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Executive summary 

The UK Pesticide Load Indicator (PLI) is a multi-component indicator, which combines 

data on the usage of different pesticide active substances in UK agriculture with 

information on their propensity to persist, bioaccumulate, or be lost via surface run-off 

or leaching, as well as information on their relative toxicity to wildlife. Data are derived 

from the UK Pesticide Usage Survey (PUS) and the Pesticide Properties Database 

(PPDB). The PLI supplements traditional metrics such as the ‘total mass of pesticides 

applied’ and the ‘total area treated’ by considering the changing mixture of different 

substances applied through time and the effect of their varying chemical or 

biochemical properties. The PLI consists of 4 environmental fate and 16 ecotoxicity 

metrics. It does not quantify harm or reflect environmental outcomes, as it does not 

account for any mitigation practices or calculate exposure of real wildlife populations. 

Instead, the aim of the PLI is to illustrate relative trends in the potential pressure on 

the environment arising from the use of pesticides, to help inform UK policy decisions 

and the assessment of policy intervention.  

The PLI was originally adapted from an indicator developed by the Danish 

government, but it has since gone through multiple phases of revision and alignment 

to the UK policy context. This report outlines the results of Phase 4 (conducted 2022-

23), which focused on: 

a) Making the scope of the PLI calculation explicit through development of a protocol 
for assessing a substance’s suitability for inclusion. This permits the inclusion of 
biopesticides and micro-organisms within the indicator alongside more 
conventional pesticide treatments. 

b) Removal of the previous aggregation step and its replacement with an approach 
which shows information on relative trends across all 20 individual metrics. 

c) Revisions and improvements to the visualisation tool based on the requirements 
of Defra policy teams. 

d) Simplification, streamlining, and documentation of backend calculations and 
processes, allowing these to be easily maintained on an ongoing basis. 

e) Consideration of how the PLI might integrate with other reporting around pesticide 
usage, including the recently proposed Total Applied Toxicity (TAT). 

In addition to highlighting the changes made to the indicator and serving as a revised 

reference document for the calculation, this report also examines cases where the PLI 

might be used in practice. The PLI was developed for a wide range of uses including 

characterising trends in load within the UK landscape and examining the impact of 

changes in policy such as the approval or withdrawal of active substances or products 

and initiatives such as those recently introduced under the Sustainable Farming 

Incentive scheme (SFI).  

With respect to general trends in load within arable crops, the overall trend in total 

mass of active substances applied per hectare of cropped land increased by 

approximately 16% between 2010 and 2018 and then decreased by 23% between 

2018 and 2020. The 20 PLI metrics calculated over the same period show different 

trends, both to one another and to that suggested by overall mass of pesticide applied. 

Most of the fate metrics (except for drain flow) track the trend in mass applied between 
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2010 and 2018. However, the majority of the ecotoxicity metrics show declining trends 

in load over the same period, which contrasts with the trend in mass applied and may 

reflect a shift towards the use of less toxic active substances. Whilst the majority of 

PLI metrics showed a decline between 2018 and 2020, matching the trend in mass 

applied, the magnitude of the changes varied substantially and there were contrasting 

trends for some of the ecotoxicity metrics. For example, there was a very large 

proportional decline in load on bees (which decreased by 77% and 98% for contact 

and oral exposure respectively); no statistical change for load on acute toxicity for birds 

and mammals; and increased load on parasitic wasps. The ability of the PLI to 

characterise these different trends, and to link change to the contribution of specific 

active substances, greatly enhances the ability of policy makers to understand the 

impact of actions and to support the development of targeted policy. How the PLI 

responds to policy change has been explored in detail in this report with the example 

of the withdrawal of neonicotinoid seed treatments on oilseed rape. 

The PLI is one of a broader family of pesticide indicators which explore changes in the 

mixture of pesticides applied over a given geographic scope and time. One similar 

indicator is the recently published TAT (a novel international standard for reporting of 

the potential impacts of pesticides), which although not identical shows sufficient 

similarity with the PLI to draw comparisons and explore the possibility of alignment. 

The key difference between the PLI and TAT lies in the underlying data sources for 

the ecotoxicity assessment and how these are aggregated. In this respect, the PLI has 

a more transparent link to the underlying measurements, whereas the TAT aggregates 

across multiple species and study types. Despite these differences, the two indicators 

are sufficiently similar to be calculated within the same framework, and should a policy 

need emerge, the TAT could be calculated and displayed alongside the PLI.  

The goal of developing the PLI was to provide an exploratory tool that facilitates access 

to improved information about the potential environmental impacts associated with 

pesticide use and to provide a tool for exploring relative tends associated with the 

changing mixture of active substances applied over time. When compared to previous 

monitoring efforts, which have largely been dependent on the total mass of pesticide 

applied (irrespective of the properties of active substances), the PLI has been highly 

successful in adding a greater resolution and ‘colour’ to the discussion around the 

potential effects of pesticide usage and the potential impacts of policy intervention. 

Phase 4 marks the transition between the PLI as a research prototype to a stable 

deployed system. The PLI has undergone a substantial realignment from an initial 

application of the Danish system to something that is much more targeted and aligned 

to the needs of UK policy. It fills an important gap in the current UK reporting system 

with respect to pesticide usage and it is likely to be a useful component of decision 

making going forwards. While work on the indicator will continue, particularly with the 

annual inclusion of further PUS surveys, the core processes of the PLI are now 

established to the point where the indicator is ready for routine operational 

deployment, as a part of a wider suite of indicators that reflect different elements of 

the socio-economic context and decision-making processes around pesticide use. 
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1.0. Introduction 

1.1. Background 
Pesticides are a key component of modern agricultural systems, associated with the 

maintenance of consistent yields, efficiency of farm labour and support for food 

security (Cooper and Dobson 2007; Oerke 2006). However, there is a wide body of 

evidence that pesticide usage also has potential negative environmental impacts 

(Bourguet and Guillemaud 2016; Lee, den Uyl, and Runhaar 2019; Sánchez-Bayo and 

Wyckhuys 2019; Sud 2020). As a result, there has been interest in the development 

of indicators from local to national scales to aid decision making (at farm and policy 

levels) and contribute towards more sustainable use of pesticides. Under the 25-year 

environment plan (HM Government 2018), the UK government has outlined an aim to 

minimise the impacts of pesticides in the environment. One of the key challenges in 

this space is the development of suitable metrics to track progress towards these aims 

and to identify potential areas for policy intervention (Rainford, Kennedy, and Jones 

2021). This report outlines and discusses the UK implementation of the Pesticide Load 

Indicator (PLI), one of the key measures developed for UK policy (Rainford et al. 

2022a) and the revisions and improvements made during the most recent phase of 

development (Phase 4; conducted 2022-23). 

Assessing the environmental pressures, effects and impacts associated with pesticide 

use is a challenging topic, due to the complexity of the systems involved and the 

diverse and evolving composition of agrochemicals applied (Milner and Boyd 2017; 

Schäfer et al. 2019). There are hundreds of different pesticides (some of which 

breakdown to other compounds, known as metabolites) which have different physical 

and chemical properties that affect how they behave in the environment and their 

toxicity to different wildlife species. The scope for capturing this complexity within an 

assessment is driven by data availability. At the farm level, detailed data on various 

risk and mitigation factors are theoretically available including the pesticides applied 

(and their properties), application timing, equipment, crop stage, soil types, soil and 

weather conditions, buffer zones, surrounding habitats (including water bodies), etc. 

These factors can be used to determine the likely amounts of pesticides potentially 

lost from the point of application, to where, and consequent effects and impacts. 

However, at a regional or national level, much of these data are not systematically 

collected; hence national/regional datasets are usually limited to amounts of pesticides 

applied (and their properties) and application timing on different crops, which in the 

UK are usually based on a sample of holdings. 

Agrochemical usage measures fail to account for the shifting composition of pesticides 

and associated changes in pressure on the environment (Kudsk, Jørgensen, and 

Ørum 2018; Möhring et al. 2020; Möhring, Gaba, and Finger 2019). As a result, they 

can present a limited picture if used as a proxy for environmental impact. For example, 

using quantity applied alone would suggest that the use of a substance with high 

toxicity in low quantities has a lower impact than a less toxic substance used in large 

quantities, which may not be the case. As a result, there is a need to develop better 

indicators which account for the changing use and composition of pesticides. This is 

the key motivation for the development of the PLI. 
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1.2. Concept and definition of pesticide load 
The Pesticide Load Indicator (PLI) approach draws upon data available at a national 

scale on usage and properties of pesticides. It aims to reflect the amounts of pesticides 

used; their potential to cause damage to non-target organisms; and their propensity to 

persist, bioaccumulate and be lost via run-off or leaching. This approach does not 

quantify losses to the environment or harm and thus load can only be interpreted as a 

relative unitless indicator of potential pressure on the environment. 

In a wider context, it is important to acknowledge that load is not necessarily a 

reflection of actual outcomes with respect to the environmental impact of pesticides. It 

only reflects the potential pressure presented by the inherent properties and amounts 

used of different pesticides, with reductions in load being desirable (e.g., lower use of 

substances that persist and/or are toxic to some species). Outcomes will also be 

determined by how those substances are used, variations in weather, and local 

mitigation factors and actions (as outlined above, such site-specific data are not 

collated at the regional/national level). 

1.3. Origins and overview of the PLI 
There are three core elements that underpin the PLI, which have a background that 

spans several decades. These are the Danish PLI; the Pesticide Properties Database 

(PPDB); and the UK Pesticide Usage Survey (PUS). An overview of each is provided 

below. 

Danish PLI: This well characterised national indicator (see e.g. Kudsk, Jørgensen, 

and Ørum 2018) was the starting point for the development of the method for the UK. 

It was developed as part of the Danish pesticides strategy and is used to support their 

pesticide tax system (Finger et al. 2017; Lee, den Uyl, and Runhaar 2019; 

Miljøstyrelsen 2012; Pendersen, Helle, and Andersen 2015; Sud 2020). It describes 

the potential impact of pesticides by attributing a score to each pesticide and 

multiplying this by the amount applied, usually expressed as kilograms per hectare (kg 

ha⁻¹). It makes use of the enhanced availability of regulatory information around 

pesticide use and the development of accessible data compilations such as the PPDB. 

It provides proxies for the potential impacts of pesticides and thus can provide a more 

precise tool for observing change compared to previous indicators (e.g., the Treatment 

frequency index which preceded the PLI’s use in policy; Miljøstyrelsen 2012). The 

Danish PLI was the original precursor to the development of an indicator for the UK 

which has since evolved to have a different scope and form as outlined in Section 2. 

PPDB: Created and managed by the Agriculture and Environment Research Unit 

(AERU), University of Hertfordshire, the PPDB started in 1996 to collate and 

harmonise datasets from a range of data sources including regulatory dossiers, such 

as those from EFSA, US EPA and CRD, and peer-reviewed literature (subject to 

meeting scientific quality standards) (Lewis and Bardon 1998; Lewis et al. 2016). Since 

2007, it has been freely available online and, under licence, as an offline MS Access 

database. It holds over 320 parameters for ~2500 pesticides and ~750 metabolites. 

Data are supported by an extensive quality management system, which includes 

scoring the publishing source, data traceability and consistency with other information 
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sources and is subject to internal rolling reviews and periodic external audits. In its 25 

years of existence, the PPDB has been utilised in a wide range of policy, commercial 

and scientific applications. For any given parameter the value reported in the PPDB 

(and thus used for the PLI) will be the worst-case value reported in underlying literature 

which meets the required scientific quality standards. In the case where multiple 

values are available, the value in the PPDB (and PLI) will represent either the highest 

value recorded in fate context or the lowest concentration which has been shown to 

be associated with a toxic effect (Lewis et al. 2016). 

PUS: This national survey is conducted by Fera Science Ltd, the Science & Advice for 

Scottish Agriculture (SASA) and the Agri-Food and Biosciences Institute, Northern 

Ireland (AFBINI), a Non-Departmental Public Body of the Department of Agriculture, 

Environment and Rural Affairs, Northern Ireland (DAERA). It consists of different 

surveys including arable, outdoor vegetables, soft fruit, top fruit, and grassland and 

fodder. Usage is estimated via stratified sampling by region and farm size based on 

census information taken from the June survey (Defra 2022) and associated census 

schemes in the devolved administrations. Data are supplied on a voluntary basis using 

a mix of interview, electronic data collection and farm visits. Most of the component 

surveys which make up the PLI are conducted on a biennial basis although some, 

such as the grassland and fodder survey, are only conducted once every four years. 

Examples of reports generated can be found on the PUS website (Fera, 20211). 

Further details on methodology can be found in Thomas (1999) and Garthwaite 

(2015). Note that the PUS was developed to provide a representative sample of PPP 

usage in the UK for the purposes of estimating key national (and regional) statistics 

(area treated, and mass applied), and is not a complete census of total PPP use 

(particularly at a local or sub-regional scale). 

1.4 History of development of the PLI  
The development of the UK PLI began in 2019 and was undertaken over three phases. 

Phase 1 applied the Danish PLI method to the UK using data from the PPDB and the 

PUS (see Lewis et al. 2021). Phase 2 evolved the method to better cover the UK 

context and better reflect environmental load, including improvements to the load 

metrics and how the load score is derived, along with refinements to the utilisation of 

the PUS data. Phase 3 consisted of a series of workshops and focused on finalising 

the approach, including refinement of the procedures developed in Phase 1 & 2 and 

the development of a visualisation tool. Full details of the development can be found 

in the linked technical report (Rainford et al. 2022b). Finally, Phase 4, which is the 

focus of this report, has focused on further refinement of the PLI including: 

1. The development of a substance inclusion protocol to provide a systematic and 
transparent approach for deciding which substances are included (or excluded) 
from the PLI (see Section 2.3). 

2. The removal of the aggregation step from the PLI (see Section 2.6). 
3. Development of the visualisation tool to enhance functionality and better meet 

policy needs (see Section 2.7). 

 
1 https://pusstats.fera.co.uk/home  

https://pusstats.fera.co.uk/home
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4. Comparison of the PLI to other related indicators (e.g. the recently developed Total 
Applied Toxicity indicator (Schulz et al. 2021 see Section 4). 

This report also contains reworked examples of the application of the PLI (from Phase 

3) using the revised approach. While much of the technical approach remains 

consistent with that documented in Phase 3, the revisions and the shift in focus 

necessitate a reinterpretation of previous findings (outlined in Section 3). 
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2.0. Methods 

2.1. Overview of the approach 
Figure 2.1 provides an overview of the processes involved in generating the PLI2. In 

summary these are: 

1. Load metrics: defining a set of underlying metrics which represent the key factors 
contributing to the concept of load. They include environmental fate and ecotoxicity 
properties for each pesticide obtained from the PPDB (see Section 2.2). 

2. Standardisation: to ensure that the various underlying metrics (which have different 
units of measurement) are expressed in a consistent fashion within the PLI, a 
process of standardisation is needed to normalise the load metrics onto a common 
scale and to define the structure of relative values between different active 
substances. The process generates a load score for each substance on a scale of 
0 to 1 (low to high load) (see Section 2.4).  

3. Multiplication: to account for the amount of active substances used, the 
standardised load scores are multiplied by the amount (kg) of each active 
substance used, derived from the PUS (an estimate of the amount applied for a 
given period). When a pesticide has low persistence (i.e., a half-life <1 day), the 
principal metabolites and their fate and ecotoxicity properties are used instead. The 
reported value of each metric is the sum of the estimated load for each active 
substance (see Section 2.5). 

4. Visualisation: the outputs from steps above need to be visualised to aid 
interpretation and communication. This has been done via the development of a 
bespoke online application/dashboard (see Section 2.7). 

 

 

 

 

Figure 2.1 Overview of the PLI process  

 
2 In previous versions of the indicator (e.g., Rainford et al., 2022a), after standardisation, the metrics 
could be aggregated via the use of aggregation constants to create higher level headline values. The 
use of aggregated metrics in the PLI has proved to be problematic in terms of development and has 
been removed from the current version in favour of assessing percentage change in each metric 
independently (see Section 2.6 for discussion). 

Load metrics
(fate & ecotoxicity)

Standardisation
(load score)

Multiplication 
(pesticide use)

Visualisation
(app/dashboard)
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2.2. Load metrics 
The PLI consists of 4 environmental fate and 16 ecotoxicity load metrics, defined in 

Tables 2.1 and 2.2 respectively. 

Table 2.1: Environmental fate load metrics3 

Fate metric Definition 

Soil DT₅₀ 

(Persistence) 

The propensity for a substance to persist in the environment. This is 

measured using the DT₅₀ value, which is the time required (in days) 

for the chemical concentration under defined conditions to decline 

to 50% of the amount at application. DT₅₀ values measured under 

field conditions are the preferred values to use, but when these are 

not available the DT₅₀ values measured in a laboratory are used. 

Drain flow 

(Surface water 

mobility) 

The propensity of a substance to move through the environment 

and be lost to surface water (e.g., via drain flow). This is measured 

using the organic carbon sorption coefficient for a substance. The 

non-linear (Kfoc) values are the preferred, but when these are not 

available the linear (Koc) values are used. This load metric is only 

calculated when a substance is applied during the drain flow period 

(September to April). Applications outside of this period are given a 

load score of zero. 

Mobility 

(Groundwater) 

The propensity of a substance to move through the environment 

and be lost to groundwater (e.g., via leaching). This is measured 

using the Groundwater Ubiquity Score (GUS) (Gustafson, 1989) 

which is calculated using the DT₅₀ and Koc (or Kfoc) values. 

Bio-concentration 

factor  

(BCF) 

The propensity of a substance to concentrate within the tissues of 

organisms i.e., the accumulation of pollutants (litres kg⁻¹) through 

chemical partitioning from the aqueous phase into an organic 

phase, such as the tissue of a fish. When BCF data do not exist for 

a substance, it can be calculated using the log 10 value of the 

octanol-water partition coefficient.  

