and Haugen, 2020). NPS risk assessment is a crucial step in the legal framework designed 

to evaluate newly identified psychoactive substances and allow both the European Union (EU) and 

the WHO to rapidly detect, assess, and respond to health and social threats caused by these new 

drugs. In particular, it is the step on which any decision making on the prospect/need of 

scheduling/controlling is based (UNODC, 2019c). A risk assessment is usually requested after an 

initial report on the index NPS suggests that the substance could pose both severe public health 

risks and social risks (EMCDDA, 2010). The expert committee on drug dependence for the 

UNODC, and the Scientific Committee for the EMCDDA are tasked with the medical and scientific 

review process (EMCDDA, 2017a; UNODC, 2019c). The latter includes the evaluation of the 

pharmacological profile and of the health and social risks associated to an NPS use/abuse (Figure 

1.2) (EMCDDA, 2020a).  

 

Figure 1.2 The three steps for the NPS risk assessment (EMCDDA, 2020a).  

For the competent authority to provide an exhaustive risk assessment report, the latter should 

contain the available information on the pharmacological and toxicological properties of the 

assessed NPS. This would include the available scientific and law enforcement information and any 

other relevant scientific evidence, with particular regard to both in vitro and in vivo data. In 

particular, of great importance are any available data on the NPS receptor pharmacology 
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(EMCDDA, 2020a), and even more those on receptor implicated in substance dependence. As 

reported by the EMCDDA ‘In vitro and animal data demonstrating the toxicological properties are 

considered relevant for characterising the new psychoactive substance. Usually, human 

toxicological data are limited to case reports on serious adverse events such as acute poisonings and 

medico-legal death investigations’ (EMCDDA, 2020a) (pg. 12).  

The EU risk assessment process was a very lengthy one, with roughly 26 weeks to be expected 

between the information collection and the risk assessment report completion. To tackle this issue 

in 2017, the EU proposed a new process with the intent of cutting the time frame down to 13/14 

weeks (EMCDDA, 2018a; European Union, 2017). However, despite this effort still almost four 

months are needed between the time of the first identification/report of a new NPS and the relevant 

scheduling decision. 

 

1.2.7 Behind the NPS popularity  

One of the main driving forces behind the popularity of NPS is the aura of their perceived legality. 

Many users have revealed how the term “legal highs” used to market these products and the fact 

that they were openly sold on the high street implied a “consequence-free” (no legal repercussion) 

drug use (Corazza et al., 2013b; Soussan and Kjellgren, 2016). Their perceived safety can be 

considered as another reason for their popularity, strictly intertwined with their legal status and their 

open sale/trade. Indeed, consumers perceive NPS as less dangerous than classic drugs of abuse, 

despite the fact that NPS differ only slightly, - small modification to the chemical structure, from 

their controlled, illegal counterpart (Home Office, 2020). Moreover, the potential health risks 

associated with NPS are reduced by disguising the presence of psychoactive molecules and not 

listing them on the package (Schifano et al., 2009). 

Another important reason behind their popularity is represented by a high customer satisfaction in 

regard to ease of access to NPS, low cost and high potency. The EMCDDA reported how some 

amphetamine-like NPS (e.g. N-Benzylpiperazine (BZP)), not only were almost ten times more 

potent than the latter but were sold for a quarter of the price (Corazza and Roman-Urrestarazu, 

2018; UNODC, 2013).  

Finally marketing strategy played an important role in the NPS popularity as well. Colourful and 

captivating packaging, and names/brands similar to known illicit drugs, popular movies, comics, 

animals, or landscapes were/are frequently used (Corazza et al., 2014a). In relation to movies, the 

brand “Black Mamba” and “Clockwork Orange” were used to market two synthetic 

cannabinoids, AM-2201 and 5F-AKB48; in relation to Cinema, “Mad Alice” and “Krypton” 
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were used to market a psychedelic herbal blend and an opioid O-Desmethyltramadol (O-DT) 

(Corazza et al., 2014a). 

1.2.8 NPS diffusion: the importance of online markets  

A major role in the NPS phenomenon and its different phases has been played by the rapid changes 

in technology, globalisation and the Internet observed since 2005 (Alalwan et al., 2017; Appel et al., 

2020; Corazza et al., 2011). In the last seventeen years the Internet has defined the evolution of a 

new drug market with the emergence of new technologies (EMCDDA, 2016c; Walsh, 2011). Indeed 

before the advent of e-commerce, drug markets were identified more with physical spaces and in-

person interactions, while after the introduction of online commerce they transformed more into 

virtual ones (Mackey, 2018; Miliano et al., 2018; UNODC, 2017b). This totally changed the scale 

of the drug trade from a more domestic to a global reach. The web, with its easily changeable and 

sometimes unruled structure, offers the perfect drug market structure: a 24/7 shopping experience 

with the ability to select vendors and interact with them, protected identities, electronic currencies, 

anonymous transactions and a huge variety and quality of available substances (ACMD, 2009; 

EMCDDA, 2014; Forman, 2006; Forman et al., 2006; Orsolini et al., 2017a). 

Three types of virtual markets can be identified: the clear or surface web (Barratt et al., 2013), the 

deep/dark web, and those which operate on both the surface and the deep web (grey marketplaces) 

(Adrian, 2011; Barratt et al., 2014). As reported by the EMCDDA, the surface web is mostly 

associated with supply of either legal/non-controlled substances (NPS) or substances that are 

subject to different legal controls between countries (medicines, precursor chemicals, etc. 

(EMCDDA-Europol, 2016; EMCDDA, 2019a). 

Recent legislative measures (EMCDDA, 2017b, 2016b; UNODC, 2021c, 2015), including the 

Psychoactive Substances Act 2016 (UK Parliament, 2016), have caused restrictions in the surface 

web sale and distribution of NPS and counterfeit medicines (Schmidt et al., 2011; Wadsworth et al., 

2018a, 2018b), driving manufacturers, traders and buyers more towards the deep web (Jurásek et 

al., 2021; Van Hout and Hearne, 2017). Nevertheless, the surface web still remains an important 

medium for the sale of NPS and misused medicines (EMCDDA, 2017c; UNODC, 2019b).   

Previous studies have shown how the Internet has become a crucial source of information about 

drugs and drug use (Barratt et al., 2013; Corazza et al., 2013a; Quintero and Bundy, 2011; Walsh, 

2011) and have demonstrated the contribution and elucidated the role that social networks can have 

in this regard. In particular, platforms such as Twitter® (Buntain and Golbeck, 2015; Mackey et al., 

2018; Mackey, 2018), Facebook® or YouTube®, facilitate communications, usually with short 

messages via smartphone, laptop or tablet and offer the chance to share links, information and more 
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important personal experiences and opinions related to the use availability and purchase of NPS and 

other drugs (Burns et al., 2014; Del Vigna et al., 2016; Miliano et al., 2018). 

Alongside these well-known platforms, a huge number of fora, web pages and on-line communities 

were created in order to discuss the pros and cons of NPS, sometime to advise against their use, 

sometime to promote it. The ones that promote it, referred to as pro-drug websites (Orsolini et al., 

2015b), include diverse website types (blogs, fora, vending and informational platforms) reporting 

various degrees of scientifically proven information.  

Among these web pages and on-line communities, great following is received by e-psychonauts’ 

blogs (Orsolini et al., 2015a, 2015b). E-psychonauts are typically middle-high class, very well 

educated individuals who possess the necessary technical knowledge (chemical, pharmacological 

and pharmacodynamical) to provide trustworthy information on various drugs, especially NPS 

(Davey et al., 2012; Orsolini et al., 2017b, 2015c; Schifano et al., 2006). Psychonauts define 

themselves as ‘shamans’ (Labate and Jungaberle, 2011), ‘chaos magickians’ (Booth, 2000), ‘sailors 

of the mind/ soul’, who typically explore their inner universe with psychedelic/NPS and share the 

experience on line (Orsolini et al., 2015b). They voluntarily experiment with new drugs in order to 

reach new and deeper states of mind, and they post their experiences with thorough details 

regarding dosage, time of action and effects. Psychonauts, as ‘modern drug influencers’, may help 

shape and populate online drug scenarios with a huge number of new substances not yet seized or 

officially detected.  

Moreover, the spread of NPS and the Internet can be considered strongly interlinked, with the latter 

allegedly being a strong influencing voice in defining and feeding the markets for the former 

(Orsolini et al., 2015b; Schifano et al., 2003).  

In light of the facts mentioned above, the Internet can be considered both a major challenge to 

monitoring agencies, law enforcement, and public health due to the rapidity with which is changing 

the drug market (EMCDDA, 2019a); and the most important resource to draw on for an extensive 

analysis and assessment of the current NPS scenario (Corazza et al., 2011; Corkery et al., 2017; 

Orsolini et al., 2020). 

  



13 

 

1.2.9 NPS scenario to date (2022) and NPS classes investigated by the present study 

In June 2022, the UNODC and EMCDDA reported that the trend observed for the previous years, in 

term of popularity, number and type of NPS was continuing in 2022 (UNODC, 2022b). In 

particular, the persistence of benzodiazepine-type NPS (designer benzodiazepines, DBDZ) and new 

synthetic opioids (NSO) have been observed, alongside a great number of synthetic cannabinoid 

receptor agonists (SCRAs), and stimulants. Of particular interest are the class of DBZD and NSO 

(EMCDDA, 2022c; UNODC, 2022b). The latter, which are per se very dangerous and potent CNS 

depressant, are even more of concern due to their reported co-use which could increase the 

likelihood of overdose and death (EMCDDA, 2022c; UNODC, 2022b). As reported by the 

UNODC, NSO are the ‘potentially the most harmful group of NPS’ which, in contrast to the general 

stabilisation of the number of NPS, has continued to grow, with 22 new molecules reported in 2020 

and nine in 2021. NSO, representing 29% of the total NPS currently identified, included both 

fentanyl analogues and other opioids. Parallel to the increased availability of NSO, an increase in 

NPS with sedative and hypnotic effects, most of which are benzodiazepine-type NPS, have been 

reported. DBZD are very often sold at very low prices, sometimes as counterfeit existing medicines, 

varying greatly in dosage, composition and often adulterated with potent NSO (UNODC, 2021b). 

These trends have been confirmed by the 1500 NPS toxicology case reported to the UNODC in 

2021, which see the persistence of DBZD and NSO among the 58 NPS identified. In particular, 

NSO accounted 14% and DBZD for 49% of the post-mortem cases reported in 2020-21. Moreover, 

in all the instance reported for NPS DBZD were found in 69% of the toxicological cases, while of 

all cases in which NSO were identified, 81% were reported as fatalities. The increase of numbers 

and complexity for DBZD and NSO contribute as well to the health threat and risks associated with 

poly drug use, which continues to be an important element in NPS casework (UNODC, 2021b, 

2021d) .  

Following the data reported by both the UNODC and the EMCDDA the DBZD and NSO classes 

and the concern/risk associated with the use/abuse of these NPS (Brunetti et al., 2021; EMCDDA, 

2021b; Greenblatt and Greenblatt, 2019; Lovrecic et al., 2019; UNODC, 2020c, 2017a), the latter 

were chosen as objects of this research project.  
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1.3 NPSfinder® 

As reported in Section 1.2.8 previous studies have underlined the importance of the web as a crucial 

source of information about drugs and drug use (Barratt et al., 2013; Corazza et al., 2013a; Quintero 

and Bundy, 2011; Walsh, 2011), in particular so for NPS. Moreover, the importance of analysing 

the web for an extensive analysis and assessment of the current NPS scenario (Corazza et al., 2011; 

Corkery et al., 2017; Orsolini et al., 2020) has been reported. These data stand behind the creation 

of a web crawler, the NPSfinder®. The latter is the product of a collaboration project between the 

Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit of the 

University of Hertfordshire and Damicon, an Italian IT (information technology) enterprise. In 

2017, Damicon designed a web crawler able to scan the surface web to identify NPS mentioned 

across a variety of websites (Appendix A). For full details and methodology please refer to Section 

2.1. Emerging results, based on an on-going analysis of records retrieved during a 3-year period 

between November 2017 and October 2020, indicate that the number of NPS molecules across a 

range of different chemical classes is substantially higher than that known to and reported by both 

the UNODC and the EMCDDA.  

These results seemed not to be in line with the stabilisation of the yearly number of newly identified 

NPS as reported by both EMCDDA and UNODC (EMCDDA, 2022a; UNODC, 2022b), and raised 

suspicions about a phenomenon that is either apparently stabilising or is evolving so fast that the 

only evidence-based approach used to assess the number and type of NPS cannot match the 

growing pace of the market. Indeed, the data presented by the two organisations result only from 

evidence-based identification for each of the NPS reported.  
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1.4 In silico studies 

As discussed above, among the challenges presented by the NPS, the lack of defined 

pharmacological/toxicological profiles is one of the most worrisome. Indeed, when novel NPS are 

discovered, only very limited scientific data are available on the activity/toxicity profile, the 

assessment of which is mandatory to evaluate the potential threats and risk associated with their 

recreational use/abuse (Sec. 1.2.6). However, carrying out in vitro and preclinical studies on these 

molecules may constitute an extremely time-consuming and very expensive exercise, especially if 

one considered the thousands of available NPS. To overcome this issue, the use of in silico models, 

also referred to as predictive or computational models (e.g., quantitative structure-activity 

relationship/QSAR and Molecular Docking) have been suggested. These models are able to predict 

the possible biological activity of an unknown molecule (NPS) towards a known receptor (e.g. 

serotonin, dopamine, opioids receptors) and to provide information on its mechanism of action in a 

time and cost efficient way. Binding affinity and interaction pattern can be analysed for a variety of 

receptors resulting in pharmacological profile predictions.  

At date, the potential of in silico models is well established in the pharmaceutical sector, and 

successfully/extensively used in the drug development process. Recently, in silico models have 

been applied already to the study of NPS, i.e. designer benzodiazepines (Artemenko et al., 2009; 

Waters et al., 2018), synthetic cannabinoids (Durdagi et al., 2007a, 2007b; Floresta et al., 2018a), 

opioids (Floresta et al., 2019), hallucinogenic phenylalkylamines (Zhang et al., 2007), and 

tryptamines (Schulze-Alexandru et al., 1999) and phenethylamines (Guariento et al., 2018; Wu et 

al., 2019). 
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1.4.1 Predictive models definition 

A predictive model is a model that use statistics to predict outcomes. The model is usually applied 

to predict the future of the topic being studied/investigated (Geisser, 2017) and tries to guess the 

probability of an outcome given a set amount of data. Models can also try to determine the 

probability of a set of data belonging to another set. When used and distributed commercially, 

predictive models are referred to as predictive analytics, and are often a synonym for Machine 

Learning (ML) (Finlay, 2014). 

Predictive analytics uses data analysis techniques such as data mining, machine learning and 

artificial intelligence.  

ML focus on how computers can learn from sets of data (Burrell, 2016; Finlay, 2014), and can be : 

• Supervised. The algorithm has both the set of input data and the outcome of interest and 

needs to find the relationship between the two (Lo et al., 2018). 

• Unsupervised. The algorithm has only the set of input data and needs to find naturally 

occurring patterns or groupings within them (Lloyd et al., 2013). 

• Semi-supervised. The algorithm has the outcome of interest and the set of data from which it 

will need to understand the respective correlation, but it will also erase the outcome of 

interest and find new types of clusters/correlations among the data (Kingma et al., n.d.).  

• Reinforcement learning. The algorithm learns from interaction with the environment to 

achieve a goal and try to explore the best ways to earn the greatest reward (Popova et al., 

2018). 

• Neural networks and deep learning. The algorithm captures complex non-linear 

relationships between input variables and an outcome and can address some of the 

limitations of traditional analytics (Jing et al., 2018). 

Predictive modelling/analytics is widely used in the pharmaceutical industry, where it is referred to 

more commonly as in silico methodologies. Adopted from computerised molecular modelling to 

clinical trial forecasting and drug approval prediction it has a high significance especially in the 

drug discovery process. In the latter, its applications include prediction of interaction, inhibition and 

toxicity (Lampa et al., 2016). Predictive models are applied to predict the structure of a future lead 

compound, hence used at the beginning of the development phase, or to predict the activity/toxicity 

of known compounds and, therefore, used later in the evaluation phase of a new drug.  
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1.4.2 In silico drug design (in silico pharmacology) 

The computer-based methods used in drug discovery are commonly referred to as computer-aided 

drug design (CADD) or in silico pharmacology. In silico technologies are powerful tools used to 

speed up the whole drug discovery process, reducing the time it takes for a new molecule to enter 

the market, and to reduce associated costs.  

In silico is a modern term, related to the well-known biological terms in vivo and in vitro, and 

define experimentation performed by computer. Despite some uncertainty, the origin of the term 

can be retraced to Danchin (Danchin et al., 1991; Ekins et al., 2007):  

‘[I]nformatics is a real aid to discovery when analyzing biological functions…. I was convinced of 

the potential of the computational approach, which I called in silico, to underline its importance as 

a complement to in vivo and in vitro experimentation’.   

In silico pharmacology is at date a growing discipline adopted worldwide to capture, analyse and 

combine medical data (experimental). This data can be then utilised in the creation of computational 

models to predict, suggest and provide medical/therapeutic discoveries. (Ekins, 2014; Ekins et al., 

2007). In silico technology is able to virtually simulates every aspect of drug discovery and 

development, helping us to handle enormous amount of data, picking ideas and taking decision 

(Swaan and Ekins, 2005). It is basically a virtual shortcut to identify lead drug molecules and 

predict their effectiveness/toxicity (Leelananda and Lindert, 2016). In silico technology is usually 

used throughout the whole discovery process: screening of large libraries to extract a small number 

of putative active compounds to send for testing (Subhash et al., 2015); growing new future lead 

compounds; optimising the ADME (Absorption, Distribution, Metabolism, and Excretion) 

properties and investigating the potential toxicity of lead compounds (Bajorath, 2015). 

Machine learning methods have been widely used in in silico pharmacology of small molecules 

since 1960, when the concept of quantitative relationships between chemical structure and 

pharmacodynamics and pharmacokinetics began to be uncovered (Ekins, 2014).  

In silico technologies can be divided in structure-based drug design (SBDD) (Reich and Webber, 

1993) or ligand-based drug design (LBDD) (Shim and MacKerell, 2011) methods. Usually SBDD 

is used when information on the 3D (three dimensional) target structure is available or can be 

retrieved while LBDD is used when such information is lacking (Shim and MacKerell, 2011). 

SBDD analyses the 3D structural information of a specific target, to identify key sites or cavities 

that are relevant to its biological activity. This information can be utilised to identify specific 

protein-ligand interaction(s). Popular approaches used in SBDD are molecular docking (MD), high 

throughput docking and de novo (anew) ligand design.  
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Conversely, LBDD analyses a group of known ligands for a specific target and tries to extrapolate 

which psychochemical properties, shared by the ligands, are essential for their biological activity. 

This is referred to as structure-activity relationship (SAR) and can be used either to direct de novo 

design of drugs or to optimise already known ones (Ramírez, 2016). Popular approaches used in 

LBDD are quantitative structure activity relationship (QSAR), quantitative structure-property 

relationship (QSPR) (Chen et al., 2012; Svetnik et al., 2003; Tropsha, 2010) and pharmacophore 

mapping (Leelananda and Lindert, 2016; Loew et al., 1993; Mason et al., 2005). 

For the scope of this research programme, QSAR, molecular docking, pharmacophore mapping and 

scaffold hopping studies were chosen as considered the most appropriate to predict the biological 

activity (QSAR), the possible receptor interaction (molecular docking and pharmacophore 

mapping) and the possible future chemical modification for the DBZD and NSO classes.  

 

1.4.3 Chemical similarity 

Chemical similarity is a key concept in chemonformatics, which is another term for in silico 

techniques, and in all those studies which apply computer and information science techniques to 

chemistry (Bender and Glen, 2004). Chemical similarity identifies with the similarity of chemical 

elements and structures (i.e. molecules and compounds) either with respect to structural 

characteristics or to functional characteristics (Dean. M. P., 1995). The latter identify the effect that 

a molecule has on a biological system (i.e. receptor, enzymes, etc). The biological activity of a 

compound is the variable which is used to quantify and identify the functional similarity among a 

set of compounds. The chemical similarity instead is the variable which evaluates the “inverse of a 

measure of distance in descriptor space” (Johnson et al., 1990). Descriptors, which are going to be 

discussed in full in the next section are numbers which are used to describe the structure of a 

molecule and assess the similarity of the latter towards other. The chemical similarity concept is 

very important because it is at the base of the modern drugs design studies. These studies indeed are 

based on the similar property principle of Johnson and Maggiora (Johnson et al., 1990), which 

states: similar compounds have similar properties. To assess the molecular similarity, molecules are 

usually represented by structural keys or molecular fingerprints, based on both their 2D and 3D 

properties. 2D fingerprints have been reported as the most used tool to assess similarity specially to 

compare large databases. The most popular similarity measure based on fingerprints is the 

Tanimoto (or Jaccard) coefficient Tc (Bajusz et al., 2015a). Both coefficient measures similarity 

between two sample sets via the analysis of the size of the intersection (of these two sample set) 

divided by the size of the union of the sample sets. Tanimoto though, differently from Jaccard uses 

the ratio of bitmaps, where each bit of a fixed-size array represents the presence or absence of a 

https://en.wikipedia.org/wiki/Cheminformatics
https://en.wikipedia.org/wiki/Chemical_element
https://en.wikipedia.org/wiki/Chemical_element
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Chemical_structure
https://en.wikipedia.org/wiki/Inverse_element
https://en.wikipedia.org/wiki/Distance
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characteristic (Tanimoto, 1958). The ratio is calculated as is the number of common bits, divided by 

the number of bits set (i.e. nonzero) in either sample (Tanimoto, 1958). 

 

1.4.4 Quantitative Structure Activity Relationship (QSAR)  

QSAR is an LBDD method that works on the principle of similar structure similar activity (Floris et 

al., 2014) known as the Similar Property Principle published by Johnson et al (Johnson et al., 1990). 

The similarity principle is the “observation that structurally similar molecules tend to have similar 

properties”, i.e. small changes to the chemical structure of an active compound should maintain the 

biological activity against a receptor (O’Boyle and Sayle, 2016). QSAR is a computer calculated 

mathematical model which tries to statistically correlate the structure and the function of a molecule 

using chemometric techniques (EL-Gindy and Hadad, 2012).The function of a molecule is the 

biological activity and it is often expressed as the half maximal inhibitory concentration (IC50) or 

the inhibition constant (Ki). The structure instead is expressed using molecular descriptors. The 

latter are numbers that represents all biological, physical, and chemical properties. These 

descriptors can derive from knowledge-based, molecular or quantum-mechanical tools (Marrero-

Ponce et al., 2012). They are classified according to the “dimensionality” of the property from 

which they are calculated in 1D, 2D and 3D. The 1D are derived from the molecular formula 

(molecular weight, number of heteroatoms, etc.), the 2D from the bond order (hydrogen bond 

donors/ acceptors, rotatable bonds/ bond order, etc) and the 3D from the spatial arrangement of the 

atoms (molecular/ polar surface area, chiral centre, volume, etc.) (Balaban, 2012). According to the 

type of descriptors used, QSAR methods are also classified as 1D, 2D, 3D and so on (Lewis and 

Wood, 2014). It should be noted that currently QSAR methods are classified up to the 6D level, 

where other properties of the molecule are considered such ligand configuration, induced fit 

models, etc. (Damale et al., 2014; Myint and Xie, 2010). QSAR models can also be classified as 

linear or nonlinear according to the calculation methods used. Linear methods use multiple linear 

regression (MLR), partial least-squares (PLS) and principal component analysis/regression (PCA/ 

PCR) while nonlinear use artificial neural networks (ANN) and Bayesian neural networks (Becker 

et al., 2006). 

Usually QSAR studies start from a dataset of biologically active compounds (preferably not less 

than 100) (Gad, 2014) for which experimentally derived biological activities are available. Once the 

dataset is finalised, it is divided into a training set and a test set, typically including, respectively, 

the 80% and 20% of whole dataset. The training set is used to build the mathematical model, while 

the test set is used to assess its predictivity and generalisability. 
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The resulting mathematical model shows how the activity of a molecule on a specific target is the 

consequence of the structural attributes of the molecule itself (molecular descriptors). QSAR is 

generally represented by a linear equation (Equation 1.1): 

Equation 1.1 Example of a QSAR mathematical model. The equation represents the biological activity, i.e. the 

dependent variable, as the function of three sets of data, a constant, i.e. Const; a set of descriptors, identified by the 

letter “P”, and their respective coefficient identified by the letter “c”. The “P” parameters are calculated for each 

molecule whose biological activity needs to be calculated, in the series and the coefficients “c” are calculated by 

fitting variations in the parameters and the biological activity.  

Biological Activity = Const + (c1×P1) + (c2×P2) + (c3×P3) + ……(cn×Pn) 

Where P1…n represent the descriptors and c1…n their respective coefficients. Once calculated it is 

used to predict the activity of unknown compounds and new drug analogues (Verma et al., 2010).  
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1.4.5 Molecular Docking 

Molecular docking (MD) is a key tool in SBDD. MD is a mathematical algorithm that evaluate the 

binding affinity between two or more molecular structures (Morris and Lim-Wilby, 2008). There 

are different types of docking: ligand-protein, protein-protein, etc but for the scope of this project 

the ligand-protein docking was used. This type of docking is used to predict the predominant 

binding mode (i.e. pose) of a ligand with a protein of which the 3D structure is known (Berman et 

al., 2000; Morris and Lim-Wilby, 2008; “RCSB PDB: Homepage,” 2021), and to anticipates the 

preferable orientation of such ligand necessary create a stable complex (Figure 1.3).  

 

Figure 1.3 Example of ligand-protein docking studies. 

This docking is used to predict the binding pose of a ligand into a 3D receptor structure and the resulting stable 

complex. Notes. On the left hand side the 3D structure of an opioid receptor is presented; in the middle the 3D 

structure of a ligand and on the right hand side the 3D structure of the stable complex formed between ligand and 

protein. 

 

The most popular methods used to experimentally determine the 3D structure of a protein are 

nuclear magnetic resonance (NMR) spectroscopy , X-Ray crystallography (Berg et al., 2002; Sugiki 

et al., 2017) and more recently cryo-electron microscopy (cryoEM) (Kühlbrandt, 2014). Because 

MD is a technique that can be performed only when a 3D structure of the protein is available, if no 

experimental derived structure is available, then the latter will need to be retrieve/predicted with 

computational methods such as homology modelling, fold recognition or ab initio modelling 

(Morris and Lim-Wilby, 2008).  

The information required on drug molecules and target structures is publicly available and stored in 

many archives/databases such as PubChem (Kim et al., 2016), ZINC (Irwin et al., 2012), the Drug 

Bank (Wishart, 2006) or the Protein Data Bank (PDB) (Bernstein et al., 1977; “RCSB PDB: 
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Homepage,” 2021). These databases contain millions of biologically relevant small molecules and 

hundreds of thousands of protein structures (Sterling and Irwin, 2015; Wishart, 2006).  

Once the 3D target structure is known and identified, MD software proceeds to identify the most 

appropriate target binding site (pocket) through either geometry or energy lead algorithms. Once the 

binding site is identified, MD proceed to generate different orientations of the ligands, known as 

poses, inside the pocket itself. Scoring functions are used to estimate the strength of these poses, i.e. 

for each pose a value of predicted binding affinity is returned, usually in Kcal/mol. Scoring is a 

method that uses a scoring function to rank the various ligand-target complex predicted in order to 

identify which is the most viable. The scoring functions are categorised into force-field based, 

knowledge-based, empirical-based and consensus-based (Ramírez, 2016). These functions are a 

crucial part of the algorithm and the more accurate they are the better the docking results.  

There are two types of docking: rigid and flexible. Rigid docking assumes that compounds are 

inflexible, and the ligand will rearrange itself (3D) to best match the binding pocket; flexible 

docking instead identifies confirmations for the receptor and ligand molecules as they exist in the 

complex (Huang et al., 2006). While rigid docking is more in line with the "lock-and-key model" 

proposed by Fischer in 1894, that see the ligand as a substrate which is inserted into the active site 

of a protein as a key is inserted into a lock, flexible docking embrace the theory of an induced-fit 

(Dias and de Azevedo Jr., 2008). This theory, proposed by Daniel Koshland in 1958, see both the 

ligand and target able to undergo modest conformational changes and adapt to each other until an 

ideal match is reached (Dias and de Azevedo Jr., 2008).  

Molecular Docking can be used for various purposes: virtual screening of large libraries of 

compounds; propose structural hypotheses of how the ligands bind to the receptor, i.e. location and 

relative position of a ligand's interaction to a protein (also referred to as the binding mode or pose) 

which is invaluable in lead optimisation; and predict the binding affinity of unknown ligands 

towards know receptors (Raval and Ganatra, 2022).  
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1.4.6 Pharmacophore Mapping 

Pharmacophore mapping (PM) is an LBDD technique that works on the same “similarity principle” 

of QSAR but focuses on the structure of the ligand more than on its biological activity. The term 

pharmacophore was first coined in 1909 by Paul Ehrlich to indicate ‘a molecular framework that 

carries (phoros) the essential features responsible for a drug's (pharmacon) biological activity’ 

(Güner and Bowen, 2014). The International Union of Pure and Applied Chemistry (IUPAC) 

definition is more explanatory: ‘A pharmacophore is an ensemble of steric and electronic features 

that is necessary to ensure the optimal supramolecular interactions with a specific biological target 

and to trigger (or block) its biological response’ (Wermuth et al., 1998). The term supramolecular 

means noncovalent. In other words, a pharmacophore is a 3D model describing the type and 

location of the binding interactions between a ligand and its target receptor, necessary to trig or 

block the latter (Wermuth et al., 1998). Typical pharmacophoric features include hydrogen bond 

donor, hydrogen bond acceptor, hydrophobic, and positively and negatively ionised areas. A 

pharmacophore can be defined also as a 3D spatial arrangement, a map of chemical features which 

are derived using mathematical algorithms (Wolber et al., 2008). 

Pharmacophore mapping can be either ligand based, or structure based (Figure 1.4).  

 

 

Figure 1.4. Visual representation of a structure based (left) and ligand based (right) pharmacophore map.  

In order to obtain a ligand-based pharmacophore model a set of biologically active molecules need 

to be explored in terms of spatial conformations and superposed in a process that is called molecular 

alignment. From this superposing all the chemical features that are common across the molecules 

are extracted and use to design the pharmacophore (Yang, 2010). The alignment can be carried out 

either as a point-based (atoms, fragments, chemical features) or as a property-based approach 
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(molecular field descriptors). For structure-based pharmacophore mapping a 3D defined binding 

pocket needs to be available either with or without a complexed ligand. Every atom or chemical 

group in both the ligand and the structure can be labelled by chemical properties such as hydrogen 

bond donors or acceptors, aromatic, cationic, etc., and can be reduced to a pharmacophore 

fingerprint.  

Once the pharmacophore model is ready, it then can be used to predict the affinity of unknown 

compounds and new drug analogues to a specified target through the screening of known libraries. 

(i.e. ZINC (Irwin et al., 2012; Sterling and Irwin, 2015; “ZINC,” 2021)).  

 

1.4.7 De novo (drug) design and Scaffold hopping  

Among the in-silico technique, de novo design (DND) is a computational method used to generate 

novel molecular structures with desired pharmacological properties. De novo derives from Latin 

and means “from new,” “afresh,” or “a new-fangled” (Ramírez, 2016; Suryanarayanan et al., 2018). 

Six methods can be identified in the DND process (Suryanarayanan et al., 2018) Table 1.3.  

Table 1.3 Classes of computational methods for the de novo design (Suryanarayanan et al., 2018)  

Fragment positioning methods 

Identifies a specific position of atom or fragment in binding sites 

Site point connection methods 

Identifies a unique site location for placing fragments in the binding sites 

Fragment connection methods 

Connects the fragments at particular position within binding sites 

Library construction methods 

Builds a library of fragments with desirable information 

Molecule growth methods 

Keeps atoms or fragments at different places within binding sites of target and 

grows them by joining with other atoms/fragments with various coordination 

Random connection methods 

Connect the fragments in random way 
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DND can be used, beside finding new molecules, to produce novel chemical scaffolds or bio 

isosteric equivalents for already known structures (scaffold hopping) (Langdon et al., 2010). The 

notion of scaffold hopping was introduced by Schneider et al., as a ‘technique to identify 

isofunctional molecular structures with significant different molecular backbones’(Schneider et al., 

1999). Scaffold hopping, also known as lead hopping (Böhm et al., 2004), usually starts form the 

structure of known active compounds and tries to identify novel chemotypes while modifying their 

central core structure. Scaffold hopping modification ca be classified as small, medium, and large-

step, or according to the number of hops required (Sun et al., 2012): 

• 1° hop for minor modifications, e.g., heteroatoms replacing in backbone rings  

• 2° hop for more extensive modification, e.g., rings opening  

• 3° hop for replacement of peptic moieties with non-peptic ones  

• 4° hop for a totally new backbone. 

Examples of scaffold replacement include morphine-tramadol, pheniramine-cyproheptadine and 

sildenafil-tadalafil (Sun et al., 2012).  

 

1.4.8 In silico pharmacology and NPS 

Despite the fact that in silico methodologies were created/developed primarily for the 

pharmaceutical industry and are now well established, and successfully/extensively used tools in the 

drug development and discovery pipeline (de Ruyck et al., 2016; Valerio, 2012; Valerio and 

Choudhuri, 2012), they also have been used to better understand/predict the pharmacological profile 

of NPS. Indeed, computational models have already been applied to a great number of the NPS 

classes: 3D QSAR to predict the biological activity of DBZD (Artemenko et al., 2009; Waters et al., 

2018); 3D QSAR and docking studies to predict synthetic cannabinoids with high affinity for the 

cannabinoid receptors (Durdagi et al., 2007b, 2007a; Floresta et al., 2018b; Tuccinardi et al., 2006); 

QSAR, docking and pharmacophore studies to predict NSO biological activity on opioids receptors 

(Ellis et al., 2018; Floresta et al., 2019; Jia et al., 2021; Vo et al., 2021; J Zhang et al., 2009); and 

3D QSAR on hallucinogenic phenylalkylamines (Zhang et al., 2007) and phenethylamines and 

cathinones (Floresta and Abbate, 2021; Guariento et al., 2018; Isberg et al., 2013; Saha et al., 2015) 
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1.5 Gap(s) in knowledge  

As reported by the UNODC and EMCDDA, NPS continue to pose serious health risks. They also 

present with numerous challenges in terms of detecting and monitoring, understanding patterns of 

use and harms caused and developing appropriate public health and legal responses. Despite the 

official sources (such as the UNODC and EMCDDA) reporting roughly 1,100 NPS, findings of an 

analysis of the surface web suggest how the number of NPS possibly available on the market is far 

(almost four times) higher. This is of particular concern if one considers that we are witnessing an 

upward trend, in terms of numbers and prevalence, of more potent NPS molecules. In particular, 

more potent synthetic opioids (e.g., fentanyl derivatives) and designer benzodiazepines are 

continually appearing on the market. The high potency of these drugs creates a life-threatening 

scenario, with very high chances of unintentional overdoses and increased health risks (EMCDDA, 

2022a; UNODC, 2022b).  

The assessing of an online NPS market that differ from the evidence based one, with online 

numbers exceeding the ones reported by official sources, represents a gap that need to be assessed.  

Moreover, when novel NPS, are detected only very limited scientific data can be retrieved on the 

activity/toxicity profiles and the option of performing in vivo and in vitro studies on the latter 

(dozens to hundreds) may result in an extremely time consuming and very expensive task. A 

different approach, which could be of help in overcoming these issues, could consist in the use of 

computational models (e.g., quantitative structure-activity relationship/QSAR and Molecular 

Docking). These have indeed been suggested of help in providing levels of prediction of both 

biological activity and binding affinity of unknown molecules towards a known receptor in a quick 

and reliable way. This could help understand the threat associated with newly identified NPS and, 

in particular, with the classes of synthetic opioids and synthetic benzodiazepines which at present 

represent the most worrisome/challenging classes from legal and healthcare perspectives.  

Given the numerous challenges posed by NPS, there is a strong need for multidisciplinary and 

international collaboration to enhance knowledge and understanding, strengthen best practice and 

improve the quality of information-sharing among professionals working in this area. 
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1.6 Aims and objective of the research programme  

1.6.1 General aims of research programme 

Against the above-described background, the aims of the projects within this programme of doctoral 

research were to: use the data available from the NPSfinder®, European and worldwide agencies to 

identify the current NPS online scenarios for DBZD and NSO; use in silico computational 

techniques to predict biological activity of these newly emerged NPS; use the predicted values to 

infer possible health threats associated with the consumption of these substances, underscoring 

which of the NPS identified online could indeed represent a serious threat to public health; assess 

the potential of in silico methodologies as a preliminary risk assessment tool; and subsequently 

inform relevant stakeholders with the risks associated with these new NPS. 

1.6.2 General objectives of research programme 

The objectives of the project were as follows: 

• Assessing the current scenario for the DBZD and NSO NPS classes, with relevance to 

difference between the online and real word data (NPSfinder®, UNODC, EMCDDA and other 

official sources).  

• Use the data from the point above to build computational predictive models with the use of 

Molecular Operating Environment (MOE®) and Forge™ . 

• Build Quantitative Structure Activity Relation (QSAR) models to predict biological activity 

of the DBZD and NSO classes of NPS identified online.  

• Conduct docking studies with MOE® to validate/support the QSAR models results, and to 

understand the interaction patterns between NSO /DBZDs and corresponding receptors. 

• Build Pharmacophore models on the molecules identified by NPSfinder® and predicted to be 

the most biologically active to analyse correlation between chemical feature and biological activity.  

• Use the unique pharmacophore model to filter databases (i.e. ZINC) in order to discover 

new active structures for a determined target.  

• Analyse the results obtained with the computational model to assess potential risky and 

worrisome future trend.  

• Worldwide Spread of resulting knowledge, through seminars, conferences, papers, and 

reports to relevant stakeholders. 

 

The following chapter will present an overview of the methodologies used, which will be then 

discussed in more details in Chapter 4 (DBZDs) and 6 (NSOs).  
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Chapter 2 Methodologies 

2.1 NPSfinder® 

2.1.1 Web crawler data extraction 

The crawling/navigating software (i.e. NPSfinder®) was designed by Damicom, an IT enterprise 

based in Rome (Italy), to facilitate the process of early recognition of the increasing dissemination 

of NPS online and the variability of information sources. The NPSfinder® automatically scanned, 

from November 2017 to October 2020, the open/surface web for new/novel/emerging NPS using 

the current standard methodology in the IT Field (SQL Server; MYSQL; PHP/PYTHON; 

JAVASCRIPT for client side; 2 x Intel® Xeon® SP Gold 16-Core incl. Hyper-Threading 

Technology). It mapped on a 24/7 basis the variety of psychoactive molecules mentioned/discussed 

among a range of representative web pages, with particular attention to online psychonaut web 

sites/fora (Schifano et al., 2019). The scanned URLs were representative mostly of online 

psychonaut websites/fora but also of other NPS online resources (Appendix A). In particular the 

majority of the molecule were identified form isomerdesign.com (Isomer Design, 2021). The 

software reliability was validated before the start of the project with several pilot searches through 

Google® and other search engines. The key words used included: NPS, novel psychoactive 

substances, new psychoactive substances, emerging psychoactive substances, drugs online, buy new 

substances, psychonauts drug forums, prescribed medications, psychoactive plants, psychoactive 

herbs, image- and performance-enhancing drugs, etc. These pilot searches helped into shaping the 

list of URLs of interest. The predominant language used by the web crawler was English, but other 

languages were also used, including Spanish, German, Russian, Italian, Dutch, French, Swedish and 

Turkish. 

From November 2017, NPSfinder® identified and extracted, contextually to the name of the 

molecule, a set of other information such as the chemical and street denomination, the chemical 

formula, the chemical structure, and any pharmacological information reported (when available). 

The data collected like so were imported and stored in a MYSQL database with an SSL security 

protocol and encrypted with asymmetric cryptographic procedures. The data were then stored in a 

virtual storage area, i.e. the NPSfinder® database. In this database, the interface of which is 

presented below (Figure 2.1), the NPS identified are listed in order of identification date, and each 

entry contains information about the substance family, the chemical characteristics, the commercial 

and street names, as well as information on pharmacology and toxicity, and suggestions on the 

clinical management of related intoxication.  
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Figure 2.1 NPSfinder® database interface. 

All the data extracted by the web crawler from November 2017 to October 2020 were manually 

analysed by a group of trained medical professional. A further analysis, with particular regard to the 

class of DBZD and NSO was carried out for the scope of this research programme. Afterwards, a 

full assessment and editing of each NPSfinder® entry was carried out and the range of unique NPS 

was identified.  

 

2.1.2 Classification of identified NPS  

The molecules identified by the NPSfinder® were first searched for in Google®/ Google® Scholar 

(“Google,” 2019), PubMed (PubMed, 2020) and Wikipedia (“Wikipedia, the free encyclopedia,” 

2022) to classify them according to their chemical description when available. PubChem 

(“PubChem,” 2021) and ChEMBL (EMBL-EBI, 2021) were used as well and, whenever possible 

IUPAC (IUPAC, 2019a, 2019b) name was also used/added to the description. Whenever there were 

errors in published IUPAC names, the software ChemDraw (PerkinElmer Informatics, 2022) was 

used as it enables the generation of chemical names from structures and vice versa. In order to 

achieve a more accurate identification of the NPSfinder® data entries, the latter were compared with 

those molecules reported by the EMCDDA EWS and the UNODC EWA databases. The 

classification adopted in the NPSfinder® identifies 17 classes of NPS (Schifano et al., 2015), which 

are reported in Table 2.1. 
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Table 2.1 Type and number of classes used to identify NPS identified online by the NPSfinder® 

NPSfinder® 

Aminoindanes Phenethylamines 

Cannabimimetics 
Performance and Image Enhancing 

Drugs (PIEDs) 

Cathinones Piperazines 

Fly Plant-based 

Gaba-ergics Prescribed Drugs 

Hallucinogens Psychostimulant 

NBOMe Tryptamine 

Opioids Others 

PCP-like 
 

All the information extracted by the web crawler were manually checked and corrected if necessary. 

Additional information collected for each substance from literature and scientific reports was added 

, when available, manually to each entry in the NPSfinder® database. Once all the available 

information were collected for each entry included in the NPSfinder® database, a further check was 

carried out to eliminate those molecules which were considered duplicate. To facilitate the process 

of unambiguous identification of the index NPS and minimise chances of duplicates, the 

International Chemical Identifier Key (InChIKey) was added to the single entries. InChIKey is a 

hashed representation of the full International Chemical Identifier (InChI) (Heller et al., 2013), 

created for the purpose of facilitating online searching of chemical compounds. For the purpose of 

this research programme, different salts of the same index NPS were considered as duplicates (Ch 

2.2.1). 

 

2.1.3 Comparison between NPSfinder®, EMCDDA and UNODC databases 

For the DBZD and NSO classes, NPSfinder® entries were compared with those reported from both 

the EMCDDA European Database on New Drugs (EMCDDA, 2020b) and the UNODC Early 

Warning Advisory on NPS (UNODC, 2022d) databases. The comparison was conducted using the 

InChIKey to avoid any confusion due to the non-uniqueness of the other denominations (i.e. 

IUPAC, or common name).  
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2.2 In silico methodologies 

Two software were used for the in silico studies, i.e. MOE® (Chemical Computing Group ULC, 

2022) and 3D with Forge™ (Cresset, 2021). These software in particular were chosen due to their 

high rate of citation in peer reviewed journal, patents and previous work conducted with NPS 

(Chemical Computing Group, 2022; Floresta et al., 2019, 2018b; Floresta and Abbate, 2021). In this 

section, an overview of the methodology which was used during this research project is presented. 

For detailed methodologies used for the two NPS classes analysed a more in-depth description can 

be found in the respective sections, i.e. 4.3 and 6.4.  

  

2.2.1 QSAR Training and test set  

The first step in building a QSAR model is the identification of a dataset (training and test set). For 

the definition of training and test set please refer to Section 1.4.3. As previously reported, the 

training set is the set of molecules used to build the mathematical model, while the test set is used to 

assess its predictivity and generalizability. The dataset in QSAR is the ensemble of two type of 

data: a 2D codified structure and the respective experimental value of biological activity towards a 

defined target. The 2D codified structure is usually represented by a simplified molecular-input 

line-entry system (SMILES), which is a line notation for describing the structure of chemical 

species using short ASCII strings (Weininger, 1988). Different biological activities values can be 

used to build a QSAR as long as they are experimental values. Without experimental biological 

activity available no QSAR model can be created.  

To create a QSAR module that is reliable, i.e. predictive and robust, the dataset should be neither 

too small (e.g. < 50) nor too big (e.g. > 2000) and should include molecules with a similar structure 

to those in analysis (Gad, 2014). The higher limit is usually defined by the computing resources 

available and the lower limit by the number of training/test sets that need to be generated from the 

data set (Gad, 2014).  

While we cannot identify an exact minimum number to generate a reliable QSAR model, we need 

to consider that training sets are used for model development, and if too small, the chances of 

correlation and overfitting (i.e. not predictive model) increase exponentially (Cherkasov et al., 

2014; Tropsha, 2010). Indications can be taken from the literature: the number of compounds in the 

dataset for studies involving biological activity values should be more than 40, with the number of 

compounds in the test set reflecting an average of 10-20% of the latter (minimum value set to 5 

(Tropsha, 2010)). The best situation would be a dataset comprising of 150-300 molecules and 

respective activity values. 
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Requirements apply also for the activity values: the total range of activities should be at least five 

times higher than the experimental error (when indicated); and no large gaps between two 

consecutive values, e.g. more than 10%–15% of the entire range of activities)should be allowed 

(Tropsha, 2010; Verma et al., 2010). 

Moreover, because the QSAR models that can be generated may only be as good as the data itself, 

database curation is an essential step. In particular the portion of the dataset including inorganic and 

organometallic compounds and salts and mixtures should be eliminated, as well as any duplicate 

(Fourches et al., 2010). 

 

2.2.2 Outliers: identification and removal  

An outlier is per definition a data point that differs significantly from other observations. In QSAR 

outliers are compounds that have ‘unexpected biological activity and are unable to fit in a QSAR 

model’ (Verma and Hansch, 2005). When creating a dataset the main theory underlying QSAR, - 

similar compounds have similar biological activity, should be followed. However this is not always 

possible due to the presence of outliers (Johnson et al., 1990). The activity cliff is the term used to 

define this phenomenon, due to areas in the chemical structure, where very small modification (e.g. 

the addition or removal of a methyl group) will results in great variation in biological activity 

(Maggiora, 2006). Two types of outliers can be identified: structural outliers, i.e. singletons that can 

be identified in a dataset using available techniques described in statistical literature (e.g. Tanimoto 

coefficient (Tc) which assess the similarity between two molecular structures (Bajusz et al., 2015b) 

(Sec. 4.3.1)); and activity outliers defined as activity cliffs. Both outliers could be real or due to 

errors in representation and annotation but in any case, their presence could cause model 

unreliability. Hence, despite the fact that no official protocol to deal with outliers in QSAR is in 

place, the latter should be removed prior any calculations (Golbraikh et al., 2014; Maggiora, 2006).  
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2.2.3 Descriptors selection 

Once the QSAR dataset is ready, descriptors (2D or 3D) can be calculated and correlated with the 

biological activity values. This process could be done either manually (MOE®) or automatically 

(Forge™ and MOE®) according to the software utilised for the analysis, and usually returns a 

correlation coefficient (ρ) for each of the descriptors. The closest ρ is to zero the less the correlation 

between the two variables, and vice versa. Usually only descriptors with high values of ρ are used 

to build the QSAR models (Hu and Bajorath, 2017). When building a QSAR model descriptors 

must be chosen in order to be as few as possible: the rule of thumb is to have a maximum of 1 

descriptor for every 5 or more (better) molecule in the training set (Danishuddin and Khan, 2016). It 

is very important to assess the lack of correlation between descriptors (i.e. not correlated to each 

other), otherwise this will bias the model via a process called overfitting (Gad, 2014; IBM Cloud 

Education, 2021).  

2.2.4 Model Building 

Once descriptors have been calculated and selected (according to correlation with biological activity 

and non-mutual correlation), QSAR models (both 2D and 3D) are calculated. In order to build a 

reliable and robust QSAR methods, three statistical parameters need to be calculated and evaluated: 

the correlation coefficient (r2) (internal predictiveness) and the leave-one-out cross validation 

correlation (q2) (robustness) for the training set (internal validation); and r2 for the test set for 

external predictiveness (external validation). The r2 value defines the goodness of fit of the QSAR 

model, q2 defines the goodness of prediction (Golbraikh and Tropsha, 2000). A QSAR model is 

considered acceptable when it has an r2 value > 0.6 and q2 > 0.5 for the training set (Beebe et al., 

1998) and a r2 > 0.5 for the test set (Golbraikh and Tropsha, 2002). An error test is also necessary to 

evaluate the significance of the model, hence the root mean square errors (RMSEs) for the training 

and test sets are usually generated (Beebe et al., 1998). 
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2.2.5 QSAR validation  

QSAR models are submitted to an internal and an external validation. The internal validation, or 

“leave one out “ cross validation, is carried out using the training set (Hawkins et al., 2003). This 

cross validation consists in removing (leave-out) one entry at a time from the training set during the 

model calculation, resulting in a new training set every time. The latter is used to calculate new 

models. All the entries of the dataset are removed once during this process, and all the models 

generated are compared to the original (complete training set). The differences observed among 

these methods are used to calculate q2, i.e. the revised correlation coefficient. This type of internal 

validation gives an indication of how robust (q2) the model is, and if it is sensitive to small changes 

in the training set. 

However, cross-validation tend to provide “overly optimistic estimates of the predictive power of 

the model, as the data are typically not a truly random sample of molecules” (Alexander et al., 

2015). Indeed, while high values of q2 may suggest that the model fit the training set data well, it 

does not give any information on the ability of the model to predict activity of an external test set. 

Indeed, as reported by Alexander et al, “the use of an independent test set is considered the `gold 

standard' for assessing the predictive power of models and is the most stringent approach”. The 

validity of this approach is reported as well in the guidance document on the validation of QSAR 

models used in regulatory applications (OECD, 2007). Here, the external validation is carried out 

with the use of a test set. This helps to evaluate the external predictive power for molecules to 

which the model was not previously exposed (test set). The value obtained, r2, is an indication of 

the predictive power. 
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2.2.6 Applicability domain 

The domain of applicability (or AD) is a very important concept in QSAR, which must be defined 

for each model as an additional step of the validation process. The applicability domain indeed 

allows to estimate ‘the uncertainty in the prediction of a particular molecule based on how similar it 

is to the compounds used to build the model’ (Weaver and Gleeson, 2008). The AD of a QSAR 

model has been defined as ‘the response and chemical structure space in which the model makes 

predictions with a given reliability’ (Netzeva et al., 2005; Roy et al., 2015a). It is important to 

highlight how a QSAR model is be able to reliably predict the biological activity of a new 

compound, only when the latter falls within the AD of the model (Sahigara et al., 2012). If the new 

molecule falls within the AD, the prediction can be considered reliable (interpolation), if it falls 

outside the prediction is less reliable (extrapolation) (Roy et al., 2015a). The AD of a QSAR model 

can be determined in various methodologies, including but not limited to geometrical methods; 

distance-based methods, probability density distribution and ranges in the descriptor space. 

For the scope of this paper the distance based methods using the Tc evaluation will be used to 

assess the AD of the QSAR model generated with MOE® (Sahigara et al., 2012). Forge™ instead 

calculates its own AD automatically.  
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2.3 Molecular docking  

2.3.1 Protein Data Bank and 3D receptor structures identification  

Molecular docking studies were used to evaluate the binding affinity between a ligand, the DBZD 

and NSO identified by NPSfinder®, and their respective receptor of which the 3D crystal structure is 

known, in particular the gamma-aminobutyric acid receptor A (GABA-AR) (Berman et al., 2000; 

Morris and Lim-Wilby, 2008; “RCSB PDB: Homepage,” 2021) and the delta (δ), kappa (κ) and mu 

(μ) opioid receptors (DOR, KOR, MOR (Dhawan et al., 1996)).  

The information required on ligands and target structures (protein) is publicly available and stored 

in many archives/databases such as PubChem (Kim et al., 2016), ZINC (Irwin et al., 2012), the 

Drug Bank (Wishart, 2006) and the Protein Data Bank (PDB) (Bernstein et al., 1977; “RCSB PDB: 

Homepage,” 2021). The latter was used in this study to retrieve 3D crystallised structures of the 

protein complexed with an active ligand (e.g. GABA-AR co crystallised with alprazolam).  

The analysis of the Protein Data Bank database to retrieve the best 3D structures for the docking 

studies started with a query in the database, to which a list of putative structures was returned. The 

results were filtered according to both source organism (i.e. the organism from which the receptor 

was obtained, e.g. homo sapiens) and the experimental method (e.g. X-ray diffraction, electron 

microscopy, etc.) and refinement resolution used to generate the 3D structure (the resolution 

obtained in the 3D structure measured in Angstrom (Å)). To each entry is associated a scientific 

paper that highlight details of the binding site and the key residues involved/essential for the 

binding of the ligands.  
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2.3.2 MOE® receptors preparation 

Structural data often contain errors, hence additional preparatory steps are commonly required for 

the 3D structure of the receptor. MOE® was used to directly download the protein structure from 

PDB and then to proceed to a “Quick Prep” stage in which the protein is prepared for docking, with 

attention to the binding site. The Quick Prep tethers restraints to receptor, ligand, and/or solvent 

atoms and performs energy minimization on the system. The parameters used are presented in 

Figure 2.2. 

 

Figure 2.2 Screenshot of the Quick Prep Panel in MOE® 

Notes: Quick Prep function was used to carry out an initial refinement of the protein-ligand crystallised complex 

once downloaded in MOE®. Unprepared files, such as PDB files, may carry some structural errors as missing atoms 

or alternate geometry, due to the crystallisation process. Quick Prep was used to: rebuild missing atoms or loops or 

add hydrogens (Prepare); delete solvent uninteresting molecules (Delete); introduce tethers restrain for receptor 

(Tether); held fixed atoms far away from ligands for efficiency (Fix); and carry an energy minimisation on the 

structure prepared (Refine). 
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2.3.3 MOE® Identification of the binding site 

Once the protein is prepared, focus shifts to the ligand binding site and the residues responsible for 

the interaction. For small molecule docking, the binding pocket of the receptor must be specified. 

This can be done in different ways: specifying the atoms of the co-crystallised ligand; specifying 

the residues of a pocket or using MOE® Site Finder application to select site points (also defined as 

alpha sphere or "dummy" atoms). For all the receptors objects of the study, the presence of a co-

crystallised ligand in the binding pocket was sufficient to define the size of the latter. To facilitate 

the view of the residues shaping the binding pocket, an ulterior analysis was carried out with the 

Site Finder application.  

This application is able to identify all the possible active sites in a defined receptor using the 3D 

coordinates of the receptor itself (geometric methods) For further details please see Appendix B. 

For each site identified a Propensity for Ligand Binding (PLB) score was returned, indicating how 

likely that part of the receptor could act as a binding pocket (Krivák and Hoksza, 2015; Zheng et al., 

2013). The more positive the PLB the higher the likelihood (Soga et al., 2007). The binding sites 

showing higher PLB were then compared to the one identified by the presence of the co-crystallise 

ligand to confirm size and composition of the binding pocket.  

Once the binding pocket is confirmed, an analysis is carried out to assess the most important 

residues involved int the ligand interaction with the receptor. This step is carried out with the 

Ligand interaction application in MOE® (Appendix 3). The latter provides a diagrammatic (2D) 

visualisation of the active site, summarises a large amount of spatial data and can be used as a 

complement to 3D visualisation, as the 2D and 3D representations can be displayed alongside one 

another. Six types of contacts can be identified: Hydrogen bonds (H bond), Metal, Ionic, Arene, 

Covalent, and Van der Waals distance interactions (Table 2.2).  

Table 2.2 Types of contacts identifiable with the Ligand interactions panel  

Contacts List  

distance  Displays VdW distance interaction energies. 

covalent  
Displays covalent bonds. Principally these will consist of disulphide bridges but can also include peptide bonds if 

the sequence separation is set to 1. 

arene  Displays arene interactions in the list, these include π:π, π-H, and π:cation contacts 

ionic  Displays ionic bond contacts in the list. 

metal  Displays metal interactions which are bonded or are close enough to be within bonded distance. 

h-bond  Displays hydrogen bond contacts. 
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2.3.4 Preparing a small molecule dataset  

Prior to starting the docking exercise with the DBZD and NSO datasets identified by NPSfinder®, a 

dataset of reference compounds was compiled for each receptor. This set comprises the co 

crystallised ligand in the PDB structures chosen plus roughly ten molecules, well known to have a 

high potency towards the receptor (i.e., GABA-AR, KOR, MOR, and DOR). These datasets were 

manually created in Microsoft Excel (2019) and imported into MOE® via the Database Import 

Panel. Imported as 2D molecules the datasets were then processed as 3D structures. Generation of 

3D structures, although not necessary for 2D applications, is crucial for applications such as 

docking, which requires a reasonable low-energy 3D conformation of the structure, possible 

minimised and with atomic partial charges set. For each molecule, a reasonable low energy 3D 

conformation with the most favourable tautomeric and protonation state was obtained. Correctly 

calculated partial charges (i.e. protonation state) are important to properly guide the binding 

interactions. For the calculation of the partial charges the forcefield Amber10:EHT was used 

(Gerber and Müller, 1995). 
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2.3.5 MOE® Docking 

The docking process involves positioning various conformations of one molecule (NPS) with 

respect to another (PDB structure) and determining the optimal interaction geometry and its 

associated energy. All the steps associated with this process are presented in Figure 2.3. 

 

 

Figure 2.3 Workflow of a docking study carried out with MOE® 

Once both protein and ligands are prepared as described above the first step is the placement, i.e. 

collection of poses is generated from the pool of ligand conformations using one of the placement 

methods and assigned a score (S). The dock panel is presented in Figure 2.4. 
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Figure 2.4 The MOE®dock panel.  

Notes. The panel, as seen in the image is divided into 4 sections. The first (yellow) is represented by the column on 

the left-hand side which indicated the various methods available for docking. The second (red) is at the top and is the 

area dedicated to specifying the characteristics of the receptor. The third one (green) is in the middle and is the 

ligand section where the ligands which will be docked can be specified. The fourth (blue) and last section is the one 

at the bottom that can be used to specify the parameters for the docking run, i.e. method, score, and poses, and where 

to store the output files. An option to generate fingerprints is available as well.  

For the purpose of this study the general method was used, with the London dG scoring function for 

the placement and GBVI/WSA dG for the refinement. Both are the default scoring functions of the 

software. For a more detailed description of these scoring function please see the Appendix B. The 

induced fit, i.e., a non-rigid receptor structure was used as the refinement method. For each pose a 

fingerprint of the protein ligand interaction (PLIF) was generated as well. The docking run output is 

automatically saved in a MOE® database file and includes all the poses generated (the number of 

which is specified in the refinement stage Figure 2.4) and respective specifications among which 

the most important are: 

• S, the final score (negative number), the more negative the better the binding  

• RMSD, the root mean square deviation of the pose, expressed in Å, from the original ligand.  

• rmsd_refine, the root mean square deviation between the pose before and after refinement. 

• E_place, Score from the placement stage. 
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• E_refine, Score from the refinement stage 

All the poses can be analysed with the Database Browser application and the best one can be 

identified according to the S score, the ligand-receptor interactions and the active site residues 

involved in the binding.   

 

2.3.6 Protein ligand interaction fingerprint (PLIF) 

Protein ligand interaction fingerprint(PLIF) is a way of summarising the interactions between 

ligands and proteins using a fingerprint scheme. Interactions can be of two types: potential (energy-

based) contacts and surface (patch) contacts. The first ones occur more in a protein ligand 

interaction setting and could be hydrogen bonds, ionic interactions and so on. Both potential and 

surface contacts are classified according to the residue of origin and built into a fingerprint scheme 

which is representative of a given database of protein-ligand complexes. Analysing the PLIF 

information reported in the docked database could be helpful to assess and understand the pattern of 

ligand-protein interaction.(Clark and Labute, 2007).  
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2.3.7 Docking Validation  

There are different methods that can be used to validate docking studies (Hevener et al., 2009). One 

of these is the “pose selection “method. This method involves re-docking into the biding site, a 

compound with a known conformation and orientation (usually the co-crystallised ligand when 

present) and analysing the RMSD values for the returned poses. If the RMSD values are lower than 

the preselected value, usually of 1 or 2 units according to the size of the ligand, then the docking 

model is successful. Another method involves the use of a decoy set of compounds that are similar 

in physical properties with respect to the reference ligand but that may not bind effectively to the 

PDB receptor. The set can comprise both active and inactive compounds and is prepared to 

confound the software. The decoy set is usually docked and then analysed to understand if the dock 

protocol adopted can identify those compounds which are known not to bind the receptor. Usually, 

it is good practice as well to check the 3D structure used for the docking studies. The PDB database 

however carried these checks (e.g. Structure Analysis and Verification Server (SAVE) (UCLA, 

2022) and structure evaluation (i.e. ERRAT (Colovos and Yeates, 1993) and Verify3D (Eisenberg 

et al., 1997) for each of the structure uploaded so no further work was necessary. 
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2.4 Pharmacophore mapping 

2.4.1 Generation of a pharmacophore query  

The pharmacophore mapping studies were carried out with MOE®, with which three different 

approaches can be followed according to the available data, and more precisely: ligand-based, 

complex-based and target-based.  

The ligand-based approach can be used when a collection of ligands, both active and inactive are 

available. In this case no target information is either necessary or used. The complex-based can be 

used when structural data of protein ligan-complexes are available while the target-based when only 

the protein structure is available.   

For each of these approaches different steps can/should be followed, as presented in Table 2.3  

Table 2.3 Steps that should be followed for each of the pharmacophore mapping type, i.e. ligand based, complexed 

base and target based 

Ligand based 

Flexible Alignment (Flexibly align small molecules) 

Pharmacophore Consensus (Obtain consensus features from aligned ligands) 

Pharmacophore Elucidation (Automatically determine a pharmacophore query from ligands) 

Pharmacophore Query Editor (Create new and edit existing pharmacophore queries) 

Complex based 

PLIF (Generate a pharmacophore query from a consensus of Protein Ligand Interaction Fingerprints) 

Pharmacophore Query Editor (as above) 

Target based 

Site Finder (Locate binding cavities on a macromolecular structure) 

Feature Map (electrostatic, interaction potential and non-bonded contact preferences)  

Pharmacophore Query Editor (as above) 

To create a pharmacophore model with MOE® four steps are usually followed: preparing the data, 

generating pharmacophore annotation points, selecting and refining the query (features to include in 

the pharmacophore, Sec.2.4.2). The data are prepared as described above, and if necessary 

conformations are generated. Once the data are ready, the Pharmacophore Query editor is used to 

identify regions of pharmacophoric importance. This application has different annotation scheme, 

but here the Unified scheme has been preferred because it is very comprehensive i.e. highest 

number/type of annotations features). Annotation points can be classified in atom, centroid or 

projected (Figure 2.5). Atom annotation points are located directly on an atom of a molecule, such 

as "H-bond acceptor" or "cation" and typically indicate a function related to protein-ligand binding. 
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Centroid annotations are located at the geometric centre of a subset of atoms, e.g. aromatic ring 

annotation located at the centroid of the atoms of the ring.  

Projected Annotations are (typically) located along implicit lone pair directions or implicit 

hydrogen directions and are used to annotate the location of possible hydrogen bond partners or 

possible R-group atom locations.  

 

 

Figure 2.5 The three types of annotation points included in the Unified annotation scheme.   

Using this annotation scheme the features which are thought to be responsible for the biological 

activity can be extracted either manually or with the use of the Pharmacophore Consensus panel, 

which is used to suggest a consensus set of pharmacophore features common to a set of ligands, or 

receptors. The features are scored based on the number of molecules in which they appear and are 

easily included in a pharmacophore query. The molecular conformations must have been 

precalculated and aligned and loaded into MOE®. 

  

file:///C:/moe2022/html/apps/ph4_query.htm%23Consensus
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2.4.2 Refinement of a pharmacophore query  

The pharmacophore queries generated need to undergo an iterative cycle of refinement to obtain a 

reliable and representative query. Information of the binding pocket structure can be used to 

improve the query with steric and structural constrain, or with electrostatics and preferred contacts 

information. The strategies to refine pharmacophore queries, as presented in MOE, can include: 

• using a large number of features to increase specificity  

• dividing the features in essential and partial matching 

• adjusting the position and the volume of the features  

• examining the binding pocket to retrieve electrostatic information  

• using the volumes of the binding pocket as space constrains  
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2.4.3 The Pharmacophore Query editor in MOE® 

The Pharmacophore Query Editor (PQE) (Figure 2.6) is the primary MOE® interface for manually 

creating and editing pharmacophores queries, via the selection of annotation points (Figure 2.5) and 

conversion of the latter into pharmacophore features.  

 

Figure 2.6 Pharmacophore query editor interface in MOE® 

When the PQE is open in MOE®, annotations points are displayed automatically either for the 

ligand (L) or the receptor (R) according to which one is selected in the interface, i.e. yellow or 

green. These annotations points are then manually selected, and the corresponding feature defined 

(feature button).  

Once pharmacophore features are defined these can be added or removed, their feature attributes 

(type and radius) modified, volumes constrained, and partial matching options added. PQE could be 

used as well to launch the Pharmacophore Consensus panel, which is used to suggest a consensus 

set of pharmacophore features. Each feature generated has a location in space, easily modifiable in 

the MOE® window, a radius controlled by the value of R in the panel; and a feature expression 
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including annotation point types and other information. A feature inherits its types from its 

generating annotation points. 

When the pharmacophore query needs to be generated on multiple ligands for which the 3D 

conformation is known, it is possible to automate parts of the query generation process via the use 

of the Consensus model. The consensus model suggests features common to a set of aligned 

molecules and scores (%) them according to the number of molecules in which they appear. The 

consensus model is particularly useful when important common features across a set of ligands are 

to be assessed. Pharmacophore queries can be improved by an iterative cycle of refinement and with 

the inclusion of steric and other structural constraints from the binding pocket.  

Some strategies include the use of constraints (volume or shape), the definition of essential features 

of partial matches, the determination of features from binding pocket analysis, and refining of 

feature radius and positions. Volume constraints are very helpful in improving the quality of the 

pharmacophore especially for docking studies because they ensure the avoidance of steric clashes 

with the receptor, confining hits to specific spatial regions, and the population of favourable contact 

regions with appropriate atoms.  

For better practice, every pharmacophore query generated should be validated prior usage 

especially for pharmacophore search/filtering or screening exercises of known libraries. 

 

2.4.4 Validation of a pharmacophore query  

The validation of a pharmacophore query is a straightforward process which can use either a dataset  

of only active compounds (test set validation) or a dataset of active compounds mixed with decoys ( 

decoy set validation) (Fei et al., 2013). These sets are screened with the pharmacophore maps, and a 

percentage of the matching molecules is returned. The percentage of the hits retrieved form the 

screening is an estimation of the validity of the pharmacophore query; however the meaning of the 

percentage varies according to the type of validations and scope of the study (Mason et al., 2005). 

For a decoy set validation including 2000 decoys and 10 active molecules, for example, a low 

percentage of hits (< 1.0%) is expected and can confirm the reliability of the pharmacophore map. 

For a test set validation instead, percentages closer to 100 suggest how the pharmacophore is able to 

match all the actives structures, while lower percentages indicate how the map could be more 

selective towards different biological activity values (e.g. matching only the most active 

compounds). Hence, there is no recommended value for the percentage of hits and each case needs 

to be considered individually (Yang, 2010).  
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In the following Chapter the results obtained with the NPSfinder® analysis of the surface web are 

reported together with a comparison between the NPS identified by the web crawler and those 

reported by the UNODC and EMCDDA.  
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Chapter 3 NPSfinder® 

 

3.1 Identification of current NPS scenarios: NPSfinder® 

After more than three years of operation (November 2017 to October 2020), the overall number of 

unique NPS identified across the 17 families by the web crawler activities was 4,231. This number 

is substantially higher, almost four times, than that reported by both the UNODC and EMCDDA as 

a result of evidence-based identifications. Indeed as of June 2022, the UNODC identified 1,127 

individual NPS reported by 134 countries (UNODC, 2022e), while the EMCDDA via the EWS 

(EMCDDA, 2022a) reported a total of 884 NPS, of which 52 were formally notified in 2021 

(EMCDDA, 2022a, 2022c).The number of NPS identified for each family by the NPSfinder® are 

reported in Table 3.1 

Table 3.1 The number of unique molecules identified for each NPS class during the years of activity of the 

NPSfinder®, i.e. 2017-2020. 

Family No. Molecules %  

Cannabimimetics 1261 29.8 

Phenethylamines 1260 29.8 

Opioids 405 9.6 

Cathinones 228 5.4 

Gabaergics 173 4.1 

Prescription drugs 165 3.9 

Plant-based 144 3.4 

PIEDs 136 3.2 

Other 131 3.1 

Tryptamines 78 1.8 

Psychostimulants 77 1.8 

Hallucinogens 38 0.9 

PCP-like 37 0.9 

NBOMes 35 0.8 

Piperazines 35 0.8 

Flys 16 0.4 

Aminoindanes 12 0.3 

The results obtained with the NPSfinder® are clearly not in line with the reduced NPS growth 

(number of new NPS reported per year) reported by both agencies (EMCDDA, 2022c; UNODC, 

2022b), but show concordance with the overall percentage of each NPS family (Table 1.1) 

presented by these stakeholders. Indeed, the numbers of NPS identified online matched the trends 

reported by the two international agencies, with cannabimimetics (29.8%), phenethylamines 
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(29.8%) (stimulants as well) and NSO (10%) representing the most conspicuous classes (Figure 

1.1).  

For each of the 4,231 molecules included in the database the following information were identified, 

reported and compiled, when available: 

• inclusion date – online source 

• family 

• name- other names (i.e. main name and other common denominations) 

• chemical composition (i.e. IUPAC name) 

• SMILES string (Weininger, 1988) string, obtained either consulting PubChem or from the 

structure using Chewdraw12 Plus  

• InChIKey (Heller et al., 2013; Pletnev et al., 2012) 

• description (i.e. all the information available on pharmacokinetics, pharmacodynamics, 

toxicity, sought after and adverse effects, clinical management and legal status) 

Once all the info were completed for each entry, for the scope of this research project, attention was 

given to the analysis of the DBZDs and NSOs classes. The class of psychedelics (i.e. 

phenethylamines, tryptamines and lysergamides) was analysed as well due to the high interest 

reported by UNODC and EMCDDA on psychedelic/stimulants NPS (Catalani et al., 2021c). An 

overview of the results is reported in Appendix B.  

3.2 The NPSfinder® DBZDs, comparison with UNODC and EMCDDA database 

Due to the lack of a designated family for the classification of DBZDs in the NPSfinder®, the latter 

have been listed in two separated families, prescription drugs and gabaergics. In particular the 

benzodiazepines which were identified as approved medicines were included in the prescription 

drug class, while the gabaergics family comprised all those molecules active on the GABA system 

(e.g. benzodiazepine, Z drugs and barbiturates). These two families together totalled 338 entries. To 

identify the correct number of DBZDs reported by the web crawler, a further full assessment was 

conducted together with the editing of NPSfinder® entries- data when necessary. A screening was 

carried out to identify all the molecules which displayed one of the chemical structures included in 

Figure 4.1. Those molecules considered as DBZDs pro-drug or precursors were included as well. 

Forty-seven DBZDs were identified among the prescription drugs family and 96 among the 

GABAergic (i.e. 143). From these, the prescription benzodiazepines scheduled under international 

control, i.e. the Convention on Psychotropic Substances of 1971 (UNODC, 2022e), were excluded 

as they did not qualify as designer benzodiazepines (EMCDDA, 2020c). A total of 115 DBZS was 

identified. This number differs significantly form what officially reported by the EMCDDA, which 
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as of the 31st of December 2021 was monitoring 33 DBZDs, of which three notified in 2021 

(EMCDDA, 2021c), as of what reported by the EWA of UNODC in August 2022, the current 

monitored DBZDs amount to a total of 40 (UNODC, 2022d)..  

Despite the discrepancies in numbers, the percentage that DBZDs occupy on the total of NPS, i.e. 

3%, is in line with what reported by EMCDDA - 4%, and UNODC - 3% (EMCDDA, 2022a, 2022c; 

UNODC, 2022d). The list of the 115 DBZD was compared with what reported by the UNODC and 

EMCDDA as per Table 3.2.  

Table 3.2 List of designer benzodiazepines identified by the NPSfinder® and comparison with the EMCDDA and 

UNODC databases 

Note. The comparison of the three databases has been carried out using the InChIKey string. The data from the 

EMCDDA are older than those from the UNODC due to the exit of UK from the EU. The smiles were obtained from 

PubMed.  

 

Mol SMILES 
UNODC 

(2022) 

EMCDDA 

(2021) 

3-hydroxyphenazepam Brc1cc2C(c3c(Cl)cccc3)=NC(O)C(=O)Nc2cc1 Y Y 

4′-chlorodiazepam CN1C(=O)CN=C(C2=C1C=CC(=C2)Cl)C3=CC=C(C=C3)Cl Y Y 

7-Aminoflunitrazepam Fc1c(C2=NCC(=O)N(C)c3c2cc(N)cc3)cccc1 Y N 

7-BPDBD Brc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 N N 

Adinazolam 
CN(C)CC1=NN=C2N1C3=C(C=C(C=C3)Cl)C(=NC2)C4=CC=CC

=C4 
Y Y 

Alprazolam 

triazolobenzophenone 

derivative 

CC1=NN=C(N1C2=C(C=C(C=C2)Cl)C(=O)C3=CC=CC=C3)CN N Y 

Arfendazam Clc1cc2N(c3ccccc3)C(=O)CCN(C(=O)OCC)c2cc1 N N 

Bentazepam O=C1Nc2sc3c(c2C(c2ccccc2)=NC1)CCCC3 N Y 

Bromazolam Brc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 Y Y 

Carburazepam Clc1cc2C(N(C(=O)N)CC(=O)N(C)c2cc1)c1ccccc1 N N 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3CN=C(c3c(Cl)cccc3)c2c1 N N 

Cinazepam Brc1cc2C(c3c(Cl)cccc3)=NC(OC(=O)CCC(=O)O)C(=O)Nc2cc1 N Y 

Cinolazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(CCC#N)c2cc1 N N 

Clazolam Clc1cc2c(N(C)C(=O)CN3C2c2c(cccc2)CC3)cc1 N N 

Climazolam Clc1c(C2=NCc3n(c(C)nc3)-c3c2cc(Cl)cc3)cccc1 N N 

Clonazolam Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

Cloniprazepam Clc1c(C2=NCC(=O)N(CC3CC3)c3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

CP-1414S O=[N+]([O-])c1cc2N(c3ccccc3)C(=O)CC(N)=Nc2cc1 N N 

Cyprazepam Clc1cc2C(=[N+]([O-])CC(NCC3CC3)=Nc2cc1)c1ccccc1 N N 

Deschloroetizolam C(C)c1sc2-n3c(C)nnc3CN=C(c3ccccc3)c2c1 Y Y 

Desmethylnitrazolam O=[N+]([O-])c1cc2C(c3ccccc3)=NCc3n(-c2cc1)cnn3 N N 
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Desmethyltriazolam Clc1c(C2=NCc3n(-c4c2cc(Cl)cc4)cnn3)cccc1 N N 

Devazepide 
O=C(NC1C(=O)N(C)c2c(C(c3ccccc3)=N1)cccc2)c1[nH]c2c(c1)ccc

c2 
N N 

Diclazepam Clc1c(C2=NCC(=O)N(C)c3c2cc(Cl)cc3)cccc1 Y Y 

Difludiazepam Clc1cc2C(c3c(F)cccc3F)=NCC(=O)N(C)c2cc1 Y Y 

Doxefazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(CCO)c2cc1 N N 

Elfazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCS(=O)(=O)CC)c2cc1 N N 

Estazolam  C1C2=NN=CN2C3=C(C=C(C=C3)Cl)C(=N1)C4=CC=CC=C4 N N 

Ethyl Carfluzapate Clc1cc2C(c3c(F)cccc3)=NC(C(=O)OCC)C(=O)N(C(=O)NC)c2cc1 N N 

Ethyl Dirazepate Clc1c(C2=NC(C(=O)OCC)C(=O)Nc3c2cc(Cl)cc3)cccc1 N N 

Etizolam  Clc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 Y Y 

FG-8205 Clc1c2C(=O)N(C)Cc3c(-c4nc(C(C)C)on4)ncn3-c2ccc1 N N 

Fletazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CC(F)(F)F)c2cc1 N N 

Fluadinazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(CN(C)C)nn3)-c2cc1 N N 

Flualprazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nn3)-c2cc1 Y Y 

Flubromazepam Brc1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 Y Y 

Flubromazolam Brc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nn3)-c2cc1 Y Y 

Flubrotizolam Brc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 Y N 

Fluclotizolam Clc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 Y Y 

Fluetizolam Fc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 N N 

Fluloprazolam 
Fc1c(C2=NCC=3N(C(=O)C(=CN4CCN(C)CC4)N=3)c3c2cc([N+](

=O)[O-])cc3)cccc1 
N N 

Flunitrazolam Fc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

Flupyrazapon Fc1c(C2=NCC(=O)N(C)c3n(C)nc(C)c23)cccc1 N N 

Flutazolam Clc1cc2C3(c4c(F)cccc4)OCCN3CC(=O)N(CCO)c2cc1 N N 

Flutemazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(C)c2cc1 N N 

Flutoprazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CC3CC3)c2cc1 N N 

Fosazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CP(=O)(C)C)c2cc1 N N 

Gidazepam Brc1cc2C(c3ccccc3)=NCC(=O)N(CC(=O)NN)c2cc1 N N 

Imidazenil Brc1c(C2=NCc3c(C(=O)N)ncn3-c3c2cc(F)cc3)cccc1 N N 

Iomazenil Ic1c2C(=O)N(C)Cc3c(C(=O)OCC)ncn3-c2ccc1 N N 

JQ1 
Clc1ccc(C2=NC(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-

c3sc(C)c(C)c23)cc1 
N N 

Lofendazam Clc1cc2N(c3ccccc3)C(=O)CCNc2cc1 N N 

Lopirazepam Clc1c(C2=NC(O)C(=O)Nc3c2nc(Cl)cc3)cccc1 N N 

Meclonazepam 
CC1C(=O)NC2=C(C=C(C=C2)[N+](=O)[O-

])C(=N1)C3=CC=CC=C3Cl 
Y Y 

Menitrazepam O=[N+]([O-])c1cc2C(C3=CCCCC3)=NCC(=O)N(C)c2cc1 N N 

Metaclazepam Brc1cc2C(c3c(Cl)cccc3)=NCC(COC)N(C)c2cc1 N N 
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Methyl Clonazepam Clc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

Metizolam Clc1c(C2=NCc3n(-c4sc(CC)cc24)cnn3)cccc1 Y Y 

Mexazolam Clc1c(C23OCC(C)N2CC(=O)Nc2c3cc(Cl)cc2)cccc1 N N 

MP-III-022 Fc1c(C2=NC(C)c3c(C(=O)NC)ncn3-c3c2cc(C#C)cc3)cccc1 N N 

Nifoxipam Fc1c(C2=NC(O)C(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

Nitrazolam O=[N+]([O-])c1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 Y Y 

N-Methylbromazepam Brc1cc2C(c3ncccc3)=NCC(=O)N(C)c2cc1 N N 

Norfludiazepam C1C(=O)NC2=C(C=C(C=C2)Cl)C(=N1)C3=CC=CC=C3F Y Y  

Phenazepam  Brc1cc2C(c3c(Cl)cccc3)=NCC(=O)Nc2cc1 Y Y 

Phenazolam  Brc1cc2C(c3c(Cl)cccc3)=NCc3n(c(C)nn3)-c2cc1 Y N 

Pivoxazepam Clc1cc2C(c3ccccc3)=NC(OC(=O)C(C)(C)C)C(=O)Nc2cc1 N N 

Premazepam O=C1Nc2c(c(C)n(C)c2)C(c2ccccc2)=NC1 N N 

PWZ-029 Clc1cc2C(=O)N(C)Cc3c(COC)ncn3-c2cc1 N N 

Pyclazolam Clc1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 N N 

Pyeazolam C(#C)c1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 N N 

Pynazolam O=[N+]([O-])c1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 N N 

Pyrazolam Brc1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 Y Y 

QH-II-066 O=C1N(C)c2c(C(c3ccccc3)=NC1)cc(C#C)cc2 N N 

Quazepam Clc1cc2C(c3c(F)cccc3)=NCC(=S)N(CC(F)(F)F)c2cc1 N N 

Reclazepam Clc1c(C2=NCCN(C=3OCC(=O)N=3)c3c2cc(Cl)cc3)cccc1 N N 

Remimazolam Brc1cc2C(c3ncccc3)=NC(CCC(=O)OC)c3n(c(C)cn3)-c2cc1 N N 

Ripazepam O=C1Nc2c(C)nn(CC)c2C(c2ccccc2)=NC1 N N 

Ro 05-3590 
C1C(=O)NC2=C(C=C(C=C2)[N+](=O)[O-

])C(=N1)C3=CC=CC=C3C(F)(F)F 
N N 

Ro 05-4435 

(Desemethylflunitrazepa

m) 

Fc1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 Y Y 

Ro 05-4608 Clc1c(C2=NCC(=O)N(C)c3c2cccc3)cccc1 N N 

Ro 05-6822 CN1C(=O)CN=C(C2=C1C=CC(=C2)F)C3=CC=CC=C3F N N 

Ro 07-3953 Clc1cc2C(c3c(F)cccc3F)=NCC(=O)Nc2cc1 N N 

Ro 07-5193 Clc1c(c(F)ccc1)C1=NCC(=O)Nc2c1cc(Cl)cc2 N N 

Ro 07-5220 Clc1c(c(Cl)ccc1)C1=NCC(=O)N(C)c2c1cc(Cl)cc2 N N 

Ro 07-9749 Ic1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 N N 

Ro 07-9957 CN1C(=O)CN=C(C2=C1C=CC(=C2)I)C3=CC=CC=C3F N N 

Ro 09-9212 Clc1c(C2=NCC(=O)Nc3sc(Cl)cc23)cccc1 N N 

Ro 11-4878 O=C1NC2=CC=C(Cl)C=C2C(C3=CC=CC=C3F)=NC1C N N 

Ro 13-3780 Brc1cc2C(c3c(F)cccc3F)=NCC(=O)N(C)c2cc1 N N 

Ro 14-3074 
C1C(=O)NC2=C(C=C(C=C2)N=[N+]=[N-

])C(=N1)C3=CC=CC=C3F 
N N 
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Ro 15-4941 Clc1c2C(=O)N3C(c4c(C(=O)OCC)ncn4-c2ccc1)CCC3 N N 

Ro 15-9270 Clc1c(C=2c3c(-n4c(C)nnc4CC=2)ccc([N+](=O)[O-])c3)cccc1 N N 

Ro 17-1812 Clc1c2C(=O)N3C(c4c(C(=O)OCC5CC5)ncn4-c2ccc1)CC3 N N 

Ro 20-2533 CCC1=CC2=C(C=C1)NC(=O)CN=C2C3=CC=CC=C3 N N 

Ro 20-2541 CN1C(=O)CN=C(C2=C1C=CC(=C2)C#N)C3=CC=CC=C3F N N 

Ro 20-3053 CC(=O)C1=CC2=C(C=C1)NC(=O)CN=C2C3=CC=CC=C3F N N 

Ro 20-5747 C=CC1=CC2=C(C=C1)NC(=O)CN=C2C3=CC=CC=C3 N N 

Ro 20-8065 Clc1c(Cl)cc2NC(=O)CN=C(c3c(F)cccc3)c2c1 N N 

Ro 20-8552 Clc1c(C)cc2C(c3c(F)cccc3)=NCC(=O)Nc2c1 N N 

Ro 21-8137 Clc1cc2C(c3c(F)cccc3)=NCc3c(C(=O)N)ncn3-c2cc1 N N 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 N N 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(CN(CCC)CCC)cn4)ncn3-c2cc1 N N 

SH-053-R-CH3-2’F Fc1c(C2=NC(C)c3c(C(=O)OCC)ncn3-c3c2cc(C#C)cc3)cccc1 N N 

Sulazepam Clc1cc2C(c3ccccc3)=NCC(=S)N(C)c2cc1 N N 

Thionordazepam Clc1cc2C(c3ccccc3)=NCC(=S)Nc2cc1 Y Y 

Tofisopam  O(C)c1c(OC)ccc(C2=NN=C(C)C(CC)c3c2cc(OC)c(OC)c3)c1 N Y 

Tolufazepam 
Clc1c(C2=NCC(=O)N(CCS(=O)(=O)c3ccc(C)cc3)c3c2cc(Cl)cc3)cc

cc1 
N N 

Triflubazam FC(F)(F)c1cc2N(c3ccccc3)C(=O)CC(=O)N(C)c2cc1 N N 

Triflunordazepam FC(F)(F)c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 N N 

Tuclazepam Clc1c(C2=NCC(CO)N(C)c3c2cc(Cl)cc3)cccc1 N N 

Uldazepam Clc1c(C2=NCC(NOCC=C)=Nc3c2cc(Cl)cc3)cccc1 N N 

Zapizolam Clc1c(C2=NCc3n(-c4c2nc(Cl)cc4)cnn3)cccc1 Y N 

Zomebazam O=C1N(C)c2n(C)nc(C)c2N(c2ccccc2)C(=O)C1 N N 

Zometapine Clc1cc(C2=NCCNc3n(C)nc(C)c23)ccc1 N N 

Of the 33 DBZDs reported by the UNODC, 29 were found to be common to the NPSfinder® 

database as well, the same number identified among those reported by the EMCDDA. The UNODC 

reported a total of four DBZDs which were not identified by NPSfinder® - i.e. deschloroclotizolam, 

desalkylgidazepam, 2-ethyl-4-phenyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine, 

norflurazepam, and bretazenil. On the same line, the web crawler identified a total of 79 molecules, 

which, after careful analysis, seem to be uniquely reported.  

