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Preface

The communication systems and networks landscape is rapidly transforming due to the
widespread use of mobile devices and growing data transmission demands. The ubiquity of mobile
devices, coupled with the popularity of their applications, has led to unprecedented data traffic
levels, presenting substantial challenges in managing infrastructure complexity and optimizing user
experiences.

In addressing these challenges, machine learning emerges as a promising solution. The
incorporation of machine learning, driven by powerful computing platforms, is posited to
introduce innovative problem-solving approaches in dynamic and heterogeneous communication
environments. This integration envisions making significant contributions to intelligent system
management and optimization through predictive capabilities and data-driven decision making.

This Topic endeavours to explore the intersection of machine learning and communication
research, presenting a collection of state-of-the-art contributions which underscore the potential
of machine learning as a catalyst for adaptive and intelligent communication. The manuscripts
presented in this Topic have undergone a rigorous peer-review process and have been selected
for publication in the Topic “Machine Learning in Communication Systems and Networks” by
various MDPI journals, including Applied Sciences, Sensors, Electronics, Photonics, Journal of Sensor and
Actuator Networks, and Telecom. Comprising twenty-one articles, including an editorial and twenty
research papers, this Topic offers insights into current challenges and innovative solution approaches

involving machine learning adaptation in mobile communication and networks.

Yichuang Sun, Haeyoung Lee, and Oluyomi Simpson
Editors
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1. Introduction

The landscape of communication environments is undergoing a revolutionary trans-
formation, driven by the relentless evolution of technology and the growing demands of
an interconnected world. The proliferation of mobile devices, the rise of IoT applications,
and the deployment of 5G networks have ushered in an era where communication envi-
ronments are not only increasingly complex but also highly dynamic. With the capability
of 5G networks to support various forms of vertical integration, the landscape is poised
for diverse applications and enhanced connectivity across industries [1]. Furthermore,
even for 6G networks, the provision of ubiquitous and 3D coverage in the form of an
integrated space—air-ground-sea network is envisioned [2]. In this rapidly evolving tech-
nological ecosystem, the need for intelligent solutions to adaptively manage the intricacies
of communication systems is more pressing than ever [3]. As we stand on the cusp of
these transformative changes, the integration of machine learning techniques emerges
as a pivotal catalyst poised to revolutionize the way we address challenges and harness
opportunities in communication systems and networks [4].

Traditionally, communication systems heavily relied on model-based approaches,
wherein various components were meticulously modeled based on data analysis or mea-
surement data. While these model-based approaches have been successful, they face
challenges in accurately modeling dynamic and complex communication environments [5].
Machine learning (ML), capable of extracting characteristics and identifying hidden rela-
tionships, becomes a powerful tool in scenarios where traditional designs may falter due to
model mismatches [6]. Moreover, the data-driven essence of ML enables inference about
network traffic, service requirements, user behavior, and dynamic channels, leading to
improved resource provisioning and network operation [3]. ML, with its real-time adapt-
ability and ability to extract insights from vast datasets, promises to reshape communication.
The increasing volume and diversity of data in dynamic communication systems demand
innovative approaches for efficient operation and optimal performance. From predicting
environmental or system status changes to optimizing resource allocation and addressing
security threats [7], ML spans applications like intelligent traffic management [8] and
automatic reconfiguration in communication infrastructure [9,10].

In this editorial, we explore the intersection of ML and communication, unraveling
how these technologies synergize to meet current challenges and leverage opportunities in
our highly connected world. In the subsequent section, we provide concise summaries of
key points covered in the twenty articles collected in this Special Issue.

2. An Overview of Published Articles

In the dynamic realm of communication systems, achieving precise prediction and
estimation of communication channels is paramount for optimizing overall system per-
formance. The following five articles concentrate on leveraging ML techniques to ef-
fectively address the challenges of channel estimation. In the research conducted by
Gaballa et al. (Contribution 1), the primary focus lies in predicting channel coefficients for
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users in the Non-Orthogonal Multiple Access (NOMA) system. Within the NOMA system,
these coefficients assume a critical role in optimizing power distribution at the base station
(BS) and streamlining the retrieval of desired data at the user end. The authors employ a
deep Q-network (DQN) approach for the BS, enabling it to learn an optimal channel predic-
tion policy. This policy is designed to maximize the sum rates for all users in the NOMA
network, leveraging pertinent information such as user states, user distance, channel path
loss, and power distribution. Similarly, the study by Gaballa et al. (Contribution 2) delves
into channel estimation in power domain NOMA systems. In this investigation, the predic-
tion of channel status information (CSI) is coupled with the determination of power factors
for each user, achieved through a Q-learning-based reinforcement learning (RL) approach.
In the study by Camana et al. (Contribution 3), the dynamic update of a radio environment
map (REM) is explored through the prediction of received signal strength indicator (RSSI)
values. The REM proves invaluable in detecting shadow areas with potential for improved
network planning and accurate indoor localization. In the study, devices exhibiting similar
signal strengths are grouped into clusters using the K-means algorithm, and the dynamic
REM update is then orchestrated through a random forest (RF)-based ML algorithm. This
model predicts RSSI values for each location, incorporating historical measurement data,
including user location and RSSI values. The ML model is designed for real-time updates,
facilitated by data collected from a mobile robot, ensuring a seamless and continuous
adaptation of the REM, effectively responding to alternations in the wireless environment.
The study by Phaiboon et al. (Contribution 4) focuses on path loss prediction within smart
agriculture sensor networks, aiming to provide effective coverage areas and system ca-
pacity. For challenging environments like plantations, where signal paths are obstructed
by trees and vegetation, the authors introduce an adaptive neuro-fuzzy inference system
(ANFIS) that combines fuzzy logic and neural networks to learn path loss. Utilizing path
loss measurement data and incorporating information such as sensor node distances and
antenna heights, the ANFIS model provides an efficient means of estimating path loss.
In the article by Ribouh et al. (Contribution 5), the focus is on identifying the distinctive
characteristics of the CSI of received signals in vehicular communication by employing
convolutional neural network (CNN)-based learning. The study aims to develop a model
capable of discerning a vehicles” surroundings among five categories: rural line-of-sight
(LoS), urban LoS, urban nLoS (non-LoS), highway LoS, and highway nLoS. The ultimate
goal of this environment detection model is to empower autonomous vehicles to make
informed speed limit decisions based on their surroundings.

ML is expected to play an important role in the demodulation process of communi-
cation systems since it can adaptively learn and extract complex patterns from received
signals, particularly in dynamic and challenging environments. The following four articles
are dedicated to the integration of ML into the demodulation process. In the investigation
by Harper et al. (Contribution 6), automatic modulation classification (AMC) is used to
estimate the modulation scheme employed by the transmitter. AMC proves invaluable in
predicting the module schemes of a transmit signal when they are unknown. The authors
examine the impact of a variety of architecture changes and propose the design of neural
network (NN)-based AMC models. The scenario considered in the study by Zhang et al.
(Contribution 7) involves decoding low-density parity check (LDPC) codes. LDPC codes,
prevalent in modern communication systems on account of their extended code lengths
and versatile combinations, present challenges in decoding and coding blind recognition.
To address these challenges, the authors propose an architecture for coding the blind
recognition of LDPC codes using deep learning (DL), incorporating a cascade network
structure with denoising and blind recognition networks. This innovative approach en-
hances encoding performance even under poor signal-to-noise ratio (SNR) conditions. In
Lamilla et al.’s study (Contribution 8), the attention shifts to a coherent optical encoding
system. The authors introduce a robust coding algorithm based on laser intensity profile
recognition, utilizing support vector machine (SVM)-based ML for data symbol classifica-
tion and recognition. This strategy proves effective in mitigating the signal noise added
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to communication channels. While the above three articles focus on the decoding accu-
racy performance, the paper by Cho et al. (Contribution 9) considers how to improve the
decoding speed for short-length Reed—Muller (RM) codes. Acknowledging the simplistic
structure of RM codes and their potential use as control channels in wireless communi-
cation, the authors employ a revised auto-encoder scheme, a supervised ML technique,
to design an ML-based decoding scheme for faster decoding.

Intelligent resource allocation, empowered by ML, is capable of taking on complex
challenges related to the efficiency and adaptability of communication systems and net-
works. The integration of ML not only ensures the effective utilization of individual
resource domains but also facilitates the joint optimization of multiple resource alloca-
tions, elevating decision-making processes and overall system performance. The following
articles explore ML applications for intelligent resource allocation. The investigation by
Pu et al. (Contribution 10) focuses on optimal transmission channel selection in jamming
environments. Employing wideband spectrum sensing and Q-learning, the authors design
transmitters to dynamically adapt to jamming issues by learning effective channel selection
strategies, resulting in high success rates. In Ding et al.’s study (Contribution 11), they
employ ML in the routing optimization of low-Earth-orbit (LEO) constellation networks.
Satellite nodes, functioning as learning agents, dynamically adapt to changes in topol-
ogy and channel conditions. Through a collaborative multi-agent reinforcement learning
(MARL) framework, satellites share their learning experiences using Q-tables. The pro-
posed three-step routing approach involves neighbor node discovery, followed by offline
and online training to ensure that satellites swiftly acquire network link status and adjust
their routing strategies accordingly. In the article by Zhang et al. (Contribution 12), the au-
thors delve into the joint optimization of bandwidth and power allocation using multi-agent
learning. The proposed approach targets to maximize the system throughput by addressing
co-channel interference and ensuring adherence to quality of service (QoS) constraints.
Within a large-scale uplink system, individual users act as learning agents, each striving
for an optimal strategy in bandwidth and power allocation for their uplink transmission.
The collaborative learning process involves sharing users’ past training experiences, lead-
ing to the centralized training of all agents aligned with a common objective, maximizing
the system’s throughput. In Liu et al.’s work (Contribution 13), aerial edge computing
networks, comprising low-altitude aerial base stations (AeBSs) and a high-altitude node,
are considered. The study focuses on minimizing task processing delay and energy con-
sumption through the control of AeBSs” deployment and computation offloading in this
two-level aerial network. Utilizing deep RL (DRL), the optimization of low-altitude AeBSs
and offloading strategies is carried out by considering factors such as their computational
capacity, the number of associated users, the number of computational tasks required by
users, and the channel gain with users. Sharing learning model parameters with a high-
altitude node, the proposed RL mechanism enables collaborative control among AeBSs,
while the high-altitude node serves as a global aggregator, improving training efficiency
within the federated DRL framework. In the study by Camana et al. (Contribution 14), a
DNN is applied to jointly optimize the beamforming vectors and power-splitting ratios in
a multi-input, single-output (MISO) simultaneous wireless information and power transfer
(SWIPT) system. The optimization objective is to minimize overall transmission power
while ensuring compliance with predefined requirements for energy harvest and minimum
data rate within the multi-user system.