  

 
3 Under the revised data inclusion protocol, the scope of calculated fate metrics has been changed so 
as to include any substances identified as inorganic (as these are subject to different processes in their 
movement and persistence in the environment relative to conventional organic based PPP). See 
Section 2.3 for further discussion.  
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Table 2.2: Ecotoxicity load metrics 

Ecotoxicity metric Definition 

Algae EC50 

(acute toxicity)  

The short-term toxicity to green algae via aqueous exposure. 

Measured as the EC₅₀a (mg L⁻¹) over 72 hours. 

Aquatic plants EC50 

(acute toxicity) 

The short-term toxicity to higher aquatic plants (e.g., duckweed 

Lemnoideae) via aqueous exposure. Measured as the EC₅₀a (mg 

L⁻¹) over 7 days. 

Daphnia EC50 short 

(acute toxicity) 

The short-term toxicity to aquatic invertebrates (e.g., Daphnia spp) 

via aqueous exposure. Measured as the EC₅₀a (mg L⁻¹) of mortality 

over 48 hours. 

Daphnia NOEC long 

(chronic toxicity) 

The long-term toxicity to aquatic invertebrates (e.g., Daphnia spp) 

via aqueous exposure. Measured as the NOEC b (mg L⁻¹) of the 

total number of living offspring produced per parent over 21 days 

post exposure. 

Fish EC50 short 

(acute toxicity) 

The short-term toxicity to fish (e.g., Rainbow trout Oncorhynchus 

mykiss; Bluegill Lepomis macrochirus, Zebrafish Danio rerio) via 

aqueous exposure. Measured as the EC₅₀a (mg L⁻¹) over 96 hours. 

Fish NOEC long 

(chronic toxicity) 

The long-term toxicity to fish (e.g., Rainbow trout Oncorhynchus 

mykiss; Bluegill Lepomis macrochirus, Zebrafish Danio rerio). 

Measured as the NOEC b (mg L⁻¹) over 21 days. 

Birds LD50 short 

(acute toxicity) 

The short-term toxicity to birds (e.g., Mallard, Northern bobwhite) 

via oral exposure. Measured as the LD₅₀c (mg kg⁻¹ bw) usually 72 

hours (sometimes 7-14 days). 

Birds NOEL long 

(chronic toxicity) 

The long-term toxicity to birds (e.g., Mallard Anas platyrhynchos; 

Northern bobwhite Colinus virginianus) via multiple daily oral 

exposures. Measured as the NOELd (mg kg⁻¹ bw d⁻¹) of mortality 

and egg production over 21 days post exposure. 

Earthworms LC50 

(acute toxicity) 

The short-term toxicity to earthworms (e.g., Lumbricus terrestris). 

Measured as the LC₅₀e (mg kg⁻¹ soil) over 14 days. 

Earthworms NOEC 

reproduction (chronic 

toxicity) 

The long-term toxicity to earthworms (e.g., Lumbricus terrestris). 

Measured as the NOEC b (mg kg⁻¹ soil) on the number of juveniles 

successfully hatched after a 4-week period following a 28-day 

exposure.  

Bees contact LD50 The short-term toxicity to bees (Apis mellifera) via contact exposure. 

Measured as the LD₅₀c (μg bee⁻¹) over a minimum of 48 hours. 

Bees oral LD50 The short-term toxicity to bees (Apis mellifera) via oral ingestion. 

Measured as the LD₅₀c (μg bee⁻¹) over a minimum of 48 hours. 

Mammals LD50 short 

(acute toxicity) 

The short-term toxicity to mammals (e.g., Rat Rattus norvegicus; 

Mice Mus musculus) via multiple daily oral, dermal, or inhalation 

exposures (depending on the substance and/or regulatory system). 

Measured as the LD₅₀c (mg kg⁻¹ bw) usually over 48-72 hours 

(sometimes 7-14 days). 

Mammals NOAEL 

long  

(chronic toxicity) 

The long-term toxicity mammals (e.g., Rat Rattus norvegicus; Mice 

Mus musculus), typically via oral exposure. Normally measured as 

the NOAELf (mg kg⁻¹ bw d⁻¹) over 21 days. 

Parasitic wasps The short-term toxicity to parasitic wasps (e.g., Aphidius 

rhopalosiphi) via contact exposure. Measured as the LR₅₀g (g ha⁻¹) 

over a minimum of 48 hours. 
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Ecotoxicity metric Definition 

Predatory mites The short-term toxicity to predatory mites (e.g., Typhlodromus pyri) 

via contact exposure. Measured as the LR₅₀g (g ha⁻¹) over 7 days. 

a. EC₅₀: The concentration of a substance that can be expected to cause a defined nonlethal effect in 50% of the tested 
population. 

b. NOEC: No Observed Effect Concentration. The greatest concentration of a substance, found by observation or experiment, 
which causes no detectable effect. 

c. LD₅₀: The median lethal dose (required to kill 50% the tested population) of a substance. 
d. NOEL: No Observed Effect Level: The greatest level of a substance, found by observation or experiment, which causes no 

detectable effect. 
e. LC₅₀: The median lethal concentration (required to kill 50% the tested population) of a substance. 
f. NOAEL: No Observed Adverse Effect Level. The greatest level of a substance, found by observation or experiment, which 

causes no detectable effect. 
g. LR₅₀: The median lethal rate (required to kill 50% the tested population) of a substance. 

 

For the chronic aquatic and terrestrial ecotoxicity load metrics, the load scores are 

adjusted using the water and soil persistence (DT₅₀) values for each substance 

respectively. Each DT₅₀ is converted to a 0 to 1 coefficient (using equations in 

Miljøstyrelsen 2012) and the relevant chronic ecotoxicity load scores are then 

multiplied by this value. Chronic (long-term) exposure will be lower for substances that 

do not persist, and this is accounted for in the chronic load score using this approach 

to avoid overestimating chronic load for substances that do not persist (see Rainford 

et al. 2022, Section 2.3 for details). 

The calculation of the PLI requires a complete set of data for all pesticides for all load 

metrics. The PPDB is a substantial data resource; however, it inevitably has some 

gaps in coverage (especially for some older or historically withdrawn or traditional 

pesticides (e.g., sulphur, peroxyacetic acid and urea and certain metabolites) and 

some values are unbounded (e.g., < or > values). With respect to missing data, in 

most instances, PPDB data coverage (for the parameters used for the 299 active 

substances currently included) is greater than 80%. Aquatic plants acute, worms 

chronic, parasitic wasp and predatory mites have the lowest coverage (66 to 70%). 

With respect to the proportion of PLI substances that have unbounded values for each 

of the ecotoxicity metrics (there are no unbounded values for fate metrics), there is a 

low instance of less than (<) values (which could be underestimating load); and there 

is a higher instance of greater than (>) values (which could be overestimating load) 

and are more common for acute data (compared to chronic), with birds, mammals, 

worms, and bees having more than 50% greater than values (see Rainford et al., 2022 

for full details). 

To generate a full set of data to calculate the PLI, a ‘missing data replacement protocol’ 

has been developed (see Annex 1), which includes using alternative properties where 

appropriate (e.g., using DT₅₀ lab values when field values are missing or Koc for 

missing Kfoc values), using values for related substances, and, where none of the 

above are available, calculating arithmetic mean values for different substance types 

(i.e., fungicides, herbicides and insecticides) and using these as replacements. For 

further discussion of this protocol and reasons for its adoption see Rainford et al. 

(2022b). 
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2.3. Standards for substance inclusion and data coverage 

2.3.1. Background 
During Phase 4 of the development of the pesticide load indicator the decision was 

taken to adopt a formal protocol to determine what substances should be included (or 

excluded) from the PLI. To date, the PLI has been developed to cover conventional 

chemical pesticides, but increasingly other substances are being used for crop 

protection, such as biopesticides. Whether a substance should be included within the 

PLI depends on several factors including whether it is a single chemical substance, a 

mixture, or a micro- or macro-organism; and whether there is sufficient coverage of 

the data required for PLI load metrics (and the metric used is appropriate). To date, 

this has been done on a case-by-case basis using expert judgement but going forward 

a more transparent and systematic approach is needed. Hence, the development of 

this protocol. 

Firstly, it is important to acknowledge where this protocol is applied within the PLI 

creation process, as there are interactions with the missing data replacement protocol 

(Annex 1). Figure 2.2 shows the process for generating data for the PLI and where the 

exclusion/inclusion protocol would be applied. 

 

Figure 2.2: PLI data generation flow chart 

In summary, a full list of substances in the PUS is collated. This involves matching to 

corresponding substances in the PPDB, and where a substance has a DT₅₀: <=1 day 

(low persistence), associated metabolites are identified and added to the list of 

substances (these substances are then used to calculate the PLI, subject to passing 

the inclusion criteria). GUS (groundwater mobility) is then calculated (using DT₅₀ and 

Koc or Kfoc values); and where BCF data are missing this is calculated using the Log 

Identify those with DT₅₀ <= 1 day and 

add associated metabolites 

Full definitive list of PUS substances 

Get PPDB data for substances above 

(incl. using data for related 

substances when data is missing) 

Calculate GUS where possible 

and BCF where missing  

(using Log P) 

Calculate mean values for 

substance types (using included 

substances) 

Application of the 

exclusion/inclusion protocol 

Fill data gaps with mean values 

(for metabolites use parent value 

if this is worse than mean value) 
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Pow
4 value for the substance. This establishes where data are available or missing for 

each of the PLI load metrics. It is at this point that the exclusion/inclusion protocol is 

applied. The resulting included substances are used to generate the mean values (for 

different substance types: fungicides, herbicides, and insecticides), which are then 

used to fill any remaining data gaps in the PLI load metrics for each substance. 

2.3.2. Protocol 
The broad processes in the exclusion/inclusion protocol are illustrated in Figure 2.3. 

In summary, the first steps involve categorising the substance into one of 5 groups: 

1. A single chemical substance or a mixture with single dominant substance 
2. A mixture with no dominant substance 
3. An inorganic substance 
4. A micro-organism 
5. A macro-organism 

It is not possible or relevant to apply the PLI load metrics for substances which are 

mixtures with no dominant substance5 or macro-organisms, so these substances are 

excluded. The remaining substances are then assessed to determine if sufficient data 

exist across the PLI load metrics. For micro-organisms and inorganic compounds, only 

the Ecotox load metrics are considered as the Fate metrics do not apply or are less 

relevant. 

In the case of active substances (for single or dominant chemicals only) with a low 

persistence (DT₅₀: <=1 day), their principal metabolites (and associated properties) 

are used for the PLI. These metabolites are subject to the same protocol as single 

chemicals. If all the metabolites are excluded, the parent substance is also excluded. 

Some inorganic compounds also have DT₅₀: <=1 day, but do not have any 

metabolites. In these instances, the properties of the parent inorganic compound are 

used for the exclusion protocol. 

The next step of the protocol is to determine if sufficient data are available. This can 

be done by setting a threshold for data coverage i.e., the number or percent of the 

load metrics for which data exists for a substance. Setting thresholds for data coverage 

is an aspect that can be subject to debate. If the coverage thresholds are set very 

high, then this will significantly limit the number of substances included within the PLI; 

whereas if the thresholds are too low, then the PLI will contain more substances that 

use mean data to replace data gaps, thus the PLI may become less meaningful. As a 

guide, out of 295 substances, if the threshold is set to 100% (i.e., a substance must 

 
4 Log Pow (or Log P) is the logarithm (base-10) of the partition coefficient between n-octanol and water. 
It is used in environmental fate studies and large values (+4 or higher) are regarded as an indicator that 
a substance will bio-accumulate. 
5 These are substances that are a mixture of many (sometimes hundreds) of compounds where the 
active is not known; the pesticidal properties may be due to multiple compounds; and/or the composition 
is highly variable. Thus, it is not possible to derive data on fate and ecotoxicity for these substances. 
Note that this is distinct from the use of the term mixtures to mean formulated products, which are 
appropriately handled in the PLI by being separated into their constituent active substances during 
calculation. 
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have data for all metrics), 208 substances would be excluded; at 90% it is 112; and at 

80% it is 79. 

 

 

 

Figure 2.3: Exclusion/inclusion protocol flowchart 

* Some substances, such as biopesticides (e.g., essential oils and botanical substances), are not comprised of a 

single chemical but may be made up of many chemicals. The percentage composition in terms of the individual 

substances is highly variable depending on the source of the substance, including the crop variety, environmental 

conditions, and how/where it is grown. However, if one substance within the complex mixture is dominant, it can 

be used as a surrogate chemical. For example, D-limonene in orange oil accounts for 94-97% of orange oil and so 

could be used in the PLI as a surrogate (if sufficient data exists). What value (%) defines a 'dominant' substance 

can be debated, but it proposed that a value of >80% is used for the draft protocol. 
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Setting the data coverage threshold can simply be based on coverage of the 20 load 

metrics. However, it could also be set so that there are separate thresholds for Fate 

and Ecotox metrics; for Ecotox (acute), Ecotox (chronic) metrics; and for any other 

groups of metrics. An initial set of threshold options (Table 2.3) has been set up to 

explore how these operate. 

 

Table 2.3: Example data coverage threshold options 

Options Thresholds that can be set 

All data Coverage (%) of the 20 load metrics 

Fate and Ecotox Coverage (%) of the 4 Fate metrics and Coverage 
(%) of the 16 Ecotox metrics 

Fate, Ecotox (acute) and Ecotox 
(chronic) 

Coverage (%) of the 4 Fate metrics; 11 Ecotox 
(acute) metrics; and 5 Ecotox (chronic) metrics 

 

This facilitates increasing levels of stringency that can be applied to exclude 

substances. For example, increasing stringency would be achieved ranging from 60% 

of all data; 60% of both Fate and Ecotox metrics; or 60% of fate, Ecotox (acute) and 

Ecotox (chronic) metrics. It also facilitates the application of thresholds for different 

substance types, e.g., for micro-organisms where Fate data are not applicable. It is 

possible to apply variable thresholds for different metrics. For example, a lower 

threshold can be set for Ecotox (chronic) metrics (given these are not available for 

many substances). 

Figure 2.4 shows the quantity (tonnes used, summed for all surveys and years) of 

excluded substances as the data coverage threshold for different metrics (and 

combinations thereof) increases from 50 to 100%. It shows how as the stringency 

increases, the mass of substances excluded increases, with notable steps across the 

criteria. This is usually where a substance with high usage gets excluded. For 

example, the first large step at 64% is where 2,500 tonnes of Mancozeb gets excluded. 

This has 3 metabolites ethylenethiourea, ethyleneurea and etem which have Ecotox 

(acute) data coverage values of 63.6%, 54.5% and 36.4% respectively, thus when this 

criterion goes above 64% none of the metabolites are included and, thus, the parent 

gets excluded. 
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Figure 2.4: Quantity of active substances excluded at different data coverage 

thresholds 

 

Table 2.4 shows some example threshold options following this approach and the 

corresponding number and mass of substances that are excluded using each option 

(for 295 active substances +33 metabolites). Option 1 requires that a substance has 

data for at least 60% of all load metrics; Option 2 requires data for at least 60% of fate 

and 60% of Ecotox metrics; Option 3 requires data for at least 60% of Fate and 60% 

of Ecotox (acute) metrics; and Option 4 requires data for at least 60% of fate; 60% of 

Ecotox (acute) and 60% of Ecotox (chronic) metrics. In all instances, the values for 

percent of the total mass applied are very low. This is because the substances that 

are missing data (below the threshold) typically have low usage. 
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Table 2.4: Example threshold options and number of substances excluded 

Exclusion thresholds 

Active substances excluded 

Number Mass 
(tonnes) 

Mass 
(% of total) 

1. All (60%) 62 202 0.25 

2. Fate (60%) and Ecotox (60%) 71 308 0.37 

3. Fate (60%) and Ecotox (acute) (60%) 
(Ecotox (chronic): 0%) 

61 345 0.42 

4. Fate (60%), Ecotox (acute) (60%) and 
Ecotox (chronic) (60%) 

88 921 1.11 

The Fate criterion seems to have a minimal influence on the results of the exclusion 

process (probably due to the smaller number of load metrics) with the Ecotox (acute) 

criterion being the primary influence. Thus Figure 2.4 can be simplified to 3 Ecotox 

criteria of increasing stringency (Ecotox, Ecotox acute and Ecotox acute and chronic) 

as shown in Figure 2.5. 

 

Figure 2.5: Quantity of active substances excluded at different Ecotox data 

coverage thresholds 
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Across these criteria, the first significant step of exclusion occurs at 64% where 2500 

tonnes of Mancozeb is excluded due to a lack of Ecotox (acute) data (this same step 

occurs at 76% when using the ‘Ecotox only’ data coverage threshold). This potentially 

provides an argument to set an exclusion threshold of 60% data coverage for Ecotox 

(acute) load metrics. This would result in 60 substances being excluded (345 tonnes) 

which make up 0.42% of the total mass of all substances applied (across all surveys 

and years) (see Annex 2 for full list of excluded substances). However, this does not 

show what impact that would have on the load scores, i.e., are any substances with 

high load scores being excluded? 