The 115 DBZDs so identified were further analysed to understand which core structure was the 

most represented. For each of the core structure, which are presented in Figure 4.1Figure 4.3, the 

percentage on the total was calculated. The majority of them – 63 out of 115 (55%) – were 1,4-

benzodiazepines, followed by the triazolobenzodiazepines (17%), imidazodiazepines (12%) and 

thienotriazolodiazepines (7%). These percentage are in line with what reported by the two 

international agencies UNODC and EMCDDA (EMCDDA, 2022a; UNODC, 2022a). The rest of 
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the molecules were 1,5-benzodiazepines (3%), imidazodiazepines (3%), thiodiazepines (2%) and 

2,3-diazepine (1%). Only one molecule was found not to match with any of the core structures, i.e. 

the alprazolam triazolobenzophenone derivative, and moreover not to possess a diazepine ring. For 

this reason, this entry was removed from the dataset in analysis during the computational studies. 

 

3.3 The NPSfinder® NSOs, comparison with UNODC and EMCDDA database 

The number of NSOs identified by the NPSfinder® totalled 371 molecules. The opioids of 

natural/plant origin and the opiates were not included in the list. A first screening was carried out to 

classify the substances according to their chemical structure (e.g. fentanyl, non-fentanyl analogues). 

The IUPAC name of each entry as well as the 2D representation of the chemical structure were 

taken into consideration. To help in the classification process the UNODC and EMCDDA database 

were consulted alongside to the International Narcotics Control Board (INCB) “Yellow List” 

(International Narcotics Control Board, 2021), and the  fentanyl and synthetic non-fentanyl opioids 

with no known legitimate uses INCB report (International Narcotic Control Board, 2018). The 396 

molecules were divided, for easiness of data analysis in: fentanyl-like (239), non-fentanyl-like (88), 

morphinan-like (38), nitazene-like (7),. A second screening was carried out to underscore which 

molecules, among these 396 are scheduled under the Narcotic Drug convention of 1961 

(International Narcotics Control Board, 2021), because as per definition, NPS are molecules which 

are not controlled by neither of the two drug conventions - i.e. 1961 and 1971 (UNODC, 2022c).  

More than half of the molecules included in the morphinan-like group, i.e. 37 out of 60, and half of 

those included in the non-fentanyl-like group, i.e. 44 out of 88, were found to be included in the list 

of narcotic drugs under international control. It is important to note, that among the scheduled non-

fentanyl analogues, there are molecules which can be classified as NSOs to all intents being them 

scheduled only recently, i.e. brorphine and U-47700 (DEA, 2018; Home Office, 2022a, 2022b),). 

From the fentanyl-like group, out of 239 molecules it seems like only 21 are currently scheduled, 

while of the nitazene group three out of seven are scheduled (UNODC, 2022a, 2022c). With the 

changes in scheduling and legal status of substances the classification of an opioid as an NPS can be 

a challenging task, especially if the substance is a previously approved medicine. At least for the 

opioids class one should considered if and how the use of the latter has been changed over time.  

As per the end of 2021 the EMCDDA was monitoring a total of 73 new opioids identified on the 

drug market in Europe as the fourth-largest group of substances monitored. Of the 73 NSO, six 

were notified during 2021 (please note that the full list is not available, due to the exit of the UK 

from EU) (EMCDDA, 2022c). While the EMCDDA classify the NSOs in one class only, the 

UNODC separates them in two, fentanyl analogues and others, the latter including synthetic opioids 
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as U-47700. At the end of 2021, the UNODC reported 79 molecules in the first class and a total of 

44 in the second (UNODC, 2022d).  

As per the class of DBZDs, overall the NPSfinder® detected a larger number of NSOs, i.e. three 

times more than those listed by the international databases, with particular regard to fentanyl and 

non-fentanyl molecules which are reported below. However, as per the DPDZs, the percentage on 

the total of the fentanyl class is similar across the NPSfinder® = 6% and UNODC= 7%. The NSO 

identified by the web crawler were compared to those identified by the two international agencies. 

The comparison was made using the unique InChIKey, and for each subfamily identified, i.e. 

fentanyl, non-fentanyl, morphinan and nitazenes, is reported below. 

 



58 

 

Table 3.3 List of fentanyl like NSO identified by the NPSfinder® and comparison with the EMCDDA and UNODC databases*. 

 

MOL SMILES 

UNODC 

(2022) 

EMCDDA 

(2019) 

2,3-Secofentanyl CCC(=O)N(C1=CC=CC=C1)C(C)CCN(C)CCC2=CC=CC=C2 N N 

2′,2″-Difluorofentanyl CCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2F)C3=CC=CC=C3F Y N 

2′-Fluoro-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3F N N 

2′-Fluoro-Isobutyrylfentanyl CC(C)C(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3F y N 

2′-Isopropyl-Furanylfentanyl CC(C)C1=CC=CC=C1N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C4=CC=CO4 Y N 

2-Fluorofentanyl CCC(=O)N(C1CCN(C(C1)F)CCc1ccccc1)c1ccccc1 N Y 

2-Furanylbenzylfentanyl c1ccc(cc1)CN1CCC(CC1)N(c1ccco1)c1ccccc1 Y N 

2-Methyl Carfentanil CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)C(=O)OC)c1ccccc1C N N 

2-Methyl Crotonyl Fentanyl  CC(=CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3)C Y Y 

2-Methylfentanyl CCC(=O)N(C1CCN(C(C1)C)CCc1ccccc1)c1ccccc1 N N 

3,3-Dimethylfentanyl CCC(=O)N(C1CCN(CC1(C)C)CCC2=CC=CC=C2)C3=CC=CC=C3 N N 

3,5-Dimethyl-Cyclopentylfentanyl CC1CN(CCc2ccccc2)CC(C1N(C(=O)C1CCCC1)c1ccccc1)C N N 

3,5-Dimethylfentanyl CCC(=O)N(C1C(C)CN(CC1C)CCc1ccccc1)c1ccccc1 N N 

3′-4′-Dichloro-3″-Fluorofentanyl CCC(=O)N(C1CCN(CC1)CCC2=CC(=CC=C2)F)C3=CC(=C(C=C3)Cl)Cl N N 

3′-4′-Methylenedioxyfentanyl CCC(=O)N(c1ccc2c(c1)OCO2)C1CCN(CC1)CCc1ccccc1 N N 

3′-Fluoro-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC(=CC=C3)F Y N 

3′-Fluoro-Isobutyrylfentanyl CC(C)C(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC(=CC=C3)F Y N 

3′-Me-4f-Ibf Fc1ccc(cc1)N(C(=O)C(C)C)C1CCN(CC1)CCc1cccc(c1)C Y N 

3′-Methyl-Methoxyacetylfentanyl CC1=CC(=CC=C1)N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)COC N N 

3-Allylfentanyl CCC(=O)N(C1CCN(CC1CC=C)CCC2=CC=CC=C2)C3=CC=CC=C3 N N 

3-Ethylfentanyl CCC(=O)N(C1CCN(CC1CC)CCc1ccccc1)c1ccccc1 N N 

3-Fluorofentanyl  CCC(=O)N(C1CCN(CC1F)CCC2=CC=CC=C2)C3=CC=CC=C3 N Y 
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3-Furanylfentanyl C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=COC=C3)CCC4=CC=CC=C4 N N 

3-Methoxyfentanyl CCC(=O)N(C1CCN(CC1OC)CCc1ccccc1)c1ccccc1 N N 

3-Methyl Phenoxy Acetylfentanil CC1CN(CCOc2ccccc2)CCC1N(c1ccccc1)C(=O)C N N 

3-Methyl-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1C)CCc1ccccc1)c1ccccc1 y N 

3-Methylfentanyl CCC(=O)N(C1CCN(CC1C)CCc1ccccc1)c1ccccc1 N N 

3-Methyl-Furanylfentanyl CC1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CO3)CCC4=CC=CC=C4 N N 

3-Methyl-Thiofentanyl CCC(=O)N(C1CCN(CC1C)CCc1cccs1)c1ccccc1 N N 

3-Phenylpropanoylfentanyl C1CN(CCC1N(C2=CC=CC=C2)C(=O)CCC3=CC=CC=C3)CCC4=CC=CC=C4 Y Y 

4-(M-Hydroxyphenyl)Fentanyl CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)c1cccc(c1)O)c1ccccc1 N N 

4″-Bromo-Ohmefentanyl CCC(=O)N(C1CCN(CC1C)CC(c1ccc(cc1)Br)O)c1ccccc1 N N 

4′-Chloro-Butyrylfentanyl  CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)Cl N N 

4′-Chloro-Cyclobutylfentanyl C1CC(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=C(C=C4)Cl N N 

4′-Chloro-Cyclopropylfentanyl  C1CC1C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=C(C=C4)Cl N N 

4′-Chlorofentanyl CCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)Cl y N 

4′-Fluoro-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)F y N 

4′-Fluoro-Crotonylfentanyl C/C=C/C(=O)N(c1ccc(cc1)F)C1CCN(CC1)CCc1ccccc1 N N 

4′-Fluoro-Cyclopentylfentanyl C1CCC(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=C(C=C4)F N N 

4′-Fluoro-Cyclopropylfentanyl C1CC1C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=C(C=C4)F N Y 

4″-Fluorofentanyl CCC(=O)N(C1CCN(CC1)CCC2=CC=C(C=C2)F)C3=CC=CC=C3 N N 

4″-Fluoro-Ohmefentanyl CCC(=O)N(C1CCN(CC1C)CC(c1ccc(cc1)F)O)c1ccccc1 N N 

4′-Hydroxybutyrylfentanyl CCCC(=O)N(c1ccc(cc1)O)C1CCN(CC1)CCc1ccccc1 Y Y 

4″-Methoxyfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccc(cc1)OC N N 

4″-Methyl-Acetylfentanyl CC1=CC=C(C=C1)CCN2CCC(CC2)N(C3=CC=CC=C3)C(=O)C y N 

4′-Methylfentanyl CCC(=O)N(c1ccc(cc1)C)C1CCN(CC1)CCc1ccccc1 y N 

4″-Methylfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccc(cc1)C N N 

4′-Methyl-Furanylfentanyl CC1=CC=C(C=C1)N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C4=CC=CO4 N N 
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4′-Methyl-Methoxyacetylfentanyl CC1=CC=C(C=C1)N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)COC N N 

4′-Methyl-Tetrahydrofuranylfentanyl CC1=CC=C(C=C1)N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C4CCCO4 N N 

4″-Nitrofentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccc(cc1)N(=O)=O N N 

4-Anpp  C1CN(CCC1NC2=CC=CC=C2)CCC3=CC=CC=C3 y N 

4'-Chloro-Cyclopentylfentanyl C1CCC(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=C(C=C4)Cl N N 

4-Fluorofentanyl CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=C3)F N N 

4-Methoxymethylfentanyl COCC1(CCN(CC1)CCc1ccccc1)N(c1ccccc1)C(=O)CC N N 

4-Methylfentanyl CCC(=O)N(C1(C)CCN(CC1)CCc1ccccc1)c1ccccc1 N N 

4-Phenylfentanyl CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 N N 

Acetyl-Carfentanil COC(=O)C1(CCN(CC1)CCc1ccccc1)N(c1ccccc1)C(=O)C N N 

Acetylfentanyl CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 Y Y 

Acetyl-Norfentanyl CC(=O)N(C1CCNCC1)C2=CC=CC=C2 Y N 

Acrylfentanyl  C=CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 N Y 

Alfentanil  CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCN3C(=O)N(N=N3)CC)COC N N 

Alphamethylfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)C(Cc1ccccc1)C N N 

Benzodioxolefentanyl C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC4=C(C=C3)OCO4)CCC5=CC=CC=C5 Y Y 

Benzofuranyl-Fentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccc2c(c1)cco2 N N 

Benzoiloilbenzilfentanil N.a. N N 

Benzoylbenzylfentanyl C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CC=C3)CC4=CC=CC=C4 Y Y 

Benzoylfentanyl  C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CC=C3)CCC4=CC=CC=C4 Y Y 

Benzylfentanyl  CCC(=O)N(C1CCN(CC1)CC2=CC=CC=C2)C3=CC=CC=C3 Y Y 

Brifentanil  CCN1C(=O)N(N=N1)CCN2CCC(C(C2)C)N(C3=CC=CC=C3F)C(=O)COC N N 

Butyryl-Carfentanyl CCCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=C3)C(=O)OC N N 

Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 N Y 

Butyrylremifentanil CCCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC(=O)OC)C(=O)OC N N 

Carfentanil CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=C3)C(=O)OC Y Y 
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Crotonylfentanyl CC=CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 Y N 

Cyclobutylfentanyl C1CC(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 N N 

Cyclohexylfentanyl C1CCC(CC1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 Y N 

Cyclopentenylfentanyl C1CC=C(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 N N 

Cyclopentylfentanyl C1CCC(C1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 Y Y 

Cyclopropylfentanyl C1CC1C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 Y Y 

Despropionyl-3-Methylfentanyl CC1CN(CCC1NC2=CC=CC=C2)CCC3=CC=CC=C3 N N 

Despropionyl-P-Fluorobenzylfentanyl  C1CN(CCC1NC2=CC=C(C=C2)F)CC3=CC=CC=C3 Y N 

Ethyl {4-[Phenyl(Propanoyl)Amino]-

1-[2-(Thiophen-2-Yl)Ethyl]Piperidin-

4-Yl}Methyl Carbonate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CS3)COC(=O)OCC N N 

Ethyl 1-(2-Hydroxy-2-Phenylethyl)-3-

Methyl-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCOC(=O)C1(CCN(CC1C)CC(c1ccccc1)O)N(c1ccccc1)C(=O)CC N N 

Fentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1 N N 

Fentranyl  CCC(=O)N(C1CCN(CC1)C2CC2C3=CC=CC=C3)C4=CC=CC=C4 N N 

Fluoropentyl-Norcarfentanil FCCCCCN1CCC(CC1)(C(=O)OC)N(c1ccccc1)C(=O)CC N N 

Furanylbenzylfentanyl C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CO3)CC4=CC=CC=C4 Y Y 

Furanylfentanyl  C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CO3)CCC4=CC=CC=C4 N Y 

Furanyl-Norfentanyl O=C(N(c1ccccc1)C1CCNCC1)c1ccco1 N N 

Hexanoyl Fentanyl CCCCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 Y N 

Isobutyrylfentanyl CC(C(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1)C y N 

Isocarfentanil COC(=O)C1CN(CCc2ccccc2)CCC1N(c1ccccc1)C(=O)CC N N 

Isofentanyl CCC(=O)N(C1CCN(CC1C)CC2=CC=CC=C2)C3=CC=CC=C3 N N 

Isovaleroylfentanyl CC(CC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1)C y N 
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Lofentanil CCC(=O)N(C1(CCN(CC1C)CCc1ccccc1)C(=O)OC)c1ccccc1 N N 

Methacroylfentanyl CC(=C)C(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1 N N 

Methoxyacetylfentanyl  COCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 N Y 

Methyl 1-(2-Hydroxy-2-Phenylethyl)-

3-Methyl-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1(CCN(CC1C)CC(c1ccccc1)O)C(=O)OC)c1ccccc1 N N 

Methyl 1-[(2,3-Dihydro-1,4-

Benzodioxin-2-Yl)Methyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CC3COC4=CC=CC=C4O3)C(=O)OC N N 

Methyl 1-[2-(2-Oxo-1,3-Benzoxazol-

3(2h)-Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCN3C4=CC=CC=C4OC3=O)C(=O)OC N N 

Methyl 1-[2-(2-Oxo-2,3-Dihydro-1h-

Indol-1-Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1(CCN(CC1)CCN1C(=O)Cc2c1cccc2)C(=O)OC)c1ccccc1 N N 

Methyl 1-[2-(3-Oxo-2,3-Dihydro-4h-

1,4-Benzothiazin-4-Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1(CCN(CC1)CCN1C(=O)CSc2c1cccc2)C(=O)OC)c1ccccc1 N N 

Methyl 1-[2-(4-Methyl-1,3-Thiazol-5-

Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=C(N=CS3)C)C(=O)OC N N 
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Methyl 1-[2-Hydroxy-2-(Thiophen-2-

Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CC(C3=CC=CS3)O)C(=O)OC N N 

Methyl 1-[2-Oxo-2-(Thiophen-2-

Yl)Ethyl]-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1(CCN(CC1)CC(=O)c1cccs1)C(=O)OC)c1ccccc1 N N 

Methyl 1-{2-[(1-Methyl-1h-Imidazol-

2-Yl)Sulfanyl]Ethyl}-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCSC3=NC=CN3C)C(=O)OC N N 

Methyl 1-{2-[5-Methyl-2-

(Methylsulfanyl)-6-Oxopyrimidin-

1(6h)-Yl]Ethyl}-4-

[Phenyl(Propanoyl)Amino]Piperidine-

4-Carboxylate CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCN3C(=O)C(=CN=C3SC)C)C(=O)OC N N 

Methyl 4-[Phenyl(Propanoyl)Amino]-

1-[2-(1h-Pyrazol-1-

Yl)Ethyl]Piperidine-4-Carboxylate COC(=O)C1(CCN(CC1)CCn1cccn1)N(c1ccccc1)C(=O)CC N N 

Methyl 4-[Phenyl(Propanoyl)Amino]-

1-[2-(1h-Pyrrol-1-

Yl)Ethyl]Piperidine-4-Carboxylate COC(=O)C1(CCN(CC1)CCn1cccc1)N(c1ccccc1)C(=O)CC N N 

Methyl 4-[Phenyl(Propanoyl)Amino]-

1-[2-(2h-Tetrazol-2-

Yl)Ethyl]Piperidine-4-Carboxylate COC(=O)C1(CCN(CC1)CCn1nncn1)N(c1ccccc1)C(=O)CC N N 

Methyl 4-[Phenyl(Propanoyl)Amino]- CCC(=O)N(C1(CCN(CC1)CCc1ccccn1)C(=O)OC)c1ccccc1 N N 
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1-[2-(Pyridin-2-Yl)Ethyl]Piperidine-

4-Carboxylate 

Methyl 4-[Phenyl(Propanoyl)Amino]-

1-[2-(Thiophen-3-

Yl)Ethyl]Piperidine-4-Carboxylate COC(=O)C1(CCN(CC1)CCc1cscc1)N(c1ccccc1)C(=O)CC N N 

M-Fluoro-Methoxyacetylfentanyl  COCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC(=CC=C3)F N Y 

Mirfentanil C1CN(CCC1N(C2=NC=CN=C2)C(=O)C3=CC=CO3)CCC4=CC=CC=C4 N N 

M-Methylfentanyl  CCC(=O)N(c1cccc(c1)C)C1CCN(CC1)CCc1ccccc1 N N 

N-(2-Fluorophenyl)-N-[1-(2-

Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]Propanamide CCC(=O)N(c1ccccc1F)C1CCN(CC1C)CC(c1ccccc1)O N N 

N-(2-Fluorophenyl)-N-[1-(2-

Phenylethyl)-4-(1,3-Thiazol-2-

Yl)Piperidin-4-Yl]Propanamide CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)c1nccs1)c1ccccc1F N N 

N-(2-Fluorophenyl)-N-[1-(2-

Phenylethyl)-4-(Pyridin-2-

Yl)Piperidin-4-Yl]Propanamide CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)c1ccccn1)c1ccccc1F N N 

N-(2-Fluorophenyl)-N-[4-Phenyl-1-

(2-Phenylethyl)Piperidin-4-

Yl]Propanamide CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)c1ccccc1)c1ccccc1F N N 

N-(2-Fluorophenyl)-N-{1-[2-(1h-

Pyrazol-1-Yl)Ethyl]-4-(Pyridin-2-

Yl)Piperidin-4-Yl}Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCN3C=CC=N3)C4=CC=CC=N4 N N 

N-(2-Fluorophenyl)-N-{1-[2-(4-

Methyl-1,3-Thiazol-5-Yl)Ethyl]-4-

Phenylpiperidin-4-Yl}Propanamide CCC(=O)N(C1(CCN(CC1)CCc1scnc1C)c1ccccc1)c1ccccc1F N N 

N-(2-Fluorophenyl)-N-{4-(4-Methyl- CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCN3C=CC=N3)C4=NC(=CS4)C N N 
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1,3-Thiazol-2-Yl)-1-[2-(1h-Pyrazol-1-

Yl)Ethyl]Piperidin-4-Yl}Propanamide 

N-(2-Fluorophenyl)-N-{4-(4-Methyl-

1,3-Thiazol-2-Yl)-1-[2-(4-Methyl-1,3-

Thiazol-5-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCC3=C(N=CS3)C)C4=NC(=CS4)C N N 

N-(2-Fluorophenyl)-N-{4-(4-Methyl-

1,3-Thiazol-2-Yl)-1-[2-(Thiophen-3-

Yl)Ethyl]Piperidin-4-Yl}Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCC3=CSC=C3)C4=NC(=CS4)C N N 

N-(2-Fluorophenyl)-N-{4-Phenyl-1-

[2-(1h-Pyrazol-1-Yl)Ethyl]Piperidin-

4-Yl}Propanamide CCC(=O)N(C1(CCN(CC1)CCn1cccn1)c1ccccc1)c1ccccc1F N N 

N-(2-Fluorophenyl)-N-{4-Phenyl-1-

[2-(Thiophen-2-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCC3=CC=CS3)C4=CC=CC=C4 N N 

N-(2-Fluorophenyl)-N-{4-Phenyl-1-

[2-(Thiophen-3-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1(CCN(CC1)CCc1ccsc1)c1ccccc1)c1ccccc1F N N 

N-(3-Fluorophenyl)-N-[1-(2-

Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1cccc(c1)F N N 

N-(4-Fluorophenyl)-N-[1-(2-

Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1ccc(cc1)F N N 

N-[1-(2-Cyclopropyl-2-

Hydroxyethyl)-3-Methylpiperidin-4-

Yl]-N-Phenylpropanamide CCC(=O)N(C1CCN(CC1C)CC(C1CC1)O)c1ccccc1 N N 
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N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-2-Methoxy-N-

Phenylacetamide COCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1ccccc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-(3-

Methoxyphenyl)Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1cccc(c1)OC N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-(Pyridin-2-

Yl)Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1ccccn1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-(Pyridin-3-

Yl)Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1cccnc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-

Phenylfuran-2-Carboxamide OC(c1ccccc1)CN1CCC(C(C1)C)N(C(=O)c1ccco1)c1ccccc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-

Phenylfuran-3-Carboxamide OC(c1ccccc1)CN1CCC(C(C1)C)N(C(=O)c1ccoc1)c1ccccc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-

Phenylthiophene-2-Carboxamide OC(c1ccccc1)CN1CCC(C(C1)C)N(C(=O)c1cccs1)c1ccccc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-3-

Methylpiperidin-4-Yl]-N-

Phenylthiophene-3-Carboxamide OC(c1ccccc1)CN1CCC(C(C1)C)N(C(=O)c1ccsc1)c1ccccc1 N N 

N-[1-(2-Hydroxy-2-Phenylethyl)-4-

(Methoxymethyl)-3-Methylpiperidin-

4-Yl]-N-Phenylpropanamide COCC1(CCN(CC1C)CC(c1ccccc1)O)N(c1ccccc1)C(=O)CC N N 
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N-[4-(4-Methyl-1,3-Thiazol-2-Yl)-1-

(2-Phenylethyl)Piperidin-4-Yl]-N-

Phenylpropanamide CCC(=O)N(C1(CCN(CC1)CCc1ccccc1)c1scc(n1)C)c1ccccc1 N N 

N-{1-[(2r,3r)-3-Hydroxy-1,2,3,4-

Tetrahydronaphthalen-2-Yl]-3-

Methylpiperidin-4-Yl}-N-

Phenylpropanamide CCC(=O)N(C1CCN(CC1C)[C@@H]1Cc2ccccc2C[C@H]1O)c1ccccc1 N N 

N-{1-[2-(3,5-Dimethyl-1h-Pyrazol-1-

Yl)Ethyl]-4-Phenylpiperidin-4-Yl}-N-

(2-Fluorophenyl)Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCN3C(=CC(=N3)C)C)C4=CC=CC=C4 N N 

N-{1-[2-(4-Ethyl-5-Oxo-4,5-Dihydro-

1h-Tetrazol-1-Yl)Ethyl]-4-(1,3-

Thiazol-2-Yl)Piperidin-4-Yl}-N-(2-

Fluorophenyl)Propanamide CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCN3C(=O)N(N=N3)CC)C4=NC=CS4 N N 

N-{1-[2-(Furan-2-Yl)-2-

Hydroxyethyl]-4-

(Methoxymethyl)Piperidin-4-Yl}-N-

Phenylpropanamide COCC1(CCN(CC1)CC(c1ccco1)O)N(c1ccccc1)C(=O)CC N N 

N-{1-[2-Hydroxy-2-(1-Methyl-1h-

Pyrrol-2-Yl)Ethyl]-3-

Methylpiperidin-4-Yl}-N-

Phenylpropanamide CCC(=O)N(C1CCN(CC1C)CC(c1cccn1C)O)c1ccccc1 N N 

N-{1-[2-Hydroxy-2-(Pyridin-3-

Yl)Ethyl]-3-Methylpiperidin-4-Yl}-

N-Phenylpropanamide CCC(=O)N(C1CCN(CC1C)CC(c1cccnc1)O)c1ccccc1 N N 

N-{1-[2-Hydroxy-2-(Pyridin-4-

Yl)Ethyl]-3-Methylpiperidin-4-Yl}- CCC(=O)N(C1CCN(CC1C)CC(c1ccncc1)O)c1ccccc1 N N 
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N-Phenylpropanamide 

N-{1-[2-Hydroxy-2-(Thiophen-2-

Yl)Ethyl]-3-Methylpiperidin-4-Yl}-

N-(3-Methoxyphenyl)Propanamide CCC(=O)N(C1CCN(CC1C)CC(c1cccs1)O)c1cccc(c1)OC N N 

N-{3,5-Dimethyl-1-[2-(1h-Pyrazol-1-

Yl)Ethyl]Piperidin-4-Yl}-2-Methoxy-

N-Phenylacetamide COCC(=O)N(C1C(C)CN(CC1C)CCn1cccn1)c1ccccc1 N N 

N-Adamantyl-Fentanyl CCC(=O)N(C12CC3CC(C2)CC(C1)C3)C1CCN(CC1)CCc1ccccc1 N N 

N-Benzoxazolyl-Fentanyl CCC(=O)N(c1ccc2c(c1)ocn2)C1CCN(CC1)CCc1ccccc1 N N 

N-Benzyl-Acetylfentanyl CC(=O)N(C1CCN(CC1)CC2=CC=CC=C2)C3=CC=CC=C3 Y N 

N-Benzyl-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CC2=CC=CC=C2)C3=CC=CC=C3 N N 

N-Benzylcarfentanil  CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CC3=CC=CC=C3)C(=O)OC N N 

N-Benzyl-P-Fluoro-

Isobutyrylfentanyl O=C(C(c1ccc(cc1)F)C1CCN(CC1)Cc1ccccc1)C(C)C N N 

N-Furanylethylfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccco1 N N 

N-Methyl Norfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)C Y N 

N-Methyl-Acetyl-Norfentanyl CC(=O)N(C1CCN(CC1)C)C2=CC=CC=C2 N N 

N-Methyl-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)C)C2=CC=CC=C2 N N 

N-Methyl-Carfentanil CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)C)C(=O)OC N N 

N-Phenyl-N-[1-(2-Phenylethyl)-4-

(1,3-Thiazol-2-Yl)Piperidin-4-

Yl]Propanamide CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=C3)C4=NC=CS4 N N 

N-Phenyl-N-{4-Phenyl-1-[2-(1h-

Pyrazol-1-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCN3C=CC=N3)C4=CC=CC=C4 N N 

N-Phenyl-N-{4-Phenyl-1-[2-(Pyridin-

2-Yl)Ethyl]Piperidin-4- CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CC=N3)C4=CC=CC=C4 N N 
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Yl}Propanamide 

N-Phenyl-N-{4-Phenyl-1-[2-

(Thiophen-2-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CS3)C4=CC=CC=C4 N N 

N-Phenyl-N-{4-Phenyl-1-[2-

(Thiophen-3-Yl)Ethyl]Piperidin-4-

Yl}Propanamide CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CSC=C3)C4=CC=CC=C4 N N 

N-Quinolinyl-Fentanyl CCC(=O)N(c1cccc2c1nccc2)C1CCN(CC1)CCc1ccccc1 N N 

Ocfentanil COCC(=O)N(c1ccccc1F)C1CCN(CC1)CCc1ccccc1 Y Y 

O-Fluoro-Despropionoylfentanyl  C1CN(CCC1NC2=CC=CC=C2F)CCC3=CC=CC=C3 Y N 

Ohmefentanil  CCC(=O)N(C1CCN(CC1C)CC(C2=CC=CC=C2)O)C3=CC=CC=C3 N N 

O-Methoxy-Furanylfentanyl COc1ccccc1N(C(=O)c1ccco1)C1CCN(CC1)CCc1ccccc1 N N 

O-Methyl-Acetylfentanyl CC1=CC=CC=C1N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C Y Y 

O-Methyl-Benzoylfentanyl O=C(N(c1ccccc1C)C1CCN(CC1)CCc1ccccc1)c1ccccc1 N N 

O-Methyl-Cyclopropylfentanyl Cc1ccccc1N(C(=O)C1CC1)C1CCN(CC1)CCc1ccccc1 Y N 

O-Methylfentanyl CCC(=O)N(c1ccccc1C)C1CCN(CC1)CCc1ccccc1 N N 

O-Methyl-Furanylfentanyl CC1=CC=CC=C1N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C4=CC=CO4 Y N 

P-Bromofentanyl  CCC(=O)N(c1ccc(cc1)Br)C1CCN(CC1)CCc1ccccc1 Y N 

P-Chloro-Furanylfentanyl  C1CN(CCC1N(C2=CC=C(C=C2)Cl)C(=O)C3=CC=CO3)CCC4=CC=CC=C4 Y N 

P-Chloro-Isobutyrylfentanyl CC(C)C(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)Cl Y Y 

P-Chloro-Methoxyacetylfentanyl  COCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)Cl N N 

P-Fluoro-Acetylfentanyl CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)F N N 

P-Fluoro-Acrylfentanyl  C=CC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)F N N 

P-Fluoro-Cyclopropylbenzylfentanyl C1CC1C(=O)N(C2CCN(CC2)CC3=CC=CC=C3)C4=CC=C(C=C4)F Y N 

P-Fluoro-Furan-3-Ylfentanyl C1CN(CCC1N(C2=CC=C(C=C2)F)C(=O)C3=COC=C3)CCC4=CC=CC=C4 N N 

P-Fluoro-Furanylethylfentanyl  CCC(=O)C(c1ccc(cc1)F)C1CCN(CC1)CCc1ccco1 N N 
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P-Fluoro-Furanylfentanyl C1CN(CCC1N(C2=CC=C(C=C2)F)C(=O)C3=CC=CO3)CCC4=CC=CC=C4 Y N 

P-Fluoro-Furanylremifentanil COC(=O)C1(CCN(CC1)CCC(=O)OC)N(C(=O)c1ccco1)c1ccc(cc1)F N N 

P-Fluoro-Isobutyrylfentanyl  CC(C)C(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)F N Y 

P-Fluoro-Isopropylbenzylfentanyl CC(C)C(=O)N(C1CCN(CC1)CC2=CC=CC=C2)C3=CC=C(C=C3)F y N 

P-Fluoro-Methoxyacetylfentanyl  COCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)F N N 

P-Fluoro-Tetrahydrofuranylfentanyl Fc1ccc(cc1)N(C(=O)C1CCCO1)C1CCN(CC1)CCc1ccccc1 N N 

P-Fluoro-Thiofentanyl CCC(=O)N(c1ccc(cc1)F)C1CCN(CC1)CCc1cccs1 N N 

P-Fluoro-Β-Hydroxy-

Thiobutyrylfentanyl CCCC(=O)N(c1ccc(cc1)F)C1CCN(CC1)CC(c1cccs1)O N N 

Pharaohfentanyl CCC(=O)N(C1(C)CCN(CC1)CC(c1ccccc1)O)c1ccccc1 N N 

Phenoxyethyl-Norfentanyl CCC(=O)N(C1CCN(CC1)CCOC2=CC=CC=C2)C3=CC=CC=C3 N N 

Phenylacetylfentanyl O=C(N(c1ccccc1)C1CCN(CC1)CCc1ccccc1)Cc1ccccc1 N N 

Phenylpropyl-Norfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCCc1ccccc1 N N 

P-Iodofentanyl CCC(=O)N(c1ccc(cc1)I)C1CCN(CC1)CCc1ccccc1 N N 

Pivaloylfentanyl O=C(C(C)(C)C)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1 Y N 

P-Methoxy-Acetylfentanyl COc1ccc(cc1)N(C(=O)C)C1CCN(CC1)CCc1ccccc1 N N 

P-Methoxy-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=C(C=C3)OC Y Y 

P-Methoxyfentanyl CCC(=O)N(c1ccc(cc1)OC)C1CCN(CC1)CCc1ccccc1 Y N 

P-Methoxy-Furanylfentanyl COc1ccc(cc1)N(C(=O)c1ccco1)C1CCN(CC1)CCc1ccccc1 N N 

P-Methoxy-Methoxyacetylfentanyl COCC(=O)N(c1ccc(cc1)OC)C1CCN(CC1)CCc1ccccc1 N N 

P-Methoxy-Tetrahydrofuranylfentanyl  COC1=CC=C(C=C1)N(C2CCN(CC2)CCC3=CC=CC=C3)C(=O)C4CCCO4 N N 

P-Methoxy-Valerylfentanyl CCCCC(=O)N(c1ccc(cc1)OC)C1CCN(CC1)CCc1ccccc1 N N 

P-Methyl-Acetylfentanyl Cc1ccc(cc1)N(C1CCN(CC1)CCc1ccccc1)C(=O)C N N 

P-Methyl-Cyclopropylfentanyl Cc1ccc(cc1)N(C(=O)C1CC1)C1CCN(CC1)CCc1ccccc1 Y N 

Propyl-Norfentanyl CCCN1CCC(CC1)N(C2=CC=CC=C2)C(=O)CC N N 

Psicofentanil CCC(=O)N(C1(CCN(CC1)CCc1c[nH]c2c1cccc2)C(=O)OC1CN2CCC1CC2)c1ccccc1 N N 
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P-Tfm-Fentanyl CCC(=O)N(c1ccc(cc1)C(F)(F)F)C1CCN(CC1)CCc1ccccc1 N N 

Remifentanil CCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC(=O)OC)C(=O)OC N N 

Remifentanil Bis Ethyl Ester CCOC(=O)C1(CCN(CC1)CCC(=O)OCC)N(c1ccccc1)C(=O)CC N N 

Sufentanil COCC1(CCN(CC1)CCc1cccs1)N(c1ccccc1)C(=O)CC N N 

Tetrahydrofuranylfentanyl C1CC(OC1)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4 Y Y 

Thenylfentanyl CCC(=O)N(C1CCN(CC1)CC2=CC=CS2)C3=CC=CC=C3 N N 

Thiafentanil  COCC(=O)N(C1=CC=CC=C1)C2(CCN(CC2)CCC3=CC=CS3)C(=O)OC N N 

Thiofentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1cccs1 N N 

Thiophenoylfentanyl  C1CN(CCC1N(C2=CC=CC=C2)C(=O)C3=CC=CS3)CCC4=CC=CC=C4 Y N 

Tmcp-F CC1(C(C1(C)C)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4)C Y N 

Trefentanil  CCC(=O)N(C1=CC=CC=C1F)C2(CCN(CC2)CCN3C(=O)N(N=N3)CC)C4=CC=CC=C4 N N 

Valerylfentanyl CCCCC(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1 N Y 

Α,3-Dimethylfentanyl CCC(=O)N(C1CCN(CC1C)C(C)CC2=CC=CC=C2)C3=CC=CC=C3 N N 

Α′-Methoxyfentanyl COC(C(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1)C N N 

Α′-Methyl-Butyrylfentanyl CCC(C(=O)N(c1ccccc1)C1CCN(CC1)CCc1ccccc1)C N N 

Α-Methyl-Acetylfentanyl CC(N1CCC(CC1)N(c1ccccc1)C(=O)C)Cc1ccccc1 N N 

Α-Methyl-Acrylfentanyl C=CC(=O)N(c1ccccc1)C1CCN(CC1)C(Cc1ccccc1)C N N 

Α-Methyl-Butyrylfentanyl CCCC(=O)N(C1CCN(CC1)C(C)CC2=CC=CC=C2)C3=CC=CC=C3 Y N 

Α-Methyl-Isobutyrylfentanyl CC(C)C(=O)N(C1CCN(CC1)C(C)CC2=CC=CC=C2)C3=CC=CC=C3 N N 

Α-Methyl-P-Fluorofentanyl CCC(=O)N(c1ccc(cc1)F)C1CCN(CC1)C(Cc1ccccc1)C N N 

Α-Methyl-Thiofentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)C(Cc1cccs1)C N N 

Β-Hydroxy-3-Methylfentanyl 

Carbamate CCOC(=O)N(C1CCN(CC1C)CC(c1ccccc1)O)c1ccccc1 N N 

Β-Hydroxy-3-Methyl-Thienylfentanyl CCC(=O)N(C1CCN(CC1C)CC(c1cccs1)O)c1ccccc1 N N 

Β-Hydroxy-Carfentanil CCC(=O)N(C1(CCN(CC1)CC(c1ccccc1)O)C(=O)OC)c1ccccc1 N N 

Β-Hydroxyfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CC(c1ccccc1)O N N 
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Β-Hydroxy-P-Fluorofentanyl CCC(=O)N(c1ccc(cc1)F)C1CCN(CC1)CC(c1ccccc1)O N N 

Β-Hydroxy-Sufentanil COCC1(CCN(CC1)CC(c1cccs1)O)N(c1ccccc1)C(=O)CC N N 

Β-Hydroxy-Thiofentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CC(c1cccs1)O N N 

Β-Methylfentanyl CCC(=O)N(c1ccccc1)C1CCN(CC1)CC(c1ccccc1)C Y N 

*The comparison of the three databases has been carried out using the InChIKey string. The data form the EMCDDA are older than those from the UNODC due to 

the exit of UK from the EU. The SMILES were obtained from PubMed. 
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Of 239 fentanyl-like NSOs, 64 were in common with the UNODC and EMCDDA, while 175 

molecules seem to be unique to the NPSfinder® database. On the other hand, the UNODC EWA 

identified 33 NSOs which were not reported by the web crawler. The data here reported for the 

EMCDDA are not up to date and should not be considered as relevant to assess the European NSOs 

scenario. For the same reason, these data will not be commented or reported for the other NSO 

subfamilies.    

The total of the non-fentanyl molecules identified amount to 88, of which only 17 are in common 

with the UNODC database (Table 3.4). While a total of 64 non-fentanyl NSOs seems to be unique 

to the NPSfinder®, the UNODC identified 33 molecules which were not detected by the web 

crawler (Appendix A).  

Table 3.4 List of non-fentanyl like NSO identified by the NPSfinder® and comparison with the UNODC database 

Mol SMILES 

UNO

DC 

(2022) 

1-Phenethyl-4-

Hydroxypiperidine C1CN(CCC1O)CCC2=CC=CC=C2 N 

2f-Viminol CCC(C)N(CC(C1=CC=CN1CC2=CC=CC=C2F)O)C(C)CC Y 

3,4-Mdo-U-47700 CN(C)C1CCCCC1N(C)C(=O)C2=CC3=C(C=C2)OCO3 Y 

(2R,3R)-4-

(Dimethylamino)-3-

Methyl-1,2-Diphenyl-

2-Butanyl Propionate CN(C)C[C@@H](C)[C@](C1=CC=CC=C1)(OC(C)=O)CC2=CC=CC=C2 N 

4-Phenylpiperidine-4-

Carboxylic Acid C1CNCCC1(C2=CC=CC=C2)C(=O)O N 

Acetoxymethylketobe

midone CC(=O)C1(CCN(CC1)C)C2=CC(=CC=C2)OC(=O)C N 

Acetylmethadol CCC(C(CC(C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2)OC(=O)C N 

Ah-7921 CN(C1(CCCCC1)CNC(=O)c1ccc(c(c1)Cl)Cl)C Y 

Allylprodine CCC(=O)OC1(CCN(CC1CC=C)C)C2=CC=CC=C2 N 

Alphacetylmethadol CC[C@H](C(C[C@@H](C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2)OC(=O)C N 

Alphameprodine CC[C@@H]1CN(C)CC[C@@]1(OC(=O)CC)c1ccccc1 N 

Alphamethadol CC[C@H](C(c1ccccc1)(c1ccccc1)C[C@H](N(C)C)C)O N 

Alphaprodine CCC(=O)O[C@]1(CCN(C[C@H]1C)C)c1ccccc1 N 

Anileridine CCOC(=O)C1(CCN(CC1)CCc1ccc(cc1)N)c1ccccc1 N 

Ap-237  CCCC(=O)N1CCN(CC1)CC=CC2=CC=CC=C2 Y 

Ap-238 CCC(=O)N1C(CN(CC1C)CC=CC2=CC=CC=C2)C y 

Bdpc CN(C)C1(CCC(CC1)(CCC2=CC=CC=C2)O)C3=CC=C(C=C3)Br N 

Benzethidine CCOC(=O)C1(CCN(CC1)CCOCc1ccccc1)c1ccccc1 N 
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Betacetylmethadol CC[C@@H](C(c1ccccc1)(c1ccccc1)C[C@H](N(C)C)C)OC(=O)C Y 

Betameprodine CC[C@H]1CN(C)CC[C@@]1(OC(=O)CC)c1ccccc1 N 

Betamethadol CC[C@@H](C(c1ccccc1)(c1ccccc1)C[C@H](N(C)C)C)O N 

Betaprodine CCC(=O)O[C@]1(CCN(C[C@@H]1C)C)c1ccccc1 N 

Bezitramide CCC(=O)n1c(=O)n(c2c1cccc2)C1CCN(CC1)CCC(c1ccccc1)(c1ccccc1)C#N N 

Bromadoline  CN(C)C1CCCCC1NC(=O)C2=CC=C(C=C2)Br N 

Brorphine CC(C1=CC=C(C=C1)Br)N2CCC(CC2)N3C4=CC=CC=C4NC3=O Y 

Carperidine CCOC(=O)C1(CCN(CC1)CCC(=O)N)C2=CC=CC=C2 N 

Desmethylmoramide  C1CCN(C1)C(=O)C(CCN2CCOCC2)(C3=CC=CC=C3)C4=CC=CC=C4 Y 

Desmethylprodine  CCC(=O)OC1(CCN(CC1)C)C2=CC=CC=C2 N 

Desmetramadol CN(CC1CCCCC1(O)c1cccc(c1)O)C N 

Dextromoramide CC(CN1CCOCC1)C(C2=CC=CC=C2)(C3=CC=CC=C3)C(=O)N4CCCC4 N 

Dextropropoxyphene CCC(=O)OC(CC1=CC=CC=C1)(C2=CC=CC=C2)C(C)CN(C)C N 

Diampromide CCC(=O)N(CC(C)N(C)CCC1=CC=CC=C1)C2=CC=CC=C2 N 

Diethylthiambutene CCN(CC)C(C)C=C(C1=CC=CS1)C2=CC=CS2 N 

Difenoxin N#CC(c1ccccc1)(c1ccccc1)CCN1CCC(CC1)(C(=O)O)c1ccccc1 N 

Dimenoxadol CCOC(C1=CC=CC=C1)(C2=CC=CC=C2)C(=O)OCCN(C)C N 

Dimethylthiambutene CN(C(C=C(c1cccs1)c1cccs1)C)C N 

Dioxaphetyl Butyrate CCOC(=O)C(c1ccccc1)(c1ccccc1)CCN1CCOCC1 N 

Diphenoxylate CCOC(=O)C1(CCN(CC1)CCC(c1ccccc1)(c1ccccc1)C#N)c1ccccc1 N 

Diphenpipenol COC1=CC=CC=C1N2CCN(CC2)C(CC3=CC(=CC=C3)O)C4=CC=CC=C4 N 

Dipipanone CCC(=O)C(CC(C)N1CCCCC1)(C2=CC=CC=C2)C3=CC=CC=C3 N 

Eluxadoline 

CC1=CC(=CC(=C1CC(C(=O)N(CC2=CC(=C(C=C2)OC)C(=O)O)C(C)C3=NC=C(N3)C4=

CC=CC=C4)N)C)C(=O)N N 

Embutramide OCCCC(=O)NCC(c1cccc(c1)OC)(CC)CC N 

Ethoheptazine CCOC(=O)C1(CCCN(CC1)C)c1ccccc1 N 

Ethylmethylthiambute

ne CCN(C(C=C(c1cccs1)c1cccs1)C)C N 

Etoxeridine OCCOCCN1CCC(CC1)(C(=O)OCC)c1ccccc1 N 

Furethidine CCOC(=O)C1(CCN(CC1)CCOCC1CCCO1)c1ccccc1 N 

Hydroxypethidine CCOC(=O)C1(CCN(CC1)C)C2=CC(=CC=C2)O N 

Isomethadone  CCC(=O)C(C1=CC=CC=C1)(C2=CC=CC=C2)C(C)CN(C)C Y 

Isopropyl-U-47700  CC(C)N(C1CCCCC1N(C)C)C(=O)C2=CC(=C(C=C2)Cl)Cl Y 

Levacetylmethadol CCC(C(CC(C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2)OC(=O)C N 

Levomoramide CC(CN1CCOCC1)C(C2=CC=CC=C2)(C3=CC=CC=C3)C(=O)N4CCCC4 N 

Loperamide 

CN(C)C(=O)C(CCN1CCC(CC1)(C2=CC=C(C=C2)Cl)O)(C3=CC=CC=C3)C4=CC=CC=C

4 N 

Meprodine  CCC1CN(CCC1(C2=CC=CC=C2)OC(=O)CC)C N 

Metethoheptazine  CCOC(=O)C1(CCCN(CC1C)C)C2=CC=CC=C2 N 

Methadone CCC(=O)C(c1ccccc1)(c1ccccc1)CC(N(C)C)C N 
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Metheptazine COC(=O)C1(CCCN(C(C1)C)C)c1ccccc1 N 

Mt-45 C1CCC(CC1)N2CCN(CC2)C(CC3=CC=CC=C3)C4=CC=CC=C4 N 

N-Benzylpethidine CCOC(=O)C1(CCN(CC1)CC2=CC=CC=C2)C3=CC=CC=C3 N 

N-Methyl U-47931e CN(C)C1CCCCC1N(C)C(=O)C2=CC=C(C=C2)Br N 

Noracymethadol CCC(C(CC(C)NC)(C1=CC=CC=C1)C2=CC=CC=C2)OC(=O)C N 

Normethadone  CCC(=O)C(CCN(C)C)(C1=CC=CC=C1)C2=CC=CC=C2 N 

Norpipanone CCC(=O)C(CCN1CCCCC1)(C2=CC=CC=C2)C3=CC=CC=C3 N 

Nortilidine CCOC(=O)C1(CCC=CC1NC)C2=CC=CC=C2 N 

Nsi-189 CC(C)CCNC1=C(C=CC=N1)C(=O)N2CCN(CC2)CC3=CC=CC=C3 Y 

Oxpheneridine CCOC(=O)C1(CCN(CC1)CC(C2=CC=CC=C2)O)C3=CC=CC=C3 N 

Pepap CC(=O)OC1(CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3 N 

Pethidine CCOC(=O)C1(CCN(CC1)C)c1ccccc1 N 

Pethidinic Acid  CN1CCC(CC1)(C2=CC=CC=C2)C(=O)O N 

Phenadoxone CCC(=O)C(CC(C)N1CCOCC1)(C2=CC=CC=C2)C3=CC=CC=C3 N 

Phenampromide CCC(=O)N(C1=CC=CC=C1)C(C)CN2CCCCC2 N 

Phenoperidine CCOC(=O)C1(CCN(CC1)CCC(c1ccccc1)O)c1ccccc1 N 

Piminodine CCOC(=O)C1(CCN(CC1)CCCNC2=CC=CC=C2)C3=CC=CC=C3 N 

Piritramide C1CCN(CC1)C2(CCN(CC2)CCC(C#N)(C3=CC=CC=C3)C4=CC=CC=C4)C(=O)N N 

Proheptazine CCC(=O)OC1(CCCN(CC1C)C)C2=CC=CC=C2 N 

Properidine CC(C)OC(=O)C1(CCN(CC1)C)C2=CC=CC=C2 N 

Propiram CCC(=O)N(c1ccccn1)C(CN1CCCCC1)C N 

Racemoramide CC(C(C(=O)N1CCCC1)(c1ccccc1)c1ccccc1)CN1CCOCC1 N 

Tapentadol CCC(C1=CC(=CC=C1)O)C(C)CN(C)C N 

Tilidine CCOC(=O)[C@]1(CCC=C[C@@H]1N(C)C)c1ccccc1 N 

Tmcp-F CC1(C(C1(C)C)C(=O)N(C2CCN(CC2)CCC3=CC=CC=C3)C4=CC=CC=C4)C N 

Tramadol COc1cccc(c1)C1(O)CCCCC1CN(C)C N 

Trimeperidine CCC(=O)OC1(CC(C)N(CC1C)C)c1ccccc1 N 

U-47700 CN(C)C1CCCCC1N(C)C(=O)C2=CC(=C(C=C2)Cl)Cl Y 

U-48800 CN(C)C1CCCCC1N(C)C(=O)CC2=C(C=C(C=C2)Cl)Cl Y 

U-49900 CCN(CC)C1CCCCC1N(C)C(=O)C2=CC(=C(C=C2)Cl)Cl Y 

U-51754 CN(C)C1CCCCC1N(C)C(=O)CC2=CC(=C(C=C2)Cl)Cl Y 

W-15 Clc1ccc(cc1)S(=O)(=O)N=C1CCCCN1CCc1ccccc1 Y 

W-18 Clc1ccc(cc1)S(=O)(=O)N=C1CCCCN1CCc1ccc(cc1)N(=O)=O Y 

*The comparison of the two databases has been carried out using the InChIKey string. The SMILES were 

obtained from PubMed. 
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Of the seven nitazene NSOs identified, four were found to be included in the UNODC databases, 

which however reported a higher number of molecules in this class with a total of nine molecules, 

hence five which were unique.  

Table 3.5 List of nitazenes like NSO identified by the NPSfinder® and comparison with the UNODC database*. 

 

Mol SMILES UNODC (2022) 

Butonitazene O=[N+]([O-])c1cc2nc(Cc3ccc(OCCCC)cc3)n(CC[NH+](CC)CC)c2cc1 Y 

Clonitazene Clc1ccc(Cc2n(CCN(CC)CC)c3c(n2)cc([N+](=O)[O-])cc3)cc1 N 

Etonitazene O=[N+]([O-])c1cc2nc(Cc3ccc(OCC)cc3)n(CC[NH+](CC)CC)c2cc1 N 

Flunitazene Fc1ccc(Cc2n(CC[NH+](CC)CC)c3c(n2)cc([N+](=O)[O-])cc3)cc1 Y 

Isotonitazene O=[N+]([O-])c1cc2nc(Cc3ccc(OC(C)C)cc3)n(CC[NH+](CC)CC)c2cc1 Y 

Metodesnitazene O(C)c1ccc(Cc2n(CC[NH+](CC)CC)c3c(n2)cccc3)cc1 N 

Etazene O(CC)c1ccc(Cc2n(CC[NH+](CC)CC)c3c(n2)cccc3)cc1 Y 

*The comparison of the two databases has been carried out using the InChKEY string. The SMILES were 

obtained from PubMed 

Of the 38 morphinan-like, only one was included in the UNODC database, i.e. the 

acetyldihydrocodeine. These entries were compared to the list of narcotic drugs scheduled under the 

1961 Convention (UNODC, 2022c) and the 19 molecules which are not included in the latter are 

reported below.  
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Table 3.6 List of morphinan like NSOs identified by the NPSfinder® 

Mol SMILES 

14-

Hydroxymorphine O[C@H]1[C@H]2Oc3c(O)ccc4c3C32C(O)([C@@H]([NH+](C)CC3)C4)C=C1 

3-(0-

Carboxymethyl)M

orphine O=C(Oc1c2O[C@@H]3[C@H](O)C=C[C@H]4[C@@H]5[NH+](C)CC[C@]34c2c(cc1)C5)C 

3-Benzylmorphine  

O[C@H]1[C@H]2OC=3C(O)(Cc4ccccc4)CC=C4C=3C32[C@H]([C@@H]([NH+](C)CC3)C4)

C=C1 

3-Carboxymetlyl 

Morphine O=C([O-])COc1c2O[C@@H]3[C@H](O)C=C[C@H]4[C@H]5[NH+](C)CCC34c2c(cc1)C5 

3-MAM O=C(Oc1c2O[C@@H]3[C@H](O)C=C[C@H]4[C@H]5[NH+](C)CCC34c2c(cc1)C5)C 

6-MDDM   Oc1c2O[C@H]3C(=C)CC[C@H]4[C@@H]5[NH+](C)CC[C@]34c2c(cc1)C5 

6-MAM O=C(O[C@@H]1[C@@H]2Oc3c(O)ccc4c3C32[C@@H]([C@H]([NH+](C)CC3)C4)C=C1)C 

Nicodicodine  

O=C(O[C@@H]1[C@@H]2Oc3c(OC)ccc4c3C32[C@H]([C@H]([NH+](C)CC3)C4)CC1)c1cn

ccc1 

Acetorphine 

O=C(Oc1c2O[C@H]3[C@]4(OC)[C@@H]([C@](O)(CCC)C)C[C@@]5([C@@H]6[NH+](C)

CC[C@]35c2c(cc1)C6)C=C4)C 

Acetyldihydrocod

eine 

O=C(O[C@@H]1[C@@H]2Oc3c(OC)ccc4c3[C@@]32[C@H]([C@H]([NH+](C)CC3)C4)CC

1)C 

Buprenorphine 

O(C)[C@]12[C@@H]([C@](O)(C(C)(C)C)C)C[C@@]3([C@@H]4[NH+](CC5CC5)CC[C@

@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 

Codeine-N-Oxide O(C)c1c2O[C@@H]3[C@H](O)C=C[C@H]4[C@H]5[N+]([O-])(C)CCC34c2c(cc1)C5 

Cyprenorphine 

O(C)[C@]12[C@@H](C(O)(C)C)C[C@@]3([C@@H]4[NH+](CC5CC5)CC[C@@]53[C@H]

1Oc1c(O)ccc(c51)C4)C=C2 

Isocodeine O(C)c1c2O[C@@H]3[C@H](O)C=C[C@H]4[C@H]5[NH+](C)CCC34c2c(cc1)C5 

Levallorphan Oc1cc2c(cc1)C[C@H]1[NH+](CC=C)CC[C@@]32[C@H]1CCCC3 

Nalbuphine 

O[C@@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H]([NH+](CC2CCC2)CC3)C4)

CC1 

Nalmefene Oc1c2O[C@@H]3C(=C)CC[C@@]4(O)[C@@H]5[NH+](CC6CC6)CC[C@]34c2c(cc1)C5 

Pentazocine Oc1cc2[C@@]3(C)[C@@H](C)[C@H]([NH+](CC=C(C)C)CC3)Cc2cc1 

Salvinorin B 

Methoxymethyl 

Ether CC12CCC3C(=O)OC(CC3(C1C(=O)C(CC2C(=O)OC)OCOC)C)C4=COC=C4 
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3.4 The importance of the web in the NPS scenario 

From the data presented above an unprecedented list of DBZDs and NSOs was generated by the 

activity of the NPSfinder® on the surface web. For these two NPS classes a total of more than 500 

molecules with possible recreational/misuse potential (Corkery et al., 2018) was identified, 

predominantly across psychonauts’ websites, chemical databases (i.e. isomerdesign.com), e-

commerce platforms and users’ forums. For these NPS only very limited information, if none at all, 

is available on their pharmacological/toxicological profile, so much so that sometimes when firstly 

discovered they are listed provisionally in the “others” class, as per UNODC database. This is true 

for both the molecules which were already listed in the international database, and for those 

identified unequivocally by the NPSfinder®.  

The discrepancy between the numbers of various NPS classes found after the analysis of the 

NPSfinder® web activity and the number reported by official sources suggested that examining the 

online scenarios could be of great potential to assess the NPS phenomenon. Even if it is not possible 

to guarantee with 100% certainty that the NPS discussed online in fact exist and are being used, or 

the molecules sold are indeed those marketed on the ecommerce platforms (i.e. which molecule is 

actually in the final product) scanning and analysing the web can still be of help in predicting and 

assessing the real world NPS scenario (Corazza et al., 2013a; Schifano et al., 2015). 

The significant differences between the NPSfinder® and the remaining databases can however be 

explained in considering that the online drug scenario is different from the reactive, event-based 

reporting of official databases (Schifano et al., 2003). Indeed, limitations and challenges 

encountered in the NPS identification (UNODC, 2013), e.g. including but not limited to appropriate 

analytical techniques, reference standards availability, lack of analytical libraries for novel 

substances, etc. (Ch 1.2.5), slow down the NPS identification process and reduce considerably the 

number of molecules actually detected and reported. These challenges are not encountered online, 

where information is very easily accessed and shared, in a fast and very often anonymous way. 

Aware of the limitations that surround the analytical NPS identification, one should not assume that 

the “real” drug market is described only by the substances that are officially reported and consider 

other sources to be used as supportive/integrative tools. The best resource could be the web, e.g. the 

virtual space/world where everything happens in the modern era, including drug-related activities 

(Corazza et al., 2013a).  

The results presented here suggest a strong interest toward opioid and sedative drugs from that 

group of users identified as psychonauts (Sec. 1.2.8), interest which have been reported on previous 

studies both in social media and in dark net setting (Arillotta et al., 2020; Kim et al., 2017). This 

strong interest could be explained with the evolutional role which has been reported in connection 
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to the use of sedatives and hypnotics with the main adaptive advantages represented by “an 

increased control of anxiety/fear, hence better coping strategies during life stressor events; an 

increased sexual disinhibition/availability for mating; and a better control of painful 

stimuli”(Catalani et al., 2021a; Orsolini et al., 2017b). Despite their strong interest towards CNS 

depressant NPS, psychonauts most favourable drugs seem to still be those with 

entheogenic/psychedelic properties (Móró et al., 2011; Orsolini et al., 2015b, 2015c). In fact if one 

compares the numbers identified here, with that from a parallel study conducted on psychedelics 

(Catalani et al., 2021c), it is noticeable how the number of hallucinogenic molecules identified 

raises above the thousand, much higher than that of NSOs and DBZDs. Indeed the psychonauts’ 

drug intake has been reported to shows high similarities with ancient shamanic ritual plant 

consumption (Orsolini et al., 2017b), i.e. psychedelics. 

Another point of consideration related with the numbers of DBZDs and NSOs here reported is that 

very few data is available on the latter to assess the risk associated with their possible recreational 

use. Indeed, whilst some NPS possess pharmacological profiles similar to their ‘controlled’ 

pharmaceutical counterpart, i.e. prescription BZDs and opioids, the majority of current NSOs and 

DBZDs are not well-described. At present the majority of in vitro studies on DBZDs focuses on 

defining their metabolic pathways more than their biological activity (Huppertz et al., 2018; 

Moosmann et al., 2016; Wagmann et al., 2021), and in vivo studies are not available, mostly as 

clinical-pre clinical studies with NPS are considered unethical. The majority of information on their 

activity toxicity is stored online, with the users forums considered as “appreciable data source” (El 

Balkhi et al., 2020). The same applies to NSOs, for which the amount of information available on 

the activity/toxicity profile is higher but there is still lack of proper in vitro/ in vivo investigations.  

The main risk associated with DBZDs and NSOs acute intoxications includes respiratory and 

central nervous system depression which could lead to death, symptoms more likely to occur when 

these substances are used in polydrug consumption (for more detail please refer to Sec 4.2.4 and 

6.34)  

If little knowledge is available for those NPS currently monitored by the international agencies, the 

situation is even worse for those molecules which, according to the online analysis have still to be 

“discovered”. On this basis, the findings highlighted by NPSfinder® can be considered a reason of 

concern, with the scientific world and health care institutions possibly facing complex behavioural 

and medical toxicity (Schifano et al., 2019a) without any ad hoc intervention and harm reduction 

strategies in place.  

A final consideration to be made is that, while the number of substances listed between the two 

official databases provides a full overview of NPS historical data regarding the different NPS 



80 

 

appearance over the last 15 years or so, NPSfinder® reports a more dynamic, and possibly current, 

picture of their existence and diffusion. NPSfinder® ability to continuously scan the web and detect 

new psychedelics in ‘real time’ makes it more focused on the present time and can provided some 

levels of understanding about future trends (Corkery et al., 2017).  

 

The following Chapter will present an overview of the DBZDs class, and the methodologies used to 

analyse this NPS class. 
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Chapter 4 Designer benzodiazepines overview and methods 

4.1 Chemical class overview 

Benzodiazepines (BZDs) were introduced in the therapeutic world in the early 1960s as anxiolytics, 

sedative hypnotics, anticonvulsants, and muscle relaxants, and a safer alternative to barbiturates, but 

their abuse potential was recognised early on (EMCDDA, 2020c). 

Indeed a high risk of misuse associated with BDZ was recognised, with could results in triggering 

of tolerance and dependence, and in severe and life-threatening withdrawal symptoms (Corkery et 

al., 2022; EMCDDA, 2021c). For these reasons, strict restrictions on medical prescription were put 

in place and 35 BZDs were placed under control by the UN Convention on Psychotropic Substances 

of 1971 (LSS/RAB/DPA/UNODC, 2016; UNODC, 2020d). The full list of scheduled BDZs is 

presented in Table 4.1. 

The BDZ structure is usually represented by a (1,4)-diazepine core fused to a benzene ring, and a 

phenyl moiety is usually attached to this core (i.e, phenyl pendant). The most common variations of 

this structure are presented in Figure 4.1. BDZs express their mechanism of action as positive 

allosteric modulators of γ-aminobutyric acid receptor (GABA) -A receptor. BZDs can be classified 

according to their pharmacokinetic characteristics (duration of action, plasma half-life (t½)) or 

according to their chemical structure. If classified by pharmacokinetic properties, they can be either 

short- (<24h) or long- (>24H) acting for the duration of action or ultra‐short (t½, <6 h), short (t½, 6 

h), intermediate(t½ 6-24 h), and long (t½ > 24 h) for the half-life (Greenblatt et al., 1983, 1981). 
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Table 4.1 List of BDZ scheduled under the UN Convention on Psychotropic Substances of 1971 

Name Duration of action Major trade name 

Anxiolytics     

Alprazolam Short Xanax® 

Bromazepam Long Lexotan® 

Camazepam   Albego® 

Chlordiazepoxide Long Librium® 

Clobazam Long Frisium® 

Clonazepam Intermediate Rivotril® 

Clorazepate Long Tranxene® 

Clotiazepam Short Trecalmo® 

Cloxazolam Long Sepazon® 

Delorazepam Long En® 

Diazepam Long Valium® 

Ethyl loflazepate Long Meilax® 

Fludiazepam Short Erispan® 

Halazepam Long Pacinone® 

Ketazolam Long Anseren® 

Lorazepam Short/Intermediate Ativan® 

Medazepam Long Nobrium® 

Nordazepam Long Stilny® 

Oxazepam Short Serax® 

Oxazolam Long Tranquit® 

Pinazepam Long Domar® 

Prazepam Long Centrax® 

Tetrazepam Short Clinoxan® 

Sedative/hypnotics     

Brotizolam Short Lendormin® 

Estazolam Intermediate Pro-Som® 

Flunitrazepam Short/Intermediate Rohypnol® 

Flurazepam Long Dalmane® 

Haloxazolam Long Somelin® 

Loprazolam Intermediate Dormonoct ® 

Lormetazepam Short Noctamid® 

Midazolam Short Versed® 

Nimetazepam Long Erinin® 

Nitrazepam Intermediate Mogadon® 

Temazepam Short Normison® 

Triazolam Short Halcion® 
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The classification by chemical structure considers the core structure. As previously reported, the 

most common structure encountered for BZD is 1,4-benzodiazepine, but 1,5-benzodiazepines and 

2,3-benzodiazepines also exist. The addition of a heterocyclic structure to the 1,4-core results in 

triazolobenzodiazepine, imidazobenzodiazepine, and oxazolobenzodiazepine. Moreover, 

replacement of the benzene ring results in thienodiazepines and thienotriazolodiazepines Figure 4.1. 

 

 

Figure 4.1 Most common structure of benzodiazepines scaffolds  

Note. The blue halos around the structures are used to identify the scaffold common to the DBZDs. The structures 

were designed with ChemDraw 20.1 

Their activity as anxiolytics, sedative hypnotics, anticonvulsants, and muscle relaxants (with their 

low toxicity) made and still makes BDZs one of the most prescribed classes of drugs in the world 

(Drug Enforcement Administration, 2019).  

BDZ are also used for other therapeutic purposes, including the treatment of alcohol withdrawal and 

drug-associated agitation, but due to the health concerns associated with long-period use, they are 

usually prescribed only for a short period of time (EMCDDA, 2021d). Parallel to their widespread 

medical use, BZDs represent the most used class of sedative for non-therapeutic purposes 

(EMCDDA, 2021d), as reported by 40 UN member states (UNODC, 2017a). Indeed, BDZs are 

often consumed in combination (poly-consumption, poly-use) with other psychoactive substances 

such as stimulants (usually to attenuate the “high” and enable re-dosing, or promote “come down) , 
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opioids or alcohol (usually to prolong or enhance the “down” feeling) increasing exponentially the 

risk of non-fatal and fatal intoxication (EMCDDA, 2018b; Kataja et al., 2018; McAuley et al., 

2022). The high demand for BZDs has attracted the interest of organised crime/criminals, with an 

increase on the market of diverted legitimate products, unlicensed, counterfeit ones, or new legal 

alternatives, i.e. DBZDs.  

 

4.2 Designer benzodiazepines  

DBZDs are per definition NPS which contain a benzodiazepine or structurally similar (e.g. 

thienodiazepines) core, and are not controlled under the international drug control system (UNODC 

EWA, 2020). Generally, DBZDs seem to show the same pharmacological profile as the classical 

BDZs, acting as allosteric modulators at the GABA-AR (for detailed pharmacology see Section 

4.2.3). Anxiolytic effects, muscle relaxation, sedation, anticonvulsant and sleep-inducing effects 

have indeed been reported (EMCDDA 2022b). 

DBZDs are mainly produced in China as bulk powders, processed and sold either as legal 

replacements for commonly prescribed/therapeutic benzodiazepine or as legal alternatives (Corkery 

et al., 2022; EMCDDA-Europol, 2019; EMCDDA, 2022a). DBZDs are predominantly used for 

self-medication; sedative/hypnotic recreational use (often displaying higher potency that those of 

classical BDZs) (Orsolini et al., 2019); potentiation of other sedatives drugs, primarily opioids; 

promotion of ‘come down’ after stimulant use; or unintentionally, as counterfeits of prescription 

benzodiazepines (ACMD, 2020b). Low prices, ease of purchase (e.g., online vendors; without 

prescription), ease of use, and high availability can be considered as the main reasons for their 

popularity and continued emergence (EMCDDA, 2021b; Orsolini et al., 2020). In 2020, the 

UNODC reported an increase of benzodiazepine-like NPS in toxicological, post-mortem and 

driving under the influence medical reports. From data collected in 2019, DBZDs were found in the 

majority of these reports (UNODC, 2020e; UNODC EWA, 2020), often in a polydrug consumption 

scenario. DBZDs are strong CNS depressants and when used in combination with other drugs can 

cause serious toxicity with profound sedation, respiratory depression, coma, and death (Zawilska 

and Andrzejczak, 2015).The risks associated with their non-medical use is aggravated by the fact 

that for these DBZDs very few or no info at all on pharmacological and toxicological profile is 

available (UNODC, 2017a). This lack of pharmacological data represents a serious health threat, 

with unforeseeable risk especially in polydrug consumption scenarios or for high-risks opioid users 

(Policy, 2015). This phenomenon is even more worrisome if we consider that a big part of the 

DBZDs derive from molecules developed by the pharmaceutical industry but rejected as 

medications due to safety or efficacy issues (EMCDDA, 2022a).  
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4.2.1 Designer benzodiazepines phenomenon  

In the early 2000s the benzodiazepines identified on the drug market were usually diverted from 

both legal (false prescriptions, pharmacies) and illegal source (prescription BDZs from other 

countries) (Ibañez et al., 2013). However, after 2007 the first NPS benzodiazepines started to appear 

in seizures by customs and law enforcement agencies in Europe and USA (EMCDDA, 2022a). In 

particular phenazepam, and nimetazepam (2007) were the first to be identified on the Western 

Europe market as “legal highs” or counterfeit BDZs, followed by etizolam in 2011 (Maurer and 

Brandt, 2018). Since they were approved for medical use in some countries (i.e. Russia, Japan, 

Italy) (Ibañez et al., 2013) these molecules could not be classified as proper designer 

benzodiazepines (UNODC 2019d), the first of which, i.e. pyrazolam, was identified only years later 

in 2012 in Finland (EMCDDA-Europol, 2012). Pyrazolam was the first molecule of the 

benzodiazepines class, available on the market, not licensed in any part of the world nor under any 

national/international narcotic law (Maurer and Brandt, 2018).  

Flubromazepam and diclazepam then followed by in 2013 (Łukasik-Głębocka et al., 2016; 

Moosmann and Auwärter, 2018) after a growing number of countries with  high benzodiazepines 

misuse rates (e.g., Norway, and Finland) proceeded to scheduled phenazepam (2016) and etizolam 

(2019) (Moosmann and Auwärter, 2018; WHO, 2016, 2015).  

Since their first emergence in 2012, an increasing number of different compounds were offered, for 

a total of 33 DBZDs reported in Europe as of December 2021 (EMCDDA, 2022a, 2022c), and a 

total of 40  reported by the UNODC (UNODC, 2022b). The numbers of DBZDs notified each year 

for the first time between 2007-2021 is reported in Figure 4.2. Despite the availability of more than 

40 DBZDs reported, in the last couple of years the market has been dominated by just a handful of 

them, and in particular etizolam and flualprazolam (NPSdiscovery, 2022). This reflected on the 

latter accounting for almost 65 % of the total of DBZDs seizures in 2020 (i.e. 5% of the whole NPS 

seizures) (EMCDDA, 2021e; UNODC, 2021e).  
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Figure 4.2 Number of benzodiazepines identified each year for the first time between 2007 and 2021 (the image is 

reproduced with the consent of EMCDDA) (EMCDDA, 2022c)  

Of the 40 plus DBZDs identified, only five are currently scheduled under the Single Convention on 

Narcotic Drugs of 1961: phenazepam (2016), flualprazolam, etizolam (2019), clonazolam and 

diclazepam (2021) (Commission on Narcotic Drugs, 2021; UNODC EWA, 2020).  

Despite accounting for only a small percentage of the totality of NPS, DBZDs have been declared 

by the UNODC a serious threat to public health (UNODC, 2021b), being commonly mentioned 

worldwide (often with other drugs) in toxicological reports on drug-induced severe intoxications 

and deaths. In particular, in 2021 the UNODC identified them in 68% of the reported toxicological 

cases related to NPS (clinical admission, drug-facilitated sexual assault, driving under the influence 

(DUI)), and reported their presence in 49% of all instances of NPS within a fatality setting (CFSRE, 

2022; Gevorkyan et al., 2021; UNODC, 2021e, 2021b). Several cases of acute poising and deaths 

related to DBZDs have been reported as well in northern Europe, especially in setting involving 

vulnerable groups and poly-drug consumption (Essink et al., 2022; Kriikku et al., 2020). In 

Scotland an upward trend of deaths attributable to the use of street benzodiazepines has been 

observed since 2015 (Scottish Government, 2022). In particular an increase from 58 fatalities 

(8.2%) of total drug related deaths (DRDs) to 879 in 2020 (66% of total DRDs) was reported 

(National Records of Scotland, 2021). All these data confirms how DBZDs should be considered as 

a -current primary threat for public health’ (UNODC, 2021b).  
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4.2.2 Chemical and pharmaceutical form  

At date, all DBZDs which have been identified on the market mostly belong to five of the 

aforementioned chemical scaffolds for the BDZs: 1,4-benzodiazepines, 2,3-benzodiazepines, 

thienodiazepines, thienotriazolodiazepines and triazolobenzodiazepines (Figure 4.1). However, 

other core structures have been observed: pyridotriazolodiazepine, a heterocyclic compound 

containing pyridine and triazole rings fused to a diazepine ring (zapizolam), 1,4-diazepinethione 

(thionordiazepam) and benzothiolodiazepine (Ali et al., 2011; Radinov et al., 1984) (Figure 4.3).  

 

Figure 4.3 Other structure identified among DBZDs. The structures were designed with ChemDraw 20.1 

Most DBZDs are described as white and odourless crystalline powders in their pure form and are 

usually sold as tablets, capsules or in blotter form (Figure 4.4).  

 

Figure 4.4 Examples of designer benzodiazepines identified on the market.  

The figure is reproduced with the permission of Moosman (2015), and is available at 

http://www.munich2015.com/data/uploads/presentations/s4-01-bjoern-moosmann-nps-nov-2015.pdf [Accessed 09 

Dec 2019 (Moosmann and Auwärter, 2018)] 

 

https://en.wikipedia.org/wiki/Heterocyclic_compound
https://en.wikipedia.org/wiki/Pyridine
https://en.wikipedia.org/wiki/Triazole
https://en.wikipedia.org/wiki/Diazepine
http://www.munich2015.com/data/uploads/presentations/s4-01-bjoern-moosmann-nps-nov-2015.pdf
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4.2.3 Pharmacological profile, the GABA system and receptors 

BDZS express their mechanism of action as positive allosteric modulators of γ-aminobutyric acid 

(GABA)-A receptor (Griffin et al., 2013). BDZs have their own binding site in a specific pocket at 

the intersection of the α and γ subunit, that differs from the GABA (endogen ligan) binding site 

(Kandasamy et al., 2021). They are defined as allosteric modulators because once bound to the 

receptor, they determine conformational changes of the latter that increase the affinity of GABA for 

its own agonist site without acting directly on the GABA pathway (Griffin et al., 2013). The 

increased affinity eases the GABA-A receptor activation which leads to hyperpolarisation, and 

inhibition of neurotransmission.  

The GABA-A receptor is a ligand-gated ion channels built of five heteromeric protein subunits (5 

glycoprotein). Despite the fact that 16 different GABA-A receptors and seven distinct subunit types 

have been identified (α 1–6, β 1–3, γ 1–3, ρ, δ, ε and θ), the majority comprise 2 α, 2 β and 1 γ 

subunit (Zhu et al., 2018) (Figure 4.5).  

 

Figure 4.5 3D representation of the pentameric structure of the GABA-AR.  

On the left is presented the view of the receptor in the cell membrane; on the right is presented a view section from 

the top which helps identifying the five subunits and the binding site of the endogenous ligand GABA in dark green 

and the BDZ in purple. of the five subunits. The 3D images were created with MOE®, while the structure was taken 

from the PDB6HUP (RCSB PDB, 2018a)   

The α, β and γ subunits isoforms are responsible for the diverse affinity noted for BDZs; while 

receptors carrying the γ2 subunit are more sensitive to BDZs, it is the α subunits which influence 

the activity. Indeed to a different α isoform correspond a different receptor activity: α1 receptors are 
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responsible for sedative, anterograde amnesic, anticonvulsant actions and addictive potential; α2 for 

the anxiolytic effect and α2, 3, 5 for myorelaxant actions (Rudolph et al., 1999; Tan et al., 2011). Of 

the various isoforms of the α subunit, 1, 2, 3 and 5 are the ones that show higher affinity towards 

BDZs (Davies et al., 2002; Kelly et al., 2002). It should be noted that BDZs do not bind α4 and α6 

(Davies et al., 2002). 