ML could also offer benefits for communication network management, including
dynamic network configuration, network traffic analysis, and efficient resource alloca-
tion. In the article by Hamdan et al. (Contribution 15), Open RAN (O-RAN), recognized
for its potential in interoperability, scalability, and cost efficiency, is studied. Despite its
advantage, the intricate management of the O-RAN system poses challenges, and the
article conducts a thorough survey of current research endeavors while outlining research
opportunities about how to uses ML for network automation in O-RAN. In the paper
by Baek et al. (Contribution 16), ML is employed to monitor and analyze network traffic,
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providing benefits in various domains including traffic control, network security, and re-
source planning. The focus of this paper lies in web services, which are a combination of
multiple applications where various application traffic sflows can be intertwined within
service traffic. For web services, classifying traffic solely based on service units may lead to
high errors in misclassification. To tackle this challenge, a DL-based algorithm performing
multitask classification is proposed. This algorithm aims to classify application traffic by
considering the relationships between browser, protocol, service, and application tasks
within web services.

By leveraging data-driven insights, ML can be useful for service-specific decision making.
The following two papers consider distinct service contents, focusing on e-Health and vehicu-
lar communication, respectively. In the contribution by AlZailaa et al. (Contribution 17), the
emphasis is on addressing the real-time urgency inherent to critical tasks within e-Health
applications. Operating within hierarchical fog—cloud networks, the paper employs a sup-
port vector machine (SVM)-based ML approach to classify and schedule tasks efficiently.
A SVM-based task classification method is introduced, tailored for handling of latency-
sensitive critical tasks. Building upon task classification outcomes, the study devises a
task priority assignment and resource mapping algorithm. The overarching objective is
to minimize latency and enhance the overall resource utilization in fog—cloud networks.
In the work by Huang et al. (Contribution 18), the focus shifts to vehicular networks.
ML is harnessed for precise vehicle arrival time estimation. Employing support vector
regression (SVR)-based learning, the ML model incorporates factors like average vehicle
speed, weather conditions, time, and the real-time road traffic information from roadside
units (RSUs). Vehicles utilizing this learning algorithm predict their arrival times at specific
road sections, transmitting this information to the RSUs. The significance of these data lies
in their utilization by RSUs to efficiently manage bandwidth, particularly for supporting
reliable real-time video applications. When vehicle users compete for bandwidth, RSUs
leverage arrival information to prioritize services, optimizing overall user experiences by
offloading traffic to vehicle-to-vehicle (V2V) links.

The traditional approach to analyzing extensive datasets using ML involves centralized
ML models. However, the surge in data generation from diverse end devices and concerns
over privacy issues have sparked significant interest in federated and distributed learning.
Federated learning (FL) allows clients to cooperate to generate a global model without
sharing sensitive client data with a server. In the work by Seol et al. (Contribution 19),
the impact of statistical heterogeneity indicating non-independent and identical distribution
(non-1ID) of the training datasets (generated by clients) is highlighted, which clients will use
for local training in an FL framework. A novel approach is proposed to reduce statistical
heterogeneity and dynamically control batch size and learning rate, aiming to enhance
FL performance. In the investigation by Bemani et al. (Contribution 20), the emphasis is
on understanding the impact of communication-induced noise during FL training on the
convergence and accuracy performance of the ML mode. The paper proposes the use of
analog over-the-air aggregation to effectively manage noise in communication channels,
ultimately contributing to improved convergence in ML algorithms.

3. Conclusions

This compilation of articles sheds light on the transformative impact of machine
learning on communication systems and networks. As evident from the diverse range of
contributions, ML not only enhances traditional aspects of communication networks but
also paves the way for novel applications and optimizations. The showcased articles empha-
size the role of ML in addressing intricate challenges, from intelligent resource allocation and
dynamic network management to efficient channel estimation and service-specific decision
making. The application domains span across e-Health, transportation, agriculture, and more,
highlighting the versatility of ML in shaping the future of communication technologies.

Despite significant strides, challenges in applying ML persist. The heterogeneity of
communication environments and the ever-evolving nature of network dynamics present
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ongoing hurdles. Issues related to the privacy, security, and interoperability of ML models
in communication contexts also call for further research. Additionally, the scalability and
adaptability of ML algorithms to handle the burgeoning volume of data generated in
real-time pose continuous challenges.

Looking ahead, collaborative efforts between the ML and communication technology
communities will be essential to address these challenges. Interdisciplinary research,
harmonization of data formats, standardization of ML methodologies in communication
protocols, and the development of scalable, privacy-preserving algorithms will be crucial
for the sustainable advancement of ML applications in communication environments.
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Abstract: In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting
the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system
(PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks
(DQN) algorithm will be developed and incorporated into the NOMA system so that this developed
DQN model can be employed to estimate the channel coefficients for each user device in NOMA
system. The developed DQN scheme will be structured as a simplified approach to efficiently predict
the channel parameters for each user in order to maximize the downlink sum rates for all users in the
system. In order to approximate the channel parameters for each user device, this proposed DQN
approach is first initialized using random channel statistics, and then the proposed DQN model
will be dynamically updated based on the interaction with the environment. The predicted channel
parameters will be utilized at the receiver side to recover the desired data. Furthermore, this work
inspects how the channel estimation process based on the simplified DQN algorithm and the power
allocation policy, can both be integrated for the purpose of multiuser detection in the examined
NOMA system. Simulation results, based on several performance metrics, have demonstrated that
the proposed simplified DQN algorithm can be a competitive algorithm for channel parameters
estimation when compared to different benchmark schemes for channel estimation processes such
as deep neural network (DNN) based long-short term memory (LSTM), RL based Q algorithm, and
channel estimation scheme based on minimum mean square error (MMSE) procedure.

Keywords: DRL; DQN; Q-learning; LSTM; NOMA

1. Introduction

It can be noticed that the high energy consumption by the connected terminals in the
current wireless networks can create an essential challenge in designing the upcoming 6G
wireless systems [1]. Therefore, it is important to consider this energy consumption issue
in future wireless communication networks, and at the same time, we need to maintain
the required quality of service (QoS) for devices or services in that networks. Basically,
NOMA system utilizes a superposition coding (SC) procedure that involves multiplexing
different signals related to different users before transmission, which can contribute to the
energy efficient transmission scheme. Moreover, NOMA system can also be designated
to ensure the desired quality of service (QoS) levels for all superimposed user devices.
Numerous research efforts have been dedicated to NOMA system in order to find an
efficient strategy for different challenging tasks such as power allocation, beamforming,
and channel assignment [2].

Recently, many authors have investigated different machine learning algorithms
and artificial intelligence tools to optimize the resource allocation problems in NOMA
system [3]. Furthermore, reinforcement learning (RL) based Q-learning algorithm and
deep reinforcement learning based Q network (DQN) have gained a remarkable interest
among authors in various fields. The Q-learning algorithm is a subclass of reinforcement
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learning that depends on Q-tables to store the optimal Q-values for each state-action pair
in order to maximize the future reward in the system. Alternatively, deep reinforcement
learning-based Q network (DQN) algorithm is mainly dependent on adopting hidden
layers that can effectively enhance network convergence and system performance.

1.1. Related Works

In the context of optimizing communication systems, several works have employed the
Q-learning algorithm to enhance the performance of wireless networks based on different
perspectives. The work in [4] applied the Q-learning algorithm to introduce a framework
for enabling mobile edge computing in NOMA system. In [5], authors suggested a dynamic
reinforcement learning scheme for power allocation in order to jointly maximize the sum
rate and the spectral efficiency in MIMO-NOMA system when smart jamming is considered.
The authors applied the Q-learning algorithm to allocate a certain power level to each user
terminal, to mitigate the jamming effects.

Basically, by incorporating deep learning into RL, deep reinforcement learning (DRL)
can address the challenges associated with Q-learning in terms of Q-table storage. Based
on that, the work in [6] introduced a deep Q-network (DQN) to model a multiuser NOMA
offloading problem, while the work in [7], proposed a power allocation technique based on
deep reinforcement learning in cache-assisted NOMA system. Furthermore, authors in [8]
introduced a DRL based actor-critic algorithm to handle the dynamic power allocation
policy. Likewise, DRL based actor-critic algorithm was also applied in [9] to attain the
optimal policy for user scheduling and resource allocation in HetNets. In [9], the authors
designed the actor network in order to decide the policy that can select a stochastic action
based on Gaussian distribution, while the critic network role is to evaluate the value
function and guides the actor network to discover or learn the optimal policy.

Deep reinforcement learning was also introduced in [10] to arrive at a sub-optimal
power allocation scheme for an uplink multicarrier NOMA cell. The work in [11], con-
sidered a joint channel assignment and power distribution procedure in NOMA system.
Authors in [11], derived a near-optimal power allocation scheme by considering two users
per channel, and the channel assignment was performed using deep reinforcement learning
algorithm to boost the overall sum rate while the minimum rate for each user device
is considered.

1.2. Research Gap and Significance

Several machine learning (ML) algorithms have been suggested to clearly address
diverse issues in wireless networks such as channel assignment, beamforming, and power
allocation. Also, several RL algorithms have been proposed to handle the channel esti-
mation task in wireless communication systems. However, most of the current research
that covers the channel prediction task in the NOMA system is mainly dependent on deep
neural networks (DNN) which include some sort of complexity in the network structure.
Hence, in this work, we aim to introduce a deep reinforcement learning scheme based on a
simplified DQN approach to reduce the complexity structure and at the same time enhance
the channel estimation process. Furthermore, to the best of the authors’ knowledge, there
is no study that explores the utilization of deep reinforcement learning (DRL) based deep
Q network (DQN) algorithm for estimating the channel parameters for user devices in the
NOMA system. In addition, and to the best of the authors” knowledge, there is no study
that has investigated the performance of NOMA system when both the DQN algorithm
that used as channel estimator and the optimized power scheme are jointly implemented
for user detection in NOMA system.