To explore the potential impact on the load values of excluded substances, the value 

for each load metric was calculated (across all surveys and years) and expressed as 

a percentage of the total load. This showed that most of the excluded substances 

contribute <0.1% of the total load across all the metrics. The exceptions are: 

• Abamectin: 0.14% and 0.31% for Honey bees (contact) and Honey bees (oral) 

• Kresoxim-methyl: 0.14 and 0.11% for SW Mobility and GW Mobility 

• Potassium phosphonate (phosphite): 0.16% and 0.11% for Persistence and GW 
Mobility 

• Urea: 0.15% for SW Mobility 
(Note: for reference, the substances that contribute most to the total load for these metrics are Persistence: Pendimethalin 19%; 

SW Mobility: Chlormequat 21%; GW Mobility: Chlormequat 23%; Honey bees (contact): Zeta-cypermethrin 30%; and Honey bees 

(oral): Chlorpyrifos 19%) 

 

These are all relatively low values, thus, the exclusion of these substances (because 

they have <60% of the data for ecotoxicity acute metrics) should have a minimal 

impact on the load values for these metrics. However, the exclusion of Abamectin and 

its metabolite 8a-hydroxyavermectin B1a needs more discussion, as these are 

reference substances6 (Abamectin for Honeybees [contact] and 8a-

hydroxyavermectin B1a for Honey bees [oral] and Mammals [acute]). Table 2.5 shows 

the alternative substances that would be used as the reference substance if Abamectin 

and its metabolites were excluded. 

 

Table 2.5: Alternative reference substances for excluded substances 

Metric Existing ref substance Value New ref 
substance 

Value 

Mammals (acute) LD₅₀ mg 
kg⁻¹ BW 

8a-hydroxyavermectin 
B1a 

1.5 Oxamyl 2.5 

Honey bees (contact) LD₅₀ 
μg bee⁻¹ 

Abamectin and its 
metabolites 

0.001 Deltamethrin 0.0015 

Honey bees (oral) LD₅₀ μg 
bee⁻¹ 

8a-hydroxyavermectin 
B1a 

0.001 Imidacloprid 0.0037 

 
6 Reference substances are used in the Standardisation step of the PLI. Their data is used to define 
minimum or maximum values to convert the data for each substance for each load metric onto a 
common 0 to 1 scale. See Section 2.4 for further details. 
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The biggest impact would be the change of the reference substance for Mammals 

(acute) (the changes to the Honeybee metrics make a negligible or no difference). The 

change in the Mammals (acute) reference value from 1.5 to 2.5 mg kg⁻¹ bw has the 

effect of increasing the load value for each substance (as each substance is closer to 

the reference substance value). Calculations indicate that this would have the effect 

of increasing load values by 67%. 

Where a reference substance is excluded due to a lack of data, it has been decided 

to create an exception to the data threshold exclusion rule and include the substance 

within the PLI. This has been done for several reasons including: 

1. There is a potential communication issue for the PLI if the reference (worst 
performing) substance used to calculate any of the load metrics is not included 
within the load score. 

2. Including the worst performing substance from the outset of the PLI is likely to 
result in a consistent reference substance throughout the lifetime of the PLI (i.e., 
on the assumption that it is unlikely that new active substances approved in the 
future are unlikely to be reference (worst performing) substances). 

3. As with any other substance lacking data, these data may become available in the 
future resulting in the substance passing the data coverage threshold and it would 
then become the reference substance (thus, in alignment with point 2, this would 
help maintain a consistent reference substance). 

This forms one of the final steps in the protocol (see Figure 2.32) where if the 

substance is a reference substance for one or more of the load metrics, then it is 

included in the PLI. Thus, in this instance Abamectin and its metabolites would be 

included within the PLI. 

2.3.3. Conclusion 
The protocol provides a systematic and transparent mechanism by which to determine 

whether a substance should be excluded from the PLI. A data coverage value of 60% 

of the data needed for the Ecotox (acute) load metrics provides an acceptable 

threshold for excluding substances. Extending the data coverage threshold to include 

60% of the Fate metrics or 60% of all Ecotox metrics makes little difference; and 

extending it to cover 60% of the Ecotox (chronic) metrics would be slightly more 

stringent. 

Those substances excluded (under the 60% of Ecotox [acute] threshold) make up less 

than 0.5% of the total mass of substances and generally less than 0.1% of any load 

metric. Abamectin (and its metabolites), Kresoxim-methyl, Potassium phosphonate 

(phosphite), and Urea are the only exceptions, but still only contribute a maximum 0.1 

to 0.3% of any load metric. However, the exclusion of Abamectin and its metabolites 

needs further consideration, as these are reference substances for 3 load metrics 

(Mammals [acute], Honeybees [contact], and Honeybees [oral]). The exclusion of 

Abamectin (and its metabolites) only impacts the results of the Mammals (acute) load 

calculation, by raising the load values for all substances due to a less toxic reference 

substance. It has been decided that if a substance is a reference substance for one or 

more load metrics, then it should be included (overriding the data coverage threshold 

rule) to help ensure consistency in the reference substances used in the PLI. 
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All data included in the PLI as of 2023 will be consistent with this protocol. Substances 

that are excluded from the scope of the PLI at the time of writing (March 2023) are 

listed in Annex 2 of this document. 

2.4. Standardisation 
A range of different units of measurement exist across the load metrics. To determine 

the relative load of each pesticide for each metric, the raw values for each load metric 

(from the PPDB) need to be standardised to a common scale. This is essentially a 

normalisation process where the raw value for a pesticide is expressed relative to a 

reference substance (those pesticides with the highest and lowest values for each load 

metric amongst those assessed for the PLI) and, for fate metrics only, regulatory 

interpretation thresholds. The reasons for standardisation are partially a reflection of 

the previous aggregations applied to combine load metrics (Section 2.6) but also to 

provide a mechanism that explicitly defines the underlying mathematical relationships 

that determine the relative ‘values’ assigned to different active substances. The goal 

of standardisation is to place all active substances for a given metric on a 0 to 1 scale 

both as a communication tool for the purposes of visualisation of relative change, but 

also to reflect the intrinsic differences between how different metrics might be 

interpreted (which has led to a distinction between how fate metrics and ecotoxicity 

metrics are treated for the purposes of calculation and limits the misleading tendency 

to directly compare metrics with different intrinsic scales). An impact of standardisation 

is to render the metrics in the PLI unitless (because they are expressed relative to the 

value of the ‘worst case’ reference substance for each metric). For this reason, it is 

generally inadvisable to focus communications around the ‘absolute’ load value, but 

rather to focus on trends in relative change from one year to another, as the latter are 

generally more informative regarding the impact of policy and more amenable to 

targets that incorporate a clearly defined baseline (see Section 2.6, and Section 3). 

The load scores for fate measures are derived from a combination of regulatory 

interpretation thresholds and reference substance values (see Table 2.8 in Rainford 

et al., 2022b7) to generate standardisation curves shown in Figures 2.6 to 2.9. These 

standardisation curves are used to convert the raw value (x axis) from the PPDB into 

a load score (y axis) for each pesticide for each of the fate load metrics. 

This approach (using regulatory threshold values to introduce reference points) helps 

reduce the skewing effect that can result from extreme reference substance values. 

For example, for the surface water mobility metric, the lowest value (best performer) 

is deltamethrin with a Kfoc of 10,240,000 L kg⁻¹, which is so high that it cannot be 

shown in Figure 2.9 (the chart is truncated to 10,000 L kg⁻¹ be able to see the other 

reference points on the curve). If a straight line were drawn between 0 and 10,240,000 

L kg⁻¹, most pesticides would get a high load score, but the introduction of the 

 
7 To summarise, values for reference points were selected from regulatory interpretation thresholds 
known to the PPDB (for example representing the transition between where an active substance would 
be considered Low, Intermediate, or High risk respectively). The position of the reference values within 
the 0 to 1 standardised scale was intended to assure coverage of these risk categories across this 
scale, e.g., in the previous example any substances which exceed for being classed as ‘High’ risk for a 
given metric are plotted in the upper third of the standardised distribution of that metric, see Table 2.8 
in Rainford et al., 2022b for discussion. 
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reference points reduces this skewing effect, with only those with a Koc (or Kfoc) >4,000 

L kg⁻¹ (<0.167 load score) being affected by the skewing. 

  

Figure 2.6: Standardisation curve: 
Persistence 

Figure 2.7: Standardisation curve: Bio-
concentration factor 

 

 

Figure 2.8: Standardisation curve: 
Groundwater mobility 

Figure 2.9: Standardisation curve: 
Surface water mobility 

Plots show the relationship between the the raw metric value (x axis) and the standardised value (y 

axis) used in calculating the PLI. Points represent the regulatory threshold values and the lines 

between each point cover the values of each active substances (including the reference substance for 

each load metric as the highest value, assigned a standardised value of 1). The chart for surface 

water mobility is truncated at 10,000 L kg⁻¹ to ensure all reference points are visible.  

 

For ecotoxicity load metrics, the pesticide property value (see Table 2.2) of a given 

active substance is expressed relative to the reference substance (most toxic pesticide 

amongst those assessed for the PLI) using Equation 2.1. 

 

Load metric (lm) index𝑎𝑠 =
1

Active substance value𝑙𝑚 Reference substance value𝑙𝑚⁄
 (Equation 2.1) 

 

Figure 2.10 shows an example of the standardisation curve that emerges from 

Equation 2.1 for the Mammal ecotoxicity (acute) load metric. 
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Figure 2.10: Example Standardisation curve: Acute toxicity to mammals (LD50) 

 

The use of regulatory thresholds for standardising ecotoxicity metrics was also 

explored (in Phases 2 & 3). However, this resulted in a loss of natural scaling with 

respect to relative toxicity. For example, a substance with an LD₅₀ of 8.7 mg kg⁻¹ body 

weight compared to one with an LD₅₀ of 2000 mg kg⁻¹ body weight would be 

considered as having ~200 times greater relative toxicity per kg of active substance 

applied. Without regulatory thresholds, they would have a load index value of 0.28 and 

0.001 respectively (maintaining the ~200 multiple), whereas with regulatory thresholds 

they would have index values of 0.97 and 0.33 respectively, which is a multiple of ~3. 

Following discussions during Phase 3 it was determined that the need to maintain 

natural scaling for ecotoxicity metrics was a greater concern than the potential skewing 

associated with extreme reference substance values; thus, regulatory thresholds have 

not been implemented for ecotoxicity load metrics. 

2.5. Multiplication 
The final step in calculating the PLI is to multiply the load scores with rates of usage 

for individual active substances, using data derived from the PUS (Garthwaite et al. 

2019) and crop areas derived from the June surveys (Defra 2022). An estimate of 

usage (here defined as the mass in kilograms of active substances applied) is 

calculated by extrapolating data from records provided by growers for a sample of 

surveyed holdings8. The rates of application for each pesticide were estimated using 

a combination of the grower supplied rates and the LIASON pesticide registration 

database9 (Fera, 2023). Pesticides applied as seed treatments are treated separately 

for the purposes of calculation, and any subsidiary co-formulants (e.g., surfactants) or 

 
8 Data on pesticide applications on holdings in the UK is legally required to be maintained for a period 
of up to 3 years. However, other than for those holdings voluntarily in the PUS these data are not 
currently nationally collected or aggregated. 
9 The LIAISON database (https://liaison.fera.co.uk/) is a commercial product used by agronomists and 
research organisations. It contains all products registered with CRD and uses the product label rate to 
show minimum and maximum rates for all crops mentioned on the product label. In the PUS and PLI, it 
is used to fill in rates of application where these have not or cannot be provided by the grower e.g., in 
the case of seed treatments on purchased seed.  
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treatments which could not be assigned to a specific product/active substance 

(predominantly unknown seed treatments) are excluded. Likewise, applications made 

during or outside the drain flow period (Sep-Apr) were labelled as such and estimated 

separately (applications outside of the drain flow period are assigned a value of 0 on 

the surface water load metric). Note that with the exception of the split between 

treatments inside and outside the drain flow period, the PLI only considers the total 

mass of PPP applied throughout the growing season (i.e., regardless of how many 

individual treatments / spray passes this might represent in practice). This is one of 

several assumptions associated with the calculation of the PLI, which are outlined in 

detail Rainford et al (2022b) and briefly discussed in Section 5.2. Pesticides that 

(within a specific survey) are uniquely associated with specific crops are not estimated 

for regions where that crop is not grown (e.g., pesticides associated with sugar beet 

are not estimated for Scotland, where this crop is not grown). Only crops where 

suitable stratification is provided by the June survey(s) (primarily arable and some soft 

fruit crops) are associated with individual estimates of usage. 

All estimates are based on summed annual usage over the period covered by each 

survey (typically applications over a 12-month growing season, estimated regionally 

or nationally). The variation in the sampled and extrapolated data are used via a 

conservative bootstrap procedure (Efron and Raoul 1992) to calculate the confidence 

intervals shown in the PLI outputs. Conceptually, the intervals for a single active 

substance are drawn by bootstrapped replication of the observed rates for a given 

active substance on a given crop among the holdings observed in a given region and 

size class of holdings, with this population being substituted for a more general one  

(e.g. the overall regional / national population) in those cases where the local data 

provides insufficient information to reliably approximate the unvisited holdings (e.g., in 

the case where no local holding was observed to apply a given active substance). 

Confidence intervals on the overall PLI metrics are calculated using the sum of these 

underlying intervals on the assumption that estimated rates are independent of one 

another. All confidence intervals presented in both the PLI tool (Section 2.7) and this 

report represent the 90% coverage envelope on the estimated values given the 

assumptions outlined in Section 5.2. The full details of the calculation and assumptions 

made during the process are fully documented in Section 2.6 of Rainford et al. (2022b). 

The current implementation of summaries for load metrics in the PLI is expressed in 

terms of relative change in the ‘absolute’ value of load (this is the load based on the 

estimated total mass of PPP applied). In other options within the visualisation tool, 

load may be expressed per hectare of cropping area or per tonne of production. In 

these cases, the data used are based on the national estimates / census provided by 

the June survey. The absolute value of load is preferred as the most appropriate proxy 

for potential impacts on the environment that includes the collective decisions made 

by growers related to what crops to grow and in what quantities (i.e., where there is a 

choice between intensively treated and less intensively treated break crops, see 

Section 3). However, for some of the more subtle and targeted questions around 

grower behaviour, accounting for changes in cropping area and or production can be 

more appropriate, as these influence the economic incentives around the use of PPP. 



27 
 

2.6. Removal of the aggregation step 
At the outset of the development of the PLI, it was envisaged that it would result in a 

single combined environmental load metric (like the Danish PLI); thus, the aggregation 

step was retained and developed through Phases 2 and 3 (Rainford et al. 2022b). 

However, as it developed, the vision, role, and application of the UK PLI evolved and 

broadened compared to that used in Denmark, where it has a specific role in 

supporting their pesticides strategy and taxation system. Through Phases 2 and 3, it 

became apparent that the UK PLI needs to support a wider range of policy contexts 

and narratives. In addition, the exploration of different policy narratives (during 

workshops in Phase 3) highlighted that, in many instances, more interesting and 

valuable narratives could be derived from exploring the trends associated with 

individual load metrics (e.g. has the use of pesticides with high persistence decreased 

or increased, has the use of pesticides that are toxic to bees decreased or increased, 

etc.) rather than a combined metric (aggregated using aggregation constants that are 

inherently subjective and/or set for specific policy contexts). Consequently, the 

development of an aggregation technique became problematic, with a lack of 

consensus on an approach that would work for all contexts (see Annex 3 for a detailed 

description of the challenges associated with aggregation). 

The lack of an acceptable aggregation methodology led to a decision in Phase 4 to 

discard the aggregation step and re-orientate the core visualisation of the indicator to 

targets for relative change rather than a headline value. One of the main strengths of 

the PLI framework is its capacity to express change through time in a consistent way 

which is largely independent of the issues created by aggregation. Viewed in isolation, 

relative change in each metric (particularly through time) can be intuitively interpreted 

according to the expectations of stakeholders. In place of a single headline aggregated 

value, the decision was, therefore, made to stress relative change in the visualisations. 

For example, in place of the previous aggregated headline values, which expressed 

the summed change across different metrics, the revised approach asks whether, 

when considered in isolation, each metric has undergone a sufficiently large relative 

change relative to a user defined threshold. 

This change has important implications for how to approach measurement of progress 

in the context of the PLI in that it replaces the increasingly problematic change in the 

headline value, with a series of compliance statements which express that a given 

metric has (based on a best estimate of uncertainty) undergone a reduction of at least 

‘X’ magnitude relative to its value in a given reference year. The advantage of this fully 

relative approach is that it can be extended naturally to give an overall criterion for 

‘success’ (for example that ALL metrics should have shown a reduction in load of at 

least ‘X’ magnitude relative to a reference year). It also avoids the problem that the 

indicator is unitless (see Section 1) by emphasising that interpretation should always 

be based on patterns of relative change rather than absolute values (see Section 3). 

Hence, while not representing a major innovation in terms of the technical 

underpinnings of the calculation for individual metrics, this is a substantial shift in the 

way the results are interpreted and presented, which sidesteps the issues outlined 

above. Section 3 re-examines some of the key findings from the PLI considering this 

revised focus. It is hoped that by doing so, the strengths of the chosen approach can 
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be emphasised in terms of providing an in-depth tool for policy, while also showing 

that a threshold-driven approach still provides a convenient and simple tool for 

describing overall performance going forwards. 

2.7. Outputs and visualisation 
A key requirement is the need for accessible visualisations to denote trends in the 

indicator from a range of different perspectives. The PLI was developed with several 

different policy audiences in mind, including users with differing levels of experience 

and information needs, particularly the need to often link change to the use of specific 

active substances. To address these requirements, an R shiny application (RStudio, 

202210) has been developed for Defra users to create standard visualizations of trends 

in individual metrics, as well as the contribution of individual pesticides, and 

appropriate estimates of uncertainty. At present the application covers (biennial) 

arable surveys between 2010 and 2020, as well as the orchard and soft fruit surveys11 

of 2016, 2018 and 2020, the outdoor vegetable survey for 2015, 2017 and 2019 and 

the grassland and fodder survey for 2013 and 2017.  