Although information about receptor affinities and subtype specificity is widely available for BDZ, 

data on DBZDs are scarce, which make the prediction of their pharmacological effects a challenge. 

However, it has been observed that flumazenil is able to reverse the effects caused by DBZDs, 

suggesting how their action profile in humans is similar to the classical benzodiazepines 

(Bohnenberger and Liu, 2019).  
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4.2.4 Toxicological profile  

While data on the toxicological profile on DBZDs are scarce, similarities with the BDZ toxicity 

profile can be assumed. Despite BDZs being well known for their high therapeutic index, the use/ 

abuse of the latter is associated with several side effects such as drowsiness, dizziness, fatigue, 

dysarthria, loss of coordination, headache and amnesia. Moreover, the prolonged use of BDZs (i.e. 

4 to 6 weeks) has been proven, in clinical trials, to show strong addictive potential and induce 

tolerance and severe withdrawal symptoms. According to the UNODC and EMCDDA the 

emergence of DBZDs aggravated the side effects associated with their non-medical use, in 

particular when in co-consumption with opioids, by producing stronger sedation and amnesia, as 

well as increasing the risk of respiratory depression (Zawilska and Wojcieszak, 2019). Indeed, when 

these molecules are used in high doses and in combination with opioids or other CNS depressants 

the risk of death by respiratory suppression (i.e. suppression of medullary respiratory centers) 

exponentially increases (Horsfall and Sprague, 2017; Webster and Karan, 2020).  

The risks associated with recreational use are strictly linked to their potency, which varies on a 

large scale, with the most potent ones (e.g. clonazolam and flubromazolam) requiring doses well 

below 1 mg to produce strong effects (a common dose of diazepam dosage varies from 2 to 10 mg). 

Their onset of action ,which could vary according to the route of administration and the absorption 

rate (Brunetti et al., 2021), is also important for a risk assessment, with longer onset times 

increasing the chance of overdosing. Benzodiazepines overdose is characterised by extreme 

sedation, reduced reflexes, and altered mental status, and could induce respiratory depression 

resulting in coma and even death (Kang et al., 2022).  

Due to the lack of in vitro and in vivo studies for the majority of DBZDs, usually data on side 

effects and toxicological profile is collected anecdotally via the analysis of trip report or users’ 

forums online. Some examples of side effects are insomnia, delirium, and psychotic episodes for 

high doses of phenazepam; blackouts, sedation and short-term memory loss for flubromazepam; 

strong sedation and memory loss with severe respiratory failure, CNS depression and brain damage 

for flubromazolam (Orsolini et al., 2020).   

The toxicity profile of each DBZDs could be further affected by the concomitant use of these 

substances with other drugs, resulting in several and unpredictable risks, particularly amongst high-

risk opioid users (EMCDDA, 2018b). 
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4.2.5  Structure Activity Relationship (SAR) 

Previous studies conducted by Sternbach et al (1971) and Hester et al (1971,1979), identified some 

correlations between the structure of the 1,4-benzodiazepines and triazolobenzodiazepines and their 

activity on the GABA-AR (Figure 4.6.) (Hester et al., 1971; Hester and Von Voigtlander, 1979; 

Sternbach, 1971) 

In particular, it was observed how: 

• triazolobenzodiazepines are generally way more potent than their 1,4 counterparts (yellow 

box in Figure 4.6) 

•  at position N1 of 1,4-benzodiazepines, and respective C1 of the triazolobenzodiazepines, 

small substituents (CH3) increase the activity, while bulky ones (phenyl) decrease the 

activity (yellow box in Figure 4.6) 

• at position C3 substituents generally decrease the potency (red box in Figure 4.6) 

• at position C5 the phenyl appears to be the best option 

• at position C6, C8 and C9 substituents lower the activity (red box in Figure 4.6) 

•  at position C7 the substitution has cardinal importance with electron-withdrawing 

substituent (e.g., halogen, CF3, or NO2) increasing the activity (green box in Figure 4.6) 

• in the ortho position of the pendant phenyl, substitution with a halogen increases the activity 

(green box in Figure 4.6) 

• at the para position of the pendant phenyl substituents exhibit strong steric repulsion at the 

GABAA receptor 
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Figure 4.6 Structure activity relationship identified for benzodiazepines.  

 

4.2.6 Designer benzodiazepines drug design 

The production of DBZDs seems to follow four different strategies: 

• identification of benzodiazepines reported in the scientific literature or patented, but never 

commercialised, or identification of appropriate substituents according to the known 

structure-activity relationships (SAR) in particular for the 1,4-benzodiazepine scaffold. 

Examples of these DBZDs are flubromazepam and some Ro compounds (e.g. Ro5-4864 and 

Ro7-4065) (Archer and Sternbach, 1968; Maurer and Brandt, 2018; Sternbach, 1971)  

• identification of possible active metabolites, as seen per diazepam metabolites in the 

pharmaceutical sector. Examples of these DBZD include fonazepam, nimetazepam and 3-

hydroxyphenazepam (Greenblatt et al., 1981). 

• modifications of the first successful DBZPs. Examples include modification of the structure 

of etizolam with the synthesis of deschloroetizolam, and fluclotizolam (Orsolini et al., 

2020). 



93 

 

• identification of triazolo analogues of well-known 1,4-benzodiazepines. Examples include 

clonazolam, flubromazolam, flunitrazolam (Shafie et al., 2019).  
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4.3 In silico methods for designer benzodiazepines 

4.3.1 QSAR with MOE® 

To create the dataset for this project, results from a previous study were considered (Hadjipavlou-

Litina and Hansch, 1994; Waters et al., 2018). The information used was the logarithm of the 

reciprocal of concentration (log 1/c), where c is the molar inhibitory concentration (IC50), actually is 

is the concentration of competing ligand which displaces 50% of the specific binding of the 

radioligandrequired to displace 50% of [3H]-diazepam from rat cerebral cortex. The log 1/c data 

obtained from the literature (Hadjipavlou-Litina and Hansch, 1994) -were experimentally 

determined using spectrometric measurements of [3H]-diazepam displacement. The resulting data 

set included 77 1,4-benzodiazepines, triazolobenzodiazepines, imidazobenzodiazepines, and 

thienotriazolobenzodiazepines (Appendix A). The dataset did not include any benzodiazepine with 

a non-definitive binding value. A SMILES (Weininger, 1988) string was associated with each of the 

molecules included in the dataset, either obtained from PubChem or through ChewDraw 20.1.1.  

BZDs with provisional log1/c values or atypical atoms or substituents (Tc (Bajusz et al., 2015b)) 

were not taken into consideration. Tc values were calculated between all the molecules of the 

dataset, and average coefficients were used as a measure of similarity within the whole dataset. Tc 

are similarity coefficients, based on binary representation (Fernández-De Gortari et al., 2017) of a 

chemical structure, that can be calculated and used to measure how similar two molecules of a data 

set are. A binary representation is a machine-readable string built with binary vectors, where a 1 

indicates the presence of a quality (i.e. chemical group or atoms) and a 0 indicates the absence. The 

Tc is expressed as a value from one to zero, where zero means no similarity and one mean complete 

similarity (same molecule). All the molecules that show a Tc equal or lower than 0.3 can be 

considered structure outliers. The Tc calculation use the following formula (Equation 4.1) and is 

usually software calculated, especially when large databases are compared.  

Equation 4.1 Tanimoto Coefficient Calculation. This equation represents mathematical formula used to calculate 

the Tc.  

Tc= Nab/ (Na+Nb-Nab) 

The Na is the number of bits on a set in molecule A, the Nb the number of bits on a set in molecule 

B and Nab the number of bits set on common to both molecules. This calculation was repeated for 

each pair of molecules. For the purpose of this study, in which 76 molecules needed to be 

compared, Open Bable 2.4.0. a software developed by SourgeForce (California) (O’Boyle, 2012; 

O’Boyle et al., 2011; SourceForge, 2016) was used for the calculation. The average Tc cut off was 

set to 0.3, hence molecules showing values <0.3 were re-moved from the latter as considered highly 
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dissimilar in structure. The dataset was subsequently divided into training and test sets taking into 

consideration the value of the similarity coefficient and the biological activity (Bajusz et al., 2015b; 

Bender and Glen, 2004; Godden et al., 2000). 

The data set was split to obtain a ratio of roughly 80% in the training set and 20% in the test set 

(Leelananda and Lindert, 2016). The training set was used to build the mathematical model while 

the test set was used for its validation (external validation) (see section…….).  

The SMILES strings and the log1/c values were used to create a database in MOE® and then the 

SMILES strings were converted to molecule format. The conversion to molecule and their 

preparation with the Quick prep application was mandatory to be able to calculate the descriptors 

and build the QSAR models. QSAR models were built manually and automatically.  

 

4.3.2 MOE® Manual QSAR models 

To build a manual QSAR model, the first step is to calculate the descriptors. In MOE® there are 435 

descriptors available, belonging to four different 4 classes: 2D (n= 206), which only use the atoms 

and connection information of the molecule; i3D (n= 138) which use the internal 3D coordinate 

information of the molecule; x3D (n=10) which use external 3D coordinate information but also 

require an absolute frame of reference (e.g. molecules docked into the same receptor); and protein 

(81) which use physicochemical protein properties. For lack of a reference frame and because 

working with small molecules and not proteins, only the 2D and i3D descriptors were calculated. 

The correlation to log1/c was calculated and a number between zero (no correlation) and -1 (full 

negative correlation) or between zero (no correlation) and 1 (full positive correlation) was obtained. 

All descriptors that showed a value of less than -0.5 or more than 0.5 were brought further for 

evaluation and then ranked in descending order according to their absolute ρ values. The top ten 

descriptors were used in the initial building of the QSAR model using the Partial Least Squares 

method of the QuaSAR module in MOE® (Figure 4.7).  
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Figure 4.7 QuaSar model panel in MOE®. 

This panel enable the users to calculate a QSAR model while specifing the database object of the study, i.e. the list of 

molcules on which the model will be built; the activity field, i.e. the value used as biological activity, the method used 

to create the QSAR model (PLS) and the dercsitor which the users whats to include in the model.   

After that, a stepwise regression approach with repeated generations of the QSAR model was 

carried out until only 3 descriptors were left (minimum suggested number (Leelananda and Lindert, 

2016). All the calculated QSAR models were then submitted for cross validation with the QuaSAR 

Fit Validation application. For each QSAR models the correlation coefficient (r2), the RMSE value 

and xr2 (the cross validated r2) were generated. For data presentation homogeneity the value xr2 will 

be here identified with q2. The closer r2 and q2 are to 1 the more predictive and robust the model.  

The predictivity of the QSAR model was evaluated using the Evaluate function in MOE® which 

enables the calculation of predicted log 1/c values for the test set and the correlation Plot function 

that calculates the r2 for the test set. 

 

4.3.3 MOE® automatic QSAR models 

The automatic QSAR models where generated using the partial least squares method of the 

AutoQSAR application in MOE®.  
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With this application the descriptors gets automatically calculated and refined after the software 

assesses their correlation to log1/c. To assess the latter, the QSAR-Contingency function, which is 

the MOE® statistical application designed for descriptors selection, was used. Descriptors which 

obtained a value < 0.5, i.e. did not correlate or were deemed non-contributory to were deleted. The 

limited cluster of descriptors  chosen, was filtered to check for mutual collinearity (i.e., correlation 

values between two descriptors >0.7 resulted in rejected descriptors) and according to their relative 

importance towards log1/c. A stepwise regression approach with repeated QSAR model generations 

was carried out automatically by Auto QSAR, until an optimum model was generated. The 

suitability of the mathematical models was assessed by their respective values of r2, q2 (i.e., closest 

to 1 as possible) and the number of descriptors (i.e., roughly 1 for five entries in the training set) 

(Leelananda and Lindert, 2016; Tropsha, 2010). The final QSAR model was then validated using 

the test set, and then used to predict the log1/c values for the DBZDs identified online. 

The same statistical parameters mentioned above were calculated: the correlation coefficient (r2) 

(goodness to fit) and the LOO correlation (q2) (robustness) for the training set (internal validation); 

and r2 for the test set (external validation). r2 defines the goodness-of-fit of the QSAR model, while 

q2 defines the goodness of prediction (Golbraikh and Tropsha, 2000). When r2 value > 0.6 and q2 > 

0.5 for the training set (Beebe et al., 1998) and a r2 > 0.5 for the test set (Golbraikh and Tropsha, 

2002) the model can be considered acceptable. The stability of the latter is also assessed via the 

calculation of the root mean square errors (RMSEs) for the training and test sets (Beebe et al., 

1998). 
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4.3.4 QSAR with Forge™ 

The same dataset, or as referred to in Forge™ the ‘database molecules’, used in MOE® were used 

for the identification of the training and test set with Forge™. With this software, the identification 

is done automatically through a function called ‘partition of the Dataset”. The partition can be either 

random or activity stratified, i.e. depending on the log1/c. The user can choose the percentage of 

entries to allocate to each of the sets, starting from the default value of 20% for the test set.  

To partition the data set into training and test set, the entries were loaded as a list of SMILES with 

corresponding log 1/c value indicated from a csv file. When loading the file into Forge™, the 

molecule role (training set) and the protonation state were specified by the user (Figure 4.8). 

Forge™ automatically convert all molecules to 3D. All the molecules were uploaded as training set 

and further divided into training and test set. 

 

Figure 4.8 Dataset upload panel in Forge™ 
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4.3.5 Forge™ Ligand specification and alignment  

Once the molecules are loaded, to generate a 3D QSAR model they need to be aligned to one or 

more reference molecule (i.e. ligands). Although using a single molecule is ok, using two or three 

pre aligned structures is usually recommended. In this way, a wider diversity of chemical features in 

the molecules that need to be aligned can be described, i.e. considered.  

In Forge™, the alignment can be performed in two ways: normal (or protein centric view) or 

substructure based (or ligand centric view). For both methods, an initial alignment is generated and 

then further refined. Once the alignment is completed a list of alignment for each molecule is 

returned, and the most energy favourable one automatically displayed by the software (Figure 4.9). 

The user can browse through all the alignments generated and change that one which is displayed. 

Each alignment is returned with a similarity score (Sim) value that assesses the quality of the 

alignment itself (1 is 100% alignment). The alignment step is mandatory, and the 3D QSAR 

modelling is very sensitive to alignment noise and misalignment. Because this step is fully 

automatised by Forge™, a further visual inspection is recommended, and manual intervention can 

be used to improve the quality of the alignment itself.   

Suitable reference molecules are highly active molecules, in their active 3D conformations when 

possible. These need to be chosen and loaded by the user as reference compounds. The ligands can 

be extrapolated from the 3D receptor structures available in the PDB database and saved as separate 

entities. In this way, one can be sure that the 3D conformations obtained are the active 

conformations.  
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Figure 4.9 Example of an alignment made by Forge™.  

On the right, the list of the possible 3D conformations automatically identified, and, on the left, the 3D structure of 

the one chosen by Forge™. The query molecule (oxazepam) is in green, while the two reference ligands (alprazolam 

and diazepam) are in light pink. The drop-down menu on the right identifies all the different possible alignments (in 

this case 10) of the oxazepam on the reference molecules.  

 

4.3.6 Forge™ descriptors’ selections  

Forge™ uses descriptors based on electrostatic molecular fields and steric properties to characterize 

each molecule and build the 3D-QSAR models. These descriptors are generated automatically from 

the alignments. Hence, no process of Descriptor selection is carried out by the user, and everything 

is done automatically by the software. 

Molecular recognition occurs via electronic and surface properties: electrostatic and van der Waals forces. 

When undertaking molecule design, it is therefore desirable to have a set of molecular descriptors that 
encode the aspects of a molecule which define its binding interactions. Such a set of descriptors would 
encode the surface, shape, electrostatic, and van der Waals properties of a molecule rather than its 
chemical connectivity. In other words, the descriptors would encode the molecular fields on and around 
the surface of the molecule, rather than a set of atoms and bonds.  

 

 

4.3.7 Forge™ QSAR models 

Forge™ calculates the electrostatic and shape properties of each of the training-set molecules 

aligned to the reference ligands. From these properties, the software can identify sampling points 

which are used to investigate steric and electrostatic potential. All these sampling points (field 

points) are used to get an invariant set, which reduced the number of descriptors that must be 

considered. Electrostatic and steric properties were calculated using a distance of 1 Å between the 
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sample points. This ensures that all areas around the compounds that could contribute to the activity 

are effectively described. 

The values obtained by these properties were automatically combined using Partial Least Squares 

(PLS) regression employing the SIMPLS algorithm which enables the use of as many descriptors as 

possible.. Differently to MOE®, Forge™ does not display the mathematical algorithm of the chosen 

model, but a 3D representation through steric and electrostatic field points. The Field QSAR was 

chosen as the calculation method into the “Build Model” section of Forge™ Processing (Figure 

4.10) alongside other regression methods identified as “ machine learning models”. In Forge™ 

there are four types of Machine Learning models: k-Nearest Neighbors (kNN), Random Forest, 

Support Vector Machines (SVM), and Relevance Vector Machines (RVM). Machine learning 

methods can be used to develop QSAR models by the electrostatic and shape properties of aligned 

molecules. Both regression and machine learning methods are really good when real values 

biological activity data (for example, pIC50, pKi) are available and the aim is to calculate a function 

that which can be used to predict further activity values.  

 

Figure 4.10. Parameters adopted for the Field QSAR calculation method in Forge™. 
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4.3.8 Molecular Docking 

Identification of the 3D protein structures 

Molecular docking (MD) studies were used to evaluate the binding affinity between the DBZDs 

identified by the NPSfinder® and the 3D crystal structure of the GABA-AR identified in the PDB.  

The analysis of the Protein Data Bank database to retrieve the best 3D structures for the docking 

included the use of several key words as ‘GABA-AR, benzodiazepine receptor, GABA receptor, 

diazepam, benzodiazepines’, etc. Only the structures of human receptors were considered. From the 

keywords search four structures of interest were identified:  

- PDB6HUP – “CryoEM structure of human full-length alpha1beta3gamma2L GABA(A)R in 

complex with diazepam (Valium), GABA and megabody Mb38” (RCSB PDB, 2018a) 

- PDB6HUO - “CryoEM structure of human full-length heteromeric alpha1beta3gamma2L 

GABA(A)R in complex with alprazolam (Xanax), GABA and megabody Mb38” (RCSB 

PDB, 2018b) 

- PDB6D6U – “Human GABA-A receptor alpha1-beta2-gamma2 subtype in complex with 

GABA and flumazenil” (RCSB PDB, 2018c) 

- PDB6X3X – “Human GABAA receptor alpha1-beta2-gamma2 subtype in complex with 

GABA plus diazepam” (RCSB PDB, 2020) 

Of these, PDB6HUP, PDB6HUO and PDB6X3X were used for the docking studies, while the 

structure of the GABA-AR crystallised with flumazenil was left out as the latter is a competitive 

antagonist on the GABA-AR (Sigel et al., 1998). It is important to note that scientific literature 

report how agonist and antagonist ligands, when bound to their target, could cause a different 

rearrangement in the structure of the binding pocket and the whole receptor (An et al., 2019; Ng et 

al., 2014; Jianliang Zhang et al., 2009). Hence, to obtain more reliable results, it is advisable to use 

the 3D structure which is bound to the most similar molecule to those under evaluation (i.e. 

DBDZs), both structure and activity wise (Leelananda and Lindert, 2016).  

The protein structures identified in the PDB database are crystallised structures of the α1β2γ2 and 

α1β3γ2 human GABA-AR in complex with a benzodiazepine in its biologically active 

conformation respectively, alprazolam (high potency and short-acting BDZ) and diazepam (low 

potency and long-acting). Despite PDB6X3X (α1β2γ2) showing a better resolution than PDB HUP, 

i.e. 2.9 vs 3.6 Å, both were taken into consideration because displaying slightly different interaction 

patterns between diazepam and the binding pocket. Some characteristics, e.g., methods, organism, 

and macromolecule, of the PDB structures used, are reported in Figure 4.11(please note the 

characteristics of 6HUP and 6HUO are the same). 
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Figure 4.11 Screenshot of the 6HUO and X3X receptor from RCSB Protein Databank.  

Notes. On the right side the resolution, method of crystallisation, source organism, the isoform of the receptor and 

the ligands complexed in the 3D crystal structure are indicated. 

Preparation of the PDB structures 

The PDB files were loaded into MOE® via the Load PDB File application and then prepared with 

the Quick Prep application (Figure 2.2). As reported in the method section (Sec. 2.3.2), Quick Prep 

corrected structural issues (e.g. missing atoms, chain break, protein chain C- or N-termini which 

need to be charged or capped) with Structure Preparation; protonated the structure (e.g. number of 

hydrogens, multiple rotamer and protomer states) with Protonate 3D; deleted the "unbound" water 

molecules; set tethers of different strengths on the receptor, ligand and solvent atoms; fixed atoms 

beyond 8A from the active site and minimized the structure with the Amber10:EHT forcefield. The 

structures were then ready to be used as input in molecular docking.  
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Definition of the binding pocket and ligand interaction 

The co-crystallised ligands available in PDB6HUP, 6HUO and 6X3X were used to define the 

binding pocket/cavity and superposition target for docking calculations. All the residues included in 

a radius of 4.5 Å from the ligand were included in the binding pocket. Additionally, the Site finder 

application was used to define the characteristic of the whole pocket for each receptor (Table 4.2). 

The three binding pockets are, as expected, almost identical (Table 4.2). 

Table 4.2 Description of the three binding pockets identified for 6HUO and 6HUP*.  

Receptor Site Size PLB Hyd Side Residues 

6HUO 11 93 0.99 37 66 

3:(ASP56 MET57 TYR58 ASN60 PHE77 PHE78 ALA79 MET130 

ARG132 THR142 GLU189)4:(PHE100 HIS102 SER159 TYR160 

VAL203 GLN204 SER205 SER206 THR207 TYR210) 

6HUP 20 100 0.44 34 59 

3:(ASP56 MET57 TYR58 PHE77 ALA79 MET130 THR142 

GLU189)4:(PHE100 HIS102 GLY158 SER159 TYR160 VAL203 

GLN204 SER205 SER206 THR207 TYR210 VAL211 VAL212) 

6X3X 12 141 1.21 41 82 

4:(PHE100 HIS102 ASN103 GLU138 PRO140 PRO154 LYS156 

SER159 TYR160 ALA161 VAL203 GLN204 SER205 SER206 

THR207 TYR210)5:(ASP56 MET57 TYR58 ASN60 SER61 PHE77 

ALA79 MET130 THR142 SER186 GLU189 ASP192 SER195) 

*The size column indicates the number of alpha spheres comprising the site; the PLB column indicates the 

Propensity for Ligand Binding score for the contact residues in the receptor; the Hyd column indicates the 

number of hydrophobic contact atoms, and the Side column indicates the number of sidechain contact atoms. 

The Residues column indicates the residues in the binding pocket in the format chain:residue-name. 

For each receptor, the 3D structure and the information contained in the scientific reference was 

used to explore ligands-protein intercations and identify the most important residues for the 

allosteric activation of the GABA-AR. The binding pockets, as visualised in MOE®, for 6HUP and 

6X3X (diazepam) and 6HUO (alprazolam)are presented in Figure 4.12, 4.13 and 4.14 resepcitvely  

Similar interaction of the diazepam into the binding pocket are identified for 6X3X.  
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Figure 4.12 6HUP binding pocket 3D and 2D representations.  

Notes: on the 3D left, the binding pocket representation with the co-crystallised ligand diazepam (yellow). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. The VDW interaction surface 

(transparent light grey) was added to increase visibility of the shape and size of the binding pocket. On the right , the 

2D representation of the binding pocket and interactions between receptor residues and ligand are provided. Below, 

a report of the type of interactions, receptor residues and alprazolam atoms involved, and relative distance and 

energy parameter (kcal/mol) are outlined. Note that the letter (D) identifies the α chain. The colours used to depict 

the residues in the 2D screenshot define different characteristics of the latter: light purple for polar residues and 

light green for hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo 

indicates solvent exposure both on the receptor and the ligand 
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Figure 4.13 6X3X binding pocket 3D and 2D representations.  

Notes: on the 3D left, the binding pocket representation with the co-crystallised ligand diazepam (yellow). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. The VDW interaction surface 

(transparent light grey) was added to increase visibility of the shape and size of the binding pocket. On the right , the 

2D representation of the binding pocket and interactions between receptor residues and ligand are provided. Below, 

a report of the type of interactions, receptor residues and alprazolam atoms involved, and relative distance and 

energy parameter (kcal/mol) are outlined. Note that the letter (D) identifies the α chain. The colours used to depict 

the residues in the 2D screenshot define different characteristics of the latter: light purple for polar residues and 

light green for hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo 

indicates solvent exposure both on the receptor and the ligand 
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Figure 4.14 6HUO binding pocket 3D and 2D representations.  

Notes: on the 3D left, the binding pocket representation with the co-crystallised ligand alprazolam (pink). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. The VDW interaction surface 

(transparent light grey) was added to increase visibility of the shape and size of the binding pocket. On the right , the 

2D representation of the binding pocket and interactions between receptor residues and ligand are provided. Below, 

a report of the type of interactions, receptor residues and alprazolam atoms involved, and relative distance and 

energy parameter (kcal/mol) are outlined. Note that the letter (D) identifies the α chain and the letter (C) the γ chain. 

The colours used to depict the residues in the 2D screenshot define different characteristics of the latter: light purple 

for polar residues and light green for hydrophobic ones; red circle indicates an acidic and blue a basic residue; and 

the light blue halo indicates solvent exposure both on the receptor and the ligand.   

The scientific literature reports the fundamental role and importance of the α1His102 residue (α 

chain) for the binding of classical BDZs at the allosteric site of GABA-AR. Indeed, the two chlorine 

atoms at the C8 and C7 positions in ALP and DZP (Figure 4.12 -Figure 4.14), are reported to 

interact as a hydrogen bond donor (i.e. through a hydrogen bond) with the α1His102 side chain. The 

importance of this bond has been confirmed over the years by cross-linking studies, which saw the 

loss of activity when the His residue was substituted with a Cys residue; and by the fact that BDZs 

do not bind to the GABA-AR showing the α4 and α6 subunits, in which the His position is occupied 

by Arg residues (Wieland et al., 1992). The Arg larger side chain indeed seem to sterically clash 

with ALP and DZP preventing the binding (Rudolph et al., 1999). Other important interactions have 

been reported to be the hydrogen bond with Ser205 or Ser206 (α chain), mediated by the oxygen 

atom (C=O) of diazepam (Figure 4.12) and the nitrogen atom of the triazolo moiety of the 

alprazolam (Figure 4.14) (Masiulis et al., 2019; Sigel and Ernst, 2018). Other interactions include 
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arene-arene interactions with Tyr58 (γ chain), the hydrogen-arene interaction with Phe77 (γ chain) 

and Tyr160 (α chain) and the hydrogen bond with Ser159 (α chain). 

Ligands reference dataset 

A reference data set for the docking studies was prepared with the aim of including the two co-

crystallised ligands (DZP and ALP) and some of the classical BDZs, which are well known in 

literature as a highly potent agonist for the GABA-AR (both short- and long lasting) (Chouinard, 

2004). A total of six molecules were identified.  

Table 4.3 Reference dataset composition 

Low-potency and long-acting benzodiazepines (weak with a prolonged effect): 

Diazepam (Valium) CN1C(=O)CN=C(C2=C1C=CC(=C2)Cl)C3=CC=CC=C3 

High-potency and short-acting benzodiazepines (strong with short effects): 

Triazolam (Halcion) CC1=NN=C2N1C3=C(C=C(C=C3)Cl)C(=NC2)C4=CC=CC=C4Cl 

Alprazolam (Xanax) CC1=NN=C2N1C3=C(C=C(C=C3)Cl)C(=NC2)C4=CC=CC=C4 

Lorazepam (Ativan) C1=CC=C(C(=C1)C2=NC(C(=O)NC3=C2C=C(C=C3)Cl)O)Cl 

High-potency and long-acting benzodiazepines (strongest benzos): 

Clonazepam (Klonopin) C1C(=O)NC2=C(C=C(C=C2)[N+](=O)[O-])C(=N1)C3=CC=CC=C3Cl 

Flunitrazepam (Rohypnol) CN1C(=O)CN=C(C2=C1C=CC(=C2)[N+](=O)[O-])C3=CC=CC=C3F 

 

Molecular Docking approaches 

The molecules in Table 4.3 were docked along with the molecule identified by NPSfinder® (Table 

3.2), using the general docking panel in MOE®. It is important to underscore that, when available, 

information on the active placement (i.e. presence of the co-crystallised ligand) and fundamental 

interactions should be taken into high consideration to proceed to a more informed docking study. 

To include information available on the fundamental interactions, a pharmacophore query can be 

defined. The latter can then be added to guide the placement of the DBZDs in the analysis in 

addition to the superposition points represented by the co-crystallised alprazolam and diazepam 

(Figure 2.4). The pharmacophore queries for alprazolam and diazepam were generated with the 

Pharmacophore Query Panel (Sec. 4.3.9) and are reported in Figure 4.15Figure 4.16.  
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Figure 4.15 Pharmacophore query used for the docking placement with 6HUO 

 

Figure 4.16 Pharmacophore query used for docking placement with 6HUP 

The pharmacophore query thus designed takes into consideration both the ligand and the receptor 

properties. In particular two constrains (C1 and C2) were highlighted to ensure the presence of a 

ligand hydrogen feature in proximity of the protein donor features (His102) and the presence of an 

acceptor feature on the ligand in proximity of the acceptor residue of Ser205/206 on the receptor.  
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The generated pharmacophore queries were used both for placement and refinement of the poses. In 

particular, each docking run was done in triplicate, with 50 poses for each entry returned by the 

placement and ten poses returned by the refinement.  

The poses were then analysed and filtered according to the S value and rmsd_refine (i.e. the root 

mean square deviation between the pose before and after refinement), the E_refine score from the 

refinement stage. For each pose, a PLIF was calculated as well.  

 

Protein ligand interaction fingerprint 

The PLIF was calculated automatically during the generation of the docking poses. As per Section 

2.3.6 the PLIF could be representative of two types of interaction, i.e. potential or surface contacts. 

The potential contacts are used to characterize the binding of a small molecule in a well-defined 

binding site, whereas surface contacts are used to characterize protein-protein interfaces. For this 

study, the potential contacts were used in generating the PLIF. MOE® evaluated nine types of 

contacts: sidechain hydrogen bonds (donor or acceptor), backbone hydrogen bonds (donor or 

acceptor), solvent hydrogen bonds (donor or acceptor), ionic interactions, metal binding interactions 

and π interactions.  

 

4.3.9 Pharmacophore 

The 3D conformations obtained from the molecular docking studies were used to carry out a 

pharmacophore mapping exercise to define pharmacophore features common to those DBDZs 

predicted to show the highest log 1/c values. In particular for the purpose of this study only those 

conformations showing the best binding affinity value (i.e. more negative) were taken into 

consideration (Figure 4.12Figure 4.14). The latter were processed with the flexible alignment 

application in MOE® using the force field Amber10:EHT, resulting in a set of alignments each 

characterised by a final score. The final score (S) quantifies the quality of the alignment in terms of 

both internal strain (U score) and overlap of molecular features (F value) (Chan and Labute, 2010). 

The lower the S value , the better the quality of the alignments. The best alignment was used to 

generate a pharmacophore query, with the use of the pharmacophore editor application in the 

consensus mode. The consensus mode linked annotation points (e.g., H-bond donor, H-bond 

acceptor, etc.) to the 3D alignment of the DBZDs, generating the corresponding pharmacophore 

features. The consensus mode is so called because identify a % for each feature, that indicate how 

common that feature is. Only the features with 70% or higher were included in the final 

pharmacophore map. The pharmacophore map was validated on the 77 BDZs used as dataset for the 
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QSAR model. Once validated, it was used for virtual screening studies of databases included in 

Zinc.   
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4.3.10 Scaffold Hopping studies  

To explore the chemical space of the class of DBZDs, scaffold hopping studies were carried out 

with the use of the Fragment application tools in MOE® (Appendix B). This application contains 

different functions which can be used for this purpose, i.e. the MedChem, Scaffold Replacement, 

and Add Group to Ligand transformation functions. MedChem transformations uses bioisosteric 

replacements, on existing ligands to generate, hence discover novel chemical structures. Usually, 

functional groups or individual part of ring systems get substituted with bioisosters whilst 

preserving the rest of the ligand. These transformations can be applied iteratively and generate 

cumulative changes (Langdon et al., 2010). Scaffold Replacement instead is used to obtain 

improved ligands via the replace of bigger portion of the scaffold, e.g. entire rings system. The Add 

Group to Ligand has the same scope as Scaffold Replacement but operates in a different way. No 

replacement is carried out and only the addition of a substituent or the extension of a ligand is 

performed. For this purpose, MOE® has proprietary linker database which can be used. All the 

transformation were carried out on diazepam scaffold (Sec. 4.3.9), as this molecule was deemed a 

good starting point for optimisation. Moreover diazepam is bound in its active conformation (RCSB 

PDB, 2018a) – see Figure 4.17, enabling the steric hindrance of the binding pocket (van der Waals 

interaction surface) and its electrostatic properties to be taken into consideration and included in the 

scaffold hopping studies.  
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Figure 4.17 Representation of the allosteric binding pocket of GABA-AR with diazepam bound in is active 

conformation (PDB6HUP (RCSB PDB, 2018b)).  

is presented, with the subunit α1 identified in blue and the subunit γ2 identified in light blue. On the left side, the 

interactions with the binding pocket are visualised; in the middle, the electrostatic properties of the pocket and on the 

right, the van der Waals interactions surface are presented. The electrostatic properties are identified with three 

different colours: green for the hydrophobic portion, red for the H-bond acceptor, and blue for the H-bond donor-

like portion. All of these were retrieved from the analysis of the crystallised structure. 

To carry out the MedChem and Scaffold Replacement studies, and after evaluation of the 

benzodiazepine SAR (Sec 4.2.5), diazepam was divided into three major moieties, as shown in 

Figure 4.18. 

 

Figure 4.18 Three major moieties (1,2 and 3) for the MedChem (green) and Scaffold Replacement (red) studies 

Notes. The green moieties include the benzene ring (1), the diazepine ring (2), and the pendant phenyl ring (3). The 

red moieties include the whole benzodiazepine ring (1), the benzene ring (2), and the pendant phenyl ring (3). 

Only the Med Chem and Scaffold Replacement studies were performed at the beginning, with The 

Add Group to Ligand function used only subsequently. This was due to the fact that the purpose of 

the study was to explore diverse chemical structures rather than growing existing ones. The MOE® 

proprietary linker database containing 46000 linkers, was used. The default MOE® descriptor 

parameters were used to constrain the search and generated structures were energy-minimized. 

  

The following Chapter will present the results obtained with the in silico studies on the DBZDs 

class. 
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Chapter 5 Results and discussions of in silico studies on designer 

benzodiazepines 

 

5.1 QSAR with MOE® 1 

5.1.1 Training and test sets 

 The 77 BDZs discussed in Section 4.3.1 (Hadjipavlou-Litina and Hansch, 1994; Waters et al., 

2018) were divided into a training (68) and a test set (9), and a SMILES string was generated for 

each molecule (Appendix A). As per Section 4.3.1, the training set and test set compositions were 

determined by similarity and activity sampling (Golbraikh and Tropsha, 2002). As discussed in 

Section 2.2.1, the training set  is used to build the mathematical model, while the test set is used for 

the external validation of such model. i.e. to  assess its predictivity and generalizability (Verma et 

al., 2010). The 77 molecules presented experimental values of log1/c between 6.05 and 8.92, where 

the higher values correspond to higher biological activity (Waters et al., 2018). The molecules were 

prepared as per the Methods section 4.3.1. 

The training and test sets identified (Appendix A) were used in the manual (QuaSAR) and 

automatic (AutoQSAR) calculation of QSAR models. These model when then  used to predict the 

biological activity of the set of DBZDs (115) identified by the NPSfinder® (Section 3.2). However, 

due to the fact that some of these 115 DBZDs  were also listed among those molecules included  

either within the training or the test set, only 102 DBZDs out of the 115 (Section 3.2) were used for 

biological activity prediction.  

 

5.1.2 Manual QSAR Models  

The evaluation and selection of the descriptors was done as explained in Section 4.3.2. Once the 

descriptors were ranked according to their absolute correlation coefficient (ρ) value with log 1/c, a 

correlation matrix was developed to assess their mutual correlation with the correlation function in 

MOE® Figure 5.1. 

 

1 The results here presented have been previously published in Catalani V, Botha M, Corkery JM, et al. (2021) The 

psychonauts’ benzodiazepines; quantitative structure-activity relationship (QSAR) analysis and docking prediction of 

their biological activity. Pharmaceuticals 2021, Vol. 14, Page 720 14(8). Multidisciplinary Digital Publishing Institute: 

720. DOI: 10.3390/PH14080720 as part of VC PhD programme. 
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Figure 5.1 Correlation coefficient and correlation matrix for the top ten scoring descriptors.  

On the left-hand side is reported the correlation between the descriptor and the log 1/c value, on the right hand side 

the correlation between descriptors.  

Analysing the results of the correlation studies, only four descriptors were found not to be mutually 

correlated, i.e. not correlating with each other. These descriptors, a_nH, BCUT_SLOGP_0, density 

and vsurf_IW6 were then used to develop the QSAR models. With the four descriptors obtained, 

two QSAR model were calculated with the QuaSAR application ( 

Table 5.1).  

Table 5.1 QSAR models calculated with the manually selected descriptors 

QuaSAR-Model (PLS) 4 descriptors 

log 1/C = 8.48609 -0.07418* a_nH + 1.03718* BCUT_SLOGP_0 + 2.18721* density + 0.17983* vsurf_IW6 

QuaSAR-Model (PLS) 3 descriptors 

log 1/C = 10.21688-0.09289* a_nH +0.98396* BCUT_SLOGP_0+0.22810* vsurf_IW6 

For each of the models, the statistics parameters (training set r2 and q2, test set r2 and the RMSE 

value, Sec. 4.3.1) for model predictiveness and robustness evaluation were calculated and are 

reported below (Table 5.2).  

Table 5.2 Statistical value for the QSAR models 

4 Descriptors QSAR model 

Training set Test set 

r2 RMSE q2 r2 

0.59 0.47 0.51 0.60 

3 Descriptors QSAR model 

Training set Test set 

r2 RMSE q2  r2 

0.57 0.48 0.50 0.51 

From the data in Table 5.2, it can be seen that the QSAR model identified by the four descriptors 

seems to be slightly more predictive than the one with three descriptors , with a test set r2 value of 
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0.60 which is higher than 0.51. The same model seems to be as well more robust, showing a LOO 

cross-validation value (q2) of 0.51 which is higher than 0.50.. As reported in Section 2.2.4 a QSAR 

model is considered acceptable when it has an r2 value > 0.6 and q2 > 0.5 for the training set (Beebe 

et al. 1998) and a r2 > 0.5 for the test set (Golbraikh and Tropsha 2002). Despite the four descriptors 

model matches these requirements, its statistics are just above the cut off values and very low if 

compared to what reported in literature (r2> 0.9 (Waters et al., 2018)).  

Further attempts to improve this statistic based on the evaluation of different combination of 

training and test sets were carried out (Appendix A). It was noted that, across the various training 

and test sets, the same combination/type of descriptors were identified as correlated to the 

biological activity. This is because descriptors are calculated on the molecule structure which did 

not change.  

To better understand the reasons behind these low values and assess if more predictive QSAR 

models could be generated, a methodology different from the manual approach, i.e., the AutoQSAR 

application (Sec. 5.1.3), was investigated.  

 

5.1.3 AutoQSAR models2  

The AutoQSAR application generated 80 QSAR models from the 260 2D descriptors calculated. To 

assess the reliability and quality of the dataset further, the “ignore outliers” function was taken into 

consideration. The latter managed to identify one compound (Ro 06-9098) as an outlier, which was 

removed from the dataset and not included for the model building. After the removal of the outlier 

the training set was composed of 67 molecules only. Ro 06-9098 was flagged as an outlier after the 

evaluation of his $Z-SCORE value which was higher than 2.5. The $Z-SCORE value is "the 

number of standard deviations away from the mean" and is automatically calculated as validation 

parameter during the generation of QSAR model. MOE® explain this value as ‘the absolute 

difference between the value of the model and the activity field, divided by the square root of the 

mean square error of the data set’. The eighty QSAR equations generated were then manually 

analysed to identify the best model, i.e high values (>0.7) of r2 (goodness of fit), high values (>0.6) 

for q2 (robustness) and fewer descriptors. The model chosen was a five descriptors equation with an 

r2 of 0.75 and an q2 of 0.69 (Equation 5.1.)). The number of descriptors in the model chosen was in 

 

2 The results here presented have been previously published in Catalani V, Botha M, Corkery JM, et al. (2021) The 

psychonauts’ benzodiazepines; quantitative structure-activity relationship (QSAR) analysis and docking prediction of 

their biological activity. Pharmaceuticals 2021, Vol. 14, Page 720 14(8). Multidisciplinary Digital Publishing Institute: 

720. DOI: 10.3390/PH14080720. 
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line with the general recommendation or roughly one descriptor for every ten molecules included in 

the training set as discussed in sec. 2.2.3 (Danishuddin and Khan, 2016). The chosen model went 

then,through the external validation process, i.e., test set evaluation (i.e., prediction of log 1/c values 

for the test set). The "Model-Evaluate" function was used to predict the log1/c values for the test 

set. An r2 of 0.66, calculated using the correlation plot function, and an RMSE value of 0.65 were 

obtained. The same “ignore outliers” function was used on the test set and after the removal of two 

outliers (Ro 05-4336, Ro 05-2921), as suggested in the literature (Roy et al., 2016), a better RSME 

value of 0.36 was achieved.  

Equation 5.1 QSAR Equation identified with AutoQSAR application 

log 1/C =9.45416 + 0.77505*h_log_pbo + 1.24990*KierFlex − 0.03382*Q_VSA_HYD − 0.01507*SlogP_VSA7 − 

0.03849*vsa_pol  
 

The five descriptors included in the model correlate with logP (octanol/water partition coefficient) 

(SlogP_VSA7), the strength of π-electron bonds (h_log_pbo), the total hydrophobic van der Waals 

surface area (Q_VSA_HYD), the polar van der Waals surface area (vsa_pol), and the molecular 

flexibility (KierFlex). This means that these 2D molecular descriptors are strictly linked to the 

biological activity of the molecules object of the study. For each descriptor, the single code detailed 

description and the relative importance is reported in Table 5.3. 

Table 5.3 Specification of the five descriptors included in the final QSAR model*.  

Code  Description  RI 

 h_log_pbo  Sum of log (1 + pi bond order) for all bonds  0.65 

 KierFlex  Kier molecular flexibility index: (KierA1) (KierA2)/n  0.68 

 Q_VSA_HYD  Total hydrophobic van der Waals surface area  1.00 

 SlogP_VSA7  Approximate accessible van der Waals surface area contribution to logP(o/w)  0.25 

vsa_pol  Approximation to the sum of VDW surface areas (Å2) of polar atoms   0.29 

*In the code column is reported the descriptor name, in the description column a brief explanation of what that 

descriptor represents as reported in the MOE® manual user, and in the RI column the relative importance *i.e. 

correlation with log 1/c) of the descriptor 

As per methods section these descriptors were checked for mutual correlation. No value higher than 

0.7 was found confirming the lack of any correlation (Table 5.4). It is of great importance to check 

this issue to eliminate the risk of overfitting the model (Gad, 2014) as explained in sec. 2.2.3, and 

reduce the chance of inaccurate predictions.  
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Table 5.4 Mutual correlation values for the 5 descriptors chosen for the QSAR equation 

 KierFlex h_log_pbo Q_VSA_HYD vsa_pol SlogP_VSA7 

KierFlex 1.00     

h_log_pbo 0.13 1.00    

Q_VSA_HYD 0.65 0.30 1.00   

vsa_pol 0.07 0.11 −0.12 1.00  

SlogP_VSA7 −0.25 0.53 −0.09 0.07 1.00 

The predicted log1/c values for training and test set are listed in the supplementary information 

(Appendix A), while the correlation between experimental and predicted data are visualised in 

Figure 5.2. 

 

Figure 5.2 Correlation values (r2) for the training and the test set were obtained using the five descriptors QSAR 

model generated by AutoQSAR.  

Note: In the two graphs, the experimentally derived values of log1/c (x axis) are plotted against the values predicted 

by the QSAR model (y axis). The r2 defines the goodness of fit of the QSAR model. A QSAR model is considered 

acceptable when it has an r2 value >0.6 for the training set and an r2 > 0.5 for the test set. This model has, 

respectively, an r2 of 0.75 and 0.66 for the training and test set. 
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The QSAR model displayed in Equation 5.1 was used to obtain a prediction of the biological 

activity data for the DBZDs identified by NPSfinder® (Appendix A). As per sec. 5.1.1, those 

DBZDs identified by the NPSfinder but present also in the training or test sets (13 molecules) were 

excluded, resulting in a total of 102 DBZDs used for both the QSAR predictions and docking 

studies. The predicted log1/c values were used to define three biological activity groups: low (5.80–

6.99), medium (7.00–7.99) and high (>= 8.00). These values were chosen after the assessment of 

biological activity values available for four BDZs reported in literature as high potency ones, i.e. 

triazolam (Halcion, log 1/c= 8.40), lorazepam (Ativan, log 1/c= 8.46 ), clonazepam (Klonopin, log 

1/c= 8.74) and flunitrazepam (Rohypnol, log 1/c= 8.42). The conservative choice of including in the 

high activity group all those DBZDs with log1/c values> 8.0 was taken to account for error in the 

predicted values.  

In Table 5.5 the top twenty DBZDs are reported according to their predicted biological activities. 

The calculated 2D descriptors, that were not part of the final QSAR model, but are considered by 

default important to describe the drug-likeness of these DBZDs, are reported in Appendix A. No 

evaluation of pharmacokinetics profile (PK) or absorption, distribution, metabolism, excretion and 

toxicity (ADMET) properties was conducted.  

  



120 

 

 

Table 5.5 The top 20 predicted value of biological activity (log1/c) for the 102 DBZDs identified by NPSfinder®*.  

 

Molecule SMILES Predicted log1/c 

Ro 09-9212 Clc1c(C2=NCC(=O)Nc3sc(Cl)cc23)cccc1 9.40 

Ro 07-5193 Clc1c(c(F)ccc1)C1=NCC(=O)Nc2c1cc(Cl)cc2 9.06 

Ro 20-8065 Clc1c(Cl)cc2NC(=O)CN=C(c3c(F)cccc3)c2c1 9.04 

Ro 07-5220 Clc1c(c(Cl)ccc1)C1=NCC(=O)N(C)c2c1cc(Cl)cc2 8.95 

Ro 07-3953 Clc1cc2C(c3c(F)cccc3F)=NCC(=O)Nc2cc1 8.81 

Fluclotizolam Clc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 8.77 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.77 

Flubrotizolam Brc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 8.67 

Phenazepam  Brc1cc2C(c3c(Cl)cccc3)=NCC(=O)Nc2cc1 8.61 

Ro 07-9749 Ic1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 8.60 

Clonazolam Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.58 

Ro 15-9270 Clc1c(C=2c3c(-n4c(C)nnc4CC=2)ccc([N+](=O)[O-])c3)cccc1 8.52 

Climazolam Clc1c(C2=NCc3n(c(C)nc3)-c3c2cc(Cl)cc3)cccc1 8.49 

Flunitrazolam Fc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.47 

Ro 20-8552 Clc1c(C)cc2C(c3c(F)cccc3)=NCC(=O)Nc2c1 8.42 

Methyl Clonazepam Clc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.40 

Reclazepam Clc1c(C2=NCCN(C=3OCC(=O)N=3)c3c2cc(Cl)cc3)cccc1 8.39 

Uldazepam Clc1c(C2=NCC(NOCC=C)=Nc3c2cc(Cl)cc3)cccc1 8.39 

Zapizolam Clc1c(C2=NCc3n(-c4c2nc(Cl)cc4)cnn3)cccc1 8.38 

Ethyl Dirazepate Clc1c(C2=NC(C(=O)OCC)C(=O)Nc3c2cc(Cl)cc3)cccc1 8.35 

*Log1/c represents the logarithm of the reciprocal of the molar inhibitory concentration (IC50) (nM) required to 

remove 50% of [3H]-diazepam from rats’ cerebral cortex.  The molecules are listed in decreasing order of 

predicted log1/c. The higher log1/c values should correspond to a higher biological activity 
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The number of DBZDs that show predicted log1/c values between 7.00 and 7.99. i.e. medium 

activity was 43 (42%), while the ones showing predicted log1/c > 8.00, i.e. high activity were 42 

(41%). Seventeen molecules (17%) showed predicted log1/c values lower than 7.00, i.e. low 

indicating a low predicted biological activity. Among the top scoring DBZDs, a series of Ro 

molecules (Gardner and Hedgecock, 1989) was identified, as well as phenazepam (WHO, 2015), 

ciclotizolam (Weber et al., 1985), fluclotizolam (Binder et al., 1974), and flubrotizolam .  

The three activity groups were visually assessed to identify any pattern of communality among 

chemical features. The double substitutions in position C7 and C2’, mainly with halogens (i.e. Cl, 

Br and F) and NO2 was identified as a common feature in the “high activity” group. This was found 

to be the case also for the presence of a substitute thiazole ring replacing the benzene of the 

benzodiazepines scaffold and the presence of a triazolo/imidazole ring (N1-C2) fused in the core 

structure (Figure 5.3, Sec. 4.2.5). The “medium activity” group was characterised mostly by one 

single substitution with halogens (i.e. Br and F), either in position C2’ or C7. Another recurrent 

structural characteristic was the presence of bulky substituents either on the imidazo/triazole ring or 

at position N1 (Figure 5.3, Sec. 4.2.5). The lack of the pendant phenyl was also observed in this 

group. The same substitution pattern of the bulky chains on N1 was observed in the “low activity” 

group as well, together with the presence of pyrrole or imidazole rings as substitutes of the benzene 

ring (Figure 5.3, Sec. 4.2.5). It should be noted that no clear or defined pattern/correlation could not 

be established. 
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Figure 5.3 Example of 2D molecules belonging to the high, medium and low activity bins. 

 Notes: In the figure, common chemical features across each activity bin are highlighted with a blue circle. Instead, 

the red circle indicates the lack of a substituent. 

The best 2D QSAR model obtained with MOE® (Chemical Computing Group ULC, 2022), i.e. the 

one developed with the AutoQSAR application, was used to predict the biological activity of 

previously reported and unreported DBZDs. The validation process underwent also confirm the 

reliability of the model to predict the biological activity of new DBZDs and the possibility of using 

it for a fast evaluation as soon as a new molecule emerges online or on the real-world markets. 

Despite these predictions are only educated guesses, with no experimental supporting data, the 

validation carried out on the QSAR model should suffice for the predicted biological activities to be 

regarded as valid, reliable and very useful for the initial assessment of novel DBZDs. 

The statistic parameters reported for the model, i.e training test r2 (0.75) and q2 (0.69), prove 

goodness-of-fit and robustness (internal validation). The goodness-of-fit, or internal predictivity (r2 

= 0.75) indicates how well the model predicts biological activity for molecules used to build the 

model itself but cannot predict the efficacy of the model for compounds that were not used to train 
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the model. Hence, the predictivity of the model need to be assessed by external validation (test set). 

This external validation returned values for r2 (0.66) and RMSE (0.36) which suggest a good 

productivity capacity of the algorithm. The r2 value indicates that the QSAR model was able to 

predict 66% of the activity values of the test set, while the RSME value instead indicates the 

confidence of the model. While the closer the r2 value is to 1 the higher the predictivity of the 

model, for RSME value is the opposite, being the latter a measure of the error of the prediction. 

However, differently from r2, for RMSE there is no maximum cut-off (Consonni et al., 2010) and 

the lower the value the better the measure confidence (Alexander et al., 2015; Golbraikh et al., 

2014; Tropsha, 2010; Worachartcheewan et al., 2018). Often RMSE is considered a more helpful 

gauge of a model's usefulness than r2 (Alexander et al., 2015). 

These statistical values were refined after the identification and elimination of the outliers from the 

dataset. A compound is as a true outlier when the predicted log/c value is 2.5 units higher (Z-score) 

than the experimental one. True outliers are compounds that show unexpected biological activity or 

are unable to fit into a QSAR model (Verma and Hansch, 2005); eliminating true outliers from a 

training set is good practice to increase the quality of the model and avoid unnecessary bias 

(Furusjö et al., 2006).  

 

It should be noted that this model will keep its good predictivity only when applied to new molecule 

which belong to the domain of applicability (Sec 5.2.3) of the model, i.e. are structurally classifiable 

as BZDs (Figure 4.1 and Figure 4.3). Indeed it cannot be used for a reliable prediction of the 

activity of other chemical classes on GABA-AR (e.g. Z-drugs) (Gunja, 2013).  

 

The QSAR model here generated indicate a strong correlation between some physiochemical 

characteristics of DBZDs and their biological activity (Maddalena and Johnston, 1995; Thakur et 

al., 2004; Waters et al., 2018). LogP, or partition coefficient, which identify the ability of a 

molecule to permeate a membrane, the hydro-phobic surface and the polar surface are described by 

the QSAR model as very important properties in this regard for an index, unknown, DBZD. The 

same seems to apply to its molecular flexibility.  

The total hydrophobic van der Waals (vdW) surface area (i.e. Q_VSA_HYD) is the descriptor 

mostly correlated with log1/c value (Table 5.3). Q_VSA_HYD, together with SlogP_VSA7 (van 

der Waals surface area contribution to logP) and vsa_pol (vdW polar surface areas), describe very 

important electrostatic molecular surface properties which are usually the most important for 

receptor interaction potential, i.e biological activity, and were also proved to influence the 

membrane permeability (Wildman and Crippen, 1999). KierFlex, the second most important 
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descriptor (Table 5.3), suggest the importance of the molecule flexibility for its biological activity 

(Hall and Kier, 1991). This could be explained if one considered the very thigh binding pocket of 

the GABA-AR (Sec. 5.4). The sum of hydrogen bond donor strengths of carbon atoms, i.e., 

h_log_pbo, appears to be the third most important descriptor in the QSAR model generated (Table 

5.3). The importance of this descriptor could be explained if one takes into consideration that the 

majority of the interactions documented with the docking studies (Sec 5.4) are represented by 

hydrogen donor/acceptor bonds (Wang et al., 2019). Hence, the ability of a molecule to generate 

this type of bond could strongly correlate with its level of activity. 

Parallel to the information displayed in the QSAR model which could be used to increase the 

knowledge on DBZDs, the predicted values of the log1/c represent the most interesting outcome of 

the QSAR study. As reported above (sec 5.1.3), molecules with log1/c> higher than 8.0 should 

display high potency in line with lorazepam and clonazepam, (respectively log1/c of 8.46 and 8.74 

(Appendix A)). 

Among the DBZDs (n = 102) identified by the web crawler, a total of 41% show value of log1/c > 

8.00 (high potency). Etizolam (which is being prescribed in some countries, but still classified as 

DBZD in others), and flualprazolam, two of the most popular DBZDs worldwide (EMCDDA, 

2020d; Public Health England, 2020) are included in this 41%, with predicted log 1/c values 

between 8.10 and 8.40. The top ten predicted log1/c values identified) are ten times higher than 

those predicted for etizolam and flualprazolam. This is of particular concern seeing that these two 

DBZDS have been connected to multiple fatalities and near misses (UNODC EWA, 2020). 

Phenazepam and fluclotizolam are also predicted among the top ten DBZDs (ACMD, 2020a; 

Moosmann and Auwärter, 2018; UNODC, 2017a; WHO, 2015) together with lesser known DBZDs 

 

Although these results need to be interpreted as speculative conclusions, hence not experimentally 

determined, they may still present a reason for concern. Indeed the QSAR results tentatively 

suggested that about half of the 102 DBDZs identified may possess high to very-high activity on the 

GABA-AR. Moreover, the log1/c values are calculated for the α1 isoform of the GABA-AR, the 

one responsible for the addiction potential of BZDs (Tan et al., 2011). Therefore, it could be 

concluded that almost half of the DBZDs here assessed may be both potent and associated with a 

strong addiction potential (Brunetti et al., 2021; El Balkhi et al., 2020; Orsolini et al., 2020).  
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5.1.4 AutoQSAR model domain of applicability 

The applicability domain for the AutoQSAR model has been calculated accordingly to the structure 

similarity (Tc). This means that all new molecules which shows a Tc=0.5 (average) when compared 

to the whole dataset used to train and validate the QSAR model could be predicted by this model.  
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5.2 QSAR with Forge™3 

5.2.1 Training and test sets 

The three-dimensional structures of 77 BZDs in the data set were prepared in in MOE® with the 

molecular force field Amber10:EHT. The optimised 3D structures were uploaded to Forge™ for the 

3D-QSAR studies. The 77 structures were divided with the activity stratify function into the 

training set (65) and a test set (12) (Appendix A). The splitting process was carried out multiple 

times and all the resulting combinations were used to assess reproducibility. The resulting training 

and test sets composition are dissimilar to the one obtained with MOE® because calculated in a 

different way. 

Once uploaded in Forge™, each molecule was assigned with a set of field points which describe the 

complex three-dimensional electrostatic/van der Waals properties. The field points were calculated 

with the application of the extended electron distribution force field (XED). For each molecule 

Forge™ explored the electrostatically positive and negative van der Waals attractive and 

hydrophobic features. Each feature was identified with a sphere, whose size was proportional to the 

amount that, that feature is predicted to energetically influence the biological activity. The BDZs 

were then aligned on the 3D active conformations of diazepam and alprazolam in the crystallised 

protein ( Figure 4.12 and Figure 4.13) (RCSB PDB, 2018a, 2018b), and then submitted to the 

Forge™ processing application (i.e. conformation search, alignment, and model building 

calculations).  

5.2.2 3D QSAR Model  

A 3D-Field QSAR, and two machine learning models, a Random Forest, and a Relevant Vector 

Machine (RVM) models were created (Sec. 4.3.7). Detailed information on the methodology is 

presented in Appendix B.  

The 3D Field QSAR was generated via a partial least squares (PLS) analysis (Wold et al., 2001), 

specifically with the use of the SIMPLS algorithm (de Jong, 1993). Twenty models were 

automatically generated, from which the number of PLS components defined as optimal (8, for this 

dataset) was identified. The chosen method displayed an r2 (coefficient of determination) of 0.98 

and q2 (cross-validated coefficient of determination) of 0.75 as seen in Table 5.6. The parameter for 

the other methods are reported in Appendix A. 

  

 

3 The results here presented have been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on 

recreational drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines. Chemical biology and 

drug design (Accepted) 

 



127 

 

Table 5.6 Values for the statistics obtained for the three calculated QSAR models*.  

Model  r2 q2 r2 Test RMSE Tau 

3D Field QSAR  0.98 0.75 0.82 0.34 NA 

Random Forest  0.91 0.51 0.46 0.53 0.55 

RVM 0.98 0.72 0.86 0.40 0.71 

*In particular are presented the coefficient of determination (r2) which indicates the goodness of fit; the cross-

validated coefficient of determination (q2) which indicates the robustness; the coefficient of determination for the 

test set (r2 test), which indicates the predictive power; the root mean square error (RMSE) as reliability 

measure; and Tau as a further parameter to assess the predictivity of the model. As r2, the closer the value of 

Tau is to one, the better the model 4. 

q2is the validation parameter obtained with the leave one out cross-validation (LOO CV) used in 

Forge™ as internal method validation, and ‘evaluates to which degree the prediction of a model is 

better compared to a null one’ (Catalani et al., 2022; Golbraikh and Tropsha, 2002). The root mean 

squared error (RMSE) values are reported as well as assessment of error forecast of the prediction. 

The value 0.34 reported for the final QSAR model can be considered a good result. As explained 

above (sec. 2.2.4), there is no RSME cut off value for model acceptance, and the lower the value the 

smaller the error and the better the model. The 8 components model was externally validated with 

the test set (12 molecules). The external validation returned an r2 of 0.82 (as explained in sec 2.2.4, 

the closer the r2 value is to the unity the better the model).  

The two machine learning models returned very different statistic. The RVM performed better than 

Random Forest (Table 5.6).A visual representation of the predicted vs. experimental values for 

training and test sets is reported in Figure 5.4. 

 

4 The table havs been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines. Chemical biology and drug design 

(Accepted) 
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Figure 5.4 Visual representation of the predicted (x axis) vs. experimental (y axis) log 1/c values for training (blue) 

and test (yellow )sets.  

The graphs were built with Excel 2022. From the trend line associated to each set of data, and corresponding r2 

values, it should be noted how the predictivity ability for the 3D Field QSAR and RVM models is really good both for 

the training sets(both r2 = 0.98) and the test sets (both r2 > 0.8). The same can not be noted with the test set of the 

RF model, which display a very low r2 value for the test set which fall beneath the acceptance cutoff for QSAR 

models5. 

  

 

5 The figure has been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines. Chemical biology and drug design 

(Accepted) 
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The visual interpretation of the 3D Field QSAR model is presented in Figure 5.5 . 

 

 

Figure 5.5 Visual representation of the generated 3D Field QSAR model 

Notes. The electrostatic properties are identified by the red (positive) and blue (negative) colours, whereas the green 

and violet, respectively, identify areas of favourable and unfavourable hydrophobics. Red indicates arears of 

favourable positive electrostatic interactions, while blue negative. The green and violet areas instead indicate how 

the presence of a hydrophobic interaction in that region would increase (green) or decrease (violet) the activity. This 

model representation was created by Forge™6. 

In Figure 5.5 the blue and red, and the green and violet colours identify the most important 

electrostatic and hydrophobic features for the biological activity. In particular, the red and blue 

shapes indicate the space around the molecule in which more positive electrostatic interaction (red) 

or more negative electrostatic interaction (blue) will be beneficial (i.e. increase) for the activity. 

More positive interactions (red) could mean that placing strong H-bond donors in that region 

improves the activity or could mean as well that putting strong H-bond acceptors will worsen the 

activity, and vice versa with blue. This means that a triazolo ring fused to the core scaffold (i.e. 

strong H-bond acceptor) in correspondence with the big blue negative patch, as seen with 

alprazolam, will see a positive contribution to the biological activity. The same applies for those 

DBZDs similar to clonazepam (e.g. 4'-chlorodiazepam, 7-BPDBD, difludiazepam, etc.) showing a 

 

6 The figure has been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines in Chemical biology and drug design  
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carbonyl substitution in C2. Substitution with a NO2 group in position C7 (e.g. meclonazepam) 

instead matches both the negative and positive electrostatic interactions (Figure 5.5). 

Instead, the green and violet areas instead indicate how the presence of a hydrophobic interaction in 

that region would increase (green) or decrease (violet) the activity. It is interesting to note how the 

hydrophobic features identified by the 3D Field QSAR model are in line with the electrostatic 

surface derived via the receptor study with MOE® (Figure 4.17). Relevant hydrophobic interaction 

areas are identified around the pendant phenyl ring and in correspondence with a meta substituent. 

DBZDs showing halogenated substitution in meta (e.g. brotizolam and etizolam) indeed show a 

higher biological activity compared to those of less hydrophobic substituted molecules. Another 

hydrophobic interaction area is identified between the acceptor/donor features and the scaffold 

molecule in correspondence of C7. This may suggest an increased activity when a strong H-bond 

donor is connected to the core structure via a short aliphatic chain, instead of a direct bond with the 

carbon atoms of the scaffold. 

Due to the fact that the value obtained for the test set r2 of the RF model fall beneath the cut off 

value for acceptance in QSAR (i.e. =0.5, sec 2.2.1), this model was not used to predict the 

biological activity of the identified DBZDs. Despite the very low level obtained for RF model is 

still under investigation, it should be noted that great discordance between the training and test set r2 

values (as per Figure 5.5) when using machine learning algorithms (i.e. RF) have been reported 

before. This is usually due either to the fact that a small data set was used or to the tendency of the 

machine learning algorithms to overfit the training model, (Brownlee, 2018). 

The two QSAR models identified above (Table 5.6) were used to predict the biological activity of 

the DBZDs identified online (the majority of which were retrieved from isomerdesign.com (Isomer 

Design, 2021)) (Appendix A). In summary the top ten DBZDs are reported inTable 5.7.  
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Table 5.7 Values of predicted log 1/c of the top ten DBZD The entries are ranked for decreasing values of pred log 

1/c.  

Note. In addition to the predicted value of log 1/c, other parameters important to evaluate each entry are included, 

i.e. the distance to model, which indicates how distant is the structure of the query DBZDs to those in the model; the 

Sim which gives an indication of the quality of the alignment (1 is 100% alignment); and the logP which is an 

indication of the ability of that DBZDs to cross the brain barriers7. 

Title 3D Field QSAR Distance to model RVM Sim SlogP 

Flubrotizolam 9.6 Excellent 9.5 0.9 4.2 

Clonazolam 9.5 Excellent 9.4 0.9 3.4 

Pynazolam 9.4 Good 9.4 0.9 2.1 

Fluclotizolam 9.1 Excellent 9.1 0.9 4.1 

MP-III-022 9.1 Good 9 0.6 3.6 

Ro 09-9212 9 Excellent 9 0.9 3.9 

Ro 15-9270 8.9 Good 8.3 0.8 4 

3-Hydroxyphenazepam 8.9 Excellent 8.5 0.8 3.7 

Flunitrazolam 8.8 Excellent 8.7 0.9 3.1 

 Their biological activity on the GABA-AR has already been reported for the 2D AutoQSAR model 

in The QSAR model displayed in Equation 5.1 was used to obtain a prediction of the biological 

activity data for the DBZDs identified by NPSfinder® (Appendix A). As per sec. 5.1.1, those 

DBZDs identified by the NPSfinder but present also in the training or test sets (13 molecules) were 

excluded, resulting in a total of 102 DBZDs used for both the QSAR predictions and docking 

studies. The predicted log1/c values were used to define three biological activity groups: low (5.80–

6.99), medium (7.00–7.99) and high (>= 8.00). These values were chosen after the assessment of 

biological activity values available for four BDZs reported in literature as high potency ones, i.e. 

triazolam (Halcion, log 1/c= 8.40), lorazepam (Ativan, log 1/c= 8.46 ), clonazepam (Klonopin, log 

1/c= 8.74) and flunitrazepam (Rohypnol, log 1/c= 8.42). The conservative choice of including in the 

high activity group all those DBZDs with log1/c values> 8.0 was taken to account for error in the 

predicted values.  

In Table 5.5 the top twenty DBZDs are reported according to their predicted biological activities. 

The calculated 2D descriptors, that were not part of the final QSAR model, but are considered by 

default important to describe the drug-likeness of these DBZDs, are reported in Appendix A. No 

evaluation of pharmacokinetics profile (PK) or absorption, distribution, metabolism, excretion and 

toxicity (ADMET) properties was conducted.  

  

 

7 The table has been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines in Chemical biology and drug design  
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Table 5.5. The latter presented predictive statistics which were indeed good ( a five descriptors 

equation with an r2 of 0.75 and an q2 of 0.69), but inferior if compared to the 3D models described 

above in Table 5.6 (Catalani et al., 2022, 2021b), suggesting how the data predicted with Forge™ 

could be considered more reliable.  

From the fact that using the 3D spatial steric and electronic coordinates of the DBZDs better 

prediction are achieved – i.e. higher values of r2, q2and test r2, one could infer a weak correlation 

between the 2D properties of the benzodiazepines scaffold and their activity. With these predicted 

values, even a greater percentage of DBZDs, i.e. 55%, is included in the high activity group (log 1/c 

> 8.0), with 38% include in the medium activity group and the remaining 8 % in the low activity 

group.  

The DBZDs showing the highest biological activity were: flubrotizolam (log 1/c =9.6), clonazolam 

(9.5), pynazolam (9.4) and fluclotizolam (9.1). Flunitrazolam (8.8) and flubromazolam (8.7) 

followed with slightly lower values, together with other DBZDs. These results seem to be in line 

with what is reported in the literature and some drug discussion fora (El Balkhi et al., 2020; reddit, 

2021a). Clonazolam for example was reported as the as the most active compound in his series (i.e. 

6-phenyl-4H-s-triazolo[4,3-a][1,4]benzodiazepines) (Hester et al., 1971) and has been sold online 

as a designer drug (Huppertz et al., 2015). Flunitrazolam, has also been sold online as a designer 

drug, and it was reported as a potent hypnotic and sedative drug similarly to the related compounds 

flunitrazepam, clonazolam and flubromazolam (EMCDDA and Europol, 2016). A detailed 

description for DBZD listed in Error! Reference source not found. is reported in sec. 5.6. The fact t

hat the predicted most potent DBZDs are indeed described as such, suggest how the prediction 

carried out on unknown DBZDs could be reliable and of high relevance. 

The QSAR methods predicted a strong biological activity for some DBZDs that have recently been 

recommended for inclusion in Schedule 1 of the Misuse of Drugs Regulations 2001 (ACMD, 

2020b), and in particular flunitrazolam (8.8) and flualprazolam (8.3) . It is interesting to note that 

the presence of a triazole ring seems to be a structural feature that consistently increases the activity 

of the index molecule.  

 

5.2.3  Domain of applicability with Forge™ 

The applicability domain, for each QSAR model generated with Forge™ is automatically calculated 

and reported in the 'Distance to Model' column for all the entries, being them in the training, test 

and prediction set. The distance to model is reported with values as “excellent”, “good”, “ok”, 

“poor” and “bad”, and identified whether the molecule has any field points or features (Sec. 4.3.5) 

https://en.wikipedia.org/wiki/Designer_drug
https://en.wikipedia.org/wiki/Designer_drug
https://en.wikipedia.org/wiki/Hypnotic
https://en.wikipedia.org/wiki/Sedative
https://en.wikipedia.org/wiki/Flunitrazepam
https://en.wikipedia.org/wiki/Clonazolam
https://en.wikipedia.org/wiki/Flubromazolam
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which are displayed by the training set molecules. Values as “excellent”, “good” and “ok” indicate 

that the predicted activity is reliable because all or most of the features in that particular molecule 

were indeed present in the training set. With values as “poor” and “bad” instead, the prediction 

should not be considered valid due to the fact that the molecule has features in regions (3D spatial 

point of the molecule) that the model has not seen before. The model is then not trained to 

understand the requirement for the activity in those regions, hence is not able to predict the activity. 

For example, the molecule may extend in a new direction. The model does not know anything about 

the requirements for activity in that region and therefore may predict a high activity for the 

molecule.  

 

5.3 Scaffold hopping  

To assess the possibility of enlarging the chemical diversity of designer benzodiazepines, 

MedChem and Scaffold Replacement studies were conducted. Roughly 4000 results were generated 

when the calculation were carried out taking into consideration only the steric hindrance of the 

receptor’s binding pocket for each of the transformations (Figure 4.17). Hence to generate more 

informed results, decision was taken to include the electrostatic properties of both the receptor and 

ligand into the study. The latter were assessed with the use of the pharmacophore editor function in 

MOE®. The following pharmacophore features were identified: an aromatic/hydrophobic feature in 

correspondence of the pendant phenyl which engages in an arene-hydrogen bond with His102, an 

interaction proven essential for receptor activation (Amundarain et al., 2021; Wieland et al., 1992); 

two hydrophobic features on the receptor pocket in proximity of Tyr160 and Tyr210 (Figure 5.6a) 

(Richter et al., 2012); an aromatic/hydrophobic feature at the centre of the benzene ring fused to the 

diazepine, the importance of which was previously reported (Catalani et al., 2021b; Davies et al., 

2002; Sigel et al., 1998; Sigel and P. Luscher, 2012) (Figure 5.6b); an  hydrophobic feature in 

proximity to the chlorine atom, the presence of which has been proven to increase the activity; and 

the acceptor feature on the C=O of the diazepine together with the feature identified by the oxygen 

lone pair projection on the receptor in proximity of Ser205 and Ser206 (Figure 5.6C). 
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Figure 5.6 Ligand pharmacophore features taken into consideration for the scaffold hopping exercise.  

The coloured spheres represent the pharmacophore features. The hydrophobic and aromatic features are presented 

in orange, while the H bond acceptor feature is presented in light blue. The electrostatic properties of the binding 

pocket are also presented: in green the hydrophobic, in red the H-bond acceptor and in blue the H-bond donor8 

The scaffold hopping studies performed taking into consideration the pharmacophore features just 

described, produced 477 results (364 Scaffold replacement and 113 MedChem, respectively). For 

the obtained structures, the inclusion in the applicability domain (AD) was automatically assessed 

by Forge™ through the “distance to model” function. Those structures flagged as outside the AD 

(57% of the Scaffold Replacement) were discarded. Only the top scoring modifications are reported 

in Figure 5.7. 

 

8 8 The figure has been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines in Chemical biology and drug design  
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Figure 5.7 MedChem and Scaffold Replacement top scoring moieties  

The top scoring moieties are: (a, b) triazole; (c) imidazole; (d) triazole; (e) pyridine; (f, g, h) triazolobenzodiazepines; 

(i) pyrimidine 9  

The top scoring moieties suggested as replacement by MOE® include some well-known DBZD 

scaffolds, as the triazole (Figure 5.7h), and thieno (6d) moieties. These two moieties have been 

identified, according to UNODC reports, in the majority of novel DBZDs recently identified (e.g. 

clonazolam, etizolam, flualprazolam, flubromazepam, flubromazolam) (UNODC, 2021b, 2020b). 

This finding is extremely important because it suggests that computational studies are reliable and 

could be used to predict future NPS scaffolds together with their biological activity.  

However it should be noted that the molecule with the highest values of predicted log1/c obtained 

with these studies were those which applied transformation on the pendant phenyl ring. The latter 

was replaced by other aromatic five-membered rings, which matched the pharmacophore feature 

previously identified (Catalani et al., 2021b). The five-membered rings that showed the highest 

predicted activity values were the 1,3,4-triazole (Figure 5.7a, 5.7b), and the imidazole (5.7c). 

Interestingly, the binding pocket cavity that accommodates the pendant phenyl is very narrow and 

leaves very little room for chemical modification/growth. Indeed, SAR studies in the literature 

report how meta- and para- substitutions (small groups) on the ring are not beneficial for the activity 

(Davies et al., 2002; Hadjipavlou-Litina and Hansch, 1994). The suggestion/prediction that the use 

 

9 The figure has been published in Catalani V, Floresta G, Corkery JM, et al. (2022) In silico studies on recreational 

drugs: 3D-QSAR prediction of classified and de novo designer benzodiazepines in Chemical biology and drug design  
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of a smaller aromatic ring could increase the activity is indeed very interesting for further chemical 

space investigation. As per Figure 5.8a, the five-membered ring seems to still be able to engage in 

the hydrophobic interaction with His102. Moreover, the reduced size of the pendant moiety gives 

opportunity for a greater number of ring substitutions, either in position two or five of the triazole.  

 

Figure 5.8 3D representation of the new scaffold created for DBZDs. 

Its adopted conformation inside the binding pockets which maintains the hydrophobic interaction with His102 is 

presented; b) same representation with the addition of the vanderWaal interaction surface which shows how narrow 

is the portion of the pocket which host the pendant aromatic ring; c)the predicted activities retrieved from “Add 

Group to Ligand” exercise on the C2 of the triazole pendant ring (R1) 
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It should be noted that the substitution with a bulky chain (hydrophobic, more favourable) is 

preferred only at position 2 due to the steric hindrance of the receptor creating a very tight pocket 

near position 5 (Figure 5.8b). 

Further substitutions in position 2 were explored with the “Add Group to Ligand” function in 

MOE®. A very high number of entries (> 2000) was generated and analysed. Among them, some 

high biological activities (log 1/c =>9.5) were predicted. Examples are shown in Figure 5.8c. 

A set of halogenated substituents (that is, Br, Cl, F, CF3, etc.) in R1 (Figure 5.8c) was also 

investigated but returned lower predicted biological activities (log 1/c =<8.0). The results obtained 

suggest that changes in the benzo or diazepine moieties of the molecule may have a smaller impact 

on biological activity compared to modification of the pendant phenyl. In fact, the new scaffolds for 

series 1-2 (Figure 4.18) show log1/c values lower than 9, suggesting still a high predicted biological 

activity, but more in line with the DBZDs currently on the market. Instead, a new scaffold for series 

3 suggests the possibility of creating very potent DBZDs, log1/c values higher 9.5, for which the 

harm risk should be assessed.  
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5.4 Molecular docking  

The 102 DBZDs identified by NPSfinder®, were docked as described in section 4.3.8. In particular 

those DBZDs showing the triazole moiety were docked in PDB6HUO using the pharmacophore 

placement in Figure 4.15, while the others were docked in PDB6X3 using the one in Figure 4.16. 

The S value for a set of high potency benzodiazepines (sec. 4.3.8) was calculated as a reference. 

This set included alprazolam and diazepam (co-crystallised ligands), and the obtained S values were 

used as a reference for good binding affinity towards PDB6HUO and PDB6X3X. 

Table 5.8 S values obtained via the parmacophore constraint docking for the reference compounds  

Molecule 6HUO S (Kcal/mol)  6HUO rmsd 6X3X S (Kcal/mol) 6X3X rmsd 

Triazolam (Halcion) -7.2 1.4 -7.2 0.4 

Lorazepam (Ativan) -6.5 1.5 -6.8 1.4 

Clonazepam (Klonopin) -7.2 1.8 -7.2 2.1 

Flunitrazepam (Rohypnol) -7.4 1.2 -7.4 2.7 

Alprazolam (Xanax) -7.0 1.2     

Diazepam     -6.6 1.0 

For each molecule, several conformations with different S values (Kcal/mol) were returned. The 

ones showing the lowest S value (i.e., the lower the value, the more potent the binding) as well as 

the interaction with His102 were identified. The rmsd value was taken into consideration as well, 

during the analysis of the docking pose choice. This value measures the root mean square deviation 

between the pose before refinement and the pose after refinement, giving and idea of how the 

refined pose is close to the one suggested by the docking superposition points (i.e. co-crystallised 

ligands). In other words, it is a measure of how much a molecule needs to be constrained to occupy 

a particular spatial conformation in the binding pocket, i.e. how energetically favoured a pose is. 

The obtained S values are reported in Appendix A. For brevity, here are presented only the S values 

obtained for those DBZDs predicted by the 3Q QSAR model as the most biologically active (sec. 

5.2.2.). 
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Table 5.9 The predicted binding affinity values of the ten DBZDs predicted to display the higher biological activity in 

Forge™. 

Title 3D Field QSAR Distance to model S (Kcal/mol) rsmd 

 
Flubrotizolam 9.6 Excellent -7.1 1.3  

Clonazolam 9.5 Excellent -7.2 1  

Pynazolam 9.4 Good -7.7 0.9  

Fluclotizolam 9.1 Excellent -6.5 1.6  

MP-III-022 9.1 Good -5.6 1.8  

Ro 09-9212 9 Excellent -5.4 0.9  

Ro 15-9270 8.9 Good -7.1 2  

3-Hydroxyphenazepam 8.9 Excellent -6.6 1.2  

Flunitrazolam 8.8 Excellent -7.8 0.8  

It is important to clarify here that QSAR and docking studies are not necessarily linearly correlated, 

hence a high biological activity does not necessarily correspond to a high binding affinity and vice 

versa (Chen, 2015). Furthermore, the prediction of the binding affinity for a particular substance per 

se does not give much information about the molecule/receptor interaction (e.g., agonist; partial 

agonist; antagonist) activity. However, docking results can be used to support QSAR analysis, 

hence, the predicted binding affinity values of the ten DBZDs predicted to display the highest 

biological activity via the use of Forge™ 3D QSAR models, (Table 5.9) were further analysed. 

When compared with the docking S values obtained for alprazolam (S= -7.0) and diazepam (S = -

6.6), the majority of these DBZDs display a lower S value (i.e. better affinity). These results 

suggested satisfactory binding affinity levels for the α1β2γ3 human GABA-AR. One should note 

that, as per the literature, the majority of these compounds display the triazole moiety, identified 

already as a chemical characteristic responsible of increasing the biological activity (sec 4.2.5). 

Only two of them, MP-III-02 and Ro 09-9292 showed higher value suggesting a lower binding 

affinity. The low value of binding affinity of MP-III-02 is in line with its activity, as reported in 

literature, as a positive allosteric modulator of GABAA receptors containing the α5 subunit. A more 

in-depth evaluation of each of the ten top scoring DBZDs is reported in Section 5.6 (Stamenić et al., 

2016).  

While the docking can give an evaluation of the binding affinity, no specific information on the 

actual agonist/antagonist role of these DBZDs can be extrapolated, even though the docking was 

performed using the active conformation of two agonist BZDs as superposition points (alprazolam 

and diazepam).  