It is worth mentioning that unlike classical deep learning algorithms, which mainly
depend on learning from a training data set, the proposed DQN algorithm is developed
based on the LSTM network to adapt to the variations in the channel and to dynamically
enhance the system performance based on the interaction with the environment.
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1.3. Contributions to Knowledge
In this work, the contributions can be summed up as shown:

e  Asimplified DON structure is proposed to demonstrate how RL based DQN algorithm
is developed to predict the channel parameters for each user in the NOMA cell in
Rayleigh fading channels.

e Investigate the combination between the RL algorithm and the LSTM model, to
compose the simplified DQN structure in order to be utilized as a channel estimator.

e  Validate the efficiency of the proposed DON scheme, by establishing different bench-
mark schemes for comparison. Three different simulation environments are estab-
lished as follows: (1) Channel prediction scheme based on standard minimum mean
square error (MMSE) procedure [12]; (2) Standard DNN based on LSTM network
for channel prediction applied in [13], (3) The RL based Q-algorithm for channel
prediction applied in [14]. The simulation outcomes of these benchmark schemes were
compared with the results of our proposed DQN model, and the results emphasized
that reliability can be guaranteed by our developed DQN algorithm for predicting
channel parameters even when the number of users in NOMA cell is increased.

e  Simulate the impact of integrating the simplified DQN structure for channel prediction
and the optimized power scheme derived in [13] for the purpose of multiuser detection
in the power domain NOMA system.

The remainder of this paper is structured as follows. Section 2 describes the system
model. The Deep Reinforcement Learning Framework is presented in Section 3. The
Channel Estimation Based DQN Algorithm is discussed in Section 4. DQN Operation and
framework are discussed in Section 5. DQN Dataset Generation is introduced in Section 6.
Section 7 discusses the DQN Policy and Algorithm. DQN state space, action space, and
reward are introduced in Section 8. Detailed DQN Procedure and workflow are listed in
Section 9. Complexity analysis is also discussed in Section 10. The simulation environment
is described in Section 11, and simulation results are presented in Section 12. Finally,
conclusions are given in Section 13.

2. System Model

In a NOMA cell, numerous user devices can be served via the same resource block (RB)
by employing the power domain (PD) in both uplink and downlink transmissions. In this
paper, we are considering a downlink NOMA cell, where the BS can serve distinct types of
users or devices at the same time via different fading channels. At the transmitter side, the
BS can assign a specific channel or subcarrier to every set of user devices, and the signals
of these devices can be multiplexed using unique power levels. At the receiver side, each
user device will receive the desired signal beside the undesirable signals related to other
devices in the same channel that will be considered either as interference or noise. The
undesirable received signals will be considered as noise if the power level of the desired
signal is high, otherwise, these additional signals will be regarded as interference. To
decode the desired signal, each user device will use the successive interference cancelation
(SIC) procedure. The SIC technique will first decode the signal with the highest power level
and then subtract that signal from the principal signal, and this process will continue until
the desired signal is decoded.

Typically, before applying the SIC procedure at the receiver side, the channel param-
eters for each user need to be available or estimated to perform the equalization process.
Also, to calculate the data rate or channel capacity for each user, we need to calculate the
signal to interference plus noise ratio (SINR), and SINR itself includes the channel gain |h; \2,
where h; represents the fading channel between the BS and user device i. In the NOMA
scenario, the data rate R; for user device i can be expressed as follows:

Prajn; >
Ri=log, 1+ ———1o1i )
' 2 ( Z;:% PTIX]'W,' +1
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where g; is the power allocation factor for user device 7, and 7; is the channel to noise ratio
(CNR) for user i and Pr is the total power assigned by the BS. The channel to noise ratio 7;
for user i, can be expressed as follows:

2
|hi]
oz

i = (2)

where |h,‘|2 is the channel gain for user device i, and 07 is the noise power. In this work,
we are considering a downlink NOMA system, and the total number of devices in the
cell is N. In the NOMA cell, all signals related to the N devices are combined, and the BS
will transmit this composed signal to all users in the cell. The composed signal X can be
represented as follows [15]:

N
X=Y VPraxji=1,2,...,N (3)
i=1

where x; is the desired signal for user device i. The composed transmitted signal X can
be received at the receiver side of each user terminal, with path loss and Additive White
Gaussian noise (AWGN), hence the received signal Y can be represented as

N
Y =) Prajhixi+ni=1,2,....,N 4)
i=1

where 1; is the fading channel between BS and user device i and n denotes the AWGN
component. After receiving the composed signal and estimating the channel parameters,
the receiver at each user device will activate the SIC procedure to decode the desired signal.
In PD-NOMA, distinct power levels will be given to user terminals in the cell, and the
highest power level will be given to the user device with the lowest CNR, while the lowest
power level will be given to the user device with the highest CNR. Therefore, if user devices
have the following CNRs:

m>m>.... >N 5)

Then, these user devices will be assigned power levels as follows:
Pp<P<....<Py 6)
The SINR for user device i can be represented as shown:

SINR, = — LT84l ;35 N @)

Yo} Prayri + 1

The BS can allocate power P; to any user terminal as shown in the following expres-

sion [15]:
i—1
b= <PT - (E PT"‘]’)) > Py ®)
=1

The expression in (8), can be interpreted as follows: for proper achievement for the
SIC process, the user device with low CNR must have a higher power level than the sum of
power levels for other devices that have high CNR.

Based on the aforementioned analysis, in what follows we will consider the scenario
for three users downlink PD-NOMA system, and we will provide some sort of mathematical
analysis for the achievable capacity for each user when both perfect SIC and imperfect SIC
are applied [16]. As indicated before, BS can send the superposition coded signal X which
can be expressed as

X =D, (Mxn + o X + \/@xf) )

10
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where a,;, &y, and « ¢ are the power factors allocated to the near user, middle user, and far
user, respectively. Likewise, x;, x;;, and x £ denote the desired symbols related to the near,
middle, and far users respectively. Hence, the signal received at far user can be represented
as follows:

yr = Xhg+ng (10)

where /i; represent the fading channel among BS and the far user, while 1 represents the
AWGN noise component at far user with zero mean and ¢? variance. The received signal
at far user can be expressed in details as follows:

yr = «/Ptzxfxfthr\/E(\/amxm+\/@xn)hf+nf (11)

The 1st term in (11) represents the desired signal for far user, but the 2nd term denotes
the interference term from the middle and near users. Far user is usually described by
poor channel condition and his particular signal x; can be assigned additional power by BS
compared to other users. Thus, according to the SIC scheme, far user can directly decode his
own signal x from received signal i ;. The possible rate for far user Ry could be expressed

as follows:
1y Precy
Rf=1 1+ — 12
f 0g2< +17fPt(zxn+txm)+1 (12)

Likewise, the attainable bit rate for the middle user R, in the case of perfect SIC, can
be expressed as follows:

Nm Pray )
Ry =1o 1+ — 13
m gz( 77m Pt(“n)‘i’l ( )

Typically, the user near the BS has a good channel condition; therefore, his signal x;, is
usually assigned low power level. Therefore, at near user side when perfect SIC is applied,
firstly immediate decoding for far user signal x is accomplished, then it is removed from

the composite signal. Next, the middle user signal x,, is decoded and removed from the
remaining signal. Finally, the near user achieved rate R, can be expressed as follows:

Ry = log, (1 + 17, Pray) (14)

In the case of imperfect SIC, the attainable bit rate for the middle user can be
expressed as:

Nm P, tXm

Ry =log, | 1+
€ Nm Pt(‘xf) + 1Im Pt(lxn) +1

(15)

where € 17, Pt <o¢ f) represents the error residual term from far user signal decoding. Like-
wise, the attainable bit rate for the near user in case of imperfect SIC can be expressed as:

Hn Py
€ Mn Pt(“f) + €My Pt(“m) +1

Ry =log, | 1+ (16)

where € 17, P; (zx f> is the error residual term from far user signal decoding and € #,, P ()
is the error residual term from middle user signal decoding.

3. Deep Reinforcement Learning Framework

In this section, we will introduce the concept of deep reinforcement learning (DRL),
which is a special case of reinforcement learning procedure [17,18]. Reinforcement learning
is a fork of machine learning, where an agent interacts with the environment to carry
out the best sequences of actions that can maximize the expected future reward in an

11
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interactive environment. Generally, reinforcement learning can be classified as single-agent
or multi-agent based on the quantity of agents in the environment. In the scenario of a
single agent RL, the agent needs to recognize the entire states in the environment and the
decision-making task can be modeled as a Markov decision process (MDP) framework. In
this work, our proposed DQN structure assumes a single agent, and the best sequence of
actions that can be chosen by the agent will be generated based on the adopted deep neural
network (DNN).

The fundamental elements in the deep reinforcement learning (DRL) algorithm can be
listed as follows [14,18]:

1.  Observations: the continuous measurements of the properties of the environment,
and all of the observed properties in the environment can be included in the state
space S.

2. States: the discret observation at time step ¢ can be denoted as state s; € S.

3. Actions: an action 4; is one of the valid decisions that the agent can select at time step
t from the action space A.

4. Policy: a policy denoted by 71(.), is the criteria that control how to select a certain
action at any given state while interacting with the environment.

5.  Rewards: the immediate reward r¢, is obtained after an agent carries out a specific
action a; in a given state s;, which leads to moving to a new state s;. 1.

6.  State-action value function: denoted by Qx(s,a), and represents the expected dis-
counted reward when the agent starts at a certain state s; and selects a specific action
a; based on the policy 7.

In the DQN framework, when an agent selects an action a; at a given time step t, the
agent’s state will change from the current state s; to the subsequent state s¢ 1 and as a result
of this transition, the agent will receive an immediate reward r; from the environment.
Based on that scenario, the network can generate an experience tuple e = (s;, a;, 7¢, S¢41)
that can be stored in the experience replay buffer D. The primary target of the agent in
RL scheme is to maximize the long-term cumulative discounted reward R}, which can be
defined as follows [14,18]:

(o]
R} =Y v'rsi (17)
=0
where v is the discount factor. To enhance the R}, an optimal policy 7* is essential to map
the best actions to states. In other words, the optimal policy 7r* can significantly assist the
agent in deciding which action should be selected at any given state, to satisfy the optimal
long-term cumulative reward. Typically, the state action Q-value function is defined as the
expectation of the cumulative discounted reward R?. Overall, we can notice that based on
the current state s;, the considered policy 7, and the selected action 4;, the state-action Q
value function can be further expressed as follows [14,19]:

Qn(st,ar) = E[R?‘Str“t] =E { )y Yirt+i|5t,ﬂt}
i=0 (18)
= E[ri + vQn(st11,a141)[5t, at]
where E[ .] denotes the expectation parameter. When the optimal policy 7* is applied for

maximizing all states and action pairs, then the optimal Q-value function Q- (s, a;) that
follows the optimal policy 7t* can be expressed as follows:

Qe (st,at) = E[rs + vQu+ (41, Ap1) |5t , 1] (19)

The expression in (19) is known as the Bellman equation. The benefit of the Bellman
equation is to represent the state-action Q-value function into two components: the instan-
taneous reward r; and the long-term discounted reward. However, the Bellman equation
is nonlinear, and hence, there is no closed form solution to it. As a result, an iterative
procedure such as the Q-learning algorithm has emerged to converge the Bellman equation

12
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to obtain the optimal Q-value function [18,19]. On the other hand, the computation of the
Q-learning algorithm may become more complex in multi-user environments that have
huge state and action spaces, and as a result, the size of the Q-table will be extremely large.
Hence, the regular solution to this limitation is to estimate the Q-values using a function
approximator, by adopting hidden layers, which is the core component in our developed
deep Q network.