During Phase 4, several refinements and revisions were made to the developed 

visualisation tool to attempt to better align to the policy needs of Defra. The most 

consequential of these changes is the removal of the aggregation step and 

consequent reorganisation of the visualisations. To reflect the new focus on progress 

measurement, the visualisations on the tab Summary of Included metrics now 

explicitly include a plot which categorises percentage change in each metric between 

any given pair of years based on user defined threshold (for example, identifying all 

metrics which show at least a 10% reduction between a specific pair of years; see 

example shown in Figure 3.5). The aim here was to provide a rapid visual overview of 

the direction of travel for different metrics, which would be useful in directing the user 

to cases requiring further investigation. Similarly, visualisations that were related to 

the aggregation step, e.g., those showing the contribution of metrics to the overall 

headline score, have been removed, as have all references to the former aggregated 

statistics (including the previous option to select alternative aggregation approaches).  

The visuals under the panel ‘View a metric in detail’ have also been revised to 

include both total load and load per hectare of cropping area and their respective 

percentage change relative to the earliest year in the series. An optional download 

feature has been added, which allows users with an appropriate level of access to 

download data directly from the application. Again, reflecting the more threshold-

driven view a new panel ‘View importance of actives’ has been added which ranks 

active substances in terms of their average percentage contribution to the overall value 

across each of the 20 PLI metrics in a given year location and crop group. This should 

make it easier for users to focus in on the key active substances that are driving load 

across many metrics and so identify potential areas for policy intervention. There have 

also been various small-scale graphical improvements made to various figures and 

headings which will hopefully improve the user experience and improve the 

transparency of findings. A revised User Guide for internal Defra users has been 

 
10 https://shiny.rstudio.com/ 
11 Including crops grown under permanent protection in Scotland and Northern Ireland. 

https://shiny.rstudio.com/
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developed, which includes updated instructions for how the tool is used as well as 

screen shots and technical details for how the app will be maintained going forward 

(see Section 2.8).  

At the backend, the visualisation tool has been modified to work with the revised 

standards to substance inclusion which are now maintained as part of the associated 

technical infrastructure. This includes maintaining a list of micro-organism-based 

products which can now be viewed under the ‘Select Chemical Group’ options 

throughout the tool. As noted above, background data filters are now maintained to 

exclude substances which fail to meet the data coverage criteria outlined in Section 

2.3 and to remove inorganic substances from consideration in the calculation of fate 

metrics. 

2.8. Ongoing delivery 
As part of Phase 4, the PLI delivery team have drafted an explicit protocol and 

contracting structure to facilitate the ongoing delivery of the PLI as a national tool for 

understanding change in the composition of PPPs applied in the UK. As of 2023, the 

protocol for calculating the PLI is now fully documented and available to the delivery 

team and Defra including description of all steps and processes involved. This is 

intended to provide a robust pipeline for calculating the indicator and providing the 

supporting datasets required by the visualisation tool. The key constraint identified in 

ongoing delivery was the frequency and maintenance of the PUS which represents 

the key data source for usage estimates (under the current model, most surveys used 

in the PLI are conducted on a biennial basis, with the exception of the grassland and 

fodder survey, which are conducted only once every four years). Defra and the delivery 

team have agreed a process of annual review to ensure that appropriate surveys 

within the PUS for use within the PLI are identified and processed promptly after 

publication. At present, the PLI infrastructure will remain separate from the publicly 

accessible infrastructure around reporting of usage (Fera 2021; PUSSTATS12) 

reflecting its focus as an internally facing Defra tool. This may, however, be subject to 

review in future. As currently scoped, the PLI and visualisation tool are intended to be 

updated on a rolling basis for each of the PUS surveys currently considered within 

scope (arable, orchards, soft fruit, outdoor vegetables, and grassland and fodder) 

although this may be subject to revisions.  

  

 
12 https://pusstats.fera.co.uk/home  

https://pusstats.fera.co.uk/home
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3.0. Results and discussion 

3.1. Introduction 
One of the key goals for the PLI was to make the indicator accessible to a wide 

audience and to develop a tool that allows users to explore policy relevant case studies 

in a way that is informative and consistently structured. This section provides a brief 

and illustrative summary of some of the key features developed for the application 

focused on understanding high level trends in the sum of applications made in the 

arable setting, as well as a more focused case study on one of the key policy 

interventions of the last decade, the withdrawal of neonicotinoid seed treatments, 

specifically focusing on winter-sown oilseed rape (OSR). The intention is to provide a 

guide for the types of analyses, visualisations, and topics that users may wish to 

explore with the PLI, as opposed to an exhaustive examination of trends in 

environmental load within the UK landscape. 

3.2. Trends in metrics of the PLI (summed arable crops 2010-2020) 
In Section 3 of the Phase 3 report (Rainford et al. 2022a) the trends in the then defined 

aggregated headline value of the PLI are discussed. Given the recent revisions to the 

indicator structure and the increasing focus on relative change in individual metrics 

(Section 2.6), a re-examination of these findings is provided here, with a focus on how 

the tool might be used in practice to identify key concerns. All visualizations presented 

are taken from the developed tool accompanying the PLI (see Section 2.7) and reflect 

the range of potential options available to users for exploring changes in pesticide 

policy and application behaviour on an ongoing basis (see Section 2.8). 

Arable crops (includes potatoes and sugar beet, alongside cereals, oilseed and pulse 

break crops) is by far the largest crop group in terms of pesticide usage, accounting 

for approximately 90% of the area treated and weight applied of UK agricultural and 

horticultural PPP applications. One of the weaknesses that the PLI inherits from the 

PUS is that because of the biennial nature of surveys it is inadvisable to try to combine 

data from different crop groups, which have been assessed in different calendar years, 

and thus may have been subject to different regulations relating to which products and 

active substances were authorised for use. For this reason, it is suggested that crop 

groups be examined individually, with arable applications serving as an effective proxy 

for national PPP applications, although other crops groups can also represent 

important contributions particularly at a regional scale. 

Currently within the PLI, arable data are available for surveys conducted every two 

years between and including 2010 and 2020. Between these years, the overall trend 

in mass of PPP applied (Figure 3.1) has been one of a general increase, peaking at 

14,902 tonnes in 2018 (or between 14.7k and 15.1k tonnes; based on the 90% 

confidence intervals estimated on the mass of application) or 3.57 kg of pesticide 

applied per ha grown (or between 3.53 and 3.61 kg ha⁻¹). This was followed by a 

substantial (25%) decline in mass applied in 2020 relative to 2018, with 11,208 tonnes 

(between 11-11.3k) or 2.67 kg ha⁻¹ (between 2.63 and 2.71 kg ha⁻¹) being applied in 

2020. 
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Figure 3.1: Trend in total mass of active substance applied to UK arable crops 
(2010-20) 

 

As discussed in more detail in Rainford et al. (2022a), the decline in 2020 is not 

meaningfully associated with declines in overall cropping area (which only reduced by 

0.5% between 2018 and 2020), but rather reflects a shift in choice of crop and 

associated application patterns in use of PPP. The national cropping area(s) of wheat 

(mainly winter sown and the principal arable crop grown in the UK) declined by 23.6%, 

as did winter barley by 31%, between 2018 and 202013. In contrast, cropping areas of 

spring barley increased by 52%, and peas and beans (a combination of spring and 

winter sown crops) increased by 26% and 32% respectively. OSR showed a 32% 

decline in the winter sown area and 22% increase in the spring sown area respectively. 

All these changes are suspected to be linked to extreme weather conditions and 

flooding in the autumn of 2019, which may have substantially impacted winter sown 

crops and reduced the incentives and ability of growers to carry out spray applications. 

Associated crop losses are also suspected to be associated with greater uptake of 

spring sown crops and varieties. Unfortunately, this period also corresponds with the 

height of the COVID 19 pandemic in the UK which both disrupted agricultural practice, 

as well as the data collection on which national estimates of cropping area are based 

(e.g., regional and size group level estimates of the areas for specific crops14). This 

 
13 Values taken from the ‘June’ agricultural surveys conducted by Defra and the various devolved 
authorities.  
14 For a number of specific crops, regional level data was not complied in 2020 due to pressures caused 
by the pandemic. As a result, many values used in both the PUS and PLI for cropping areas in 2020 
are based on regional cropping data from the previous year (2019) (see Section 2.6.2 in Rainford et al., 
2022b). UK national estimates of usage in the PLI are derived from the sum of regional estimates. 
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had the net effect of increasing uncertainty in the drivers of trends as it was much more 

difficult to reliably assess the economic conditions for UK growers. At present, 2020 is 

considered an atypical year in terms of pesticide usage statistics and data for the 2022-

2023 growing season (ongoing at the time of writing) will be used to assess these 

changes in the context of longer-term trends in usage. 

Despite the uncertainty associated with the 2020 usage data it is, nevertheless, 

possible to use this trend as an illustration of how the metrics contributing to the PLI 

can be visualised and how the different visualisations available within the tool inform 

one another to help users with key decisions. Figure 3.2 shows the trends in the 

calculated metrics between 2010 and 2020, expressed as a percentage of the 2010 

value. Different metrics show very different trends, some of which diverge substantially 

from the trend in overall mass applied. In particular, while the Bioconcentration factor, 

Soil DT₅₀, and Mobility metrics show (to varying degrees) the same broad trends as 

the overall mass applied (gradual increase over the period 2010 to 2018, followed by 

rapid decline in 2020), the Drain flow metric (which is heavily influenced by the timings 

of respective applications), peaks much earlier (around 2014) and has been 

undergoing a longer term decline in recent years that is much more substantial in 

percentage terms than that observed in mass applied. This is likely as a result of 

changes in the timing of key applications, particularly in the shift towards increased 

areas of spring sown crops, which are often most intensively treated after the end of 

the winter drain flow period. 

The trends in ecotoxicity metrics are even more complex and varied, with some, such 

as Bird LD₅₀ (acute/short-term) and Mammal LD₅₀ (acute/short-term), plateauing in 

recent years, while others such as Bees contact LD₅₀, Parasitic wasps, Daphnia EC₅₀ 

(acute/short-term), Daphnia NOEC (chronic/long-term) and Fish NOEC (chronic/long-

term) show pronounced declines over the period when the total mass of pesticides 

applied was increasing. Other metrics, notably Bees oral LD₅₀ and Algae EC₅₀, trend 

upwards prior to 2018 before declining in 2020. The individual trends in specific 

metrics are examined in more detail below. However, this diversity of trends between 

metrics, when expressed in their own scale, serves to illustrate the limitations of the 

aggregated indicators that were previously defined under the PLI (Rainford et al. 

2022a) and highlights the strength of the revised single metric focus approach adopted 

in Phase 4 (see Section 2.6). 

Given that the key function of the PLI is to provide information and ‘colour’ to the trends 

arising from the changing mix of active substances applied (Section 1), it makes sense 

to structure the calculation and presentation to provide the widest possible range of 

information to decision makers seeking to prioritise alternative interventions in PPP. 

The following section examines how the visualisation tool handles this complexity by 

providing targeted visualisation for a given policy need and how the various 

approaches to visualisation can be used together to provide a joined up and highly 

resolved image of the drivers of change in UK PPP applications and the potential 

priorities for further monitoring (see Section 3.3).
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Figure 3.2: Trends in metrics comprising the PLI for the sum of all arable cropping 2010 to 2020 

Values are expressed as % change relative to 2010. Shading around the trend lines reflect the 90% confidence interval. Solid horizontal reference line 

denotes no change relative to 2010. 
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Figure 3.3: Change (%) in load for selected metrics for summed arable cropping between 2010 and 2018 

Values are expressed as percentage change in the total value of the indicator relative to the value in 2010. Confidence estimates are based on 90% intervals 

around the mean. Arrows are used to denote direction of net change for the named metric. No net change considering the range of uncertainty around the 

estimate is denoted by circles. Metrics related to the same taxnomic group are shown together.  
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Figure 3.4: Change (%) in load for selected metrics for summed arable cropping between 2018 and 2020 

Values are expressed as percentage change in the total value of the indicator relative to the value in 2018. Confidence estimates are based on 90% intervals 
around the mean. Arrows are used to denote direction of net change for the named metric. No net change considering the range of uncertainty around the 

estimate is denoted by circles. Metrics related to the same taxonomic group are shown together.
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Figures 3.3 and 3.4 show the extent and direction of change of individual metrics as 

an infographic developed for the visualisation tool over the period 2010 to 2018 and 

2018 to 2020 respectively Arrows show the direction of inferred change while the 

values list the extent of percentage change (relative to the earlier year) with the 

associated confidence interval. Arrows associated with a net increase in load are 

denoted in red, while a circle is used to denote where there has been no net statistical 

change in a given indicator (or that the minimum estimate of any observed change 

between the two years is within the uncertainty estimated for the earlier year). Viewed 

in this way allows the user to highlight the general trends up to 2018 (when the overall 

mass of active substance applied was increasing) and contrast this with the recent 

changes between 2018 and 2020. 

As a benchmark for comparisons between 2010 and 2018, the overall mass of active 

substances applied to all arable crops in the UK increased by approximately 16% 

(±3%). Looking at Figure 3.3 it is immediately apparent that this increase is unevenly 

distributed across different metrics, meaning that there are different components of 

load that are responding differently to the changes in the mix of PPP actives applied. 

This is unsurprising, as it is change in the composition of active substances that is the 

major source of variation over this period, and this is what indicators like the PLI seek 

to understand. Focusing initially on those metrics which have shown increases in net 

load over this period, it can be seen that none of them align precisely with the trend in 

mass applied, with the closest being the Soil DT50 (increases by 18% ±3%), Mobility 

(increased by 9% ±3%), and Aquatic plants EC₅₀ (increased by 10% ±6%). There are 

also metrics where the proportional increase is larger than that of mass applied, 

notably Bees oral LD₅₀ (increases by 28% ±13%) and Algae EC₅₀ (62% ±10%), 

reflecting the fact that some of the substances applied are more potent in terms of 

their toxic effect for the same mass applied with reference to these specific taxonomic 

groups. However, for the majority of metrics considered by the PLI, the trend over the 

period 2010 to 2018 is towards decreasing load, i.e., for the vast majority of metrics 

the average kilogram of active substance applied is associated with a lower toxic effect 

(although this statement must be caveated with various observations that are outside 

of the scope of the PLI such as the potential for synergistic effects arising from the 

mixtures of substances applied; see Section 5.2). This may reflect the results of 

successful policy intervention and the ongoing withdrawal of some of the most harmful 

active substances (most notably neonicotinoid insecticide seed treatments; see 

Section 3.3).  

The changes from 2018 to 2020 can be contrasted with this ongoing trend. The total 

mass of active substance applied to all arable crops declined by 25% between 2018 

to 2020. This decline was matched by the majority of the metrics (Figure 3.4) except 

for Bird LD₅₀ (acute/short-term) and Mammals LD₅₀ (acute/short-term), which show 

only very slight declines of approximately 11% on average, while the mean estimate 

for load on parasitic wasps shows an overall increase. Notably, however, in these 

three cases, when appropriate uncertainties on the estimated values are taken into 

account it is not possible to discount the possibility of no net change between the two 

years (see confidence envelopes on Figure 3.2 and the values in brackets in Figure 

3.3 & 3.4). The largest declines from 2018 to 2020 are associated with load on bees, 
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with the two metrics calculated on oral and contact toxicity declining by 98% (±5%) 

and 77% (±7%) respectively. This implies a substantial shift in the average toxicity per 

kilogram applied with respect to this key taxonomic group. Looked at in context (Figure 

3.2), for contact toxicity these declines are part of an ongoing trend stretching back to 

at least 2014, whereas for oral toxicity the decline is more recent and associated with 

the period 2018 to 2020. Some of the drivers behind these trends are explored further 

in Section 3.3. Other large declines are observed in load associated with long-term 

toxicity for both birds and mammals, as well as load on algae and aquatic plants. 

A further simplification of the same information is shown in Figure 3.5, which is 

intended as a high-level summary tool for policy to assess progress towards potential 

target thresholds (which are assumed to be expressed as a net percentage change 

relative to a prespecified baseline). In this case the metrics are classified into a concise 

format based on whether the minimum observed change (after uncertainty in the 

estimation is taken into consideration) exceeds a predefined value (in this example 

10% change relative to the values in the earlier year; Figures 3.3 & 3.4). This allows 

users to identify at-a-glance which metrics may: a) be successfully responding to any 

interventions (dark green); b) require further intervention to reach the target level (light 

green); c) be subject to too much uncertainty to confidently assess the direction of 

change (yellow); or d) be trending in the wrong direction (red). Hence, it is possible to 

reinforce the fact that the key metrics of interest for 2010 to 2018 are the 

Bioconcentration factor, Soil DT₅₀, Mobility, Bees oral LD₅₀ Algae EC₅₀ and Aquatic 

Plants EC₅₀ (all of which are coded red to signify an increase in load), while for 2018 

to 2020 the metrics of interest are acute toxicity to birds and mammals and load on 

parasitic wasps, which are coded yellow to emphasise that these are within the 

observed margin of uncertainty (at 90% confidence). Tools like this give a quick 

overview of the key information for a given context and so guide the user in what they 

may wish to further explore. 
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Figure 3.5a: Categorised metrics from the PLI based on percentage change between 2010 and 2018 for the sum of 
applications made on all arable crops 

Underlying values are expressed as percentage change in the total value of the indicator relative to the value in 2010. A threshold target of 10% change has 
been used in the classification.
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Figure 3.5b: Categorised metrics from the PLI based on percentage change between 2018 and 2020 for the sum of 
applications made on all arable crops 

Underlying values are expressed as percentage change in the total value of the indicator relative to the value in 2018. A threshold target of 10% change has 
been used in the classification. 
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As a note when interpreting the PLI it is important to recall that (by design) the indicator 

is only able to characterise load in terms of the potential pressure placed on the 

environment by the combination of PPPs applied (see Section 1), and that other lines 

of evidence, for example the monitoring of real populations (including field level 

mitigation measures), would be necessary to extrapolate how these pressures might 

be realised in real ecosystems.  