The poses of the top ten DBZDs docked in PDB6X3X and PDB6HUO are reported in Figure 5.9. 
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Figure 5.9 The poses of the top ten DBZDs docked in PDB6X3X and PDB6HUO 

For each of the poses generated for the 102 DBDZs a PLIF was calculated and analysed. The 

analysis of the PLIFs is presented below.  

 

Figure 5.10 Visual representation of the interactions (potential contacts) between the 102 DBZDs and the residues of 

the binding pocket of PDB6HUP.  

This figure represents the interactions between the molecules and the receptor pocket with the use of barcodes. The 

number of bars is proportional to the frequency of the interactions with that ligand, suggesting how much a ligand is 

involved in the binding. On the horizontal axis the binding pocket’s residues involved in the interactions are 

represented in different colours. The colours are randomly assigned. On the vertical axis the molecules docked, i.e. 

involved in the interaction, are represented by grey and white lines. A black bar is drawn every time a molecule 

interacts with a receptor residue.  

This representation is called the barcode display and represents the entries (DBZDs) and the 

selected fingerprints as a matrix in which a set bit is drawn as a black rectangle. On the X-axis are 

displayed the numbers and code for those residues which are involved in the interaction with the 

ligands. The number of black rectangles displayed for each residue are a measure of the frequency 
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of the interactions with that ligand, i.e the higher the number the higher the frequency. The letter 

which is included next to the residue numbers represents the chain to which the residue belongs.  

The results presented in Figure 5.10 and Figure 5.10 are able to confirm the importance of the 

αHis102 residue (α chain) for the binding of DBDZs as observe for the classical BDZs (Wieland et 

al., 1992). The other residues which seems to be more often included in the ligand interactions are 

αSer205 and αSer206, the importance of which has been reported in the literature. (Masiulis et al., 

2019; Sigel and Ernst, 2018). Other interactions include γTyr58, γPhen100, αSer159 and αGln204.  

The analysis of the PLIF confirm that the pattern of ligand interactions between the GABA-AR and 

DBZDs highly resemble those identified for Alprazolam and Diazepam.  

Docking results can be extremely useful in assessing the way a ligand interacts with the residues of 

the binding pocket of the GABA-R (Sec 4.3.8). As reported in Figure 5.10 the majority of the 

interactions involve the α subunit of the GABA-AR binding pocket, and in particular the residue 

His102 (α subunit), via hydrogen bonds usually with DBZDs halogenated substituents (C2’). 

Another hydrogen bond interaction, namely with Ser 206 and Ser 205 (α subunit) seem to be a 

recurrent one as well as the aromatic interaction (pi-pi) with Tyr 58 (γ subunit). Although the 

receptor residues involved in the binding tend to stay consistent across the different DBZDs, the 

moiety of the molecule to which they bind seems to change according to the spatial pose of the 

latter. The presence of a side-chain substituent or an additional/diverse fused ring on the main core 

structure (e.g., triazolo, thiophene) seems to in-fluence the orientation and positioning inside the 

pocket resulting in a change of the interaction pattern (Figures 5–8).  

This is observable when comparing, for example, alprazolam with Ro 09-9212 (Figure 5). The 

presence of a thiophene ring seems to shift the molecule in the binding pocket, and the repositioning 

seems to be driven by the hydrogen bond between the S atom of Ro09-9212 and the Tyr 160. This 

results in an aromatic interaction between the pendant phenyl ring and Tyr 58, a hydrogen bond 

between the halogen substituent and the Ser 159, instead of the HisIS102, and a further hydrogen 

bond between N1 and Thr 142. This change in residue interaction can be observed as well when 

compounds are docked in 6X3X.  

Further molecular dynamics analysis will need to be conducted to understand if this different 

interaction pattern will be observable for new DBZDs showing side chain substituents (Noha et al., 

2017; Sliwoski et al., 2014).  

 

5.5 Pharmacophore mapping  

The conformations obtained in the docking studies were used to produce a pharmacophore query. 

The conformations were aligned as per Section 4.3.9, including the structure docked both in 



142 

 

PDB6HUO and PDB6X3X. Two pharmacophore queries were generated (Figure 5.11) as described 

in Section 4.3.9, with the pharmacophore editor application used in the consensus mode.  

  

Figure 5.11 Pharmacophore maps generated on the DBZDs alignment 

One pharmacophore query (Figure 5.11A) includes all the features which were found to be common 

to the top ten DBZDS (i.e. more detailed), the other (Figure 5.11B) includes all the features which 

were common to the larger DBZDs database (i.e. less detailed). This is reflected on the fact that to a 

higher number of structures correspond a smaller number of common features. Despite a slightly 

difference when comparing the features identified in proximity of the triazole moiety, an Acc group 

vs an Acc/Donor ( Figure 5.11), the two pharmacophore maps both highlight the importance of two 

big aromatic functions and one hydrogen bond acceptor function. The aromatics features were 

identified in correspondence with the benzodiazepine ring the pendant phenyl ring, and the 

hydrogen bond acceptor in position C7. 

These pharmacophore maps support the 3D Field QSAR results (Figure 5.5 and the importance of 

the hydrophobic van der Waals surface area (aromatic functions in Figure 5.11), and the polar van 

der Waals surface area (hydrogen bond acceptor and donor functions in Figure 5.11) in defining the 

biological activity of a DBDZ (Thakur et al., 2004). The identified pharmacophore highlighted the 

recurring presence of both two big aromatic groups and an hydrophobic acceptor areas in those 

molecules showing good receptor binding affinity levels and high biological activity (Sigel and P. 

Luscher, 2012). 

The pharmacophore queries so generated were validated with the use of the QSAR dataset (77 

molecules) and the pharmacophore search application. Pharmacophore A was able to match only a 

total of 7 out of 77 molecules (9%), while pharmacophore B matched a total of 66 out of 77 (86%). 

The results are in line with the way the two pharmacophores were built, and suggest how the use of 
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pharmacophore A, i.e a more detailed one, could be useful in the screening of big libraries (millions 

of compounds) to obtain new lead compounds in the quest for new GABA-AR allosteric modulator. 

It has indeed been used, so far to filter two databases from Zinc15, the of ion channel ligands 

(25376 entries) and the G-protein-coupled receptors (GPCR)-A ligands (127728  entries). Of the 

total 46058 entries only a total of 12 among the ion channel ligands and 4 among the GPCR-A 

ligands were found to match the pharmacophore A (Appendix A). Further studies, starting with 

docking, will be necessary to assess their potential as GABA-AR binders (please see Chapter 10 

Future work) 

  

https://zinc.docking.org/subclasses/gpcr-a/substances/
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5.6 Profiling of the ten DBZDs with the highest predicted biological activity   

5.6.1 Flubrotizolam 

Flubrotizolam is the DZBDs predicted to have the highest biological activity, i.e. log 1/c= 9.6. The 

docking results (S= -7.1) seems to support this result, suggesting a strong affinity towards the 

α1β3γ2 GAB-AR. The molecule is a thienotriazolodiazepines for which limited data are available. 

Never approved as a medication, it seems to be available for forensic and research application only 

(Weber et al., 1977). It was identified online by the web crawler activity (Catalani et al., 2022, 

2021b) but is not yet reported by the UNODC or the EMCDDA. Its values of predicted biological 

activity and binding affinity for the α1β3γ2 GAB-AR suggest how this molecule has the potential to 

be a high potency DBZD. The molecule has been discussed online in drug fora since 2021 and is 

better known as ‘Fanax’. The in silico findings seem to be supported by what reported online. 

Flubrotizolam is indeed commercialised and marketed as four to five times more potent than 

etizolam (“Buy FANAX - Flubrotizolam | Chemical Planet,” n.d., “Buy Flubrotizolam (Fanax) 2mg 

Pellets,” n.d.). Anecdotal reports suggest how this molecule is predominantly a strong sedative/ 

hypnotic and muscle relaxant with no euphoric effects. Reported potencies varies, but the general 

consent is that it seems to be slightly more potent than etizolam and in any case not recommended 

to get the “down” feel associated with the other DBZDs. The predicted interactions between 

flubrotizolam and the GABA-A allosteric binding site are presented, in detail, in Figure 5.12. The 

bromine atoms at the C7 position interacts via a hydrogen bond donor with the α1His102 side chain, 

which is the fundamental residue for the BDZs activity on the GABA-AR. All the other 

interactions, apart from the one with Phe77, as seen for alprazolam (Sec 4.3.8) are here identified as 

well. include arene-arene interactions with Tyr58 (γ chain), the hydrogen-arene interaction with 

Phe77 (γ chain) and Tyr160 (α chain) and the hydrogen bond with Ser159 (α chain). 
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Figure 5.12 Flubrotizolam interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand flubrotizolam (light blue). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left , the 2D 

representation of the binding pocket and a report of the interactions between receptors residues and ligand are 

provided. Letter D identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent 

exposure both on the receptor and the ligand. 
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5.6.2 Clonazolam 

Clonazolam is the DBZDZ predicted as the second most potent by the 3D QSAR models (Log 1/c= 

9.5). It is the most potent of a series of triazolobenzodiazepines first reported in 1971 (Hester et al., 

1971). It was never marketed and recently sold as a DBZDs, in particular as counterfeit prescription 

for diazepam and alprazolam (WHO, 2020a). Structurally, it is the chlorine (im the ortho position of 

the pendant phenyl) analogue of flubromazolam, with the addition of a nitro group on the C8 

(Figure 5.13). Scheduled under schedule IV  of the Convention on Psychotropic Substances (1971) 

in 2021 by the Commission on Narcotic Drugs (UNODC, 2021f), clonazolam is classified as a 

strong sedative. Due to its extremely high potency, it is often consumed on blotter paper or in liquid 

form (Orsolini et al., 2020). Indeed, due to its microgram-range potency, the use of powders is not 

recommended. Common side-effects of clonazolam poisoning include drowsiness, lethargy, slurred 

speech and tachycardia, strong sedation and multi-day blackouts (Orsolini et al., 2020). Between 

2014 and 2017 the National Poison Data System (USA) reported clonazolam in 21% of BZD-

related intoxications (Carpenter et al., 2019). Online, clonazolam is often referred to as “the beast” 

or “the heroin of benzodiazepines”. Serious episodes of blackouts are reported as well on drug 

discussion forums, where users despite the negative perception of this drug “keep coming back” and 

highlight the strong dependence and abuse potential of these DBZDs (reddit, 2018a). The predicted 

interactions between clonazolam and the GABA-A allosteric binding site are presented, in detail, in 

Figure 5.13. The NO2 group in position C7 interacts via a hydrogen bond donor with the α1His102 

side chain, which is the fundamental residue for the BDZs activity on the GABA-AR. All the other 

interactions, as seen for alprazolam (Sec 4.3.8), i.e. arene-arene interactions with Tyr58 (γ chain), 

the hydrogen-arene interaction with Phe77 (γ chain ) and Tyr160 (α chain) and the hydrogen bond 

with Ser159 (α chain) are here identified as well. In addition clonazolam displays a hydrogen bond 

with Gly204 (α chain), 

arene-arene interactions with Tyr210 (α chain), and a hydrogen-arene interaction with Phe100 (α 

chain). The increased number of interactions may translate in an increase stability of the binding 

complex and in an increase biological activity.  
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Figure 5.13 Clonazolam interactions 3D and 2D representations. 

 Notes: on the right, the binding pocket 3D representation with the docked ligand clonazolam (pink). The light blue 

portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left , the 2D representation 

of the binding pocket and a report of the interactions between receptors residues and ligand are provided. Letter D 

identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D screenshot define different 

characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red circle indicates 

an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the receptor and the 

ligand. 
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5.6.3 Pynazolam 

Pynazolam is another DBZD predicted to have a strong biological activity (9.4) towards the α1β3γ2 

GAB-AR and a strong binding affinity (S = -7.7). The docking results seems to support the QSAR 

prediction, suggesting a strong affinity towards the α1β3γ2 GAB-AR. Pynazolam is a 

thienotriazolodiazepine for which very limited data are available. First described in the US-

3970664-A patent for the novel preparation of triazolobenzodiazepines (Sternbach and Walser, 

1972), it was never approved as a medication and seems to be available for forensic and research 

application only. It seems to be mainly discussed in online fora as per flubrotizolam. When 

discussed by users, pynazolam recreational use is associated with a good “high” and euphoria 

similar to that of alcohol, with scarce hypnotic/sedating effects (reddit, 2018b). The majority of the 

discussion of the drugs fora seem to date back to 2016, suggesting that this DBZD could have had 

appeared on the market already, without being identified by either law enforcement or public health 

relevant stakeholders. The predicted interactions between pynazolam and the GABA-A allosteric 

binding site are presented, in detail, in Figure 5.14. The NO2 group in position C7 interacts via a 

hydrogen bond donor with the α1His102 side chain, which is the fundamental residue for the BDZs 

activity on the GABA-AR. All the other interactions, as seen for alprazolam (Sec 4.3.8), i.e. arene-

arene interactions with Tyr58 (γ chain), the hydrogen-arene interaction with Phe77 (γ chain) and 

Tyr160 (α chain) and the hydrogen bond with Ser159 (α chain) are here identified as well. No other 

interaction was identified. 
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Figure 5.14 Pynazolam interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand pynazolam (purple). The light blue 

portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left, the 2D representation 

of the binding pocket and a report of the interactions between receptors residues and ligand are provided. Letter D 

identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D screenshot define different 

characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red circle indicates 

an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the receptor and the 

ligand. 
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5.6.4 Fluclotizolam 

Fluclotizolam is a thienodiazepine, having a diazepine ring fused to a thiophene, instead of to a 

benzene ring. Fluclotizolam was firstly mentioned in a 1974 patent on thienotriazolodiazepines 

(Binder et al., 1973), but was never marketed. It is not currently a controlled substance under the 

1961 Single Convention on Narcotic Drugs. No clinical, pharmacological or toxicological data are 

reported. Online, it is reported as a recreational DBZD, with euphoric, sedating (enjoyable), 

disinhibition and sedating property, as observed for pynazolam. The timeline of the discussion goes 

from 2017 to 2021, suggesting either a long presence on the market or a recent re-introduction 

(reddit, 2021b, 2017). The predicted interactions between fluclotizolam and the allosteric binding 

site are presented, in detail, in Figure 5.15. The chlorine group in position C7 interacts via a 

hydrogen bond donor with the α1His102 side chain, as well as with an arene-arene bond, 

confirming the fundamental residue for the BDZs activity on the GABA-AR. Other interactions, as 

seen for alprazolam (Sec 4.3.8), i.e. arene-arene interactions with Tyr58 (γ chain), the hydrogen-

arene interaction with Phe77 (γ chain) are here identified as well. In addition, flucotizolam, as noted 

for clonazolam, displays a hydrogen bond with Gly204 (α chain). It is interesting to note that the 

sulfur atoms present in the core scaffold engages as well in a hydrogen bond donor interaction with 

Asn60, interaction not reported before, which could be responsible for its increase biological 

activity.  
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Figure 5.15 Fluclotizolam interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand Fluclotizolam (green). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left , the 2D 

representation of the binding pocket and a report of the interactions between receptors residues and ligand are 

provided. Letter D identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent 

exposure both on the receptor and the ligand. 
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5.6.5 MP-III-02 

Mp-III-02 is an imidazobenzodiazepine for which very few data seem available. It was obtained by 

the substitution of the ester moiety of the imidazobenzodiazepine SH-053-2′F-R-CH3 with an 

amide group, during studies conducted on a series of imidazobenzodiazepines to improve the 

affinity towards the α5 GABA-AR (Stamenić et al., 2016). Indeed it showed improved selectivity, 

efficacy, and kinetic behaviour as a positive modulator of GABAA receptors containing the α5 

subunit (Simeone et al., 2020). MP-III-022 was reported to have an efficacy of 300% at 100 nM in 

α5β3γ2 GABA-AR, while being non- (α1) or only weakly modulatory at α2- and α3-containing 

receptors (Simeone et al., 2020). These experimental values support the results obtained with the in 

silico approaches. The QSAR model and the docking predictions match the high efficacy with high 

values of biological activity – log 1/c = 9.1, and the non α1 modulation, with a very low binding 

affinity value – S= 5.6. While no data on this DBZD were found online in users forums, one could 

not exclude the possibility of it being used or commercialised, even under other names or as a 

counterfeit of classical BZD. The predicted interactions between MP-III-02 and the GABA-A 

allosteric binding site are presented in detail in Figure 5.16. MP-III-02 seems to interact with the 

α1His102 side chain through its ethynyl group (i.e. -CCH) instead of its fluorine atoms. Other 

interactions, as seen for alprazolam (Sec 4.3.8), i.e. arene-arene interactions with Tyr58 (γ chain), 

the hydrogen-arene interaction with Ser205 (α chain) and an additional interaction with Asp192 (γ 

chain). The latter has not been reported before. 
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Figure 5.16 MP-III-02 interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand MP-III-02 (green). The light blue 

portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left, the 2D representation 

of the binding pocket and a report of the interactions between receptors residues and ligand are provided. Letter D 

identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D screenshot define different 

characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red circle indicates 

an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the receptor and the 

ligand. 
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5.6.6 Ro 09-9292 

Ro 09-9292 is a thienodiazepine derivative which seems to display sedative and anxiolytic effects. 

The only one reference found on this molecule was in the Hofmann La Roche 

thienotriazolodiazepine derivatives patent US4155913A (Binder et al., 1974). While no data on this 

DBZDs were found online in users fora, one could not exclude the possibility of it being used or 

commercialised, even under other names or as a counterfeit of classical BZDs. The predicted 

interactions between Ro 09-9292 and the GABA-A allosteric binding site are presented, in detail, in 

Figure 5.17. As seen for fluclotizolam, the chlorine group in position C7 interacts via a hydrogen 

bond donor with the α1His102 side chain, as well as with an arene-arene bond, confirming the 

fundamental residue for the BDZs activity on the GABA-AR. Other interactions include i.e. arene-

arene interactions with Tyr58 (γ chain), the hydrogen bond with Gly204 (α chain) and Ser205. The 

lack of the triazole moiety maybe responsible for the missed interaction with Asn60, as seen per 

fluclotizolam.  

 

 

https://en.wikipedia.org/wiki/Thienodiazepine
https://en.wikipedia.org/wiki/Sedative
https://en.wikipedia.org/wiki/Anxiolytic
https://worldwide.espacenet.com/patent/search?q=pn%3DUS4155913A
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Figure 5.17 Ro 09-9292 interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand Ro 09-9292 (light blue). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left, the 2D 

representation of the binding pocket and a report of the interactions between receptors residues and ligand are 

provided. Letter D identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; blue circle indicates a basic residue; and the light blue halo indicates solvent exposure both on 

the receptor and the ligand. 
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5.6.7 Ro 15-9270 

Ro 15-9270 is a thienodiazepine derivative which seems to display sedative and anxiolytic effects. 

Only one reference found on this molecule was in the Hofmann La Roche thienotriazolodiazepine 

derivatives (US4155913A). While no data on this DBZDs were found online in users fora, one 

could not exclude the possibility of it being used or commercialised, even under other names or as a 

counterfeit of classical BZDs. The predicted interactions between Ro 15-9270 and the allosteric 

GABA-A binding site are presented, in detail, in Figure 5.18. The NO2 group in position C7 

interacts via a hydrogen bond donor with the α1His102 side chain, as well as with an arene-arene 

bond, confirming the fundamental residue for the BDZs activity on the GABA-AR. Other 

interactions, include arene-arene interactions with Tyr58 (γ chain) and Tyr210 (α chain), the 

hydrogen-arene interaction with Ser205 and Ser 206 (α chain). In addition, Ro 15-9270 as noted for 

flucotizolam, a hydrogen bond donor interaction with Asn60, is displayed.  

 

 

Figure 5.18 Ro 15-9270 interactions 3D and 2D representations.  

Notes: on the right, the binding pocket 3D representation with the docked ligand Ro 15-9270 ( green). The light blue 

portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left , the 2D representation 

of the binding pocket and a report of the interactions between receptors residues and ligand are provided. Letter D 

identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D screenshot define different 

characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; blue circle 

indicates a basic residue; and the light blue halo indicates solvent exposure both on the receptor and the ligand. 

  

https://en.wikipedia.org/wiki/Thienodiazepine
https://en.wikipedia.org/wiki/Sedative
https://en.wikipedia.org/wiki/Anxiolytic
https://worldwide.espacenet.com/patent/search?q=pn%3DUS4155913A


157 

 

5.6.8  3-Hydroxyphenazepam  

3-Hydroxyphenazepam is an active metabolite of both phenazepam and cinazepam and acts as a full  

allosteric modulator of the GABA-AR. Discovered during metabolomic studies, it was never 

patented and has been sold as a DBZD (Valdman and Sandle, 1986). It is not currently controlled 

under either the 1971 United Nations Convention on Psychotropic Substances or the 1961 Single 

Convention on Narcotic Drugs (Orsolini et al., 2020). In comparison with phenazepam it has been 

reported to have diminished myorelaxant properties, showing however similar sedative, anxiolytic, 

anticonvulsant and hypnotic properties. It is a very discussed DBZD on drug forums, reported more 

as an anxiolytic than a euphoric one, with very different effects if compared to the parent drug 

phenazepam (reddit, 2020, 2018c). The predicted interactions between 3-hydroxyphenazepam and 

the GABA-A allosteric binding site are presented in detail in Figure 5.19. 3-hydroxyphenazepam 

engages with the with the α1His102 side chain through the bromine atom in position C7, as well as 

with Ser205 and Ser 206  and Ser159 (α chain) via hydrogen-bond mediated interaction.  
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Figure 5.19 3-Hydroxyphenazepam interactions, 3D and 2D representations. 

 Notes: on the right, the binding pocket 3D representation with the docked ligand 3-Hydroxyphenazepam (pink). The 

light blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left, the 2D 

representation of the binding pocket and a report of the interactions between receptors residues and ligand are 

provided. Letter D identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent 

exposure both on the receptor and the ligand. 

  

  hydro y hena e a 
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5.6.9 Flunitrazolam 

Flunitrazolam is a triazolo DBZDs and a fluorinated analogue of the previously notified 

clonazolam. It also the triazole version of flunitrazepam. Not reported in the any patent or in 

literature, it was first identified in 2016 and reported to the EMCDDA EWS. It has been sold on line 

as a DBZD with strong hypnotic and sedative properties, much like clonazolam and flubromazolam. 

No information about its activity/toxicity profile is available at present. Flunitrazolam is not 

currently controlled either under the 1961 and 1971 international conventions. Online, flunitrazolam 

has mixed reviews, but is commonly presented as a potent short action DBZD, optimal for 

recreational purposes with a strong euphoric action. The predicted interactions between clonazolam 

and the allosteric binding site are presented in detail in Figure 5.20. The NO2 group in position C7 

interacts via a hydrogen bond donor with the α1His102 side chain, which is the fundamental residue 

for the BDZs activity on the GABA-AR. All the other interactions, as seen for alprazolam (Sec 

4.3.8), i.e. arene-arene interactions with Tyr58 (γ chain), the hydrogen-arene interaction with Phe77 

(γ chain) and Tyr160 (α chain) and the hydrogen bond with Ser206 (α chain) are here identified as 

well.  

  

https://en.wikipedia.org/wiki/Hypnotic
https://en.wikipedia.org/wiki/Sedative
https://en.wikipedia.org/wiki/Flubromazolam
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Figure 5.20 Flunitrazolam interactions 3D and 2D representations. 

 Notes: on the right, the binding pocket 3D representation with the docked ligand flunitrazolam (orange). The light 

blue portion represents the γ subunit of the receptor whilst the dark blue the α subunit. On the left, the 2D 

representation of the binding pocket and a report of the interactions between receptors residues and ligand are 

provided. Letter D identifies the α chain and C the γ chain. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent 

exposure both on the receptor and the ligand. 

All the data presented here seems to support the results obtained via both the QSAR and docking 

studies conducted, confirming the potential support of in silico methodologies for a quick 

evaluation and risk assessment of activity/toxicity profile of newly identified DBZDs.  



161 

 

5.7 Novelty and importance of the in silico methodology applications on DBZDs 

Despite DBZDs represent only a small fraction (2%) of the total number of identified NPS, as 

reported in the latest UNODC reports (UNODC, 2022b, 2021b), they are molecules of great interest 

for intravenous drug misusers, being associated with fatalities worldwide (EMCDDA, 2021c; 

UNODC, 2022b). Indeed, they are increasingly being reported in polydrug consumption scenarios, 

usually with other central nervous system depressants (e.g., opiates and opioids) or stimulants. The 

concomitant use of more than one substance, especially of strong depressants, usually leads to a 

synergistic enhancement of the adverse effects of both substances, potentially leading to extremely 

severe side-effects including respiratory depression and death (Orsolini et al., 2020). The threat 

associated with polydrug consumption (in particular opioids and benzodiazepines, whether novel or 

not) is actual and is even more worrying if one considers that for the majority of NPS constantly 

introduced on the market, very limited data on their safety/toxicity profile are available (El Balkhi 

et al., 2020).  

Hence, it is extremely important to assess as much as possible the extent of the DBZDs 

phenomenon, and more so with regards to their pharmacology. The novel approach of in silico 

methodology has proven very helpful in doing so. The 3D-QSAR models identified here seem to be 

very reliable in their predictive power. They identified as most potent, DBZDs such as 

flubromazolam, clonazolam, pynazolam and fluclotizolam, which were indeed reported as such, 

both in the scientific literature and by users. Moreover, the molecule predicted as the most potent, 

flubrotizolam, is a new DBZD for which no data are available in the literature (to the best of our 

knowledge). These findings, and in particular the assessment of unknown DBZDs, underscore the 

importance and the need for these computational models to be used. Their potential as preventive 

and informative tools need to be taken in consideration when dealing with NPS. 

Indeed, these models could be used to assess, in a rapid and cost-effective way, the biological 

activity profile of a new DBZD, as soon as the latter is identified on the illegal market. Moreover, 

they could be of use to better discriminate between the various DBZDs, for which large differences 

exist between their pharmacokinetic parameters despite their structural and chemical similarity. In 

silico approaches should be used as the first evaluation step to better understand the possible harms 

associated with the recreational use of the substance and to draft a preliminary risk assessment. The 

latter could then be used as a starting point for pre-emptive legal measures and further 

investigations (e.g. de novo chemical synthesis; in vitro studies; preclinical studies). 

 The results obtained with the scaffold hopping exercise are also very promising because, despite 

suggesting the existence of a wider chemical landscape for this NPS class, they could be used as an 

effective tool in the prediction of the latter. It should be noted that among the new structures 
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generated are some very well-known and potent scaffolds. According to the predicted biological 

activity values, further modifications to the classical core structure could significantly increase the 

biological activity of an index molecule, and hence they need to be carefully investigated.  

Finally, this study could be considered as the first step towards the creation of computational 

libraries that regulatory bodies can use as support tools for risk assessment and scheduling 

procedures.   

 

The following Chapter will present an overview of the NSO class, and the methodologies used to 

analyse this NPS class.  
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5.8 Limitations 

The major limitation for the QSAR studies is represented by the size of the data-set (training and 

test) used for the computational studies. The recommended size for a robust QSAR model varies but 

should be no less than 100 entries (Fourches et al., 2010; Golbraikh et al., 2014). However, to the 

best of our knowledge, no other experimental data comparable to the ones used here are available in 

the literature. That is, no other IC50 values were found for benzodiazepines-like structures at the 

GABA-AR, calculated as displacement of 50% of [3H]-diazepam, hence a bigger dataset could not 

be compiled. This means that if the QSAR analysis was to be done again the same limitation will 

apply and could not be overcame.  

Other limitations include the use of only one crystallised structure of the GABA-AR for alprazolam, 

because that was the only 3D crystallised structure available; and the fact that MOE® uses force 

field methodology only for the energy minimisation of the molecules analysed, which could give 

slightly less accurate conformations if compared to semi empirical calculations.  
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Chapter 6 Novel synthetic opioids overview and methods 

6.1 Chemical class overview 

Opioids are the most famous and effective class of therapeutics for the treatment of pain (Schifano 

et al., 2020). They are considered the standard of care almost worldwide for the management of 

acute and chronic, moderate to severe pain often related to advanced medical diseases or to medical 

procedures. Opioids encompass a large class of molecules structurally related to the natural 

alkaloids derived from the resin of the opium poppy or Papaver somniferum (DOJ and DEA, 2020).  

Opium has been known for millennia. Firstly cultivated around 3400 BC by the Sumerians in 

Mesopotamia, it spread throughout the world (Europe and Asia) to all main civilisations (CBN, 

2022). Since the beginning, opium use was associated with strong addiction potential and tolerance 

(DOJ and DEA, 2020). Despite being known to relieve pain and used in surgical analgesia for 

several centuries, its use in the management of postoperative pain was described only since the 18th 

century (Ba et al., 2000). The therapeutic use of opium changed further in the early 19th century, 

when morphine was firstly isolated from the plant (Sertürner, 1817). This event, i.e. the first 

isolation of a natural product, was a ground-breaking event which influenced the history of the 

modern pharmacology. After its isolation, morphine started to get sold but it was not until the 

invention of the subcutaneous needle that its use became widespread (Ba et al., 2000). However, 

with the drug came the same addiction potential and tolerance identified for opium. Indeed almost 

immediately after morphine commercialisation, the abuse potential, addiction, and withdrawal 

syndrome associated with its use were described (Rosenblum et al., 2008). Since then, several 

morphine-like drugs have been synthesised in the quest of safer alternatives (i.e. reduced adverse 

effects and abuse potential). This led to the synthesis of heroin, in 1898, followed by meperidine in 

1939 and methadone in 1949, which opened the road to all the other semisynthetic and synthetic 

opioids (e.g. oxycodone, meperidine, (Latta et al., n.d.; Stanley, 1992)). During the 1960s, this quest 

for safer opioid analgesics, opened the way for the synthesis and testing of a series of molecules by 

the pharmaceutical company Janssen Pharmaceutica. Among these new molecules fentanyl (which 

is 50-100 times stronger than morphine (Armenian et al., 2017; DEA, 2022a)) was synthetised, 

followed by dozen more of structurally similar analgesic, which altogether were named the 

“fentanyls” (Stanley, 1992) Some of the fentanyls, i.e. fentanyl, alfentanil, sufentanil and 

remifentanil, were approved for pain management treatment and broadly used, while others were 

used as veterinary medicines due to their elevated potency, i.e. carfentanyl and thiafentanyl 

(Stanley, 1992). 

The new synthetised opioids however, showed the same abuse potential if not stronger than that 

observed with morphine. For these reasons, strict restrictions on medical prescription were put in 
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place and opioids were placed under control by the UN Convention on Narcotics of 1961 (UNODC 

2022a).  

This led to a long lasting debate between the need to take advantage of the medicinal properties of 

these drugs and the acknowledgement of their abuse and addiction potential as possible threats for 

society (Musto, 1973). Indeed, at present the use of opioids for chronic non-malignant pain 

(CNMP) is still controversial due to their high abuse and dependence potential, their low 

therapeutic index and their very severe side-effects (Tseng, 2018).  

The term opioid defines all those molecules that act on the opioid receptors, both within and outside 

the CNS. These receptors include delta (γ), kappa (κ) and mu (µ) opioid receptors (DOR, KOR and 

MOR), and occur predominantly in areas and tracts of the CNS associated with pain perception 

(Schumacher et al., 2017). The activation of the mu opioid receptor is considered the most 

important for both analgesic and euphoric effects (Contet et al., 2004), and it is also responsible for 

the abuse and dependence potential. These receptors are discussed in detail in Section 6.3.3. 

Opioids can be classified according to their source in endogenous (endorphins, enkephalins, 

dynorphins), natural (opiates), semisynthetic (e.g. heroin and oxycodone), and synthetic opioids 

(e.g. fentanyl and propoxyphene) (Alam et al., 2019).  

They can also be classified according to their activity and their chemical structure. If classified by 

their activity they can be divided into full agonist (codeine and morphine), partial agonist 

(buprenorphine), mixed agonist/antagonist (pentazocine and butorphanol) and antagonist (naloxone 

and naltrexone) (Alam et al., 2019). The agonists in turn are divided into strong (morphine, 

fentanyl, meperidine), moderate (oxycodone) and weak (propoxyphene) agonist (Schumacher et al., 

2017).  

If classified by their chemical structure they can be divided in phenanthrenes (e.g. morphine, 

codeine, heroin), benzomorphans (e.g. pentazocine), diphenylpropylamines (e.g. loperamide, 

methadone and propoxyphene), phenylpiperidines (meperidine), phenethylpiperidines or 

anilidopiperidines (e.g. fentanyl and analogues), oripavine derivatives (e.g. buprenorphine and 

etorphine), morphinan derivatives (butorphanol), ciclohexylphenols (tramadol) (Alam et al., 2019). 

The main difference which can be appreciated between these structures is the presence or absence 

of a fused ring core, usually referred to as the phenanthrene core. The latter gives a much more rigid 

structure to the molecule which differ consistently from the very flexible nature of scaffolds as 

diphenylpropylamines, phenylpiperidines and phenethylpiperidines. A general overview of the 

different chemical structures is presented in Figure 6.1. 



166 

 

 

Figure 6.1 Most common chemical structures identified among the class of opioids.  

The core structure which gives the name to the chemical class is highlighted in red. The structures were designed 

with ChemDraw 20.1.1and were retrieved from PubChem.  

Medically opioids are primarily used for analgesia, i.e. pain relief (over-the-counter opioids as 

codeine, dihydrocodeine, and loperamide), treatment of acute pain (prescription opioids as 

hydrocodone, oxycodone, and morphine), and chronic terminal pain (prescription opioids as 

morphine, hydromorphone) (Department of Health and Services, n.d.; Dowell et al., 2016; Volkow 

et al., 2017). Their use in the management of non-malignant chronic pain, despite being 

controversial, has been growing and it has been associated with a new and rising problem of 

addiction and misuse (Stromgaard et al., 2009).  

Opioids can also be used in anaesthesia (e.g. sufentanil, remifentanil, and alfentanil (Ferry and 

Dhanjal, 2022), as antitussive (e.g. morphine, diamorphine, and codeine (Belvisi and Geppetti, 

2004), antidiarrhea (loperamide), in replacement therapy for opioid use disorder (e.g. buprenorphine 

or methadone (Dydyk et al., 2022) or to reverse opioid overdose (e.g. naloxone and naltrexone 

(Theriot et al., 2022)). The mechanism of action of these opioids involves predominantly MOR, 

with KOR also involved in the action of opioids antitussives. Some of the opioids currently 

available as medicine are so potent that they are approved for veterinary use only (e.g. carfentanyl) 

(Clarke et al., 2019).  

Opioids are very often used recreationally (i.e. non-medically) for their euphoric effects, to 

prevent/attenuate withdrawal or for self-medication. The most common side effects associated with 
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their use are, in the short term, itchiness, sedation, nausea, respiratory depression, constipation, and 

euphoria; tolerance, dependence and unpleasant withdrawal symptoms are observed instead in the 

long term. Opioids can be lethal if overdosed or co-used with other CNS depressants such as 

BDZ/DBZD, with death resulting from respiratory depression.  
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6.2 The opioids epidemic 

Since the ‘90s, a rapid increase on the medical use, non-medical use, recreational use/abuse and 

overdose deaths attributed to opioids was registered in North America (Manchikanti et al., 2010), 

with significant medical, social and economic repercussion worldwide. This phenomenon was 

called the opioid epidemic or the opioid crisis ( Volkow et al., 2019). The opioid epidemic started in 

North America mainly due to over-prescription of opioid analgesics encouraged by pharmaceutical 

companies ‘marketing strategies (i.e. Purdue Pharma among others) based on the false 

advertisement of opioids (e.g. Oxycontin) as “safe” and non-addictive medications (Van Zee, 2009). 

It then evolved into different phases, presently culminating in high mortality rates caused by illicitly 

manufactured opioids (e.g. fentanyl, and fentanyl-like NSO) (DuPont, 2018). In the USA, almost 

500,000 deaths were reported form opioids overdoses, both prescription and illicit opioids, between 

1999 to 2019 (Mattson et al., 2021), with more than 56,000 deaths involving synthetic opioids 

reported in 2020 alone (CDC, 2021) and 100,000 in 2021 (Dyer, 2021).  

Due to different opioids being involved across the years, three different phases (CDC, n.d.) of the 

opioid crisis were identified  

• First phase (1990-2010). Increase in prescription opioids use in the 1990s, followed by 

increased related overdose deaths  

• Second phase (2010-2013). Increase in overdose death related to heroin abuse 

• Third phase (2013-2022) Significant increases in overdose deaths involving synthetic 

opioids, particularly illicitly manufactured fentanyl and analogues   

At present, the crisis dynamics are strongly influenced by the presence and continuous introduction 

into the market of NSOs, whose chemical types and potencies vary constantly. This, and the fact 

that often NSOs are consumed as counterfeit prescription opioids and/or in combination with other 

drugs, i.e., heroin, benzodiazepines, cocaine, and methamphetamine (Gladden et al., 2019), are 

strongly increasing the lethal toll of the opioid epidemic. This is due to the fact that that 

combination of different drugs usually results in worsened side effects or accidentally overdosages 

whit an increase likelihood of consequent fatalities.  

To date, the nature of the opioid crisis seems to be caused, in particular in the northern hemisphere, 

by the adulteration of heroin products; substitution/counterfeit of prescription opioids with fentanyl, 

fentanyl analogues, and other NSOs by profit driven organised crime groups (Pardo et al., 2019); or 

by substitution of prescription opioids by users, who find NSOs cheaper and more easily 

accessible/purchasable .  
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Despite NSOs seeming to play a small role in Europe’s drug market to date, there is growing 

concern about the availability of these substances (EMCDDA, 2021f). In the UK, the number of 

prescription opioids doubled in the period 1998 to 2018 suggesting the risk of a possible opioid 

crisis, even if on a different scale compared to the North American one (Alenezi et al., 2020). In 

2021 an outbreak of poisonings and deaths was reported in the South of England due to heroin 

samples adulterated with isotonitazene (De Baerdemaeker et al., 2022). Indeed due to the increment 

of regulatory measure in Europe against fentanyls, different NSOs class, i.e. nitazenes, were 

increasingly identified (EMCDDA, 2021f).   

The high demand for opioids driven by the opioid’s epidemic, has attracted the interest of organised 

crime/criminals, with an increase on the market of diverted legitimate products, unlicensed, 

counterfeit ones, or new legal alternatives, i.e. NSOs. 

6.3 Novel synthetic opioids 

Novel synthetic opioids represent a chemical diverse group of substances (e.g. fentanyls, derivatives 

of opiates, etc. (Figure 6.1 6.4) which act as central nervous system depressants and are not listed in 

the Narcotic or Psychotropic International Conventions on Narcotics (1961) or Psychotropics 

(1971) (UNODC, 2022c). NSOs possess structural features which allow them to bind specific 

opioid receptors (i.e., MOR, KOR and DOR), and produce effects which mimic those of morphine. 

Relaxation, euphoria, pain relief, and sedation have been reported (DEA, 2022b, 2022a; WHO, 

2020b). They are predominantly sold as legal alternatives to illicit and prescription opioids, as 

counterfeit opioids or benzodiazepines, and as counterfeit heroin (Lovrecic et al., 2019). NSOs are 

predominantly used for self-medication - i.e. pain treatment and withdrawal, and for recreational 

use (Rauschert et al., 2022), very often by vulnerable and marginalised users and people who inject 

drugs (PWID) (Armenian et al., 2017; Specka et al., 2022). They are also used in poly-drug 

consumption with other CNS depressants to potentiate the “down” effects or with stimulants to 

‘offset the effects of each drug, or experience an enhanced, synergistic or more euphoric high’ 

(Fogger, 2019; UNODC, 2022b).  

As with other NPS, the production of NSOs and, in particular, fentanyl analogues seems to 

originate from companies in China and South East Asia, with very few reports of illicit production 

in Europe and North America (UNODC, 2021e, 2017c).  

Of all the 2021 NPS intoxication cases reported by the UNODC, in which NSOs were reported, 

81% were fatalities, 63% of which was connected to acetyl fentanyl and 11% to carfentanyl. While 

fentanyl and fentanyl analogues are predominantly reported in fatalities and intoxication cases, 

brorphine and isotonitazene were reported as well in clinical admission cases and fatalities, even if 

to a lesser extent (UNODC, 2021b). This could be due more to the lack of related validated 
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analytical methods for their detection than to a small extension of their diffusion. In fact, in 2020-

2021 a shift away from fentanyl was observed with an increase in use and detection of 

benzimidazole opioids (Ujváry et al., 2021). 

NSOs are strong CNS depressants and when used alone or in combination with other drugs can 

cause serious toxicity with profound sedation, respiratory depression, coma, and death (Fogarty et 

al., 2022; Tabarra et al., 2019).The risks associated with their nonmedical use is aggravated by the 

fact that for these NSOs very little or no information at all on pharmacological and toxicological 

profile is available (Prekupec et al., 2017; Wilde et al., 2019). In addition to scarcely described 

profile for the majority of the NSOs, some of those identified on the market tend to be very potent, 

indeed animal tests conducted by the Janssen Pharmaceutica on fentanyls showed how cis3-methyl 

fentanyl and carfentanyl were respectively 7000 and 10000 more potent than morphine (EMCDDA, 

n.d.; Jalal and Burke, 2021). These findings suggest that very small doses, i.e. microgram (µg), or 

even accidental exposure to these molecules, could represent a lethal health threat (EMCDDA, 

n.d.). Due to their extreme potency, relatively small amounts of NSOs (i.e. hundreds of grams) can 

produce many thousands of doses (EMCDDA, 2021f). This makes them easy both easy to transport 

and conceal and difficult to identify, turning them into a serious challenge for drug control agencies 

and forensic laboratories. A new area of concern is the appearance of novel dosage forms, such as 

nasal sprays and e-liquids for vaping in electronic cigarettes, meaning that some new opioids may 

be relatively easy to use and possibly considered more socially acceptable than established opioids 

such as heroin, although the risks of inadvertent exposure may be greater. 

This and the lack of pharmacological data on NSOs represent a serious health threat, with 

unforeseeable risks , especially in polydrug consumption scenarios (EMCDDA, 2021f). This 

phenomenon is even more troubling if we consider that the majority of NSOs originate from 

molecules developed by the pharmaceutical industry but rejected as medications due to safety or 

efficacy issues (Raffa et al., 2017). 
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6.3.1 Novel synthetic opioids phenomenon  

Novel synthetic opioids can potentially represent the most dangerous class of NPS. Their number, 

in contrast with the stabilisation trend reported for other NPS in the last couple of years, has been 

constantly increasing, so much so that a total of 87 fentanyl and 44 non-fentanyl NSOs have been 

reported in 2022 (UNODC, 2022d) by the UNODC. The first NSO, i.e., O-desmethyltramadol (the 

main metabolite of tramadol), was identified on the market in 2009 (UNODC, 2020c). The growth 

of this class appeared very slow at first, with only 14 NSOs reported between 2009 and 2015. 

However in the following four years the numbers grew to 56 (2019) and up to 87 in 2020, at which 

point NSOs represented the third-largest group in terms of number of substances reported by UN 

members (UNODC, 2022a). In 2020, the NSOs were the NPS groups with the highest number (22) 

of molecules identified by year (UNODC, 2022b). A similar growth trend was observed in the EU, 

as reported in Figure 6.2. 

 

Figure 6.2 Numbers and types of synthetic opioids notified for the first time to the EWS. The image is reproduced 

with the EMCDDA permission (EMCDDA, 2021g) 

Parallel to the increase of the numbers, a diversification of the chemical structure has been observed 

as well. In 2012, UNODC reports only four chemical classes of NSOS, which became five in 2015. 

Between 2015 and 2019, a further increase in chemical diversity was observed, with a total of 8 

chemical classes reported (UNODC, 2020c). The chemical classes identified each year are reported 

in Figure 6.3. 
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Figure 6.3 NSOs chemical classes reported each year from 2009 to 2019.  

This timeline was retrieved from the UNODC report “The growing complexity of the opioid crisis”, 2020 

The UNODC indeed reported, between 2009 and 2015, “a proliferation in the diversity of chemical 

classes of NPS with opioid effects in the global market” (UNODC, 2020c). Four of these eight 

chemical classes, i.e. cyclohexylbenzamides, diphenethylpiperazines, cinnamylpiperazines, and 

ciclohexylphenols (Figure 6.3) were included in the schedules of the 1961 Convention only after 

2015. The structures of the NSOs classes identified after 2015 are reported in Figure 6.4and Figure 

6.1.  
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Figure 6.4 Latest chemical structure of the opioids class to be scheduled under the Narcotic Convention (1961).  

The core structure which gives the name to the chemical class is highlighted in red. Please note that the structure of 

ciclohexylphenols has been also reported in Figure 6.1. 

As a result of the rapid emergence and increasing prevalence of opioid NPS, coupled with a 

substantial increase in public health risks, the number of such substances placed under international 

control also increased. Between 2015 and 2020, almost one-third (17 out of 60) of the whole of the 

NPS scheduled were molecules with opioid effects. Despite them only representing a very low 

percentage (8%) of the total NPS identified (roughly 1,100), they are associated with the highest 

level of risk/harm. 

Pushed by this aggressive scheduling process (DEA, 2021; USA Congress, 2021), and in particular 

after the generic legislation put in place in the USA by the DEA for fentanyl and fentanyl analogues 

, and the scheduling of isotonitazene in June 2020, a new fentanyl subclass was identified with 

brorphine. Despite the similarity with fentanyl, the phenethyl-piperidine-benzimidazolone structure 

fall outside the scope of the fentanyl analogues legislations.  

The trends reported here seem to guide the NSOs market towards novel chemical classes every time 

the previous ones are put under legal control, i.e., scheduled under the two international conventions 

of 1961 and 1971. However, a lot of these novel opioids are not really novel and are either “failed” 

(e.g. ,metodesnitazene, fluorofentanyl, U-47700) or falsified/unregistered/unlicensed 

pharmaceuticals (e.g. etizolam, etonitazene, fluorofentanyl and AP-237) both classes of which were 

never approved for medical use. Moreover, other NSOs usually result from small modifications of 
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the chemical structure of the latter class, purposely to avoid the current legislation (Baumann et al., 

2018). 

These NSOs could display either similar or very different pharmacological potencies, if compared 

to fentanyl, which can lead to the creation of extremely potent compounds (Baumann et al., 2018; 

Prekupec et al., 2017). Opioids are in general known for their very narrow therapeutic index, which 

could cause , with a small variation in dosage, extremely potent adverse reaction including death 

(Beardsley and Zhang, 2018).  

6.3.2 Forms and routes of administration 

As mentioned above, NSOs can be sold as stand-alone products, adulterants (mainly in heroin), or 

constituents of counterfeit prescription opioids. NSOs have been found in a variety of physical and 

dosage forms throughout the world, which seems to vary according to which family they belong to. 

Non-medical and illicitly manufactured fentanyl has been found predominantly as powders but also 

detected in liquids, , e-liquids and tablets for oral or sublingual administration (UNODC, 2020c). 

They were also found as oral transmucosal lozenges, sublingual sprays, and as injectable 

formulations and transdermal patches (Lovrecic et al., 2019).  

The new fentanyl derivatives and new generation NSOs (nitazenes or cinnamylpiperazines) are 

often sold as powders, tablets (e.g. counterfeit pills), nasal sprays, and liquids (Solimini et al., 

2018). In particular, when sold as powders, they often contain cutting agents (such as mannitol, 

lactose, and paracetamol) and other drugs such as heroin and other fentanyls/opioids and, to a lesser 

extent cocaine or other stimulants (UNODC, 2020c). NSOs have been reported as well in blotters 

and plant material in which they were not disclosed as ingredients (EMCDDA, 2022a).  

NSOs are usually taken orally (tablets and lozenges) or by sublingual application; snorted and 

insufflated (powders); smoked or inhaled via burning powder on aluminium foil or via a “vaporizer, 

injected either intramuscular or intravenous or taken intrarectally (Lovrecic et al., 2019; Prekupec et 

al., 2017).  

  



175 

 

 

Figure 6.5 Some exmaples of NSOs found on the market.  

In clockwise order from the left a picture of buprenorphine also known as purple heroine (Michigan Poison Center, 

2020); a mix of pills of coloured fentanyl, also known as rainbow fentanyl; counterfeit prescription, fentanyl laced, 

pills mimiching the look of prescription opioids like oxycodone using similar shapes and symbols; counterfeit 

hydromorphone prescription pills containing isotonitazene. The “M” and the number “8” make the pills virtually 

identical to Dilaudid (8mg). No information on the meaning of the purple colour for buprenorphine is availble, 

while the rainbow colour of fentanyl pills ‘appears to be a new method used by drug cartels to sell highly addictive 

and potentially deadly fentanyl made to look like candy to children and young people’ (DEA, 2022c). 
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6.3.3 Pharmacological profile, the opioid system and receptors 

Opioid receptors are a group of inhibitory G protein-coupled receptors predominantly located at the 

synaptic complex in the CNS but found also in the spinal cord, on peripheral neurons, and in the 

digestive tract. In particular they belong to the large superfamily of seven transmembrane (7TM) G 

protein-coupled receptors (GPCRs) (Waldhoer et al., 2004) (Figure 4.5) and their endogenous 

ligands are dynorphins, enkephalins, endorphins, endomorphins and nociceptinin. In 1967 the 

presence of multiple OR receptor types was suggested with the identification of (μ, κ, and δ) MOR, 

KOR, and DOR (Martin, 1967). A fourth OR, i.e. the nociceptin opioid peptide receptor (NOP), 

was identified, and despite sharing high aminoacidic sequence similarity with the other ORs, it was 

found not to have affinity for opioid peptides or morphine-like compounds (Butour et al., 1997). 

For this reason, it will not be described further in this work.  

MOR, which takes its name from its agonist morphine, is mainly found in the brain and it is 

responsible for the well-known sought-after opioid effects, i.e. analgesia and euphoria. However, its 

activation produces many other effects associated with the use of opioids as miosis, reduced GI 

mobility, respiratory depression (Dhaliwal and Gupta, 2021; Kandasamy et al., 2021; Piotr F.J. 

Lipiński et al., 2019; Olson et al., 2019) and it particular seems to be the OR responsible for the 

abuse potential and physical dependence (Kieffer and Evans, 2002; Negus and Freeman, 2018; 

Pasternak and Pan, 2013). Three isoforms of the MOR (i.e. μ1, μ2, and μ3) have been identified 

(Pasternak and Pan, 2013).  

KOR and DOR, which are the least studied of the OR family, are predominantly found in the brain 

tissue and similarly to MOR have, respectively, three and two isoforms (Wilde et al., 2019). When 

activated, KOR seems to produce similar effects to MOR, i.e. antinociception and analgesia, but 

also aversive and psychotomimetic effects (hallucination and dissociation) (Paton et al., 2020). 

DOR activation has been associated with analgesia but in particular with, anxiolytic and 

antidepressant effects (Gendron et al., 2016; Zhou et al., 2021). Due to MOR being responsible for 

triggering the brain reward systems and initiating the addictive behaviours of opioids (Butelman et 

al., 2015) (Butelman et al., 2015), in recent years KOR and DOR have emerged as alternative 

molecular targets for the creation of safer analgesics (Bruchas and Roth, 2016). 

  

https://en.wikipedia.org/wiki/G_protein-coupled_receptor


177 

 

 

Figure 6.6 3D representation of the pentameric structure of GABA-AR.  

On the left is presented the view of the receptor in the cell membrane; on the right is a section from the top which 

helps identifying the five subunits and the binding site of the endogenous ligand GABA in dark green and the BDZ 

in purple.  The 3D images were created with MOE®, and the 3D structure here represented is the PDB51CM (RCSB 

PDB, 2015).   

The activation of these G protein-coupled receptor (GPCR) could mediate a different array of 

cellular signalling through both G protein-dependent (through four major G-protein sub-classes: Gs, 

Gi / o, Gq/11 and G12/13) and independent pathways involving, for example, arrestin and ion 

channels (Hodavance et al., 2016). This phenomenon, by which ‘distinct downstream pathways can 

be preferentially activated by agonists working through the same receptor’, is defined as biased 

signalling (Uprety et al. 2021). This biased signalling is very important for ORs because the β-

arrestin activation appears to be involved in the insurgence of severe, and potentially lethal, 

respiratory depression associated with use of opioid agonists (Mafi et al., 2020; Shang and Filizola, 

2015). However, recently the role of β-arrestin signalling in opioid-induced respiratory depression 

has been refuted and evidence that G proteins could be involved in the latter through action on 

respiratory-controlling brainstem neurons has been proposed (Bateman and Levitt, 2021; Varga et 

al., 2020).  

Although information about receptor affinities and subtype specificity is widely available for 

classical opioids, data on NSOs are scarce. Moreover, it is very difficult to predict their 

pharmacological effects and potency, because as seen with fentanyl and carfentanyl, a small change 

on the scaffold of an NSO could determine a drastic change in activity. Despite limited available 

information, it has been observed that naloxone and naltrexone are capable of reversing the effects 
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caused by NSOs, suggesting that their action profile in humans is similar to that of classical opioids 

(Lovrecic et al., 2019).  
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6.3.4 Toxicological profile  

The side effects associated with NSOs intoxication are reduced level of consciousness, ranging 

from drowsiness to stupor, which resembles that produced by more classic opioid agents (Fareed et 

al., 2011). Under conditions of overdose, NSOs induce an opioid toxidrome associated with loss of 

consciousness, bradycardia, respiratory depression, cyanosis, and miosis (Holstege and Borek, 

2012; Zimmerman, 2014). Additional clinical features may include hypotension, pulmonary edema, 

ileus, nausea, vomiting, and pruritus. Death is usually from respiratory depression. Because many 

NSOs display chemical structures that are closer to those of fentanyl rather than morphine, it is 

expected that the properties of these substances would be more akin to those of fentanyl as well 

(Abdulrahim and Bowden-Jones, 2018). Thus, one would predict low oral bioavailability, high 

potency, and short duration of action, especially with the fentanyl analogues (MacKenzie et al., 

2016).  

New opioids may also present risks not only to those who use them (sometimes unknowingly), but 

also to others, such as postal workers, couriers, police and customs officers, families, and friends of 

users, who may be accidentally exposed to them. 

The risks associated with NSO recreational use are linked to their potency, which varies over a 

large scale, with the most potent ones (e.g., carfentanyl ) requiring doses well below 1 mg to 

produce strong effects (a common diazepam dosage varies from 2 to 10 mg); and to their onset of 

action which could vary according to route of administration and absorption rate (Brunetti et al., 

2021). Recent studies conducted by Vandeputte et al. show how the nitazene class potency seems to 

be in line with the fentanyl analogues, suggesting a similar toxicological profile (Vandeputte et al., 

2021). Fogarty et al (2022) instead reported a lower potency for the class of cinnamylpiperazines 

compared with fentanyl.  

Due to limited in vitro and in vivo studies for the majority of NSOs (Fogarty et al., 2022; 

Vandeputte et al., 2021), usually data on side-effects and toxicological profile are collected 

anecdotally via the analysis of trip reports or users’ fora online (Arillotta et al., 2020; Bowen et al., 

2019; Catalani et al., 2021a; Kjellgren et al., 2016; Moeller and Svensson, 2020; Spadaro et al., 

2022).  

It should be noted that the toxicity profile of each NSO could be further affected by the concomitant 

use of these substances with other drugs, resulting in several and unpredictable risks (UNODC, 

2020c). 

Due to very few in vitro and in vivo studies for the majority of NSOs, usually data on side effects 

and toxicological profile are collected anecdotally via the analysis of trip reports or users’ forums 
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online (Arillotta et al., 2020; Bowen et al., 2019; Catalani et al., 2021a; Kjellgren et al., 2016; 

Moeller and Svensson, 2020; Spadaro et al., 2022).  

It should be noted that the toxicity profile of each NSO could be further affected by the concomitant 

use of these substances with other drugs, resulting in several and unpredictable risks (UNODC, 

2020c). 
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6.3.5 Current Structure Activity Relationship 

The majority of studies of the SAR on opioids are conducted with respect to the mu opioid 

receptors. For this reason and considering the importance of the MOR in analgesia and rewarding 

opioid processes, the discussion below will focus on this receptor.  

Morphine like  

Previous studies (Elison et al., 1963; Feinberg et al., 1976; Portoghese, 1992) identified some 

correlations between the structure of the morphine and its activity on the MOR (Figure 4.6.).  

In particular, it was observed how: 

• The presence of a free phenol group at position C3 of the morphinan scaffold is essential for 

the activity. When the -OH is substituted by other groups that decrease the activity (yellow 

box in Figure 4.6), e.g. codeine 

•  In position C6 substituents as -OH or OCOCH3 increase activity (e.g. heroin), while 

substituents such as –H or –CO decrease the activity (red box in Figure 4.6) 

• The saturation of the double bond C7 = C8, that is, the substitution of 7,8 dihydro, increases 

activity (blue box in Figure 4.6). This is true even in the presence of a C=O group in 

position 6, i.e. hydromorphone. 

• At C14, substitution with an OH –OH in β configuration, that is, above the phenanthrene 

ring, increases activity (oxymorphone) (green box in Figure 4.6) 

• Alkyl substitution in N17 shows the same agonist activity if the number of carbon atoms is 

<3 or an increase in agonist activity when the number is >5. If the number of C atoms is 

between 3-5 the activity change to antagonist/ partial agonist, e.g. nalorphine and naloxone 

(pink box in Figure 4.6). 
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Figure 6.7 Structure activity relationship identified for morphine-like NSOs.  

Each part of the chemical scaffold whose modification is linked with biological activity changes has been 

highlighted with a coloured box. A brief description of the SAR for each box is included in the figure as well. For the 

full description please see Section 6.3.5 
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Fentanyl like  

Previous studies (Casy and Parfitt, 1986; Higashikawa and Suzuki, 2008; Janssen and Van Daele, 

1977; Vuckovic et al., 2009; Wilde et al., 2019) identified how small changes on the fentanyl 

structure could drastically affect the activity on the MOR. For the purpose of a structure activity 

analysis fentanyl molecule can be divided into 4 different moieties as per Figure 6.8. The majority 

of the research on the fentanyl SAR has been carried out on the piperidine moiety (Vasudevan et al., 

2020), with very few studies conducted at the propanamide moiety (Wilde et al., 2019), variations 

of which have been recently made available on the market. 

In particular, it was observed how: 

• The aromaticity of the anilino phenyl moiety is a characteristic necessary to the activity 

(Casy and Parfitt, 1986).  

• Changes in the length of the chain connecting the anilino phenyl to the nitrogen of the 

carboxamide chain, i.e., the insertion of a methyl or ethyl decrease fentanyl activity (Casy 

and Parfitt, 1986). 

• Substitution of the same ring in para position decreases activity. However, the resulting 

fentanyl analogues still displays a potency higher than that of morphine, in decreasing order 

for F, I and CH3. 

• Substitution on the C3 of the piperidine moiety with an alkyl group increases activity when 

the group is in the cis position more than trans (Vuckovic et al., 2009). Methyl substitution 

results in the larger increase in activity, while longer substitutents would result in a less 

active substance, suggesting a steric hindrance. Despite this, substitution with a carboxy 

group strongly increases activity. 

• Substitutions at position C4 of the piperidine ring with a group such as -CH2COOH or -

CH2OH drastically increases binding and potency, i.e., carfentanyl (Dosen-Micovic et al., 

2006; Vasudevan et al., 2020). In particular it has been observed that the chemical nature of 

the substituent is not important, and every substituent seems to increase activity (Janssen 

and Van Daele, 1977). 

• Substitution of the phenyl moiety in β with an -OH increases activity (Wilde et al., 2019). 

• For carboxamide, substitution of the moiety substitution with open and closed alkyl chains 

showed a decrease in activity with the increasing number of carbon atoms in the chain/ring 

(Vasudevan et al., 2020). 
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Figure 6.8 Structure activity relationship identified for fentanyl-like NSOs.  

The fentanyl structure is here divided into its main four core components identified with coloured boxes (Vasudevan 

et al., 2020). A brief description of the SAR for each box is included in the figure as well. For the full description 

please see Section 6.3.5  
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Nitazene like NSOs  

Very little information is available on the SAR of the benzimidazole NSOs class, i.e., the nitazenes. 

This is mainly due to the fact that these compounds are relative new entries into the NSO market, 

being introduced in the recreational market only in 2020. SAR evaluation on this class seemed to 

have been reported only by Vandeputte et al. (2021), as a result of in vitro activity assay on the 

MOR (Vandeputte et al., 2021). The main findings are reported below: 

• The length of the para-alkoxy side chain seems to influence activity. In particular, the 

paraethoxy substituent in etonitazene seems to have the highest potency followed by 

isopropoxy, suggesting how small or compact chain substitutions results in optimal 

MOR activation. 

• Replacement of the para-alkoxy tail with halogens – e.g. chlorine (clonitazene) and 

fluorine (flunitazene) drastically decreased potency. 

• Removal of the NO2 group seems to reduce the activity suggesting an important role for 

the 5-nitro group in the MOR activity. 

• The role of dealkylation on the tertiary amine has not been fully comprehended to date. 

  



186 

 

 

Figure 6.9 Structure activity relationship identified for nitazene-like NSOs.  

Each part of the chemical scaffold whose modification is linked with biological activity changes has been 

highlighted with a coloured box. A brief description of the SAR for each box is included in the figure as well. For the 

full description please see Section 6.3.5 
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6.3.6 Novel synthetic opioids drug design 

As previously reported for DBZDs, the production of NSOs seems to follow three main strategies: 

• Identification of NSOs reported in the scientific literature or patented, but never 

commercialised. Examples are U-47700, an opioid analgesic of the class of 

cyclohexylbenzamides first developed in 1970 (Szmuszkovicz, 1976); MT-45 and opioid 

analgesic of the diphenyl-ethyl-piperazine class (Nishimura et al., 1976); desmethylprodine 

an opioid analgesic drug developed in the 1940s by Hoffmann-La Roche (Schmidle and 

Mansfield, 1954); acetylfentanyl was first disclosed in patents by the Belgian company 

Janssen in the early 1960s (EMCDDA-Europol, 2005); the AH-family first studies in the 

UK company Allen and Hanburys Limited (Brittain et al., 1973). 

• Modifications of scheduled NSOs. e.g. U-49900 and 3,4-Methylenedioxy-U-47700 as novel 

structural analogues of U-47700 (Sharma et al., 2019).   

• Emergence of new chemical classes. After the recent scheduling actions towards the 

fentanyl family of NSOs across the world, the emergence and interest towards new classes 

of “legal” opioids have been registered (Fogarty et al., 2022). These classes, which are 

structurally dissimilar to fentanyl, include cinnamylpiperazines and thiambutene.  

  

https://en.wikipedia.org/wiki/Piperazine
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6.4 In silico methods for novel synthetic opioids 

From the analysis of the results obtained for the QSAR studies on DBZDs described above, the 3D 

QSAR model approach and the use of machine learning algorithms was found to be more reliable, 

i.e., produced better statistics, and more useful to predict the biological activity of unknown 

compounds. The 3D QSAR approach indeed employs different methodologies (e.g. machine 

learning and artificial neural networks) and different descriptor selection approaches which makes it 

more powerful than 2D QSAR. In particular it calculates/derives descriptor from the 3D spatial 

coordinate of the molecule which are more informative and more descriptive than the 2D 

coordinates only (Doweyko, 2007; Roy et al., 2015b; Tropsha, 2007). For this reason, for the class 

of NSOs, only the 3D QSAR models were calculated with the use of Forge™.  

Moreover, due to the key role that MOR plays in both the strong analgesic property and the 

addiction and abuse potential which distinguishes the NSO class (sec 6.3.3), the study focused on 

evaluating firstly QSAR models for the prediction of biological activity on MOR.  

6.4.1 QSAR with Forge™ 

The chemical structures of all the molecules used for the generation of the QSAR models with 

Forge™ were retrieved from the ChEMBL database selecting only those tested for their affinity for 

the human MOR (available online: https://www.ebi.ac.uk/chembl/target/inspect/CHEMBL233). For 

this target (ChEMBL, 2021a), i.e. CHEMBL233, various activity values are available, however 

only the Ki values were analysed and used. The biological activity Ki is identified as the ‘inhibition 

constant’ and indicates how potent a ligand is in inhibiting a process; Ki is the concentration 

required to produce half the maximum inhibition (Neubig et al., 2003). Ki is expressed in molar 

units (M), where 1 M is equivalent to 1 mol/L (Neubig et al., 2003). Only molecules for which the 

displacement of the radioligand [3H]DAMGO from the human MOR was used to determine of all 

of the Ki values, were selected. The binding data were converted to their negative decimal 

logarithm pKi (pKi = -logKi). 

As discussed previously (Ch 4.3.4), when building a QSAR model, attention should be paid to the 

similarity between the molecules used to train the model and those for which a prediction of activity 

is necessary. In this regard, the 2868 molecules available in ChEMBL were filtered with the use of 

Tc to produce two different datasets, one for fentanyl-like and one for morphine-like NSOs. Due to 

the paucity of experimentally derived biological activities for nitazene-like structures (Vandeputte 

et al., 2021), no QSAR model was built for the this NSO class. A total of 115 and 96 molecules was 

identified respectively for the dataset of fentanyl-like NSOs and of the morphine-like ones 

(Appendix A).  

https://en.wikipedia.org/wiki/Molar_concentration
https://en.wikipedia.org/wiki/Molar_concentration
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Liter
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The two datasets were partitioned into training and test according to the activity, i.e. activity 

stratified. The default value of 20% was used to allocate entries in the test set.  

To partition the data set into training and test set, the entries were loaded as a list of SMILES with 

corresponding Ki value from a csv file. When loading the file into Forge™, the molecule role 

(training set) and the protonation state were specified by the user. Forge™ automatically converted 

all molecules to 3D structures. All the molecules were uploaded (Figure 4.8) as a training set and 

further divided into a training and test set.  
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6.4.2 Forge™ Ligand specification and alignment  

Once the molecules were loaded, they were aligned to the reference molecule (i.e. ligands). In 

Forge™, the alignment can be done in two ways: normal (or protein centric view) or substructure 

based (or ligand centric view). As reported above in paragraph 4.3.5, one or more molecule could 

be used as reference compounds for the alignment including the 3D structure of the receptor for a 

volume/steric evaluation guidance of the alignment (Floresta et al., 2019). For more details on the 

methodology please refer to Section 4.3.5. For the NSOs alignment, a combination of normal and 

structure based methods was used, due to the high flexibility of the molecules in analysis. An 

example of alignment made by Forge™ for the morphinan class is presented in Figure 4.9  

.  

 

Figure 6.10 Example of an alignment made by Forge™. 

 On the right, the list of the possible 3D conformations automatically identified, and on the left, the 3D structure of 

the alignment proposed by Forge™ as the most energetic favourable by Forge™. The query molecule 

(CHEMBL33986) is in purple, while the reference ligand (BU72) is in light yellow. The drop-down menu on the 

right identifies all the different possible alignments (in this case 9) of the CHEMBL33986 on the reference molecule.  

6.4.3 Forge™ descriptors’ selection 

For detailed methodology of the descriptors selection in Forge™ please refer to Section 4.3.6 
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6.4.4 Molecular Docking 

Identification of the 3D protein structures 

Molecular docking (MD) studies were used to evaluate the binding affinity between the NSOs 

identified by the NPSfinder® and the 3D crystal structure of the MOR identified in the PDB 

database. The crystallised structure of the KOR and DOR were used for the study reported in 

Chapter 8.  

The analysis of the PDB database to retrieve the best 3D structures for the docking included the use 

of several key words as ‘opioid receptors, morphine, fentanyl, opioids, morphine-like, etc. Only the 

structures of human receptors were considered. From the keywords search three structures of 

interest were identified:  

- PDB5C1M – ‘Crystal structure of active mu-opioid receptor bound to the agonist BU72’ 

(RCSB PDB, 2015) 

- PDB6PT3 - ‘Crystal structure of the active delta opioid receptor in complex with the small 

molecule agonist DPI-287’ (RCSB PDB, 2019) 

- PDB6B73 – ‘Crystal Structure of a nanobody-stabilized active state of the kappa-opioid 

receptor’ (RCSB PDB, 2018d) 

As reported in section 4.3.8, agonist and antagonist ligands could cause a different rearrangement in 

the structure of the binding pocket and the whole receptor (An et al., 2019; Ng et al., 2014; 

Jianliang Zhang et al., 2009). Hence to obtain more reliable results, it is advisable to use the 3D 

structure which is bound to the most similar molecule to those under evaluation (i.e. DBDZs), both 

structure- and activity-wise (Leelananda and Lindert, 2016).  

The protein structures identified in the PDB database are crystallised structures of the ORs in 

complex with the agonist BU72, DPI-287 and MP1104 (Figure 6.11). 
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Figure 6.11. 2D structure of the co-crystallised ligands for the ORs identified for the docking studies.  

From the figure it can be observed that BU72 shows a phenanthrene scaffold, MP1104 a morphine like structure 

and DPI-287 a structure derivative of the benzylamides and phenylpiperazine. 

BU72 is an extremely potent opioid, showing a very high affinity for the MOR. Although it was 

found as a potent analgesic in animal studies, with a slow onset and long duration of action, it was 

never marketed (Neilan et al., 2004). It is used to model the activation process of MOR (Che et al., 

2018). DPI-287 is a highly selective opioid agonist for DOR showing antidepressant like effects 

with reduced side effects (i.e. convulsion) (E. M. Jutkiewicz, 2006). MP1104, an analogue 3-

iodobenzoyl naltrexamine, is a potent dual full agonist at DOR and KOR (Atigari et al., 2021, 

2019).  

Preparation of the PDB structures 

The PDB files were loaded into MOE® via the Load PDB File application (see Appendix 4 for more 

details) and then prepared with the Quick Prep application as presented in Section 4.3.8. The 

structures were then ready to be used as input for molecular docking.  

  

https://en.wikipedia.org/wiki/Opioid
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Binding pocket and ligand interaction definition 

The co-crystallised ligands available in PDB5C1M, PDB6PT3 and PDB6B73 were used to define 

the binding pocket/cavity and superposition target for docking calculations. All the residues 

included in a radius of 4.5 Å from the ligand were included in the binding pocket. Additionally, the 

Site finder application was used to define the characteristic of the whole pocket for each receptor 

(Table 4.2). The three binding pockets appear to be slightly different in terms of size and 

hydrophobic surface, with PDB6B73 showing a larger pocket (Table 4.2). This is due to a slightly 

different aminoacidic residues composition of the binding site consistent with the ORs belonging to 

tree different subfamilies.  

Table 6.1 Description of the two binding pockets identified for 6HUO and 6HUP *.  

Receptor Site Size PLB Hyd Side Residues 

5C1M 1 204 3.64 74 128 

1:(GLY52 SER53 HIS54 SER55 YCM57 TYR75 

ALA117 THR120 GLN124 ASN127 TYR128 TRP133 

VAL143 ILE144 ASP147 TYR148 ASN150 MET151 

LYS209 CYS217 THR218 LEU219 THR220 PHE221 

THR225 GLU229 LEU232 LYS233 VAL236 PHE237 

TRP293 ILE296 HIS297 TYR299 VAL300 ILE301 

LYS303 ALA304 TRP318 HIS319 CYS321 ILE322 

GLY325 TYR326) 

6B73 1 315 3.28 102 164 

1:(VAL108 THR111 PHE114 GLN115 VAL118 

TYR119 ASN122 SER123 TRP124 VAL134 LEU135 

ASP138 TYR139 MET142 LYS200 ARG202 ASP204 

VAL205 VAL207 ILE208 GLU209 CYS210 SER211 

LEU212 GLN213 PHE214 PRO215 ASP216 SER220 

TRP221 TRP222 ASP223 MET226 LYS227 VAL230 

TRP287 ILE290 HIS291 PHE293 ILE294 GLU297 

ALA298 THR302 SER303 HIS304 SER305 ALA308 

LEU309 TYR312 TYR313 CYS315 ILE316 GLY319 

TYR320 SER323) 

6PT3 1 215 3.67 77 130 

2:(ALA98 THR101 GLN105 ASP108 TRP114 VAL124 

LEU125 ILE127 ASP128 TYR129 SER131 MET132 

ARG192 ASP193 VAL197 CYS198 MET199 LEU200 

GLN201 PHE202 SER206 TRP207 ASP210 THR211 

THR213 LYS214 VAL217 PHE218 TRP274 ILE277 

HIS278 PHE280 VAL281 ILE282 TRP284 THR285 

LEU300 CYS303 ILE304 GLY307 TYR308 SER311) 

*The size column indicates the number of alpha spheres comprising the site; the PLB column indicates the 

Propensity for Ligand Binding score for the contact residues in the receptor; the Hyd column indicates the 

number of hydrophobic contact atoms, and the Side column indicates the number of sidechain contact atoms. 

The Residues column indicates the residues in the binding pocket in the format chain:residue-name. 
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For each receptor, the 3D structure as analysed and the information contained in the scientific paper 

of reference were used to explore the ligand interactions and identify the most important residues 

for the agonist allosteric activation of the OR. The binding pockets as visualised in MOE® for each 

OR are presented in Figure 4.12, 6.14 and 6.15.  

 

Figure 6.12 PDB51CM binding pocket 3D and 2D representations.  

Notes: On the left, the binding pocket 3D representation with the co-crystallised ligand BU72 (gold). Light blue was 

used to identify the receptor TM3 helix, green for the TM6 helix, pink for the TM7 helix, dark blue for the TM5 

helix and lobster pink for the TM2 helix. On the right, the 2D representation of the binding pocket and interactions 

between receptor residues and ligand are provided. Below a report of the type of interactions, the receptor residues 

and the BU72 atoms involved, and relative distance and energy parameter (kcal/mol) is outlined. The colours used to 

depict the residues in the 2D screenshot define different characteristics of the latter: light purple for polar residues 

and light green for hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo 

indicates solvent exposure both on the receptor and the ligand 

Most of the interactions observed between BU72 and active µOR are hydrophobic or aromatic in 

nature, with only two conserved polar interactions. These two polar interactions are the ionic 

interaction between the morphinan tertiary amine and Asp1473, an interaction that is observed both 

for agonist and antagonist (Manglik et al., 2012); and a water-mediated interaction between the 

hydroxyl group on the phenolic ring and His297 (Huang et al., 2015) .  
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Figure 6.13 Representation of the two polar interactions (light blue cylinder). 

 A is the ionic interaction between the morphinan tertiary amine and Asp1473, an interaction that is observed both 

for agonist and antagonist (Manglik et al. 2012); and B the water-mediated polar interaction between the hydroxyl 

group on the phenolic ring and His297 (Huang et al. 2015). 
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Similar interaction patterns were observed for KOR (Figure 4.13).  

 

Figure 6.14 PDB6B73 binding pocket 3D and 2D representations.  

Notes: on the left, the 3D binding pocket representation with the co-crystallised ligand MP1104 (gold). Light blue 

was used to identify the receptor TM3 helix, green for the TM6 helix, pink for the TM7 helix. On the right, the 2D 

representation of the binding pocket and interactions between receptor residues and ligand are provided. Below a 

report of the type of interactions, the receptor residues and the MP1104 atoms involved, and relative distance and 

energy parameter (kcal/mol) are outlined. The colours used to depict the residues in the 2D screenshot define 

different characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red circle 

indicates an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the receptor 

and the ligand 

The pose assumed by the MP1104 core scaffolds showed common features typical for opioid 

ligands: i.e. the salt bridge between the ligand tertiary amine and Asp 138; H-bond donor 

interaction with Met142 and interactions with TM3/7 via chemically diverse moieties ( Figure 4.13) 

(Che et al., 2018). In particular, the larger distance of the salt bridge (3.0) compared to BU72 

suggest a weaker interaction between MP1104 and KOP (Che et al., 2018). For this compound, Che 

et al. report further interactions which cannot be appreciated by the analysis of the 3D structure, i.e. 

water-mediated hydrogen bonds between the phenolic group and the Lys227 (TM5). It is interesting 

how the cyclopropyl moiety of MP1104 occupies a hydrophobic pocket, previously thought to be 

responsible of the agonist/antagonist discrimination (Huang et al., 2015).Various interaction with 

this pocket and MP1104 have been reported (Che et al., 2018), i.e. the ones between the 

cyclopropyl and the side chain of Trp287, the backbone of Gly197 and the aromatic side chain of 

Tyr207 (the only one visible in Figure 4.13).  
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The interaction pattern of DOR is presented in Figure 4.14.  

 

Figure 6.15 PDB6B73 binding pocket 3D and 2D representations of the PDB6B73 binding pocket.  

Notes: on the 3D left, the binding pocket representation with the co-crystallised ligand DPI-287 (gold). Light blue 

was used to identify the receptor TM3 helix, green for the TM6 helix,  pink for the TM7 helix, orange for the TM5 

helix and purple for the TM2 helix. On the right , the 2D representation of the binding pocket and interactions 

between receptor residues and ligand are provided. Below, a report of the type of interactions, the receptor residues 

and DPI-287 atoms involved, and relative distance and energy parameter (kcal/mol) is outlined. The colours used to 

depict the residues in the 2D screenshot define different characteristics of the latter: light purple for polar residues 

and light green for hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo 

indicates solvent exposure both on the receptor and the ligand 

DPI-287 shows the same protonated nitrogen atom mediated salt-bridge interaction to Asp128 

observed for the other ORs ligands. The Asp128 is itself part of a polar network together with 

Tyr308, Thr101, and Gln105, which connects the TM2, TM3 and TM7 helixes.  Tyr308 shows 

additional aromatic static interactions with the unsubstituted benzyl moiety of DPI-287. Claff et al. 

argued that the polar network around the Asp residue plays an ‘essential role in agonist-induced 

activation at DOP’ and proposed that the positioning of the basic amine deeper into the binding 

pocket, as opposed to antagonist, is a symbol of opioid agonist activity (Claff et al., 2019). The 

interaction between His278 and the phenol moiety (conserved in many ligands of OR peptides and 

small molecules) is another important one for DOR activation. This interaction, as reported by Claff 

et al, indeed connects DPI-287 to TM3, TM5, and TM6 helixes (Claff et al., 2019). Other 

interactions include hydrogen-bond donor with Met132, as observed in MOR and KOR; H-pi 

interactions with Tyr308 and Trp284; and pi-H interaction with Val281. 
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Ligands reference datasets 

A reference data set for the docking studies was prepared with the aim of including the co-

crystallised ligand for each OR and some reference compounds among those identified in ChEMBL 

as potent agonist. A total of five molecules for each OR including the co-crystallised ligand were 

extrapolated from the literature according to their strong activity as agonist binders and used as 

reference molecules for docking studies (Table 6.2).
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Table 6.2 Refence molecules for docking studies* 

MOR 

Molecule  SMILESs 
S 

(Kcal/mol) 

BU72 O(C)[C@]12[C@]3(C)[C@@H](c4ccccc4)[NH2+][C@H]1[C@@]14c5c(ccc(O)c5)C[C@@H]([NH+](C)CC1)[C@@]4(C=C2)C3 -10.15 

fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC -8.44 

carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC -9.59 

α-methylfentanyl  O=C(N(c1ccccc1)C1CC[NH+]([C@@H](Cc2ccccc2)C)CC1)CC -8.99 

β-hydroxyfentanyl  O=C(N(c1ccccc1)C1CC[NH+](C[C@@H](O)c2ccccc2)CC1)CC -8.79 

KOR 

MP11 04  C1CC1CN2CC[C@]34[C@@H]5[C@H]2CC6=C3C(=C(C=C6)O)O[C@H]4[C@@H](C=C5)NC(=O)C7=CC(=CC=C7)I -9.79 

CHEMBL503080 Clc1cc2c(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(c4ccccc4)CC3)csc2cc1 -9.00 

CHEMBL526933 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)C)CC2)C)c1 -9.24 

CHEMBL499351 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)c3cc(Cl)ccc3)CC2)C)c1 -9.74 

CHEMBL525457 Clc1cc2N(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(S(=O)(=O)c4cc(OC)c(OC)cc4)CC3)C(=O)Oc2cc1 -9.81 

DOR 

 

  

DPI-287 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)C[NH+](CC=C)[C@H](C)C2)c2cc(O)ccc2)cc1 -8.58 

CHEMBL2151735 O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H]([NH3+])Cc1c(C)cc(O)cc1C -9.44 

CHEMBL8234 O=C([O-])[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])Cc1ccc(O)cc1)Cc1ccccc1)CC(C)C -10.43 

CHEMBL3758292 O=C([C@@H]([NH3+])Cc1c(C)cc(O)cc1C)N1[C@@H](C(=O)NCc2[nH]c3c(n2)cccc3)Cc2c(cccc2)C1 -9.70 

CHEMBL2113666 Clc1c(/C=C/C(=O)N[C@]23[C@@H]4[NH+](C)CC[C@@]52[C@H](C(=O)CC3)Oc2c5c(ccc2)C4)cccc1 -7.26 

*Refence molecules for docking studies. A total of five potent agonist was identified including the co-crystallised ligand and four molecules identified in the ChEMBL 

target page for each OR. For each molecule, the SMILES was retrieved from ChEMBL. 
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Molecular Docking Approaches 

The molecules in Table 4.3 were docked alongside the molecule identified by NPSfinder® (Table 

3.2), using the general docking panel in MOE®. It is important to underscore that, when available, 

information on the active placement (i.e. presence of the co-crystallised ligand) and fundamental 

interactions should be taken into high consideration to proceed to a more informed docking study. 