The basic DQN architecture is shown in Figure 1, and it consists of three main phases:
The first phase represents the input layer that includes the current states of the environment.
The second stage includes the hidden layers that act as a function approximator. Mainly
in the hidden layers, the Rectified Linear Unit (ReLU) activation function is applied to
compute the hidden layer values. The primary gain of utilizing ReLU as an activation
function is the computational efficiency [20], which may lead to faster convergence. At
the end phase, the output layer is responsible for predicting the optimal state-action value
function, Qg+ (s, a, W), where W; is the updated weights of the hidden layers at time
instant ¢.

W2

o<
o e | ///ﬁm

a

(51,81, W)
% *

/ —~ QS aniWy)

s
T
N2

- Y Y

Figure 1. DQN basic structure with two hidden layers.

4. Channel Estimation Based DQN Algorithm

In this section, the simplified DRL structure will be introduced, and Figure 2 illustrates
the architecture of the simplified DRL scheme that mainly relies on the DQN algorithm
and LSTM network to achieve the most appropriate performance. The DQN network
will be trained, and the weights of the hidden layers will be updated to approximate the
state-action value function Qx (s, ). As indicated in the aforementioned discussion, each
experience tuple is described as e; = (s, at, 11, 51+1), and all experience tuples will be stored
in an experience replay buffer D = {ej e ¢3 ... ¢;}, and these experience tuples can be
utilized to train the DQN using the gradient descent algorithm [21]. It is optimum for the
DOQN algorithm to exploit all available experience tuples in each training iteration, but this
will be costly when the training set is huge. A more effective procedure is to update the
DQN weights in each iteration using an arbitrary subset from the replay buffer D, and
this subset is described as a mini batch. Based on the architecture of the proposed DQN
structure shown in Figure 2, it can be noticed that the loss function can be computed based
on the difference between the output of the target DNN and the output of the policy DNN.
Hence, the loss function can be defined as follows [18,19]:

LW) =Y (re + v maxQn- (si11, ar41, W) — Qr-(s1, a1, W))2 (20)
ecD
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where L(W) denotes the DQN loss function for a random mini batch sampled from the
replay buffer D at time slot t and W represents the nearly static weights in the target DNN
and these weights are mainly updated every T time steps. To minimize the loss function
L(W), the weights W of the policy DNN will be updated every ¢ time step using a stochastic
gradient descent (SGD) algorithm applied on a batch of random samples selected from the
replay buffer D. Typically, the SGD algorithm can update the weights of the policy DNN
W in an iterative process with a learning rate of u > 0 as follows [21]:

Wis1 = Wy — u VL(Wy)
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Figure 2. Proposed DQN Architecture.

5. Proposed DQN Operation and Phases

Phase 1: Initialization and generation of training data

Environment

1)

1. Perform a few random actions with the environment to initialize the experience
replay data.
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2. Initialize the weights for the policy DNN and copy these weights to the Target DNN.
3. Starting with the first time step,

e Based on the initial interaction with the environment, random states can be
generated to be used as input for the policy DNN.

e  The policy DNN will predict the Q-values for all actions that can be decided in
the current state, and then those Q-values will be inspected to select or identify a
certain Q-value based on the most suitable action.

e  Based on the selected and executed action, the experience replay will receive the
reward and move to the next state.

The experience replay will store the results in the replay buffer.
Each result will be considered as a sample training data, that can be later used as
training data.

Phase 2: Select a random batch for training

1. Select a batch of random samples from the replay buffer and use these samples as an
inputs for both the policy DNN and the target DNN.

2. From the random sample, use the current state as input to the policy DNN.

3. The policy DNN can predict the Q-values for all actions that can be performed in the
current state.

4. Based on the decided or selected action, the policy DNN will identify the predicted
Q-value.

5. The next state from the selected random sample will be used as input to the Target DNN.

6.  The Target network will predict the Q-values for all actions that can be performed in
the next state, then the Target DNN will select the maximum of those Q-values.

Phase 3: Get the Target Q-value
1.  The Target Q-value can be decided based on two components

e  The immediate reward from the environment
e  The max Q value that has been predicted by the target DNN in the next state

Phase 4: Compute the Loss function

1. Compute the loss function between the Target Q value and the predicted Q Value in
terms of mean squared error (MSE).

Phase 5: Back-propagate the Loss function

1. Back-propagate the loss in order to update the weights of the policy DNN using SGD.
2. At this stage, the weights of the Target DNN are not updated and remain fixed, and
this completes the processing for this time step.

Phase 6: Repeat for next time step
1. The process will be repeated for the next time step.

e  The policy DNN weights have been updated but not the Target DNN.
e  This allows the policy DNN to learn to predict more accurate Q-values, while the
weights for the target DNN remain fixed for a while.

2. After T time steps, copy the policy DNN weights to the Target DNN. This step will
enable the Target DNN get the updated weights so that it can also predict more
accurate target Q-values.

Long-short term memory (LSTM) network is a developed design from the recurrent
neural network (RNN), which can inspect long-term dependencies and has the ability to
remember previous information for future usage. The LSTM network has a chain structure
consisting of multiple LSTM cells and the proposed DON structure shown in Figure 2 is
clearly adopting the LSTM network as the DNN hidden layers. The DNN based LSTM
in Figure 2 is mainly consists of four layers, and each layer contains several neurons,
and the weighted sum of each neuron will be the input to an activation function. In our
proposed DQN approach, the length of each training sequence is specified as L, which is

15



Sensors 2023, 23, 9010

the dimension of the input layer. In our scenario, we choose the input layer of the DNN to
include 128 neurons, and the input states to the input layer will be shifted to the subsequent
layer after updating the weight parameters [13,22].

As shown in Figure 2, we have applied one LSTM layer as the second layer in both the
policy DNN and the target DNN, and the LSTM layer itself includes 300 hidden cells. For
each hidden cell, the learnable weights are specified as follows: the input weights W, the
recurrent weights R, and the bias b.

The third layer in both the policy DNN and the target DNN is a fully connected layer
that processes the outputs of the LSTM layer, and it assembles all of the characteristics
and internal information gathered by the prior layers. The fully connected layer behaves
separately at each time step, and all neurons in a fully connected layer are connected to all
the neurons in the previous layer.

The last adopted layer in both the policy DNN and the target DNN is the regression
layer, which is responsible for computing the mean square error (MSE), improving the
cell status, and updating the cell weights. A regression layer can also predict the response
of the trained network. It is worth mentioning that normalizing the training data in the
LSTM network enables the stabilization and acceleration of the training process for neural
networks. It is shown in Figure 2, that in the simplified DQN structure, the input states
are established according to the size of the input layer, then these states will be passed
into both the policy DNN and the target DNN and the state action value functions will be
predicted at the output.

The design of a single LSTM cell is basically shown in Figure 3 [13,22]. Each LSTM
cell has three inputs and two output parameters. The hidden state #;_; and the cell state
c;—1 are the shared parameters between inputs and outputs and the other parameter is the
current input. The LSTM cell also includes three sigmoid functions and two tanh functions
to regulate the flow of information. In the initialization stage, random hidden states will be
generated along with the input for the first LSTM cell. Then the current outputs that include
the current hidden state /1; and current cell state ¢; and the new input x; will comprise the
three inputs to the next cell.
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Figure 3. LSTM Cell Structure.

6. DON Dataset Generation

Typically, the DQN framework involves an agent, a deep neural network (DNN), and
the environment. The agent will interact with the environment via the DNN and decide
which action to take. In our proposed DQN framework, the BS will be considered as an
agent, and it will interact with the environment, which includes the user devices and fading
channels. At the start, the agent (BS) will start exploring the environment to collect the
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information or the states for each user device in the cell, such as power distribution, user
distance, channel model, and path loss [23,24].

Typically, at each time step t, and based on the current state s; for each user device,
the agent can decide on a certain action a; using the DNN to maximize the sum rates for all
users in the NOMA network. Accordingly, the agent (BS) will receive an instant reward
r+ and move to the next state s;;; in the environment. By taking decisions on actions, the
agent (BS) can learn more about the environment to achieve an optimal channel prediction
policy 7. In our scenario, we aim that this optimal policy 7. for predicting or estimating
the channel parameters for each user device can be learned and updated at each time
step t via the simplified DQN structure illustrated in Figure 2. Furthermore, the agent
(BS) can further enhance the policy 7. by repeating the channel estimation process for
multiple episodes. Based on the proposed DQN architecture shown in Figure 2, it is clearly
noticed that the DNN based LSTM replaces the Q-table to estimate the Q-values for each
state-action pair in the environment, and this designed DNN can be considered as the
policy controller for the channel estimation procedure.

7. DQN Policy

The period of time in which the agent interacts with the environment via the proposed
DQN scheme is termed an episode, and every episode has a total duration of T time steps.
At each episode, the main aim is to estimate the channel parameters for each user in order
to maximize the sum rates for all users in the NOMA cell. In our simplified DQN approach,
the dimension of the input layer for the DNN based LSTM is set equal to the available
states in state space S for each user, and correspondingly the dimension of the output
layer is equal to the number of possible actions in the action space A for each user. As
indicated in Figure 2, The LSTM layer, and the fully connected layer are both comprising
the hidden layers part of the proposed DQN model, and this may provide a reasonable
balance between the network performance and computational complexity. Typically, the
Q learning procedure is considered an off-policy algorithm, which means that without
applying any greedy policy, the Q algorithm can iteratively estimate the best action for
maximizing the future reward. In our developed DQN algorithm, we decide to apply a
near-greedy action selection policy, that has two approaches as shown in Figure 4 [25]:

Exploration Exploitation

Select Select Best
andom Acti Known Action

Figure 4. Near-greedy action selection scheme.

The first approach is the exploration, where the agent discovers and carries out
random actions at a time step ¢. The second approach is the exploitation, where the agent
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can decide on an action to maximize the state-action value function Q(s¢, a;, W;) based on
the previous experience and the current network weights.

In our proposed near-greedy action selection policy, the agent has an exploration
rate of € and an exploitation rate of (1 —¢€) where 0 < € < 1, and € is considered a
hyperparameter that can control the trade-off between exploitation and exploration during
the training process. Hence, based on that designated action selection policy, the agent (BS)
can select an explicit action 4; at a given state s; at every time step f and correspondingly,
the agent can receive a positive or negative reward and move to a new state 5,1 1.