This concludes the overview of the high-level visualisations in the PLI and how these 

suggest topics for further investigation. Section 3.3 explores how the PLI might be 

applied to a very specific historic scenario and how it provides additional higher-

resolution information to users interested in exploring trends in each metric and linking 

these trends to specific active substances. 

3.3. Case study: Understanding load on insects associated with winter 

sown oil seed rape 2010-2022 
One of the most notable changes in agronomic practice around PPP use in the UK 

over recent years has been related to the use of neonicotinoid seed treatments and 

their potential impacts on pollinator populations (Budge et al. 2015; Woodcock et al. 

2016). While neonicotinoids have been used across several crops in the UK, 

discussions of pressure on the environment often centre on OSR, as the major 

flowering crop that is attractive to pollinators (Goulson 2013; Goulson, Thompson, and 

Croombs 2018). As well as being an important commercial product, OSR often serves 

as a break crop for wheat and other cereals. It is affected by several key pests of high 

concern, most notably cabbage stem flea beetles (CSFB; Psylliodes chrysocephala) 

and peach-potato aphid (Myzus persicae) for which neonicotinoid seed treatments 

were historically recognised as the major chemical control (Budge et al. 2015; Coston 

et al. 2016; Dewar 2017; Kathage et al. 2018; Scott and Bilsborrow 2019; Lundin et 

al. 2020). 

As background to the trends in environmental load, the total cropping area of winter 

sown OSR over the studied period peaked in 2012 and has since declined, in part due 

to shifts in commercial viability in parts of eastern England impacted by CSFB (Figure 

3.6). Note that these estimates are based on the official government values published 

from the June survey(s) in the years for which the arable PUS was conducted. These 

may show minor differences from other datasets such as the AHDB’s Planting and 

Variety survey and the Defra Basic Payments, all of which have known limitations 

related to their selected methodologies (AHDB 2020; Defra and RPA 2018). Total use 

of PPP, on a per hectare basis, has increased in recent years, particularly during the 

period from 2014 to 2018, which reflects a longer-term trend of increased 

intensification and management during a period of relatively high prices (Figure 3.7). 

As with many winter-sown crops (see above), the total mass of applications in 2020 

on a per hectare basis is noticeably reduced relative to the historic trend (being roughly 

comparable with 2010 levels). 
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Figure 3.6: Total cropping area of winter sown OSR (2010-20) 

Based on the June survey for the years where an arable PUS survey was conducted. Values include 

summed areas for 2019 for regions of England and Wales (see Section 3.2). 

 

 

 

 

Figure 3.7: Trend in pesticides applied (kg ha⁻¹) to winter sown OSR (2010-20) 

Shading around the trend line reflects the 90% confidence interval on the mean. Horizontal reference 

line shows the mean in 2010. 
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Figure 3.8: Total UK production (tonnes) of winter sown OSR (2010-20) 

 

Prior to 2014, the neonicotinoid seed treatments, clothianidin, thiamethoxam and 

imidacloprid were widely used on winter sown OSR, but subject to a phased 

withdrawal prior to the end of the 2016 harvest season. At the time, following 

neonicotinoid withdrawal, concerns were raised that control of the key pests would 

necessitate increased foliar applications of pyrethroids and potentially counteract 

reductions in total environmental load (Zhang et al., 2017). Looking at the tends in 

metrics from around this period (Figure 3.9), it can be seen that relative to their 

previous level both metrics relating to bees (Bees contact LD₅₀ and Bees oral LD₅₀) 

have shown substantial declines relative to their previous values. However, load on 

parasitic wasps, particularly during the most recent years between 2018 and 2020, 

has increased to the point where the metric classification flags this metric as being of 

concern and trending in the wrong direction (Figure 3.9). When focusing only on the 

period 2018 to 2020 (Figure 3.10) it can be highlighted that, relative to a notional target 

of at least 10% reduction relative to 2018 values, load on parasitic wasps has 

increased (suggesting some change in the mixture of substances applied which may 

have a negative impact on this taxon), while the recent declines in load on predatory 

mites, fish (both in terms of acute toxicity and chronic toxicity) and acute toxicity to 

Daphnia are all less than the 10% relative target defined (and indeed most are within 

the estimated margin of uncertainty).
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Figure 3.9: National trends in metrics for winter sown OSR (2010-20) 

Environmental load is shown with the solid coloured lines. Values are expressed as % change in total PLI units relative to 2010. Shading around the trend 

lines reflect the 90% confidence interval. Solid horizontal reference line denotes no change relative to 2010.  
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Figure 3.10: Categorised metrics from the PLI based on percentage change between 2018 and 2020 for winter sown OSR  

Underlying values are expressed as percentage change in the total value of the indicator relative to the value in 2018. A threshold target of 10% change has 
been used in the classification.
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Examining which specific changes have driven the decline in individual metrics, 

looking at load on bees specifically, the large declines observed between 2014 and 

2016 (Figures 3.9 & 3.11), particularly with respect to oral toxicity, can be almost 

completely attributed to the withdrawal of the key neonicotinoid seed treatments 

clothianidin, thiamethoxam and imidacloprid. 

While some limited use of clothianidin did persist in 2016 as part of the process of the 

phased withdrawal, the absolute quantity used in that year was well below previous 

recorded usage (exemptions were granted only for four counties in Eastern England) 

and consequently its impact on load was greatly reduced. The more recent changes 

in load, including the further decline in 2020 from the already low baseline in 2018 

(Figure 3.11) are associated with further shifts in the contribution of different 

pyrethroids. This included a reduction in the use of cypermethrin and zeta 

cypermethrin in favour of lambda-cyhalothrin, which saw increased usage following 

the withdrawal of the neonicotinoids as an alternative control for CSFB. From 

discussion with growers (see also Kathage et al., 2018), it seems that following the 

loss of neonicotinoids as a control option, there has been a general trend towards 

reduced planting in the areas most afflicted by CSFB (see Coston et al., 2016; Scott 

and Bilsborrow, 2019), as well as a gradual transition towards earlier sowing dates, 

which may reduce the impact by the pests (Kathage et al., 2018). Average yield per 

unit cropping area for winter sown OSR in the UK has declined since the withdrawal 

of neonicotinoids (Lundin et al., 2020), although this can still be visualised as a 

substantial decline in load per tonne of production (total load in 2016 is estimated to 

be -92% ±8% lower than in 2010 after correcting for difference in output). 

 

Figure 3.11: Contribution of major pesticides to load on bees oral for winter 

sown OSR (2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 10% of the 

total value in any year. Blue points denote the mean and the associated 90% confidence intervals. 

The fact that a change to authorisation of PPP results in behavioural change beyond 

the scope of individual active substances, highlights the importance of viewing the use 

of all pesticides as part of the wider agricultural system and the many different 

decisions that could be associated with changes in PPP use. Pesticides are only one 

way in which growers mitigate against risk of loss (albeit one which is often favoured 

because of their perceived reliability and low costs (Möhring et al. 2019). Hence, if 
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frameworks like Integrated Pest Management (IPM) are to have their expected impact, 

PPP usage needs to be viewed within the context of growers (and agronomists) risk 

avoidance behaviour and a systematic view needs to be taken of how to best manage 

pest related risk within the landscape (Deguine et al. 2021). 

 

Figure 3.12: Contribution of major pesticides to load on bees contact for winter 

sown OSR (2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the 

total value in any year. Blue points denote the mean and the associated 90% confidence intervals. 

Examining the load from Bee contact toxicity (Figure 3.12), many of the same patterns 
emerge. Compared to oral toxic load (for bees) the major neonicotinoid seed 
treatments clothianidin and thiamethoxam make up a lower proportion of the overall 
load value, although again, with their common co-formulant beta-cyfluthrin, they make 
up the predominant drivers of change between years15. Here, the transition to the use 
of pyrethroids can be seen more clearly, with cypermethrin (and zeta cypermethrin) 
becoming much less important between 2018 and 2020 with small compensatory 
increases in deltamethrin and lambda-cyhalothrin. Cypermethrin has been the target 
of a number of recent campaigns aimed at reducing usage (e.g., Environment Agency 
2019) and mesocosm studies have shown that ‘cypermethrin application had a 
somewhat greater impact than the lower lambda-cyhalothrin treatment rate (due to 
effects on peracarid crustaceans)’ (Farmer, Hill, and Maund 1995). Cypermethrin has 
also been identified as 1.16 and 3.02 times more toxic to fish compared to deltamethrin 
and lambda-cyhalothrin respectively (Farmer, Hill, and Maund 1995). Cypermethrin 
has also been identified as 1.16 and 3.02 times more toxic to fish compared to 
deltamethrin and lambda-cyhalothrin respectively (Salako et al. 2020). However, it 
should be noted that all three pyrethroids are considered dangerous to aquatic and 
terrestrial life and are subject to strict controls regarding treatment rates and the 
maximum number of applications in a season.  

Breaking down the metrics in this way, so that each draws on (as far as possible) 
directly comparable datasets, highlights one of the conceptual strengths of the revised 
PLI approach (particularly when compared to previous results which used an opaque 

 
15 It is worth noting that the increased use of pyrethroids is likely a response to the need to control CSFB 
in the absence of neonicotinoid seed treatments. The differences in mode of delivery, presence of other 
management practices, and the different regulations which surround insecticide applications mean that 
this change is unlikely to be a one-to-one replacement in many cases. 
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aggregated metric; see Rainford et al., 2022, Section 3). Whether it is most appropriate 
over the longer term to focus discussion of trend around individual metrics (and the 
PLI), or taxonomic groups (as in the recently developed TAT indicator (Schulz et al. 
2021, see Section 4.3) is a topic for ongoing discussion. However, having both options 
is considered an important first step towards the long-term future of how indicators of 
this type may be presented and the implications for their use in policy decisions. 
However, it should be noted that all three pyrethroids are considered dangerous to 
aquatic and terrestrial life and are subject to strict controls regarding treatment rates 
and the maximum number of applications in a season. Breaking down the metrics in 
this way, so that each draws on (as far as possible) directly comparable datasets, 
highlights one of the conceptual strengths of the revised PLI approach (particularly 
when compared to previous results which used an opaque aggregated metric; see 
Rainford et al., 2022, Section 3). Whether it is most appropriate over the longer term 
to focus discussion of trend around individual metrics (and the PLI), or taxonomic 
groups (as in the recently developed TAT indicator (Schulz et al. 2021), see Section 
4.3) is a topic for ongoing discussion. However, having both options is considered an 
important first step towards the long-term future of how indicators of this type may be 
presented and the implications for their use in policy decisions. 

With respect to the potentially worrying apparent increase in load observed on 

parasitic wasps (Figure 3.13), while the trends for load prior to 2014 show strong 

impacts of some of the substances mentioned above (notably imidacloprid seed 

treatments and alpha cypermethrin), the most recent trends, including an increase in 

load between 2018 and 2020, are largely attributable to the use of the substance 

acetamiprid (Figure 3.13). The metric ‘parasitic wasps’ here represents toxicity studies 

conducted on Aphidius rhopalosiphi (Hyemoptera Braconidae: Aphidiinae), which 

parasitize specific aphids, and which together with the predatory mite Typhlodromus 

pyri (Acari, Phytoseiidae; commonly found in orchards and predates a number of 

species of mite including Fruit Tree Spider mite Panonychus ulmi), is one of the two 

principal first tier models for risk assessment with respect to ‘non target arthropods’. 

These species were selected due to a combination of ease of rearing and high 

sensitivity to pesticide impacts (see e.g. EFSA Panel on Plant Protection Products and 

their Residues (PPR) 2015). It is worth noting that, while load does increase over this 

period, looked at over a longer period (for example in comparison to 2016), the 

situation is much less clear cut and the very wide estimated confidence intervals imply 

a large degree of heterogeneity in usage between individual holdings and regions, 

particularly in 2020 where, for reasons outlined above, there are also concerns about 

the wider data quality. 

Acetamiprid is a neonicotinoid used principally to target insects with sucking mouth 

parts including aphids, Thysanoptera and Lepidoptera16, and since 2021 is the only 

neonicotinoid that can be applied in open field cultivations in the EU and UK (Varga-

Szilay and Tóth 2022; applications restricted to a single treatment per field per year 

prior to the end of flowering). Unlike other neonicotinoids, acetamiprid is primarily 

associated with foliar or ground sprays and not applied as a seed treatment in the UK. 

In terms of its history of use on OSR, in the autumn of 2014 and 2015, an emergency 

authorization was granted for the product InSyst (acetamiprid) for use against CSFB, 

 
16 http://www.agchemaccess.com/Acetamiprid 

http://www.agchemaccess.com/Acetamiprid
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but there has been no further authorization for use to control this pest in subsequent 

years (White et al. 2020). Anecdotal information is skeptical as to its efficacy as a 

means of CSFB control (White et al. 2020). Acetamiprid (and indoxacarb) are also 

cited as the key control agents for pollen beetle Meligethes aeneus (Denholm 2011; 

Burnett et al. 2020), for which InSyst has approval up to 2025, although the extent to 

which this drives usage relative to pyrethroids is unknown. In discussions of resistance 

management (particularly where pyrethroids are ineffective), acetamiprid is often 

cited, alongside indoxacarb, as a potential component of a joint spray programme, 

but the extent to which this represents current practice and how this contributes to 

the overall usage statistics is unclear (Insecticide Resistance Action Group 2022). 

 

Figure 3.13: Contribution of major pesticides to load on parasitic wasps for 
winter sown OSR (2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the 

total value in any year. Blue points denote the mean and the associated 90% confidence intervals.  

Acetamiprid has been suggested to have a relatively low toxicity to honey bees (at 

least when compared to the other neonicotinoids (Zhu et al. 2015), although see  

Varga-Szilay and Tóth (2022) for a dissenting opinion). In a recent EFSA review of the 

state of evidence around acetamiprid (Hernandez Jerez et al. 2022), its impacts on 

survival, reproduction, growth and behavior of bees are rated low to moderate (with 

low confidence in the latter), with the evidence for the potentially higher sensitivity of 

Megachile rotundata (as a proxy for wild bees, see also Camp et al. 2020; Varga-

Szilay and Tóth 2022) being highlighted as an area of concern for further investigation. 

In their overall conclusions Hernandez Jerez et al. (2022) stated that ‘no conclusive, 

robust evidence of higher hazards compared to the previous assessment was found 

for birds, aquatic organisms, honeybees and soil organisms’. No explicit discussion is 

made in this document for data pertaining to beneficial invertebrates (the category to 

which parasitic wasps belong), although in the proposed interim registration review 

decision for acetamiprid by the US EPA ‘Commenters also stressed the relative safety 

of acetamiprid to workers and to beneficial insects and pollinator species, as compared 

to other pesticides, including in comparison to other neonicotinoid pesticides’ (US EPA 

2020;  see also Smitley et al. 2019; Ambrose 2003). The product label for Insyst17 lists 

 
17https://www.pcs.agriculture.gov.ie/media/pesticides/content/products/labels/03249%20-
%20Insyst%20-%202019%20to%20date.pdf  

https://www.pcs.agriculture.gov.ie/media/pesticides/content/products/labels/03249%20-%20Insyst%20-%202019%20to%20date.pdf
https://www.pcs.agriculture.gov.ie/media/pesticides/content/products/labels/03249%20-%20Insyst%20-%202019%20to%20date.pdf
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this product as ‘slightly toxic to predatory mites and generally slightly toxic to other 

beneficials’ (which would include parasitic wasps).  

Arguably this lack of weight in the decision making process reflects a systematic 

reliance in regulatory practice on data from bees (and honey bees in particular) as (in 

effect) proxies for all invertebrates, a topic that has been raised as a concern by a 

number of authors (Franklin and Raine 2019; Siviter and Muth 2020). Despite their 

importance as pollinators, the highly colonial life style of some bee species may result 

in different susceptibility when compared to other arthropods (Franklin and Raine 

2019). The question of what taxa to incorporate into the context of risk assessment is 

a complex one, involving a number of trade-offs between tractability and cost vs. 

ensuring that risk assessment is protective with respect to the wider community 

(Schäfer et al. 2019). As was previously the case with bumblebees and solitary bees 

(Lewis and Tzilivakis 2019) the growing volume of toxicity data relating to parasitic 

wasps, and to beneficial arthropods generally, is slowly enhancing tools for the 

assessment of PPP but has not yet fully filtered through to some of the widely 

implemented tools and indicators developed in this space (see Rainford, Kennedy, 

and Jones 2021). 

 

Figure 3.14: Contribution of major crops to load on parasitic wasps 

(arable crops 2010-20) 

Values are expressed in total PLI units. 
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Viewed in the wider context of UK arable cropping, the load on parasitic wasps from 

winter sown OSR is only a part of the wider picture associated with this metric. The 

most important individual component of overall load is generated by applications made 

on potato, generally the most intensively treated crop in UK arable farming, and again 

a role for acetamiprid in the most recent data (Figure 3.14), alongside the dominant 

role played by oxamyl, is seen. Similarly, when the same metric for applications made 

on sugar beet is examined (Figure 3.15), acetamiprid is again seen as an increasingly 

important component in 2020 (note that while emergency authorisations of 

neonicotinoid seed treatments on sugar beet were approved in principle for 2020, they 

were not required because the predicted aphid threshold, based on winter temperature 

needed for approval, was not reached and hence these are not considered here). 