To include information available on fundamental interactions, a pharmacophore was defined as 

described in Section 4.3.8. Because of differences in the structure of some of the ligands, i.e. 

fentanyl-like and nitazenes, compared to the morphinan-like structures of the MOR and DOR 

ligands, only few features were included in the pharmacophore query. This differs from what was 

developed for the DBZDs, for which the pharmacophore queries were more detailed due to the 

similarity of structure between the DBZDs and the co-crystallised molecule. The pharmacophores 

obtained for MOR, DOR and KOR are reported in Figure 4.15 and Figure 4.16.  
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Figure 6.16 Pharmacophore query used for the docking placement with PDB6PT3 (left) and with PDB6B73 (right).  

 

Figure 6.17 Pharmacophore query used for the docking placement with PDB5C1M 
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The so-designed pharmacophore query takes into consideration both the ligand and the receptor 

properties. In particular a constrain (C1 and C2) was highlighted to ensure the presence of a 

cation/donor ligand feature in proximity of the Asp residue in all the ORs. The other highlighted 

features were: two aromatic features in proximity to the phenolic ring and unsubstituted phenyl and 

a hydrogen one next to the ligand charged amine and in proximity to the Met residue. 

The generated pharmacophore queries were used both for the placement and refinement of the 

poses. In particular, each docking run was done in triplicate, with 50 poses for each entry returned 

by the placement and ten poses returned by the refinement.  

The poses were then analysed and filtered according to the S value and rmsd_refine (i.e. the root 

mean square deviation between the pose before and after refinement), the E_refine score from the 

refinement stage. For each pose, a PLIF was also calculated.  

Protein ligand interaction fingerprint 

The PLIF was calculated automatically during the generation of the docking poses. For further 

details, please refer to Section 4.3.8. 
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6.4.5 Pharmacophore 

For the pharmacophore mapping study’s methodology carried on the ORs please refer to Section 

4.3.9 and 8.2.3.  

In the following Chapter the results of the in silico studies on NSOs are reported. 
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Chapter 7 Results and discussions of in silico studies on novel synthetic 

opioids 

As discussed in Section 6.4.1 two different models were created for the fentanyl-like and morphine-

like NSOs.  

7.1 QSAR with Forge™ for fentanyl-like NSOs  

7.1.1 Training and test sets 

The same methodology presented in Section 5.2.1 was used here to define the training and the test 

set used for the QSAR studies. The total of 115 structures were divided according to their pKi value 

into a training set (94) and a test set (21) (Appendix A). The aim was to obtain two sets, both 

representative of the activity values space in the analysis. pKi values ranged from 10.2 and 5.1 

across the whole database.,  

A set of field points as described in Section 5.2.1 was calculated with regards to electrostatically 

positive and negative van der Waals attractive and hydrophobic features. The 115 3D structures 

were aligned in Forge™ on the previously reported active conformations of BU72 in the 

crystallised MOR structure ( Figures 4.12and 4.13) (RCSB PDB, 2018a, 2018b), and then 

submitted to the Forge™ processing application. The alignment process used was a mix of normal 

and substructure.  

Normal alignment is based on the on the field point overlay technique and it is the standard Cresset 

alignment method (Cresset, 2021). The substructure alignment instead aligns all molecules to one of 

the references. i.e. BU72 according to a Maximum Common Substructure (MCS). This step is 

followed by a conformation hunt applied to the remaining atoms, and the resulting conformers are 

scored in this aligned orientation (Cresset, 2021). The field score is used only to select orientations 

for any side chains. 

7.1.2 3D QSAR Models  

Three different model building calculations were used similarly to the DBZDs project, i.e. 3D-Field 

QSAR, Random Forest, and Relevant Vector Machine (RVM) models (Ch 4.3.7). Detailed 

information on the methodology is presented in Appendix B.  

The 3D Field QSAR was generated via a partial least squares (PLS) analysis (Wold et al., 2001), 

specifically with the use of the SIMPLS algorithm (de Jong, 1993). The number of components of 

PLS defined as optimal (5) was identified in 20 automatically generated, with a reported r2 

(coefficient of determination) of 0.97 and q2 (cross-validated coefficient of determination) of 0.75 

as seen in Table 5.6. The statistics for the 20 methods are reported in Appendix A. 
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Table 7.1 Values for the statistics obtained for the three calculated QSAR models* 

Model  r2 q2 r2 Test RMSE Tau 

3D Field QSAR  0.97 0.75 0.94 0.51 0.86 

Random Forest  0.91 0.7 0.81 0.27 0.82 

RVM 0.95 0.76 0.97 0.24 0.81 

*Here are presented the statistic for the QSAR models generated in the form of: the coefficient of determination 

(r2) which indicates the goodness of fit; the cross-validated coefficient of determination (q2) which indicates the 

robustness; the coefficient of determination for the test set (r2 test), which indicates the predictive power; the 

root mean square error (RMSE) as reliability measure; and Tau as a further parameter to assess the predictivity 

of the model. As r2, the closer the value of Tau is to one, the better the model. 

The cross-validated coefficient of determination is the validation parameter obtained with the leave 

one out cross-validation (LOO CV) used in Forge™ as internal method validation, and evaluates to 

which degree the prediction of a model is better compared to a null one (Golbraikh and Tropsha, 

2002). To further assess the reliability of the method, the forecast of the measurements of the root 

mean squared error (RMSE) are reported, and in particular a value of 0.51 was identified for the 

final QSAR model. External validation was carried out on the test set (21 molecules), obtaining an 

r2 of 0.94. The two machine learning models’ performance was found to be comparable with the 

Field QSAR one. With Forge™, an additional variable is used to describe the reliability of the 

models, i.e. the Kendall’s Tau, which predicts the ability of a model to rank molecules (sec 5.2.2 ) 

(Kendall, 1938). The Tau values obtained for the models are higher than 0.8, suggesting a good 

predictivity for all of them.  

A visual representation of the predicted vs. experimental values for training and test sets is reported 

in Figure 7.1. 
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Figure 7.1 Visual representation of the predicted (x axis) vs. experimental (y axis) log 1/c values for the training 

(blue) and test (orange) sets.  

The graphs were built with Excel 2022. 

The 3D Field QSAR analysis returned a linear relationship (r2= 0.97 for training set and 0.94 for 

test set) between the descriptors and the activity confirming a high correlation and predictivity and 

provided a visual interpretation of the QSAR model. Positive and negative electrostatic features are 

reported in Figure 7.2, while favourable and unfavourable hydrophobic features are reported in 

Figure 7.3. 



207 

 

 

Figure 7.2 3D and 2D visual representations of the generated 3D Field QSAR model for electrostatic features 

Notes Electrostatic properties are identified by the red (positive) and blue (negative) colours. In particular, the red 

and blue shapes indicate the space around the molecule in which more positive electrostatic interaction (red) or 

more negative electrostatic interaction (blue) will be beneficial (i.e. increase) for the activity. More positive 

interactions (red) could mean that placing strong H-bond donors in that region improves activity or could mean as 

well that putting strong H-bond acceptors will worsen activity, and vice versa with blue. The green and violet areas 

instead indicate how the presence of a hydrophobic interaction in that region would increase (green) or decrease 

(violet) activity.  
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Figure 7.3 3D and 2D visual representations of the generated 3D Field QSAR model for hydrophobic features 

Notes The favourable and unfavourable hydrophobics are identified by the green and violet colours. The green and 

violet area indicate how the presence of a hydrophobic interaction-prone group in that region would increase (green) 

or decrease (violet) activity.  

From the 3D and 2D maps presented above (Figures 7.2 and 7.3), it is clear how hydrophobic 

interactions seem to play an important role in the definition of the activity of the molecule. This is 

in line with what was reported in Section 6.4.4, about the fact that the majority of the interactions 

observed between BU72 and the active MOR are hydrophobic or aromatic in nature, with only two 

conserved polar interactions (Huang et al., 2015). The positive electrostatic interactions (red shapes) 

cover a very small area of the whole molecule and can be found mainly in correspondence with the 

tertiary amine positively charged of the molecule. This means that a strong H-bond donor in that 

region is expected to improve activity. The blues shapes instead, i.e., negative electrostatic 

interaction, run along the lateral chains of the compound, i.e., the fluoromethoxycarbonil and the 

propyl amido, where the oxygen atoms are displayed. In fact, the blue shape indicates how a strong 

H-bond acceptor would increase activity. This is in line with what reported for the SAR of the 

carboxamide moiety of fentanyl in Section 6.3.5, i.e., aliphatic chains decrease activity, and for 
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aliphatic chains decrease the activity, and for the piperidine portion C4 substitution, i.e. increase of 

activity with R groups containing oxygen atoms (Vasudevan et al., 2020).    

The green areas instead indicate how hydrophobic interactions are important for biological activity. 

Indeed relevant hydrophobic interaction areas are identified around the anilino phenyl and 

phenethyl moiety in agreement with the aromaticity of the anilino phenyl moiety as necessary to the 

activity (Casy and Parfitt, 1986). These hydrophobic patches which run alongside the whole 

molecule seems to be disrupted only in proximity to the nitrogen atoms (purple areas).  

The three QSAR models identified above were used to predict the biological activity of the 238 

NSOs identified online (the majority of which were retrieved from isomer design (Isomer Design, 

2021) (Appendix A). As discussed in section 6.1.4 the biological activity Ki is the ‘inhibition 

constant’ (Neubig et al., 2003), is expressed in molar units (M), and calculated as the displacement 

of the radioligand [3H]DAMGO from the human MOR. 

During the analysis of the predicted pKi values, it was noted that the RF models tend to over-predict 

values for some of the NSOs listed, hence only the Field QSAR and the RVM values were averaged 

to obtain a final prediction. For brevity, only the top ten NSOs listed according to their decrescent 

predicted biological activity value (Field QSAR) are reported below (Error! Not a valid 

bookmark self-reference.). The full table is in Appendix A.  

Table 7.2 Top ten fentanyl-like NSOs molecules reported in decreasing order of predicted pKi values*  

Title pKi pred  Dist to model  Sim 

N-(2-fluorophenyl)-n-[1-(2-phenylethyl)-4-(pyridin-2-yl)piperidin-4-

yl]propanamide 

10.2 Excellent 0.7 

Methyl 4-[phenyl(propanoyl)amino]-1-[2-(1h-pyrrol-1-yl)ethyl]piperidine-4-

carboxylate 

10.1 Good 0.6 

2-methyl carfentanil 10.0 Good 0.7 

Carfentanil 10.0 Excellent 0.7 

N-methyl-carfentanil 10.0 Excellent 0.6 

Butyryl-carfentanyl 10.0 Excellent 0.7 

Acetyl-carfentanil 9.9 Excellent 0.7 

N-{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1h-tetrazol-1-yl)ethyl]-4-(1,3-thiazol-2-

yl)piperidin-4-yl}-n-(2-fluorophenyl)propanamide 

9.9 Excellent 0.6 

4-methoxymethylfentanyl 9.9 Excellent 0.7 

N-(2-fluorophenyl)-n-{1-[2-(1h-pyrazol-1-yl)ethyl]-4-(pyridin-2-

yl)piperidin-4-yl}propanamide 

9.9 Excellent 0.6 

*The reported pKi values are the average of Field QSAR and RVM predicted values. 

The same methods were used to predict the pKi of fentanyl which returned a value of 9.2. This 

value together with the one obtained for carfentanyl were used as a gauge of the relationship 

between predicted pKi and potency. In line with this, the final predictions were used to divide the 

NSOs into three groups as seen for the DBZDs, i.e. the high activity group (pKi > 9.0), the medium 

https://en.wikipedia.org/wiki/Molar_concentration
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activity group (pKi < 9.0 and >8.0), and the low activity group (pKi < 8.0). Values of pKi> 10 can 

be considered prediction of very high biological activity. It was found that 40% of the 238 NSOs 

were predicted to display a high biological activity, 45% a medium and 15% a low biological 

activity. For the scope of this study a low biological activity is considered compared to fentanyl, 

hence this mean that these compounds can still display a potency in the range of the morphine-like 

structure.  

The NSOs showing the highest biological activity were N-(2-Fluorophenyl)-N-[1-(2-phenylethyl)-

4-(pyridin-2-yl)piperidin-4-yl]propanamide (pKi = 10.1), carfentanyl (10.0), butyryl-carfentanyl 

(10.0), N-(2-Fluorophenyl)-N-[1-(2-phenylethyl)-4-(1,3-thiazol-2-yl)piperidin-4-yl]propanamide 

(10.0), 2-methyl carfentanyl (10.0), acetyl-carfentanyl (9.9), 4-methoxymethylfentanyl and N-

quinolinyl-fentanyl (both 9.8).  

These molecules, predicted as very potent by the QSAR studies, were not identified nor reported by 

the official sources/databases, and they do not seem to be discussed online yet as well. It is 

interesting to note how all these NSOs, but one, show a substitution on the C4 atom predominantly 

with a carboxylate group in line with the SAR reported for this NPS class (Sec. 6.3.5). Other 

common characteristics of these NSOs are a fluorine atom on the anilino phenyl portion (Figure 

6.8) and the substitution of the latter with a piperidine or the substitution of the phenethyl moiety 

with a pyrrole. Once again it is observed how the fluorine atoms substitution is associated with an 

increased biological activity.  

The predicted values of pKi suggest the likelihood of these NSOs having a biological activity which 

is comparable to carfentanyl, one of, if not the most, potent NSO so far reported by the UNODC 

and EMCDDA (Elliott and Hernandez Lopez, 2018; EMCDDA, 2022a, 2017d; UNODC, 2019d). 

Carfentanyl is indeed 10000 times more potent than morphine and 100 times more potent than 

fentanyl (DEA, 2022d), and has been associated with the rise of overdose deaths registered in the 

United States associated with the opioid crisis and in north Europe (EMCDDA, 2019b; Jalal and 

Burke, 2021; Prekupec et al., 2017; Seyler et al., 2021; Wilcoxon et al., 2018). The high potency of 

carfentanyl means that this NSO is active in the microgram range (i.e. ki = sub nM, with fentanyl 

having a ki in the 0-100 nM) - making it a very dangerous substance for the recreational users (also 

for the opioid tolerant ones) and a possible lethal threat to first responders and law enforcement 

personnel who may come in contact with this substance (DEA, 2022d).  

7.1.3 Domain of applicability with Forge™ 

The applicability domain, for each QSAR model generated with Forge™ was automatically 

calculated and reported in the 'Distance to Model' column for all the entries as discussed in Section 
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5.2.3. The distance to model for each of the 238 NSOs is reported in Appendix A. Prediction with a 

poor or bad distance should not be taken into consideration as unreliable.   
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7.2 QSAR with Forge™ for morphine-like NSOs  

7.2.1 Training and test sets 

The same methodology presented in Section 5.2.1 was used here to define the training and the test 

set used for the QSAR studies. The 96 structures were divided according to their pKi value into a 

training set (75) and a test set (21) (Appendix A). The pKi values ranged from 10.2 and 5.3 across 

the whole database, with higher values indicating stronger biological activity. The same 

methodology described in Section 7.1.1 was followed.  

7.2.2 3D QSAR Models  

Also for morphine/like NSO 3D-Field QSAR, RM, and RVM models were calculated (Sec 4.3.7). 

Detailed information on the methodology is presented in Appendix B.  

The number of components of PLS defined as optimal (3) was identified among 20 models 

automatically generated, with a reported r2 (coefficient of determination) of 0.87 and q2 (cross-

validated coefficient of determination) of 0.69 as seen in Table 7.3. The statistics for the 20 

methods are reported in Appendix A. 

Table 7.3 Values for the statistics obtained for the three calculated QSAR models* 

Model  r2 q2 r2 Test RMSE Tau 

3D Field QSAR  0.87 0.69 0.85 0.39 0.61 

Random Forest  0.93 0.57 0.75 0.65 0.79 

RVM 0.90 0.66 0.79 0.63 0.74 

* Here are presented the statistic of the QSAR models generated in the form of: the coefficient of determination 

(r2) which indicates the goodness of fit; the cross-validated coefficient of determination (q2) which indicates the 

robustness; the coefficient of determination for the test set (r2 test), which indicates the predictive power; the 

root mean square error (RMSE) as reliability measure; and Tau as a further parameter to assess the predictivity 

of the model. As with r2, the closer the value of Tau is to one, the better the model. 

For further details on the statistical parameters please refer to Section 7.1.2. The statistics of the 

QSAR on the morphine-line structure are slightly worse compared to the one presented for the 

fentanyl-like ones (Sec. 7.1.1). This can be explained by the difficulties encountered while aligning 

these molecules, due to their very complicated fused ring scaffold which characterise them. A visual 

representation of the predicted vs. experimental values for training and test sets is reported in Figure 

7.4. 
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Figure 7.4 Visual representation of the predicted (x axis) vs. experimental (y axis) log 1/c values for the training 

(blue) and test (orange) sets. The graphs were built with Excel 2022. 

The 3D Field QSAR analysis returned a linear relationship between the descriptors and the activity 

along the visual interpretation of the QSAR model. Positive and negative electrostatic features and 

favourable and unfavourable hydrophobic features are reported in Figure 7.5.  
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Figure 7.5 3D and 2D visual representations of the generated 3D Field QSAR model for electrostatic features 

Notes: Electrostatic properties are identified by the red (positive) and blue (negative) colours. In particular, the 

red and blue shapes indicate the space around the molecule in which more positive electrostatic interaction (red) 

or more negative electrostatic interaction (blue) will be beneficial (i.e., increase) for the activity. More positive 

interactions (red) could mean that placing strong H-bond donors in that region improves the activity or could 

mean as well that putting strong H-bond acceptors will worsen the activity, and vice versa with blue. The green 

and violet areas instead indicate how the presence of a hydrophobic interaction in that region would increase 

(green) or decrease (violet) the activity.  

Due to the difference between the reference molecule used for the alignment and the dataset, the 

resulting 3D Field QSAR model seems more difficult to explain if compared to the one retrieved for 

the fentanyl-like class. Indeed, analysing the alignment of the molecule, no direct correlation with 

the SAR reported in Section 6.3.5 was found. Still the model identified the portion of both the 

favourable and unfavourable hydrophobic as neatly separated by the one characterised by positive 

and negative electrostatic. This is in line with the fact that the MOR has a predominantly 

hydrophobic surface oppositive to the Asp residue, the one responsible for the ionic interaction with 

the opioid’s family.  

The three QSAR models identified above were used to predict the biological activity of the 19 

morphine-like NSOs identified online (the majority of which were retrieved from isomerdesign.com 

(Isomer Design, 2021)). However, the same issues experienced during the alignment of the training 
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and test set molecules were faced for the alignment of the morphine-like NSOs structures. As a 

result only 16 pKi values were predicted. These are reported in Table 7.4, in decreasing order of the 

average pKi values.  

Table 7.4 Values of pKi predicted for the 19 morphine-like NSOs identified online*.  

Title 

pKi 

average 

Field QS 

AR Dist to model RF RVM Sim 

Nalmefene 9.9 9.9 Excellent 9.7 10.1 0.26 

3-Monoacetylmorphine (3-Mam) 8.9 8.9 Excellent 8.9 9 0.24 

Levallorphan 8.9 8.8 Good 9.1 8.7 0.34 

3-(0-Carboxymethyl)Morphine 8.5 8.6 Excellent 8.4 8.5 0.26 

Isocodeine 8.5 8.7 Excellent 8.4 8.4 0.23 

Acetyldihydrocodeine 8.4 8.3 Excellent 8.4 8.5 0.24 

Cyprenorphine 8.4 8.8 Good 7.7 8.7 0.24 

6-Methylenedihydrodesoxymorphine (6-

Mddm) 8.0 7.8 Excellent 8.4 7.9 0.30 

Pentazocine 8.0 7.9 Good 8.4 7.7 0.28 

6-Monoacetylmorphine (6-Mam) 7.5 7.4 Excellent 7.8 7.4 0.24 

3-Benzylmorphine 7.2 7.2 Good 7.3 7.2 0.21 

Buprenorphine 7.2 7.4 Excellent 6.8 7.4 0.27 

Acetorphine 7.2 7.3 Excellent 6.9 7.3 0.27 

Codeine-N-Oxide 7.0 7.5 Excellent 6.2 7.3 0.17 

3-Carboxymetlyl Morphine 6.9 7 Excellent 7.1 6.7 0.16 

14-Hydroxymorphine NA NA NA NA NA NA 

6-Nicotinoyldihydrocodeine 

(Nicodicodine) NA NA NA NA NA NA 

Nalbuphine NA NA NA NA NA NA 

Morphine 9.0 9.1 Excellent 9.4 8.8 0.26 

*Due to alignment issues these values were calculated only for 16 molecules. 

The predicted activity for morphine (9.0) is also presented. Among the morphine-like molecules 

predicted to have a high biological activity were some antagonists, i.e. nalmefene, and mixed 

agonist/antagonist, i.e. cyprenorphine. This is an example of the fact that QSAR cannot discern 

between the agonist and antagonist nature of the ligand. These molecules, which due to their 

antagonist nature cannot be considered of interest for recreational use were not considered further in 

this study. Other morphine-like molecules, as 6-methylenedihydrodesoxymorphine (Abdel-Rahman 

et al., 1966), isocodeine (Makleit and Hosztafi, 2006), acetyldihydrocodeine (Braun, 1914) and 

pentazocine (Fischer and Ganellin Robin, 2006) instead could be of interest for recreational or self-

medication purposes hence are further discussed in Section 7.3.2. 
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7.2.3 Domain of applicability with Forge™ 

Please refer to Section 7.1.3 where the distance to model approach for the domain of applicability is 

described. 

7.2.4 Molecular docking  

The total of NSOs identified by the NPSfinder® (Sec 3.3), were docked as described in Section 

4.3.8 in PDB5C1M (MOR). The docking was carried out using the pharmacophore placement in 

Figure 4.16. The S values for a set of well-known opioid ligands was calculated as a reference, 

including BU72 (co-crystallised ligand). The S values obtained (Table 7.5) were used as a reference 

for good binding affinity towards PDB5C1M.  

Table 7.5 Binding affinity values for the reference compounds. The latter are listed in alphabetical order.  

Molecule SMILES 

S 

(Kcal/

mol) 

rms

d 

Buprenorphine 
O(C)[C@]12[C@@H]([C@](O)(C(C)(C)C)C)C[C@@]3([C@@H]4[NH+](CC5CC5)CC[C@@]53
[C@H]1Oc1c(O)ccc(c51)C4)CC2 -9.6 1.3 

Carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC -9.4 1.7 

Codeine O(C)c1c2O[C@H]3[C@@H](O)C=C[C@H]4[C@@H]5[NH+](C)CC[C@]34c2c(cc1)C5 -7.1 1.2 

Fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC -8.4 1.5 

Hydromorphone O=C1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@H]([C@H]([NH+](C)CC3)C4)CC1 -7.7 1.4 

Fentanyl O=C(N(c1ccccc1)C1(C(=O)OC)C(C)C[NH+](CCc2ccccc2)CC1)CC -10.0 1.4 

Meperidine O=C(OCC)C1(c2ccccc2)CC[NH+](C)CC1 -6.5 1.3 

Morphine O[C@@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@H]([C@H]([NH+](C)CC3)C4)C=C1 -7.6 1.1 

Oxymorphone O=C1C2Oc3c(O)ccc4c3C32C(O)(C([NH+](C)CC3)C4)CC1 -8.1 2.0 

Propoxyphene O=C(O[C@]([C@@H](C[NH+](C)C)C)(Cc1ccccc1)c1ccccc1)CC -8.0 1.4 

For each molecule, several conformations with different S values (Kcal/mol) were returned. The 

ones showing the lowest S value (i.e., the lower the value, the more potent the binding) as well as 

the ionic interaction with Asp147 were identified. The rmsd value was taken into consideration as 

well, during the analysis of the docking pose choice. This value measures the root mean square 

deviation between the pose before refinement and the pose after refinement, giving and idea of how 

the refined pose is close to the one suggested by the docking superposition points (i.e. co-

crystallised ligands). In other words, is a measure of how much a molecule needs to be constrained 

to occupy a particular spatial conformation in the binding pocket, i.e., how energetically favoured a 

pose is. The obtained S values are reported in Appendix A. For brevity, only the S values obtained 

for those NSOs predicted by the QSAR models as the most biologically active are presented 

(Sec.5.2.2). A further docking study on the nitazene class is reported as well (Sec. 7.3.3).  

  



217 

 

7.2.5 Fentanyl-like NSOs molecular docking  

The binding affinity values for the ten fentanyl-likes NSOs predicted to show the highest biological 

activity are reported in Table 7.6. 

Table 7.6 Predicted values of binding affinity (S) for the fentanyl-like NSOs predicted to show the highest biological 

activity*.  

Molecule Pred pKi  S (kcal/mol) rsmd 

N-(2-Fluorophenyl)-N-[1-(2-phenylethyl)-4-(1,3-thiazol-2-yl)piperidin-4-

yl]propanamide 10.2 -9.2 2.0 

Methyl 4-[phenyl(propanoyl)amino]-1-[2-(1h-pyrrol-1-yl)ethyl]piperidine-4-

carboxylate 10.1 -8.3 2.0 

2-Methyl carfentanyl 10.0 -8.9 2.1 

Carfentanyl 10.0 -8.7 2.2 

N-methyl-carfentanil 10.0 -7.1 1.9 

Butyryl-carfentanyl 10.0 -9.2 1.8 

Acetyl-carfentanyl 9.9 -8.6 1.6 

N-{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1h-tetrazol-1-yl)ethyl]-4-(1,3-thiazol-2-

yl)piperidin-4-yl}-n-(2-fluorophenyl)propanamide 9.9 -8.2 1.2 

4-Methoxymethylfentanyl 9.9 -8.8 2.3 

N-(2-fluorophenyl)-n-{1-[2-(1h-pyrazol-1-yl)ethyl]-4-(pyridin-2-

yl)piperidin-4-yl}propanamide 9.9 -8.9 1.8 

* Rsmd is a measure of the variance of the pose. 

As discussed in Section 5.4, QSAR and docking studies are not necessarily linearly correlated 

(Chen, 2015). However docking can be used to support and integrates QSAR results analysis, 

adding information on the affinity and modality of binding towards the receptor for which the 

biological activity has been predicted.  

When compared with the docking S values obtained for both morphine (S= -7.6) and fentanyl (S = -

8.4), the majority of these NSOs display a lower, i.e. more negative, S value (i.e. better affinity). 

These results suggested satisfactory binding affinity levels for the human MOR. It should be noted 

that, as per the literature, the majority of these compounds display the fentanyl structure substituted 

in position C4, identified already as a chemical characteristic responsible of increasing the 

biological activity (Sec. 6.3.5). Only one NSO, N-methyl-carfentanyl, showed a higher value 

suggesting a lower binding affinity. The low value of binding affinity of N-methyl-carfentanyl is 

not in line with the predicted activity but it is in line with the low reported potency in the literature 

(Cometta-Morini et al., 1992). Moreover, from the data reported in Table 7.6, it can be noted that 

the rsmd values are slightly high. It is important here to reiterate how different ligands determine 

different movements and rearrangement of the binding pocket. Hence, these rsmd values could be 

explained with MOE® trying to fit the fentanyl-like ligands in a space determined by a ligand, 
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BU72 with a more compact chemical structure. A more in-depth evaluation of each of the ten top 

scoring NSOs is reported in section 7.3 (Stamenić et al. 2016).  

Despite the docking results suggesting a high binding affinity for almost all the top ten NSOs, they 

cannot give any specific information on the actual agonist/antagonist role of the latter, even though 

the docking was performed using the active conformation of an agonist opioid, i.e. BU72.  

The poses of the top ten NSOs docked in PDB5C1M are reported in Figure 5.9. 

 

Figure 7.6 The poses of the top ten fentanyl-like NSOs docked in PDB5C1M.  

The different TM helices are identified with different colours, light blue for TM3, dark blue for TM5 (which however 

is not involved in the binding), green for TM6, light pink for TM7; pink for TM2 and dark green for the N-terminal 

portion. The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of the ORs. The 

dotted lines show the interactions between the ligands and the pocket residues, and in particular, the light blue 

colour identifies both hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic 

interactions). The cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger 

the cylinder the stronger the interaction.   

For each of the poses generated for the 238 NSOs, a PLIF was calculated and analysed. The 

analysis of the PLIFs is presented below. 
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Figure 7.7 Visual representation of the interactions (potential contacts) between the 238 NSOs and the residues of 

the binding pocket of PDB5C1M. 

 This figure represents the interactions between the molecules and the receptor pocket with the use of barcodes. The 

number of bars is proportional to the frequency of the interactions with that ligand, suggesting how much a ligand is 

involved in the binding mode of a particular set of molecules. 

The barcode display represents the entries (NSOs) and the selected fingerprints of interactions as a 

matrix in which a set bit is drawn as a black rectangle. On the X-axis are displayed the numbers and 

code for those residues which are involved in the interaction with the ligands. The number of black 

rectangles displayed for each residue are a measure of the frequency of the interactions with that 

ligand, i.e the higher the number the higher the frequency.  

The results presented in Figure 7.7 and Figure 7.9 confirm the importance of the Asp147 residue for 

the binding of NSOs as observed for the classical opioids (Kaserer et al., 2016; Piotr F. J. Lipiński 

et al., 2019; Piotr F.J. Lipiński et al., 2019). 

Other residues which seem to be more often included in the ligand interactions are His 54, Val300 

and Met151 (Kaserer et al., 2016; Piotr F. J. Lipiński et al., 2019; Piotr F.J. Lipiński et al., 2019; 

Masiulis et al., 2019; Sigel and Ernst, 2018). His297, the importance of which has been reported 

and studied for the recognition of fentanyl by the MOR (Vo et al., 2021), also appears to be 

involved in the interaction patter. However from Figure 7.7, it appears that its frequency of 

interaction is low. This could be explained by the fact that the side chain of His297 in this 

crystallised structure is not in the correct position to engage with the fentanyls-like structures, due 

to the conformational changes of the pockets generated by BU72. Unfortunately, this did not allow 

for a more in depth evaluation of the role of His297 in the binding of fentanyl-like NSOs.  

Docking results can be very interesting in assessing the way a ligand interacts with the residues of 

the binding pocket (Figure 7.6). From the 3D ligand interactions, we can identify which residues are 

recurrently involved in the binding. It should be noted how the most important interaction happen 
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with the Asp147 of the TM3 subunit of the MOR binding pocket. The others transmembrane helices 

involved are TM6 with His297 and Val300, the N-terminal portion with His54 and occasionally 

TM7. The receptor residues involved in the binding tend to be recurrent across the different 

fentanyl-like NSOs, with the latter positioning almost vertically inside the binding pocket. While 

the phenethyl moiety seems to be always oriented towards the bottom of the binding pockets 

guiding the piperidine ring in proximity of the Asp147, the carboxamide and anilino-phenyl ones 

changes their orientation according to their side chain(s). The substitution in position C4 seems to 

play an important role. Often the anilino phenyl group is oriented towards the Val300, i.e. towards 

the hydrophobic pocket between TM6 and TM7, occupying a position almost perpendicular to the 

rest of the scaffold. The carboxamide group instead seems to be often oriented toward the 

extracellular side of the pocket. Despite observed variations (mainly due to the high flexibility of 

the fentanyl-like structure which complicates the docking process), the main positioning of the 

fentanyl-like NSOs found via the docking studies is in line with what is reported in the literature 

(Dosen-Micovic et al., 2006; Subramanian et al., 2000; Vo et al., 2021), a fact that support the 

validity of the results obtained.  

 

7.2.6  Morphine-like NSOs molecular docking  

The binding affinity values for those morphine-likes NSOs predicted to show the highest biological 

activity are reported in This is because the probability of them being used as recreational drugs is 

very low.  
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Table 7.7. In this case, only those molecules showing a predicted pKi <8.0 are presented. Indeed, as 

explained for the fentanyl-like NSOs, only values of pKi >8.00 are considered as a medium/high 

biological activity. Moreover, those molecules included in the QSAR studies, which however were 

reported as full antagonist in literature, were not considered further even if displaying a high 

predicted biological activity. This is because the probability of them being used as recreational 

drugs is very low.  
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Table 7.7 Predicted values of binding affinity (S) for the morphine-like NSOs predicted to show the highest 

biological activity.  

Molecule Pred pKi  Dist to model S (kcal/mol) rsmd 

3-Monoacetylmorphine  8.9 Excellent -6.7 0.6 

3-(0-Carboxymethyl)Morphine 8.5 Excellent -6.7 0.6 

Isocodeine 8.5 Excellent -6.7 1.5 

Acetyldihydrocodeine 8.4 Excellent -7.6 1.5 

Cyprenorphine 8.4 Good -6.9 1.7 

6-Methylenedihydrodesoxymorphine  8.0 Excellent -6.6 1.2 

Pentazocine 8.0 Good 7.5 1.9 

 

Results presented in This is because the probability of them being used as recreational drugs is very 

low.  
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Table 7.7, suggest how the morphine-like NSOs display, a lower binding affinity (if compared to 

fentanyl-like NSOs) towards the MOR, together with a lower predicted biological activity. This is 

in line with what reported in the literature and in particular on the difference in potency between 

morphinans and fentanyls (UNODC, 2019e). Indeed, the prediction of the binding affinity for 3-

monoacetylmorphine, matches what previously reported in the literature and the SAR morphine-like 

molecules (Sec 6.3.5), with the acetylation of the hydroxyl group resulting in a relatively weak 

affinity towards MOR (Houdi et al., 1996). The same applies to 3-(0-Carboxymethyl)Morphine 

(Köteles et al., 2021). Moreover, if compared to the reference molecules (Table 7.5), the values 

obtained for the binding affinity are lower than morphine (i.e. 7.6). The rsmd values are good (i.e. < 

1.9), probably due to the similarity of these molecules to the chemical scaffold of BU72. As 

reported above, no information on agonist/antagonist activity can be inferred by the docking 

studies.  

The poses of the morphine-like NSOs docked in PDB5C1M are reported in Figure 7.8 

 

 

Figure 7.8 The poses of the top morphine-like docked in PDB5C1M.  

The different TM helices are identified with different colours, light blue for TM3, dark blue for TM5 (which however 

is not involved in the binding), green for TM6, light pink for TM7; pink for TM2 and dark green for the N-terminal 

portion. The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of the ORs. The 

https://en.wikipedia.org/wiki/Mu-opioid_receptor
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dotted lines show the interactions between the ligands and the pocket residues, and in particular, the light blue 

colour identifies both hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic 

interactions). The cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger 

the cylinder the stronger the interaction.   

For each of the poses generated for the 19 NSOs, a PLIF was calculated and analysed. The analysis 

of the PLIFs is presented below. 

 

Figure 7.9 Visual representation of the interactions (potential contacts) between the 238NSOs and the residues of 

the binding pocket of PDB5C1M.  

This figure represents the interactions between the molecules and the receptor pocket with the use of barcodes. The 

number of bars is proportional to the frequency of the interactions with that ligand, suggesting how much a ligand is 

involved in the binding mode of a particular set of molecules. 

The results presented in Figure 7.9 show a smaller number of residues involved in the binding of the 

morphine-like NSOs compared to the fentanyls (Figure 7.7). However as expected they engaged 

with all the residues considered important for the MOR activation. The difference in interactions 

pattern can be explained by the high flexibility of the fentanyl-like compared to the morphine-like 

structure which allows the former to connect to a greater number of residues side chains. For a 

discussion on the importance of these residues see Section 7.3.1.  

Due to the low values of predicted pKi alongside low values of binding affinity for the mu receptor 

it could be inferred that the morphine-like NSOs identified online do not represent molecule of 

strong interest for recreational use. Despite this, 6-methylenedihydrodesoxymorphine (Abdel-

Rahman et al., 1966), isocodeine (Makleit and Hosztafi, 2006), acetyldihydrocodeine (Braun, 1914) 

and pentazocine (Fischer and Ganellin Robin, 2006) will be further discussed in Section 7.4.  

The same considerations on interaction patterns reported for the fentanyl-like NSOs ( Sec. 7.2.5) 

seems to apply also to the morphine-like NSOs with the compact phenanthrene structure positioned 

over the phenethylpiperidines at the centre of the binding pocket (Figure 7.10).  
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Figure 7.10 positioning of the phenethylpiperidines scaffold (purple) and phenantrenes scaffold (yellow) inside of 

the MOR binding pocket.  

The molecular surface of the binding pocket is represented by the grey mesh 

7.2.7 Nitazene-like NSOs molecular docking  

While no QSAR study was conducted on the seven nitazenes identified by the web crawler (Table 

3.5), a docking analysis was carried out to assess their possible methodology of binding to the MOR 

and predict their binding affinity values. Due to the fact that the nitazene class is a recent new entry 

on the NSO scene, the same reference compounds used to assess the S value obtained via the 

docking were the same used for the fentanyl-like and morphine-like NSOs. The only biological 

activity data available on nitazenes are those reported by Vandeputte et al., obtained via an in vitro 

study. In particular, the biological activity was assessed via two cell-based β-arrestin2/ mini-Gi 

recruitment assays monitoring μ-opioid receptor (MOR) .  

The values of predicted binding affinity for nitazenes are reported in Table 7.8.  
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Table 7.8 Predicted values of binding affinity (S) for the nitazene-like NSOs predicted to show the highest biological 

activity.  

Mol S (kcal/mol) rmsd 

Butonitazene -9.4 1.76 

Clonitazene  -8.4  1.32 

Etonitazene -8.8 1.67 

Flunitazene -7.9 1.15 

Isotonitazene -9.8 1.20 

Metodesnitazene -7.8 1.13 

Etazene -8.2 1.25 

 

Results presented in Table 7.8, suggest how their binding affinity values is more in line with those 

reported for the fentanyl-like NSOs, and higher than the morphine-like ones. In particular 

butonitazene and isotonitazene display binding affinity higher than that calculated for carfentanyl 

(i.e s= -9.4). This binding affinity values seems to be in line with the potency reported by 

Vandeputte et al, however, no direct or easy correlation which could help interpreting the data can 

be extrapolated. Moreover, once docked in MOR those nitazenes displaying the NO2 group in their 

scaffold, i.e. all those in Table 7.8 but metodesnitazene and etazene seems to prefer two position 

inside the pocket, one with the nitro group facing towards the Val 300 (which will be referred to as 

the downward pose) and the other with the nitro group flipped in the other direction (upward pose). 

These two different orientations are presented in Figure 7.11. 
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Figure 7.11 Downward (A) and upward (B) orientation of flunitazene (in purple).  

The nitro group which is depicted in red in the molecule scaffold is highlighted by the red circle. While the position 

of the positively charged tertiary amine does not change the rest of the molecules seems to be flipped around.  

Despite this dual orientation issue it seems like all nitazenes align to the co-crystallised ligand 

BU72, at the centre of the binding pocket Figure 7.12, with a more horizontal orientation similar to 

the morphine-like NSOs Figure 7.8, and different to the more vertical one of the fentanyl-like NSOs 

Figure 7.6.   
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Figure 7.12 The poses of the top morphine-like docked in PDB5C1M.  

The different TM helices are identified with different colours, light blue for TM3, dark blue for TM5 (which however 

is not involved in the binding), green for TM6, light pink for TM7; pink for TM2 and dark green for the N-terminal 

portion. The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of the ORs. The 

dotted lines show the interactions between the ligands and the pocket residues, and in particular, the light blue 

colour identifies both hydrogen-bond and ionic bond. 

Further studies involving molecular dynamics (Chapter 10, future work) will be needed to address 

this dual orientation issue and understand the optimal interaction patter. Without a better 

understanding of the latter no further discussion can be carried out.  
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7.3 Profiling of the NSOs with the highest predicted biological activity   

Of the top ten fentanyl-likes NSOs (During the analysis of the predicted pKi values, it was noted 

that the RF models tend to over-predict values for some of the NSOs listed, hence only the Field 

QSAR and the RVM values were averaged to obtain a final prediction. For brevity, only the top ten 

NSOs listed according to their decrescent predicted biological activity value (Field QSAR) are 

reported below (Error! Not a valid bookmark self-reference.). The full table is in Appendix A.  

Table 7.2) no information was retrieved on N-(2-Fluorophenyl)-N-[1-(2-phenylethyl)-4-(1,3-

thiazol-2-yl)piperidin-4-yl]propanamide (pKi= 10.2), Methyl 4-[phenyl(propanoyl)amino]-1-[2-

(1h-pyrrol-1-yl)ethyl]piperidine-4-carboxylate (pKi= 10.1), 2-Methyl carfentanyl (pKi= 10.0), N-

{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1h-tetrazol-1-yl)ethyl]-4-(1,3-thiazol-2-yl)piperidin-4-yl}-n-(2-

fluorophenyl)propanamide (pKi= 9.9) and N-(2-fluorophenyl)-n-{1-[2-(1h-pyrazol-1-yl)ethyl]-4-

(pyridin-2-yl)piperidin-4-yl}propanamide (pKi= 9.9). The other NSOs are discussed below in 

decreasing order of biological activity. 

 

7.3.1 Carfentanyl 

Carfentanyl is one of the most known and potent NSO so far identified on the market. Its predicted 

biological activity, i.e. pKi= 10.0, and a binding affinity (S= -8.7) are in line with what reported in 

literature for this substance (EMCDDA, 2017d). Carfentanyl, which was scheduled under the 1961 

Convention on Narcotics in 2018 (The Commission on Narcotic Drugs, 2018; WHO, 2017), was 

first synthesised in 1974 by Janssen Pharmaceutica and introduced into veterinary anesthesia 

practice for very large animals. Due to its extreme potency, i.e. 10,000 times greater than morphine 

and 100 times greater than fentanyl, carfentanyl has never been approved for human use; however, 

since 2016 it has emerged on the recreational drug market. Its use has been commonly reported for 

injection, insufflation, or inhalation, and has been associated with fatalities worldwide alone or in 

combination with other drugs (Elliott and Hernandez Lopez, 2018; Fomin et al., 2018; Jalal and 

Burke, 2021; Swanson et al., 2017). In particular hundreds of deaths resulted from the use of 

carfentanyl adulterated heroin in North America (Sanburn, 2016).   

The recreational effects of carfentanyl in humans are similar to those of other opioids and include 

euphoria, relaxation, and pain relief. The side effects are similar as well but stronger proportionally 

to the potency and include  drowsiness, sedation, slowed heart rate, low blood pressure, lowered 

body temperature, loss of consciousness, and suppression of breathing (Casale et al., 2017; 

EMCDDA, 2017d).  
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It is very interesting to note that, in fact, the NSO which has been reported as the most powerful 

opioid so far on the market, has been identified as such by the results of both QSAR and docking 

studies, supporting the reliability of the latter.  

In Figure 7.11 are presented, in detail, the predicted interactions between carfentanyl and the MOR 

binding site. Interactions with Asp14, Met151 and His54 can be identified, together with the lack of 

interaction with His297.  
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Figure 7.13 The 3D pose carfentanyl docked in PDB5C1M and 2D representations.  

Notes: on the 3D representation on the left, the binding pocket with the docked ligand carfentanyl (yellow). The 

different TM helices are identified with different colours, light blue for TM3, green for TM6, light pink for TM7. 

The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of ORs. The dotted lines show 

the interactions between the ligands and the pocket residues, and in particular, the light blue colour identifies both 

hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic interactions). The 

cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger the cylinder the 

stronger the interaction. On the right , the 2D representation of the binding pocket and a report of the interactions 

between receptor residues and ligand are provided. The colours used to depict the residues in the 2D screenshot 

define different characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red 

circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the 

receptor and the ligand. 
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7.3.2 N-methyl-carfentanyl 

N-methyl-carfentanyl, is predicted to have a biological activity, i.e. pKi= 10.0, similar to that of 

carfentanyl. The docking results (S= -7.1) however seems to be discordant, presenting this molecule 

as a weak binder to MOR. The molecule, also known as N-methyl norcarfentanyl, is indeed weaker 

if compared to carfentanyl, and only slightly stronger than morphine (Cometta-Morini et al., 1992). 

It was first synthesised during SAR studies supervised by Paul Janssen at Janssen Pharmaceutica, 

which highlighted the importance of the phenethyl group. The removal of the latter indeed almost 

nulled the opioids activity in fentanyl, while it retained reasonable opioid receptor activity in 

carfentanyl (Cometta-Morini et al., 1992). This molecule is very seldom discussed online, with 

opioids users’ suggesting it as the perfect next NSOs, especially for its low potency. Despite no 

pharmacological profile has been reported for this NSO, it could be assumed that its side effects 

would be similar to those of fentanyl and morphine including itching, nausea and possibly serious 

and life-threatening respiratory depression (Prekupec et al., 2017). In Figure7.12 are presented, in 

detail, the predicted interactions between N-methyl-carfentanyl and the MOR binding site. As per 

the QSAR results this NSO is supposed to have a biological activity compared with carfentanyl, 

data which are not in line with what experimentally reported (Cometta-Morini et al., 1992). From 

Figure7.12 it could be noted that the molecules is still able to establish interactions with Asp147 

and Val300 similarly to morphine, but due to its position in the pocket the 4-carbomethoxy group is 

not able to engage in interactions.  
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Figure 7.14 The 3D pose of N-methyl-carfentanyl docked in PDB5C1M and 2D representations.  

Notes: On the left, the binding pocket 3D representation with the docked ligand N-methyl-carfentanyl (green). The 

different TM helices are identified with different colours, light blue for TM3, green for TM6, light pink for TM7. 

The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of ORs. The dotted lines show 

the interactions between the ligands and the pocket residues, and in particular, the light blue colour identifies both 

hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic interactions). The 

cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger the cylinder the 

stronger the interaction. On the right, the 2D representation of the binding pocket and a report of the interactions 

between receptors residues and ligand are provided. The colours used to depict the residues in the 2D screenshot 

define different characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red 

circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the 

receptor and the ligand.    

  



234 

 

7.3.3 Butyryl-carfentanyl 

Butyryl-carfentanyl, is predicted to have a biological activity, i.e. pKi= 10.0, similar to that of 

carfentanyl, alongside a stronger binding affinity (S= -9.2) towards MOR. 

No information was retrieved on butyryl-carfentanyl in literature. It can be considered an analogue 

of butyrylfentanyl which is a very potent and short-acting NSO, scheduled in 2017 by WHO for its 

abuse potential and side effects profile (WHO, 2018). The addition of a butyryl group to fentanyl 

seems to decrease the potency to a quarter of the starting one. However it could not be assumed that 

this would be the case also for the carfentanyl series, and indeed the predicted activity suggest 

otherwise. Moreover, the predicted biological activity of butyryl-carfentanyl is higher than that of 

butyrylfentanyl, (pKi= 9.4, Appendix A). If one considered that the use/abuse of the latter has been 

associate with fatalities worldwide, the higher activity predicted should be regarded as highly 

worrisome (Bowen et al., 2019; Poklis et al., 2016; UNODC, 2020a). In Figure 7.13 are presented, 

in detail, the predicted interactions between N-methyl-carfentanyl and the MOR binding site. As per 

the QSAR results this NSO is supposed to have a biological activity comparable with carfentanyl. 

From Figure 7.13 it could be noted that the molecule is still able to establish interactions with 

Asp147 and Val300 similarly to morphine, as well as interactions between the 4-carbomethoxy 

group and His297.  

  



235 

 

 

Figure 7.15 The 3D pose of butyryl-carfentanyl docked in PDB5C1M and 2D representations.  

Notes: on the left, the binding pocket 3D representation with the docked ligand butyryl-carfentanyl (gold). The 

different TM helices are identified with different colours, light blue for TM3, green for TM6, light pink for TM7. 

The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of ORs. The dotted lines show 

the interactions between the ligands and the pocket residues, and in particular, the light blue colour identifies both 

hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic interactions). The 

cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger the cylinder the 

stronger the interaction. On the right, the 2D representation of the binding pocket and a report of the interactions 

between receptors residues and ligand are provided. The colours used to depict the residues in the 2D screenshot 

define different characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red 

circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the 

receptor and the ligand.   
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7.3.4 Acetyl-carfentanyl 

Acetyl-carfentanyl, is predicted to have a biological activity, i.e. pKi= 9.9, similar to that of 

carfentanyl, alongside a comparable binding affinity (S= -8.9) towards MOR. No information was 

retrieved on this molecule, apart from it being characterised as an impurity in two exhibits. 

According to the authors, acetyl-carfentanyl ‘presumably arises from the clandestine synthesis of 

carfentanyl, similar to that of acetylfentanyl in illicit fentanyl exhibits’ (Casale et al., 2017). The 

latter has been estimated to be more potent than heroin, suggesting the same for the carfentanyl 

analogue, in line with what is predicted here by QSAR and docking studies. As per butyryl-fentanyl 

several fatalities are connected to the use/abuse of acetyl-fentanyl (Drummer and Odell, 2001), 

raising concern on the possible availability of acetyl-carfentanyl on the NPS market. In Figure 7.16 

are presented, in detail, the predicted interactions between acetyl-carfentanyl and the MOR binding 

site.  

 

Figure 7.16 The 3D pose of acetyl-carfentanyl docked in PDB5C1M and 2D representations.  

Notes: on the left, the binding pocket 3D representation with the docked ligand acetyl-carfentanyl (gold). The 

different TM helices are identified with different colours, light blue for TM3, green for TM6, light pink for TM7. 

The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of ORs. The dotted lines show 

the interactions between the ligands and the pocket residues, and in particular, the light blue colour identifies both 

hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic interactions). The 

cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger the cylinder the 

stronger the interaction. On the right , the 2D representation of the binding pocket and a report of the interactions 

between receptors residues and ligand are provided. The colours used to depict the residues in the 2D screenshot 

define different characteristics of the latter: light purple for polar residues and light green for hydrophobic ones; red 

circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent exposure both on the 

receptor and the ligand.   
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7.3.5 4-Methoxymethylfentanyl 

4-methoxymethylfentanyl, is predicted to have a biological activity, i.e. pKi= 9.9, similar to that of 

carfentanyl, alongside a comparable binding affinity (S= -8.8) towards MOR. This NSO, also 

known as R-30490, was firstly synthetised by Janssen Pharmaceutica as seen for N-methyl-

carfentanyl (Vardanyan and Hruby, 2014) and was found to display a potency slightly lower than 

that of carfentanyl. 4-methoxymethylfentanyl, which was found to be the agonist most selective 

towards MOR It was never approved for medical use in humans, despite being very similar to 

sufentanil. Side-effects for this NSO are supposedly in line with those of fentanyl and other NSO 

opioids. Despite no information being available on its pharmacology, this substance was found to 

be discussed in drug fora which date back to 2018 (reddit, 2018d). There are discordant opinions on 

the fact that it was actually sold/ available on the market, but the users who report its consumption 

describe 4-methoxymethylfentanyl as being better than carfentanyl, with a relative lower potency, 

less breathing depression, more euphoria, and slightly longer effects. In Figure 7.17 are presented, 

in detail, the predicted interactions between acetyl-carfentanyl and the MOR binding site.  

  

https://en.wikipedia.org/wiki/Janssen_Pharmaceutica
https://en.wikipedia.org/wiki/Carfentanil
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Figure 7.17 The 3D pose of 4-Methoxymethylfentanyl docked in PDB5C1M and 2D representations.  

Notes: on the 3D representation of the left, the binding pocket with the docked ligand 4-Methoxymethylfentanyl 

(gold). The different TM helices are identified with different colours, light blue for TM3, green for TM6, light pink 

for TM7. The red colour visible in the TM6 identifies part the hydrophobic pocket characteristic of ORs. The dotted 

lines show the interactions between the ligands and the pocket residues, and in particular, the light blue colour 

identifies both hydrogen-bond and ionic interactions, while the dark green identifies the H-pi bonds (aromatic 

interactions). The cylinder visible on some of the dotted line is a measure of the strength of the bonds, i.e. the bigger 

the cylinder the stronger the interaction. On the right, the 2D representation of the binding pocket and a report of 

the interactions between receptor residues and ligand are provided. The colours used to depict the residues in the 2D 

screenshot define different characteristics of the latter: light purple for polar residues and light green for 

hydrophobic ones; red circle indicates an acidic and blue a basic residue; and the light blue halo indicates solvent 

exposure both on the receptor and the ligand.   
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7.4 Novelty and importance of the in silico methodology applications on NSOs 

As reported in the latest UNODC reports (UNODC, 2022b, 2021b), NSOs are potentially the most 

dangerous class of NPS, being responsible for 100,000 deaths in North America in 2021 alone 

(Dyer, 2021). Moreover, the EMCDDA reported that, of the 5,800 fatalities involving one or more 

illicit drugs registered in 2020 in the European Union, opioids were involved in more than three-

quarters, with fentanyl and its analogues contribution underestimated in some countries (EMCDDA, 

2022c).  

In particular, NSOs seems to be responsible, to date, for the third wave of the opioid epidemic, i.e.,  

a significant increase in overdose deaths involving, in particular, illicitly manufactured fentanyl and 

analogues (Gladden et al., 2019; Mattson et al., 2021). As reported above, the scenario is deeply 

complicated by the constant increase in the NSOs identified, i.e., available on the market, in the last 

couple of years. Indeed, in contrast to the stabilisation trend reported for other NPS, the class of 

NSOs has been growing since 2016 (Error! Reference source not found.) reaching a total of 131 o

fficially reported molecules in 2022, i.e., roughly 11% of the total NPS identified.  

NSOs in general, but more so the fentanyl-like class, are characterised by very strong potencies, 

which can be equated to 10000 that of morphine (Beardsley and Zhang, 2018; Ellis et al., 2018; 

EMCDDA, 2017d; Piotr F. J. Lipiński et al., 2019), which flag them as serious threats for public 

health both for recreational users and frontline staff (i.e. law enforcement, border police, health care 

personnel, etc) (U.S. Customs and Border Protection U.S. Customs and Border Protection, 2022; 

US Fire Administration, 2021; USA House of Representatives, 2021).  

 

While NSOs are extremely dangerous on their own, the risk associated with their use/abuse increase 

exponentially and became more complicated within the increasingly reported polydrug consumption 

scenarios (EMCDDA, 2022c; UNODC, 2022b). The latter see NSOs used very often in 

combination with other central nervous system depressants (e.g., BDZs and DBDZs) or stimulants 

(i.e. methamphetamine) (Elliott et al., 2019; Fogger, 2019; Frisoni et al., 2018; Jones et al., 2020; 

Mattson et al., 2021). As discussed for DBDZs, the concomitant use of more than one substance, 

especially strong depressants, usually leads to a synergistic enhancement of the adverse effects of 

both substances, potentially leading to extremely severe side effects including respiratory 

depression and death (Abdulrahim and Bowden-Jones, 2018; Arillotta et al., 2020; Orsolini et al., 

2020).  

 

The threat associated with NSOs is actual and is even more worrisome if one considers the paucity 

of safety/toxicity data available for the majority of NPS, with particular regard to the new ones 
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identified on the market, i.e. nitazenes and cinnamylpiperazines. Consequently, it is extremely 

important to assess as much as possible the extent of the NSOs phenomenon, and more so with 

regard to their pharmacology.  

In this regard, both in vitro studies have been carried out to possibly assess the relative potency of 

NSOs to morphine, towards MOR (Fogarty et al., 2022; Krotulski et al., 2021; Vandeputte et al., 

2021; Vasudevan et al., 2020), along with a few in silico approaches (Ellis et al., 2018; Floresta et 

al., 2019; Noha et al., 2017). 

The novel approach of in silico methodologies has proven very helpful in doing so. The 3D-QSAR 

models identified here seem to be very reliable in their predictive power. They identified NSO 

analogues of fentanyl and carfentanyl as the most potent, i.e., N-methyl-carfentanyl, butyryl-

carfentanyl, acetyl-carfentanyl, and 4-Methoxymethylfentanyl, for the majority of which no 

information was retrieved in the scientific literature. The only prediction confirmed by available 

experimental data was that for 4-methoxymethylfentanyl. The lack of information on these NSOs 

highlights the importance and the need for in silico approaches to be used as preventive and 

informative tools. 

As discussed for the DBZD class, these models could be used to assess, in a rapid and cost-effective 

way, the biological activity profile of a new NSO, as soon as the latter is identified on the illegal 

market. Moreover, they could be of use to better discriminate between the various NSOs, for which 

large differences in structures/chemical scaffolds, could results in great biological activity disparity. 

In silico approaches could and should be used as support methodologies for the drafting of 

preliminary risk assessments and the proposal of temporary bans / schedules. It has been witnessed, 

especially for NSOs how the scheduling of a substance resulted in an immediate change in the 

availability of the latter. Therefore, the ability to quickly assess the activity profile of a new NSO, 

proceeding to a temporary ban of the latter, could potentially results in an important decrease in 

related intoxication cases and fatalities. In silico methodologies could be used as a starting point for 

pre-emptive legal measures and further investigations (e.g., de novo chemical synthesis; in vitro 

studies; preclinical studies). 

 The results obtained with the scaffold hopping exercise carried out for DBZDs suggest how the 

same should be done for the other NPS classes to assess the existence of a possibly wider chemical 

landscape for these molecules and to draft computational libraries that regulatory bodies could use 

as support tools for risk assessment and scheduling procedures.   

 

The following Chapter will present the study carried out to assess the possible activity of DBZDs 

on ORs.  
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7.5 Limitations  

The major limitation is represented by the chemical structure variety of the class of NSOs, which 

led to the design of two different QSAR models, one for fentanyls and the other for morphine-like 

molecules. Due to the lack of a reliable number of experimental values for nitazenes (i.e. only 14 

(Vandeputte et al., 2021)), a QSAR model for predicting their biological activity could not be 

created. Other limitations include the uncertainty measure of the experimental value of pKi 

identified across datasets (training and test) used for the computational studies, as well as the fact 

that the pKi values do not come from the same experimental assay. Despite the diverse assays were 

chosen as and deemed comparable this inevitably add measure uncertainty. The measure 

uncertainty is, however, common in QSAR and is not considered to affect strongly the reliability of 

the final model (Fourches et al., 2010; Golbraikh et al., 2014). The highly structural flexibility of 

the class of fentanyl-likes alongside the very complex ring system of the morphine-like NSOs 

represented a challenge for the alignment process conducted with Forge™, especially if one 

considered that no similar co-crystallised 3D structure was available as reference molecule. This 

resulted in issues with the alignment of some morphine-like NOSs identified by the NPS finder 

whose values of pKi were not predicted. Please refer to the Chapter 10, i.e. Future work, for this 

issue.  

Other limitations include the use of one crystallised structure of the MOR, whose co-crystallised 

ligand has a different structure of the molecules in the analysis. This could affect the geometry of 

the binding pocket, influencing the interactions pattern of the NOSs analysed. However, the PLIFs 

obtained for both classes suggest that this influence, if happening, does not have a substantial effect. 

The use of force field methodology only for the energy minimisation of the molecules analysed, 

which could give slightly less accurate conformations if compared to semi empirical calculations, 

could be included among the limitations on this study.  
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Chapter 8 Designer ben odia e ines’ activity on opioid receptors studies 

 

The work discussed in this chapter was published in Current pharmaceutical design as Catalani et al. 

(2022) Designer benzodiazepines’ activity on opioid receptors: a docking study, and it was presented (oral 

presentation) at the VIII International NPS Conference held online in November 2021 (International Society 

for the Study of Emerging Drugs (ISSED), n.d.).  

8.1 Benzodiazepines activity on opioids receptor literature background   

As discussed above BZDs (Sec 4.1) are one of the most prescribed classes of drugs across the world 

(EMCDDA, 2020c, 2018b) Historically prescribed as anxiolytics, sedatives, hypnotics, 

anticonvulsants, and muscle relaxants (EMCDDA, 2020c) they also have been prescribed to 

heroin/opioid users to minimise withdrawal symptoms (EMCDDA, 2020c). However, recently, this 

particular therapeutic indication has become controversial due to the reported increase of co-abuse 

disorders and addiction potential between the two classes of substances (De Wet et al., 2004; 

EMCDDA, 2021c; Liu et al., 2021; National Institute on Drug Abuse (NIDA), 2021; UNODC, 

2021e).  

Previous studies have reported that BZDs seem to enhance euphoric, analgesic, and reinforcing 

properties of opioids in opioid users (Goodchild and Serrao, 1987; Navaratnam and Foong, 2008; 

Poisnel et al., 2009; Rattan et al., 1991). As a result, whilst BDZs’ main mechanism of action is the 

allosteric modulation of the GABA-AR (Sec. 4.2.3), a direct effect on KOR, MOR, DOR has been 

postulated (Goodchild and Serrao, 1987; Rattan et al., 1991). Indeed, literature reports how both 

midazolam and diazepam have a direct effect on the spinal antinociceptive opioid receptors (KOR 

and DOR) (Cox and Collins 2001) with reinforcing properties. A reinforcing effect on ORs has 

been reported as well for the anxiolytic properties of the BZDs It has been observed that the 

systemic administration of non-selective opioid antagonists (i.e., naloxone, picrotoxin, and β-

funaltrexamine), in both animal and human models, can interfere with the anxiety-reducing effects 

of BZDs (Billingsley and Kubena, 1978; Tsuda et al., 1996), hence their anxiolytic effects may 

indeed be mediated through the modulation of the endogenous opioid system (Primeaux et al., 

2006). However, the exact mechanism of interaction, including the possible subtypes of opioid 

receptors involved, is still unclear (Primeaux et al., 2006). A role for amygdalar opioid receptor 

sites (MOR and DOR) in the anxiolytic effects of benzodiazepines has been postulated (Primeaux et 

al., 2006). 

In addition to this, it was observed how naltrexone, a preferential antagonist of MOR, reduced the 

effects of diazepam on response latency in rats, suggesting that some of diazepam’s effects could be 

caused by a mechanism sensitive to naltrexone (Herling, 1983; Richardson et al., 2005).  
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Moreover, in the quest for safe and effective antinociceptive agents, derivatives of 1,4-

benzodiazepine (e.g., tifluadom) have been identified as possessing a selective affinity for KOR 

(Anzini et al., 2003; Cappelli et al., 1996). 

The interactions postulated between BZDs and ORs could and should be considered also for the 

DBZDs, considering that for some of them an increased potency and a quick on set have been 

reported. Indeed such interactions could worsen the already complicated pharmacological profile in 

co-abuse scenarios in recreational drug settings, resulting in additive effects with increased risks of 

sedation, synergistic induction of respiratory depression, coma, and death (Afzal and Kiyatkin, 

2019; Boon et al., 2020; Liu et al., 2021; Medicines and Healthcare products Regulatory Agency, 

2020; National Institute on Drug Abuse (NIDA), 2021).  

In light of the above, it is postulated that DBZDs could have a direct effect on OR receptors. This 

could complicate their already scarcely known pharmacodynamics and aggravate their 

safety/toxicity profiles. To date, the activity profile of DBZDs with ORs has not been assessed. 

Indeed, it is important to better understand the possible risks/harm associated with the use/abuse of 

DBZDs, assessing their mechanism of action and identifying the relative target receptor(s). While 

conducting preclinical studies with dozens or hundreds of molecules may constitute an extremely 

time-consuming and costly exercise, computational models could be used as fast and reliable 

preliminary assessment methodologies to investigate this mechanism of action. 

This study aimed to computationally evaluate the binding affinity (or lack thereof) of the 115 

DBZDs identified online towards KOR, MOR, and DOR, with the use of pharmacophore and 

docking studies, to assess if their mechanism of action could include activity on opioid receptors. 
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8.2 Methodology  

8.2.1 DBZDs object of the study  

The DBZDs object of the study were the 115 identified by the NPSfinder (please refer to Section 

3.2). 

 

8.2.2 Identification of reference compounds  

Reference compounds necessary for pharmacophore filtering and for docking studies were obtained 

from the ChEMBL database (EMBL-EBI, 2021). Homo sapiens MOR, KOR, and DOR targets 

were searched for in the database and strong agonist binders for each of them were identified among 

the available activity data (ChEMBL, 2021b, 2021a, 2021c). The EC50, i.e. the concentration 

inducing half of the maximum effect, assessed as stimulation of [35S]GTPgammaS, binding was 

the activity type used. For each of the ORs, twenty potent (i.e., low value of EC50) agonists, 

including peptide and non-peptide ligands were identified and used (Appendix A). These were 

identified across the assays to minimise biases. The 20 compounds displaying low values of EC50 

were chosen to obtain a good variety of chemical structures. 

 

Five additional molecules for each OR including the co-crystallized ligand were extrapolated from 

the literature according to their strong activity as agonist binders and used as reference molecules 

for docking studies (Table 8.1).  
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Table 8.1 Five refence molecules for docking studies of DBZDs on ORs 

MOR 

Molecule  SMILES S (Kcal/mol) 

BU72 O(C)[C@]12[C@]3(C)[C@@H](c4ccccc4)[NH2+][C@H]1[C@@]14c5c(ccc(O)c5)C[C@@H]([NH+](C)CC1)[C@@]4(C=C2)C3 -10.15 

fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC -8.44 

carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC -9.59 

α-methylfentanyl  O=C(N(c1ccccc1)C1CC[NH+]([C@@H](Cc2ccccc2)C)CC1)CC -8.99 

β-hydroxyfentanyl  O=C(N(c1ccccc1)C1CC[NH+](C[C@@H](O)c2ccccc2)CC1)CC -8.79 

KOR 

MP11 04  C1CC1CN2CC[C@]34[C@@H]5[C@H]2CC6=C3C(=C(C=C6)O)O[C@H]4[C@@H](C=C5)NC(=O)C7=CC(=CC=C7)I -9.79 

CHEMBL503080 Clc1cc2c(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(c4ccccc4)CC3)csc2cc1 -9.00 

CHEMBL526933 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)C)CC2)C)c1 -9.24 

CHEMBL499351 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)c3cc(Cl)ccc3)CC2)C)c1 -9.74 

CHEMBL525457 Clc1cc2N(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(S(=O)(=O)c4cc(OC)c(OC)cc4)CC3)C(=O)Oc2cc1 -9.81 

DOR 

 

  

DPI-287 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)C[NH+](CC=C)[C@H](C)C2)c2cc(O)ccc2)cc1 -8.58 

CHEMBL2151735 O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H]([NH3+])Cc1c(C)cc(O)cc1C -9.44 

CHEMBL8234 O=C([O-])[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])Cc1ccc(O)cc1)Cc1ccccc1)CC(C)C -10.43 

CHEMBL3758292 O=C([C@@H]([NH3+])Cc1c(C)cc(O)cc1C)N1[C@@H](C(=O)NCc2[nH]c3c(n2)cccc3)Cc2c(cccc2)C1 -9.70 

CHEMBL2113666 Clc1c(/C=C/C(=O)N[C@]23[C@@H]4[NH+](C)CC[C@@]52[C@H](C(=O)CC3)Oc2c5c(ccc2)C4)cccc1 -7.26 
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8.2.3 Pharmacophore filtering 

The flexible alignments and the pharmacophore mapping were carried out as explained in Section 

4.3.9. The consensus mode was used for the pharmacophore mapping. The final pharmacophore 

maps generated for each OR was validated via the filtering of three databases of known MOR, KOR 

and DOR ligands which are reported in Appendix A.  

 

8.2.4 Molecular docking  

For a review of the molecular docking methodology, please refer to section 4.3.8. To perform the 

molecular docking studies, the same MOR, DOR and KOR structures discussed in section 6.4.4 

were used.  

As seen before, the co-crystallised ligand atoms of each receptor were used as the docking “site” in 

the General docking panel. No pharmacophore constraint was added due to the diversity between 

the co-crystallised ligands and the DBZDs under evaluation and to avoid forcing poses for the latter. 

If solvent molecules were present in the crystal structure, they were included in the docking 

process.  

Reference compounds (i.e. selective and potent binders) for each of the receptors were docked to 

evaluate MOE® placement and scoring methods (Sec 4.3.8). Once the placement and scoring 

methods were chosen, they were applied to the docking studies on those DBZDs resulted by the 

pharmacophore filtering exercise together with the four reference compounds (i.e., strong agonist 

binders) and the co-crystallised ligand (BU72, DPI-287 and MP1104). For each DBZD the number 

of poses generated in the placement was increased from the default values of 30 to 100 to account 

for system variability (Ellis et al., 2018). 

8.3 Pharmacophore filtering results 

The three pharmacophore consensus queries for KOR, MOR, and DOR were generated from the 

alignment showing the lowest S values and manually analysed (Figure 8.1Figure 8.2). 
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Figure 8.1 Pharmacophore queries generated for KOR, DOR and MOR  

Notes. The pharmacophore query and the flexible alignment of the strong agonist binders for each receptor are 

reported. Please note that for image clarity not all the twenty agonists used in the flexible alignment are displayed. It 

can be noted that different spatial coordinates may host more than one feature. In orange are represented the 

aromatic/hydrophobic centroids, in green the hydrophobic ones, and in purple the H-bond donor and cationic 

centroid. 

 

Figure 8.2 Pharmacophore queries generated for KOR, DOR and MOR without the flexibly aligned ligand.  

Note. Please note that for each pharmacophore, the list of features is displayed for clarity. 

The resulting pharmacophore maps were “validated” through the filtering of the agonist ligands 

databases (validations sets) extrapolated from ChEMBL (76 ligands for each receptor, Appendix 

A). KOR pharmacophore matched 69 of the ligands (91%) in the validation set, MOR 62 ligands 

(81%) and DOR 36 ligands (47%). These data suggested how MOR and DOR were more 

comprehensive pharmacophore, matching compounds with higher values of biological activity, 

while KOR was more selective toward those with lower activity values, i.e. more potent. When 
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these queries were used to filter the list of 115 DBDZs identified by NPSfinder® on the surface web 

(isomerdesign.com (Catalani et al., 2021b; Isomer Design, 2021)), the resulting hits were: 16 

molecules for KOR, 23 molecules for DOR, and 21 molecules for MOR (Appendix A). 

8.4 Molecular docking results 

PDB5C1M for MOR (Huang et al., 2015; RCSB PDB, 2015), PDB6PT3 for DOR (Claff et al., 

2019; RCSB PDB, 2019), and PDB6B73 (Che et al., 2018; RCSB PDB, 2018d) for KOR were used 

for the docking studies (sec 6.4.4).  

The characteristic agonists interactions, as identified in the literature, with aspartic acid (Asp128, 

138, 147), methionine (Met132, 142, 151), and valine (Val281, 300) can be observed in Figures 

6.12Figure 6.12, 6.14 and 6.15 (Che et al., 2018; Claff et al., 2019; Huang et al., 2015).  

London dG and GBVI/WSA dG (Chemical Computing Group ULC, 2022) were used as the scoring 

methods for placement (alpha triangle and refinement (induced fit).For each molecule, the docking 

poses were analysed according to the S values and the type of interactions observable for that 

particular pose. The most common interactions identified between the DBZDs, and the binding 

pockets are presented in Table 8.2.  
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Table 8.2 Most common interactions identified between the DBZDs ligands and ORs 

Receptor Residue Interaction 

MOR 

Asp 147  H-donor; ionic 

Met 151  H-donor 

Val300  hydrophobic 

His297  hydrogen bonds water mediated. 

Lys233  hydrogen bonds water mediated. 

DOR 

Asp 128  H-donor; ionic 

Met 132  H-donor 

Val 281  hydrophobic 

His 278  hydrophobic 

KOR 

Asp 138  H-donor; ionic 

Met 142  H-donor 

Ser 211  H- acceptor 

Leu 212  H- acceptor 

Glu 115  H- acceptor 

Tyr139  hydrophobic 

 Ile 316  H- acceptor. 

For the binding affinity, a cut-off point was chosen after evaluating the reference compounds S 

values and those for the co-crystallized ligands BU72 (S= -10.1), DPI-287 (S= -8.5) and MP1104 

(S= -9.8) (Table 8.3). Consequently, DBZDs showing S< -8.0 (the lower the value, the stronger the 

binding), were considered putative strong binders. For the interactions patterns, particular regard 

was given to ionic and hydrogen-bond mediated interactions with Asp and to the hydrogen-bond 

mediated interactions with Met (Che et al., 2018; Claff et al., 2019; Huang et al., 2015). Indeed, as 

reported in Section 6.4.4, the ionic Asp bond is mandatory to infer the activation of the ORs 

(Krumm and Grisshammer, 2015; Shim et al., 2013). A total of six molecules for KOR, five for 

DOR and four for MOR meeting both criteria were identified (Table 8.3).  
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Table 8.3 Binding values (S) generated for those DBZDs that display the ionic interaction with the charged amine of 

the Asp residues in DOR, KOR and MOR.  

The S values of the co-crystallised ligand and the reference compounds for each ORs are reported as reference 

values. Only DBZDs showing a predicted S value < -8.0 were included in the table.   

DOR 

Molecule  SMILES S (Kcal/mol) 

CHEMBL8234 
O=C([O-

])[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])Cc1ccc(O

)cc1)Cc1ccccc1)CC(C)C 
-10.43 

CHEMBL3758292 
O=C([C@@H]([NH3+])Cc1c(C)cc(O)cc1C)N1[C@@H](C(=O)NCc2[nH]c3c(n2)cccc3
)Cc2c(cccc2)C1 

-9.70 

CHEMBL2151735 
O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H]

([NH3+])Cc1c(C)cc(O)cc1C 
-9.44 

DPI-287 
O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)C[NH+](CC=C)[C@H](C)C2)c2cc(O)

ccc2)cc1 
-8.58 

CHEMBL2113666 
Clc1c(/C=C/C(=O)N[C@]23[C@@H]4[NH+](C)CC[C@@]52[C@H](C(=O)CC3)Oc2c

5c(ccc2)C4)cccc1 
-7.26 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -8.70 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 -8.67 

Fluloprazolam 
Fc1c(C2=NCC=3N(C(=O)C(=CN4CC[NH+](C)CC4)N=3)c3c2cc([N+](=O)[O-

])cc3)cccc1 
-8.45 

JQ1 Clc1ccc(C2=[NH+]C(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 -8.12 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.07 

KOR 

MP11 04 
 C1CC1CN2CC[C@]34[C@@H]5[C@H]2CC6=C3C(=C(C=C6)O)O[C@H]4[C@@H]

(C=C5)NC(=O)C7=CC(=CC=C7)I 
 -9.79 

CHEMBL499351 
Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)c3cc(Cl)ccc3)CC2)
C)c1 

-9.74 

CHEMBL526933 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)C)CC2)C)c1 -9.24 

CHEMBL526747 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(c3cc(OC)ccc3)CC2)C)c1 -9.01 

CHEMBL503080 
Clc1cc2c(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(c4ccccc4)CC3)csc

2cc1 
-9.00 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -8.74 

JQ1 Clc1ccc(C2=[NH+]C(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 -8.47 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.45 

Cinazepam Brc1cc2C(c3c(Cl)cccc3)=NC(OC(=O)CCC(=O)[O-])C(=O)Nc2cc1 -8.34 

Fluloprazolam 
Fc1c(C2=NCC=3N(C(=O)C(=CN4CC[NH+](C)CC4)N=3)c3c2cc([N+](=O)[O-

])cc3)cccc1 
-8.23 

MOR 

BU72 
O(C)[C@]12[C@]3(C)[C@@H](c4ccccc4)[NH2+][C@H]1[C@@]14c5c(ccc(O)c5)C[C

@@H]([NH+](C)CC1)[C@@]4(C=C2)C3 
-10.15 

Carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC -9.59 

α-methylfentanyl  O=C(N(c1ccccc1)C1CC[NH+]([C@@H](Cc2ccccc2)C)CC1)CC -8.99 

β-hydroxyfentanyl  O=C(N(c1ccccc1)C1CC[NH+](C[C@@H](O)c2ccccc2)CC1)CC -8.79 

Fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC -8.44 

JQ1 Clc1ccc(C2=[NH+]C(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 -9.37 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -9.08 

Fluloprazolam 
Fc1c(C2=NCC=3N(C(=O)C(=CN4CC[NH+](C)CC4)N=3)c3c2cc([N+](=O)[O-

])cc3)cccc1 
-8.89 

Cyprazepam C1CC1CN=C2CN(C(=C3C=C(C=CC3=N2)Cl)C4=CC=CC=C4)O -8.09 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.07 
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Cinazepam, cyprazepam, ciclotizolam, fluloprazolam, Ro 48-6791, Ro 48-8684, and JQ1 were 

found to display good binding affinity and the mandatory ionic interaction with the Asp residues. In 

particular, ciclotizolam, fluloprazolam, Ro 48-8684, and JQ1 showed these characteristics 

consistently across the three receptor subtypes, displaying however different binding affinity for the 

ORs.  

The 2D ligand interactions maps for the three top scoring DBZDs for each OR are reported in 

Figure 8.3, 8.4 and 8.5 
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Figure 8.3 2D ligands interactions for the three top scoring DBZDs for DOR. 

Notes. The colours used to depict the residues in the 2D screenshot define different characteristics of the latter: light 

purple for polar residues and light green for hydrophobic ones; red circles indicate an acidic and blue a basic 

residue; and the light blue halo indicates solvent exposure both on the receptor and the ligand 

 

Figure 8.4 2D ligand interactions for the three top scoring DBZDs for KOR. 

Notes. The colours used to depict the residues in the 2D screenshot define different characteristics of the latter: light 

purple for polar residues and light green for hydrophobic ones; red circles indicate an acidic and blue a basic 

residue; and the light blue halo indicates solvent exposure both on the receptor and the ligand 
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Figure 8.5 2D ligands interactions for the three top scoring DBZDs for MOR. 

Notes. The colours used to depict the residues in the 2D screenshot define different characteristics of the latter: light 

purple for polar residues and light green for hydrophobic ones; red circles indicate an acidic and blue a basic 

residue; and the light blue halo indicates solvent exposure both on the receptor and the ligand 

Detailed ligand interactions for Figure 8.3-8.5 are reported in Appendix A. Fluloprazolam, Ro 48-

8684 and Ro 48-6791 seems to interact with Asp residue via the charged amine linked to the 

imidazole and oxazole moieties. None of the nitrogen atoms in benzodiazepine core structure seem 

to be involved in such interaction. JQ1 and ciclotizolam instead interact with the Asp via the 

charged nitrogen atom at position 4 of the diazepine core. 

From Figure 8.2-8.5, it can be noted that all the DBZDs which seems to be able to interact with the 

ORs, shows either a triazolo or imidazole-benzodiazepine scaffold. The latter as stated in Chapter 5 

seems to be associated with the highest values of biological activity and potency. If one looks at 

these structures from another point of view, benzotriazole and benzimidazole moieties could be 

identified. \this structure makes these DBZDs really similar to the one observed for the synthetic 

opioid class nitazenes (Vandeputte et al., 2021), supporting a possible interaction with ORs.  

8.5 A discussion on the potential of DBZDs to activate ORs 

To the best of our knowledge, this study is the first to evaluate the possible binding affinity between 

DBZDs and KOR, MOR, and DOR, giving an insight into their possible mechanism of action. 

For each OR a pharmacophore map was designed to filter the DBZDs previously identified online. 

The resulting OR pharmacophores, in line with what is reported in literature (Shim et al., 2011; 

Singh et al., 2008; J Zhang et al., 2009), confirmed the importance and the recurring presence of 

two aromatic features and a more complex one including, across all three receptor subtypes, a 

cation, a hydrogen bond prone group and a hydrophobic centre. The latter identifies the important 

positively charged tertiary amine group, responsible for the ORs family activation (Casy and Parfitt, 
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1986; Manglik, 2020). Consistent with previous studies, the interaction between the charged amine 

and the aspartic acid residue can be mediated either by a hydrogen bond or ionic interaction (salt 

bridge), the latter being stronger and important for the activation of the receptor (Zimmerman and 

Leander, 1990).  

Due to the similarity of the pharmacophores obtained for the ORs, the lists of the filtered DBZDs 

share similar entries (Appendix A)., with ciclotizolam, fluloprazolam, JQ1, Ro 48-8684 and Ro 48-

6791 matching all of them. These DBZDs are either partial agonists towards the GABA-AR 

(Tricklebank et al., 1990), characterised by fast pharmacokinetics (i.e., rapid onset and short half-

life) (Krall et al., 2015), or “unknown” molecules, identified as DBZDs but lacking any further 

information on activity profile (e.g., fluloprazolam).  

The pharmacophore filtered molecules were docked and further analysed according to the predicted 

binding affinity (S) and their engagement in ionic/hydrogen bond interactions with the Asp residue. 

The lack of the latter constituted a reason for rejecting the molecule as a putative OR binder. The 

cut-off for the S value was set to -8.0 (Kcal/ mol). Despite the fact that this cut-off is one order of 

magnitude lower than some of the very potent agonists/strong binders reference compounds (e.g., 

Leu-enkephalin, carfentanyl, etc.), DBZDs with such S values could still show good binding 

affinity. The five DBZDs that met both criteria are discussed as possible binders: JQ1, 

fluloprazolam, ciclotizolam, Ro 48-8684, and Ro 48-6791.  

JQ1 is a thienotriazolobenzodiazepine that does not act as an agonist at the GABA-AR. It is not 

currently used in human clinical trials due to its very short half-life (Zhou et al., 2020). 