8. DON State Space, Action Space, and Reward

Initially, the distance between each user device and the BS and channel path loss needs
to be specified in the dataset to facilitate the random generation of the channel coefficients
for every user in the examined NOMA system [13,14,22]. In addition, pilot symbols will be
created, transmitted, and identified at both the BS and at the receiver side of each device to
also assist in the initial channel parameters estimation process. As well, the power factor
for each device in the NOMA cell needs to be initially assigned in the dataset. To set up
the Q values, the channel parameters for every user device in the cell can be initialized
either using the random generation of the channel parameters based on the path loss and
the distance or using the pilot symbols. In our simplified DQN algorithm, we initialize
the channel parameters based on both schemes, the random generation and pilot symbols.
Throughout the DQN algorithm iterations, the Q-values will be predicted according to the
DON algorithm procedure.

As previously mentioned, in our channel estimation procedure, we need to efficiently
predict the channel parameters for each user device in the examined NOMA cell to facilitate
the maximization of the sum rates for all users in the considered NOMA system at each
time step t. Hence, the state space S can be created to include the following states:

(a) The current power factor «; for each user in the NOMA cell,

(b) The current user distance d; that represents the distance between BS (agent) and the
user device i.

(c) The present channel path loss ¢.

Accordingly, the resultant state space S for N users NOMA system can be represented
as [13,14,25]
S={magas ...andydrds...dy, ¢ } (22)

For each user, all the actions that can be chosen by the agent (BS) can be selected from
action space A. In our scanario, the possible actions in the action space A can be introduced
as follows:

(a) Change the distance of the user device within a limited range of 5 m.
(b) Increase or decrease the power distribution factor «; by a certain step size of 0.05.

The reward function also plays an principal role in the DQN algorithm, and there are
many ways to assign the rewards based on the selected action. In our developed DQN
scenario, we decided to calculate the rate for each user in the NOMA system using (1),
to reflect the immediate reward r returned from the environment to the agent (BS) after
choosing a certain action a; at state s;. Hence, based on the selected action, if the calculated
data rate is higher than a specified threshold Ry, this will reflect a positive reward for the
agent, while a lower data rate will reflect a negative reward. Based on the aforementioned
discussion, Algorithm 1 can summarize the algorithm steps for estimating the channel
parameters for each user in the NOMA cell, based on our simplified DQN structure.
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Algorithm 1 Proposed DQN Algorithm for channel parameters estimation

Initialize policy DNN and target DNN networks with random weights (W, w).
Initialize experience replay memory (ERM).

Randomly generate the exploration rate e.

for each episode do

for each step do

for each user device do based on ¢, and based on the current state s;,
Select the channel parameters and add to action space a;

7 end for

8.  Observe the immediate rewards r; and move to the next state s; 1.

9 Insert (s;, a;,1;,5¢+1) in experience replay memory (ERM).

10.  Create a mini batch with random sample of tuple (s;, a;, 7, 5;41) from ERM.

11.  for each tuple in mini batch do

12.  Predict the Q-values using policy DNN.

13.  Approximate Q* values using target DNN.

14.  Calculate the loss between Q* values generated from Target DNN and Q values generated

ARSIl S

from Policy DNN.
15.  Update the weights W of the policy DNN using SGD.
16.  end for
17.  end for
18. W < W after a certain number of T steps.
19.  end for

9

. Detailed DQN Procedure and Workflow

In this section, we can list the detailed workflow for the developed DQN algorithm

that is responsible for estimating the channel parameters for each user in the examined
NOMA system:

Initialize the weights for both the policy DNN and the target DNN.

Initialize the ERM with a typical size of 10,000 (it can be 10°).

Initialize the e parameter for near-greedy action selection policy with a large value of
€ = 0.999 (start by exploration then decay).

Initialize data records (tuples).

(a) Generate a random channel coefficients based on the fading model parameters
with size = 120).

(b) Based on the pilot symbols, approximate the channel coefficients with size = 8).

(c) For each user, both the randomly generated channel parameters and the coef-
ficients generated based on the pilot symbols will be combined and used as
initial channel parameters.

Assign initial distance, initial power factor, and path loss, and prepare the state space
S for each user.

Select a random state s; from the sate space and used it as an input for policy DNN.
The policy DNN will select a random action and correpondigly select a random
Q-value, and based on this step, the policy DNN can predict the channel coefficients.
Calculate the rate, and based on the calculated rate the reward can be assigned.

Go to the next state sy

Compose a tuple e; = (s¢, az, 7, S¢41)

Store a tuple e in ERM.

Generate experience tuples = 1000, and store these tuples in ERM.

Select a random batch of the tuples from ERM with batch size 32 tuples.

Number of episodes = 20, and number of steps = 10

For each tuple in the random batch do the following:

(@) From the policy DNN, select the Q-values (channel coefficients) randomly.
(b)  From the Target DNN select the Q-values based on the greedy policy
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(c) Assign the Reward.
(d) Calculate the Loss function as follows: (Target Q-value (Reward + Qmax value)
— policy Q-value).
(e) Update the weights of the policy DNN based on the SGD.
e  Every T = 10 steps, copy the weights of the policy DNN to the Target DNN.
e  Activation functions used in LSTM layers are (sigmoid and tanh), while activation
functions used at the output layer are (linear or Relu).
e  SGD optimizer is utilized for weight updates.

10. Complexity Analysis

It is important to quantify the computational complexity of the proposed algorithm.
Overall, deep learning algorithms are mainly dependent on hyperparameters, hence,
applying analytical methods to guarantee the convergence of the proposed DQN algorithm
usually has some sort of difficulty. Hence, it is a common challenge in literature to prove
the optimality and convergence of the algorithm in an analytical way [26-28]. Alternatively,
in this section we can focus on showing the amount of work per iteration in the developed
DON algorithm. For the NOMA system with N users and K base stations, the computational
complexity of the proposed DQN algorithm can be introduced as follows: it is known
that the size of the state space is denoted by S and the size of the action space is denoted
by A and both have a significant role in the complexity of the deep Q-learning algorithm.
Following [14,29], the computational complexity of the Q-learning algorithm with the
greedy policy is estimated to be O(S x A x M) for each iteration, where S is the number
of states, A is the number of actions, and M is the number of steps per episode. In our
proposed DQN scenario, it can be shown that the size of the state space is K + N, and the
size of the action space is 2(K + N). Therefore, the amount of the work per iteration can be
described as follows O ((2K? + x4NK + 2N?) x M). According to [12], the corresponding
computational complexity for the traditional channel estimation method based on MMSE
procedure can achieve a relatively low complexity O(N?37) [12,30] but at the cost of
performance degradation. Based on the aforementioned analysis, it can be shown that the
developed DQN algorithm has some sort of complexity but at the cost of performance
improvement as will be verified in the simulations results.

11. Simulation Parameters and Environment

Discussion for the simulation parameters and settings is described in this section. The
simulated downlink NOMA system includes three distinct user devices and one BS. The
BS is equipped with a single antenna and each user device in the cell is also equipped with
a single antenna. In the simulated NOMA environment, the modulated signal related to
each user in the downlink transmission will be superimposed and transmitted by the BS
to each user device via independent Rayleigh fading channels, and the path loss is set to
3.5. At the receiver side, we assume that a perfect SIC procedure is applied and AWGN is
considered and the noise power density is set to Ny = —174 dBm/Hz.

MATLAB simulation tool is employed to realize the following: (1) inspect, characterize,
and evaluate the performance of the proposed deep reinforcement learning based DQN
algorithm which developed to be utilized as a channel estimator in the examined NOMA
system, (2) Diverse performance metrics will be measured to evaluate the efficiency of
the proposed DQN algorithm when being utilized in the channel estimation process.
Simulations are accomplished with 10* iterations, and limited pilot symbols are generated
and recognized at the BS and each user device to assist in the estimation process. The main
simulation parameters can be summarized as shown in Table 1.
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Table 1. Summary of Simulation Parameters.

Parameter Value
Simulation Tool MATLAB
Modulation type QPSK
Number of Users 3, [2-20]
System Bandwidth B 1000 kHz
Fading distribution Rayleigh
Path loss ¢ 3.5
Number of Iterations 10*
Noise PSD Ny —174 dBm/Hz
Learning Rate « 0.01
Discount factor y 0.9
Batch size 32
Initial exploration rate € 0.999
Optimizer SGD
Ry 2b/s

The simulation figures are created based on the assumption that the channel param-
eters for each user will be estimated based on the simplified DQN algorithm. Therefore,
in order to examine the impact of utilizing the proposed DQN approach, the channel esti-
mation technique based on standard minimum mean square error (MMSE) procedure [12]
is also simulated for the sake of comparison. As indicated in Section 9, initially both the
randomly generated channel parameters and the channel coefficients generated based on
the pilot symbols will be combined and used in the simulation environment, to model the
Rayleigh fading channel. In our developed DQN algorithm, at the end of each training
episode, the predicted Q(s, a) values generated from the policy DNN will be employed as
an approximated channel coefficients for each user device to recover the desired signal.
Different power factors are initially assigned for every user device according to the current
distance from the BS and the present channel condition. Power factors ay,, &y, and a
are assigned for near, middle, and far users, respectively. In a fixed power allocation
setup, we initially assign a r = 0.65, a;; = 0.3, and a;;, = 0.05. In the simulation files,
the transmission distance for every user device with respect to BS is initially defined as
follows: d = 1000 m, d,;, = 500 m, and d, = 100 m. User data and pilot symbols are
modulated using the Quadrature phase shift keying (QPSK) modulation format and the
applied transmitted power range is set to vary from 0 to 30 dBm for many reasons, firstly, to
match with the benchmark environments that simulated from the literature, secondly, most
of the simulation environments are applying this classical range, and thirdly, on average,
the performance metric behavior can be certainly predictable after 30 dBm power level.

12. Simulation Results and Analysis

Simulation results that describe the comparison between the proposed DRL based
DON algorithm and the MMSE procedure when both being utilized to estimate the channel
parameters for each device are shown in Figure 5 in terms of BER versus power. The
estimated channel parameters using both procedures will be employed for the signal recov-
ery for each user and the simulated results are generated where a fixed power allocation
scheme is considered. It is clearly noticed that when the developed DQN algorithm is
applied for predicting the channel parameters, each user device in the examined NOMA
cell shows the ability to provide a visible enhancement in lowering the BER compared
to the MMSE technique. As an example, at a particular transmitted power of 20 dBm,
the realized BER value for far user device using the MMSE procedure is 107!, while the
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achieved BER in the case of DQN is 1072, Similarly, the improvment in the BER for middle
and near user devices is obviously observed when the simplified DQN algorithm is applied
compared to the MMSE procedure.
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Figure 5. BER vs. power (DQN—MMSE).