Pre-2014, applications on wheat (Figure 3.16) and, in particular, the use of dimethoate 

(now withdrawn), was an important driver of trends in load with respect to parasitic 

wasps. In 2020, across all arable applications (Figure 3.17), acetamiprid totals 30% of 

the total load on parasitic wasps, which together with oxamyl is the one of the principal 

substances that is responsible for the majority of load, and which is most linked to 

recent change. This serves to highlight how having a combined tool that can examine 

data from many angles helps to support decision makers in pulling together priorities 

for future investigation. When ranked alongside other insecticides and nematicides 

across all 20 included metrics in the PLI (mean average of ranks on individual metrics 

by relative percentage contribution), acetamiprid is ranked 14 out of 24, well behind 

such important compounds as lambda-cyhalothrin, oxamyl, cypermethrin and 

tefluthrin. This indicates that while acetamiprid may be a compound to watch when it 

comes to load on parasitic wasps, it still needs to be viewed in the context of the wider 

hazard profile of PPP applications and judged accordingly in comparison to potential 

alternatives. 

 

 

Figure 3.15: Contribution of major pesticides to load on parasitic wasps 
(Potato 2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the total 

load value in any year. Blue points denote the mean and the associated 90% confidence intervals. 
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Figure 3.16: Contribution of major pesticides to load on parasitic wasps (Beet 
2010-20; GB only) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the 

total load value in any year. Blue points denote the mean and the associated 90% confidence 

intervals.  

 

 

 

Figure 3.17: Contribution of major pesticides to load on parasitic wasps 
(Wheat 2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the 

total load value in any year. Blue points denote the mean and the associated 90% confidence 

intervals. 
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Figure 3.18: Contribution of major pesticides to load on parasitic wasps (all 
arable crops; 2010-20) 

Values are expressed in total PLI units. Major pesticides are those representing at least 5% of the 

total load value in any year. Blue points denote the mean and the associated 90% confidence 

intervals. 

 

Given the fact that acetamiprid appears the be one of the key substances associated 

with the trend towards increased load on parasitic wasps, and their various 

uncertainties surrounding usage, it is recommended that use, and the potential impact 

of this substance, continue to be monitored in future. To be clear, there is currently 

insufficient evidence to indicate that acetamiprid is a concern for parasitic wasps or 

indeed any other taxonomic group, but it does highlight the role which tools like the 

PLI can have in prioritisation and identifying substances that may warrant further 

investigation. 

This role as a tool for prioritisation is closely linked to the wider role of the PLI as a tool 

for post-authorization monitoring of PPP to help policy and decision makers 

understand the changing composition of substances used and their implications for 

environmental impacts. Since the publication of the concept of ‘pesticidovigilance’ 

(Milner and Boyd 2017), there has been increasing discussion around the fact that the 

current authorization process around PPP struggles to be reactive and informed by 

changes in agricultural practice. While limited by the inherent delays associated with 

collecting and aggregating usage data via the PUS, the PLI does help to contextualize 

current and historic practice to help the user to understand the potential direction of 

change within the landscape. 
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4.0. Comparisons between the PLI and the Total 
Applied Toxicity indicator 

The PLI is one of a broader family of pesticide indicators which explore changes in the 

mixture of pesticides applied over a given geographic scope and time, by summation 

of the mass applied scaled by some physical or biochemical property of the 

substances involved. Such indicators have a long history as tools for agricultural policy 

and decision making and have been developed by a wide range of authors for a wide 

range of different purposes. Readers interested in review of the various classes of 

indicators as well as their use in policy and decision support are directed to discussion 

in Rainford, Kennedy, and Jones (2021) which includes a comparison of the Danish 

PLI with a number of similar indicators with emphasis on the different scope and 

approaches to calculation used in different tools. 

The Total Applied Toxicity (TAT) is an indicator initially developed by Schulz et al. 

(2021) for use in the USA and a similar indicator has also recently been applied in 

Germany (Bub et al. 2023). TAT has recently been discussed as a novel international 

standard for reporting of the potential impacts of pesticides, for example under the 

Convention on Biological Diversity (Open-ended working group on the post-2020 

global biodiversity framework 2022) and Beyond 202018. While not identical in either 

form or function, the scope of the PLI in its revised context shows sufficient similarity 

with the TAT to allow comparisons and to explore the possibility of aligning UK 

reporting around PPP to this emerging international standard. This section 

summarises the key conceptual similarities and differences between the PLI as 

described above and the TAT. It is not a full protocol for how the TAT might be 

calculated in a UK context (which may follow depending on agreement with UK 

stakeholders and policy) but rather a targeted discussion of the key similarities and 

differences between the approach adopted for the PLI (see Section 2) and what might 

be required for the TAT to be calculated in a UK context. 

As a note, while based on the same principles, the two implementations of TAT differ 

sufficiently in their precise approach (see below) that they are henceforth denoted as 

TATUSA and TATGermany. At the highest level, both TAT implementations share a 

common structure with the PLI. Like the PLI, the TAT serves to provide a proxy for the 

potential environmental impact of PPP use by combining information on usage rates 

(represented by the estimated mass of application of different active substances) with 

data on ecotoxicity, represented by Regulatory Threshold Levels (RTLs) in the TAT. 

The PLI also includes fate elements serving as proxies for the persistence, mobility 

and bioaccumulation of PPP which have no equivalent scope within the TAT and will 

be excluded from this discussion. 

The key differences between the PLI and TAT approaches lie in a) the underlying data 

sources that provide the raw values for ecotoxicity assessment; b) how data from 

different regulatory assessments conducted on the same taxonomic group are 

combined; and c) the way in which usage data is collected. This section briefly 

 
18 https://beyond2020.se/  

https://beyond2020.se/
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discusses how these differences affect the scope of the different indicators and the 

implications this has for comparing trends in the PLI and the TAT in a UK context. 

4.1. Core principles 
The core structure of the PLI and TAT indicators is identical and common across each 

of the implementations considered here (the Danish PLI has the same underlying 

structure but is aggregated across multiple measurements and is not discussed in 

detail here, see Rainford et al., 2022b). For both the (UK) PLI and TAT the overall 

value of interest for a given component (a metric, or taxonomic group) across a set of 

applications involving multiple active substances can be expressed using Equation 

4.1: 

Total Indicator score of a component =  ∑ Mass𝑎𝑠 ×
1

Ecotoxicty𝑎𝑠
  (Equation 4.1) 

Where: 

Massas and the measure of Ecotoxicityas are values specific to a given active substance. 

In practice, a measure of ecotoxicity is itself a mass (or dose) of the active substance 

which is associated with some measured toxic effect (e.g., decreased survival, growth, 

or reproduction) in a laboratory setting. For both the PLI and TAT, such values may 

be first standardised for example by scaling relative to the worse case substance (see 

Rainford et al., 2022). The individual components of both the PLI (i.e., the ‘load 

metrics’) and TAT are thus in practice unitless indicators intended to express relative 

change within their respective contexts.   

How components are defined marks the first key difference between the PLI and TAT. 

In the PLI, individual components (load metrics) are representations of a specific 

measurement made during the first-tier authorisation of PPP. Each component thus 

has a specific corresponding study type and methodology and (ignoring for the 

moment the treatment of missing data) all the values under that metric are derived 

from the same or very similar methods and are directly comparable. For example, the 

PLI metric ‘Daphnia acute’ represents the results of studies conducted on the mortality 

of the crustacean Daphnia spp (usually D. magna conducted over 48 hours and 

measured as the EC₅₀ (mg L⁻¹) of a given active substance19). Thus, the components 

of the PLI can be thought of as being a direct link to the results of the underlying 

laboratory studies maintained in a common framework which is the scope and 

intention of the PPDB as a data source (Lewis et al. 2016). As a reminder in the rare 

case of duplicated values matching the same scope the data reported in the PPDB 

and PLI represent the worst-case value subject to scientific quality standards. 

The way in which components of the TAT (in both its German and US 

implementations) are defined is subtly different. Specifically, the TAT aims to capture 

the worst-case value for an active substance from any regulatory test/study that has 

been performed on the named group associated with a particular sub component (e.g., 

birds, aquatic invertebrates, or pollinators). To continue the analogy above, ‘Daphnia 

 
19The vast majority of ‘Daphnia acute’ studies will correspond to the following guidance published by 
the OECD https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-
test_9789264069947-en#page1  

https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en#page1
https://read.oecd-ilibrary.org/environment/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en#page1
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acute’ is a proxy for risks to all aquatic invertebrates (and represents one of the primary 

measurements taken in the first tier of risk assessment process). However, in most 

regulatory regimes (including the UK) during risk assessment, measurements of 

mortality would in practice be taken from a wider array of different aquatic invertebrate 

species and over different time periods and conditions to those outlined above (for 

example during higher tier assessments). Under the metrics defined in the PLI, this 

supplementary information is discarded because it is often not directly comparable 

between different active substances (which may have been based using different 

methodologies and model taxa). The TAT takes a different view in that it first collates 

all the regulatory values that pertain to aquatic invertebrates in the source databases 

(regardless of which specific species were used or the length of the assessment) and 

then selects from among them a ‘worst case’ value to represent the specific active 

substance. The logic here is that there may be substances which for one reason or 

another mortality of D. magna conducted over 48 hours is a poor proxy for the overall 

potential impact on aquatic invertebrates. By considering a wider array of data, this is 

potentially being more ‘realistic’ in terms of the potential relative risks (which also 

aligns to the way in which risk assessment is conducted in that the decision is based 

on the reasonable worst-case value across a range of studies). 

4.2. How active substance values are generated in the TAT 
In almost all cases, the worst-case value for a given taxonomic group will be some 

sort of minimum amount of substance that affects the taxon concerned (typically 

expressed as a concentration). However, taking this view potentially means (in some 

cases) that data may be compared that are derived from different kinds of studies (for 

example those considering acute vs. chronic effects). The way the TAT deals with this 

is defining what they term ‘regulatory threshold levels’ or RTLs. An RTL is a 

combination of a measurement for a given end point (e.g., acute or chronic mortality) 

with some predefined (and regulatory relevant) constant (termed the assessment/ 

adjustment factors), which controls how different studies are to be compared when 

selecting which value represents the ‘worst case’ value for a given active substance. 

This is closely analogous the way in which a Predicted No-Effect Concentration 

(PNEC) might be calculated in risk assessment (although not necessarily identical due 

to the reduced consideration of factors which might influence localised factors linked 

to exposure through time). From the TATGermany, when generating a worst-case value 

for ‘Aquatic invertebrates’, measurements of acute toxicity are first divided by a factor 

of 100, while measurements of chronic toxicity are only divided by a factor of 10, before 

calculating the minimum that is treated as representative of the active substance going 

forward. 

These risk assessment factors are, as the name implies, taken from the risk 

assessment process of the given regulatory regime (and notably differ between the 

given values for TATUSA and TATGermany) and are intended to ‘represent the uncertainty 

in the representativeness of the considered endpoints for other non-target taxa’ (i.e., 

to ensure that risk assessment decisions are protective of species other than those 

directly used in the underlying measurements). Similar assessment factors are also 

used to distinguish between studies conducted on different model species in the 

TATGermany for the ‘Terrestrial Vertebrates’ and ‘Soil organisms’ sub-components. In 
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the case of ‘Terrestrial Vertebrates’ a further scaling (termed adjustment factors) has 

been applied to studies based on feed vs. those based on body weight (values from 

feed studies are multiplied by either 5 or 10 prior to calculating the ‘worst-case’ value 

depending on whether the measurement is acute or chronic). It is worth noting that 

because the TAT is unitless and best expressed as relative change, in cases where 

assessment factors are defined as constants across all study types, they can in effect 

be ignored (as they will have no impact on the way relative values change over time). 

This kind of scaling of values has a long history in risk assessment around PPPs and 

represents a clear attempt to align the indicator to different risk assessment regimes 

in the US and Germany. The fact that (as documented) the assessment and 

adjustment factors used are inconsistent represents an issue in the international 

comparability of trends in TAT across different nations and potentially is something 

that may need to be taken into consideration if the approach were to be adapted to 

the UK. Given the fundamentally similar underpinnings of EU and UK risk assessment 

protocols it is likely that the approach outlined for the TATGermany could be followed, 

although this is a topic that needs wider consideration if the indicator is to be used for 

comparison at an international level. 

Equations 4.2 and 4.3 summarise the differences between the indicators: 

PLIsingle metric = ∑ Massas  ×  
1

Toxictyas
 (Equation 4.2) 

Where: 

Toxictyas is measured by a specific corresponding methodology 

TATfocal taxonomic group =  ∑ Mass𝑎𝑠 ×
1

 Minimum Toxicty𝑎𝑠 𝑜𝑟 𝑅𝑇𝐿𝑎𝑠

 (Equation 4.3) 

Where: 

Minimum Adjusted Toxictyas or RTLas is measured by ANY regulatory study on the focal group 

 

Hence, the TAT can be thought of as a somewhat more broadly scoped and more 

aggregated approach compared to the PLI, which uses the same information within 

the PLI metrics in combination with any other regulatory studies for that active 

substance on that taxonomic group to try be conservative about what its potential risks 

might be. The chief advantage of this broader scope is that it may (in some cases) 

reveal risk associated with active substances that are not captured within the specific 

metrics used in the PLI, and that the approach overall is more closely aligned to 

existing risk assessment practice. The primary drawback is a loss of transparency in 

linking values back to specific measurements and ambiguity as to the best treatment 

of missing data (see below). Which of these should be prioritised is partially a question 

about the scope and usage of the indicator and as such is difficult to define without 

discussion with policy makers and other key stakeholders. 



57 
 

4.3. Differences in data sources 
While the text above captures the primary differences between the subcomponents of 

the PLI and each of the TAT implementations that currently exist, it is worth noting that 

the most important difference between TATUSA and TATGermany is their choice of 

backend database from which they draw data from regulatory studies. In both cases, 

the choice of backend database has been aligned to the national context for the 

country in which the indicator has been calculated. Thus, the TATUSA prioritises data 

sources held by the US EPA including the ECOTOXicology knowledgebase20 and the 

OPP Pesticide Ecotoxicity Database21 (with the EFSA OpenFoodtox database22 

performing a supporting role as a source of supplementary data for “mammals and 

terrestrial arthropods for which no other relevant study endpoint from US databases 

was available”). By contrast, TATGermany list the EFSA OpenFoodtox database as the 

primary data source, supplemented by the Pesticides Properties DataBase (PPDB) 

and the US EPA Office of Pesticide Programs Pesticide Ecotoxicity Database. Despite 

the apparent overlap it becomes apparent that when reported values for the same set 

of active substances are compared (e.g., between those reported in the published 

TATUSA vs. the PPDB) there can be large discrepancies in the exact value reported. 

Tracing the source of these issues without detailed examination of the source 

databases is challenging and highlights that if the TAT is to be adopted more widely a 

degree of consensus as to the appropriate data sources and how they are prioritised 

would be required. Given the work around the PLI, the PPDB is naturally favoured as 

the primary information source in a UK context (potentially supplemented by the EFSA 

OpenFoodtox database23). However, it is difficult to judge which databases may be 

most suitable in general for an international comparison and it is difficult to comment 

on the potential role that US data sources might be expected to play. Were the TAT to 

be adopted in a UK context it is recommended that the protocols used are modelled 

closely on those outlined for the TATGermany (as this has the greatest alignment to 

regulatory practice in the UK), potentially with a wider role for the PPDB as a way of 

resolving missing data. 

One way in which the difference in information sources manifests between the different 

indicators is in the handling of missing information. From the supporting dataset for 

the TATUSA and the descriptions in the TATGermany, it can be seen that both indicators 

incorporate extensive amounts of missing data for individual active substances, and 

unlike the PLI, the TAT lacks any explicit protocol for how missing values might be 

inferred. Given the additive nature of the overall indicators, the impact of these missing 

data is equivalent to treating these values as 0’s (i.e., for the reported value of the TAT 

change in substances with missing data for a given taxonomic group will have no effect 

on the trend in the overall indicator for that group). As noted in previous PLI reports, 

the assumption that a lack of a reported regulatory value is equivalent to no load being 

generated by the use of a substance is potentially highly flawed (Rainford et al. 2022b), 

and could lead to the overall indicator underrepresenting pressure on the landscape if 

 
20  https://cfpub.epa.gov/ecotox/ 
21  https://ecotox.ipmcenters.org 
22 https://www.efsa.europa.eu/en/data/chemical-hazards-data 
23 https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox   

https://cfpub.epa.gov/ecotox/
https://ecotox.ipmcenters.org/
https://www.efsa.europa.eu/en/data/chemical-hazards-data
https://www.efsa.europa.eu/en/data-report/chemical-hazards-database-openfoodtox
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unaddressed. We, the current authors, remain of the opinion that the treatment of 

missing data is a key concern for the roles which indicators like the TAT and PLI are 

expected to play in policy development. Likewise, the scope of the TAT (i.e., which 

substances contribute to the overall value) is set by occurrence of appropriate data in 

the underlying databases examined, rather than being subject to an explicit protocol 

as outlined in Section 2.3. This potentially means that unless adapted to their explicit 

inclusion the contribution of non-traditional substances such as biopesticides and 

botanicals may not be reflected in the calculated value for the TAT. 

If the TAT were to be adopted in its current form alongside the PLI there is the potential 

to create inconsistency in the PLI approach to missing data which would need to be 

addressed (as the PLI explicitly assigns nonzero values to substances with missing 

data for specific metrics). This is potentially not a serious issue, but it is one which 

warrants discussion in terms of how the indicators are presented. 

4.4. Differences in estimating usage 
The final and least important difference between the TAT implementations and the PLI 

is the source of the estimates of usage. In the TAT (both in the USA and Germany) 

these are based on national sales data aggregated in various ways across different 

active substances. For the PLI, equivalent values are based on estimates of usage 

based on the sample of holdings assessed during the UK PUS. In practice, if the TAT 

were to be adapted to a UK context it is likely it would be based on the PUS data 

(which provides a richer resource than the often highly aggregated sales records) but 

this is something that needs to be considered, e.g., in the treatment of uncertainty. 

There is no easy comparison to be made between information on sales and 

information of usage (given that there are very few cases where both kinds of data 

have been collected over the same period and scope). However, because long term 

storage of PPP by growers appears to be rare it is considered reasonable that usage 

in any given year should correlate reasonably well with sales over that same period in 

the majority of cases (Thomas et al 1999). 