Fluloprazolam seems to be an unknown DBZD, and only reference to a patent was retrieved from 

the literature (Prost-Marechal, 1982). Ciclotizolam is a very well-known low efficacy partial agonist 

of GABA-AR (Weber et al., 1985).  

Ro 48-8684 and Ro 48-6791 are benzodiazepines developed by Hoffman-LaRoche in the 1990s 

(Godel et al., 1997) to achieve an improved replacement for midazolam. Unfortunately, they did not 

show advantages over the parent drug and were never developed as therapeutics (van Gerven et al., 

1997).  

Studies conducted with Ro 48-8684 and Ro 48-6791 (Hering et al., 1996; van Gerven et al., 1997; 

Wrigley et al., 2019) reported considerably shorter duration of action as well as faster recovery 

from the deep hypnotic effect. In particular, for Ro 48-8684 a reduced sensitivity was observed after 

repeated increasing dosage administration, due to undetermined factors (van Gerven et al., 1997). 

These DBZDs show a short duration of action, in line with a partial agonist activity profile and the 

results predicted for their biological activity on GABA-AR (Catalani et al., 2021b). Indeed, 

previous QSAR studies (Catalani et al., 2021b) predicted very low biological activity for Ro 48-

https://en.wikipedia.org/wiki/Hoffman-LaRoche
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8684, Ro 48-6791, JQ1, and fluloprazolam on the GABA-AR in line with their partial agonist 

activity profile. The only oddly predicted value was for ciclotizolam, indicating that the molecule 

may have a strong activity in contrast with it being a weak binder.  

From the docking data presented it can be noted that JQ1, Ro 48-8684 and fluloprazolam display 

higher binding affinity toward MOR, with values similar or greater than those obtained for 

carfentanyl and fentanyl (S= -9.95, -8.44) (Appendix A). They all show interactions with Asp147 

and Met151, while none of them interacts with His297 (Figure 8.5), as observed for BU72. JQ1 and 

Ro 48-8684 display the hydrophobic bond with Val300 (Figure 8.5). This interaction has been 

observed, so far, in the binding of morphinan ligands only with the recruitment of a bigger 

hydrophobic surface including I296, W318, and I322 (Huang et al., 2015). It is interesting to note 

that JQ1, the top scoring DBZD, seems to interact with the Asp147 residue only, while Ro 48-8684 

and fluloprazolam bind Met151 as well Error! Reference source not found.). The distance of the i

onic bond (respectively, 3.20 (JQ1), 3.58 (fluloprazolam), and 3.35 (Ro 48-8684) Å) suggests a 

slightly stronger interaction than BU72 (3.53 Å) (Appendix A).  

The same very strong binding affinity is not observed for KOR, towards which the DBZDs display 

S values that are roughly one unit lower than the reference compounds and the epoxymorphinan 

MP1104. It could be inferred that lower S values mean an activity threshold moved towards a 

greater order of magnitude when compared to MP1104. However, considering the latter has a 

picomolar KOR binding affinity (Che et al., 2018), one can assume the higher concentration 

required to activate a response (Ellis et al., 2018) will still fall in the lower nM range. Ro 48-8684 

seems to be the most likely to bind KOR (S=- 8.74), followed by JQ1 and ciclotizolam. The 

distance of their ionic bond to Asp138, respectively, 3.91 and 3.02 and 3.3.35 Å, suggests a strength 

interaction similar to MP1104 (3.02 Å). The interactions for each molecule are presented in Figures 

8.3-8.5, confirming binding to Asp138. 

A similar profile of binding affinity is observed for DOR. The DBZDs seem to show less affinity 

when compared to the reference compounds (Table 8.3), but the same affinity of the co-crystallised 

ligand DPI-287 (S= -8.58). Their interaction profile is presented in Figure 9.. Ro 48-8684 seems to 

be the molecule showing again the best affinity (S= -8.70). The distance of its ionic interaction 

(3.20) (Appendix A) suggests it to be slightly weaker than DPI-287 (2.72), in line with the binding 

prediction (Table 8.3).This applies as well to Ro 48-6791 (3.11) and fluloprazolam (3.61). 

It is interesting to note that all the top scoring DBZDs, being either triazolo or imidazole-

benzodiazepines, show structural similarity to midazolam, which was shown to have a direct effect 

on the spinal antinociceptive opioid receptors (KOR and DOR) (Cox and Collins, 2001). To further 

validate the results obtained here midazolam and other five GABAergic currently used in the 
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anaesthesia diazepam and lorazepam (Miller and Gropper, 2019) were evaluated for their binding 

affinity towards ORs. Midazolam was the only anaesthetic showing any ionic interaction with 

Asp147 in MOR, with an S value of -7.33 which suggests a low binding affinity in line with the 

literature (Cox and Collins, 2001; Goodchild and Serrao, 1987; Rattan et al., 1991). Same ionic 

interactions were observed for KOR and DOR.  

Compared to midazolam, the top scoring DBZDs seems to show higher binding affinity towards 

ORs.   

These results suggest how those obtained for the DBZDs could be of value, especially if one 

considers the presence of benzotriazole and benzimidazole moieties in the scaffold of these 

molecules, and their similarity with the nitazenes class of synthetic opioids. 

Despite the docking results obtained for each molecule being only an educated guess, a prediction 

of the binding affinity towards ORs, they can still be considered of value due to the comparison 

with those obtained for well-known strong agonist binders and the respective ORs co-crystallised 

ligands (Ellis et al., 2018). This comparison, together with the identification of ionic interactions 

and the fact that docking score function has been proven capable of predicting crystallographic 

binding orientations (Jakhar et al., 2019; Ramírez and Caballero, 2018), could support the thesis 

that these DBZDs may be able to act on ORs, and not just fit in the binding pocket. However, to 

confirm or refute this hypothesis, further and more sophisticated computational methodologies 

(molecular dynamics), and/or experimental (i.e. in vitro and ex vivo) approaches are needed. 

Moreover binding affinity does not give information on the agonist or antagonist nature of the 

binding. Indeed docking per se does not provide a measure to discern between the two. 

Nevertheless, considering that the pharmacophores were built using agonist ligands, the likelihood 

of these DBZDs showing an agonist profile could be inferred.  

These results give an interesting insight into the possible interactions and mechanisms of action of 

these five DBZDs. They all seem to possess low activity on GABA-AR (fluloprazolam excluded), 

however, expressing some of the agonist features (analgesic, antidepressant and anxiolytic), 

accompanied by fast pharmacodynamics. 

Indeed, the two Ro compounds have a reported profile of action that differs from common BZDs, 

characterised by a rapid onset and rapid recovery from the deep hypnotic effect together with the 

development of tolerance.  

It could be inferred that the particular pharmacodynamics observed, especially the fast onset and 

recovery timing, could be due to the recruitment and activation of opioids’ transmission. Indeed, it 

has been reported that the binding pockets of the ORs analysed here are largely exposed to the 
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extracellular surface cavity and cause very fast dissociation half-lives of some extremely potent 

opioids (e.g., buprenorphine, carfentanyl, etorphine) (Manglik, 2020; Manglik et al., 2012).  

Moreover, activation of the ORs produces effects similar to the activation of GABA-AR. In 

particular: activation of MOR results in sedation as well as tolerance and respiratory suppression, as 

seen for the α1 isoform of GABA-AR (McKernan et al., 2000); activation of DOR results in 

anxiolytic and antidepressant-like effects (Dripps and Jutkiewicz, 2017; Gendron et al., 2016; E. 

Jutkiewicz, 2006) as seen for the activation of the α2 isoform (Rudolph et al., 1999). Activation of 

KOR instead produces analgesic, hallucinogenic, and dysphoric effects (Che et al., 2018), which 

have not been observed with GABA-AR activation. Analgesic properties have previously been 

reported for BZDs; however, it is important to underscore that this could be due to other 

mechanisms than interaction with ORs. Indeed, it has been reported that the reduced complaints of 

pain following BZDs consumption is just an indirect effect of their depressant activity (Reddy and 

Patt, 1994). Further studies will be conducted on evaluating possible pharmacophore match between 

opioid and BZDs, to address the possibility of a common drug scaffold.  

Finally, if one considers that the most powerful analgesic and addictive properties of opioids are 

mediated by MOR, the results obtained from the docking studies could suggest a reinforcement of 

the addiction potential of these DBZDs.  

8.5.1 Limitations of the current study  

The major limitation of this study is the restricted size of the dataset (20 compounds for each 

receptor) used to develop the queries for the pharmacophore mapping/filtering exercise. Other 

limitations include the use of one receptor active conformation and co-crystallised ligand only, the 

lack of consensus docking; the lack of previous experimental data assessing the experimental 

binding affinity of DBZDs on ORs; and the lack of clear information on agonist /antagonist activity 

of the mentioned DBZDs despite the use of agonist binders for the creation of the pharmacophores. 

Further studies will include the evaluation of the binding pocket pharmacophore for each of the 

three ORs; in vitro assays to obtain experimental data on the EC50 or Ki (Vandeputte et al., 2021); 

and ex vivo assays to get insight in their possible G protein (or β-arrestin) pathways activation 

(Inoue et al., 2012).  
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8.6 Novelty and importance of the study 

To the best of our knowledge this study is the first to assess the activity of DBZDs on ORs via the 

use of in silico methodologies. As stated above, while DBZDs represent only a small percentage of 

the NPSs identified worldwide they are increasingly being reported in acute and fatal intoxication 

often in poly consumption with other CNS depressants (e.g., opioids). The concomitant use of CNS 

depressants could lead to severe synergism of their adverse effects, especially so if they have the 

potential to activate the same receptor transmissions. Indeed NPS pharmacodynamics and 

activity/toxicity profiles are largely unknown, and complications could arise if one considered a 

possible multitarget action profile for these new DBZDs. 

It is, therefore, relevant to assess as much as possible their profile of activity, including possible 

actions on multiple receptors. This is particularly true for DBZDs because an interaction with 

opioids’ transmission has already been postulated (Goodchild and Serrao, 1987; Rattan et al., 1991) 

and molecules containing the BZD scaffold synthesised in the quest for selective ORs ligands 

(Anzini et al., 2003; Cappelli et al., 1996).  

The in silico approaches here discussed, have been proven useful as a novel approach to elucidate 

the mechanism of action of these unknown molecules and help understand the possible associated 

health threats. Computational studies can provide quick and reliable predictions of activity and 

affinity for a biological target, helping researchers to focus and direct their efforts and studies (e.g. 

in vitro, preclinical) towards a smaller number of NPSs.  
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Chapter 9 General conclusion 

 

The programme of research discussed here represents a novel and successful approach in regard to 

two main challenges/issues closely related to the family of NPS, i.e. identification and risk 

assessment. Two research questions were highlighted at the beginning, i.e. would it be possible to 

use the internet and the analysis of the latter to improve the identification of new NPS, to obtain a 

more comprehensive picture of the NPS phenomenon, and to predict future drug scenarios? and 

would it be possible to utilise in silico technologies to develop a quick and reliable preliminary risk 

assessment procedure to guide legislative, law enforcement and public health responses and efforts 

against newly identified NPS?  

The analysis of the internet, or surface web, forums, e-commerce platforms and chemical databases, 

via the use of a web crawler proved very valuable in assessing a NPS scenario different from the 

evidence based one presented by the UNODC and EMCDDA Early Warning Systems, as the 

preliminary research conducted on the topic suggested (Arillotta et al., 2020; Catalani et al., 2021c; 

Napoletano et al., 2020; Zangani et al., 2020). Indeed a total of 4,231 molecules were identified, a 

number almost four times the one reported by both the UNODC and EMCDDA as a result of 

evidence-based identifications. As of June 2022, the UNODC identified 1,127 individual NPS while 

the EMCDDA via the EWS (EMCDDA, 2022a) reported a total of 884 NPS. Moreover, the 

numbers of molecules identified for DBZDs (115) and NSOs (396) by NPSfinder® were found to be 

almost four times higher than those reported by the official databases, i.e., 33 and 78 respectively. 

This result highlights and confirms the importance of the analysis of the surface web and suggests 

how the web crawler activity may possess the potential to detect a broad range of novel or 

previously undescribed NPS. NPSfinder® could be used as a tool to predict future drug scenarios, 

i.e. to identify which NPS will be next available in the real market after assessing the virtual one. 

This was observed for example with flubrotizolam (Sec 5.6.1) a molecule not identified by the 

UNODC or EMCDDA databases which has been discussed online in drug fora since 2021 and is 

better known as ‘Fanax’, or fluclotizolam who was identified by the NPSfinder® before October 

2020 and only identified in actual samples in 2021, as reported by the NPSDiscovery trend reports 

(NPSdiscovery, 2021). 

Moreover, NPSfinder® can be used as an effective monitoring tool. Systematic monitoring, more so 

if global, is recognised by the UNODC as a powerful tool against drugs problems, as stated in the 

“Political Declaration and Plan of action on international cooperation towards an integrated and 

balanced strategy to counter the world Drug problem” (UNODC, 2009). The analysis of the surface 

web has no borders and could be used to keep the harms associated with NPS under surveillance 
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and review, even in those situations, as the recent COVID-19 pandemic, which could cause the 

disruption of the drug markets with a possible rise in online drugs purchases (Catalani et al., 2021a).  

Once novel NPS are identified very limited data is available on their pharmacological/toxicological 

profile, and the internet could also be used to retrieve such information if/when available (Orsolini 

et al., 2020). In the modern era, everything is discussed online including recreational drugs, and 

even more so if these recreational drugs attract the attention of drug enthusiastic/experimenter, the 

so called “psychonauts” (Orsolini et al., 2019, 2015a). This experience-sharing trend should be 

taken into high consideration as valuable for accessing anecdotal data on sought-after/side effects, 

as well as to potentially assess/ describe timelines for the emergence of a new substance (Corkery et 

al., 2017).  

In support of this, more predictive data regarding NPS (i.e., a risk assessment) on pharmacology, 

acute and long-term related adverse effects and abuse potential could be generated with in silico 

methodologies. In this project, the latter have been once more confirmed to be reliable, cost- and 

time- effective tools which could be used to predict the pharmacology profile of an index NPS 

towards a set of receptors. Moreover, they could be used to assess a multi-target (i.e., receptors) 

profile of action. When applied to DBZDs, in silico methodologies predicted flubrotizolam, 

clonazolam, pynazolam and, fluclotizolam as very active molecules, consistently with what reported 

in the literature and/or in drug discussion forums. In particular with flubrotizolam and fluclotizolam 

it was found they were discussed on drug forums but not previously identified either by the 

UNODC or EMCDDA (flubrotizolam only). This suggests the possible presence on the market of 

very potent NPS representing a serious threat to public health. Moreover, the scaffold hopping 

exercise conducted for the DBZDs class, strongly suggested that structural replacement of the 

pendant phenyl moiety could increase biological activity and highlighted the existence of a still 

unexplored chemical space for this NPS class .  

Worrisome results were also obtained for the class of NSOs, with the identification of new and 

potent analogues of carfentanyl (10,000 times more potent than morphine), i.e. 2-methyl 

carfentanyl, n-methyl-carfentanyl and butyryl-carfentanyl. The results obtained with the QSAR 

analysis were supported by molecular docking exercises, which gave an indication of the binding 

affinity of these NPS towards their respective receptors.  

In addition, the use of in silico methodologies could be of use also for classification of new NPS. 

As reported in Section 1.2.2, the UNODC divide NPS into the main groups of substances controlled 

under the international drug conventions according to their pharmacological activity (Sec 1.2.2) 

(LSS/RAB/DPA/UNODC, 2016). It is indeed interesting to note that a good number of NPS 

reported by the UNODC are included in the “other” group. While the majority of the latter are 
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molecules for which the pharmacology is known, for some no data or very limited data is available. 

Even if their chemical structure is known and maybe similar to some other NPS, no 

pharmacological information is available. In this regard, in silico methodologies based on chemical 

similarity could be of extreme use in helping international authorities in classifying novel NPS. 

Paucity of experimental data could make in silico approaches, i.e. QSAR, difficult to carry out. 

However it is very likely that, if the new NPS are structurally similar to well-known NPS, then 

enough experimental data will be available. Also molecular docking, as seen for the study of 

DBZDs on ORs, could help in the classification via the assessment of binding affinities on different 

receptors (e.g. opioids, GABA-A, serotonin, B-adrenergic, etc). 

In this research project attention was focused on two classes of NPS only, the ones which are 

deemed currently the most worrisome in terms of public health risks and harms associated with 

their usage (i.e., fatalities and overdoses). However a set of QSAR models, including more NPS 

classes, could be prepared and validated so that when a novel NPS is identified, the latter could be 

“run” through these models almost as a screening test procedure. This will help assessing its 

potential biological activity on a wide range of receptors and will support is classification process. 

If data are not available for QSAR, docking could come in support to describe any possible binding 

affinity of an index NPS towards a set of know (3D) receptor structures, e.g. beta adrenergic, 

dopaminergic and serotoninergic.  

 

The combination of online analysis and in silico methodologies could be considered as a very 

important toll for informing law enforcement agencies and public health stakeholders. The 

information which will be provided could potentially influence and impact other aspects related to 

NPS, such as treatment options, service provision, law-making, monitoring/surveillance and 

education. The latter, which should be considered of high importance in particular towards social 

and health prevention, could be of use also for both law enforcement agencies (e.g. which NPS to 

expect on the market and relative risk effect associated with accidental exposure) and for health 

professionals (e.g. for treatment option or professional formation). Potential and actual users could 

benefit also from information provided to increase awareness of the high risks associated with these 

new psychoactive substances.  

 

To conclude this research project could be considered as a preliminary assessment on the creation 

of  

computational libraries that could represent important support tools for regulatory bodies in risk 

assessment and scheduling procedures.   
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Chapter 10 Future work 

 

QSAR studies (Chapters 5,7 and 8) identified a set of possibly very potent NSOs and DBZDs, via 

the prediction of their biological activity. However due to the fact that in silico approaches are only 

predictive methodologies, experimental studies will be necessary to assess and confirm the possible 

activity and scale of the latter on the GABA-AR for DBZDs and on the MOR for NSOs (De Luca et 

al., 2022; Loi et al., 2020). If more funding will become available collaboration with other 

Universities will be explored to carry out some in vitro and preclinical studies.  

For the assessment of NSOs, a similar in vitro methodology as presented by Vandeputte at al., i.e. 

MOR-β-arrestin2/mini-Gi Recruitment Bioassays, could be adopted to assess not only if these novel 

molecules are able to activate the MOR transmission, but also to understand their preferential 

pathway of activation, i.e. including the assessment of β-arrestin2 or mini-Gi (Vandeputte et al., 

2021). Using this in vitro approach, it will be possible to compare the activity of the index NSO 

with fentanyl and morphine activity. 

In vitro testing should be carried out also for the identified DBZDs to assess both their potency and 

their agonist/antagonist profile. An assay which could be used for this purpose is the one which 

assesses the agonist activity at recombinant human GABAA receptor alpha1beta1gamma2L 

expressed in Xenopus laevis oocytes incubated for 30 secs by electrophysiological method (Belelli 

et al., 1996; Sparling and DiMauro, 2017). Another assay which is reported for the evaluation of the 

efficacy on the GABA-AR is “Efficacy against human GABA alpha-1 receptor expressed in mouse 

fibroblast L(tk-) cells by whole cell patch clamp method” (Jones et al., 2006). Studies which 

evaluate the binding of benzodiazepines to their receptor site under in vivo conditions have been 

reported also (Duka et al., 1979), via the injection of highly radiolabelled [3H]-flunitrazepam. This 

could help in evaluating the CNS barrier permeability of novel DBZDs.  

Along these, in vivo/ preclinical studies could be performed for estimation of antinociceptive, 

sedative/anxiolytic and reinforcement properties of NSOs and DBZDs. For the estimation of 

analgesic and antinociceptive activity of NSOs, the tail flick test in mice could be used (Chen et al., 

2007). The latter is indicative of pain sensitivity in an organism and of reduction of pain sensitivity 

produced by analgesics (Chen et al., 2007). It should be noted that, because many thermal tests are 

not able to distinguish between opioid agonists and mixed agonist-antagonists, a tail flick test for 

mice using cold water should be carried out instead (Pizziketti et al., 1985). There is however a 

great variety of animal models which can be used for the assessment of analgesia, and also 

measures of non-reflexive behaviours should be considered (Gregory et al., 2013).  
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To assess the sedative-hypnotic and muscle relaxant activity of the top scoring DBZDs , the 

following animal (mice) models could be used: thiopental sodium -induced sleeping time and sleep 

latency; the righting-reflex test and the rotarod test (Golovenko et al., 2020). 

Finally self-administration-based animal models could be used to assess abuse potential and 

dependence connected with these novel NPS (Spanagel, 2017). Drug-induced reinforcement can 

indeed be evaluated in mice with a plethora of different test which include non-operant procedures 

(restricted to oral self-administration procedure) and operant procedure based on the learning 

contingency defined as “positive reinforcement” (i.e. where a positive reinforcer is provided 

contingently to the conclusion of the programmed requirements) (Sanchis-Segura and Spanagel, 

2006).  

Another approach that could be considered is the one presented by Morbiato et al (2020) who used 

zebrafish larvae and mice models for the forensic toxicology screening of NPS, i.e. to ‘rapidly 

hypothesize potential aversive or beneficial effects of novel molecules’ via the assessment of 

spontaneous locomotor activity (Morbiato et al., 2020): 

Future work including molecular dynamics studies on the nitazene NSO class should be carried out 

to confirm the orientation of the latter in the MOR binding pocket and assess the role and 

importance of the NO2 group. Molecular dynamics analyse the movements of a ligand-receptor 

complex, allowing the latter to interact for a predetermined period of time (e.g. 1000 nanoseconds). 

Analysing these movements is it possible to understand which is the more stable orientation of the 

ligand and to get a view on the dynamic "evolution" of the system (Piotr F.J. Lipiński et al., 2019). 

This work has already been started in collaboration with the King’s College. 

Future work could be conducted as well on the results of the scaffold hopping exercise if 

collaboration will be set up with a chemical synthesis lab (Chapter 7) (Wang and Ramírez-

Hinestrosa, 2020). This work will assess the new DBZDs scaffold proposed via the scaffold 

hopping exercise for viable synthetic routes and if possible the compounds will be synthesised and 

characterised using standard analytical techniques such as nuclear magnetic resonance (NMR) and 

liquid chromatography mass spectroscopy (LCMS). The characterised molecules will then be 

examined for biological activity using the same methodology described for the others. Finally the 

scaffold hopping exercise will be also applied to the NSO class to assess the chemical space of the 

latter.  
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Appendix A 

 

 

Table A1 List of websites monitored by the NPSfinder® web crawler, November 2017- October 2020, surface web 

only. This list includes psychonauts fora, users’ fora, chemical databases and e-commerce websites. 

N Website name  

1 Avalonmagicplants.com  

2 Azarius.net  

3 Bluelight.org  

4 Bluemorphotours.com  

5 Cannabis.net  

6 Chemeurope.com  

7 Committedpsychonaut.tumblr.com  

8 Consolidated Index of Controlled Substances  

9 Daath.hu/psychonauts  

10 Dancesafe.org  

11 Deviantart.com/psychonaut-a  

12 Druglibrary.org  

13 Drugs.tripsit.me  

14 Drugs-forum.com  

15 Drugs-plaza.com  

16 Dutch-headshop.eu  

17 Ecstasydata.org  

18 Elephantos.com  

19 Energycontrol.org  

20 Entheogen-network.com/forums  

21 Erowid.org  

22 Eusynth.org  

23 Everything2.com/title/Psychonaut  

24 Fungifun.org  

25 Hedweb.com  

26 Hipforums.com/forum  

27 Isomerdesign.com  

28 Knehnav.home.xs4all.nl  

29 Kratomshop.com  

30 Legal-high-inhaltsstoffe.de  

31 Mindstates.org  

32 Mycotopia.net  
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33 Natmedtalk.com  

34 Npsproject.eu  

35 Peyote.com/peyolink.html  

36 Psychedelic-library.org  

37 Psychonaut.ca  

38 Psychonaut.fr  

39 Psychonautdocs.com  

40 Psychonautwiki.org  

41 Psyconauts.tripod.com  

42 Reddit.com and drug-related subreddits (e.g. Reddit.com/r/Psychonaut/; Reddit.com/r/shroomers/)  

43 Shayanashop.com  

44 Sjamaan.com  

45 Tripzine.com  

46 Tryptamind.com  

47 Urban75.net  

48 Wikipedia List of designer drugs  

49 Zamnesia.com  
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Table A.2 List of non-fentanyl-like NSOs identified univocally by the UNODC (i.e. not identified by the NPSfinder®) 

and reported by the UNODC Early Warning Advisory on New Psychoactive Substances 

UNODC SMILES 

2',5'-Dimethoxyfentanyl  SAQRGDVCSASPSH-UHFFFAOYSA-N 

2-Chlorofentanyl  JPKVUHSMCMLOPC-UHFFFAOYSA-N 

2-fluoroacrylfentanyl  ROBNYLIAYXEIFM-UHFFFAOYSA-N 

2-Fluorobutyrfentanyl 2F-BF  NLSYMTDGNNFMCX-UHFFFAOYSA-N 

2-Fluorofuranylfentanyl  QAURJPLHDYKGHY-UHFFFAOYSA-N 

2-Methoxyfuranylfentanyl 2-Meo-Fu-F   DCDCWVRDPIOMBB-UHFFFAOYSA-N 

2-Methylmethoxyacetylfentanyl  JJNJJOPCUJRZRG-UHFFFAOYSA-N 

3',4'-Dimethoxyfentanyl  UAMWMLGPFPCSAP-UHFFFAOYSA-N 

3-Chlorofentanyl  PEGQDTGCZUMBDF-UHFFFAOYSA-N 

3-Fluorofentanyl  SLTQVWMQISKVDN-UHFFFAOYSA-N 

3-Fluorofuranylfentanyl  NLTYWPGXHYUTRN-UHFFFAOYSA-N 

3-Fluoromethoxyacetylfentanyl  GLYKZHGNYYYJLH-UHFFFAOYSA-N  

3-Furanylfentanyl  AEDOTOMIDAMDFC-UHFFFAOYSA-N 

4-Fluorobenzylfentanyl  PUFHNCRAVCTYOY-UHFFFAOYSA-N 

4-Fluoroisobutyrfentanyl  OZDOSQNUJIXEOR-UHFFFAOYSA-N  

4-Methoxyfuranylfentanyl  CCKUDBCTLAHGQ-UHFFFAOYSA-N 

4-Methylacetylfentanyl  JNQPTABAZAHVEN-UHFFFAOYSA-N 

Acrylfentanyl  RFQNLMWUIJJEQF-UHFFFAOYSA-N  

alpha-Methylacetylfentanyl  OKTLVZBUKMRPLL-UHFFFAOYSA-N  

beta-Hydroxythiofentanyl  GLAAETOTOUGGSB-UHFFFAOYSA-N 

Butyrfentanyl  QQOMYEQLWQJRKK-UHFFFAOYSA-N  

Despropionyl 2-Methylfentanyl  UQFMMFWGILFTGJ-UHFFFAOYSA-N 

Despropionyl 3-methylfentanyl  BRXORURFEVRTDI-UHFFFAOYSA-N 

Despropionyl 4-fluorofentanyl  WWDHLOLWLHHFBH-UHFFFAOYSA-N 

Fentanyl carbamate  BPXVEPWHWMDYCP-UHFFFAOYSA-N 

Furanylfentanyl Fu-F  FZJVHWISUGFFQV-UHFFFAOYSA-N  

heptanoyl fentanyl  ZLPDQEYWTXBVRY-UHFFFAOYSA-N 

Lofentanil  IMYHGORQCPYVBZ-NBGIEHNGSA-N 

Methoxyacetylfentanyl  SADNVKRDSWWFTK-UHFFFAOYSA-N  

N-methylcyclopropylnorfentanyl  QCCRFOCZMVDDGA-UHFFFAOYSA-N 

Orthofluorofentanyl  BKUWDIVZCJNXRA-UHFFFAOYSA-N 

Thienylfentanyl  JSOSWRYHPGIWGT-UHFFFAOYSA-N  

Valerylfentanyl  VCCPXHWAJYWQMR-UHFFFAOYSA-N 

.  
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Table A.3 . Composition of the training and test set used to build the QSAR modes. The log 1/c data obtained from 

the literature (Hadjipavlou-Litina and Hansch, 1994) -were experimentally determined using spectrometric 

measurements of [3H]-diazepam displacement. The resulting data set included 77 1,4-benzodiazepines, 

triazolobenzodiazepines, imidazobenzodiazepines, and thienotriazolobenzodiazepines. The predicted values 

(AutoQSAR model from Sec. 5.1.3) of log1/c for each molecule are presented as well.  

Training set  

Molecule  Smile log 1/C 

PRED log 

1/C 

Brotizolam Brc1sc2-n3c(C)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.92 8.94 

Meclonazepam Clc1c(C2=NC(C)C(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.92 8.60 

Ro 11-1465 Clc1c(C2=NCc3n(c(C)nn3)-c3sc(Cl)cc23)cccc1 8.85 8.99 

Ro 05-4435 Fc1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.82 8.69 

Ro 14-1636 Ic1sc2-n3c(C)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.82 9.26 

Clonazepam Clc1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.74 8.86 

Delorazepam Clc1c(C2=NCC(=O)Nc3c2cc(Cl)cc3)cccc1 8.74 8.65 

Ro 05-4082 Clc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.66 8.40 

Ro 07-9957 Ic1cc2C(c3c(F)cccc3)=NCC(=O)N(C)c2cc1 8.54 8.15 

Ro 11-7800 Clc1c(C2=NCc3n(c(CN)nn3)-c3sc(Cl)cc23)cccc1 8.54 8.53 

Etizolam Clc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 8.51 8.34 

Ro 11-5073 Clc1cc2C(c3c(F)cccc3)=NC(C)c3n(c(C)nn3)-c2cc1 8.48 7.87 

Ro 11-5074 Clc1c(C2=NC(SC)c3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.47 8.53 

Lorazepam Clc1c(C2=NC(O)C(=O)Nc3c2cc(Cl)cc3)cccc1 8.46 8.20 

Ro 05-3590 FC(F)(F)c1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.46 8.35 

Ro 11-4878 Clc1cc2C(c3c(F)cccc3)=NC(C)C(=O)Nc2cc1 8.46 8.14 

Ro 17-4582 Clc1c(C2=NCc3n(c(C)nn3)-c3sccc23)cccc1 8.46 8.43 

Flunitrazepam Fc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.42 8.21 

Ro 11-6679 S(C)C1N=C(c2c(F)cccc2)c2c(-n3c(C)nnc13)ccc([N+](=O)[O-])c2 8.40 8.31 

Hydroxytriazolam Clc1c(C2=NCc3n(c(CO)nn3)-c3c2cc(Cl)cc3)cccc1 8.38 8.05 

U-35005 Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc(Cl)cc3)cccc1 8.37 8.31 

Midazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nc3)-c2cc1 8.32 8.33 

Ro 05-6822 Fc1c(C2=NCC(=O)N(C)c3c2cc(F)cc3)cccc1 8.29 7.78 

Ro 20-7078 Clc1cc2C(c3c(F)cccc3)=NC(Cl)C(=O)Nc2cc1 8.28 8.61 

Ro 11-6896 Fc1c(C2=NC(C)C(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.15 7.94 

Ro 05-6820 Fc1c(C2=NCC(=O)Nc3c2cc(F)cc3)cccc1 8.13 8.26 

Ro 21-5205 Clc1cc2C(c3c(F)cccc3)=NCc3c(C(=O)OC)ncn3-c2cc1 8.13 8.30 

Diazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(C)c2cc1 8.09 7.53 

Ro 07-1986 ClN1C(=O)CN=C(c2c(F)cccc2)c2c1ccc(CCN)c2 8.08 7.45 

Estazolam Clc1cc2C(c3ccccc3)=NCc3n(-c2cc1)cnn3 8.07 7.78 

Nordiazepam Clc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 8.03 8.00 

Nitrazepam O=[N+]([O-])c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 8.00 8.29 

Ro 22-1892 Clc1cc2C(c3ccccc3)=NCc3c(C(=O)OC(C)C)ncn3-c2cc1 7.92 7.56 

Ro 05-2904 FC(F)(F)c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.89 7.52 

Ro 16-0529 Clc1c2C(c3ccccc3)=NCc3c(C(=O)OCC)ncn3-c2ccc1 7.85 7.84 

Flurazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCN(CC)CC)c2cc1 7.83 7.36 

Ro 15-8670 Clc1cc2C(c3ccccc3)=NCc3c(C(=O)OCC)ncn3-c2cc1 7.82 7.82 

Temazepam Clc1cc2C(c3ccccc3)=NC(O)C(=O)N(C)c2cc1 7.80 7.07 
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Ro 05-4865 Fc1cc2C(c3ccccc3)=NCC(=O)N(C)c2cc1 7.77 7.38 

Oxazepam Clc1cc2C(c3ccccc3)=NC(O)C(=O)Nc2cc1 7.74 7.53 

Ro 20-3053 Fc1c(C2=NCC(=O)Nc3c2cc(C(=O)C)cc3)cccc1 7.74 7.69 

Alprazolam Clc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 7.70 7.75 

Ro 20-5747 O=C1Nc2c(C(c3ccccc3)=NC1)cc(C=C)cc2 7.62 7.79 

Ro 07-2750 Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCO)c2cc1 7.61 7.68 

Ro 21-8482 Clc1c(C2=NCc3c(C(=O)N)nc(C)n3-c3c2cc(Cl)cc3)cccc1 7.59 7.94 

Ro 20-2541 Fc1c(C2=NCC(=O)N(C)c3c2cc(C#N)cc3)cccc1 7.52 7.34 

Desmethyltetrazepam Clc1cc2C(C3=CCCCC3)=NCC(=O)Nc2cc1 7.47 7.85 

Tetrazepam Clc1cc2C(C3=CCCCC3)=NCC(=O)N(C)c2cc1 7.47 7.40 

Ro 20-2533 O=C1Nc2c(C(c3ccccc3)=NC1)cc(CC)cc2 7.44 7.35 

Ro 05-3061 Fc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.40 7.86 

Ro 08-9013 ClN1C(=O)CN=C(c2c(F)cccc2)c2c1ccc(CCOCC(=O)N)c2 7.37 7.12 

Ro 06-7263 ClN1C(=O)C(C)N=C(c2ccccc2)c2c1ccc(Cl)c2 7.31 7.92 

Ro 08-3026 Clc1c(C2=NCC(=O)Nc3c2cc(COCCN)cc3)cccc1 7.20 7.50 

Ro 20-1815 Fc1c(C2=NCC(=O)N(C)c3c2cc(N)cc3)cccc1 7.19 6.95 

Ro 05-4619 Clc1c(C2=NCC(=O)Nc3c2cc(N)cc3)cccc1 7.12 7.57 

Ro 05-3328 Clc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.06 8.00 

Halazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CC(F)(F)F)c2cc1 7.04 7.58 

Pinazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CC#C)c2cc1 7.03 7.77 

Ro 20-7736 Fc1c(C2=NCC(=O)N(C)c3c2cc(NO)cc3)cccc1 7.02 6.67 

Adinazolam Clc1cc2C(c3ccccc3)=NCc3n(c(CN(C)C)nn3)-c2cc1 6.87 6.92 

Ro 17-2221 O=C1Nc2c(C(c3ccccc3)=NC1)cc(CCN)cc2 6.59 6.85 

Ro 22-4683 Fc1c(C2=NCC(=O)N(C(C)(C)C)c3c2cc([N+](=O)[O-])cc3)cccc1 6.52 7.17 

Ro 05-4528 O=C1N(C)c2c(C(c3ccccc3)=NC1)cc(C#N)cc2 6.42 6.94 

Ro 12-6377 Fc1c(C2=NCC(=O)N(C)c3c2cc(NC(=O)NC)cc3)cccc1 6.34 6.77 

Ro 20-1310 Clc1cc2C(c3ccccc3)=NCC(=O)N(C(C)(C)C)c2cc1 6.21 6.51 

Camazepam Clc1cc2C(c3ccccc3)=NC(OC(=O)N(C)C)C(=O)N(C)c2cc1 6.05 6.50 

Test set  

Molecule  Smile log 1/C 

PRED log 

1/C 

Prazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CC3CC3)c2cc1 6.96 7.36 

Ro 05-2921 O=C1Nc2c(C(c3ccccc3)=NC1)cccc2 6.45 7.48 

7-Aminonitrazepam O=C1Nc2c(C(c3ccccc3)=NC1)cc(N)cc2 6.41 7.03 

Norfludiazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 8.70 8.41 

Ro 05-4336 Fc1c(C2=NCC(=O)Nc3c2cccc3)cccc1 6.51 7.87 

Ro 05-4520 Fc1c(C2=NCC(=O)N(C)c3c2cccc3)cccc1 7.47 7.39 

Proflazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CC(O)CO)c2cc1 6.85 7.25 

Triazolam Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc(Cl)cc3)cccc1 8.40 8.31 

4-hydroxymidazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(CO)nc3)-c2cc1 8.35 8.03 
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Table A.4 Training and test sets combinations for the evaluation of structural variability in the generation of 2D 

QSAR models. To understand if and how the structures variability present in the training and test set reported in 

Table A.3 could affect the statistic of the of the QSAR model generated (AutoQSAR model from Sec. 5.1.3) the 77 

compounds were divided according to their chemical structure. 1,4-benzodiazepines were separated from the triazolo, 

imidazo and thienotriazolo benzodiazepines and other two sets of training and test set were prepared, i.e. the 1,4-

BZD, and Other-BDZ training and test sets 

Training set 1,4 benzodiazepines  

 Molecule  Smile log 1/C 

Camazepam Clc1cc2C(c3ccccc3)=NC(OC(=O)N(C)C)C(=O)N(C)c2cc1 6.05 

Clonazepam Clc1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.74 

Delorazepam Clc1c(C2=NCC(=O)Nc3c2cc(Cl)cc3)cccc1 8.74 

Demoxepam ClC1=CC2=C(N(O)CC(=O)N=C2C=C1)c1ccccc1 6.51 

Desmethyltetrazepam Clc1cc2C(C3=CCCCC3)=NCC(=O)Nc2cc1 7.47 

Diazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(C)c2cc1 8.09 

Flunitrazepam Fc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.42 

Flurazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCN(CC)CC)c2cc1 7.83 

Halazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CC(F)(F)F)c2cc1 7.04 

Lorazepam Clc1c(C2=NC(O)C(=O)Nc3c2cc(Cl)cc3)cccc1 8.46 

Meclonazepam Clc1c(C2=NC(C)C(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.92 

Nitrazepam O=[N+]([O-])c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 8.00 

Nordazepam Clc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 8.03 

Oxazepam Clc1cc2C(c3ccccc3)=NC(O)C(=O)Nc2cc1 7.74 

Pinazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CC#C)c2cc1 7.03 

Ro 05-2904 FC(F)(F)c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.89 

Ro 05-3061 Fc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.40 

Ro 05-3328 Clc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.06 

Ro 05-3590 FC(F)(F)c1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.46 

Ro 05-4082 Clc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.66 

Ro 05-4435 Fc1c(C2=NCC(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.82 

Ro 05-4528 O=C1N(C)c2c(C(c3ccccc3)=NC1)cc(C#N)cc2 6.42 

Ro 05-4619 Clc1c(C2=NCC(=O)Nc3c2cc(N)cc3)cccc1 7.12 

Ro 05-4865 Fc1cc2C(c3ccccc3)=NCC(=O)N(C)c2cc1 7.77 

Ro 05-6820 Fc1c(C2=NCC(=O)Nc3c2cc(F)cc3)cccc1 8.13 

Ro 05-6822 Fc1c(C2=NCC(=O)N(C)c3c2cc(F)cc3)cccc1 8.29 

Ro 06-7263 ClN1C(=O)C(C)N=C(c2ccccc2)c2c1ccc(Cl)c2 7.31 

Ro 06-9098 O=[N+]([O-])c1cc2C(c3ccccc3)=NCC(=O)N(COC)c2cc1 6.37 

Ro 07-1986 ClN1C(=O)CN=C(c2c(F)cccc2)c2c1ccc(CCN)c2 8.08 

Ro 07-2750 Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCO)c2cc1 7.61 

Ro 07-9957 Ic1cc2C(c3c(F)cccc3)=NCC(=O)N(C)c2cc1 8.54 

Ro 08-3026 Clc1c(C2=NCC(=O)Nc3c2cc(COCCN)cc3)cccc1 7.20 
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Ro 08-9013 ClN1C(=O)CN=C(c2c(F)cccc2)c2c1ccc(CCOCC(=O)N)c2 7.37 

Ro 11-4878 Clc1cc2C(c3c(F)cccc3)=NC(C)C(=O)Nc2cc1 8.46 

Ro 11-6896 Fc1c(C2=NC(C)C(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.15 

Ro 12-6377 Fc1c(C2=NCC(=O)N(C)c3c2cc(NC(=O)NC)cc3)cccc1 6.34 

Ro 14-3074 Fc1c(C2=NCC(=O)Nc3c2cc(N=[N+]=[N-])cc3)cccc1 8.28 

Ro 17-2221 O=C1Nc2c(C(c3ccccc3)=NC1)cc(CCN)cc2 6.59 

Ro 20-1310 Clc1cc2C(c3ccccc3)=NCC(=O)N(C(C)(C)C)c2cc1 6.21 

Ro 20-1815 Fc1c(C2=NCC(=O)N(C)c3c2cc(N)cc3)cccc1 7.19 

Ro 20-2533 O=C1Nc2c(C(c3ccccc3)=NC1)cc(CC)cc2 7.44 

Ro 20-2541 Fc1c(C2=NCC(=O)N(C)c3c2cc(C#N)cc3)cccc1 7.52 

Ro 20-3053 Fc1c(C2=NCC(=O)Nc3c2cc(C(=O)C)cc3)cccc1 7.74 

Ro 20-5747 O=C1Nc2c(C(c3ccccc3)=NC1)cc(C=C)cc2 7.62 

Ro 20-7078 Clc1cc2C(c3c(F)cccc3)=NC(Cl)C(=O)Nc2cc1 8.28 

Ro 20-7736 Fc1c(C2=NCC(=O)N(C)c3c2cc(NO)cc3)cccc1 7.02 

Ro 22-4683 Fc1c(C2=NCC(=O)N(C(C)(C)C)c3c2cc([N+](=O)[O-])cc3)cccc1 6.52 

Temazepam Clc1cc2C(c3ccccc3)=NC(O)C(=O)N(C)c2cc1 7.80 

Tetrazepam Clc1cc2C(C3=CCCCC3)=NCC(=O)N(C)c2cc1 7.47 

Test set 1,4 benzodiazepines  

 Molecule  Smile log 1/C 

Prazepam 
C1CC1CN2C(=O)CN=C(C3=C2C=CC(=C3)Cl)C4=CC=CC=C4 

6.96 

Ro 05-2921 O=C1CN=C(c2ccccc2)c2ccccc2N1 6.45 

Ro 05-4336 
C1C(=O)NC2=CC=CC=C2C(=N1)C3=CC=CC=C3F 6.51 

Ro 05-4520 CN1C(=O)CN=C(C2=CC=CC=C21)C3=CC=CC=C3F 7.47 

7-Aminonitrazepam C1C(=O)NC2=C(C=C(C=C2)N)C(=N1)C3=CC=CC=C3 6.41 

Norfludiazepam C1C(=O)NC2=C(C=C(C=C2)Cl)C(=N1)C3=CC=CC=C3F 8.70 

Training set triazolo, imidazo, and thienotriazolobenzodiazepines  

 Molecule  Smile log 1/C 

Hydroxytriazolam Clc1c(C2=NCc3n(c(CO)nn3)-c3c2cc(Cl)cc3)cccc1 8.38 

Adinazolam Clc1cc2C(c3ccccc3)=NCc3n(c(CN(C)C)nn3)-c2cc1 6.87 

Alprazolam Clc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 7.70 

Brotizolam Brc1sc2-n3c(C)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.92 

Estazolam Clc1cc2C(c3ccccc3)=NCc3n(-c2cc1)cnn3 8.07 

Etizolam Clc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 8.51 

Midazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nc3)-c2cc1 8.32 

Ro 11-1465 Clc1c(C2=NCc3n(c(C)nn3)-c3sc(Cl)cc23)cccc1 8.85 

Ro 11-5073 Clc1cc2C(c3c(F)cccc3)=NC(C)c3n(c(C)nn3)-c2cc1 8.48 

Ro 11-5074 Clc1c(C2=NC(SC)c3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.47 

Ro 11-6679 S(C)C1N=C(c2c(F)cccc2)c2c(-n3c(C)nnc13)ccc([N+](=O)[O-])c2 8.40 

Ro 11-7800 Clc1c(C2=NCc3n(c(CN)nn3)-c3sc(Cl)cc23)cccc1 8.54 
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Ro 14-1636 Ic1sc2-n3c(C)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.82 

Ro 15-8670 Clc1cc2C(c3ccccc3)=NCc3c(C(=O)OCC)ncn3-c2cc1 7.82 

Ro 16-0529 Clc1c2C(c3ccccc3)=NCc3c(C(=O)OCC)ncn3-c2ccc1 7.85 

Ro 17-4582 Clc1c(C2=NCc3n(c(C)nn3)-c3sccc23)cccc1 8.46 

Ro 21-5205 Clc1cc2C(c3c(F)cccc3)=NCc3c(C(=O)OC)ncn3-c2cc1 8.13 

Ro 21-8482 Clc1c(C2=NCc3c(C(=O)N)nc(C)n3-c3c2cc(Cl)cc3)cccc1.N(=C)C 7.59 

Ro 22-1892 Clc1cc2C(c3ccccc3)=NCc3c(C(=O)OC(C)C)ncn3-c2cc1 7.92 

U-35005 Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc(Cl)cc3)cccc1 8.37 

Test set triazolo, imidazo, and thienotriazolobenzodiazepines 

 Molecule  Smile 

log 

1/C 

Ro 21-8137 C1C2=C(N=CN2C3=C(C=C(C=C3)Cl)C(=N1)C4=CC=CC=C4F)C(=O)N 8.46 

Ro 21-8384 C1C2=C(N=CN2C3=C(C=C(C=C3)Cl)C(=N1)C4=CC=CC=C4Cl)C(=O)N 8.42 

Triazolam CC1=NN=C2N1C3=C(C=C(C=C3)Cl)C(=NC2)C4=CC=CC=C4Cl 8.4 

α-hydroxymidazolam C1C2=CN=C(N2C3=C(C=C(C=C3)Cl)C(=N1)C4=CC=CC=C4F)CO 8.35 
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Table A.5 Statistics of the QSAR model manually calculated for 1,4-BZD, and Other-BDZ training and test sets 

Descriptors  1.4-BDZ Training set  1,4-BZD Test set 

  r2 q2 r2 

6 0.59 0.48 0.29 

5 0.6 0.47 0.29 

4 0.58 0.48 0.29 

3 0.57 0.46 0.31 

Descriptors  Other-BDZ Training set  Other-BDZ Test set 

  r2 q2 r2 

6 0.61 0.37 0.35 

5 0.59 0.42 0.29 

4 0.57 0.48 0.27 

3 0.6 0.43 0.31 
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Table A.6 Predicted value of biological activity (log1/c) for the 102 DBZDs identified by NPSfinder® calculated with 

the AutoQSAR model from Sec. 5.1.3. Log1/c represents the logarithm of the reciprocal of the molar inhibitory 

concentration (IC50)(nM) required to displace 50% of [3H]-diazepam from rat cerebral cortex. The DBZDs were 

divided into three biological activity groups according to the predicted log1/c values: low (5.80–6.99), medium (7.00–

7.99) and high (>= 8.00). These values were chosen after the evaluation of biological activity values available for 

four BDZs reported in literature as high potency ones, i.e. triazolam (Halcion, log 1/c= 8.40 ), lorazepam (Ativan, log 

1/c= 8.46 ), clonazepam (Klonopin, log 1/c= 8.74) and flunitrazepam (Rohypnol, log 1/c= 8.42).Note: The molecules 

are listed in decreasing order of predicted log1/c. The higher log1/c values should correspond to a higher biological 

activity 

Molecule SMILES Predicted log1/c 

High predicted biological activity 

Ro 09-9212 Clc1c(C2=NCC(=O)Nc3sc(Cl)cc23)cccc1 9.40 

Ro 07-5193 Clc1c(c(F)ccc1)C1=NCC(=O)Nc2c1cc(Cl)cc2 9.06 

Ro 20-8065 Clc1c(Cl)cc2NC(=O)CN=C(c3c(F)cccc3)c2c1 9.04 

Ro 07-5220 Clc1c(c(Cl)ccc1)C1=NCC(=O)N(C)c2c1cc(Cl)cc2 8.95 

Ro 07-3953 Clc1cc2C(c3c(F)cccc3F)=NCC(=O)Nc2cc1 8.81 

Flucotizolam Clc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 8.77 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3CN=C(c3c(Cl)cccc3)c2c1 8.77 

Flubrotizolam Brc1sc2-n3c(C)nnc3CN=C(c3c(F)cccc3)c2c1 8.67 

Phenazepam  Brc1cc2C(c3c(Cl)cccc3)=NCC(=O)Nc2cc1 8.61 

Ro 07-9749 Ic1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 8.60 

Clonazolam Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.58 

Ro 15-9270 Clc1c(C=2c3c(-n4c(C)nnc4CC=2)ccc([N+](=O)[O-])c3)cccc1 8.52 

Climazolam Clc1c(C2=NCc3n(c(C)nc3)-c3c2cc(Cl)cc3)cccc1 8.49 

Flunitrazolam Fc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 8.47 

Ro 20-8552 Clc1c(C)cc2C(c3c(F)cccc3)=NCC(=O)Nc2c1 8.42 

Methyl Clonazepam Clc1c(C2=NCC(=O)N(C)c3c2cc([N+](=O)[O-])cc3)cccc1 8.40 

Reclazepam Clc1c(C2=NCCN(C=3OCC(=O)N=3)c3c2cc(Cl)cc3)cccc1 8.39 

Uldazepam Clc1c(C2=NCC(NOCC=C)=Nc3c2cc(Cl)cc3)cccc1 8.39 

Zapizolam Clc1c(C2=NCc3n(-c4c2nc(Cl)cc4)cnn3)cccc1 8.38 

Ethyl Dirazepate Clc1c(C2=NC(C(=O)OCC)C(=O)Nc3c2cc(Cl)cc3)cccc1 8.35 

Difludiazepam (RO- 07-4065) Clc1cc2C(c3c(F)cccc3F)=NCC(=O)N(C)c2cc1 8.35 

Metizolam Clc1c(C2=NCc3n(-c4sc(CC)cc24)cnn3)cccc1 8.35 

Etizolam  Clc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 8.34 

Desmethyltriazolam Clc1c(C2=NCc3n(-c4c2cc(Cl)cc4)cnn3)cccc1 8.32 

Flubromazepam Brc1cc2C(c3c(F)cccc3)=NCC(=O)Nc2cc1 8.30 

Ro 13-3780 Brc1cc2C(c3c(F)cccc3F)=NCC(=O)N(C)c2cc1 8.26 

Lopirazepam Clc1c(C2=NC(O)C(=O)Nc3c2nc(Cl)cc3)cccc1 8.24 

Cloniprazepam Clc1c(C2=NCC(=O)N(CC3CC3)c3c2cc([N+](=O)[O-])cc3)cccc1 8.23 

Nifoxipam  Fc1c(C2=NC(O)C(=O)Nc3c2cc([N+](=O)[O-])cc3)cccc1 8.21 

Phenazolam  Brc1cc2C(c3c(Cl)cccc3)=NCc3n(c(C)nn3)-c2cc1 8.20 
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Diclazepam Clc1c(C2=NCC(=O)N(C)c3c2cc(Cl)cc3)cccc1 8.19 

4'-Chlorodiazepam Clc1cc2C(c3ccc(Cl)cc3)=NCC(=O)N(C)c2cc1 8.19 

3-Hydroxyphenazepam  Brc1cc2C(c3c(Cl)cccc3)=NC(O)C(=O)Nc2cc1 8.16 

Bentazepam O=C1Nc2sc3c(c2C(c2ccccc2)=NC1)CCCC3 8.16 

Cinazepam Brc1cc2C(c3c(Cl)cccc3)=NC(OC(=O)CCC(=O)O)C(=O)Nc2cc1 8.16 

Flualprazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nn3)-c2cc1 8.15 

Metaclazepam Brc1cc2C(c3c(Cl)cccc3)=NCC(COC)N(C)c2cc1 8.14 

Fluetizolam Fc1c(C2=NCc3n(c(C)nn3)-c3sc(CC)cc23)cccc1 8.14 

Pynazolam O=[N+]([O-])c1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 8.13 

Desmethylnitrazolam O=[N+]([O-])c1cc2C(c3ccccc3)=NCc3n(-c2cc1)cnn3 8.11 

Nitrazolam O=[N+]([O-])c1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 8.07 

Flubromazolam Brc1cc2C(c3c(F)cccc3)=NCc3n(c(C)nn3)-c2cc1 8.00 

Medium predicted biological activity 

Fletazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CC(F)(F)F)c2cc1 7.99 

7-BPDBD Brc1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.90 

Tuclazepam Clc1c(C2=NCC(CO)N(C)c3c2cc(Cl)cc3)cccc1 7.88 

SH-053-R-CH3-2'F Fc1c(C2=NC(C)c3c(C(=O)OCC)ncn3-c3c2cc(C#C)cc3)cccc1 7.81 

Pyclazolam Clc1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 7.80 

RO 21-8137 Clc1cc2C(c3c(F)cccc3)=NCc3c(C(=O)N)ncn3-c2cc1 7.79 

Estazolam  Clc1cc2C(c3ccccc3)=NCc3n(-c2cc1)cnn3 7.78 

Pyeazolam (SH-TRI-108) C(#C)c1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 7.78 

Flutoprazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CC3CC3)c2cc1 7.77 

Rilmazolam Clc1c(C2=NCc3n(nc(C(=O)N(C)C)n3)-c3c2cc(Cl)cc3)cccc1 7.77 

Deschloroetizolam C(C)c1sc2-n3c(C)nnc3CN=C(c3ccccc3)c2c1 7.73 

Zometapine Clc1cc(C2=NCCNc3n(C)nc(C)c23)ccc1 7.65 

Pypazolam Brc1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 7.64 

Imidazenil Brc1c(C2=NCc3c(C(=O)N)ncn3-c3c2cc(F)cc3)cccc1 7.64 

Menitrazepam O=[N+]([O-])c1cc2C(C3=CCCCC3)=NCC(=O)N(C)c2cc1 7.60 

Bromazolam Brc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 7.59 

MP-iii-022 Fc1c(C2=NC(C)c3c(C(=O)NC)ncn3-c3c2cc(C#C)cc3)cccc1 7.58 

Ro 05-4608 Clc1c(C2=NCC(=O)N(C)c3c2cccc3)cccc1 7.55 

Cyprazepam Clc1cc2C(=[N+]([O-])CC(NCC3CC3)=Nc2cc1)c1ccccc1 7.53 

Triflunordazepam FC(F)(F)c1cc2C(c3ccccc3)=NCC(=O)Nc2cc1 7.52 

Quazepam Clc1cc2C(c3c(F)cccc3)=NCC(=S)N(CC(F)(F)F)c2cc1 7.51 

N-Methylbromazepam Brc1cc2C(c3ncccc3)=NCC(=O)N(C)c2cc1 7.48 

Flutemazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(C)c2cc1 7.48 

Thionordazepam Clc1cc2C(c3ccccc3)=NCC(=S)Nc2cc1 7.45 

Iomazenil Ic1c2C(=O)N(C)Cc3c(C(=O)OCC)ncn3-c2ccc1 7.44 
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QH-II-066 O=C1N(C)c2c(C(c3ccccc3)=NC1)cc(C#C)cc2 7.42 

CP-1414S O=[N+]([O-])c1cc2N(c3ccccc3)C(=O)CC(N)=Nc2cc1 7.42 

Lofendazam Clc1cc2N(c3ccccc3)C(=O)CCNc2cc1 7.41 

Tofisopam  O(C)c1c(OC)ccc(C2=NN=C(C)C(CC)c3c2cc(OC)c(OC)c3)c1 7.36 

Fluadinazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(CN(C)C)nn3)-c2cc1 7.33 

Remimazolam Brc1cc2C(c3ncccc3)=NC(CCC(=O)OC)c3n(c(C)cn3)-c2cc1 7.32 

Ethyl Carfluzepate Clc1cc2C(c3c(F)cccc3)=NC(C(=O)OCC)C(=O)N(C(=O)NC)c2cc1 7.24 

Doxefazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(CCO)c2cc1 7.23 

Cinolazepam Clc1cc2C(c3c(F)cccc3)=NC(O)C(=O)N(CCC#N)c2cc1 7.20 

FG-8205 Clc1c2C(=O)N(C)Cc3c(-c4nc(C(C)C)on4)ncn3-c2ccc1 7.17 

Ro 17-1812 Clc1c2C(=O)N3C(c4c(C(=O)OCC5CC5)ncn4-c2ccc1)CC3 7.13 

Ro 15-4941 Clc1c2C(=O)N3C(c4c(C(=O)OCC)ncn4-c2ccc1)CCC3 7.09 

Fluloprazolam 
Fc1c(C2=NCC=3N(C(=O)C(=CN4CCN(C)CC4)N=3)c3c2cc([N+](=O)[O-

])cc3)cccc1 
7.08 

JQ1 Clc1ccc(C2=NC(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 7.06 

PWZ-029 Clc1cc2C(=O)N(C)Cc3c(COC)ncn3-c2cc1 7.04 

Arfendazam Clc1cc2N(c3ccccc3)C(=O)CCN(C(=O)OCC)c2cc1 7.03 

Flupyrazapon/ Zolazepam Fc1c(C2=NCC(=O)N(C)c3n(C)nc(C)c23)cccc1 7.00 

Sulazepam Clc1cc2C(c3ccccc3)=NCC(=S)N(C)c2cc1 7.00 

Low predicted biological activity 

Mexazolam Clc1c(C23OCC(C)N2CC(=O)Nc2c3cc(Cl)cc2)cccc1 6.98 

Premazepam O=C1Nc2c(c(C)n(C)c2)C(c2ccccc2)=NC1 6.97 

Ripazepam O=C1Nc2c(C)nn(CC)c2C(c2ccccc2)=NC1 6.96 

Tolufazepam Clc1c(C2=NCC(=O)N(CCS(=O)(=O)c3ccc(C)cc3)c3c2cc(Cl)cc3)cccc1 6.95 

7-Aminoflunitrazepam Fc1c(C2=NCC(=O)N(C)c3c2cc(N)cc3)cccc1 6.95 

Elfazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCS(=O)(=O)CC)c2cc1 6.85 

Clazolam Clc1cc2c(N(C)C(=O)CN3C2c2c(cccc2)CC3)cc1 6.78 

Fosazepam Clc1cc2C(c3ccccc3)=NCC(=O)N(CP(=O)(C)C)c2cc1 6.66 

Pivoxazepam Clc1cc2C(c3ccccc3)=NC(OC(=O)C(C)(C)C)C(=O)Nc2cc1 6.45 

Triflubazam FC(F)(F)c1cc2N(c3ccccc3)C(=O)CC(=O)N(C)c2cc1 6.43 

Gidazepam Brc1cc2C(c3ccccc3)=NCC(=O)N(CC(=O)NN)c2cc1 6.34 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(CN(CCC)CCC)cn4)ncn3-c2cc1 6.33 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 6.29 

Flutazolam Clc1cc2C3(c4c(F)cccc4)OCCN3CC(=O)N(CCO)c2cc1 6.26 

Devazepide O=C(c2cc1ccccc1[nH]2)N[C@H]3/N=C(\c4ccccc4N(C3=O)C)c5ccccc5 6.01 

Zomebazam O=C1N(C)c2n(C)nc(C)c2N(c2ccccc2)C(=O)C1 5.95 

Carburazepam Clc1cc2C(N(C(=O)N)CC(=O)N(C)c2cc1)c1ccccc1 5.86 
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Table A.7 Drug-like parameters for the 102 DBZDs identified by the NPSfinder. The parameters considered were : MW (molecular weight),TP vdw SA (Total polar vdw 

surface area ), SlogP ( Log Octanol/Water Partition Coefficient), lip_acc (Lipinski Acceptor Count), lip_don (Lipinski Donor Count), lip_druglike (Lipinski Druglike test), 

lip_violation (Lipinski Violation count). 

Molecule MW TP VDW SA SlogP lip_acc lip_don lip_druglike lip_violation 

Ro 09-9212 311.2 58.2 3.8 3 1 1 0 

Ro 07-5193 323.2 70.1 3.9 3 1 1 0 

Ro 20-8065 323.2 70.1 3.9 3 1 1 0 

Ro 07-5220 353.6 52.5 4.5 3 0 1 0 

Ro 07-3953 306.7 82.0 3.4 3 1 1 0 

Flucotizolam 332.8 17.6 4.0 4 0 1 0 

Ciclotizolam 461.8 5.7 6.4 4 0 1 1 

Flubrotizolam 377.2 17.6 4.2 4 0 1 0 

Phenazepam  349.6 58.2 3.9 3 1 1 0 

Ro 07-9749 380.2 70.1 3.2 3 1 1 0 

Clonazolam 353.8 46.3 3.8 7 0 1 0 

Ro 15-9270 352.8 40.6 3.9 6 0 1 0 

Climazolam 342.2 11.4 5.1 3 0 1 1 

Flunitrazolam 337.3 58.2 3.2 7 0 1 0 

Ro 20-8552 302.7 70.1 3.6 3 1 1 0 

Methyl Clonazepam 329.7 93.1 3.1 6 0 1 0 

Reclazepam 374.2 74.2 3.6 5 0 1 0 

Uldazepam 360.2 39.3 4.6 4 1 1 0 

Zapizolam 330.2 36.2 3.6 5 0 1 0 

Ethyl Dirazepate 377.2 75.4 3.7 5 1 1 0 

Difludiazepam (RO- 07-4065) 320.7 76.3 3.4 3 0 1 0 

Devazepide 408.5 77.6 4.06 3 1 1 0 

Metizolam 328.8 30.5 4.2 4 0 1 0 

Etizolam  342.9 5.7 4.5 4 0 1 0 

Desmethyltriazolam 329.2 30.5 4.2 4 0 1 0 

Flubromazepam 333.2 70.1 3.4 3 1 1 0 
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Ro 13-3780 365.2 76.3 3.5 3 0 1 0 

Lopirazepam 322.2 56.5 2.5 5 2 1 0 

Cloniprazepam 369.8 93.1 3.8 6 0 1 0 

Nifoxipam ( 3-OH-Norflunitrazepam) 315.3 103.4 1.8 7 2 1 0 

Phenazolam ( Clobromazolam, DM-ii-90) 387.7 5.7 4.6 4 0 1 0 

Diclazepam 319.2 52.5 3.8 3 0 1 0 

4'-Chlorodiazepam 319.2 52.5 3.8 3 0 1 0 

3-Hydroxyphenazepam  365.6 50.8 3.2 4 2 1 0 

Bentazepam 296.4 58.2 3.4 3 1 1 0 

Cinazepam 465.7 109.9 3.6 7 2 1 0 

Flualprazolam 326.8 17.6 4.0 4 0 1 0 

Metaclazepam 393.7 8.2 4.4 3 0 1 0 

Fluetizolam 326.4 17.6 4.0 4 0 1 0 

Pynazolam 320.3 52.0 2.5 8 0 1 0 

Desmethylnitrazolam 305.3 71.1 2.8 7 0 1 0 

Nitrazolam 319.3 46.3 3.1 7 0 1 0 

Flubromazolam 371.2 17.6 4.1 4 0 1 0 

Fletazepam 370.7 93.8 4.2 3 0 1 0 

7-BPDBD 315.2 58.2 3.2 3 1 1 0 

Tuclazepam 335.2 41.3 3.6 3 1 1 0 

SH-053-R-CH3-2'F 387.4 54.1 4.2 5 0 1 0 

Pyclazolam 309.8 11.4 3.2 5 0 1 0 

RO 21-8137 354.8 49.8 3.4 5 2 1 0 

Estazolam  294.7 30.5 3.5 4 0 1 0 

Pyeazolam (SH-TRI-108) 299.3 11.4 2.6 5 0 1 0 

Flutoprazepam 342.8 64.4 4.1 3 0 1 0 

Rilmazolam 400.3 49.1 3.9 6 0 1 0 

Deschloroetizolam 308.4 5.7 3.8 4 0 1 0 

Zometapine 274.8 5.7 3.0 4 1 1 0 

Pypazolam 354.2 11.4 3.4 5 0 1 0 
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Imidazenil 399.2 49.8 3.5 5 2 1 0 

Menitrazepam 299.3 93.1 2.9 6 0 1 0 

Bromazolam 353.2 5.7 4.0 4 0 1 0 

MP-iii-022 372.4 55.5 3.4 5 1 1 0 

Ro 05-4608 284.7 52.5 3.2 3 0 1 0 

Cyprazepam 339.8 66.5 3.7 4 1 1 0 

Triflunordazepam 304.3 67.2 3.8 3 1 1 0 

Quazepam 386.8 26.6 5.0 2 0 1 1 

N-Methylbromazepam 330.2 58.2 2.7 4 0 1 0 

Flutemazepam 318.7 57.1 2.6 4 1 1 0 

Thionordazepam 286.8 5.7 3.9 2 1 1 0 

Iomazenil 411.2 63.0 2.5 6 0 1 0 

QH-II-066 274.3 52.5 2.5 3 0 1 0 

CP-1414S 296.3 72.8 2.7 7 2 1 0 

Lofendazam 272.7 26.5 3.8 3 1 1 0 

Tofisopam  382.5 10.0 4.4 6 0 1 0 

Fluadinazolam 369.8 17.6 4.0 5 0 1 0 

Remimazolam 439.3 47.8 4.3 6 0 1 0 

Ethyl Carfluzepate 417.8 118.3 2.9 7 1 1 0 

Doxefazepam 348.8 92.7 2.0 5 2 1 0 

Cinolazepam 357.8 57.1 2.9 5 1 1 0 

FG-8205 357.8 62.2 3.6 7 0 1 0 

Ro 17-1812 357.8 63.0 3.1 6 0 1 0 

Ro 15-4941 345.8 63.0 3.1 6 0 1 0 

Fluloprazolam 448.5 90.4 2.4 9 0 1 0 

JQ1 457.0 36.5 5.6 6 0 1 1 

PWZ-029 291.7 34.7 2.8 5 0 1 0 

Arfendazam 344.8 61.8 4.4 5 0 1 0 

Flupyrazapon/ Zolazepam 286.3 64.4 2.0 5 0 1 0 

Sulazepam 300.8 5.7 4.0 2 0 1 0 
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Mexazolam 363.2 34.7 4.2 4 1 1 0 

Premazepam 253.3 58.2 2.5 4 1 1 0 

Ripazepam 268.3 58.2 2.3 5 1 1 0 

Tolufazepam 487.4 126.8 5.0 5 0 1 0 

7-Aminoflunitrazepam 283.3 64.4 2.2 4 2 1 0 

Elfazepam 408.9 152.3 3.1 5 0 1 0 

Clazolam 312.8 26.5 3.4 3 0 1 0 

Fosazepam 360.8 151.9 3.0 4 0 1 0 

Pivoxazepam 370.8 81.6 4.0 5 1 1 0 

Triflubazam 334.3 62.1 4.0 4 0 1 0 

Gidazepam 387.2 79.0 1.6 6 3 1 0 

Ro 48-8684 411.5 65.2 4.4 7 0 1 0 

Ro 48-6791 412.5 74.2 3.8 8 0 1 0 

Flutazolam 376.8 76.6 2.7 5 1 1 0 

Zomebazam 284.3 53.0 2.1 6 0 1 0 

Carburazepam 329.8 57.5 2.9 5 2 1 0 
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Table A.8 Composition of the training and test set used to build the QSAR models in Forge™. The log 1/c data 

obtained from the literature (Hadjipavlou-Litina and Hansch, 1994) -were experimentally determined using 

spectrometric measurements of [3H]-diazepam displacement.. The predicted values (3DQSAR model from Sec. 5.2.2) 

of log1/c for each molecule are presented as well 

Molecule log 1/C 3D Field QSAR Distance to model  RVM Sim 

Training set  

Brotizolam 8.9 9.1 Excellent 9.0 0.9 

Meclonazepam 8.9 8.9 Excellent 9.0 0.8 

Ro 11-1465 8.9 8.8 Excellent 8.7 0.9 

Ro 05-4435 8.8 8.8 Excellent 8.7 0.9 

Clonazepam 8.7 8.8 Excellent 8.7 0.8 

Flunitrazepam 8.4 8.8 Excellent 8.7 0.9 

Ro 05-4082 8.7 8.7 Excellent 8.6 0.9 

Norfludiazepam 8.7 8.7 Excellent 8.5 0.4 

Delorazepam 8.7 8.6 Excellent 8.6 0.9 

Ro 07-9957 8.5 8.6 Excellent 8.6 0.8 

Ro 11-5073 8.5 8.6 Excellent 8.4 0.7 

Lorazepam 8.5 8.6 Excellent 8.5 0.8 

Hydroxytriazolam 8.4 8.6 Excellent 8.6 0.9 

Etizolam 8.5 8.5 Excellent 8.5 0.9 

Ro 11-5074 8.5 8.5 Excellent 8.5 0.8 

Ro 17-4582 8.5 8.4 Excellent 8.5 0.8 

Triazolam 8.4 8.4 Excellent 8.3 0.9 

Ro 11-4878 8.5 8.3 Excellent 8.3 0.9 

Ro 11-6679 8.4 8.3 Excellent 8.3 0.8 

Midazolam 8.3 8.3 Excellent 8.2 0.9 

Ro 05-6822 8.3 8.3 Excellent 8.4 0.3 

Ro 14-3074 8.3 8.3 Excellent 8.3 0.8 

Ro 20-7078 8.3 8.3 Excellent 8.3 0.7 

4-hydroxymidazolam 8.4 8.2 Excellent 8.2 0.9 

Ro 07-1986 8.1 8.1 Excellent 8.2 0.9 

Ro 21-5205 8.1 8.0 Excellent 8.2 0.8 

Estazolam 8.1 8.0 Excellent 8.2 0.9 

Nordiazepam 8.0 8.0 Excellent 8.0 0.9 

Flurazepam 7.8 8.0 Excellent 7.8 0.7 

Ro 05-6820 8.1 7.9 Excellent 8.1 0.9 

Ro 22-1892 7.9 7.9 Excellent 7.9 0.8 

Ro 05-2904 7.9 7.9 Excellent 7.9 0.8 

Ro 15-8670 7.8 7.9 Excellent 8.0 0.8 

Diazepam 8.1 7.8 Excellent 7.8 0.9 

Oxazepam 7.7 7.8 Excellent 7.6 0.8 

Ro 16-0529 7.9 7.7 Excellent 7.5 0.8 

Ro 05-4865 7.8 7.7 Excellent 7.7 0.9 

Ro 20-3053 7.7 7.7 Excellent 7.6 0.8 

Ro 07-2750 7.6 7.7 Excellent 7.7 0.9 
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Alprazolam 7.7 7.6 Excellent 7.8 0.2 

Desmethyltetrazepam 7.5 7.6 Excellent 7.7 0.9 

Ro 20-5747 7.6 7.5 Excellent 7.5 0.9 

Ro 20-2541 7.5 7.4 Excellent 7.4 0.9 

Tetrazepam 7.5 7.4 Excellent 7.4 0.9 

Ro 08-9013 7.4 7.4 Excellent 7.4 0.8 

Ro 05-4520 7.5 7.4 Excellent 7.3 0.9 

Ro 20-2533 7.4 7.3 Excellent 7.5 0.8 

Ro 06-7263 7.3 7.3 Excellent 7.6 0.8 

Ro 08-3026 7.2 7.2 Excellent 7.3 0.7 

Ro 20-1815 7.2 7.2 Excellent 7.2 0.7 

Ro 05-4619 7.1 7.1 Excellent 7.1 0.8 

Ro 20-7736 7.0 7.1 Excellent 7.2 0.9 

Halazepam 7.0 7.0 Excellent 7.1 0.9 

Pinazepam 7.0 7.0 Excellent 7.1 0.7 

Prazepam 7.0 7.0 Excellent 6.9 0.1 

Adinazolam 6.9 6.9 Excellent 6.9 0.9 

Proflazepam 6.9 6.9 Excellent 6.8 0.8 

Ro 05-4336 6.5 6.8 Excellent 6.7 0.9 

Ro 05-2921 6.5 6.6 Excellent 6.5 0.9 

Ro 05-4528 6.4 6.5 Excellent 6.5 0.9 

Ro 22-4683 6.5 6.4 Excellent 6.6 0.8 

Ro 12-6377 6.3 6.4 Excellent 6.3 0.8 

7-Aminonitrazepam 6.4 6.4 Excellent 6.5 0.8 

Ro 20-1310 6.2 6.2 Excellent 6.2 0.9 

Test set  

Camazepam 6.1 6.1 Excellent 6.1 0.8 

Ro 14-1636 8.8 8.8 Excellent 8.9 0.9 

Ro 11-7800 8.5 8.7 Excellent 8.6 0.8 

U-35005 8.4 8.5 Excellent 8.6 0.9 

Ro 05-3590 8.5 8.4 Good 8.3 0.8 

Ro 11-6896 8.2 8.3 Excellent 8.4 0.9 

Nitrazepam 8.0 8.2 Excellent 8.3 0.8 

Temazepam 7.8 8.2 Excellent 8.0 0.9 

Ro 05-3328 7.1 7.8 Excellent 7.6 0.9 

Ro 21-8482 7.6 7.7 Poor 7.4 0.8 

Ro 05-3061 7.4 7.5 Excellent 7.6 0.9 

Ro 17-2221 6.6 7.1 OK 7.0 0.7 

Ro 06-9098 6.4 6.7 Excellent 6.7 0.8 
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Table A.9 Statistics for the 20 3D Filed QSAR model generated for DBZDs. In red is highlighted the chosen model. 

Here are presented the statistic of the QSAR models generated in the form of: the coefficient of determination (r2) 

which indicates the goodness of fit; the cross-validated coefficient of determination (q2) which indicates the 

robustness; the coefficient of determination for the test set (r2 test), which indicates the predictive power; the root 

mean square error (RMSE) as reliability measure; and Tau as a further parameter to assess the predictivity of the 

model. As r2, the closer the value of Tau is to one, the better the model. 

Comps  R^2 Q^2 Test RMSE Tau 

0 0 -0.031 0 0.773 -0.988 

1 0.636 0.393 0.553 0.593 0.46 

2 0.803 0.613 0.707 0.473 0.624 

3 0.851 0.636 0.775 0.459 0.648 

4 0.919 0.686 0.812 0.426 0.67 

5 0.957 0.698 0.799 0.418 0.695 

6 0.968 0.734 0.795 0.392 0.713 

7 0.974 0.745 0.785 0.384 0.717 

8* 0.981 0.753 0.815 0.378 0.72 

9 0.986 0.746 0.809 0.383 0.713 

10 0.99 0.732 0.823 0.394 0.713 

11 0.993 0.737 0.822 0.39 0.708 

12 0.995 0.734 0.837 0.392 0.708 

13 0.995 0.733 0.829 0.393 0.706 

14 0.996 0.726 0.832 0.398 0.704 

15 0.997 0.708 0.827 0.411 0.698 

16 0.998 0.702 0.82 0.415 0.69 

17 0.998 0.694 0.814 0.421 0.684 

18 0.999 0.687 0.81 0.425 0.685 

19 0.999 0.681 0.809 0.026 0.43 

20 0.999 0.675 0.81 0.024 0.433 
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Table A.10 Predicted values for the 102 classified/ unclassified DBZDs identified on-line with the 3D QSAR models 

generated with Forge™ (Sec 5.2.2). The entries are ranked for decreasing values of pred log 1/c. Note. In addition to 

the predicted value of log 1/c, other parameters important to evaluate each entry are included, i.e. the distance to 

model, which indicates how distant is the structure of the query DBZDs to those in the model; the Sim which give an 

indication of the quality of the alignment (1 is 100% alignment); and the logP which is an indication of the ability of 

that DBZDs to cross the brain barriers. 

Molecule 3D Field QSAR Distance to model RVM Sim SlogP 

Flubrotizolam 9.6 Excellent 9.5 0.9 4.2 

Clonazolam 9.5 Excellent 9.4 0.9 3.4 

Pynazolam 9.4 Good 9.4 0.9 2.1 

CP-1414S 9.4 Poor 6.4 0.7 2.5 

Fluclotizolam 9.1 Excellent 9.1 0.9 4.1 

MP-iii-022 9.1 Good 9.0 0.6 3.6 

Ro 09-9212 9.0 Excellent 9.0 0.9 3.9 

Ro 15-9270 8.9 Good 8.3 0.8 4.0 

3-Hydroxyphenazepam 8.9 Excellent 8.5 0.8 3.7 

Flunitrazolam 8.8 Excellent 8.7 0.9 3.1 

Fluetizolam 8.8 Excellent 8.7 0.9 4.0 

Desmethylnitrazolam 8.8 Excellent 8.8 0.9 2.4 

Imidazenil 8.8 Excellent 8.8 0.8 3.6 

Cinolazepam 8.8 Poor 8.6 0.7 3.6 

Methyl Clonazepam 8.7 Excellent 8.6 0.9 3.0 

Zapizolam 8.7 Excellent 8.8 0.9 3.4 

Etizolam  8.7 Excellent 8.7 0.9 4.2 

Flubromazolam 8.7 Excellent 8.8 0.9 4.2 

Arfendazam 8.7 Excellent 7.9 0.8 4.4 

Mexazolam 8.7 Poor 8.5 0.6 3.9 

Triflubazam 8.7 Excellent 8.0 0.9 3.7 

Bentazepam 8.6 Excellent 8.3 0.9 3.4 

Bromazolam 8.6 Excellent 8.4 0.9 3.8 

Metizolam 8.5 Excellent 8.7 0.9 3.9 

Nifoxipam 8.5 Excellent 8.5 0.8 2.4 

Nitrazolam 8.5 Excellent 8.5 0.9 2.7 

Estazolam  8.5 Excellent 8.5 0.9 3.3 

Deschloroetizolam 8.5 Excellent 8.5 0.9 3.6 

Phenazepam 8.4 Excellent 8.3 0.9 4.0 

Ro 20-8552 8.4 Good 8.4 0.8 3.9 

Tofisopam 8.4 Poor 6.6 0.6 4.4 

Zomebazam 8.4 Excellent 7.7 0.8 1.8 

Ro 20-8065 8.3 Good 8.3 0.9 4.2 

Flualprazolam 8.3 Excellent 8.3 0.9 4.0 

ETHYL Carfluzepate 8.3 Excellent 7.7 0.8 3.2 

Clazolam 8.3 Bad 7.8 0.6 3.3 

Ro 07-3953 8.2 Excellent 8.4 0.9 4.0 

Climazolam 8.2 Excellent 8.0 0.9 4.9 

Desmethyltriazolam 8.2 Excellent 8.4 0.9 4.0 
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Thionordazepam 8.2 Excellent 8.1 0.8 4.0 

Remimazolam 8.2 Good 8.3 0.6 4.3 

Flutazolam 8.2 Good 7.9 0.6 3 

Ro 07-5193 8.1 Excellent 8.2 0.9 4.2 

Difludiazepam- 07-4065 8.1 Excellent 8.2 0.9 4.0 

PHENAZOLAM CLOBROMAZOLAM 

DM-Ii-90 8.1 Excellent 8.2 0.9 4.4 

Pyclazolam 8.1 Excellent 8.2 0.9 3.0 

Flutemazepam 8.1 Excellent 8.1 0.9 3.3 

Ro 07-5220 8.0 Excellent 8 0.9 4.5 

Ciclotizolam 8.0 Good 8.0 0.8 6.2 

Cinazepam 8.0 Bad 7.9 0.6 3.7 

Pyrazolam 8.0 Excellent 8.2 0.9 3.2 

Triflunordazepam 8.0 Excellent 8.0 0.8 3.5 

Lofendazam 8.0 Poor 7.2 0.8 3.8 

Fluloprazolam 8.0 Bad 8.0 0.7 2.5 

Ro 48-6791 8.0 Bad 7.5 0.5 3.0 

Menitrazepam 7.9 Excellent 7.9 0.9 2.7 

Ripazepam 7.9 Excellent 7.8 0.8 2.0 

Cloniprazepam 7.8 Excellent 7.7 0.9 3.8 

Diclazepam 7.8 Excellent 7.7 0.9 3.9 

7-Bpdbd 7.8 Excellent 7.8 0.9 3.3 

Tuclazepam 7.8 Excellent 7.6 0.8 4.1 

Doxefazepam 7.8 Excellent 7.5 0.9 3.0 

Fg-8205 7.8 Bad 7.1 0.5 2.7 

Carburazepam 7.8 Poor 8.0 0.7 2.8 

Uldazepam 7.7 Poor 7.4 0.7 4.5 

Ro 13-3780 7.7 Excellent 8.1 0.9 4.2 

Sh-053-R-Ch3-2?F 7.7 Excellent 8 0.8 4.4 

Pyeazolam 7.7 Good 8 0.9 2.4 

Cyprazepam 7.7 Bad 6 0.7 3.8 

Flupyrazapon / Zolazepam 7.7 Excellent 7.6 0.8 2.0 

Sulazepam 7.7 Excellent 7.7 0.9 4.0 

JQ1 7.6 Bad 6.7 0.6 5.6 

Premazepam 7.6 Excellent 7.5 0.8 2.1 

Ro 07-9749 7.5 Excellent 7.6 0.9 3.8 

Reclazepam 7.5 Poor 7.7 0.8 3.6 

Zometapine 7.5 Excellent 6.6 0.7 2.7 

Ro 15-4941 7.5 Good 6.4 0.5 3.0 

Fosazepam 7.5 Good 7.1 0.8 4.1 

Ethyl Dirazepate 7.4 Good 7.5 0.8 3.8 

Flubromazepam 7.4 Excellent 7.7 0.9 3.7 

Lopirazepam 7.4 Excellent 7.3 0.8 2.9 

Ro 21-8137 7.4 Poor 7.5 0.8 3.4 

Iomazenil 7.4 OK 7.0 0.6 2.5 

4’-Chlorodiazepam 7.3 Good 7.0 0.9 3.9 
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Fletazepam 7.3 Good 7.5 0.9 4.5 

Quazepam 7.3 Excellent 7.2 0.8 5.3 

QH-II-066 7.3 Good 7.4 0.9 2.6 

Ro 17-1812 7.3 Bad 6.9 0.5 3.0 

Ro 05-4608 7.2 Excellent 7.2 0.9 3.2 

N-Methylbromazepam 7.2 Excellent 7.5 0.9 2.7 

Rilmazolam 7.1 OK 7.5 0.8 3.7 

Fluadinazolam 7.0 Excellent 7.1 0.9 3.8 

Tolufazepam 7.0 Poor 6.9 0.8 5.0 

Pivoxazepam 7.0 Poor 7.0 0.8 4.1 

Metaclazepam 6.9 Excellent 6.6 0.8 4.5 

Ro 48-8684 6.9 Bad 6.7 0.5 3.6 

7-Aminoflunitrazepam 6.8 Excellent 7.0 0.8 2.5 

Elfazepam 6.8 Good 7.0 0.9 3.4 

Flutoprazepam 6.6 Excellent 6.6 0.9 4.4 

Pwz-029 6.6 Poor 6.6 0.6 2.3 

Devazepide 6.4 Bad 5.9 0.5 3.7 

Gidazepam 6.4 Poor 6.4 0.9 1.7 
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Table A.11 DBZDs docking values. The 102 DBZDs identified by NPSfinder®, were docked as described in section 

4.3.8. In particular those DBZDs showing the triazole moiety were docked in PDB6HUO using the pharmacophore 

placement in Figure 4.15, while the others were docked in PDB6X3 using the one in Figure 4.16. For each 

molecule, several conformations with different S values (Kcal/mol) were returned. The ones showing the lowest S 

value (i.e., the lower the value, the more potent the binding) as well as the interaction with His102 were identified. 