In terms of the outage probability against applied power, Figure 6 illustrates the
simulation results for the inspected user devices in NOMA cell when both the simplified
DON algorithm and the standard MMSE technique are implemented separately as a channel
estimators. Similar to BER results, all user devices simulation outcomes indicate about
10 dBm enhancement in the power saving when the proposed DON algorithm is applied
compared to the MMSE technique. The reduction in the power transmitted also supports
the improvement achived in minimizing the outage probability when the DQN algorithm
is adopted. These visible improvements verify the advantage of usage the simplified DQN
scheme as a channel estimator compared to the traditional MMSE procedure.
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Figure 6. Outage Probability vs. power (DQN—MMSE).
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Figure 7 presents the simulation results for the attainable capacity for each user in
the examined NOMA system when both the simplified DON algorithm and the standard
MMSE channel estimation procedures are applied separately. The achieved rate for the near
device shows significant enhancement by about 20 bit/s/Hz compared to far and middle
users’ rates. The dominance of the near user in terms of the possible rate may be justified
by the stable channel condition for the near user compared to other users in NOMA system.
Moreover, the results indicate that the proposed DQN algorithm still can deliver a stable bit
rate compared to the MMSE technique for far and middle users’ scenarios, and this slight
improvment can be justified by the interference factor and inadequate link conditions for
far and middle users.
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Figure 7. Achievable rates vs. power (DQN—MMSE).

In Figure 8, three distinct channel prediction schemes are investigated here as a bench-
mark comparison: (1) standard minimum mean square error (MMSE) procedure for channel
estimation [12]; (2) DL based LSTM network for channel prediction applied in [13]; and
RL based Q algorithm for channel estimation applied in [14]. Figure 8 displays the simu-
lation outcomes for the sum rate for all user devices in the examined NOMA cell versus
the applied power. It is apparent that the developed DRL based DQN algorithm shows
superiority over the standard MMSE procedure approximately by more than 20 bit/s/Hz.
Furthermore, the simplified DQN algorithm shows an improvement over the DL based
LSTM procedure presented in [13] by nearly 10 bit/s/Hz. For the third benchmark applied
in [14], the simplified DQN procedure shows a performance enhancement by 8 bit/s/Hz,
approximately compared to the RL based Q algorithm. These findings support that this sim-
plified DQN algorithm can be a strong candidate technique compared to other procedures
when it is being utilized as a channel estimator.

Simulation results for the sum rate performance metric against different numbers
of users in the examined NOMA cell are also illustrated in Figure 9, where the reference
power is assigned to be 1 dBm. Similar to the simulation environment in Figure 8, three
distinct channel prediction schemes are also investigated here as a benchmark comparison:
(1) channel estimation based on standard minimum mean square error (MMSE) proce-
dure [12]; (2) DL based LSTM structure for channel prediction applied in [13]; and RL
based Q algorithm for channel estimation applied in [14]. As revealed from the results in
Figure 9, it is clearly noticed that our simplified DQN algorithm can realize a substantially
greater sum rate with respect to the MMSE procedure, by at least 4 bit/s/Hz when the
cell capacity is initialized with 2 users. It can also be noticed that as the number of user

23



Sensors 2023, 23,9010

devices in the cell keeps increasing, the developed DOQN algorithm still shows dominance
in accomplishing higher sum rates compared to the DL based LSTM scheme by 2 bit/s/Hz
approximately. Similarly, the hidden layers feature in the simplified DQN scheme play a
sufficient role in providing a noticeable enhancement in the sum rates compared to the
Q-learning algorithm while the number of user devices in the NOMA cell is increasing.
Generally, these findings reveal that dependability can be ensured by our simplified DQN
algorithm even when the user devices in the cell increase. Furthermore, it is worth saying
that while increasing the user devices in the cell, the interference will also grow up, thus
the performance and the sum rate could be affected.
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Figure 8. Sum rate vs. power (MMSE, LSTM, RL Q-learning, DQN).
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Simulation results in terms of BER against the applied power are also shown in
Figure 10, where both the proposed DQN approach and the RL based Q algorithm [14]
are utilized as different approaches for channel parameters estimation. Moreover, the
optimized power coefficients derived in [13] for the examined NOMA cell are also applied
in this simulation environment. Simulation outcomes indicate that all user devices in the
cell can provide a perceivable enhancement in the performance when the simplified DON
algorithm is applied as a channel estimator compared to the case when the Q learning
algorithm is implemented when the optimized power scheme is considered. Based on
the simulation results, it can be clearly noticed that the developed DQN algorithm for
channel estimation and the optimized power scheme can both provide an imprvment in
the power saving by more than 5 dBm compared to the case when Rl based Q algorithm
and optimized power scheme are both applied.
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Figure 10. BER vs. power (DQN—Q learning—Optimization).

13. Conclusions

In this paper, the impact of utilizing a simplified deep reinforcement learning based
DOQN algorithm to specifically estimate the channel parameters for each user device in
the NOMA system is discussed. In the proposed algorithm, the DQN model is initialized
based on generating a random channel parameters then the weights of the simplified DQN
model are updated based on the interaction between the agent and the environment in
order to maximize the received downlink sum rates and at the same time minimize the
loss function. The reliability of the developed DQN structure to estimate the channel
parameters is examined by comparing the performance of the proposed DQN algorithm
with a diverse benchmark schemes. A selective benchmark schemes were simulated, such
as MMSE procedure for channel estimation, DNN based LSTM for channel estimation,
and RL based Q algorithm for channel estimation. Simulation outcomes have proven
that the simplified DQN algorithm can provide a noticeable enhancement in terms of the
system performance compared to the simulated benchmark schemes. Furthermore, various
performance metrics have been examined, and the simulation results also verified the
superiority of the simplified DQN structure even when the cell capacity is increased.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BER bit error rate

BS Base Station

CSI Channel state information

DL Deep Learning

DNN Deep Neural Network

FPA Fixed Power Allocation

OPS Optimized Power structure

LSTM Long Short-Term Memory

DQN Deep Q networks

ML Machine Learning

MSE Mean Square Error

MMSE Minimum Mean Square Error
MUD Multiuser detection

PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service

SIC Successive interference cancellation
RL Reinforcement Learning

DRL Deep Reinforcement Learning
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Abstract: In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel
parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple
Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-
learning algorithm is developed and incorporated into the NOMA system so that the developed
Q-model can be employed to predict the channel coefficients for every user device. The purpose
of adopting the developed Q-learning procedure is to maximize the received downlink sum-rate
and decrease the estimation loss. To satisfy this aim, the developed Q-algorithm is initialized
using different channel statistics and then the algorithm is updated based on the interaction with
the environment in order to approximate the channel coefficients for each device. The predicted
parameters are utilized at the receiver side to recover the desired data. Furthermore, based on
maximizing the sum-rate of the examined user devices, the power factors for each user can be
deduced analytically to allocate the optimal power factor for every user device in the system. In
addition, this work inspects how the channel prediction based on the developed Q-learning model,
and the power allocation policy, can both be incorporated for the purpose of multiuser recognition
in the examined MISO-NOMA system. Simulation results, based on several performance metrics,
have demonstrated that the developed Q-learning algorithm can be a competitive algorithm for
channel estimation when compared to different benchmark schemes such as deep learning-based
long short-term memory (LSTM), RL based actor-critic algorithm, RL based state-action-reward-state-
action (SARSA) algorithm, and standard channel estimation scheme based on minimum mean square
error procedure.

Keywords: RL; Q-learning; MISO-NOMA; KKT conditions

1. Introduction

The Non-Orthogonal Multiple Access (NOMA) system has been characterized as an
inspiring multiple access form for upcoming wireless approaches to enhance the spectral
efficiency and throughput [1]. NOMA system can develop the available resources more
realistically by efficiently, taking into consideration the users’ channel environments and
also giving support to several users with distinctive Quality of Service (QoS) needs [2].
The integration of NOMA and multiple antenna techniques can be exploited to improve
and reinforce system performance [3], therefore, inspecting Multiple Input-Single Output
(MISO) NOMA system can be a good example in the direction of characterizing the expected
upgrade in achievable data rates [4]. In downlink NOMA structure, the receiver device
can receive a multiplexing of signals transmitted to several user terminals in the NOMA
cell, thus eliminating the interference generated by other user devices come to be essential
for coordinated detection. Frequently in power domain NOMA (PD-NOMA), multiuser
detection can be handled via successive interference cancellation (SIC) [5]. In the SIC
procedure, symbols from numerous users are decoded successively on the basis of the
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Channel State Information (CSI) and power percentage designated for each user. A broad
investigation of CSI for various users is demanding because pilot data that can be exploited
in channel prediction, might interfere with symbols from other user terminals, therefore
affecting the performance of a conventional prediction scheme, such as the Minimum Mean
Square Error (MMSE) estimator [6]. Furthermore, power allocation policy is considered an
essential issue for user devices when PD-NOMA is considered [7].

Deep Learning (DL) or Reinforcement Learning (RL) techniques, have the ability to
track the differences in the channels among users and BS, thus, they are recently considered
a powerful tool for upcoming radio systems [8,9]. Hence, allocating the power factors
or estimating the CSI for user devices with the assistance of Machine Learning (ML)
algorithms, triggered the authors for more deep investigations into this field in order to
enhance the performance and detection process.

1.1. Related Works

Different techniques were introduced by authors in [10] to realize the optimal MMSE
channel estimator in the Reconfigurable Intelligent Surfaces (RIS)-based MISO system. In
the first technique, the authors suggest an analytical linear estimator to adjust the phase
shift matrix of the RIS during the training phase, and the estimator based on that technique
is shown to produce sensible accuracy compared to the least-squares method when the
statistical properties of the applied channel and noise are considered. In the other approach,
authors have expressed the channel prediction problem as an image denoising problem,
then they introduce a Convolutional Neural Network (CNN) to achieve the denoising and
predict the optimal MMSE channel parameters. Numerical outcomes have clarified that the
proposed estimator based CNN algorithm can offer improved performance compared to
the linear estimation method and low computational intricacy is preserved.

Toward enhancing the link reliability, a neural network model for a wireless channel
estimator is proposed in [11] to be used with uncoded space-time diversity procedure in
Multi Input Multi Output (MIMO) system. Based on the neural network ML structure,
a channel estimator is suggested, and a mathematical scheme is presented to derive an
optimum power transmission factors that can assist in lessening the channel prediction
bandwidth utilization. Simulation results revealed that the channel estimator based on the
proposed neural network structure can deliver an improvement in Bit Error Rate (BER) and
Mean Square Error (MSE) compared to the standard MMSE channel estimation technique.