4.5. Summary and Discussion 
In the opinion of the authors, it would be both feasible and relatively straightforward to 

implement something close to the methodology outlined for the TATGermany to the UK 

given the information in the PPDB, EFSA OpenFoodtox database and infrastructure 

created for the PLI. Key decisions that would need to be taken include: a) confirming 

the prioritisation of data sources (PPDB vs. EFSA OpenFoodtox); b) confirming the 

scope of the metrics to be included (the PLI has traditionally not included any metrics 

relating to terrestrial plants which are listed as a sub component in TATGermany); c) 

ensuring agreement on the assessment/adjustment factors and other components of 

how different studies should be compared when generating a ‘worst-case’ value; and 

d) agreeing a protocol for the treatment of missing data and ensuring this is aligned 

and consistent with the approach presented in the PLI. 
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5.0. Reflections and conclusions 

5.1. Overview 
The development of a national or regional indicator that aims to account for both the 

amounts applied and properties of pesticides (with respect to characterising their 

potential environmental impacts) is a challenging undertaking. As described in Section 

1, there are inherent limits on what can be developed, such as not being able to 

account for site-specific factors (e.g., mitigation practices such as the use of buffer 

strips, low-drift nozzles, avoiding headlands, etc.). Due to the significant amount of 

work undertaken in the past developing environmental indicators for different contexts, 

there is also scope for different interpretations of what is meant by a ‘load indicator’. 

Thus, it is important to remember that the PLI is a tool that aims to reflect the amounts 

used of a range of pesticides; their potential to cause harm to end receptors; and their 

propensity to persist, bioaccumulate and be lost via run-off or leaching (i.e., the PLI 

does not quantify harm; it is a relative unitless indicator of potential pressure on the 

environment and does not account for any local factors and actions). 

This section reflects on the strengths, weaknesses, and limitations of the PLI, outlines 

a plan for its future maintenance, and discusses options for future development. In 

addition, the key contributions of Phase 4 to the ongoing delivery of the PLI are 

outlined and the implications for how the indicator might be taken forward as a tool for 

national monitoring and policy setting, including review of the case studies outlined in 

Sections 3 and 4, are discussed. 

5.2. Strengths, weaknesses, and limitations 
A key strength of the PLI is bringing together two complex datasets (the PPDB and 

PUS) into a flexible and dynamic tool that facilitates the visualisation of different 

outputs for different end user needs. In so doing, it potentially provides a powerful way 

to support examination of a range of relevant policy questions related to the impacts 

of pesticide use, as well as ensuring that the user experience and documentation are 

as transparent as possible. 

The examples given in Section 3 demonstrate that the ability to explore change in load 

at the level of individual metrics, and to associate these changes to individual 

pesticides, is central to the utility of the PLI for decision making and policy assessment. 

By being a multi-component indicator with an explicit framework for how different 

pesticides and metrics can be compared across time and space, the PLI represents a 

significant advance in terms of the questions that can be explored around pesticide 

use in the UK, greatly widening the scope of investigation and potential input into policy 

development. 

The limitations of the PLI include: 

• Missing data: The PPDB is one of the most comprehensive datasets for pesticide 
properties currently available. However, while data coverage of the load metrics 
(across the 299 pesticides in the PLI) is generally more than 80 or 90%, some 
metrics (e.g., aquatic plants acute, earthworms chronic, parasitic wasp and 
predatory mites) have lower data coverage (66-70%). Ongoing maintenance of the 
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PPDB will plug some gaps, but inevitably some gaps in data will remain. An 
approach to generate replacement data is therefore still needed. The approach in 
the PLI includes the use of arithmetic mean values by substance type as 
replacements. This potentially means that for some pesticides, some load metrics 
could be over or underestimated. The alternative approach would be to use 
reasonable worst-case values as replacements, thus only overestimating load, but 
it was considered that the use of arithmetic means was a better approach for 
observing trends over time. In Phase 4, the role of missing data has been re-
examined from the perspective of substance inclusion (Section 5.3.1), which 
further makes explicit the way in which missing data will be treated. 

• Unbounded data: Similarly, the use of unbounded data (data which in the PPDB is 
preceded by a greater than or less than sign) for ecotoxicity load metrics could also 
potentially overestimate load. The significance of this is difficult to judge but 
following discussion and consideration of the resourcing costs of the additional 
data collection that would be required to resolve this problem, the most 
parsimonious and transparent approach was to use these values without 
qualification. It is acknowledged that this creates an indicator that is, in some ways, 
over conservative (as most unbounded data will be an overestimate of real toxic 
effect). However, this is the only pragmatic approach that can be applied at the 
scale of the PLI as currently defined. 

• Standardisation: The use of a reference substance to set the maximum or minimum 
values of the standardisation curve (to convert the raw metric to a 0 to 1 load score) 
can result in skewed load scores when the pesticide has extreme values. This has 
been partly addressed for the fate load metrics with the introduction of additional 
reference points based on regulatory interpretation thresholds (Gustafson 1989; 
Hollis 1991; Kerle, Jenkins, and Vogue 1996; Rao and Hornsby 2004; USEPA 
2011). However, for the ecotoxicity load metrics the issue of skewing remains 
relevant. For example, imidacloprid has a LD₅₀ value of 31 mg kg⁻¹ for acute 
ecotoxicity to birds, but this results in a load score 0.1 due to the reference 
substance (oxamyl) having an LD₅₀ value of 3.16 mg kg⁻¹, yet it is interpreted as 
being of high toxicity within the PPDB (AERU, 2022). This effect is notably less 
influential given the adoption of the individual metric focused approach in Phase 4 
(which helps to ensure that all metrics are presented on their own intrinsic scale 
and avoids issues associated with aggregation experienced in the previous version 
of the PLI). The issues of skewing, and the approach taken to standardisation are 
dealt with in more detail in Section 2.6.2 in Rainford et al. (2022b). On balance, it 
is considered that the approach taken, and the different standardisations applied 
to fate and ecotoxicity metrics respectively, represent a good compromise between 
competing views of what the indicator needs to present. As a result, it closely aligns 
to the needs of UK decision makers, who are the key users of the PLI and the 
associated visualisation tool. 

• Estimation of mass applied: For the UK PLI, mass applied is derived from a 
statistical approximation of use. In Denmark, there is a legal obligation for growers 
to submit annual records of pesticide applications, meaning that over 80% of usage 
can be accurately measured based on values from a centralised government 
repository, supplemented where needed by information on sales (Kudsk et al., 
2018). In the UK no such requirement exists, and estimations made from the PUS 
are based on an entirely voluntary sample which, by necessity, is of finite size when 
compared to the full population. Hence, where the Danes can simply express their 
indicator based on the usage data that has been recorded (with relatively little 
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uncertainty on the values), the UK is reliant on the use of a statistical approximation 
which carries several assumptions (see Section 2.6.2 in Rainford et al., 2022b) and 
an intrinsic level of uncertainty. 

Implicit assumptions: The use of the PLI as a national estimate of the average potential 

pressure experienced by UK cropping areas rests on a series of implicit assumptions, 

most of which are inherited from the PUS. These include that: 

• The PUS is a representative stratified sample of relevant holdings within the UK (in 
particular the likelihood that a holding appears in the survey is independent of the 
quantity of pesticide applied on that holding). 

• Records collected on behalf of the PUS are complete with reference to substances 
included in the PLI used on all included holdings. 

• The UK population of total cropping area of holdings (by crop) is known without 
error and accurately reflected in the values reported by the June survey(s). 

• There is at least one record within the associated PUS of all active substances 
used in the UK within the period and cropping area represented by a given survey. 

• All active substances are potentially available to any holding in any region within 
the UK, (with the specific exception of those substances not estimated due to the 
absence of associated crops, for example the absence of sugar beet in Scotland). 

• The relative cropping area of different crops among sampled holdings in the PUS 
within a specified stratum is approximately representative of that of the true 
population of holdings. 

• There is full statistical independence between the use of individual active 
substances with one another on a given holding, and within and between regions. 

• The impact of all active substances on load are cumulative and additive. Also 
covered by this assumption is that the load contributed by a given active substance 
across multiple real applications is assumed to be proportional to the overall total 
mass applied per unit area over the entire period (regardless of the number of true 
applications represented). 

• The ‘average’ load experienced by areas covered by a survey (or selected subset) 
is proportional to that generated by the ‘average’ mixture of in scope active 
substances applied across that area over the entirety of the associated growing 
season (see Section 2.3; note no real field is likely to experience the exact mixture 
of substances estimated and applications are unlikely to be spread evenly over the 
course of the growing season). 

Several of these assumptions are challenging to verify or known to be 

oversimplifications of more complex processes, most notably the assumption that use 

of specific actives is independent and that the effect of these actives is cumulative and 

additive within the context of the survey period. However, they reflect simplifications 

needed to make the estimation of the indicator computationally tractable, as well as to 

transparently reflect the current state of knowledge regarding PPP usage. The 

decision to tie estimated load to the average mixture of substances applied is imposed 

by the structure of the PUS, and the difficulty of using a limited sample of holdings to 

infer tank mixtures and the number/timing of applications made on the unsampled 

holdings (i.e., the real localised application rates experienced by the landscape). The 

consequent reliance on averages is one of the principal reasons why the PLI is most 

informative when expressed in terms of relative change between a pair of years, as 

there is a reasonable assumption of comparability in agronomic practice through time 
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(see Section 3.2). While it is conceptually possible to resolve some of these issues by 

‘scoring’ individual applications made on real holdings prior to estimating national 

trends, to do so undermines the ability of the indicator to clearly visualise the 

contribution of individual active substances to total load24, and thus would limit the 

utility of the PLI as a national policy tool. Again, it must be emphasised that the PLI is 

intended as a unitless index of potential pressure generated by PPP used in the 

environment based on applications and should not be interpreted as a measurement 

of the actual outcomes of PPP use. 

5.3. Developments made in Phase 4 (2022-2023) 

5.3.1 The development of a substance inclusion protocol 
One of the key enhancements made to the PLI in Phase 4 is the development of an 

explicit protocol for the assessment of which substances are in scope for the indicator. 

This work was motivated by the desire to expand the scope of the PLI to include 

biopesticides (that are becoming an increasingly important part of pest and disease 

control in UK agriculture) but evolved into more general guidelines aimed at a) 

ensuring transparency and consistency in the way in which the PLI is presented, and 

b) making it easier to expand the indicator when calculated in a novel context (whether 

that is forward looking in the incorporation of additional future surveys or backwards 

looking based on historical data25). A strength of the PLI, relative to other frameworks 

such as the TAT, is its focus on specific identifiable measurements as a basis for 

metrics. This facilitates like for like comparison of different active substances and a 

conservative approach to missing data (in terms of not underestimating potential load 

generated; see Section 2.2). A risk of this implementation is the potential to undermine 

confidence in the indicator by over-reliance on inferred values for active substances 

with missing data (see Section 2.3; note in practice the contributions of substances 

with inferred missing data to any given metric are likely to be very small in all but the 

most extreme cases). By having an explicit protocol that determines if a given 

substance is included in the PLI, the aim is to circumvent this concern and so improve 

user confidence in the trends identified by ensuring consistency in the scope of the 

indicator across time and space. The revised protocol also has a role in streamlining 

the process of calculating the indicator, making it less dependent on expert opinion 

and so easier to maintain going forward. 

5.3.2 The removal of the aggregation step from the PLI 
One of the most controversial and far-reaching changes made to the PLI during Phase 

4 was the transition from presentation of the PLI as a single headline value (calculated 

by aggregating the values of underlying metrics, as in the Danish implementation; 

Lewis et al. 2021) to an array of 20 metrics each representing a single identifiable 

measurement (usually made during lower tier authorisation studies). As outlined in 

Section 2.6 and Annex 3, aggregation has historically been the most problematic step 

within the PLI calculation due to the lack of objectivity in how the ‘aggregation 

 
24As the contribution of active substance would no longer be additive at the national scale (see Section 
3.3) 
25 The PLI is potentially compatible with any PUS survey which follows a consistent data structure, of 
which the earliest was in 1997.  
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constants’ involved are defined. The resulting lack of transparency in the overall 

calculation has been consistently highlighted as a concern and a potential block to 

widespread adoption of the PLI as a policy support tool. 

The previous case for a headline value rested on the analogy between the UK PLI and 

its Danish precursor (which relies on a single headline value to support its role in 

pesticide taxation), as well as a potential role for the headline value in target setting 

and proving an overall focus to monitoring efforts. It has become increasingly clear 

from discussion with Defra and others, the potential role of the PLI in UK policy 

decisions is very distinct from the Danish case. The obscuring effect that aggregation 

can have on identification of trade-offs from policy intervention was therefore judged 

as inappropriate for a UK context (Annex 3). As a result, a decision was made to 

remove the previous aggregation step in favour of a more concise reporting of the 

underlying data and directing the user towards key information (see example in 

Section 3.3). The hope is that by doing so the resulting calculation will be more 

transparent and clearly linked to the underlying data. The previous role of sub-

aggregations, such as the overall load on a given taxonomic group has also been 

removed from the PLI, as it relied on the same subjective determination of aggregation 

constants as the overall headline value. 

Looking ahead, it is expected that the integration of the TAT within the PLI framework 

(see Section 5.3.4) could potentially solve the issue of multiple metrics for a single 

taxonomic group (at least for ecotoxicological metrics) by providing a revised structure 

for understanding how multiple measurements might be combined in processing. In 

practice, the key change here (in addition to new data resources; see below) is a shift 

away from weighted summation of underlying metrics (with the associated subjectivity 

in selection of aggregation constants) towards an approach which takes the regulatory 

data from multiple sources and selects a ‘worst-case’ value (typically the minimum 

concentration associated with any toxic effect) as reflective for the purposes of higher 

level comparison between substances (i.e., for example, the TAT for an active 

substance with respect to pollinators might use whichever is the lowest value of the 

metrics Bees contact LD₅₀ and Bees oral LD₅₀ metrics plus any other measurements 

that are judged to be within scope). This has the advantage of being more in line with 

the underlying logic of the risk assessment process for pesticides, which uses the 

‘worst-case’ value regardless of origin (under the precautionary principle)26 and helps 

to resolve some of the perceived weaknesses in the PLI with reference to missing 

data. How this will work precisely is still to be determined (see Section 5.3.4) but is 

expected to integrate with existing visualisations, as presented in the developed tool 

and Section 3. 

5.3.3. Development of the visualisation tool to implement the revisions 

and to refine the tool to better meet the needs of Defra 
The fundamentals for the visualisation tool associated with the PLI were created in 

Phase 3 and have since been refined and adjusted as new user requirements have 

come to light. The primary function of changes made during Phase 4 was the removal 

 
26 https://www.hse.gov.uk/pesticides/pesticides-registration/index.htm  

https://www.hse.gov.uk/pesticides/pesticides-registration/index.htm
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of the aggregation step (see above) and the consequent need for a reorganisation of 

the tool to highlight relative change in individual metrics and support threshold setting 

(see Section 5.3.2). New visuals were developed (as showcased in Section 3) and 

some existing panels were restructured to fit with the revised paradigm. Alongside the 

increased focus on target thresholds and the removal of visualisations that directly 

related to aggregation, the major new feature added in Phase 4 is the panel entitled 

‘View importance of actives’, which is intended as a tool to help rank different active 

substances based on their percentage contribution (including rates of application) 

across multiple metrics, and so provide an overview and prioritisation of which active 

substances might be the target of policy interventions. 

The PLI is intended as a tool to help inform the user about the potential impacts of 

pesticide applications made in a particular context and time. It is not directly a decision 

support platform for policy intervention. In particular, one of the major gaps in the tool 

is knowledge of which active substances are potential alternatives for the same pest 

issue (based on their efficacy, availability etc), which can be an important component 

of understanding the potential side effects of product withdrawal. This was briefly 

investigated in Phase 4 but ultimately failed to proceed due to the absence of officially 

recognised sources from which such information could be routinely collected. The 

related activity of developing counterfactuals or alternative scenarios for usage (to 

judge the impact of e.g., withdrawal of authorisation from an active substance on the 

trend in the indicator) was likewise deemed over-reliant on assumptions and expert 

judgement which could not be easily validated in the majority of cases. While this 

remains an area of interest for the development of PLI, discussion with relevant policy 

teams has so far failed to identify a way in which this could practically be implemented 

and, as a result, it was deprioritised as a part of Phase 4. 

Alongside the structural changes to the visualisation tool there have also been several 

cosmetic changes made to various visualisations to improve readability and 

signposting to key datasets. The addition of a data download option for authorised 

users also allows the tool to better integrate into existing reporting around PPP usage 

further cementing the role of the PLI as a tool for ongoing reporting (see Section 5.4). 

The backend for the visualisation tool has been streamlined to work with the revised 

protocol for substance inclusion and appropriate labelling of substances.This is 

intended to reduce dependence on experts when calculating the PLI and to improve 

consistency in its ongoing delivery. One of the priorities for Phase 4 was to ensure that 

the protocol for calculating the PLI was properly documented to help support the 

transition from a research tool to deployed system. From 2023 onwards the PLI is 

anticipated to be delivered on an ongoing basis to internal Defra stakeholders and 

improved documentation (for both the tool and the associated process) is seen as 

critical in supporting this transition and for providing quality assurance. The delivery 

team will be working closely with Defra to ensure that new information is integrated 

correctly into the tool and backend data files and will review, on an ongoing basis, any 

perceived issues in the revised data delivery protocol. 

The development of the visualization tool for the PLI is an ongoing process that will 

adapt to changing policy and stakeholder needs. While the current version of the tool 
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is designed for an internal Defra policy audience, some of the features may (over the 

longer term) be made available to other key stakeholders in the pesticide policy space. 

