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Preface

The communication systems and networks landscape is rapidly transforming due to the

widespread use of mobile devices and growing data transmission demands. The ubiquity of mobile

devices, coupled with the popularity of their applications, has led to unprecedented data traffic

levels, presenting substantial challenges in managing infrastructure complexity and optimizing user

experiences.

In addressing these challenges, machine learning emerges as a promising solution. The

incorporation of machine learning, driven by powerful computing platforms, is posited to

introduce innovative problem-solving approaches in dynamic and heterogeneous communication

environments. This integration envisions making significant contributions to intelligent system

management and optimization through predictive capabilities and data-driven decision making.

This Topic endeavours to explore the intersection of machine learning and communication

research, presenting a collection of state-of-the-art contributions which underscore the potential

of machine learning as a catalyst for adaptive and intelligent communication. The manuscripts

presented in this Topic have undergone a rigorous peer-review process and have been selected

for publication in the Topic “Machine Learning in Communication Systems and Networks” by

various MDPI journals, including Applied Sciences, Sensors, Electronics, Photonics, Journal of Sensor and

Actuator Networks, and Telecom. Comprising twenty-one articles, including an editorial and twenty

research papers, this Topic offers insights into current challenges and innovative solution approaches

involving machine learning adaptation in mobile communication and networks.

Yichuang Sun, Haeyoung Lee, and Oluyomi Simpson

Editors
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Editorial

Machine Learning in Communication Systems and Networks

Yichuang Sun, Haeyoung Lee * and Oluyomi Simpson

School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
y.sun@herts.ac.uk (Y.S.); o.simpson@herts.ac.uk (O.S.)
* Correspondence: h.lee@herts.ac.uk

1. Introduction

The landscape of communication environments is undergoing a revolutionary trans-
formation, driven by the relentless evolution of technology and the growing demands of
an interconnected world. The proliferation of mobile devices, the rise of IoT applications,
and the deployment of 5G networks have ushered in an era where communication envi-
ronments are not only increasingly complex but also highly dynamic. With the capability
of 5G networks to support various forms of vertical integration, the landscape is poised
for diverse applications and enhanced connectivity across industries [1]. Furthermore,
even for 6G networks, the provision of ubiquitous and 3D coverage in the form of an
integrated space–air–ground–sea network is envisioned [2]. In this rapidly evolving tech-
nological ecosystem, the need for intelligent solutions to adaptively manage the intricacies
of communication systems is more pressing than ever [3]. As we stand on the cusp of
these transformative changes, the integration of machine learning techniques emerges
as a pivotal catalyst poised to revolutionize the way we address challenges and harness
opportunities in communication systems and networks [4].

Traditionally, communication systems heavily relied on model-based approaches,
wherein various components were meticulously modeled based on data analysis or mea-
surement data. While these model-based approaches have been successful, they face
challenges in accurately modeling dynamic and complex communication environments [5].
Machine learning (ML), capable of extracting characteristics and identifying hidden rela-
tionships, becomes a powerful tool in scenarios where traditional designs may falter due to
model mismatches [6]. Moreover, the data-driven essence of ML enables inference about
network traffic, service requirements, user behavior, and dynamic channels, leading to
improved resource provisioning and network operation [3]. ML, with its real-time adapt-
ability and ability to extract insights from vast datasets, promises to reshape communication.
The increasing volume and diversity of data in dynamic communication systems demand
innovative approaches for efficient operation and optimal performance. From predicting
environmental or system status changes to optimizing resource allocation and addressing
security threats [7], ML spans applications like intelligent traffic management [8] and
automatic reconfiguration in communication infrastructure [9,10].

In this editorial, we explore the intersection of ML and communication, unraveling
how these technologies synergize to meet current challenges and leverage opportunities in
our highly connected world. In the subsequent section, we provide concise summaries of
key points covered in the twenty articles collected in this Special Issue.

2. An Overview of Published Articles

In the dynamic realm of communication systems, achieving precise prediction and
estimation of communication channels is paramount for optimizing overall system per-
formance. The following five articles concentrate on leveraging ML techniques to ef-
fectively address the challenges of channel estimation. In the research conducted by
Gaballa et al. (Contribution 1), the primary focus lies in predicting channel coefficients for

Sensors 2024, 24, 1925. https://doi.org/10.3390/s24061925 https://www.mdpi.com/journal/sensors1
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users in the Non-Orthogonal Multiple Access (NOMA) system. Within the NOMA system,
these coefficients assume a critical role in optimizing power distribution at the base station
(BS) and streamlining the retrieval of desired data at the user end. The authors employ a
deep Q-network (DQN) approach for the BS, enabling it to learn an optimal channel predic-
tion policy. This policy is designed to maximize the sum rates for all users in the NOMA
network, leveraging pertinent information such as user states, user distance, channel path
loss, and power distribution. Similarly, the study by Gaballa et al. (Contribution 2) delves
into channel estimation in power domain NOMA systems. In this investigation, the predic-
tion of channel status information (CSI) is coupled with the determination of power factors
for each user, achieved through a Q-learning-based reinforcement learning (RL) approach.
In the study by Camana et al. (Contribution 3), the dynamic update of a radio environment
map (REM) is explored through the prediction of received signal strength indicator (RSSI)
values. The REM proves invaluable in detecting shadow areas with potential for improved
network planning and accurate indoor localization. In the study, devices exhibiting similar
signal strengths are grouped into clusters using the K-means algorithm, and the dynamic
REM update is then orchestrated through a random forest (RF)-based ML algorithm. This
model predicts RSSI values for each location, incorporating historical measurement data,
including user location and RSSI values. The ML model is designed for real-time updates,
facilitated by data collected from a mobile robot, ensuring a seamless and continuous
adaptation of the REM, effectively responding to alternations in the wireless environment.
The study by Phaiboon et al. (Contribution 4) focuses on path loss prediction within smart
agriculture sensor networks, aiming to provide effective coverage areas and system ca-
pacity. For challenging environments like plantations, where signal paths are obstructed
by trees and vegetation, the authors introduce an adaptive neuro-fuzzy inference system
(ANFIS) that combines fuzzy logic and neural networks to learn path loss. Utilizing path
loss measurement data and incorporating information such as sensor node distances and
antenna heights, the ANFIS model provides an efficient means of estimating path loss.
In the article by Ribouh et al. (Contribution 5), the focus is on identifying the distinctive
characteristics of the CSI of received signals in vehicular communication by employing
convolutional neural network (CNN)-based learning. The study aims to develop a model
capable of discerning a vehicles’ surroundings among five categories: rural line-of-sight
(LoS), urban LoS, urban nLoS (non-LoS), highway LoS, and highway nLoS. The ultimate
goal of this environment detection model is to empower autonomous vehicles to make
informed speed limit decisions based on their surroundings.