In a massive MIMO system and on the basis of a deep autoencoder scheme, authors
in [12] performed experimental verifications on two tasks, one task for channel estimation
modelling for wireless links, and the other task is belonging to a power allocation policy.
The proposed deep learning autoencoder is also used to manage the issue raised from
inadequate training datasets that may cause critical overfitting problems and consequently
affect the model’s reliability. Results based on the autoencoder procedure clarified that the
suggested scheme could successfully enhance performance when the extent of the training
dataset is mainly within a specified threshold selection.

To get over limitations raised when standard iterative power control techniques are
utilized, such as high complexity and unnecessary latency, the work in [13] introduced a
deep learning framework to manage these issues. In the presented structure, the outdated
and partial CSI is exploited, and a Deep Neural Network (DNN) framework is created to
construct an optimization problem to boost the spectral efficiency in device-to-device com-
munication systems. User fairness and energy efficiency constraints were examined, and
simulation outcomes showed that the proposed DNN model can attain better spectral and
energy efficiency compared to the MMSE procedure when numerous channel correlation
factors are considered.

Based on CSI, the position of each user device with respect to BS, and the path loss, a
deep learning framework labelled PowerNet is introduced in [14]. The authors attempt
to prove that it is possible to avoid the time consumption involved with intricate channel
estimation procedures, and at the same time, power control can be managed. Different
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from traditional DNNSs that employ a fully connected structure, the presented PowerNet
method utilizes a CNN layers to recognize the interference model through several links in
wireless networks. Simulation outcomes revealed that the suggested PowerNet scheme can
realize a stable performance without explicit channel estimation.

Recently, approximating the channel parameters or predicting the power factors with
the assistance of Reinforcement learning (RL), is investigated by many researchers. The
authors of [15] proposed an end-to-end channel estimation framework for a downlink
multiuser multiple antenna system. The authors presented an RL-based actor-critic scheme
for channel estimation without the assumption of ideal CSI. The authors mainly depend
on the agent to bring and utilize the pilot symbols into the estimation process and then
employ the estimated channel parameters to create downlink beamforming matrices. To
satisfy the purpose of maximizing the sum rate reward, network parameters are adjusted
based on the deep policy gradient method. The results proved that the suggested channel
estimation algorithm can provide convergence and stable performance under various
channel statistics and can perform better than the typical MMSE procedure when the sum
rate metric is examined.

In [16], the authors developed a Deep Reinforcement Learning (DRL) method for
device-to-device pairing to understand the correlation patterns between wireless networks.
The introduced RL algorithm is adopted to explore the joint channel selection and power
control problem for device-to-device pairing and to boost the weighted sum rate. Based
on the suggested DRL learning procedure, each device-to-device pair can make use of
the outdated and local information to understand the network parameters and perform
decisions independently. Results showed that without a global CSI, the suggested DRL
scheme is capable to attain a stable performance close to that achieved using standard
analytical approaches.

The combination between a DNN as a tool for channel prediction and an optimized
power scheme is explored in [17] for the purpose of multiuser detection in the NOMA
system. The DNN based Long Short-Term Memory (LSTM) network is developed for
channel prediction based on complex data processing. The DNN network is trained on the
basis of both the correlation between successive training sequences and the normalised
channel statistics. The efficiency of the suggested DNN based LSTM for channel prediction
is inspected using different fading models and simulation outcomes, in terms of different
performance metrics, have proved that the presented DNN scheme for channel estimation
can provide a consistent performance compared to the MMSE procedure even when cell
capacity is expanded.

1.2. Research Gap and Significance

Based on the preceding works, many of the proposed schemes that consider predicting
the channel parameters task are mainly focused on implementing several deep neural
networks (DNN) while applying RL approaches, which in turn leads to an increase in the
number of hidden layers with a massive number of neurons in each layer. The significance
of this study is to illuminate that we can eliminate the need for such DNN approaches,
and instead, we can adopt the RL based developed Q-learning algorithm to predict the
channel coefficients for each user device in MISO-NOMA cell, and at the same time, a
notable improvement in system performance and network convergence is realized. The
most prominent gain of the developed channel estimator scheme is that it can enhance the
system performance without the need for hidden layers or an external training set.

In addition, several RL algorithms have been proposed to explicitly address the issues
associated with channel state information (CSI), beamforming, and power allocation. To the
best of the authors” knowledge, there is no study that explores the incorporation between Q-
learning algorithm for channel prediction and the power allocation policy as an integrated
scheme for multiuser detection in downlink MISO-NOMA system in fading channels.

Furthermore, it is worth mentioning that unlike deep learning algorithms, that mainly
depend on learning from a training data set, the proposed Q-learning algorithm in our
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study is developed to dynamically enhance the system performance and adjust to the
variations in the channel based on the feedback from the environment.

1.3. Contributions to Knowledge

The channel prediction problem in downlink NOMA systems was considered in
numerous works. In addition, there have been several works that apply machine learning
(ML) to handle the channel estimation task in wireless communication systems. However,
most of the current research on channel prediction in the NOMA systems based on ML
is introduced via deep neural networks. To the best of the author’s knowledge, currently,
there is no research that manages the channel approximation task in a multiuser multi-input
single-output NOMA system through an RL based Q-learning algorithm. The RL based
Q-learning algorithm is developed based on maximizing the sum rates for all users in the
network such that it can be used efficiently to predict the channel parameters for each user
in the MISO-NOMA cell.

In addition, in this work, a structured mathematical analysis is introduced to formulate
a non-complex analytical form for the power allocation for user devices in the examined
MISO-NOMA system based on boosting the sum rate of the system while considering the
constraints of the total power budget in the system, and the QoS for each user. Furthermore,
the performance of the MISO-NOMA system is investigated when both the developed
Q-learning algorithm for channel estimation and the derived power allocation scheme are
jointly implemented. In this work, the contributions can be summed up as shown:

e In this study, a framework is proposed to illuminate how RL based Q-learning algo-
rithm is developed based on maximizing the sum rates for all users in a MISO-NOMA
system in order that it can be used dynamically to predict the channel parameters for
each user in the MISO-NOMA cell.

e As a reference comparison, four further simulation environments are established.
(1) the standard minimum mean square error (MMSE) based channel prediction
scheme (Neumann et al.); (2) the DNN algorithm based on LSTM network for channel
prediction applied in [17], (3) the RL based actor-critic procedure for channel prediction
applied in [15], (4) the fourth simulation environment is dependent on applying
RL based State-Action-Reward-State-Action (SARSA) procedure (Ahsan et al. and
Mu et al.). The simulation outcomes of these environments are compared with the
results of our proposed RL based Q-learning scheme, and the results emphasized
that dependability can be assured by our developed Q-model for predicting channel
parameters even when the number of devices in the cell is increased.

o  To validate the efficacy of the developed Q-learning algorithm for channel prediction,
the developed Q-model is investigated using Rayleigh and Rician fading channels.

e  Evaluate the beneficial impact of cooperatively integrating the RL based Q-learning
algorithm for channel prediction and the derived power allocation scheme for the
purpose of multiuser recognition in the power domain MISO-NOMA system.

e  The optimized power allocation scheme and the fixed power allocation scheme
are both compared when the developed Q-learning scheme is implemented as a
channel estimator.

The remainder of this paper is structured as follows. Section 2 describes the system
model. Analysis of the optimization problem is presented in Section 3. The optimization
framework and procedure are discussed in Section 4. The RL structure is introduced in
Section 5. Section 6 discusses the Q-learning algorithm-based channel prediction. The RL-
based Q-model architecture and channel estimation algorithm are summarized in Section 7.
The simulation environment is described in Section 8, and simulation results are presented
in Section 9. Lastly, conclusions are shown in Section 10.

Notation: bold lower-case letters denote vectors, bold upper-case letters denote
matrices, and lower-case letters denote scalars. The subscript on a lower-case letter x;
represent ith element of vector x. E(-) refers to the expectation and ()T refers to the
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transpose of the vector. For two real numbers a < b, [a, b] is the set for all real numbers in
the range from a to b.

2. System Model
2.1. Multiuser Environment

In this work, a multiuser environment with a single Base Station (BS) and multiple
user devices (UDs) is considered. The BS is supplied with N antennas and all the UDs are
supplied with a single antenna. The network is assumed to work with equal length time
intervals and each time interval includes one transmission, which contains either uplink or
downlink transmissions. The pilot-assisted channel prediction is considered in this work,
where pilot symbols can be identified by BS and UDs [15,17]. Each user device initially
transmits its pilot symbols to BS via an uplink channel. Then, prior to data transmission,
the BS can inspect the pilot symbols and the available network information to facilitate
estimating the downlink CSI. The main aim of this work is to model the channel prediction
task and to manage the power allocation scheme. We can refer to the matrix of downlink
channel coefficients from BS with N antennas to UD i as:

H; = [hj; hy;...; hni 1)

where hj; represents the vector channel parameters from jth antenna at BS to the ith UD,
withje[1,2,...,NJandi€ [1, 2, ..., M], where N is the number of antennas at BS and
M is the number of users in MISO-NOMA cell. Furthermore, we can denote the data signal
transmitted to UD i as
si = [si1, Si2, -+, SiK] (2
where K is the length of the signal. Then, the matrix of all the UD’s sequences can be
expressed as
S =[s1;82...;5Mm] 3)

The received kth signal at jth UD can be denoted as:

N
Yy = Yo hijski + 2 4)

where zj; denotes the AWGN with zero mean and variance 02 at jth UD through kth signal
duration. The received kth symbol at all UDs is:

N
Y=Y . hisgi+ 2 (&)

where
Ye = [YiYioi - 5 Yrml (6)
2z = [zk1; Zkos -+ -5 Zkm] (7)

Many of the current works depend on pilot symbols to approximate the uplink channel
parameters and then utilize channel reciprocity to realize the prediction of downlink
channel weights [15,18]. These schemes for CSI prediction may not be reliable, especially
in cases of inadequate channel reciprocity owing to hardware constraints. Furthermore,
this kind of estimator may introduce estimation errors in case the uplink and downlink
channel parameters are not stationary within a certain transmission.

In the developed Q-learning procedure, we plan to get assistance from the pilot
symbols, and network information to explicitly predict the downlink channel parameters.
The set of estimated channel coefficients among BS and M UDs can be indicated as

H=[Hy; ...y ®)
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where H; is the predicted matrix channel coefficients between BS that contains N antennas
and ith UD, and can be expressed as follows:

H; = [ln;; hoi; ... hini] 9

where f1;; represents the predicted channel parameters between jth antenna at BS and the
ith UD.