The PLI is anticipated as becoming increasingly integrated into the national reporting 

framework of indicators relating to PPP usage in the UK and will hopefully become an 

important source of information for the changes experienced by the UK landscape with 

reference to this key area of policy concern (see Section 5.4). 

5.3.4 Comparison of the PLI to Total Applied Toxicity 
The TAT (Schulz et al. 2021) is a relatively new indicator that has recently gained 

prominence as a potential international standard for how the relative potential impacts 

of PPP are explored between countries (for example it is cited as such in recent 

discussion around the Convention on Biological Diversity; see Open-ended working 

group on the post-2020 global biodiversity framework 2022). As outlined in Section 4, 

the TAT is conceptually similar to the PLI with significant overlap in the infrastructure 

required to calculate both values. It therefore makes sense to integrate these into a 

common pipeline (for example, both are dependent on having national and regional 

estimates of the total mass of different active substances applied). As also discussed 

in Section 4, the two indicators differ in their approach to combining different sources 

of regulatory data and the implications this has for their calculation. It is likely that any 

UK implementation of the TAT will most closely resemble what has been termed 

TATGermany, as the UK regulatory and risk assessment regime remains (at present) 

closely aligned to the process used by EU member states (although this may change 

depending on the trajectory of international discussions around baselining and data 

usage). Both existing TAT approaches take a different view to missing data to that 

implemented in the PLI (Section 4.3) and this may need to be harmonised if the two 

indicators are to be presented together. As noted above (Section 4.5), the calculation 

of the TAT is considered feasible in a UK context, but actual implementation lay 

outside the scope of resources available in Phase 4. Integration of the TAT or a similar 

indicator alongside the visualizations developed for the PLI is a potential option for 

future development. 

Alongside integration of the TAT (possibly over a slightly longer term), there is growing 

interest in the alignment of the PLI to the results of routine PPP monitoring of surface 

water conducted by the Environment Agency. Historically, the structure of the PUS, as 

randomly sampled representative holdings, has inhibited widespread discussion of the 

relationship between what is applied to crops and what is detected in watercourses in 

a UK context. However, assuming suitable datasets can be identified, the PLI may 

have a role to play in the exploration of these relationships, which would also provide 

a useful benchmark of the relevance of various PLI metrics to environmental 

outcomes. This work remains at early stage of discussion but is one of the more 

promising avenues for future development of indicators in this policy area and is likely 

to be explored in more detail in a subsequent phase of work. 

5.4. Conclusions 
The goal of developing the PLI was to provide an exploratory tool that facilitates access 

to improved information about the potential environmental impacts associated with 

pesticide use and to provide a tool for exploring relative tends associated with the 
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changing mixture of active substances applied. When compared to previous 

monitoring efforts, which have largely been dependent on the total mass of PPP 

applied, the PLI has been highly successful in adding a greater resolution and ‘colour’ 

to the discussion around the potential effects of PPP usage and the potential impacts 

of policy intervention (Section 3). As the UK continues to develop its pesticide policy 

post-EU exit, the role and relevance of tools like PLI will increase in importance as 

indicators of progress. A key objective of Phase 4 was to further enhance this role by: 

a) Improving the transparency with which the indicator is calculated both in terms of 
the scope of substances considered and documenting the process by which the 
indicator is calculated on an ongoing basis. 

b) Improving the linkage between the indicator and the underlying datasets by 
removing the previously problematic aggregation step in the calculation. 

c) Improving the utility of the indicator as a communication tool via redesign of the 
visualisation tool to be more aligned with the needs of Defra policy. 

d) Considering how the PLI might be used alongside other related indicators such as 
the TAT, and the practical issues this might present in a UK context. 

All these elements are intended to work towards the wider goal of providing decision 

makers in the UK with access to transparent and high-quality information around 

pesticide load that can identify where progress has been made and where more 

targeted policy intervention may be required. The revised visualisation tool, with its 

emphasis on relative trends for different metrics through time is intended, first and 

foremost, as a platform for internal Defra users to investigate the impact of historic 

change in policy to help improve future decision making (see examples in Section 3). 

The reliance of the PLI on the PUS and time lags involved in data collection mean that 

the tool will never (at least in current form) be a real time monitoring system for UK 

agriculture. Its primary function will, therefore, always be mainly in linking post hoc 

analysis to inform future decision making. 

As primarily a monitoring tool it is critical that users trust in the consistency of the 

calculation and underlying data. This is the main motivation behind the documentation 

of the explicit protocol for how substances are included (Section 2.3) and the steps 

involved in calculating the indicator for a new set of survey data (Rainford et al 2022b). 

This additional documentation, which emphasises the link between load values and 

the underlying data, aims to support users in communicating the indicator and 

providing confidence in the presentation of documented trends. The structure of the 

PLI makes it relatively straight forward for a user to drill down into effects at an 

increasingly fine scale, including the impact of an individual active substance which 

may be the target of future policy intervention (see Section 3.3). The goal in developing 

the visualisation tool is to guide the user through various ways of viewing the data that 

allow increasing focus on those trends that are most important (Section 3.2). 

Phase 4 is intended to mark the transition between the PLI as a research tool, that is 

periodically redefined based on the shifting needs of UK policy, to a stable deployed 

system that will be made accessible to a wider array of internal Defra policy actors. 

While work on developing the PLI will continue, for example via the integration of the 

TAT or similar metrics, it is expected that the core system and visualisation tool will 

continue to be supported on an ongoing basis via the inclusion of further PUS surveys. 



67 
 

With the upcoming publication of the UK’s revised National Action Plan for pesticides 

this increased role as a potential national indicator becomes timely (Defra 2020), 

although the details of how the PLI will integrate into the revised NAP have not yet 

been fully agreed at the time of writing (March 2023). The PLI has, through its multiple 

phases of development, undergone a substantial realignment from an initial 

reimplementation of the Danish system (Lewis et al., 2021) to something that is much 

more targeted and aligned to the needs of UK policy (see above and Rainford et al. 

2022b). Through this redevelopment it is hoped that users have come to understand 

the role and limitations of the indicator, so that it can be used as an effective tool in 

future pesticide policy development and a significant advance for exploring trends in 

environmental pressures associated with pesticide use in the UK at a national and 

regional scale. 

The need for post authorisation monitoring of PPP usage in the UK is an area of 

increasing concern for policy, for example Milner and Boyd (2017) and Walker et al. 

(2021), and part of this process is to get a better grasp on what PPP are applied and 

the implications for natural systems. The PLI thus fills an important gap in the current 

UK reporting system with respect to pesticide usage and it is likely to be a useful 

component of decision making going forwards. While by no means a perfect indicator, 

in particular due to limitations arising from the lack of universal and spatially explicit 

means of reporting applications made in the UK, the PLI is nonetheless a substantial 

improvement over what has come before and is now well suited to the monitoring 

needs of a UK policy audience. While work on the indicator will continue, particularly 

with the integration of the TAT, the core processes of the PLI are now established to 

the point where the indicator is ready for routine operational deployment as a part of 

a wider suite of indicators that reflect different elements of the socio-economic context 

and decision-making processes around PPP application. 
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Annex 1: Protocol for addressing missing or 
unbounded data 

Step Description 

1 Load the raw data from the PPDB. Where data are missing for a parameter for a 
substance, if that substance has related compounds, these are used to populate the 
data for that parameter (if it exists). Some pesticides in the PUS contain a mix of 
different compounds and/or may be a variant (such as salt), but this is not known 
due to commercial confidentiality. In the absence of the specific compound being 
listed in the PUS the following approach has been developed. Where data for the 
PUS substance exists in the PPDB, these data are used. If data for that substance 
are not available, data for related compounds are used (if they exist) (e.g., if data do 
not exist for a parameter for chlormequat but they do exist for chlormequat chloride 
the latter is used, and vice versa). For glyphosate (specifically), the data used are 
an average for the 8 compounds (incl. salts) of glyphosate that exist. 

2 Determine which DT₅₀ and Koc (or Kfoc) values to use for the groundwater mobility 
metric: 

• If DT₅₀ field is available use this, else use DT₅₀ lab if available. 

• If Kfoc is available, use this, else use Koc if available. 

3 Calculate GUS where DT₅₀ and Koc (or Kfoc) are available from the process above. 

4 For the BCF, where this is not available within the PPDB it is calculated using Log 
Pow (if available) (see Equations 2.3 and 2.4 above). 

5 If the value is unbounded, use the value stated for the substance ignoring the 
qualifier (following a precautionary principal approach). 

6 Where data are missing (after the steps above), these are determined by calculating 
the arithmetic mean value across the data that does exist for each parameter for all 
substances, herbicides, insecticides, and fungicides (a mean value cannot be 
calculated for all the PUS substance types due to the limited number of substances 
in some groups). The respective arithmetic mean values are used to plug gaps in 
the following: 

• DT₅₀ field: to plug gaps when field and lab values are missing, for the 

persistence metric. 

• BCF: to plug gaps when BCF and logP are missing. 

• GUS: to plug gaps when DT₅₀ and/or Koc (or Kfoc) are not available to calculate 

GUS. 

• Kfoc: to plug gaps when Koc and Kfoc are missing, for the surface water mobility 

metric. 

• All the ecotoxicity metrics. 

• For metabolites, for all the above, when the parent substance has worse 

values than the arithmetic mean (for the parent substance type) then the 

parent value is used. 

7 Insert the arithmetic mean values for missing data for each type of substance in the 
PUS following Table 2.7. 
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Annex 2: Substances excluded from the scope of the 
PLI by the revised data inclusion protocol (March 
2023) 
Substance name PUS Type Substance Type Exclude 

(E,E)-8,10-dodecadien-1-ol/n-tetradecyl acetate/Z-11 

tetradecenyl acetate 

Attractant Single chemical Y 

Acequinocyl Insecticide Single chemical Y 

Ampelomyces quisqualis strain AQ 10 Fungicide Micro-organism Y 

Aureobasidium pullulans Fungicide Micro-organism Y 

Bacillus amyloliquefaciens strain MBI 600 Fungicide Micro-organism Y 

Bacillus amyloliquefaciens subsp. plantarum strain D747 Fungicide Micro-organism Y 

Bacillus subtilis Fungicide Micro-organism Y 

Beauveria bassiana ATCC-74040 Insecticide Micro-organism Y 

Beauveria bassiana GHA Insecticide Micro-organism Y 

Cerevisane (saccharomyces cerevisiae strain LAS 117) Fungicide Single chemical Y 

Chitosan hydrochloride Fungicide Single chemical Y 

Coniothyrium minitans Fungicide Micro-organism Y 

COS-OGA Fungicide Single chemical Y 

Dodecylphenol ethoxylate Insecticide Single chemical Y 

Fatty acids Insecticide Mixture: no dominant 

substance 

Y 

Fatty acids C7-C20 Insecticide Mixture: no dominant 

substance 

Y 

Fenhexamid Fungicide Single chemical Y 

Fenoxaprop-P-ethyl Herbicide Single chemical Y 

Gibberellic acid Growth regulator Single chemical Y 

Gibberellins Growth regulator Single chemical Y 

Gliocladium catenulatum strain J1446 Fungicide Micro-organism Y 

Kresoxim-methyl Fungicide Single chemical Y 

Lecanicillium muscarium strain Ve6 Insecticide Micro-organism Y 

Metarhizium anisopliae Fungicide Micro-organism Y 

Peroxyacetic acid Disinfectant Inorganic compound Y 

Pinoxaden Herbicide Single chemical Y 

Potassium phosphonate (phosphite) Fungicide Inorganic compound Y 

Sodium chloride Herbicide Inorganic compound Y 

Spirotetramat Insecticide Single chemical Y 

Sugar Attractant Single chemical Y 

Trichoderma asperellum strain T34 Fungicide Micro-organism Y 

Trichoderma harzianum Fungicide Micro-organism Y 

Urea Fungicide Inorganic compound Y 
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Annex 3: The challenges of aggregation 
Aggregation of environmental metrics can be problematic, as doing so inherently tends 

to result in a loss of detail and has implications for interpretation and communication. 

Both the Danish precursor of the PLI and previous iterations of the UK indicator to date 

(see Rainford et al., 2022) have included a headline aggregated value which was 

intended to reflect the overall trend in load across the various subcomponents and 

metrics which make up the indicator. The structure of this aggregation and how to best 

reflect the needs and requirements of decision makers has been an ongoing source 

on contention throughout the development of the PLI.  

The central challenge for aggregation is that the fundamental measurements which 

underly different metrics are not mutually consistent (see Tables 2.1 and 2.2) and thus 

any attempt to combine them will always involve some degree of interpretation and 

subjectivity. The previous conceptions of the PLI suffer particularly acutely from this 

issue as they were conceived as ‘additive’ in how they combined metrics, i.e. the value 

of the headline aggregated value presented for any given active substance is 

expressed as the (weighted) sum of the values calculated for each of the contributing 

metrics. Such a structure is very appealing for an indicator like the PLI as it naturally 

reflects the potential independence of different components of load (e.g. load 

generated by fate metrics can vary independent from load generated by ecotoxicity), 

however in the context of pesticides (which by their very nature tend to be targeted at 

a specific biological group) it also has the potential create problems of scaling and 

differentiating between substances. For example, it might be the case that substance 

A might be highly toxic to birds but low toxicity to bees, while substance B may be the 

opposite, and yet under an additive framework both might achieve a similar 

intermediate overall score. This issue is further complicated by the fact that the 

absolute quantities of different active substances used in UK vary across five orders 

of magnitude and that many of the substances of greatest policy concern are used in 

small absolute quantities. The issue of how to combine different load metrics thus has 

major consequences for how the indicator is to be interpreted and used in policy and 

requires careful consideration and engagement with stakeholders and decision 

makers.  

Within the additive framework the key decisions in calculating the final, value relate to 

the potential use of ‘aggregation constants’. An aggregation constant is defined as a 

fixed value associated with a given metric which is used to scale the standardised 

values for that metric when calculating higher level headline values. There is no truly 

‘objective’ way in which aggregation constants can be defined from a scientific 

perspective, as they inherently carry subjective value judgements about the relative 

‘importance’ of different load metrics and the implicit goal of presenting an aggregated 

value (which will tend to vary based on the purpose for which the indicator is being 

calculated). One of the consistent challenges with the PLI has been to identify 

appropriate aggregation constants that are acceptable to a wide array of stakeholders 

within government with different views on how the indicator might be used in practice. 

What this has mean in practice has been that throughout Phases 1-3 the definitions 

and basis of such constants has changed repeatedly resulting in confusion around 

how the indicator is to be used. To summarise: 
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• The earliest implementations of the PLI to the UK (Lewis et al 2020) used 
aggregation constants that were identical to those used by the Danish 
implementation. This had the advantage of directly tying the UK PLI to its Danish 
equivalent allowing for a like for like comparison of trends in the overall headline 
value. However, in the documentation provided by the Danish implementation 
there is no explicit basis for how these values were derived or guidance on how 
they might be modified if additional metrics were included. As the scope of the UK 
version of the PLI moved away from its Danish predecessor it was necessary to 
abandon direct alignment in favour a UK specific alternative.  

• The second major phase of development defined aggregation constants as the 
maximum values that can be obtained on any given metric (or equivalent the value 
that is assigned to a 1kg application of the reference substance for each metric). 
This approach adapted the same approach to calculation used in the Danish 
implementation but tailored it to a UK focus. Originally these values were to be set 
by consensus of the stakeholders (see Rainford et al 2021) however in practice a 
‘policy neutral’ compromise was established which formed the basis of values used 
during Phases 2 and 3 and which are referenced as the ‘fixed’ approach in Rainford 
et al. (2022). The key drawbacks to this approach are related to the fact that by 
setting the aggregation constant as the maximum value for a metric and given that 
the majority of metrics have highly skewed distributions active substances, the 
average value of a ‘typical’ substance varied widely between different metrics.  This 
means that when they are summed the resulting headline indicator tended to be 
dominated by a small fraction of specific metrics which had less skewed distribution 
(particularly those describing Fate, see Rainford et al., 2022). Hence the headline 
indicator thus defined which was insensitive to changes in relative toxicity (which 
show large variation between difference substances) but strongly tied to fate 
metrics and the relative mass of active substance applied. In turn this resulted in a 
headline value which closely resembled the total mass applied significantly 
undermining the power of the PLI as an independent tool for policy determination. 

All subsequent experiments with the redefinition of aggregation constants during 

Phases 3 and 4 were an attempt to resolve these issues with the maximum value 

approach. The first attempts were to set all aggregation constants to a fixed value (e.g. 

1). This was insufficient to solve the issues around the dominance of metrics with a 

narrow intrinsic range and produced results that were nearly indistinguishable from 

those of the ‘policy neutral’ maximum values. Another attempt defined the aggregation 

constants such that as opposed to being a ‘score’ for the worse case substance, they 

were instead interpreted as the ‘score’ of the ‘median’ substance (i.e. they were placed 

in the centre of the overall distribution rather than at the extremes). This change has 

the effect of inverting the relative impact of skew on how different metrics contribute 

to the headline value (i.e., under this approach, the most skewed metrics, which tend 

to be derived from ecotoxicity have the largest impact on the overall value). This 

fundamental re-orientates the indicator to be in terms of sensitivity to change in relative 

toxicity but was perceived as harder to communicate and subject to comparable 

’biases’ as the maximum score approach. Finally, an attempt was made which defined 

the value of aggregation constants based on an external standard, e.g. to set the 

values of all constants such that when calculated over the in 2010 survey of all arable 

crops each metric made up some predefined percentage of the total (referred to as 

the variable approach in Rainford et al., 2022). While this last approach is (by design) 
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perhaps the most intuitively balanced way to construct a headline value it was found 

to be too counterintuitive and open to misinterpretation by stakeholders and was 

ultimately withdrawn. 

 