The rmsd here reported measures the root mean square deviation between the pose before refinement and the pose 

after refinement, giving and idea of how the refined pose is close to the one suggested by the docking superposition 

points. 

Molecule S rmsd Molecule S rmsd 

3-Hydroxyphenazepam  -6.6 1.2 MP-III-022 -5.6 1.8 

4'-Chlorodiazepam -6.6 0.9 Menitrazepam -5.9 1.1 

7-Aminoflunitrazepam -5.9 0.9 Metaclazepam -6.1 1.4 

7-BPDBD -6.3 1.2 Methyl Clonazepam -5.8 1.0 

Arfendazam -6.1 1.6 Metizolam -6.9 0.9 

Bentazepam -6.3 1.3 Mexazolam 51.0 1.8 

Bromazolam -5.3 1.6 N-Methylbromazepam -5.5 0.7 

CP-1414S -6.8 1.2 Nifoxipam ( 3-OH-Norflunitrazepam) -6.9 1.6 

Carburazepam -4.9 1.3 Nitrazolam -7.4 1.5 

Ciclotizolam -6.8 2.0 PWZ-029 -6.3 0.4 

Cinazepam -6.8 1.4 Phenazepam  -6.7 1.1 

Cinolazepam -7.0 1.3 Phenazolam  -5.7 1.6 

Clazolam -7.1 2.0 Pivoxazepam -2.1 1.6 

Climazolam -5.0 1.8 Premazepam -4.9 1.3 

Clonazolam -7.2 1.0 Pyclazolam -6.9 0.7 

Cloniprazepam -6.9 1.9 Pyeazolam (SH-TRI-108) -6.7 1.2 

Cyprazepam -5.6 2.0 Pynazolam -7.7 0.9 

Deschloroetizolam -6.9 2.0 Pypazolam -6.9 1.2 

Desmethylnitrazolam -7.3 0.9 QH-II-066 -6.6 1.5 

Desmethyltriazolam -7.0 1.1 Quazepam -5.3 1.7 

Devazepide 3.8 1.9 RO 21-8137 -5.2 1.5 

Diclazepam -7.0 1.7 Reclazepam -7.1 1.0 

Difludiazepam (RO- 07-

4065) -6.9 1.0 Remimazolam -6.9 1.1 

Doxefazepam -5.3 2.0 Rilmazolam -7.8 1.6 

Elfazepam -6.9 1.9 Ripazepam -7.8 0.9 

Estazolam  -6.6 0.8 Ro 05-4608 -4.2 1.3 

Ethyl Carfluzepate -6.6 1.8 Ro 07-3953 -5.4 1.3 

Ethyl Dirazepate -6.7 1.3 Ro 07-5193 -6.8 2.0 

Etizolam  -5.9 1.7 Ro 07-5220 -4.1 1.0 

FG-8205 -3.8 1.4 Ro 07-9749 -6.4 1.6 

Fletazepam -5.7 1.5 Ro 09-9212 -5.4 0.9 

Fluadinazolam -7.5 1.3 Ro 13-3780 -7.0 1.9 

Flualprazolam -6.6 1.3 Ro 15-4941 -6.7 1.8 

Flubromazepam -6.5 1.6 Ro 15-9270 -6.6 1.6 

Flubromazolam -7.4 1.3 Ro 17-1812 -7.0 1.4 

Flubrotizolam -7.1 1.3 Ro 20-8065 -5.5 1.2 

Flucotizolam -6.5 1.6 Ro 20-8552 -6.6 1.3 
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Fluetizolam -7.3 1.7 Ro 48-6791 -2.4 1.7 

Fluloprazolam -7.3 1.7 Ro 48-8684 -7.6 1.7 

Flunitrazolam -7.8 0.8 SH-053-R-CH3-2'F -4.7 1.5 

Flupyrazapon -6.0 1.6 Sulazepam -6.7 1.0 

Flutazolam -6.0 1.8 Thionordazepam -5.2 1.3 

Flutemazepam -5.0 1.5 Tofisopam  -7.0 1.6 

Flutoprazepam -5.5 1.3 Tolufazepam -6.4 2.0 

Fosazepam -6.6 1.7 Triflubazam -5.0 1.8 

Gidazepam -7.0 1.3 Triflunordazepam -4.2 1.5 

Imidazenil -6.4 1.6 Tuclazepam -6.6 2.0 

Iomazenil -6.1 0.9 Uldazepam -6.0 1.2 

JQ1 -6.2 1.9 Zapizolam -6.4 1.0 

Lofendazam -4.8 1.3 Zomebazam -5.9 1.4 

Lopirazepam -5.5 1.2 Zometapine -5.4 1.0 
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Table A.12. Ion channel ligands and GPCR-A ligands which matched the pharmacophore created by the top ten DBZDs (Figure 5.11). these hits resulted from the filtering 

of two databases from Zinc15, the of ion channel ligands (25376 entries) and the G-protein-coupled receptors (GPCR)-A ligands (20682 entries).  

Ion Channel (Zinc) 

ZINC_ID SMILES 

ZINC000014211214 FC(F)(F)c1cc(C(F)(F)F)cc(CN(c2nn(C)nn2)[C@@]2c3nc(C)ccc3N(C(=O)OC(C)C)[C@](CC)C2)c1 

ZINC000040952830 O(C)c1c(-c2[nH]ccn2)cc(Oc2c(N)nc(N)nc2)c(C(C)C)c1 

ZINC000000000903 Clc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 

ZINC000000000903 Clc1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 

ZINC000000002212 Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc(Cl)cc3)cccc1 

ZINC000095582529 Clc1cc(-c2n(CCOC)ncc2)c(Oc2c(C#N)cc(S(=O)(=O)Nc3sncn3)cc2)cc1 

ZINC000095583579 S(=O)(=O)(Nc1sccn1)c1cc(C#N)c(Oc2c(-c3n(C)ncc3)ccc(C)c2)cc1 

ZINC000095583484 Clc1cc(Oc2c(F)cc(S(=O)(=O)Nc3sccn3)cc2)c(-c2[nH]ncc2)cc1 

ZINC000095581718 Clc1cc(-c2n(C)ncc2)c(Oc2c(F)cc(S(=O)(=O)Nc3snc(C)n3)cc2)cc1 

ZINC000045245125 Clc1c(Cl)ccc([C@]2C(c3n(C)c4c(Cl)cccc4n3)=C(C)Nc3n2ncc3)c1 

ZINC000045252889 Clc1c(Cl)ccc([C@]2C(c3n(C)c4c(n3)cc(C#N)cc4)=C(C)Nc3n2ncc3)c1 

ZINC000095560528 Fc1ccc(-c2nc([C@]3N[C@](c4nc(C)on4)(c4cn(C)nc4)c4[nH]c5c(c4C3)cccc5)[nH]c2)cc1 

GPCR_A (Zinc) 

ZINC_ID SMILES 

ZINC000000607971 Clc1c([C@](OCc2c(Cl)cc(Cl)cc2)Cn2cncc2)ccc(Cl)c1 

ZINC000013821393 Clc1c(C2=NCc3n(c(C)nn3)-c3sc(C#CCO)cc23)cccc1 

ZINC000002570830 Brc1sc2-n3c(C)nnc3CN=C(c3c(Cl)cccc3)c2c1 

ZINC000005013442 Clc1cc2C(c3c4c([nH]c3)cccc4)(c3c4c([nH]c3)cccc4)C(=O)Nc2cc1 
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Table A.13. Composition of the training and test set used to build the QSAR models in Forge™ for fentanyl-like NSOs. The activity data were obtained by ChEMBL target 

report on MOR CHEMBL233 For this target only the Ki values were analysed and used. The biological activity Ki is identified as the ‘inhibition constant’ and indicates how 

potent a ligand is in inhibiting a process; Ki is the concentration required to produce half the maximum inhibition (Neubig et al., 2003). Ki is expressed in molar units (M), 

where 1 M is equivalent to 1 mol/L (Neubig et al., 2003). Only molecules for which the displacement of the radioligand [3H]DAMGO from the human MOR was used to 

determine of all of the Ki values, were selected. The binding data were converted to their negative decimal logarithm pKi (pKi = -logKi). In the table the predicted values 

obtained with the 3D QSAR model generated in Section 7.1.2 are reported. 

Training set  

Title Structure pKi  Field 

QSAR  

Dist to model  RF RVM 

1 FCOC(=O)C1(N(c2ccccc2)C(=O)CC)CC[NH+](CC1)CCc3ccccc3 9.9 10.1 Excellent 11.2 9.9 

2 O=C1[C@H](c2ccccc2N1C3CC[NH+](CC3)CCC(c4ccccc4)c5ccccc5)CC 8.7 8.9 Excellent 8.7 8.5 

3 O=C1Cc2ccccc2N1C3CC[NH+](C4C5CCCC4CCC5)CC3 8.6 8.7 Excellent 8.7 8.6 

4 O=C1[C@@H](c2ccccc2N1C3CC[NH+]([C@@H]4c5cccc6CCC[C@H](c65)CC4)CC3)CC 8.1 8.2 Excellent 7.9 8.0 

5 O=C1[C@H](c2ccccc2N1C3CC[NH+](CC3)Cc4cccc5c4cc[nH]5)CC 8.0 7.6 Excellent 7.7 7.8 

6 OCCOc1cccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)C)CC4)c1 8.0 7.6 Excellent 7.6 7.9 

7 O=C1Cc2ccccc2N1C3CC[NH+](C4CCC(CC4)C(CC)(C)C)CC3 7.8 7.9 Excellent 7.9 7.8 

8 O=C1Cc2ccccc2N1C3CC[NH+]([C@H]4c5cccc6CCC[C@H](c65)CC4)CC3 7.5 7.5 Excellent 7.5 7.4 

9 O=C(N(C1CC[NH+](CC1)CCc2ccccc2)CCCCCCCCNC(N)=[NH2+])CC 7.4 7.5 Excellent 7.1 7.3 

10 Clc1c(F)ccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)C)CC4)c1 7.4 7.0 Excellent 7.0 7.0 

11 O=C(N(C)C)[C@@H]1Cc2ccccc2N1C(=O)CC[NH+]3CCC(CC3)c4ccccc4C 7.2 7.0 Excellent 7.0 6.9 

12 Clc1ccc(O)c2CN[C@@H](C[NH+]3CCC4(CC3)c5ccccc5CC4)Cc12 7.2 7.4 Excellent 7.1 7.1 

13 O=C(N(C)C)[C@@H]1Cc2ccccc2N1C(=O)CC[NH+]3CCC(CC3)c4ccccc4 7.1 7.1 Excellent 7.0 7.0 

14 O=C(N1c2ccccc2C[C@H]1C(=O)N(C)C)CC[NH+]3CCC(CC3)c4c(cccc4C)C 7.1 6.8 Excellent 7.0 6.8 

15 O=C(N(C)C)[C@@H]1Cc2ccccc2N1C(=O)CC[NH+]3CC(CC3)c4ccccc4C 6.9 7.0 Excellent 6.8 7.0 

16 OCC[NH+]1C[C@@H]2[C@H](C1)CN(C32CC[NH+](C4CCC(CC4)C(C)C)CC3)c5ccccc5 6.8 6.5 Excellent 6.7 6.5 

17 O=C1c2ccccc2C[C@H](N1C)C[NH+]3CCC4(CC3)c5ccccc5CC4 6.6 6.5 Excellent 6.6 6.7 

18 CC(C1CCC([NH+]2CCC3([C@H]4[C@H](C[NH+](C4)CCCC)CN3c5ccccc5)CC2)CC1)C 6.6 6.6 Excellent 6.6 6.7 

https://en.wikipedia.org/wiki/Molar_concentration
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Liter
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19 Fc1ccc(C2CC[NH+](CC2)C[C@@H]3Cc4ccccc4CN3)c(c1)C 6.5 6.7 Excellent 6.6 6.7 

20 [NH+]1([C@@H]2c3cccc4cccc(C2)c43)CCC(CC1)c5c[nH]c6c5cccn6 6.4 6.4 Excellent 6.1 6.2 

21 O=C(N1CCC2(CC1)c3ccccc3CC2)[C@@H]4Cc5ccccc5C[NH2+]4 6.4 6.2 Excellent 6.5 6.3 

22 Fc1ccc2c(c(C3CC[NH+](CC3)Cc4cccc5ccccc54)c[nH]2)c1 6.3 6.5 Excellent 6.5 6.8 

23 Fc1ccc2c(n(C[C@H](O)C[NH+](C)C)cc2C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c1 6.1 6.1 Excellent 6.2 6.0 

24 Fc1ccc2c([nH]cc2C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c1 6.1 6.5 Excellent 6.3 6.2 

25 O=C(NCC1(Nc2ccccc2)CC[NH+](CC1)Cc3ccccc3)CNC(N)=[NH2+] 5.3 5.1 Excellent 3.9 5.3 

26 [NH+]1(CC2CCCCC2)CCC(CC1)c3c[nH]c4c3cccn4 5.3 5.5 Excellent 5.2 5.3 

27 O=C1[C@H](c2ccccc2N1C3CC[NH+](CC3)CCCc4ccccc4)CC 8.0 7.9 Excellent 7.9 7.7 

28 CC(C1CCC([NH+]2CCC3([C@H]4[C@H](C[NH+](C4)CCN5CCOCC5)CN3c6ccccc6)CC2)CC1)C 6.8 6.7 Excellent 6.7 6.7 

29 Clc1ccc2c(c(C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c([nH]2)C)c1 6.6 6.4 Excellent 6.6 6.4 

30 O=C(N1Cc2ccccc2C[C@@H]1C[NH+]3CCC4(CC3)c5ccccc5CC4)N 7.0 7.3 Excellent 7.4 7.2 

31 OCC1([NH+]2CCC(n3c4ccccc4[nH+]c3N5C[C@@H]6C[NH+](C[C@@H]6C5)Cc7ccccc7)CC2)CCCCCCC1 6.9 6.9 Excellent 6.8 6.9 

32 OCC1([NH+]2CCC(n3c4ccccc4[nH+]c3N5C[C@@H]6C[NH2+]C[C@@H]6C5)CC2)CCCCCCC1 6.7 6.6 Excellent 6.7 6.8 

33 O=C(OC)C1([NH+]2CCC(n3c4ccccc4[nH+]c3N5CCN(CC5)C)CC2)CCCCCCC1 6.4 6.6 Excellent 6.5 6.6 

34 C[NH+]1C[C@@H]2CN(C3([C@@H]2C1)CC[NH+](C4CCCCCCCCC4)CC3)c5ccccc5 7.1 7.5 Excellent 7.0 7.3 

35 Clc1ccc2c(c(C3CC[NH+](CC3)Cc4cccc5ccccc54)c([nH]2)C)c1 6.1 6.2 Excellent 6.0 6.5 

36 [NH3+]Cc1cccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)C)CC4)c1 7.7 7.9 Excellent 7.5 7.8 

37 O=C1Cc2ccccc2N1C3CC[NH+]([C@H]4c5cccc6CCC[C@@H](c65)CC4)CC3 7.1 7.1 Excellent 7.0 6.9 

38 O=C1[C@H](c2ccccc2N1C3CC[NH+](CC3)CCCCc4ccc(-c5ccccc5)cc4)CC 6.8 6.8 Excellent 7.0 7.0 

39 Clc1ccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)CO)CC4)cc1 6.8 6.9 Excellent 6.9 7.1 

40 [NH+]1(C[C@@H]2Cc3ccccc3CN2)CCC4(CC1)c5ccccc5CC4 6.7 6.8 Excellent 6.8 6.8 

41 Clc1c(F)ccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)CO)CC4)c1 6.5 6.5 Excellent 6.7 6.8 

42 CCCCCC[NH+]1CCC(CC1)c2c[nH]c3c2cccn3 5.3 5.7 Excellent 4.9 5.6 

43 OCC1([NH+]2CCC(n3c(N4CCNC(C4)(C)C)[nH+]c5ccccc53)CC2)CCCCCCC1 6.4 6.4 Excellent 6.4 6.3 

44 O=C(NCC1(Nc2cc(OC)cc(OC)c2)CC[NH+](CC1)Cc3ccccc3)CNC(N)=[NH2+] 6.2 6.0 Excellent 6.1 6.0 
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45 C[NH+]1C[C@@H]2[C@H](C1)CN(C32CC[NH+](C4CCC(CC4)C(C)C)CC3)c5ccccc5 6.5 6.4 Excellent 6.5 6.4 

46 Clc1ccc2c(c(C3CC[NH+](CC3)Cc4ccccc4)c[nH]2)c1 6.6 6.6 Excellent 6.7 7.0 

47 F[C@H](C(=O)N(C1(CC[NH+](CC1)CCc2cccs2)COC)c3ccccc3)C 9.9 9.5 Excellent 11.0 9.7 

48 FCCCCC[NH+]1CCC(N(C(=O)CC)c2ccccc2)(CC1)C(OC)=O 9.1 9.2 Excellent 8.7 9.0 

49 O=C1Cc2ccccc2N1C3CC[NH+](CC3)[C@H](c4ccccc4)C 8.6 8.5 Excellent 8.4 8.4 

50 O=C1Cc2ccccc2N1C3CC[NH+]([C@@H](C4CCCCC4)C)CC3 8.5 8.4 Excellent 8.3 8.8 

51 O=C1[C@H](c2ccccc2N1C3CC[NH+]([C@H]4Cc5ccccc5CC4)CC3)CC 8.0 8.3 Excellent 8.1 8.2 

52 C[NH+]1Cc2ccccc2C[C@@H]1CN3CCC4(CC3)c5ccccc5CC4 7.2 7.2 Excellent 7.0 6.9 

53 O(c1ccc(C[NH+]2CCC(CC2)c3c[nH]c4c3cccn4)cc1)c5ccccc5 6.5 6.4 Excellent 6.4 6.3 

54 Fc1ccc(N2C[C@H]3C[NH+](C[C@H]3C42CC[NH+](C5CCC(CC5)C(C)C)CC4)CC6CC6)cc1 6.2 6.3 Excellent 6.4 6.6 

55 O=C(N(CC)C)C1(CC[NH+](CC1)CCCCCC)c2cccc(O)c2 8.4 8.2 Excellent 8.3 7.9 

56 OCC1([NH+]2CCC(N3C(=O)Nc4ccccc43)CC2)CCCCCCC1 7.8 7.8 Excellent 7.9 7.9 

57 Clc1ccc(O)c2CN[C@H](C[NH+]3CCC(CC3)c4ccc(F)cc4C)Cc12 6.4 6.4 Excellent 6.5 6.2 

58 O=C(N1c2ccccc2C[C@H]1C(=O)N(C)C)CC[NH+]3CCC([NH+]4CCCCC4)CC3 6.4 6.3 Excellent 6.4 6.3 

59 O=C1[C@H](c2ccccc2N1C3CC[NH+]([C@H]4c5ccccc5CCC4)CC3)CC 9.0 9.0 Excellent 9.3 9.0 

60 OCC1([NH+]2CCC(n3c4ccccc4[nH+]c3N5CCN(CC5)C)CC2)CCCCCCC1 6.6 6.2 Excellent 6.6 6.7 

61 O=C(OC)[C@]1(N(c2ccccc2)C(=O)CC)CC[NH+](C[C@H]1C)CCc3ccccc3 9.9 9.8 Excellent 10.1 9.9 

62 O=C(N1Cc2ccccc2C[C@@H]1C[NH+]3CCC4(CC3)c5ccccc5CC4)C 7.1 7.1 Excellent 7.2 7.0 

63 CC(C1CCC([NH+]2CCC3([C@@H]4CN(C[C@@H]4CN3c5ccccc5)c6ccccc6)CC2)CC1)C 6.9 7.0 Excellent 6.9 6.9 

64 O1c2ccccc2C[C@H](C[NH+]3CCC4(CC3)c5ccccc5CC4)C1 7.3 7.7 Excellent 7.5 7.4 

65 CC(C1CCC([NH+]2CCC3([C@@H]4C[NH+](C[C@@H]4CN3c5ccccc5)Cc6ccccc6)CC2)CC1)C 6.8 6.9 Excellent 6.8 6.8 

66 CC1([NH+]2CCC(n3c(N4C[C@@H](N[C@@H](C4)C)C)[nH+]c5ccccc53)CC2)CCCCCCC1 7.7 7.5 Excellent 7.4 7.3 

67 Clc1c(F)ccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCC5)CO)CC4)c1 6.4 6.4 Excellent 6.8 6.5 

68 O=C1[C@@H](c2ccccc2N1C3CC[NH+](C4CCC(CC4)C(C)C)CC3)C 8.4 8.2 Excellent 8.3 8.2 

69 FCCCCC[NH+]1CCC(N(C(=O)CC)c2ccccc2)CC1 7.9 7.9 Excellent 7.4 7.7 

70 Oc1cccc2c1CN[C@@H](C[NH+]3CCC4(CC3)c5ccccc5CC4)C2 6.5 6.6 Excellent 6.6 6.5 



342 

 

71 N/C(=[NH+]\c1ccc2c(nc(n2C3CC[NH+](CC3)C)Cc4ccc(OCC)cc4)c1)c5cccs5 5.5 5.6 Excellent 5.6 5.6 

72 O=C1[C@H](c2ccccc2N1C3CC[NH+](C4CCC(CC4)C(C)C)CC3)CC 9.0 8.8 Excellent 8.7 8.7 

73 O=C1[C@@H](c2ccccc2N1C3CC[NH+]([C@H]4c5cccc6CCC[C@H](c65)CC4)CC3)CC 8.8 8.9 Excellent 8.7 8.7 

74 O=C1Cc2ccccc2N1C3CC[NH+](C4CCC(CC4)CCC)CC3 8.3 7.9 Excellent 8.2 8.0 

75 CC1([NH+]2CCC(n3c(nc4ccccc43)-c5cc6ccccc6o5)CC2)CCCCCCC1 7.0 7.0 Excellent 6.9 7.2 

76 Clc1cccc2c1[nH]cc2C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3 6.6 6.7 Excellent 6.6 6.6 

77 OCC1([NH+]2CCC(n3c(N4CCN[C@@H](C4)C)[nH+]c5ccccc53)CC2)CCCCCCC1 6.4 6.2 Excellent 6.5 6.1 

78 CC(C1CCC([NH+]2CCC3([C@@H]4C[NH2+]C[C@@H]4CN3c5ccccc5)CC2)CC1)C 6.3 6.3 Excellent 6.4 6.5 

79 Fc1ccc2c(c(C3CC[NH+](CC4CCCCCCC4)CC3)cn2C[C@H](O)C[NH+](C)C)c1 5.6 5.5 Excellent 5.7 5.8 

80 O=C(NCC1(Nc2cccc3ccccc32)CC[NH+](CC1)Cc4ccccc4)CNC(N)=[NH2+] 5.7 5.6 Excellent 5.5 5.9 

81 Fc1ccc2c(c(C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c[nH]2)c1 6.3 6.4 Excellent 6.3 6.5 

82 O=C1Cc2ccccc2N1C3CC[NH+](C4CCCCCCC4)CC3 7.5 7.8 Excellent 7.5 7.7 

83 Cn1c2c(c(C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c1)cccn2 6.1 6.1 Excellent 5.8 6.2 

84 CC1([NH+]2CCC(n3c(nc4ccccc43)-c5ccc6cc[nH]c6c5)CC2)CCCCCCC1 6.8 6.5 Excellent 6.7 6.7 

85 Fc1ccc(C2CC[NH+](CC2)CCC(=O)N3c4ccccc4C[C@H]3C(=O)N(C)C)cc1 6.6 6.6 Excellent 6.7 6.6 

86 CC1([NH+]2CCC(n3c4ccccc4nc3[C@H]5CCC[NH+](C5)C)CC2)CCCCCCC1 8.0 8.0 Excellent 7.5 8.0 

87 [NH+]1(CC2CCCCCCC2)CCC(CC1)c3c[nH]c4c3cccn4 5.7 5.6 Excellent 5.1 5.6 

88 O=C(N(C)C)[C@@H]1Cc2ccccc2N1C(=O)CC[NH+]3CCC(CC3)c4ccccc4 6.3 6.7 Excellent 6.6 7.1 

89 [NH+]1(CCC(CC1)c2c[nH]c3c2cccn3)Cc4cccc5ccccc54 6.5 6.4 Excellent 6.3 6.1 

90 OCCn1c2c(c(C3CC[NH+]([C@H]4c5cccc6cccc(C4)c65)CC3)c1)cccn2 6.3 6.4 Excellent 6.2 6.4 

91 Clc1cccc2c1[nH]cc2C3CC[NH+](CC4CCCCCCC4)CC3 6.4 6.6 Excellent 6.5 6.6 

92 O=C1CCc2ccccc2N1C3CC[NH+](C4CCC(CC4)C(C)C)CC3 8.1 8.1 Excellent 7.8 7.9 

93 Fc1ccc2c(c(C3CC[NH+](CC4CCCCCCC4)CC3)c[nH]2)c1 6.0 6.0 Excellent 6.0 6.1 

94 O=C1[C@H](c2ccccc2N1C3CC[NH+](C4CCCCCCC4)CC3)C 8.0 8.1 Excellent 7.9 7.8 

Training set  

1 O=C(OC)C1(N(c2ccccc2)C(=O)CC)CC[NH+](CC1)CCc3ccccc3 10.2 9.9 Excellent 10.6 10.0 
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2 O=C1[C@H](c2ccccc2N1C3CC[NH+](C4CCCCCCC4)CC3)CC 7.8 8.0 Excellent 7.6 8.0 

3 O=C1Cc2ccccc2N1C3CC[NH+]([C@@H]4c5cccc6CCC[C@H](c65)CC4)CC3 7.4 7.4 Good 7.4 7.5 

4 FC(F)(F)c1cccc(-c2nc3ccccc3n2C4CC[NH+](C5(CCCCCCC5)C)CC4)c1 7.2 7.3 OK 7.0 7.0 

5 C[NH+]1C[C@@H]2CN(C3([C@@H]2C1)CC[NH+]([C@H]4CC[C@@H]5CCCC[C@@H]5C4)CC3)c6ccccc

6 

6.4 6.5 Excellent 6.4 6.5 

6 O=C1Cc2ccccc2N1C3CC[NH+](C4CCC(CC4)C(C)C)CC3 8.1 8.1 Excellent 8.2 8.4 

7 [NH+]1(C[C@H]2Cc3ccccc3CC2)CCC4(CC1)c5ccccc5CC4 6.5 6.8 Excellent 6.5 6.8 

8 O=C(N(C1CC[NH+](CC1)CCc2ccccc2)CCCNC(N)=[NH2+])CC 7.6 7.3 Poor 7.6 7.6 

9 Brc1ccc(O)c2CN[C@@H](C[NH+]3CCC4(CC3)c5ccccc5CC4)Cc12 6.9 6.6 Excellent 6.8 6.7 

10 Oc1ccc2CN[C@H](C[NH+]3CCC4(CC3)c5ccccc5CC4)Cc2c1 6.4 6.5 Excellent 6.7 6.5 

11 O=C1CCc2ccccc2N1C3CC[NH+](C4CCCCCCC4)CC3 7.3 7.3 Excellent 7.4 7.6 

12 FCCOC(=O)C1(N(c2ccccc2)C(=O)CC)CC[NH+](CC1)CCc3ccccc3 8.9 8.9 OK 8.9 8.8 

13 Fc1ccc(C2CC[NH+](CC2)CCC(=O)N3c4ccccc4C[C@H]3C(=O)N(C)C)c(C)c1 6.9 6.6 Good 7.0 6.8 

14 O=C1C[C@H](c2ccccc2N1C3CC[NH+](C4CCCCCCC4)CC3)C 7.6 7.7 Excellent 7.7 7.9 

15 F[C@H](C(=O)N(C1CC[NH+](CC1)CCc2ccccc2)c3ccccc3)C 8.7 9.1 Excellent 9.4 9.1 

16 C[NH+]1C[C@@H]2CN(C3([C@@H]2C1)CC[NH+](C4CCCCCCCC4)CC3)c5ccccc5 6.1 6.4 Good 6.4 6.1 

17 O=C1[C@@H](c2ccccc2N1C3CC[NH+](CC3)C/C=C/c4ccccc4)CC 7.5 7.5 Excellent 7.2 7.2 

18 O=C1Cc2ccccc2N1C3CC[NH+](CC3)Cc4ccccc4 7.0 7.1 Excellent 7.4 7.3 

19 O=C(NCCNC(N)=[NH2+])C1(Nc2ccccc2)CC[NH+](CC1)Cc3ccccc3 6.7 7.3 Excellent 7.0 6.8 

20 [O-]C(=O)C1([NH+]2CCC(n3c4ccccc4[nH+]c3N5CCN(CC5)C)CC2)CCCCCCC1 6.4 6.2 Excellent 6.9 6.8 

21 C[NH+]1C[C@@H]2[C@H](C1)CN(C32CC[NH+](C4CCC(CC4)C(C)C)CC3)c5ccccc5 6.3 6.2 Excellent 6.4 6.2 
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Table A.14 Statistics for the 20 3D Filed QSAR model generated for fentanyl-like NSOs. In red is highlighted the 

chosen model. Here are presented the statistic of the QSAR models generated in the form of: the coefficient of 

determination (r2) which indicates the goodness of fit; the cross-validated coefficient of determination (q2) which 

indicates the robustness; the coefficient of determination for the test set (r2 test), which indicates the predictive 

power; the root mean square error (RMSE) as reliability measure; and Tau as a further parameter to assess the 

predictivity of the model. As r2, the closer the value of Tau is to one, the better the model. 

Comps R^2 Q^2 Test RMSE Tau 

0 0.0 0.0 -0.1 1.0 -0.9 

1 0.8 0.6 0.8 0.6 0.6 

2 0.9 0.7 0.9 0.6 0.6 

3 0.9 0.7 0.9 0.5 0.7 

4 1.0 0.7 0.9 0.5 0.7 

5* 1.0 0.7 0.9 0.5 0.7 

6 1.0 0.7 0.9 0.5 0.7 

7 1.0 0.7 0.9 0.5 0.6 

8 1.0 0.7 0.9 0.5 0.6 

9 1.0 0.7 0.9 0.5 0.6 

10 1.0 0.7 0.9 0.5 0.6 

11 1.0 0.7 0.9 0.5 0.6 

12 1.0 0.7 0.9 0.5 0.6 

13 1.0 0.7 0.9 0.5 0.6 

14 1.0 0.7 0.9 0.5 0.6 

15 1.0 0.7 0.9 0.5 0.6 

16 1.0 0.7 0.9 0.5 0.6 

17 1.0 0.7 0.9 0.5 0.6 

18 1.0 0.7 0.9 0.5 0.6 

19 1.0 0.7 0.9 0.5 0.6 

20 1.0 0.7 0.9 0.5 0.6 
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Table A.15 pKi values prediction for the 238 fentanyl-like NSOs molecules identified. The value is presented as the average of the prediction obtained with Field QSAR and 

the RVM models as described in Section 7.1.2. As discussed in section 6.1.4 the biological activity Ki is the ‘inhibition constant’ (Neubig et al. 2003), is expressed in molar 

units (M), and calculated as the displacement of the radioligand [3H]DAMGO from the human MOR. 

Title pKi Pred Dist to model  Sim 

Very high biological activity    

n-(2-fluorophenyl)-n-[1-(2-phenylethyl)-4-(pyridin-2-yl)piperidin-4-yl]propanamide 10.2 Excellent 0.7 

methyl 4-[phenyl(propanoyl)amino]-1-[2-(1h-pyrrol-1-yl)ethyl]piperidine-4-carboxylate 10.1 Good 0.6 

2-methyl carfentanil 10.0 Good 0.7 

carfentanil 10.0 Excellent 0.7 

n-methyl-carfentanil 10.0 Excellent 0.6 

butyryl-carfentanyl 10.0 Excellent 0.7 

acetyl-carfentanil 9.9 Excellent 0.7 

n-{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1h-tetrazol-1-yl)ethyl]-4-(1,3-thiazol-2-yl)piperidin-4-yl}-n-(2-fluorophenyl)propanamide 9.9 Excellent 0.6 

4-methoxymethylfentanyl 9.9 Excellent 0.7 

n-(2-fluorophenyl)-n-{1-[2-(1h-pyrazol-1-yl)ethyl]-4-(pyridin-2-yl)piperidin-4-yl}propanamide 9.9 Excellent 0.6 

n-quinolinyl-fentanyl 9.9 Excellent 0.7 

n-(2-fluorophenyl)-n-[4-phenyl-1-(2-phenylethyl)piperidin-4-yl]propanamide 9.9 Excellent 0.7 

4-(m-hydroxyphenyl)fentanyl 9.8 Excellent 0.7 

methyl 1-[2-(2-oxo-1,3-benzoxazol-3(2h)-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 9.8 Good 0.6 

n-(2-fluorophenyl)-n-{4-(4-methyl-1,3-thiazol-2-yl)-1-[2-(1h-pyrazol-1-yl)ethyl]piperidin-4-yl}propanamide 9.8 Excellent 0.7 

4-phenylfentanyl 9.8 Excellent 0.7 

brifentanil  9.8 Good 0.6 

methyl 4-[phenyl(propanoyl)amino]-1-[2-(pyridin-2-yl)ethyl]piperidine-4-carboxylate 9.8 Excellent 0.7 

n-phenyl-n-[1-(2-phenylethyl)-4-(1,3-thiazol-2-yl)piperidin-4-yl]propanamide 9.8 Excellent 0.7 

lofentanil 9.7 Excellent 0.7 

methyl 1-(2-hydroxy-2-phenylethyl)-3-methyl-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 9.7 Excellent 0.7 

methyl 4-[phenyl(propanoyl)amino]-1-[2-(thiophen-3-yl)ethyl]piperidine-4-carboxylate 9.7 Excellent 0.7 

n-(2-fluorophenyl)-n-{4-(4-methyl-1,3-thiazol-2-yl)-1-[2-(thiophen-3-yl)ethyl]piperidin-4-yl}propanamide 9.7 Excellent 0.7 

methyl 4-[phenyl(propanoyl)amino]-1-[2-(1h-pyrazol-1-yl)ethyl]piperidine-4-carboxylate 9.7 Excellent 0.6 

ethyl {4-[phenyl(propanoyl)amino]-1-[2-(thiophen-2-yl)ethyl]piperidin-4-yl}methyl carbonate 9.6 Excellent 0.6 
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methyl 4-[phenyl(propanoyl)amino]-1-[2-(2h-tetrazol-2-yl)ethyl]piperidine-4-carboxylate 9.6 Excellent 0.6 

n-(2-fluorophenyl)-n-{4-phenyl-1-[2-(thiophen-3-yl)ethyl]piperidin-4-yl}propanamide 9.6 Excellent 0.7 

methyl 1-[2-hydroxy-2-(thiophen-2-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 9.6 Excellent 0.7 

n-phenyl-n-{4-phenyl-1-[2-(pyridin-2-yl)ethyl]piperidin-4-yl}propanamide 9.6 Excellent 0.7 

2′-fluoro-butyrylfentanyl 9.5 Excellent 0.8 

n-(2-fluorophenyl)-n-{4-phenyl-1-[2-(1h-pyrazol-1-yl)ethyl]piperidin-4-yl}propanamide 9.5 Excellent 0.6 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-(3-methoxyphenyl)propanamide 9.5 Excellent 0.6 

2′,2″-difluorofentanyl 9.5 Excellent 0.7 

3-phenylpropanoylfentanyl 9.5 OK 0.6 

4″-bromo-ohmefentanyl 9.5 Good 0.6 

4′-hydroxybutyrylfentanyl 9.5 Excellent 0.7 

4-methylfentanyl 9.5 Excellent 0.7 

fluoropentyl-norcarfentanil 9.5 Excellent 0.7 

n-(2-fluorophenyl)-n-[1-(2-phenylethyl)-4-(1,3-thiazol-2-yl)piperidin-4-yl]propanamide 9.5 Excellent 0.7 

n-(2-fluorophenyl)-n-{4-phenyl-1-[2-(thiophen-2-yl)ethyl]piperidin-4-yl}propanamide 9.5 Excellent 0.7 

n-[4-(4-methyl-1,3-thiazol-2-yl)-1-(2-phenylethyl)piperidin-4-yl]-n-phenylpropanamide 9.5 Excellent 0.7 

n-phenyl-n-{4-phenyl-1-[2-(thiophen-2-yl)ethyl]piperidin-4-yl}propanamide 9.5 Excellent 0.6 

butyrylremifentanil 9.4 Excellent 0.7 

n-{1-[2-(furan-2-yl)-2-hydroxyethyl]-4-(methoxymethyl)piperidin-4-yl}-n-phenylpropanamide 9.4 Excellent 0.7 

4″-methyl-acetylfentanyl 9.4 Excellent 0.7 

butyrylfentanyl 9.4 Excellent 0.7 

hexanoyl fentanyl 9.4 Good 0.7 

isovaleroylfentanyl 9.4 Excellent 0.7 

methyl 1-{2-[(1-methyl-1h-imidazol-2-yl)sulfanyl]ethyl}-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 9.4 OK 0.6 

2′-fluoro-isobutyrylfentanyl 9.4 Good 0.8 

3-allylfentanyl 9.3 Good 0.6 

acetylfentanyl 9.3 Excellent 0.7 

methacroylfentanyl 9.3 Excellent 0.7 

3′-4′-methylenedioxyfentanyl 9.3 Good 0.6 

3′-fluoro-butyrylfentanyl 9.3 Excellent 0.8 

4″-methylfentanyl 9.3 Excellent 0.7 
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4-fluorofentanyl 9.3 Poor 0.8 

benzodioxolefentanyl 9.3 OK 0.7 

methyl 1-[2-(2-oxo-2,3-dihydro-1h-indol-1-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 9.3 Excellent 0.6 

n-phenyl-n-{4-phenyl-1-[2-(thiophen-3-yl)ethyl]piperidin-4-yl}propanamide 9.3 Good 0.7 

ocfentanil 9.3 Excellent 0.7 

trefentanil  9.3 Good 0.5 

4″-fluorofentanyl 9.2 Excellent 0.7 

n-(2-fluorophenyl)-n-{1-[2-(4-methyl-1,3-thiazol-5-yl)ethyl]-4-phenylpiperidin-4-yl}propanamide 9.2 Excellent 0.7 

2-fluorofentanyl 9.2 Excellent 0.7 

n-(2-fluorophenyl)-n-{4-(4-methyl-1,3-thiazol-2-yl)-1-[2-(4-methyl-1,3-thiazol-5-yl)ethyl]piperidin-4-yl}propanamide 9.2 Excellent 0.7 

4′-chloro-cyclopropylfentanyl  9.2 Excellent 0.7 

cyclobutylfentanyl 9.2 Good 0.6 

4′-chloro-butyrylfentanyl  9.1 Excellent 0.7 

4′-fluoro-crotonylfentanyl 9.1 Excellent 0.7 

4′-fluoro-cyclopropylfentanyl 9.1 Excellent 0.7 

cyclopentylfentanyl 9.1 Excellent 0.6 

fentanyl 9.1 Excellent 0.7 

n-[1-(2-hydroxy-2-phenylethyl)-4-(methoxymethyl)-3-methylpiperidin-4-yl]-n-phenylpropanamide 9.1 Excellent 0.7 

2-methyl crotonyl fentanyl  9.1 Good 0.7 

3′-me-4f-ibf 9.1 Excellent 0.7 

3-fluorofentanyl  9.1 Poor 0.7 

4′-methyl-furanylfentanyl 9.1 Good 0.7 

acrylfentanyl  9.1 Excellent 0.7 

alfentanil  9.1 Excellent 0.6 

cyclopentenylfentanyl 9.1 Good 0.6 

cyclopropylfentanyl 9.1 Excellent 0.7 

4′-chlorofentanyl 9.0 Excellent 0.7 

4′-fluoro-cyclopentylfentanyl 9.0 Excellent 0.7 

4′-methylfentanyl 9.0 Excellent 0.7 

benzofuranyl-fentanyl 9.0 Excellent 0.6 

n-adamantyl-fentanyl 9.0 Excellent 0.8 
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n-furanylethylfentanyl 9.0 Excellent 0.7 

3′-4′-dichloro-3″-fluorofentanyl 9.0 Excellent 0.7 

3′-methyl-methoxyacetylfentanyl 9.0 Good 0.7 

4′-chloro-cyclobutylfentanyl 9.0 Excellent 0.7 

4′-fluoro-butyrylfentanyl 9.0 Excellent 0.7 

4″-methoxyfentanyl 9.0 Excellent 0.6 

crotonylfentanyl 9.0 Good 0.7 

methoxyacetylfentanyl  9.0 Good 0.7 

n-{1-[2-(3,5-dimethyl-1h-pyrazol-1-yl)ethyl]-4-phenylpiperidin-4-yl}-n-(2-fluorophenyl)propanamide 9.0 Excellent 0.6 

High biological activity    

4′-methyl-methoxyacetylfentanyl 8.9 Good 0.7 

4'-chloro-cyclopentylfentanyl 8.9 Excellent 0.7 

m-fluoro-methoxyacetylfentanyl  8.9 Excellent 0.7 

n-methyl-butyrylfentanyl 8.9 Excellent 0.6 

sufentanil 8.9 Good 0.7 

n-{3,5-dimethyl-1-[2-(1h-pyrazol-1-yl)ethyl]piperidin-4-yl}-2-methoxy-n-phenylacetamide 8.9 Good 0.6 

n-benzoxazolyl-fentanyl 8.9 Good 0.6 

3′-fluoro-isobutyrylfentanyl 8.9 Excellent 0.8 

3,3-dimethylfentanyl 8.8 Excellent 0.7 

3-furanylfentanyl 8.8 Poor 0.8 

benzoylfentanyl  8.8 OK 0.6 

mirfentanil 8.8 OK 0.7 

n-(3-fluorophenyl)-n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]propanamide 8.8 Poor 0.7 

n-{1-[2-hydroxy-2-(thiophen-2-yl)ethyl]-3-methylpiperidin-4-yl}-n-(3-methoxyphenyl)propanamide 8.8 Excellent 0.6 

3,5-dimethyl-cyclopentylfentanyl 8.8 Excellent 0.7 

methyl 1-[2-(4-methyl-1,3-thiazol-5-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 8.8 Poor 0.7 

p-fluoro-furanylfentanyl 8.8 Excellent 0.6 

phenylacetylfentanyl 8.8 Poor 0.6 

β-methylfentanyl 8.8 Good 0.6 

2-methylfentanyl 8.7 Poor 0.8 

3-ethylfentanyl 8.7 Excellent 0.6 
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3-methyl-furanylfentanyl 8.7 Excellent 0.7 

p-fluoro-tetrahydrofuranylfentanyl 8.7 Excellent 0.6 

thiophenoylfentanyl  8.7 Good 0.6 

2′-isopropyl-furanylfentanyl 8.6 OK 0.7 

o-methyl-benzoylfentanyl 8.6 Good 0.6 

o-methyl-cyclopropylfentanyl 8.6 Poor 0.6 

psicofentanil 8.6 Poor 0.6 

remifentanil 8.6 Excellent 0.6 

n-{1-[2-hydroxy-2-(pyridin-4-yl)ethyl]-3-methylpiperidin-4-yl}-n-phenylpropanamide 8.6 Excellent 0.6 

p-bromofentanyl  8.6 Excellent 0.6 

propyl-norfentanyl 8.6 Bad 0.6 

3-methyl-butyrylfentanyl 8.5 Excellent 0.8 

cyclohexylfentanyl 8.5 Poor 0.7 

p-chloro-isobutyrylfentanyl 8.5 Excellent 0.6 

p-fluoro-furan-3-ylfentanyl 8.5 Good 0.6 

3-methyl-thiofentanyl 8.5 Excellent 0.6 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-(pyridin-2-yl)propanamide 8.5 Excellent 0.7 

n-{1-[2-hydroxy-2-(pyridin-3-yl)ethyl]-3-methylpiperidin-4-yl}-n-phenylpropanamide 8.5 Excellent 0.6 

p-fluoro-thiofentanyl 8.5 Poor 0.6 

p-fluoro-β-hydroxy-thiobutyrylfentanyl 8.5 Good 0.6 

p-methoxy-butyrylfentanyl 8.5 Poor 0.6 

α-methyl-acetylfentanyl 8.5 Good 0.6 

3-methylfentanyl 8.4 Excellent 0.6 

4″-fluoro-ohmefentanyl 8.4 Good 0.7 

o-methylfentanyl 8.4 Good 0.6 

pivaloylfentanyl 8.4 OK 0.6 

valerylfentanyl 8.4 Good 0.6 

α′-methyl-butyrylfentanyl 8.4 Good 0.6 

β-hydroxy-3-methyl-thienylfentanyl 8.4 Excellent 0.6 

p-methoxy-furanylfentanyl 8.4 OK 0.6 

4′-methyl-tetrahydrofuranylfentanyl 8.4 OK 0.7 
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pharaohfentanyl 8.4 Excellent 0.6 

o-methyl-furanylfentanyl 8.4 Good 0.6 

methyl 1-{2-[5-methyl-2-(methylsulfanyl)-6-oxopyrimidin-1(6h)-yl]ethyl}-4-[phenyl(propanoyl)amino]piperidine-4-

carboxylate 

8.3 Good 0.6 

n-{1-[2-hydroxy-2-(1-methyl-1h-pyrrol-2-yl)ethyl]-3-methylpiperidin-4-yl}-n-phenylpropanamide 8.3 Excellent 0.6 

o-methoxy-furanylfentanyl 8.3 OK 0.6 

p-iodofentanyl 8.3 OK 0.6 

p-methoxy-acetylfentanyl 8.3 Excellent 0.6 

p-methyl-acetylfentanyl 8.3 OK 0.6 

β-hydroxy-p-fluorofentanyl 8.3 Excellent 0.6 

β-hydroxy-sufentanil 8.3 Good 0.6 

3-methoxyfentanyl 8.3 Excellent 0.7 

tetrahydrofuranylfentanyl 8.3 Good 0.6 

thenylfentanyl 8.3 Excellent 0.6 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-phenylthiophene-2-carboxamide 8.2 Good 0.7 

n-methyl-acetyl-norfentanyl 8.2 Bad 0.6 

α,3-dimethylfentanyl 8.2 OK 0.6 

α-methyl-acrylfentanyl 8.2 Good 0.6 

p-fluoro-methoxyacetylfentanyl  8.2 Excellent 0.6 

p-methoxyfentanyl 8.2 Good 0.6 

tmcp-f 8.2 Excellent 0.6 

furanylfentanyl  8.2 OK 0.7 

furanyl-norfentanyl 8.2 Poor 0.6 

methyl 1-[(2,3-dihydro-1,4-benzodioxin-2-yl)methyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 8.2 Excellent 0.8 

n-(4-fluorophenyl)-n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]propanamide 8.2 Excellent 0.7 

n-[1-(2-cyclopropyl-2-hydroxyethyl)-3-methylpiperidin-4-yl]-n-phenylpropanamide 8.2 Excellent 0.7 

p-tfm-fentanyl 8.2 Good 0.6 

thiofentanyl 8.2 Good 0.6 

ethyl 1-(2-hydroxy-2-phenylethyl)-3-methyl-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 8.1 OK 0.8 

m-methylfentanyl  8.1 Poor 0.7 

p-fluoro-isobutyrylfentanyl  8.1 Excellent 0.6 
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β-hydroxy-3-methylfentanyl carbamate 8.1 Good 0.6 

2,3-secofentanyl 8.1 Good 0.6 

3-methyl phenoxy acetylfentanil 8.1 Poor 0.6 

4″-nitrofentanyl 8.1 Poor 0.5 

methyl 1-[2-(3-oxo-2,3-dihydro-4h-1,4-benzothiazin-4-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 8.1 Poor 0.6 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-2-methoxy-n-phenylacetamide 8.1 Excellent 0.7 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-phenylthiophene-3-carboxamide 8.1 Excellent 0.7 

n-methyl norfentanyl 8.1 Bad 0.6 

p-methyl-cyclopropylfentanyl 8.1 OK 0.6 

3,5-dimethylfentanyl 8.0 Excellent 0.7 

ohmefentanil  8.0 Excellent 0.6 

p-fluoro-furanylremifentanil 8.0 Excellent 0.6 

p-methoxy-methoxyacetylfentanyl 8.0 Good 0.6 

α-methyl-p-fluorofentanyl 8.0 Excellent 0.6 

α-methyl-thiofentanyl 8.0 Good 0.6 

alphamethylfentanyl 8.0 Poor 0.7 

fentranyl  8.0 Excellent 0.7 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-phenylfuran-2-carboxamide 8.0 Excellent 0.7 

n-benzylcarfentanil  8.0 Excellent 0.8 

p-chloro-furanylfentanyl  8.0 OK 0.6 

phenylpropyl-norfentanyl 8.0 Poor 0.6 

α-methyl-isobutyrylfentanyl 8.0 Good 0.6 

p-chloro-methoxyacetylfentanyl  8.0 OK 0.6 

Medium biological activity    

isobutyrylfentanyl 7.9 Poor 0.7 

isocarfentanil 7.9 Excellent 0.6 

o-fluoro-despropionoylfentanyl  7.9 Excellent 0.7 

p-fluoro-acrylfentanyl  7.9 Excellent 0.6 

β-hydroxy-carfentanil 7.9 OK 0.6 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-phenylfuran-3-carboxamide 7.9 Good 0.7 

n-phenyl-n-{4-phenyl-1-[2-(1h-pyrazol-1-yl)ethyl]piperidin-4-yl}propanamide 7.9 Good 0.6 



352 

 

p-fluoro-acetylfentanyl 7.9 Excellent 0.6 

α-methyl-butyrylfentanyl 7.9 Good 0.6 

β-hydroxyfentanyl 7.9 Good 0.6 

β-hydroxy-thiofentanyl 7.9 Excellent 0.6 

isofentanyl 7.8 Poor 0.7 

methyl 1-[2-oxo-2-(thiophen-2-yl)ethyl]-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate 7.8 Excellent 0.8 

n-(2-fluorophenyl)-n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]propanamide 7.8 Excellent 0.8 

furanylbenzylfentanyl 7.8 OK 0.7 

acetyl-norfentanyl 7.8 Excellent 0.6 

phenoxyethyl-norfentanyl 7.8 Excellent 0.6 

remifentanil bis ethyl ester 7.7 Good 0.5 

α′-methoxyfentanyl 7.7 Good 0.6 

p-fluoro-furanylethylfentanyl  7.7 Poor 0.6 

benzoiloilbenzilfentanil 7.7 Good 0.7 

n-benzyl-butyrylfentanyl 7.7 Excellent 0.7 

n-[1-(2-hydroxy-2-phenylethyl)-3-methylpiperidin-4-yl]-n-(pyridin-3-yl)propanamide 7.6 Excellent 0.7 

n-{1-[(2r,3r)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl]-3-methylpiperidin-4-yl}-n-phenylpropanamide 7.6 Poor 0.7 

o-methyl-acetylfentanyl 7.6 Poor 0.6 

p-methoxy-tetrahydrofuranylfentanyl  7.6 OK 0.6 

p-methoxy-valerylfentanyl 7.6 OK 0.6 

p-fluoro-cyclopropylbenzylfentanyl 7.6 Excellent 0.6 

2-furanylbenzylfentanyl 7.5 Excellent 0.6 

n-benzyl-acetylfentanyl 7.5 Good 0.7 

thiafentanil  7.5 Good 0.6 

benzylfentanyl  7.5 Excellent 0.7 

p-fluoro-isopropylbenzylfentanyl 7.5 Excellent 0.6 

4-anpp  7.4 Excellent 0.7 

despropionyl-3-methylfentanyl 7.4 Excellent 0.7 

n-benzyl-p-fluoro-isobutyrylfentanyl 7.2 Good 0.5 

despropionyl-p-fluorobenzylfentanyl  7.1 Good 0.6 
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Table A.16. Composition of the training and test set used to build the QSAR models in Forge™ for morphine-like NSOs. The activity data were obtained by ChEMBL target 

report on MOR CHEMBL233 For this target only the Ki values were analysed and used. The biological activity Ki is identified as the ‘inhibition constant’ and indicates how 

potent a ligand is in inhibiting a process; Ki is the concentration required to produce half the maximum inhibition (Neubig et al., 2003). Ki is expressed in molar units (M), 

where 1 M is equivalent to 1 mol/L (Neubig et al., 2003). Only molecules for which the displacement of the radioligand [3H]DAMGO from the human MOR was used to 

determine of all of the Ki values, were selected. The binding data were converted to their negative decimal logarithm pKi (pKi = -logKi). In the table the predicted values 

obtained with the 3D QSAR model generated in Section 7.1.2 are reported..  

 

Training set  

Title Structure p(Ki) Field QSAR Dist to model  RF RVM 

CHEMBL517567 O[C@]([C@H]1C[C@]23CC[C@]1(OC)[C@H]4[C@@]53c6c(O4)c(ccc6C[C@H]2[NH+](C

C5)CC7CC7)C(=O)N)(C(C)(C)C)C 

9.1 8.6 Excellent 8.8 8.5 

CHEMBL415284 O[C@H]1C=C[C@H]2[C@H]3Cc4ccc(O)c5c4[C@@]2(CC[NH+]3CC=C)[C@H]1O5 9.7 9.4 Excellent 10.0 9.2 

CHEMBL33986 O[C@]12CCCC[C@@]32c4cc(O)ccc4C[C@H]1[NH+](CC5CCC5)CC3 9.9 9.2 Excellent 9.7 9.5 

CHEMBL517779 O[C@]12CCCC[C@@]32c4cc(ccc4C[C@H]1[NH+](CC5CCC5)CC3)C(=O)N 9.8 9.3 Excellent 9.7 10.1 

CHEMBL297428 O=C(N)c1ccc2c(C3(CC[NH+](C(C3C)C2)CC4CC4)C)c1 9.5 10.0 Excellent 9.5 9.4 

CHEMBL80 O[C@]12CCC(=O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)CC=C 9.2 9.0 Excellent 8.9 8.6 

CHEMBL516552 O[C@H]1C=C[C@H]2[C@H]3Cc4ccc(c5c4[C@@]2(CC[NH+]3CC=C)[C@@H]1O5)C(=O)

N 

7.7 7.7 Excellent 7.9 7.5 

CHEMBL512526 Ic1ccc(CN(Cc2ccc(I)cc2)c3ccc4C[C@@H]5[C@@H]6CCCC[C@]6(CC[NH+]5CC7CCC7)c4

c3)cc1 

8.5 8.1 Excellent 8.0 8.4 

CHEMBL568830 Oc1c(cc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1)C[NH3+] 6.5 6.7 Excellent 6.9 6.7 

CHEMBL570225 [NH+]1(CC2CCC2)CC[C@]34c5cc(Nc6ccccc6)ccc5C[C@@H]1[C@@H]4CCCC3 8.8 9.3 Excellent 8.9 9.2 

CHEMBL569725 Ic1ccc(NC(=O)Nc2ccc3c([C@]45CCCC[C@H]5[C@H]([NH+](CC4)CC6CC6)C3)c2)cc1 7.6 8.1 Excellent 8.1 8.3 

CHEMBL585901 Oc1c(cc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1)/C=N\O 8.4 9.0 Excellent 8.7 8.8 

CHEMBL570428 OC(CCCCCCCCC)c1c(O)cc2c(C[C@@H]3[C@@H]4CCCC[C@]24CC[NH+]3CC5CCC5)c1 7.4 7.6 Excellent 7.5 7.7 

CHEMBL576273 Ic1ccc(CNc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CCC6)c3c2)cc1 8.3 8.2 Excellent 8.0 8.0 

CHEMBL568878 Oc1c(cc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1)CO 6.4 6.4 Excellent 6.1 6.6 

CHEMBL572216 Ic1ccc(NC(=O)Nc2ccc3c([C@]45CCCC[C@H]5[C@H]([NH+](CC4)CC6CCC6)C3)c2)cc1 7.6 7.8 Excellent 7.3 7.7 

CHEMBL576065 C[NH+]1CC[C@@]23CCCC[C@H]3[C@H]1Cc4cc5c(OC[NH+](C5)Cc6ccccc6)cc42 7.0 7.2 Excellent 7.2 7.4 

CHEMBL569724 Ic1ccc(NC(=O)Nc2ccc3c([C@]45CCCC[C@H]5[C@H]([NH+](CC4)C)C3)c2)cc1 7.8 7.7 Excellent 7.9 8.0 

CHEMBL571561 O=C(Nc1ccc2c([C@]34CCCC[C@H]4[C@H]([NH+](CC3)CC5CC5)C2)c1)Nc6ccccc6 8.4 8.1 Excellent 8.4 8.3 

https://en.wikipedia.org/wiki/Molar_concentration
https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Liter
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CHEMBL584530 OC(c1c(O)cc2c(C[C@@H]3[C@@H]4CCCC[C@]24CC[NH+]3CC5CCC5)c1)CC 6.7 6.3 Excellent 6.4 6.6 

CHEMBL49269 Oc1ccc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CC5)c2c1 10.2 10.1 Excellent 10.7 9.9 

CHEMBL570654 Ic1ccc(NC(Oc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CCC6)c3c2)=O)cc1 9.0 9.0 Excellent 8.7 8.9 

CHEMBL571990 COc1ccc(Nc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CCC6)c3c2)cc1 9.2 9.2 Excellent 9.1 9.3 

CHEMBL570429 Ic1ccc(NC(Oc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CC6)c3c2)=O)cc1 9.2 9.5 Excellent 9.1 9.5 

CHEMBL568876 Ic1ccc(CNc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CC6)c3c2)cc1 9.2 9.4 Excellent 9.1 9.4 

CHEMBL568877 COc1ccc(CNc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4CC6CC6)c3c2)cc1 9.5 9.0 Excellent 9.3 8.9 

CHEMBL72180 Oc1ccc2c([C@@]3(CC[NH+](C[C@@H]3O2)CCc4ccccc4)CC)c1 9.2 8.6 Excellent 9.1 8.7 

CHEMBL70 O[C@H]1C=C[C@H]2[C@H]3Cc4ccc(O)c5c4[C@@]2(CC[NH+]3C)[C@H]1O5 8.6 8.2 Excellent 8.5 8.2 

CHEMBL568309 O[C@H](C[NH+]1CC[C@]2(c3cc(O)ccc3O[C@H]2C1)CC)c4ccccc4 8.0 8.0 Excellent 8.4 7.9 

CHEMBL568076 Oc1ccc2c([C@]3(CC[NH+](C[C@H]3O2)CCc4ccccc4)CC)c1 6.7 6.9 Excellent 6.8 7.1 

CHEMBL567855 Oc1ccc2c([C@@]3(CC[NH2+]C[C@@H]3O2)CC)c1 7.3 7.9 Excellent 7.9 7.5 

CHEMBL566527 O[C@@H](C[NH+]1CC[C@]2(c3cc(O)ccc3O[C@H]2C1)CC)c4ccccc4 7.1 6.4 Excellent 7.1 6.8 

CHEMBL598977 Oc1cccc2c1O[C@H]3C[NH+](CC[C@@]23CCc4ccccc4)C 6.1 6.9 Excellent 6.4 6.5 

CHEMBL592302 Fc1ccc(CC[NH+]2CC[C@]3(c4cccc(O)c4O[C@H]3C2)CC)cc1 6.5 6.1 Excellent 6.1 6.3 

CHEMBL599175 Oc1cccc2c1O[C@H]3C[NH+](CC[C@@]23CC)CCc4ccccc4 5.8 5.9 Excellent 4.9 5.8 

CHEMBL592301 Fc1ccc(C[NH+]2CC[C@]3(c4cccc(O)c4O[C@H]3C2)CC)cc1 5.6 5.7 Excellent 4.9 5.6 

CHEMBL3596371 FC(F)C[NH+]1CC[C@]23c4c5c(O)ccc4C[C@@H]1[C@]3(O)Cc6cc7ccccc7nc6[C@@H]2O5 6.0 6.4 Excellent 5.9 6.6 

CHEMBL610012 O[C@]12Cc3cc4ccccc4nc3[C@H]5[C@@]62c7c(O5)c(O)ccc7C[C@H]1[NH+](CC8CC8)CC6 7.7 7.6 Excellent 8.0 8.1 

CHEMBL3596367 FC(F)(F)C[NH+]1CC[C@]23c4c5c(O)ccc4C[C@@H]1[C@]3(O)Cc6c7ccccc7[nH]c6C2O5 6.0 6.6 Excellent 6.0 5.9 

CHEMBL3758348 O[C@]12CCC(=O)[C@]3([C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)C)CO 8.5 8.4 Excellent 8.3 8.3 

CHEMBL3786083 O[C@@]12CC/C(C(=O)C[C@@]31c4cc(O)ccc4C[C@H]2[NH+](CC5CC5)CC3)=C/c6ccccc6 7.3 7.1 Excellent 7.5 7.2 

CHEMBL252172 O[C@]12C/C(C(=O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC6CC6)CC4)=C\c

7ccccc7 

8.0 8.3 Excellent 7.9 8.2 

CHEMBL3785265 O[C@@]12C/C(C(=O)C[C@@]31c4cc(O)ccc4C[C@H]2[NH+](CC5CC5)CC3)=C/c6ccccc6 8.3 8.2 Excellent 8.3 8.1 

CHEMBL1797689 O[C@]12CCC(=O)C[C@@]32c4cc(O)ccc4C[C@H]1[NH+](CC3)CC5CC5 9.1 8.9 Excellent 9.0 9.0 

CHEMBL3787663 O[C@@]12CCc3cc4ccccc4nc3C[C@@]51c6cc(O)ccc6C[C@H]2[NH+](CC7CC7)CC5 7.8 8.0 Excellent 7.9 7.8 

CHEMBL4094170 O[C@]12C/C(C(=O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)CCc6ccccc6)=

C\c7ccccc7 

7.3 7.7 Excellent 7.6 7.5 

CHEMBL4457877 O[C@@]12CC(=C(O)[C@H]3[C@]41c5c(O3)c(O)ccc5C[C@]2([NH+](CC4)CC6CC6)C)C(=

O)Nc7ccc(cc7)C#N 

8.3 8.1 Excellent 8.1 7.8 

CHEMBL4529950 O[C@]12CC(=C(O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC6CC6)CC4)C(=O) 9.0 9.5 Excellent 9.0 9.3 
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Nc7ccccc7 

CHEMBL4561876 O[C@@]12CC(=C(O)[C@H]3[C@]41c5c(O3)c(O)ccc5C[C@]2([NH+](CC6CC6)CC4)C)C(=

O)NCc7ccccc7 

9.0 8.6 Excellent 8.6 8.6 

CHEMBL4445736 O[C@]12CC(=C(O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)CC6CC6)C(=O)

NC(c7nc(no7)C)(C)C 

8.1 8.2 Excellent 8.2 8.5 

CHEMBL4543425 O[C@]12CC(=C(O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)CC6CC6)C(=O)

Nc7ccccn7 

8.0 7.3 Excellent 8.0 8.1 

CHEMBL4439770 O[C@]12Cc3c(n[nH]c3[C@H]4[C@@]52c6c(O4)c(O)ccc6C[C@H]1[NH+](CC5)CC7CC7)C 7.6 8.0 Excellent 7.8 8.3 

CHEMBL4468216 Clc1c(ccc2c1[nH]c3c2C[C@@]4(O)[C@H]5Cc6ccc(O)c7c6[C@@]4(CC[NH+]5CC8CC8)C3

O7)C([O-])=O 

7.7 7.8 Excellent 7.8 8.0 

CHEMBL2113373 O=C(N[C@]12Cc3c4ccccc4[nH]c3[C@H]5[C@@]62c7c(O5)c(O)ccc7CC1[NH+](CC6)C)CCc

8ccccc8 

8.0 8.2 Excellent 8.3 8.2 

CHEMBL607017 O=C1CC[C@@]2(NC(=O)/C=C/c3ccccc3C)[C@H]4Cc5ccc(OC)c6c5[C@]2([C@H]1O6)CC[

NH+]4C 

9.4 9.3 Excellent 8.7 8.8 

CHEMBL607068 O=C1CC[C@@]2(NC(=O)/C=C\c3ccc([N+]([O-

])=O)cc3)[C@H]4Cc5ccc(O)c6c5[C@@]2(CC[NH+]4C)[C@H]1O6 

9.7 9.8 Excellent 9.5 9.5 

CHEMBL2113666 Clc1ccccc1/C=C/C(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)cccc6C[C@H]2[NH+](C

C5)C 

9.8 9.5 Excellent 10.3 9.5 

CHEMBL611402 Clc1ccccc1/C=C/C(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+

](CC7CC7)CC5 

9.2 9.3 Excellent 9.2 9.3 

CHEMBL607126 O=C1CC[C@@]2(NC(=O)CCc3ccc(cc3)C)[C@H]4Cc5ccc(O)c6c5[C@]2([C@H]1O6)CC[NH

+]4C 

9.5 9.1 Excellent 9.3 9.1 

CHEMBL610883 O=C1CC[C@@]2(NC(=O)/C=C/c3ccccc3C)[C@H]4Cc5ccc(O)c6c5[C@]2([C@H]1O6)CC[N

H+]4CC7CC7 

9.1 9.6 Excellent 9.3 9.6 

CHEMBL49143 Nc1ccc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1 8.4 9.1 Excellent 8.8 9.3 

CHEMBL427862 O=C(Oc1ccc2CC3C4CCCCC4(CC[NH+]3CC5CC5)c2c1)NCC 9.5 8.9 Excellent 9.3 8.9 

CHEMBL592 Oc1ccc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3C)c2c1 9.7 9.5 Excellent 9.5 9.8 

CHEMBL301160 Oc1ccc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1 9.6 8.9 Excellent 9.4 8.9 

CHEMBL392269 OC1C[C@@]2(OC)[C@H](C[C@@]13[C@H]4Cc5ccc(O)c6c5[C@]3([C@H]2O6)CC[NH+]4

C)[C@@H](O)C 

7.5 8.2 Excellent 7.9 8.2 

CHEMBL238017 OC1C[C@@]23C[C@@H]([C@@]1(OC)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+]

(CC5)C)[C@@H](O)C 

7.9 7.5 Excellent 8.0 7.8 

CHEMBL401245 OC1C[C@@]23C[C@@H]([C@@]1(OC)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+]

(CC5)C)[C@H](O)C 

7.7 8.1 Excellent 7.9 8.2 

CHEMBL215926 Clc1ccc(CCCCN[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(OC)ccc6C[C@H]2[NH+](CC7

CC7)CC5)cc1 

8.7 8.3 Excellent 8.6 8.4 

CHEMBL217658 Clc1ccc(CCN[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+](CC7CC7)

CC5)cc1 

9.1 9.4 Excellent 8.9 9.1 
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CHEMBL387101 Clc1ccc(CCN[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(OC)ccc6C[C@H]2[NH+](CC7CC

7)CC5)cc1 

8.9 9.2 Excellent 8.8 8.4 

CHEMBL217479 Clc1ccc(CCCC(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+](C

C7CC7)CC5)cc1 

8.9 8.4 Excellent 8.7 8.7 

CHEMBL216365 Clc1ccc(/C=C\CC(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(OC)ccc6C[C@H]2[NH

+](CC5)CC7CC7)cc1 

8.1 7.6 Excellent 8.3 8.2 

CHEMBL385316 O[C@]12Cc3c4CCCCc4n(c3[C@H]5[C@@]62c7c(O5)c(O)ccc7CC1[NH+](CC8CC8)CC6)CC

9CCCCC9 

7.7 7.5 Excellent 7.8 7.7 

CHEMBL221421 O[C@]12Cc3c4CCCCc4n(c3[C@H]5[C@@]62c7c(O5)c(O)ccc7C[C@H]1[NH+](CC6)C)Cc8

ccccc8 

7.1 7.2 Excellent 7.6 7.1 

CHEMBL346879 O[C@]12Cc3c(cn(c3[C@H]4[C@@]52c6c(O4)c(O)ccc6CC1[NH+](CC5)CC7CC7)Cc8ccccc8)

-c9ccccc9 

7.8 7.5 Excellent 7.9 7.6 

Test set  

Title Structure p(Ki) Field QSAR Dist to model  RF RVM 

CHEMBL56585 Oc1ccc2c([C@@]3(CC[NH+]([C@@H]([C@@H]3C)C2)CC4CC4)C)c1 9.8 9.9 Excellent 10.4 9.6 

CHEMBL568757 [NH+]1(CC2CC2)CC[C@]34c5cc(Nc6ccccc6)ccc5C[C@@H]1[C@@H]4CCCC3 10.1 9.9 OK 9.2 9.8 

CHEMBL568989 Ic1ccc(NC(Oc2ccc3C[C@@H]4[C@@H]5CCCC[C@]5(CC[NH+]4C)c3c2)=O)cc1 9.5 9.2 OK 8.9 9.0 

CHEMBL571998 [NH+]1(CC2CC2)CC[C@]34c5cc(NCc6ccccc6)ccc5C[C@@H]1[C@@H]4CCCC3 9.6 9.0 Good 9.0 9.0 

CHEMBL583265 Oc1c(C[NH2+]CCC)cc2C[C@@H]3[C@@H]4CCCC[C@]4(CC[NH+]3CC5CCC5)c2c1 6.5 6.4 Good 6.8 6.7 

CHEMBL566557 O[C@@H](C[NH+]1CC[C@@]2(c3cc(O)ccc3O[C@@H]2C1)CC)c4ccccc4 5.9 6.8 Good 6.9 7.0 

CHEMBL430441 Oc1ccc2c([C@@]3(CC[NH+](C[C@@H]3O2)C)CC)c1 7.8 8.4 Excellent 8.7 8.1 

CHEMBL567213 O[C@H](C[NH+]1CC[C@@]2(c3cc(O)ccc3O[C@@H]2C1)CC)c4ccccc4 6.2 7.0 Excellent 7.5 7.4 

CHEMBL589260 Oc1cccc2c1O[C@H]3C[NH+](CC[C@@]23CC)CC4CC4 5.3 6.2 Excellent 6.3 6.3 

CHEMBL3596372 FC(F)(F)C[NH+]1CC[C@]23c4c5c(O)ccc4C[C@@H]1[C@]3(O)Cc6cc7ccccc7nc6[C@@H]2

O5 

6.0 7.0 Excellent 7.4 7.0 

CHEMBL3786970 O[C@@]12C/C(C(=O)C[C@@]31c4cc(O)ccc4C[C@H]2[NH+](CC5CC5)CC3)=C\c6ccccc6 7.7 8.1 Poor 7.8 8.1 

CHEMBL1201770 O[C@]12CCC(=O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[N+](CC4)(CC6CC6)C 8.3 8.5 Good 8.3 7.6 

CHEMBL4521187 O[C@]12CC(=C(O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC4)CC6CC6)C(=O)

N[C@@H](CO)C 

7.7 8.5 OK 8.2 8.8 

CHEMBL2105755 O[C@]12CC(=C(O)[C@H]3[C@@]42c5c(O3)c(O)ccc5C[C@H]1[NH+](CC6CC6)CC4)C(=O)

NC(C)(C)c7nc(no7)-c8ccccc8 

9.0 8.9 Poor 8.6 8.7 

CHEMBL2113378 Oc1ccc2CC3[C@]4(NCCCc5ccccc5)Cc6c7ccccc7[nH]c6[C@H]8[C@]4(CC[NH+]3C)c2c1O8 8.0 8.1 Good 8.6 7.8 

CHEMBL2113380 Oc1ccc2CC3[C@]4(CCCc5ccccc5)Cc6c7ccccc7[nH]c6[C@H]8[C@]4(CC[NH+]3C)c2c1O8 8.3 8.2 OK 8.2 8.3 

CHEMBL2113381 O=C(N[C@]12Cc3c4ccccc4[nH]c3[C@H]5[C@@]62c7c(O5)c(O)ccc7CC1[NH+](CC6)C)CC

CC 

7.3 6.8 OK 7.0 7.0 
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CHEMBL607016 Clc1ccccc1/C=C/C(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(OC)ccc6C[C@H]2[NH

+](CC5)C 

9.2 8.6 Excellent 9.1 8.2 

CHEMBL448428 Clc1ccc(CC(=O)N[C@]23CCC(=O)[C@H]4[C@@]53c6c(O4)c(O)ccc6C[C@H]2[NH+](CC7

CC7)CC5)cc1 

9.1 9.0 OK 8.7 9.2 

CHEMBL222579 O[C@]12Cc3c4CCCCc4n(c3[C@H]5[C@@]62c7c(O5)c(O)ccc7C[C@H]1[NH+](CC6)C)CC8

CCCCC8 

7.8 8.0 Excellent 8.1 7.8 

CHEMBL222597 O[C@]12Cc3c4CCCCc4n(c3[C@H]5[C@@]62c7c(O5)c(O)ccc7C[C@H]1[NH+](CC8CC8)C

C6)CC9CC9 

8.6 8.5 Good 8.3 8.4 
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Table A.17 Statistics for the 20 3D Filed QSAR model generated for morphine-like NSOs. In red is highlighted the 

chosen model. Here are presented the statistic of the QSAR models generated in the form of: the coefficient of 

determination (r2) which indicates the goodness of fit; the cross-validated coefficient of determination (q2) which 

indicates the robustness; the coefficient of determination for the test set (r2 test), which indicates the predictive 

power; the root mean square error (RMSE) as reliability measure; and Tau as a further parameter to assess the 

predictivity of the model. As r2, the closer the value of Tau is to one, the better the model. 