2.2. MISO-NOMA Environment

The fundamental idea of NOMA is to achieve non-orthogonal resource allocation
between users while increasing the processing at the receiver side [19]. With non-orthogonal
resource allocation, NOMA can attain massive connectivity and accomplish higher spectral
efficiency. Existing research on the NOMA system mainly focuses on the code domain and
power domain. In the code domain NOMA, distinct spread-spectrum codes are designated
to different users and then multiplexed over the same time-frequency resource block.
In the power domain NOMA (PD-NOMA) [19], the transmitter superimposes signals
with different power levels to be sent to several users on the shared spectrum. At the
receiver, each user can decode his own desired signal by means of successive interference
cancellation (SIC).

In this subsection, the downlink MISO-NOMA system is explored where user devices
and BS are linked by different fading channels. NOMA cell is assumed where one BS with
two antennas is implemented to assist user devices (UDs), and each device terminal has
one antenna. In PD-NOMA [19], user devices receive the superimposed signal sent from
BS which involves target and interfering signals sent through the same resources. Thus,
combining different signals supported by unique power portions is critical to distinguish
signals and strengthen the successive interference cancellation (SIC) technique. The system
structure for the basic components implemented in the examined MISO-NOMA system is
shown in Figure 1.

UD;

i Y
Power
RL Channel
. SIC
=1 Allocation BS (% —| Predication [—* 1, t—s UD; Recovered Symbols
I

for UD;

Data Symbols X1 .
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Figure 1. MISO-NOMA system basic Structure based RL channel prediction.

In our observed MISO-NOMA cell, three user devices are considered in the cell, and
the examined user devices are identified corresponding to their fading channels and the
distances from BS. Fading channels with Rayleigh distribution are adopted to characterize
the channel model for every user. The user terminal at the boundary of the cell is realized
as a far user, while the nearest user equipment is designated as a near user terminal. The
examined cell contains three user devices and the fading path can be distinguished for

every user as follows [3]: hy, ~ (0, d, k) for near users, hy; ~ (0, dfﬂk) for the middle user,

and h o~ (0, d;k ) for the user at the edge of the cell, where h; implies a vector represents

the fading path coefficients among BS and user i. Path loss exponent is represented by k,

and AWGN is considered with noise power indicated as ¢2. In terms of channel gains, the
2

relation between user devices can be indicated as |k, |2 > |hm \2 > ‘h f‘ [20] and overall

power transmitted from BS to all users in the cell is labelled as P;. Every user device
contains a receiving element that can activate the SIC process to get rid of signals related to
other devices with bad channel environments. In contrast, signals related to user devices
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with good link conditions may not be separated and regarded as interference. According
to the aforementioned assumptions, the superposition-coded signal x sent from BS can be
stated as follows [3,17]:

x = VB + it + /1) (10)

where £ 1T and 77, represent power factors given for a far device, middle device, and
near device separately. Furthermore, x £ Xm and x,, refer to the signal vectors related to far,
middle, and near users respectively. The received downlink signal at a far device in the
MISO-NOMA cell can be shown as:

yf:thl +th2+Zf 11

where h; represents the channel coefficients among a far device and the 1st antenna at BS,
hs, represents the channel coefficients among the far device and 2nd antenna at BS and z
is AWGN noise component at the far device with mean zero and variance o2. The far user
is signified by weak link condition, and signal x; is usually given further power percentage
by BS where 7 £ > N > M The obtained signal at a far device can be formulated as:

yr= fo <hf1 -‘rhf2> + <Mxm + \/Tr]ﬂxn) (hfl -I-hfz) +zf (12)

The 1st term in (12) implies the target signal for far device and the 2nd term indicates
the interference term from other user devices. The possible bit rate for a far device could be
shown as [3,21]:

’hfl +hf2‘zpt’7f

Rf=log, | 1+ (13)

2
‘I’lf] +I’lf2) Pt(”?’l +77m) +0—2

Typically, the near user device has a good link status alongside BS, therefore, a low
power factor can be assigned to x;,, and the near user received signal can be stated as

Yy = / Peipnxn (hy + hi2) + (\/ Pripmxm + Pﬂ]fxf> (1 + hu2) + 2p (14)

In Equation (14), the 1st term represents the anticipated signal, and the 2nd term
implies interference from other devices. It can be noted from Equation (14), that the
interference can be principal since the far user may be assigned a further power percentage.
Thus, at a near device, SIC is accomplished, where direct decoding for the far user signal
xy is implemented first, then eliminated from the aggregate signal. After that, the middle
device signal x,;, is decoded and gets rid of it from the resultant signal and the possible rate
for a near user R,, can be shown as:

(15)

2
R, = log, (1 + W)

3. Optimization Problem Characterization

The key objective here is to maximize the sum rates for user devices in the MISO-
NOMA cell. Sum rate maximization is considered based on optimizing the power coeffi-
cients for each user terminal in compliance with the status of the channel between each
user and the BS. In downlink MISO-NOMA, the objective function or the sum rates for M
user devices can be formulated as [3,22]:

M 2

hiy + o *Pe

Roum = Y log, | 1+ —1 - M| Po 5 (16)
= hiy + hi|"Pe Y 1+ 0
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In the optimization problem, the constraints can be presented as follows:

3.1. Power Constraint

The power designated for every user device in the cell is a fraction of the whole power
Py sent from BS, therefore the power percentage for each device must conform with [22]:

M
Z i <1 17)
i=1

where 7; is the power percentage allocated for the ith user.

3.2. QoS Constraints

In our analysis, we consider that all the user devices in the examined MISO-NOMA
cell need to satisfy a QoS requirement where the minimum rate R,,;, is required to be
realised in the system [22,23], this constraint can be expressed as follows:

Log,(1+ SINR;) > Ry (18)

where SINR, is the signal-to-interference plus noise ratio for ith user and Ry, is the
minimum required transmission rate in the examined MISO-NOMA cell. The expression in
(18) can be redeveloped as follows [24]:

i—1
|hﬂ-%hﬂfp<ﬂi_(2&mi_1)2:7ﬁ> > (2Rmin — 1) (19)
j=1

where p represents the SNR and 7; is the power percentage given for jth user device.

4. Optimization Framework

The main aims in this part include the following: (1) present the objective function
and the constraints in a standard form, (2) find a general expression for the 1st and 2nd
derivative of the objective function, (3) based on the mathematical analysis and the derived
formulas, we can inspect that % is a negative function, which validates that the objective
function is a concave with distinctive global maximum, and (4) finally, we deduce the
optimal power factors for each user based on applying the Lagrange function and the KKT
necessary conditions.

On the basis of the objective function in (16) and the constraints in (17) & (19) and
the fact that there are two antennas at the BS and one antenna at each user terminal, the
standard optimization problem can be generally reformulated as follows [24,25]:

M ‘h,‘l +hi2‘2P[ Z};ll 77j+0’2 -+ |hi1 +h,‘2|2P[17,'
max Rgym = Z{log2 pp——1 5 (20)
U i hiv + hi|"Pe Y 1+ 0
such that y
Y <1
j=1

i-1
(2R — 1) = plhy + b <’7i — (2Rwin — 1) L ’7]‘) <0
=
7i>0 Vi=1,2,...,M

In this part, the power optimisation framework is accomplished with regards to
three user devices in the MISO-NOMA cell, therefore, the examined constraints can be
represented as shown [25,26]:

¥1(17) =n+tm+yr—1 (21)
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$ay) = (@5 1) plhgs + hpa| (7 — @0 = 1) o+ 7)) 22)
ga() = (2R — 1) = plitus + I * (1 — (28 1) (1)) (23)
Since the constraints ¢1(17), ¥2(17) & ¢3(17) are linear in terms of 7, they are considered

convex.
Typically, to prove that the objective function Rg,,,, is concave with a distinctive global

maximum, we need to find the first derivative 1;%”"’ and the second derivative 81375“"’ of
1

the objective function [3,24]. The first derivative of the objective function can be deuced in
general form as follows [23]:

R _ 1 | |athol?
day;  — In2 ]
i ! hxl+hi2‘zpt):}71 l7].+t72
_LMii (i Hgisr|*P) ik (24)
n2 ;
k=1 (’h(i+k)l+h(i+k)2‘zpl):}i}1( Vj+‘72)

% 1
('h(i+k)1+h(i+k)z ZPtZ}‘-i)fl ’1].+ffz)

Similarly, the second derivative of the objective function can be derived in general
form as follows [23,24]:

2
PRoym _ _ 1 (|mir+hia|*Pr)
617l In2
(

3
- Z {(‘h1+k1+h(z+k ‘ Pt> itk

2
2P 17.+172)

hir+hiy

2 (25)

(i TRy 2|2sz"+‘ 77/'+‘72>+‘h(i+k)1+h(i+k)2 2Py i)
2

('h(1+k)1+h(i+k)2 2Pyt 17]_+trz)

1
i+k—1 z
ZPt):;J:rf 77j+‘72)

(

hivin+he2

Based on the above mathematical analysis and the derived formulas, we can inspect

that ?? RSum

with a dlstmctive global maximum [3,24,27]. To derive the optimal power factors, the
Lagrange function and the KKT necessary conditions can be applied [28].

is a negative function, which verifies that the objective function is a concave

£<77n177m/7]fr }11,242,,143) = Rsum — a1 (1) — patp2(17) — patps(17) (26)

where p1 , yz, and p3 represent Lagrange multipliers for the 3 users’ scenario.

e  Optimality conditions can be written as follows [3,24,27]:

aRSum alPl (77) 8¢2(n) al/J3(77)

P 1 P M2 . — 3 I =0 (27)
aRSum alpl( ) al/)2(’7) alPS(U) —

M e Mm o M o Mm =0 @9
aRSum —u alpl (77) _ 81/12( ) alp3(’7) -0 (29)

aﬂf ! aﬂf 2 aﬂf s 817f
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2
Given the fact that |i,[> > |hy|* > ‘hf‘ , we can demonstrate that the analyzed

constraints are feasible [3] and after a few mathematical manipulations the closed form for
the power factors 7 1 s and 77, can be deduced as follows [27]:

2Rmin —1 1
= () 1 (0)
p‘hfl + hfz‘
_ [ (@Bmin—1) 2Rmin — 1 1
Mm = (( 2Rpmin ) < p‘hml-%—hmz\ ) ( 2Rpnin (1 + P‘hf]+hfz‘2)> (31)
n=1- (17m
= =g << 1| hpo | >+ ( ZR’”’”‘ 1 )) (32)
n (2Rmin ) (2Rmin)) p|hf1 +hf2 olhy, 1+hm2| p|hf] +hfz|2

5. Reinforcement Learning Framework

Typically, RL is developed on the basis of a Markov Decision Process (MDP) design,
that contains basic elements [29,30]: 