 

Comps R^2 Q^2 Test R^2 RMSE Tau 

0 0 -0.027 -0.03 1.108 1.122 -0.993 

1 0.646 0.474 0.663 0.659 0.803 0.437 

2 0.765 0.597 0.781 0.536 0.703 0.552 

3* 0.874 0.694 0.809 0.393 0.613 0.609 

4 0.914 0.676 0.802 0.324 0.631 0.603 

5 0.94 0.708 0.796 0.272 0.599 0.624 

6 0.959 0.693 0.788 0.225 0.614 0.606 

7 0.971 0.693 0.789 0.188 0.613 0.605 

8 0.981 0.69 0.8 0.153 0.617 0.596 

9 0.985 0.687 0.795 0.134 0.62 0.593 

10 0.989 0.672 0.812 0.114 0.634 0.581 

11 0.993 0.658 0.8 0.093 0.647 0.575 

12 0.995 0.641 0.788 0.074 0.664 0.567 

13 0.997 0.619 0.781 0.06 0.684 0.555 

14 0.998 0.599 0.78 0.049 0.701 0.544 

15 0.999 0.586 0.774 0.037 0.713 0.538 

16 0.999 0.581 0.773 0.029 0.717 0.538 

17 1 0.577 0.772 0.021 0.72 0.538 

18 1 0.574 0.769 0.014 0.723 0.534 

19 1 0.573 0.767 0.01 0.724 0.535 

20 1 0.572 0.767 0.007 0.725 0.535 
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Table A.18. Binding affinity values (S, kcal/mol) for the fentanyl-like NSOs identified by the identified by the 

NPSfinder® (Sec 3.3), docked as described in Section 4.3.8 in PDB5C1M (MOR). Rsmd is a measure of the variance 

of the pose 

 

MOL S rmsd_refine 

2,3-SECOFENTANYL -7.8 2.1 

2′,2″-DIFLUOROFENTANYL -7.5 1.7 

2′-FLUORO-BUTYRYLFENTANYL -7.3 1.8 

2′-FLUORO-ISOBUTYRYLFENTANYL -7.9 2.2 

2′-ISOPROPYL-FURANYLFENTANYL -8.1 1.5 

2-FURANYLBENZYLFENTANYL -7.4 2.4 

2-METHYL CARFENTANIL -8.1 2.2 

2-METHYLFENTANYL -7.4 2.0 

3,3-DIMETHYLFENTANYL -7.6 2.2 

3,5-DIMETHYL-CYCLOPENTYLFENTANYL -7.8 1.6 

3,5-DIMETHYLFENTANYL -7.7 2.0 

3′-4′-DICHLORO-3″-FLUOROFENTANYL -8.0 1.9 

3′-4′-METHYLENEDIOXYFENTANYL -8.6 1.6 

3′-FLUORO-BUTYRYLFENTANYL -7.9 1.9 

3′-FLUORO-ISOBUTYRYLFENTANYL -8.1 2.2 

3′-ME-4F-IBF -7.8 2.4 

3′-METHYL-METHOXYACETYLFENTANYL -7.5 2.2 

3-ALLYLFENTANYL -8.5 2.6 

3-ETHYLFENTANYL -7.8 2.7 

3-FLUOROFENTANYL  -7.1 3.0 

3-FURANYLFENTANYL -8.3 2.3 

3-METHOXYFENTANYL -7.8 2.1 

3-METHYL PHENOXY ACETYLFENTANIL -7.7 2.6 

3-METHYL-BUTYRYLFENTANYL -8.0 2.0 

3-METHYLFENTANYL -7.8 2.4 

3-METHYL-FURANYLFENTANYL -8.3 1.2 

3-METHYL-THIOFENTANYL -7.8 1.7 

3-PHENYLPROPANOYLFENTANYL -8.7 2.3 

4-(M-HYDROXYPHENYL)FENTANYL -8.0 2.8 

4″-BROMO-OHMEFENTANYL -8.2 2.6 

4′-CHLORO-BUTYRYLFENTANYL  -7.6 1.8 

4′-CHLORO-CYCLOBUTYLFENTANYL -8.3 1.8 

4′-CHLORO-CYCLOPROPYLFENTANYL  -7.6 2.1 

4′-CHLOROFENTANYL -7.4 1.0 

4′-FLUORO-BUTYRYLFENTANYL -7.5 1.6 

4′-FLUORO-CROTONYLFENTANYL -8.0 2.3 

4′-FLUORO-CYCLOPENTYLFENTANYL -8.7 2.1 

4′-FLUORO-CYCLOPROPYLFENTANYL -8.3 2.3 

4″-FLUOROFENTANYL -8.1 2.3 
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4″-FLUORO-OHMEFENTANYL -7.8 1.5 

4′-HYDROXYBUTYRYLFENTANYL -8.4 1.8 

4″-METHOXYFENTANYL -8.4 1.4 

4″-METHYL-ACETYLFENTANYL -7.0 1.5 

4′-METHYLFENTANYL -7.8 2.1 

4″-METHYLFENTANYL -8.2 1.7 

4′-METHYL-FURANYLFENTANYL -8.5 2.7 

4′-METHYL-METHOXYACETYLFENTANYL -7.9 2.1 

4′-METHYL-TETRAHYDROFURANYLFENTANYL -8.4 1.5 

4-ANPP  -6.7 1.9 

4'-CHLORO-CYCLOPENTYLFENTANYL -8.4 2.3 

4-FLUOROFENTANYL -8.1 2.3 

4-METHOXYMETHYLFENTANYL -8.8 2.7 

4-METHYLFENTANYL -6.7 2.6 

4-PHENYLFENTANYL -8.2 1.8 

ACETYL-CARFENTANIL -7.8 2.2 

ACETYLFENTANYL -6.9 2.0 

ACETYL-NORFENTANYL -5.9 1.1 

ACRYLFENTANYL  -7.1 1.7 

ALPHAMETHYLFENTANYL -8.0 2.1 

BENZODIOXOLEFENTANYL -9.1 2.0 

BENZOFURANYL-FENTANYL -7.7 2.0 

BENZOYLBENZYLFENTANYL -8.8 1.7 

BENZOYLFENTANYL  -8.3 2.6 

BENZYLFENTANYL  -7.8 1.7 

BUTYRYL-CARFENTANYL -8.4 1.7 

BUTYRYLFENTANYL -7.8 2.1 

CARFENTANIL -8.4 2.9 

CROTONYLFENTANYL -7.1 1.9 

CYCLOBUTYLFENTANYL -8.5 2.7 

CYCLOHEXYLFENTANYL -8.2 1.8 

CYCLOPENTENYLFENTANYL -8.4 2.4 

CYCLOPENTYLFENTANYL -8.7 2.3 

CYCLOPROPYLFENTANYL -7.3 1.5 

DESPROPIONYL-3-METHYLFENTANYL -6.8 2.7 

DESPROPIONYL-P-FLUOROBENZYLFENTANYL  -6.7 2.3 

ETHYL {4-[PHENYL(PROPANOYL)AMINO]-1-[2-

(THIOPHEN-2-YL)ETHYL]PIPERIDIN-4-YL}METHYL 

CARBONATE -8.6 3.0 

FENTANYL -6.9 2.3 

FENTRANYL  -7.0 2.3 

FURANYLBENZYLFENTANYL -8.6 1.6 

FURANYLFENTANYL  -8.0 1.7 

FURANYL-NORFENTANYL -6.1 1.8 

HEXANOYL FENTANYL -6.8 1.9 

ISOBUTYRYLFENTANYL -7.0 1.9 
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ISOCARFENTANIL -8.0 1.8 

ISOFENTANYL -7.8 2.4 

ISOVALEROYLFENTANYL -8.1 2.4 

LOFENTANIL -8.5 3.9 

METHOXYACETYLFENTANYL  -7.5 1.8 

METHYL 1-[2-(4-METHYL-1,3-THIAZOL-5-YL)ETHYL]-

4-[PHENYL(PROPANOYL)AMINO]PIPERIDINE-4-

CARBOXYLATE -8.4 2.4 

METHYL 1-[2-HYDROXY-2-(THIOPHEN-2-YL)ETHYL]-

4-[PHENYL(PROPANOYL)AMINO]PIPERIDINE-4-

CARBOXYLATE -8.3 2.2 

METHYL 1-{2-[(1-METHYL-1H-IMIDAZOL-2-

YL)SULFANYL]ETHYL}-4-

[PHENYL(PROPANOYL)AMINO]PIPERIDINE-4-

CARBOXYLATE -8.7 2.9 

METHYL 1-{2-[5-METHYL-2-(METHYLSULFANYL)-6-

OXOPYRIMIDIN-1(6H)-YL]ETHYL}-4-

[PHENYL(PROPANOYL)AMINO]PIPERIDINE-4-

CARBOXYLATE -7.9 2.2 

METHYL 4-[PHENYL(PROPANOYL)AMINO]-1-[2-

(PYRIDIN-2-YL)ETHYL]PIPERIDINE-4-CARBOXYLATE -8.3 2.0 

M-FLUORO-METHOXYACETYLFENTANYL  -6.1 1.1 

MIRFENTANIL -7.9 2.2 

M-METHYLFENTANYL  -7.7 1.5 

N-(2-FLUOROPHENYL)-N-[1-(2-HYDROXY-2-

PHENYLETHYL)-3-METHYLPIPERIDIN-4-

YL]PROPANAMIDE -8.4 2.1 

N-(2-FLUOROPHENYL)-N-[1-(2-PHENYLETHYL)-4-(1,3-

THIAZOL-2-YL)PIPERIDIN-4-YL]PROPANAMIDE -8.3 2.1 

N-(2-FLUOROPHENYL)-N-[1-(2-PHENYLETHYL)-4-

(PYRIDIN-2-YL)PIPERIDIN-4-YL]PROPANAMIDE -8.7 2.0 

N-(2-FLUOROPHENYL)-N-[4-PHENYL-1-(2-

PHENYLETHYL)PIPERIDIN-4-YL]PROPANAMIDE -7.6 1.5 

N-(2-FLUOROPHENYL)-N-{1-[2-(4-METHYL-1,3-

THIAZOL-5-YL)ETHYL]-4-PHENYLPIPERIDIN-4-

YL}PROPANAMIDE -6.7 1.8 

N-(2-FLUOROPHENYL)-N-{1-[2-(4-METHYL-1,3-

THIAZOL-5-YL)ETHYL]-4-PHENYLPIPERIDIN-4-

YL}PROPANAMIDE -7.7 1.8 

N-(2-FLUOROPHENYL)-N-{4-(4-METHYL-1,3-THIAZOL-

2-YL)-1-[2-(THIOPHEN-3-YL)ETHYL]PIPERIDIN-4-

YL}PROPANAMIDE -8.9 2.6 

N-(2-FLUOROPHENYL)-N-{4-PHENYL-1-[2-(1H-

PYRAZOL-1-YL)ETHYL]PIPERIDIN-4-

YL}PROPANAMIDE -7.9 2.3 

N-(2-FLUOROPHENYL)-N-{4-PHENYL-1-[2-

(THIOPHEN-2-YL)ETHYL]PIPERIDIN-4-

YL}PROPANAMIDE -9.2 2.0 

N-(2-FLUOROPHENYL)-N-{4-PHENYL-1-[2-

(THIOPHEN-3-YL)ETHYL]PIPERIDIN-4-

YL}PROPANAMIDE -8.8 2.2 

N-(3-FLUOROPHENYL)-N-[1-(2-HYDROXY-2-

PHENYLETHYL)-3-METHYLPIPERIDIN-4-

YL]PROPANAMIDE -8.2 2.9 

N-(4-FLUOROPHENYL)-N-[1-(2-HYDROXY-2-

PHENYLETHYL)-3-METHYLPIPERIDIN-4-

YL]PROPANAMIDE -8.7 1.9 
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N-[1-(2-CYCLOPROPYL-2-HYDROXYETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-PHENYLPROPANAMIDE -7.4 1.9 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-2-METHOXY-N-

PHENYLACETAMIDE -7.5 1.7 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-(3-

METHOXYPHENYL)PROPANAMIDE -7.7 2.2 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-(PYRIDIN-2-

YL)PROPANAMIDE -7.7 1.6 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-(PYRIDIN-3-

YL)PROPANAMIDE -7.9 1.6 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-PHENYLFURAN-3-

CARBOXAMIDE -5.9 1.4 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-PHENYLTHIOPHENE-2-

CARBOXAMIDE -8.7 2.4 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-3-

METHYLPIPERIDIN-4-YL]-N-PHENYLTHIOPHENE-3-

CARBOXAMIDE -9.0 2.1 

N-[1-(2-HYDROXY-2-PHENYLETHYL)-4-

(METHOXYMETHYL)-3-METHYLPIPERIDIN-4-YL]-N-

PHENYLPROPANAMIDE -8.1 1.5 

N-[4-(4-METHYL-1,3-THIAZOL-2-YL)-1-(2-

PHENYLETHYL)PIPERIDIN-4-YL]-N-

PHENYLPROPANAMIDE -8.4 2.0 

N-{1-[(2R,3R)-3-HYDROXY-1,2,3,4-

TETRAHYDRONAPHTHALEN-2-YL]-3-

METHYLPIPERIDIN-4-YL}-N-PHENYLPROPANAMIDE -8.6 2.0 

N-{1-[2-(FURAN-2-YL)-2-HYDROXYETHYL]-4-

(METHOXYMETHYL)PIPERIDIN-4-YL}-N-

PHENYLPROPANAMIDE -8.3 2.0 

N-{1-[2-HYDROXY-2-(1-METHYL-1H-PYRROL-2-

YL)ETHYL]-3-METHYLPIPERIDIN-4-YL}-N-

PHENYLPROPANAMIDE -8.3 3.2 

N-{1-[2-HYDROXY-2-(PYRIDIN-3-YL)ETHYL]-3-

METHYLPIPERIDIN-4-YL}-N-PHENYLPROPANAMIDE -8.2 2.6 

N-{1-[2-HYDROXY-2-(PYRIDIN-4-YL)ETHYL]-3-

METHYLPIPERIDIN-4-YL}-N-PHENYLPROPANAMIDE -7.8 2.0 

N-{1-[2-HYDROXY-2-(THIOPHEN-2-YL)ETHYL]-3-

METHYLPIPERIDIN-4-YL}-N-(3-

METHOXYPHENYL)PROPANAMIDE -8.5 1.7 

N-{3,5-DIMETHYL-1-[2-(1H-PYRAZOL-1-

YL)ETHYL]PIPERIDIN-4-YL}-2-METHOXY-N-

PHENYLACETAMIDE -8.4 2.0 

N-{3,5-DIMETHYL-1-[2-(1H-PYRAZOL-1-

YL)ETHYL]PIPERIDIN-4-YL}-2-METHOXY-N-

PHENYLACETAMIDE -7.6 1.4 

N-ADAMANTYL-FENTANYL -8.7 1.7 

N-BENZOXAZOLYL-FENTANYL -8.0 2.0 

N-BENZYL-ACETYLFENTANYL -7.4 1.6 

N-BENZYL-BUTYRYLFENTANYL -8.0 2.2 

N-BENZYLCARFENTANIL  -8.4 2.4 

N-BENZYL-P-FLUORO-ISOBUTYRYLFENTANYL -8.1 2.5 

N-FURANYLETHYLFENTANYL -8.0 2.3 
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N-METHYL NORFENTANYL -5.9 2.7 

N-METHYL-ACETYL-NORFENTANYL -5.8 1.9 

N-METHYL-BUTYRYLFENTANYL -6.3 1.8 

N-METHYL-CARFENTANIL -7.1 1.9 

N-PHENYL-N-[1-(2-PHENYLETHYL)-4-(1,3-THIAZOL-2-

YL)PIPERIDIN-4-YL]PROPANAMIDE -8.2 2.6 

N-PHENYL-N-{4-PHENYL-1-[2-(1H-PYRAZOL-1-

YL)ETHYL]PIPERIDIN-4-YL}PROPANAMIDE -8.9 1.9 

N-PHENYL-N-{4-PHENYL-1-[2-(THIOPHEN-2-

YL)ETHYL]PIPERIDIN-4-YL}PROPANAMIDE -8.4 2.0 

N-PHENYL-N-{4-PHENYL-1-[2-(THIOPHEN-3-

YL)ETHYL]PIPERIDIN-4-YL}PROPANAMIDE -6.9 1.7 

N-QUINOLINYL-FENTANYL -7.9 2.4 

OCFENTANIL -7.8 2.0 

O-FLUORO-DESPROPIONOYLFENTANYL  -6.9 1.2 

OHMEFENTANIL  -8.1 2.3 

O-METHOXY-FURANYLFENTANYL -8.1 1.5 

O-METHYL-ACETYLFENTANYL -7.3 2.4 

O-METHYL-BENZOYLFENTANYL -8.3 1.5 

O-METHYL-CYCLOPROPYLFENTANYL -7.1 1.8 

O-METHYLFENTANYL -7.6 1.8 

O-METHYL-FURANYLFENTANYL -7.4 1.3 

P-BROMOFENTANYL  -8.0 1.9 

P-CHLORO-FURANYLFENTANYL  -7.8 1.5 

P-CHLORO-ISOBUTYRYLFENTANYL -7.5 1.2 

P-CHLORO-METHOXYACETYLFENTANYL  -7.8 2.2 

P-FLUORO-ACETYLFENTANYL -7.6 2.6 

P-FLUORO-ACRYLFENTANYL  -7.2 1.8 

P-FLUORO-CYCLOPROPYLBENZYLFENTANYL -8.0 2.1 

P-FLUORO-FURAN-3-YLFENTANYL -8.1 2.1 

P-FLUORO-FURANYLETHYLFENTANYL  -7.3 2.7 

P-FLUORO-FURANYLFENTANYL -7.8 1.3 

P-FLUORO-ISOBUTYRYLFENTANYL  -8.6 1.5 

P-FLUORO-ISOPROPYLBENZYLFENTANYL -7.7 2.7 

P-FLUORO-METHOXYACETYLFENTANYL  -8.3 1.9 

P-FLUORO-TETRAHYDROFURANYLFENTANYL -7.7 2.0 

P-FLUORO-THIOFENTANYL -7.0 2.4 

P-FLUORO-β-HYDROXY-THIOBUTYRYLFENTANYL -7.3 2.3 

PHARAOHFENTANYL -7.0 2.1 

PHENYLACETYLFENTANYL -8.6 1.4 

PHENYLPROPYL-NORFENTANYL -6.0 1.9 

P-IODOFENTANYL -8.3 3.5 

PIVALOYLFENTANYL -7.5 1.6 

P-METHOXY-ACETYLFENTANYL -7.2 1.9 

P-METHOXY-BUTYRYLFENTANYL -8.6 2.4 

P-METHOXYFENTANYL -8.8 3.0 

P-METHOXY-FURANYLFENTANYL -8.8 2.0 
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P-METHOXY-METHOXYACETYLFENTANYL -8.1 1.8 

P-METHOXY-TETRAHYDROFURANYLFENTANYL  -8.0 1.6 

P-METHYL-ACETYLFENTANYL -7.4 1.3 

P-METHYL-CYCLOPROPYLFENTANYL -7.7 2.1 

PROPYL-NORFENTANYL -6.9 2.3 

P-TFM-FENTANYL -7.9 2.1 

SUFENTANIL -8.5 2.1 

TETRAHYDROFURANYLFENTANYL -8.0 1.7 

THENYLFENTANYL -7.6 1.9 

THIAFENTANIL  -8.4 2.5 

THIOFENTANYL -7.2 3.6 

THIOPHENOYLFENTANYL  -8.1 2.2 

TMCP-F -8.2 2.1 

VALERYLFENTANYL -7.9 2.3 

α,3-DIMETHYLFENTANYL -8.0 1.6 

α′-METHOXYFENTANYL -8.5 2.5 

α′-METHYL-BUTYRYLFENTANYL -8.0 2.0 

α-METHYL-ACETYLFENTANYL -7.5 2.9 

α-METHYL-ACRYLFENTANYL -5.3 1.9 

α-METHYL-ISOBUTYRYLFENTANYL -6.4 2.0 

α-METHYL-P-FLUOROFENTANYL -7.5 1.9 

α-METHYL-THIOFENTANYL -7.6 2.1 

β-HYDROXY-3-METHYLFENTANYL CARBAMATE -8.4 2.2 

β-HYDROXY-3-METHYL-THIENYLFENTANYL -7.8 2.3 

β-HYDROXY-CARFENTANIL -8.9 2.3 

β-HYDROXYFENTANYL -8.2 2.0 

β-HYDROXY-P-FLUOROFENTANYL -8.0 1.8 

β-HYDROXY-SUFENTANIL -8.4 1.6 

β-HYDROXY-THIOFENTANYL -7.6 2.3 

β-METHYLFENTANYL -7.1 1.6 
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Table A.19 Twenty most active agonist selected from the ChEMBL Activity Database as reference compounds for the creation of the pharmacophore maps. Compounds were 

identified across assays to minimise biases 

 

KOR 

Molecule 

ChEMBL ID 
SMILES 

 EC50 (nM) 

CHEMBL4108754 O=C(N[C@@H](C(=O)N1CCC2(C(=O)NC(=O)N2)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.001 

CHEMBL4108145 O=C(N[C@@H](C(=O)N1CCC2(C(=O)NCC2)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.003 

CHEMBL4112470 O=C(N[C@@H](C(=O)N1CCC(n2c(C)nnc2C)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.004 

CHEMBL4087151 O=C(N(C)[C@H]1[C@@H]2Oc3c(O)ccc4[C@H](O)[C@H]5N(CC6CC6)CC[C@]2([C@@]5(O)CC1)c34)/C=C/c1sccc1 0.005 

CHEMBL4115175 O=C(N[C@@H](C(=O)N1CCC(N2C(=O)Cc3c2cccc3)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.005 

CHEMBL4112000 O=C(N[C@@H](C(=O)N1CCC(N2C(=O)Nc3c2cccc3)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.005 

CHEMBL2338721 O(C)[C@]12[C@@H]([C@@H](O)CCC(C)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.006 

CHEMBL4115104 O=C(N[C@@H](C(=O)NCc1ncc(C)nc1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.006 

CHEMBL2338723 O(C)[C@]12[C@@H]([C@@H](O)CC3CCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.007 

CHEMBL2338724 O(C)[C@]12[C@@H]([C@@H](O)CCC3CCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.008 

CHEMBL4108908 Clc1cc2NC(=O)N(C3CCN(C(=O)[C@H](NC(=O)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc4ccccc4)Cc4ccccc4)CC(C)C)CCCCN)CC3)c2cc1 0.008 

CHEMBL4115212 O=C(N[C@@H](C(=O)N1CCC2(C(=O)N(C)CC2)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.008 

CHEMBL2338725 O(C)[C@]12[C@@H]([C@@H](O)C3CCCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.010 

CHEMBL2338747 O(C)[C@]12[C@@H]([C@](O)(CC3CCCC3)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.011 

CHEMBL4111684 O=C(N[C@@H](C(=O)N1CCC(N2C(=O)NC(c3ccccc3)=C2)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.012 

CHEMBL2338720 O(C)[C@]12[C@@H]([C@@H](O)CC(C)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.013 

CHEMBL4110548 O=C(N[C@@H](C(=O)N1CCC(C(=O)N2CCOCC2)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.015 

CHEMBL2338753 O(C)[C@]12[C@@H]([C@](O)(CCc3ccccc3)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.016 

CHEMBL4115291 O=C(N[C@@H](C(=O)N1CCC2(N(c3ccccc3)CNC2=O)CC1)CCCCN)[C@H](NC(=O)[C@H](NC(=O)[C@H](N)Cc1ccccc1)Cc1ccccc1)CC(C)C 0.017 

CHEMBL2338750 O(C)[C@]12[C@@H]([C@](O)(CC3CCCCC3)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.017 

CHEMBL3359804 O=C(O[C@@H]1C(=O)[C@H]2[C@](C)([C@H](C(=O)OC)C1)CC[C@H]1C(=O)O[C@H](c3c(C#C)occ3)C[C@]21C)C 0.019 

CHEMBL2338722 O(C)[C@]12[C@@H]([C@@H](O)C3CCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.020 

DOR 
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CHEMBL2151735 O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H]([NH3+])Cc1c(C)cc(O)cc1C 0.016 

CHEMBL559518 Oc1cc2c(cc1)C[C@H]1[NH+](CC3CC3)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.018 

CHEMBL552308 Oc1cc2c(cc1)C[C@H]1[NH+](C)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.047 

CHEMBL8234 O=C([O-])[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])Cc1ccc(O)cc1)Cc1ccccc1)CC(C)C 0.080 

CHEMBL3758292 O=C([C@@H]([NH3+])Cc1c(C)cc(O)cc1C)N1[C@@H](C(=O)NCc2[nH]c3c(n2)cccc3)Cc2c(cccc2)C1 0.081 

CHEMBL2113666 Clc1c(/C=C/C(=O)N[C@]23[C@@H]4[NH+](C)CC[C@@]52[C@H](C(=O)CC3)Oc2c5c(ccc2)C4)cccc1 0.100 

CHEMBL567175 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@@]4(O)[C@@H]6[NH+](CC7CC7)CC[C@]34c2c(cc1)C6)cccc5 0.110 

CHEMBL31421 O=C(N[C@@H]1C(C)(C)SSC(C)(C)[C@H](C(=O)[O-])NC(=O)[C@H](Cc2ccccc2)NC(=O)CNC1=O)[C@@H]([NH3+])Cc1ccc(O)cc1 0.120 

CHEMBL25230 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)C[NH+](CC=C)[C@H](C)C2)c2cc(O)ccc2)cc1 0.120 

CHEMBL2208349 O=C(NCCc1ccc(-c2c(O)cccc2)cc1)c1cc2C3(C)C(C)C([NH+](CC4CC4)CC3)Cc2cc1 0.160 

CHEMBL226166 Oc1cc2c(cc1)C[C@H]1[NH+](CC3CC3)CC[C@@]32[C@H]1Cc1c2c([nH]c1C3)cccc2 0.160 

CHEMBL67192 O=C(N(CC)CC)c1ccc(C(c2ccccc2)=C2CC3[NH+](Cc4cc5OCOc5cc4)C(C2)CC3)cc1 0.200 

CHEMBL568818 O=C(N(CC)CC)c1ccc(N(c2cc(O)ccc2)C2CC[NH+](CCc3cocc3)CC2)cc1 0.220 

CHEMBL4103044 O=C(N1C2C3[C@@H](C1)CC1(C43c3c(ccc(O)c3)CC1[NH+](CC1CC1)CC4)CC2)c1cocc1 0.230 

CHEMBL2179656 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OCCCc4ccccc4)([C@H]([NH+](C)CC5)C6)Cc3c2)cc1 0.270 

CHEMBL577615 O=C(N(CC)CC)c1ccc(N(c2cc(C(=O)N)ccc2)C2CC[NH+](Cc3ccccc3)CC2)cc1 0.300 

CHEMBL611932 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H]([NH+](CC2CC2)CC3)C4)CC1)c1ccc(C(C)(C)C)cc1 0.300 

CHEMBL281986 O(C)[C@]12C3([C@H](O)CCC3)CC3(C45[C@@H]1Oc1c(O)ccc(c41)CC3[NH+](CC1CC1)CC5)C=C2 0.300 

CHEMBL421520 S=C(NC(C)(C)C)NC[C@H]1N(C(=O)[C@@H]([NH3+])Cc2c(C)cc(O)cc2C)Cc2c(cccc2)C1 0.320 

CHEMBL4075409 O=C(N1C2C3[C@H](OC4(C53c3c(ccc(O)c3)CC4[NH+](CC=C)CC5)CC2)C1)c1ccccc1 0.430 

MOR 

CHEMBL2151735 O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H](N)Cc1c(C)cc(O)cc1C 0.0017 

CHEMBL4550234 O=C(NC(C(C(=O)N)=C)c1occc1)[C@@H](NC(=O)[C@H](N(C(=O)C(N)Cc1c(C)cc(O)cc1C)C)C)Cc1ccccc1 0.0018 

CHEMBL4521879 O=C(NC(C(C(=O)N)=C)c1ccccc1)[C@@H](NC(=O)[C@H](N(C(=O)C(N)Cc1c(C)cc(O)cc1C)C)C)Cc1ccccc1 0.0018 

CHEMBL4563672 O=C(N(c1ccccc1)C1(C(=O)OC)CCN(CCc2c(O)cccc2)CC1)CC 0.0024 

CHEMBL290429 O=C(N(c1ccccc1)C1(C(=O)OC)CCN(CCc2ccccc2)CC1)CC 0.0049 

CHEMBL4463749 O=C(N(c1ccccc1)C1(C(=O)OC)CCN(CC(O)c2ccccc2)CC1)CC 0.0051 

CHEMBL4588535 O=C(N(c1ccccc1)C1(C(=O)OC)CCN(CCc2cc(O)ccc2)CC1)CC 0.0140 

CHEMBL4578287 O=C(N(c1ccccc1)C1(C(=O)OC)CCN(CCc2ccc(O)cc2)CC1)CC 0.0280 

CHEMBL2113666 Clc1c(/C=C/C(=O)N[C@]23[C@@H]4N(C)CC[C@@]52[C@H](C(=O)CC3)Oc2c5c(ccc2)C4)cccc1 0.0400 
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CHEMBL607125 O=C(N[C@]12[C@@H]3N(C)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)/C=C/c1c(C)cccc1 0.0400 

CHEMBL333357 O=C(N[C@H](C(=O)N)Cc1ccccc1)[C@@H](NC(=O)[C@H]1N(C(=O)[C@@H](N)Cc2ccc(O)cc2)CCC1)Cc1ccccc1 0.0400 

CHEMBL2151734 O=C(N(CC(=O)N)C)[C@@H](NC(=O)[C@H](N(C(=O)[C@@H](N)Cc1c(C)cc(O)cc1C)C)C)Cc1ccccc1 0.0790 

CHEMBL1834247 O=C(N[C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)[C@@H](N)Cc1c(C)cc(O)cc1C 0.0832 

CHEMBL494853 O=C(N[C@@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1nc2c(cc1)cccc2 0.0900 

CHEMBL3408737 O=C(N[C@@H]1C(=O)N(CCC(=O)N)Cc2c(cccc2)C1)[C@H](NC(=O)[C@@H](N)Cc1c(C)cc(O)cc1C)CCCNC(=N)N 0.1000 

CHEMBL331325 O=C(N[C@H](C(=O)N)Cc1ccccc1)[C@@H](NC(=O)[C@H]1N(C(=O)[C@@H](N)Cc2c(C)cc(O)cc2C)CCC1)Cc1ccccc1 0.1000 

CHEMBL511142 O(C)[C@@]12[C@@H]([C@](O)(C(C)(C)C)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.1100 

CHEMBL4103328 O(Cc1ccccc1)[C@]12[C@@H]3N(C)CC[C@@]41[C@@H](Oc1c(O)ccc(c41)C3)CCC2 0.1300 

CHEMBL13470 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)CN(CC=C)[C@H](C)C2)c2cc(OC)ccc2)cc1 0.1400 

CHEMBL2208351 O=C(NCCc1ccc(-c2cc3OCOc3cc2)cc1)c1cc2C3(C)C(C)C(N(CC4CC4)CC3)Cc2cc1 0.1500 
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Table A20. Test sets for KOR, DOR, MOR pharmacophores validation  

Notes. These compounds were selected to include a variety of structures and a broad activity value set (i.e. at least four orders of magnitude). In red the compounds that were 

filtered by the KOR, MOR and DOR pharmacophore.    

 

KOR  

Mol  Smiles EC50  

CHEMBL472410 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](OCC=C)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 0.08 

CHEMBL454018 O=[N+]([O-])c1cc(/C=C/C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)ccc1 0.12 

CHEMBL473362 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 0.12 

CHEMBL2338742 O(C)[C@]12[C@@H]([C@H](O)CC3CCCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.19 

CHEMBL2338716 O(C)[C@]12[C@@H]([C@H](O)CCC3CCCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.24 

CHEMBL2338740 O(C)[C@]12[C@@H]([C@H](O)C3CCCC3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.29 

CHEMBL575682 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)C#Cc1ccccc1 0.30 

CHEMBL2338733 O(C)[C@]12[C@@H]([C@@](O)(CC3CCCCC3)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.31 

CHEMBL511655 Clc1c(/C=C/C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)cccc1 0.40 

CHEMBL2338756 O(C)[C@]12[C@@H]([C@@](O)(C(C)C)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.46 

CHEMBL2338734 O(C)[C@]12[C@@H]([C@@](O)(CCC3CCCCC3)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.46 

CHEMBL503017 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](OC(=O)Cc2ccccc2)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 0.49 

CHEMBL2338737 O(C)[C@]12[C@@H]([C@H](O)C(C)C)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.63 

CHEMBL2338729 O(C)[C@]12[C@@H]([C@@H](O)CCc3ccccc3)C[C@@]3([C@@H]4N(CC5CC5)CC[C@@]53[C@H]1Oc1c(O)ccc(c51)C4)CC2 0.73 

CHEMBL509552 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](OCc2ccccc2)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 0.78 

CHEMBL147511 

O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)CCCCCCCCC(=O)Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C

@H]1CCCC3 0.85 

CHEMBL513598 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1c(OC)cccc1 0.95 

CHEMBL56585 Oc1cc2[C@@]3(C)[C@@H](C)[C@H](N(CC4CC4)CC3)Cc2cc1 1.30 

CHEMBL502267 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(c3ccccc3)CC2)C)c1 1.30 

CHEMBL301160 Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3 1.30 

CHEMBL503079 O=C(Cc1c2c(ccc1)cccc2)N1C(CN2CCCC2)CN(c2ccccc2)CC1 1.60 
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CHEMBL584791 

O=C(Oc1c2O[C@@H]3[C@]45[C@H]([C@H](N(CC=C)CC4)Cc(c25)cc1)CCC3)CCCCCCCCC(=O)Oc1cc2c(cc1)CC1N(CC3CCC3)CC[C@@]3

2[C@H]1CCCC3 1.60 

CHEMBL448145 O=[N+]([O-])c1c(/C=C/C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)cccc1 1.90 

CHEMBL503080 Clc1cc2c(CC(=O)N3C(CN4CCCC4)CN(c4ccccc4)CC3)csc2cc1 2.00 

CHEMBL2338715 O=C1[C@@H]2N(CC3CC3)CC[C@@](CC)([C@@H]2C)c2c1ccc(O)c2 2.20 

CHEMBL472583 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](OC(=O)C)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 2.40 

CHEMBL566346 O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)CCCCCCCCC(=O)O 2.80 

CHEMBL254154 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CCCC2)C)c1 3.00 

CHEMBL526933 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)C)CC2)C)c1 3.00 

CHEMBL575451 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(OC)ccc(c41)C3)C#Cc1ccccc1 3.18 

CHEMBL526747 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(c3cc(OC)ccc3)CC2)C)c1 3.20 

CHEMBL524888 FC(F)(F)c1n(CC(=O)N2C(CN3CCCC3)CN(c3ccccc3)CC2)c2c(n1)cccc2 4.00 

CHEMBL524367 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(c3cc(Cl)ccc3)CC2)C)c1 4.00 

CHEMBL518712 C(N1C2[C@H](C)[C@@](C)(c3c(cc4nc[nH]c4c3)C2)CC1)C1CC1 4.70 

CHEMBL565679 O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)C(CCCCCCC(C(=O)O)C)C 4.90 

CHEMBL473699 C(N1C2[C@H](C)[C@@](C)(c3c(cc4nc(C)[nH]c4c3)C2)CC1)C1CC1 5.80 

CHEMBL500407 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(c3cc(F)c(F)cc3)CC2)C)c1 6.30 

CHEMBL584790 

O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)C(CCCCCCC(C(=O)Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[

C@H]1CCCC3)(C)C)(C)C 6.40 

CHEMBL582930 

O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)C(CCCCCCC(C(=O)Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[

C@H]1CCCC3)C)C 7.30 

CHEMBL475108 C(N1C2[C@H](C)[C@@](C)(c3c4nn[nH]c4ccc3C2)CC1)C1CC1 8.60 

CHEMBL468871 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](OC(=O)c2ccccc2)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1ccccc1 9.80 

CHEMBL572525 O=C(N[C@H]1C(=O)N[C@@H](Cc2ccccc2)C(=O)N[C@@H](Cc2cc3c(cc2)cccc3)C(=O)N[C@H](C(=O)N)CSCSC1)[C@@H](N)Cc1ccc(O)cc1 12.0 

CHEMBL578422 Clc1ccc(C#CC(=O)N[C@]23[C@@H]4N(CC5CC5)CC[C@@]52[C@H](C(=O)CC3)Oc2c(OC)ccc(c52)C4)cc1 20.0 

CHEMBL474755 O=C(O[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(OC)ccc(c41)C3)/C=C/c1ccccc1 26.0 

CHEMBL441765 Clc1c(Cl)ccc(CC(=O)N(C)[C@H]2[C@H](N3CCCC3)CCCC2)c1 36.0 

CHEMBL557937 Oc1cc2c(cc1)C[C@@]13[C@@]2(Cc2n(C)c4c(c2C1)cccc4)CCN(C)C3 62.1 

CHEMBL562340 Oc1cc2c(cc1)C[C@@]13[C@@]2(Cc2[nH]c4c(c2C1)cccc4)CCN(CC1CC1)C3 67.1 

CHEMBL515593 C(N1C2[C@H](C)[C@@](C)(c3c(cc4nn[nH]c4c3)C2)CC1)C1CC1 77.0 

CHEMBL499353 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)c3cc(OC)ccc3)CC2)C)c1 79.0 

CHEMBL471543 O=C(O[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(OC)ccc(c41)C3)/C=C/c1ccc(C)cc1 157 
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CHEMBL499351 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)c3cc(Cl)ccc3)CC2)C)c1 200 

CHEMBL526913 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)c3ccccc3)CC2)C)c1 250 

CHEMBL525457 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4cc(OC)c(OC)cc4)CC3)C(=O)Oc2cc1 320 

CHEMBL498314 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4cc(OC)ccc4)CC3)C(=O)Oc2cc1 320 

CHEMBL496084 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)c3cc(F)c(F)cc3)CC2)C)c1 400 

CHEMBL527013 O=C(CN1C(=O)Oc2c1cccc2)N1C(CN2CCCC2)CN(c2ccccc2)CC1 400 

CHEMBL70 O[C@@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@H]([C@H](N(C)CC3)C4)C=C1 484 

CHEMBL524546 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)c3ccncc3)CC2)C)c1 630 

CHEMBL498330 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4cc(C#N)ccc4)CC3)C(=O)Oc2cc1 630 

CHEMBL525554 Brc1cc(S(=O)(=O)N2CC(CN3CCCC3)N(C(=O)CN3C(=O)Oc4c3cc(Cl)cc4)CC2)c(OC)cc1 790 

CHEMBL498329 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4ccccc4)CC3)C(=O)Oc2cc1 790 

CHEMBL499352 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(S(=O)(=O)c3ccc(Cl)cc3)CC2)C)c1 790 

CHEMBL503582 Clc1c(S(=O)(=O)N2CC(CN3CCCC3)N(C(=O)CN3C(=O)Oc4c3cc(Cl)cc4)CC2)cc(C(F)(F)F)cc1 1000 

CHEMBL524288 S(=O)(=O)(N1CC(CN2CCCC2)N(C(=O)CN2C(=O)Oc3c2cccc3)CC1)c1ccccc1 1000 

CHEMBL525823 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4ccc(NC(=O)C)cc4)CC3)C(=O)Oc2cc1 1300 

CHEMBL505188 Brc1c(OC)c(OC)ccc1S(=O)(=O)N1CC(CN2CCCC2)N(C(=O)CN2C(=O)Oc3c2cc(Cl)cc3)CC1 1300 

CHEMBL503322 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4cc(C(F)(F)F)ccc4)CC3)C(=O)Oc2cc1 2000 

CHEMBL497667 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4ccc(C(=O)O)cc4)CC3)C(=O)Oc2cc1 2000 

CHEMBL525922 Brc1c(S(=O)(=O)N2CC(CN3CCCC3)N(C(=O)CN3C(=O)Oc4c3cc(Cl)cc4)CC2)cccc1 2000 

CHEMBL526842 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4ccc(OC)cc4)CC3)C(=O)Oc2cc1 2000 

CHEMBL502825 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)c3ccc(C#N)cc3)CC2)C)c1 3200 

CHEMBL502819 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)Nc3ccccc3)CC2)C)c1 4000 

CHEMBL501461 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)c3ccccc3)CC2)C)c1 7900 

CHEMBL526192 Clc1cc2N(CC(=O)N3C(CN4CCCC4)CN(S(=O)(=O)c4cc(O)c(C(=O)O)cc4)CC3)C(=O)Oc2cc1 7900 

CHEMBL501468 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)c3cc(Cl)ccc3)CC2)C)c1 10000 

CHEMBL526735 Clc1c(Cl)ccc(N(CC(=O)N2C(CN3CCCC3)CN(C(=O)c3cc(OC)c(OC)cc3)CC2)C)c1 10000 

DOR  

Mol Smiles EC50 

CHEMBL559518 Oc1cc2c(cc1)C[C@H]1N(CC3CC3)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.02 

CHEMBL552308 Oc1cc2c(cc1)C[C@H]1N(C)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.05 
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CHEMBL564538 Oc1cc2c(cc1)C[C@H]1N(CC(C)C)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.06 

CHEMBL567175 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@@]4(O)[C@@H]6N(CC7CC7)CC[C@]34c2c(cc1)C6)cccc5 0.11 

CHEMBL1929365 Oc1c2c(ccc1)C[C@H]1N(CC3CC3)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 0.19 

CHEMBL2113383 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(NCC)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 0.33 

CHEMBL25230 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)CN(CC=C)[C@H](C)C2)c2cc(O)ccc2)cc1 0.40 

CHEMBL249985 O=C(NCCc1ccc(-c2ccc(OC)cc2)cc1)c1cc2[C@]3(C)[C@@H](C)C(N(CC4CC4)CC3)Cc2cc1 0.68 

CHEMBL327745 Oc1cc([C@@]23[C@H](CN(C)CC2)Cc2c(nc4c(c2)cccc4)C3)ccc1 0.70 

CHEMBL392185 O=C(N[C@@H](C(=O)NCC(=O)N[C@H](C(=O)N1CCC(N(C(=O)CC)c2ccccc2)CC1)Cc1ccccc1)C)[C@@H](N)Cc1c(C)cc(O)cc1C 0.77 

CHEMBL2113378 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(NCCCc6ccccc6)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 0.87 

CHEMBL2113382 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(NCCc6ccccc6)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 0.95 

CHEMBL13786 S(CC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H](N)Cc1ccc(O)cc1)Cc1ccccc1)C(=O)O)C 1.03 

CHEMBL2113379 O=C(N[C@@]12[C@]34[C@@H](Oc5c(O)ccc(c35)CC1N(C)CC4)c1[nH]c3c(c1C2)cccc3)Cc1ccccc1 1.20 

CHEMBL2113373 O=C(N[C@@]12[C@]34[C@@H](Oc5c(O)ccc(c35)CC1N(C)CC4)c1[nH]c3c(c1C2)cccc3)CCc1ccccc1 1.40 

CHEMBL494479 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)ccc(O)c3)cc1 1.40 

CHEMBL294616 O=C(N[C@@H]1C(C)(C)SSC(C)(C)[C@H](C(=O)O)NC(=O)[C@@H](Cc2ccccc2)NC(=O)CNC1=O)[C@@H](N)Cc1ccc(O)cc1 1.60 

CHEMBL1929364 Oc1c2c(ccc1)C[C@H]1N(C)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 1.77 

CHEMBL438871 Clc1ccc(-c2ccc(CCNC(=O)c3cc4[C@]5(C)[C@@H](C)C(N(CC6CC6)CC5)Cc4cc3)cc2)cc1 2.00 

CHEMBL1929362 Oc1c2c(ccc1)C[C@H]1N(CC(C)C)CC[C@@]32[C@H]1Cc1c(nc2c(c1)cccc2)C3 2.34 

CHEMBL1649939 O=C(N[C@H](C(=O)N1CCC(N(C(=O)CC)c2ccccc2)CC1)Cc1ccccc1)[C@H](NC(=O)[C@@H](N)Cc1c(C)cc(O)cc1C)CCCC 2.82 

CHEMBL377789 O=C(NCCc1ccc(-c2ccccc2)cc1)c1cc2[C@]3(C)[C@@H](C)C(N(CC4CC4)CC3)Cc2cc1 3.00 

CHEMBL2113381 O=C(N[C@@]12[C@]34[C@@H](Oc5c(O)ccc(c35)CC1N(C)CC4)c1[nH]c3c(c1C2)cccc3)CCCC 3.30 

CHEMBL573214 

Oc1c2O[C@H]3c4[nH]c5[C@@H]6Oc7c(O)ccc8c7[C@@]76[C@](O)([C@H](N(CC6CC6)CC7)C8)Cc5c4C[C@@]4(O)[C@@H]5N(CC6CC6)C

C[C@]34c2c(cc1)C5 4.42 

CHEMBL2113377 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(NCCCC)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 4.71 

CHEMBL19019 O=C1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1 5.44 

CHEMBL2113380 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(CCCc6ccccc6)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 7.53 

CHEMBL2113376 Oc1c2O[C@H]3c4[nH]c5c(c4C[C@]4(N)[C@]63c2c(cc1)CC4N(C)CC6)cccc5 8.60 

CHEMBL250993 Brc1cc(CCNC(=O)c2cc3[C@]4(C)[C@@H](C)C(N(CC5CC5)CC4)Cc3cc2)ccc1 14.0 

CHEMBL13470 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)CN(CC=C)[C@H](C)C2)c2cc(OC)ccc2)cc1 15.7 

CHEMBL556648 O=C(N(CC)CC)c1ccc([C@@H]2c3c(OC4(C2)CCNCC4)cccc3)cc1 16.0 

CHEMBL401278 O=C(NCCc1cc(-c2ccccc2)ccc1)c1cc2[C@]3(C)[C@@H](C)C(N(CC4CC4)CC3)Cc2cc1 18.0 
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CHEMBL494462 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 19.0 

CHEMBL2113372 O=C(N[C@@]12[C@]34[C@@H](Oc5c(O)ccc(c35)CC1N(C)CC4)c1[nH]c3c(c1C2)cccc3)CCCCCC 19.0 

CHEMBL563893 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CCNCCC4)cccc3)cc1 20.0 

CHEMBL249567 Brc1ccc(CCNC(=O)c2cc3[C@]4(C)[C@@H](C)C(N(CC5CC5)CC4)Cc3cc2)cc1 20.0 

CHEMBL494480 O=C(N(CC)CC)c1ccc(C=2c3c(O)cccc3OC3(C=2)CCNCC3)cc1 20.0 

CHEMBL557121 O=C(N(CC)CC)c1ccc(C2c3c(OC4(C2)CCNCC4)cccc3)cc1 21.0 

CHEMBL557458 O=C(N(CC)CC)c1c(O)cc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 26.0 

CHEMBL1649945 Clc1ccc(C[C@H](NC(=O)[C@H](NC(=O)[C@@H](N)Cc2c(C)cc(O)cc2C)C)C(=O)N2CCC(N(C(=O)CC)c3ccccc3)CC2)cc1 26.0 

CHEMBL556439 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CNCC4)cccc3)cc1 28.0 

CHEMBL551613 O=C(N1Cc2c(cccc2)C1)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 45.0 

CHEMBL561882 O=C(N(C(C)C)C(C)C)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 47.0 

CHEMBL562873 Fc1c(C(=O)N(CC)CC)ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)c1 66.0 

CHEMBL550472 O=C(N(CC)CC)c1sc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 69.0 

CHEMBL561805 O=C(N(C)C)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 81.0 

CHEMBL494265 O=C(OC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 81.0 

CHEMBL494275 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CCN(C)CC4)cccc3)cc1 89.0 

CHEMBL551412 O=C(NCC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 90.0 

CHEMBL562280 O=C(N(CC)CC)c1ncc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cn1 92.0 

CHEMBL561339 O=C(N(CC)CC)c1cc(O)c(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 94.0 

CHEMBL550261 O=C(N1CCCCC1)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 100 

CHEMBL551536 O=C(N(Cc1ccccc1)C)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 100 

CHEMBL551413 O=C(NC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 110 

CHEMBL550063 O=C(N)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 110 

CHEMBL495094 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cc(O)cc3)cc1 140 

CHEMBL557054 O=C(N(CC)CC)c1ncc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 150 

CHEMBL551615 O=C1N(CC)CCc2c1ccc(C=1c3c(OC4(C=1)CCNCC4)cccc3)c2 190 

CHEMBL495073 O(C)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 190 

CHEMBL235743 O=C(N[C@@H](C(=O)NCC(=O)N[C@H](C(=O)N)Cc1ccccc1)C)[C@@H](N)Cc1ccc(O)cc1 190 

CHEMBL564922 O=C(N1CCCC1)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 200 

CHEMBL495278 N#Cc1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 200 
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CHEMBL495074 Oc1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 220 

CHEMBL494266 O=C(O)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 220 

CHEMBL551414 O=C(N1CCOCC1)c1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 240 

CHEMBL561138 O=C(N(CC)CC)c1cnc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 270 

CHEMBL562478 O=C(N(CC)CC)c1cc(C)c(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 360 

CHEMBL562898 O=C(N(CC)CC)c1scc(C=2c3c(OC4(C=2)CCNCC4)cccc3)c1 370 

CHEMBL492447 c1(C=2c3c(OC4(C=2)CCNCC4)cccc3)ccccc1 380 

CHEMBL550471 O=C(N(CC)CC)c1ccc([C@H]2c3c(OC4(C2)CCNCC4)cccc3)cc1 420 

CHEMBL563700 O=C(N(CC)CC)c1ccc(C=2c3c(OC4(C=2)CNCCC4)cccc3)cc1 480 

CHEMBL492448 Cc1ccc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 810 

CHEMBL559414 Fc1c(C=2c3c(OC4(C=2)CCNCC4)cccc3)ccc(C(=O)N(CC)CC)c1 980 

CHEMBL550669 O=C(N(CC)CC)c1oc(C=2c3c(OC4(C=2)CCNCC4)cccc3)cc1 980 

CHEMBL38874 O=C(NCCO)[C@@H](N(C(=O)CNC(=O)[C@H](NC(=O)[C@@H](N)Cc1ccc(O)cc1)C)C)Cc1ccccc1 10000 

CHEMBL440765 O=C(N(C)[C@@H]1[C@@H](N2CCCC2)C[C@@]2(OCCC2)CC1)Cc1ccccc1 10000 

MOR  

Mol Smiles EC50 

CHEMBL19019 O=C1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1 0.38 

CHEMBL3339378 O=C(NCc1ccccc1)C=1[C@@]2(O)C3Oc4c(O)ccc5c4C43[C@](N=1)(C(N(CC1CC1)CC4)C5)CC2 0.40 

CHEMBL267495 O=C(N(C)[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)/C=C/c1cocc1 0.72 

CHEMBL1852788 Clc1nccc(C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)c1 0.83 

Fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC 1.00 

Carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC 1.00 

α-methylfentanyl  O=C(N(c1ccccc1)C1CC[NH+]([C@@H](Cc2ccccc2)C)CC1)CC 1.00 

β-hydroxyfentanyl  O=C(N(c1ccccc1)C1CC[NH+](C[C@@H](O)c2ccccc2)CC1)CC 1.00 

CHEMBL3339379 O=C(NCCc1ccccc1)C=1[C@@]2(O)C3Oc4c(O)ccc5c4C43[C@](N=1)(C(N(CC1CC1)CC4)C5)CC2 1.09 

CHEMBL1852558 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1cc(C)ncc1 1.13 

CHEMBL1852385 Brc1nccc(C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)c1 1.19 

CHEMBL1852602 Brc1c(C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)ccnc1 1.31 

CHEMBL1852555 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)CCc1ccncc1 1.46 

CHEMBL1852393 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1c(C)cncc1 1.52 
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CHEMBL301160 Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3 1.60 

CHEMBL2397022 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)c1ccncc1 1.67 

CHEMBL3264748 O=C1N(CCc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CC1CC1)CC6)C5)CC3 2.10 

CHEMBL2179656 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OCCCc4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 2.15 

CHEMBL3264746 O=C1N(Cc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CCc1ccccc1)CC6)C5)CC3 2.30 

CHEMBL1852672 Clc1c(C(=O)N[C@H]2[C@@H]3Oc4c(O)ccc5c4[C@@]43[C@](O)([C@H](N(CC3CC3)CC4)C5)CC2)ccnc1 2.32 

CHEMBL1852814 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)Cc1ccncc1 2.32 

CHEMBL3217271 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](N(CC4CC4)C)C2)C3)ccc1.Cl.Cl 2.70 

CHEMBL3264745 O=C1N(Cc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CC=C)CC6)C5)CC3 2.70 

CHEMBL3264742 O=C1N(Cc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CC1CC1)CC6)C5)CC3 2.80 

CHEMBL2397018 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)c1cnc2c(c1)cccc2 2.81 

CHEMBL1852458 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)CNC(=O)c1ccncc1 2.84 

CHEMBL566346 O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)CCCCCCCCC(=O)O 3.00 

CHEMBL56585 Oc1cc2[C@@]3(C)[C@@H](C)[C@H](N(CC4CC4)CC3)Cc2cc1 4.00 

CHEMBL2179655 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OC/C=C/c4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 4.27 

CHEMBL2387196 O=C1N(C2CCN(C3CCC(C(C)C)CC3)CC2)c2c(C1CC)cccc2 4.70 

CHEMBL1852475 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)C1CCN(C)CC1 5.08 

CHEMBL3216613 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](N(C)C)C2)C3)ccc1.Cl.Cl 6.50 

CHEMBL2397015 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)c1ccccc1 7.20 

CHEMBL2178341 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1ncncc1 7.49 

CHEMBL3264747 O=C1N(c2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CC1CC1)CC6)C5)CC3 9.00 

CHEMBL518712 C(N1C2[C@H](C)[C@@](C)(c3c(cc4nc[nH]c4c3)C2)CC1)C1CC1 9.80 

CHEMBL2177697 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1cc(C#N)ncc1 10.0 

CHEMBL2397019 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)c1cc2c(cc1)cccc2 11.1 

CHEMBL565679 O=C(Oc1cc2c(cc1)C[C@H]1N(CC3CCC3)CC[C@@]32[C@H]1CCCC3)C(CCCCCCC(C(=O)O)C)C 13.0 

CHEMBL3217272 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](NC)C2)C3)ccc1.Cl.Cl 15.0 

CHEMBL70 O[C@@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@H]([C@H](N(C)CC3)C4)C=C1 15.6 

CHEMBL386272 Clc1ccc(/C=C/C(=O)N[C@]23[C@@H]4N(CC5CC5)CC[C@@]52[C@H](C(=O)CC3)Oc2c(OC)ccc(c52)C4)cc1 17.8 

CHEMBL473699 C(N1C2[C@H](C)[C@@](C)(c3c(cc4nc(C)[nH]c4c3)C2)CC1)C1CC1 18.0 

CHEMBL3215960 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](NCCC)C2)C3)ccc1.Cl.Cl 18.0 
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CHEMBL3216611 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](N)C2)C3)ccc1.Cl.Cl 19.5 

CHEMBL3086465 Oc1cc([C@]23[C@@H](C)CN(CCCc4ccccc4)[C@H](C[C@@H](N)C2)C3)ccc1 20.6 

CHEMBL2387191 O=C1N(C2CCN(C(C)C3CCCCC3)CC2)c2c(cccc2)C1 28.0 

CHEMBL2178340 O=C(N[C@H]1[C@@H]2Oc3c(O)ccc4c3[C@@]32[C@](O)([C@H](N(CC2CC2)CC3)C4)CC1)c1cnncc1 28.3 

CHEMBL102900 O=C1N(C2CCN(C3C4CCCC3CCC4)CC2)c2c(cccc2)C1 29.0 

CHEMBL562340 Oc1cc2c(cc1)C[C@@]13[C@@]2(Cc2[nH]c4c(c2C1)cccc4)CCN(CC1CC1)C3 33.0 

CHEMBL3217051 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](NCC)C2)C3)ccc1.Cl.Cl 33.0 

CHEMBL474755 O=C(O[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(OC)ccc(c41)C3)/C=C/c1ccccc1 34.4 

CHEMBL2387197 O=C1N(C2CCN(C3CCCCCCC3)CC2)c2c(C1CC)cccc2 37.3 

CHEMBL2397017 O=C(N[C@]12[C@@H]3N(CC4CC4)CC[C@@]41[C@H](C(=O)CC2)Oc1c(O)ccc(c41)C3)c1nc2c(cc1)cccc2 38.8 

CHEMBL2179662 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OC(=O)CCc4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 48.0 

CHEMBL2387192 O=C1N(C2CCN(C(C)c3ccccc3)CC2)c2c(cccc2)C1 50.6 

CHEMBL38874 O=C(NCCO)[C@@H](N(C(=O)CNC(=O)[C@H](NC(=O)[C@@H](N)Cc1ccc(O)cc1)C)C)Cc1ccccc1 55.0 

CHEMBL2387200 O=C1N(C2CCN(C3CCCCCCC3)CC2)c2c(C(C)C1)cccc2 58.0 

CHEMBL3217050 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](N(CC)C)C2)C3)ccc1.Cl.Cl 60.0 

CHEMBL2387198 O=C1N(C2CCN(C3CCC(C(C)C)CC3)CC2)c2c(cccc2)CC1 68.0 

CHEMBL2387187 O=C1N(C2CCN(C3CCC(C(C)C)CC3)CC2)c2c(cccc2)C1 73.5 

CHEMBL2179661 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OC(=O)Cc4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 87.0 

CHEMBL2387195 O=C1N(C2CCN(C3CCCCCCC3)CC2)c2c(C1C)cccc2 94.0 

CHEMBL101454 O=C1N(C2CCN(C3CCCCCCC3)CC2)c2c(cccc2)C1 99.0 

CHEMBL3264743 O=C1N(Cc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(C)CC6)C5)CC3 113 

CHEMBL2387194 O=C1N(C2CCN(C3CCC(C(C)C)CC3)CC2)c2c(C1C)cccc2 120 

CHEMBL2387193 O=C1N(C2CCN(C3c4c5[C@@H](CC3)CCCc5ccc4)CC2)c2c(cccc2)C1 129 

CHEMBL3217273 Oc1cc([C@@]23[C@H](C)CN(CCCc4ccccc4)[C@@H](C[C@H](NCC4CC4)C2)C3)ccc1.Cl.Cl 130 

CHEMBL557937 Oc1cc2c(cc1)C[C@@]13[C@@]2(Cc2n(C)c4c(c2C1)cccc4)CCN(C)C3 174 

CHEMBL2387189 O=C1N(C2CCN(C3CCC(C(CC)(C)C)CC3)CC2)c2c(cccc2)C1 189 

CHEMBL3264744 O=C1N(Cc2ccccc2)[C@@]23OCOc4c(O)ccc5c4[C@@]46[C@@H]2[C@@H]1O[C@@]4([C@H](N(CC(C)C)CC6)C5)CC3 223 

CHEMBL2179654 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OCc4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 301 

CHEMBL2179653 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OC)([C@H](N(C)CC5)C6)Cc3c2)cc1 379 

CHEMBL2387188 O=C1N(C2CCN(C3CCC(CCC)CC3)CC2)c2c(cccc2)C1 595 
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CHEMBL320874 O=C1N(C2CCN(Cc3ccccc3)CC2)c2c(cccc2)C1 1981 

CHEMBL2179660 Clc1ccc(-c2cnc3[C@@H]4Oc5c(O)ccc6c5[C@@]54[C@](OC(=O)c4ccccc4)([C@H](N(C)CC5)C6)Cc3c2)cc1 4623 
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Table A.21 Results of the docking studies for the filtered DBZDs and identified reference compounds. For each OR a total of five reference agonist binders, i.e. the co-

crystallised ligand plus four molecules identified from ChEMBL database, were used. Pharmacophore mapping studies identified 18 molcules for MOR, 22 for KOR and 25 

for DOR.   

 

MOR 

Molecule  SMILESs S (Kcal/mol) 

BU72 O(C)[C@]12[C@]3(C)[C@@H](c4ccccc4)[NH2+][C@H]1[C@@]14c5c(ccc(O)c5)C[C@@H]([NH+](C)CC1)[C@@]4(C=C2)C3 -10.15 

Fentanyl O=C(N(c1ccccc1)C1CC[NH+](CCc2ccccc2)CC1)CC -8.44 

Carfentanyl O=C(N(c1ccccc1)C1(C(=O)OC)CC[NH+](CCc2ccccc2)CC1)CC -9.59 

α-methylfentanyl  O=C(N(c1ccccc1)C1CC[NH+]([C@@H](Cc2ccccc2)C)CC1)CC -8.99 

β-hydroxyfentanyl  O=C(N(c1ccccc1)C1CC[NH+](C[C@@H](O)c2ccccc2)CC1)CC -8.79 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.30 

Cloniprazepam Clc1c(C2=NCC(=O)N(CC3CC3)c3c2cc([N+](=O)[O-])cc3)cccc1 -7.78 

Deschloroetizolam C(C)c1sc2-n3c(C)nnc3C[NH+]=C(c3ccccc3)c2c1 -7.14 

FG-8205 Clc1c2C(=O)N(C)Cc3c(-c4nc(C(C)C)on4)ncn3-c2ccc1 -7.77 

Fluloprazolam Fc1c(C2=NCC=3N(C(=O)C(=CN4CC[NH+](C)CC4)N=3)c3c2cc([N+](=O)[O-])cc3)cccc1 -9.33 

Flunitrazolam Fc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 -7.50 

Metizolam Clc1c(C2=[NH+]Cc3n(-c4sc(CC)cc24)cnn3)cccc1 -7.08 

Mexazolam Clc1c(C23OCC(C)N2CC(=O)Nc2c3cc(Cl)cc2)cccc1 -7.29 

Nitrazolam O=[N+]([O-])c1cc2C(c3ccccc3)=NCc3n(c(C)nn3)-c2cc1 -6.95 

PWZ-029 Clc1cc2C(=O)N(C)Cc3c(COC)ncn3-c2cc1 -6.26 

Phenazolam Brc1cc2C(c3c(Cl)cccc3)=NCc3n(c(C)nn3)-c2cc1 -6.80 

Pynazolam O=[N+]([O-])c1cc2C(c3ncccc3)=NCc3n(c(C)nn3)-c2cc1 -7.33 

Ro 05-4608 Clc1c(C2=NCC(=O)N(C)c3c2cccc3)cccc1 -6.37 

Ro 15-9270 Clc1c(C=2c3c(-n4c(C)nnc4CC=2)ccc([N+](=O)[O-])c3)cccc1 -7.55 

Ro 17-1812 Clc1c2C(=O)N3C(c4c(C(=O)OCC5CC5)ncn4-c2ccc1)CC3 -8.09 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 -9.02 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -9.36 

Tuclazepam Clc1c(C2=[NH+]CC(CO)N(C)c3c2cc(Cl)cc3)cccc1 -7.18 
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KOR 

MP11 04  C1CC1CN2CC[C@]34[C@@H]5[C@H]2CC6=C3C(=C(C=C6)O)O[C@H]4[C@@H](C=C5)NC(=O)C7=CC(=CC=C7)I  -9.79 

CHEMBL503080 Clc1cc2c(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(c4ccccc4)CC3)csc2cc1 -9.00 

CHEMBL526933 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)C)CC2)C)c1 -9.24 

CHEMBL526747 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(c3cc(OC)ccc3)CC2)C)c1 -9.01 

CHEMBL499351 Clc1c(Cl)ccc(N(CC(=O)N2[C@H](C[NH+]3CCCC3)CN(S(=O)(=O)c3cc(Cl)ccc3)CC2)C)c1 -9.74 

CHEMBL525457 Clc1cc2N(CC(=O)N3[C@H](C[NH+]4CCCC4)CN(S(=O)(=O)c4cc(OC)c(OC)cc4)CC3)C(=O)Oc2cc1 -9.81 

Arfendazam Clc1cc2N(c3ccccc3)C(=O)CCN(C(=O)OCC)c2cc1 -7.84 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.39 

Cinazepam Brc1cc2C(c3c(Cl)cccc3)=NC(OC(=O)CCC(=O)[O-])C(=O)Nc2cc1 -8.34 

Clonazolam Clc1c(C2=NCc3n(c(C)nn3)-c3c2cc([N+](=O)[O-])cc3)cccc1 -7.45 

Cloniprazepam Clc1c(C2=NCC(=O)N(CC3CC3)c3c2cc([N+](=O)[O-])cc3)cccc1 -7.79 

Devazepide O=C(N[C@@H]1C(=O)N(C)c2c(C(c3ccccc3)=N1)cccc2)c1[nH]c2c(c1)cccc2 -8.21 

FG-8205 Clc1c2C(=O)N(C)Cc3c(-c4nc(C(C)C)on4)ncn3-c2ccc1 -8.24 

Fluadinazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C[NH+](C)C)nn3)-c2cc1 -7.46 

Fluloprazolam Fc1c(C2=NCC=3N(C(=O)C(=CN4CC[NH+](C)CC4)N=3)c3c2cc([N+](=O)[O-])cc3)cccc1 -8.80 

Flutazolam Clc1cc2C3(c4c(F)cccc4)OCCN3CC(=O)N(CCO)c2cc1 -6.86 

Iomazenil Ic1c2C(=O)N(C)Cc3c(C(=O)OCC)ncn3-c2ccc1 -7.87 

JQ1 Clc1ccc(C2=[NH+]C(CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 -8.24 

PWZ-029 Clc1cc2C(=O)N(C)Cc3c(COC)ncn3-c2cc1 -7.10 

Pivoxazepam Clc1cc2C(c3ccccc3)=NC(OC(=O)C(C)(C)C)C(=O)Nc2cc1 -8.05 

Remimazolam Brc1cc2C(c3ncccc3)=NC(CCC(=O)OC)c3n(c(C)cn3)-c2cc1 -7.94 

Rilmazolam Clc1c(C2=NCc3n(nc(C(=O)N(C)C)n3)-c3c2cc(Cl)cc3)cccc1 -8.31 

Ro 15-4941 Clc1c2C(=O)N3C(c4c(C(=O)OCC)ncn4-c2ccc1)CCC3 -8.01 

Ro 15-9270 Clc1c(C=2c3c(-n4c(C)nnc4CC=2)ccc([N+](=O)[O-])c3)cccc1 -7.23 

Ro 17-1812 Clc1c2C(=O)N3C(c4c(C(=O)OCC5CC5)ncn4-c2ccc1)CC3 -7.70 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 -8.51 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -8.15 

Tofisopam  O(C)c1c(OC)ccc(C2=NN=C(C)C(CC)c3c2cc(OC)c(OC)c3)c1 -8.91 

DOR 
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DPI-287 O=C(N(CC)CC)c1ccc([C@@H](N2[C@@H](C)C[NH+](CC=C)[C@H](C)C2)c2cc(O)ccc2)cc1 -8.58 

CHEMBL2151735 O=C(N([C@@H](C(=O)N[C@@H]1C(=O)N(CC(=O)N)Cc2c(cccc2)C1)C)C)[C@@H]([NH3+])Cc1c(C)cc(O)cc1C -9.44 

CHEMBL8234 O=C([O-])[C@@H](NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])Cc1ccc(O)cc1)Cc1ccccc1)CC(C)C -10.43 

CHEMBL3758292 O=C([C@@H]([NH3+])Cc1c(C)cc(O)cc1C)N1[C@@H](C(=O)NCc2[nH]c3c(n2)cccc3)Cc2c(cccc2)C1 -9.70 

CHEMBL2113666 Clc1c(/C=C/C(=O)N[C@]23[C@@H]4[NH+](C)CC[C@@]52[C@H](C(=O)CC3)Oc2c5c(ccc2)C4)cccc1 -7.26 

Midazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C)[nH+]c3)-c2cc1 -6.76 

Arfendazam Clc1cc2N(c3ccccc3)C(=O)CCN(C(=O)OCC)c2cc1 -7.54 

Ciclotizolam Brc1sc2-n3c(C4CCCCC4)nnc3C[NH+]=C(c3c(Cl)cccc3)c2c1 -8.45 

Cloniprazepam Clc1c(C2=NCC(=O)N(CC3CC3)c3c2cc([N+](=O)[O-])cc3)cccc1 -7.72 

Devazepide O=C(N[C@@H]1C(=O)N(C)c2c(C(c3ccccc3)=N1)cccc2)c1[nH]c2c(c1)cccc2 -7.41 

Elfazepam Clc1cc2C(c3c(F)cccc3)=NCC(=O)N(CCS(=O)(=O)CC)c2cc1 -8.24 

Ethyl Carfluzepate Clc1cc2C(c3c(F)cccc3)=N[C@H](C(=O)OCC)C(=O)N(C(=O)NC)c2cc1 -7.56 

FG-8205 Clc1c2C(=O)N(C)Cc3c(-c4nc(C(C)C)on4)ncn3-c2ccc1 -7.79 

Fluadinazolam Clc1cc2C(c3c(F)cccc3)=NCc3n(c(C[NH+](C)C)nn3)-c2cc1 -7.47 

Fluloprazolam Fc1c(C2=NCC=3N(C(=O)/C(=C/N4CC[NH+](C)CC4)/N=3)c3c2cc([N+](=O)[O-])cc3)cccc1 -8.59 

Iomazenil Ic1c2C(=O)N(C)Cc3c(C(=O)OCC)ncn3-c2ccc1 -7.60 

JQ1 Clc1ccc(C2=[NH+][C@H](CC(=O)OC(C)(C)C)c3n(c(C)nn3)-c3sc(C)c(C)c23)cc1 -8.62 

MP-iii-022 Fc1c(C2=N[C@H](C)c3c(C(=O)NC)ncn3-c3c2cc(C#C)cc3)cccc1 -7.31 

Metaclazepam Brc1cc2C(c3c(Cl)cccc3)=[NH+]C[C@H](COC)N(C)c2cc1 -7.57 

PWZ-029 Clc1cc2C(=O)N(C)Cc3c(COC)ncn3-c2cc1 -6.19 

Pivoxazepam Clc1cc2C(c3ccccc3)=N[C@H](OC(=O)C(C)(C)C)C(=O)Nc2cc1 -7.19 

Remimazolam Brc1cc2C(c3ncccc3)=N[C@H](CCC(=O)OC)c3n(c(C)cn3)-c2cc1 -7.70 

Rilmazolam Clc1c(C2=NCc3n(nc(C(=O)N(C)C)n3)-c3c2cc(Cl)cc3)cccc1 -8.03 

Ro 15-4941 Clc1c2C(=O)N3[C@H](c4c(C(=O)OCC)ncn4-c2ccc1)CCC3 -6.85 

Ro 17-1812 Clc1c2C(=O)N3[C@H](c4c(C(=O)OCC5CC5)ncn4-c2ccc1)CC3 -7.57 

Ro 48-6791 Fc1cc2C(=O)N(C)Cc3c(-c4nc(CN(CCC)CCC)on4)ncn3-c2cc1 -8.23 

Ro 48-8684 Fc1cc2C(=O)N(C)Cc3c(-c4oc(C[NH+](CCC)CCC)cn4)ncn3-c2cc1 -8.70 

SH-053-R-CH3-2'F Fc1c(C2=N[C@H](C)c3c(C(=O)OCC)ncn3-c3c2cc(C#C)cc3)cccc1 -7.64 

Tolufazepam Clc1c(C2=NCC(=O)N(CCS(=O)(=O)c3ccc(C)cc3)c3c2cc(Cl)cc3)cccc1 -8.67 

Uldazepam Clc1c(C2=NC/C(=N\OCC=C)/Nc3c2cc(Cl)cc3)cccc1 -7.35 
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Table A.22. Details of ligand interaction for the top-three scoring DBZDs on each ORs 

Notes. The ligand columns display which is the ligand atom involved in the binding; the receptor column which is 

the amino acid residues involved in the binding; the interaction column describe the type of interaction/binding; the 

distance column display the distance between the two ligand and the receptor atoms; the E column display the 

energy of the interaction, the lower the value, the stronger the binding.  

 

MOR 

            

BU72           

Ligand Receptor   Interaction Distance E (kcal/mol) 

N    32 MET 151 H-donor 3.54 -3.8 

C    34 ASP 147 H-donor 2.67 -0.4 

C    38 HOH 548 H-donor 3.22 -0.8 

O    48 HOH 525 H-donor 2.61 -2.1 

N    32 ASP 147 Ionic 3.53 -3.1 

6-ring ILE 144 pi-H 4.05 -0.4 

6-ring MET 151 pi-H 4.92 -0.3 

6-ring VAL 300 pi-H 4.68 -0.2 

6-ring VAL 300 pi-H 4.06 -0.8 

JQ1            

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    5  ASP  147 H-donor 3.29 -0.7 

N    9  ASP  147 Ionic 3.20 -3.3 

R0 48-8684           

Ligand Receptor   Interaction Distance E (kcal/mol) 

N    24 ASP 147 H-donor 3.35 -2.1 

C    39 HIS 54 H-donor 3.30 -0.3 

C    42 CYS 217 H-donor 4.80 -0.2 

C    50 MET 151 H-donor 4.54 -0.4 

N    24 ASP 147 Ionic 3.35 -3.9 

C    56 HIS 297 H-pi 3.40 -0.4 

6-ring MET 151 pi-H 4.40 -0.2 

6-ring VAL 300 pi-H 4.00 -0.2 

Fluloprazolam           

Ligand Receptor   Interaction Distance E (kcal/mol) 

N    23     ASP 147 H-donor 3.58 -1.0 

N    23    ASP 147 Ionic 3.58 -1.6 

C    54  TYR 148 H-pi 3.79 -0.5 

KOR           

MP1104           

Ligand Recepto   Interaction Distance E (kcal/mol) 

C    3 ASP 138 H-donor 3.27 -0.5 

C    14 MET 142 H-donor 4.13 -0.5 
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I    16 THR 111 H-donor 4.04 -0.4 

I    16 THR 111 H-donor 4.44 -0.2 

N    26 ASP 138 H-donor 3.02 -2.0 

N    26 ASP 138 H-donor 2.8 -10.8 

C    27 ASP 138 H-donor 3.34 -0.4 

C    27 MET 142 H-donor 3.38 -1.5 

N    26 ASP 138 Ionic 3.02 -6.0 

N    26 ASP 138 Ionic 2.80 -7.8 

C    21 TYR 139 H-pi 4.02 -0.3 

C    29 TYR 320 H-pi 3.55 -0.3 

6-ring ILE 294 pi-H 4.83 -0.3 

Ro 48-8684           

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    29 SER 323 H-donor 3.00 -0.2 

C    36 MET 142 H-donor 3.61 -0.3 

C    39 ASP 138 H-donor 3.00 -0.2 

O    7 HIS 291 H-acceptor 3.77 -0.2 

N    24 ASP 138 Ionic 3.92 -1.6 

C    46 TYR 320 H-pi 3.88 -0.2 

6-ring ILE 294 pi-H 4.13 -0.7 

5-ring GLY 319 pi-H 4.78 -0.2 

JQ1           

Ligand Receptor   Interaction Distance (kcal/mol) 

C    3 CYS 210 H-donor 3.72 -0.4 

N    9 ASP 138 H-donor 3.02 -10.0 

C    27 MET 142 H-donor 3.91 -0.3 

C    53 ASP 138 H-donor 3.11 -0.6 

N    9 ASP 138 Ionic 3.02 -6.0 

Ciclotizolam           

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    38 ILE 316 H-donor 3.55 -0.2 

C    42 ASP 138 H-donor 3.26 -0.5 

N    30 ASP 138 Ionic 4.07 -1.2 

N    30 ASP 138 Ionic 3.35 -4.0 

6-ring ILE 290 pi-H 4.47 -0.2 

5-ring ILE 294 pi-H 4.80 -0.5 

5-ring ILE 294 pi-H 3.63 -0.2 

6-ring ILE 316 pi-H 3.65 -0.2 

5-ring TYR 139 pi-pi 3.61 0.2 

DOR           

DPI-287           

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    44 MET 132 H-donor 3.34 -0.7 

C    49 ASP 128 H-donor 3.24 -0.3 

C    53 ASP 128 H-donor 2.97 -2.0 
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N    62 ASP 128 H-donor 2.72 -10.9 

N    62 ASP 128 H-donor 2.92 -6.1 

N    42 ASP 128 Ionic 3.87 -1.8 

N    62 ASP 128 Ionic 2.72 -8.5 

N    62 ASP 128 Ionic 2.92 -6.7 

C    5 TRP 284 H-pi 4.17 -0.3 

C    5 TRP 284 H-pi 3.88 -0.3 

C    12 TRP 284 H-pi 4.55 -0.4 

C    58 TYR 308 H-pi 4.97 -0.3 

6-ring MET 132 pi-H 4.08 -0.4 

6-ring MET 132 pi-H 4.93 -0.2 

6-ring VAL 281 pi-H 3.94 -0.6 

            

Ro 48-8684           

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    21 MET 132 H-donor 4.33 -0.9 

C    26 ASP 128 H-donor 3.23 -0.4 

C    36 ASP 128 H-donor 3.12 -0.3 

C    36 MET 132 H-donor 3.65 -0.5 

N    24 ASP 128 Ionic 3.20 -4.8 

N    24  ASP 128 Ionic 3.56 -2.9 

Ro 48-6791           

Ligand Receptor         

C    13 TYR   Interaction Distance E (kcal/mol) 

C    21 MET 129 H-donor 2.98 -0.4 

N    24 ASP 132 H-donor 3.81 -0.8 

N    24 ASP 128 H-donor 3.11 -7.9 

C    29 ASP 128 H-donor 3.57 -1.0 

O    7 LYS 128 H-donor 3.16 -0.5 

O    7 LYS 214 H-acceptor 3.68 -0.2 

N    24 ASP 214 H-acceptor 3.21 -0.4 

N    24 ASP 128 Ionic 3.11 -5.4 

C    36 TYR 128 Ionic 3.57 -2.9 

Fluloprazolam   308 H-pi 3.50 -0.3 

Ligand Receptor   Interaction Distance E (kcal/mol) 

C    29 ASP 128 H-donor 2.77 -0.7 

C    29 MET 132 H-donor 4.58 -0.7 

C    48 MET 132 H-donor 3.75 -0.5 

O    42 LYS 214 H-acceptor 3.09 -0.2 

O    43 PHE 218 H-acceptor 3.28 -0.2 

N    23 ASP 128 Ionic 3.61 -2.7 

C    32 TYR 308 H-pi 4.28 -0.2 

6-ring PHE 133 pi-H 4.93 -0.2 

6-ring VAL 217 pi-H 3.75 -0.2 

6-ring VAL 217 pi-H 4.13 -0.5 
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6-ring VAL 281 pi-H 3.89 -0.2 

 

  



385 

 

Appendix B 

 

Appendix B 

 

 

Figure B.1 MOE Site Finder application. This application is used to calculate possible active sites in a receptor (the 

atoms button) from the 3D atomic coordinates of the latter. The Atoms options is used to control the interpretation of 

the atoms currently loaded in MOE, i.e. the receptor which need investigation. . To start the search apply is pressed, 

and a list of calculated sites will be summarized in the list. For each site the following information became available, 

the size which indicates the number of alpha spheres comprising the site, the PLB which is the Propensity for Ligand 

Binding, the Hyd which indicates the number of hydrophobic contact atoms in the receptor, the  Side which indicates 

the number of sidechain contact atoms in the receptor. The Residues column list all the residues comprised in the  

calculated site in the format chain:residue-name.  
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Scoring function  

The definition for the scoring function were taken as reported in the MOE manual.  
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Psychonauts’ psychedelics: a systematic, multilingual, web-crawling exercise 

Abstract 

Psychedelics alter the perception of reality through agonist or partial agonist interaction with the 2A serotoninergic 

receptor. They are classified as phenethylamines, tryptamines and lysergamides. These classes, according to the United 

Nations Office on Drugs and Crime (UNODC) and European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA), account for an important percentage of the new psychoactive substances (NPS) current scenario. 

The paper aimed at: a) identifying and categorise psychedelic molecules from a list of psychonaut websites and NPS 

online resources; and b) comparing the NPSfinder® results with those from the European and United Nations databases. 

A crawling software (i.e. ‘NPSfinder®’) was created to automatically scan, 24/7, a list of URLs and to extract a range 

of information (chemical/street names, chemical formulae, etc.) to facilitate NPS identification. Data collected were 

manually analysed and compared with the EMCDDA and UNODC databases.  

The overall number of psychedelic NPS detected by NPSfinder® (November 2017-February 2020) was 1344, almost 

ten-times higher than that reported by the UNODC and EMCDDA combined. Of these, 994 previously unknown 

molecules were identified as (potential) novel psychedelics, suggesting a strong discrepancy between online and real-

world NPS scenarios.  

The results show the interest of psychonauts, and maybe of the much larger community of ‘recreational’ drug users, 

towards psychedelics. Moreover, examining online scenarios may help in assessing the availability in the real world of 

psychedelic NPS; understanding drug trends; and in possibly predicting future drug scenarios. 
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Figure B.2 Fragment application tools interface in MOE®.  
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Table B.1. Overview of the 3D and machine learning QSAR model used with Forge™. The information here 

presented are extrapolated from Forge™ user manual.  

3 Field QSAR 

3 Field QSAR in Forge™ is a regression method based on Partial Least Squares analysis (Wold 2001), 

specifically with the use of SIMPLS algorithm (deJong 1993). The latter has the advantage of using as many 

descriptors as the user requires, this because the latter can be correlated one to another differently to what 

reported for Ordinary Least Squares methodologies. The original descriptors are represented by latent 

variables, i.e. variables that can only be inferred indirectly through a mathematical model from other 

observable variables. These variables provide an equation (QSAR model) which predicts the activity as a 

linear combination and provide a visual interpretation of the model (electrostatic and hydrophobic 

coefficients). 

To choose the number of latent variable a cross validation is carried out by progressively removing more 

latent variables and then choose the numbers of the latter which provide the best cross-validation output 

(q2). The cross validation is carried out to avoid overfitting the method, i.e producing very accurate results 

which cannot be applied as well  to new molecules well. When the performance gets worse while extracting 

an extra variable, the system stops and use the previous model. Default variation for cross-validation we use 

in Field QSAR is leave one out cross-validation (LOO CV). To assess the lack of overfitting a further 

validation step is carried out automatically with scramble sets (Klopman 1985). A scramble set randomly 

shuffles the biological activities associating them with random descriptors and generating pairs which 

should not be correlated. this should result in a very unpredictive model, usually showing negative q2 values. 

The resulting validated equation should look like  

yi= βe1ei1+ βe2ei2+……….. βenein 

with yi is the activity of molecule i, ei1 is the electrostatic potential evaluated for molecule i at electrostatic 

probe 1, βe1 is the regression coefficient that applies to electrostatic probe 1, and so on. This equation 

calculates the contribution from each sample point location to the final predicted activity. Displaying  the 

'field contributions to predicted activity' sizes the descriptor points by this contribution value, to see which 

points are increasing the predicted activity and which are decreasing it.  

Machine Learning methods 

All of the machine learning methods are supervised learning methods, i.e. the predictive model is built from 

training molecules for which we know the activity value or class 

Random Forest 

Random Forest (Breiman 2001) is a regression method based upon decision trees, which involve several 

splits for the data for a selected descriptor to fit a regression line. Random forests continue the splitting 

process recursively until the maximum tree depth is reached and it uses an ensemble of decision trees built 

from a random sample of the original descriptors. This very complex machine learning approach is based on 

number of trees (the most important parameter), the fraction of the total descriptors and the minimum 

samples per leaf, i.e. the minimum node size.  

Relevance Vector Machines 

Relevance Vector Machines (Michael Tipping 2000) plots descriptors for the Training Set molecules  as 

points in n-dimensional space, where 'n' is the number of descriptors. One advantage of this method is that it 

can deal with non-linear relationships between molecular descriptors and activity data. If the data points 

cannot be separated linearly, a transformation can be applied to the points so that they can be represented in 

a higher dimensional space, in which they may be separable. This is known as ‘the kernel trick’ (Aizerman 

1964) and the functions that perform this operation are known as 'kernels. the training process training 

process uses Bayesian interference  
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Achievements 

In this section is presented a series of the screenshots of each article, oral presentation and poster I 

published/presented during my PhD programme. The titles of the two successful experimental 

thesis I supervised at the Faculty of Pharmacy at the University of Padova are reported as well 

together with the image representing my research project, with which I won the first prize at the 

2022 Vision and Voice competition at the University of Hertfordshire.  

 

Articles 
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Oral presentations 
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Posters 

 

 

Supervised experimental thesis at the Faculty of Pharmacy  
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1st Prize at the 2022 Vision and Voice Competition  

 

Novel Psychoactive Substance (NPS) are becoming more and more popular, and can be found in a 

variety of forms, including gummies. NPS, also known as legal highs, are psychotropic substances 

that interfere with the central nervous system causing effects comparable to the classic drugs of 

abuse (i.e. cocaine, heroin, MDMA, cannabis, LSD, etc). However, being them novel, their possible 

sought-after effects are unknown, as well as their possible side effects. This represents a serious risk 

and threat to public health. One way to try and tackle the issue is to proceed to an evaluation of their 

pharmacological/toxicological profiles. Current in vitro and in vivo methodologies are struggling to 

keep the pace with the speed at which NPS enter the market, hence other means need to come in 

support. In silico methodologies have been suggested for preliminary risk assessment as they are 

able to predict the NPS receptor profile, their binding affinity and biological activity. The current 

project applies computational power (Quantitative Structure Activity Relationships (QSAR), 

Docking studies, and Pharmacophore mapping) to predict the biological activity of designer 

benzodiazepines and new synthetic opioids, assess their binding profile and provide an educated 

guess of their potential threat.  

Beware of what you eat 

 