ML is expected to play an important role in the demodulation process of communi-
cation systems since it can adaptively learn and extract complex patterns from received
signals, particularly in dynamic and challenging environments. The following four articles
are dedicated to the integration of ML into the demodulation process. In the investigation
by Harper et al. (Contribution 6), automatic modulation classification (AMC) is used to
estimate the modulation scheme employed by the transmitter. AMC proves invaluable in
predicting the module schemes of a transmit signal when they are unknown. The authors
examine the impact of a variety of architecture changes and propose the design of neural
network (NN)-based AMC models. The scenario considered in the study by Zhang et al.
(Contribution 7) involves decoding low-density parity check (LDPC) codes. LDPC codes,
prevalent in modern communication systems on account of their extended code lengths
and versatile combinations, present challenges in decoding and coding blind recognition.
To address these challenges, the authors propose an architecture for coding the blind
recognition of LDPC codes using deep learning (DL), incorporating a cascade network
structure with denoising and blind recognition networks. This innovative approach en-
hances encoding performance even under poor signal-to-noise ratio (SNR) conditions. In
Lamilla et al.’s study (Contribution 8), the attention shifts to a coherent optical encoding
system. The authors introduce a robust coding algorithm based on laser intensity profile
recognition, utilizing support vector machine (SVM)-based ML for data symbol classifica-
tion and recognition. This strategy proves effective in mitigating the signal noise added
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to communication channels. While the above three articles focus on the decoding accu-
racy performance, the paper by Cho et al. (Contribution 9) considers how to improve the
decoding speed for short-length Reed–Muller (RM) codes. Acknowledging the simplistic
structure of RM codes and their potential use as control channels in wireless communi-
cation, the authors employ a revised auto-encoder scheme, a supervised ML technique,
to design an ML-based decoding scheme for faster decoding.

Intelligent resource allocation, empowered by ML, is capable of taking on complex
challenges related to the efficiency and adaptability of communication systems and net-
works. The integration of ML not only ensures the effective utilization of individual
resource domains but also facilitates the joint optimization of multiple resource alloca-
tions, elevating decision-making processes and overall system performance. The following
articles explore ML applications for intelligent resource allocation. The investigation by
Pu et al. (Contribution 10) focuses on optimal transmission channel selection in jamming
environments. Employing wideband spectrum sensing and Q-learning, the authors design
transmitters to dynamically adapt to jamming issues by learning effective channel selection
strategies, resulting in high success rates. In Ding et al.’s study (Contribution 11), they
employ ML in the routing optimization of low-Earth-orbit (LEO) constellation networks.
Satellite nodes, functioning as learning agents, dynamically adapt to changes in topol-
ogy and channel conditions. Through a collaborative multi-agent reinforcement learning
(MARL) framework, satellites share their learning experiences using Q-tables. The pro-
posed three-step routing approach involves neighbor node discovery, followed by offline
and online training to ensure that satellites swiftly acquire network link status and adjust
their routing strategies accordingly. In the article by Zhang et al. (Contribution 12), the au-
thors delve into the joint optimization of bandwidth and power allocation using multi-agent
learning. The proposed approach targets to maximize the system throughput by addressing
co-channel interference and ensuring adherence to quality of service (QoS) constraints.
Within a large-scale uplink system, individual users act as learning agents, each striving
for an optimal strategy in bandwidth and power allocation for their uplink transmission.
The collaborative learning process involves sharing users’ past training experiences, lead-
ing to the centralized training of all agents aligned with a common objective, maximizing
the system’s throughput. In Liu et al.’s work (Contribution 13), aerial edge computing
networks, comprising low-altitude aerial base stations (AeBSs) and a high-altitude node,
are considered. The study focuses on minimizing task processing delay and energy con-
sumption through the control of AeBSs’ deployment and computation offloading in this
two-level aerial network. Utilizing deep RL (DRL), the optimization of low-altitude AeBSs
and offloading strategies is carried out by considering factors such as their computational
capacity, the number of associated users, the number of computational tasks required by
users, and the channel gain with users. Sharing learning model parameters with a high-
altitude node, the proposed RL mechanism enables collaborative control among AeBSs,
while the high-altitude node serves as a global aggregator, improving training efficiency
within the federated DRL framework. In the study by Camana et al. (Contribution 14), a
DNN is applied to jointly optimize the beamforming vectors and power-splitting ratios in
a multi-input, single-output (MISO) simultaneous wireless information and power transfer
(SWIPT) system. The optimization objective is to minimize overall transmission power
while ensuring compliance with predefined requirements for energy harvest and minimum
data rate within the multi-user system.

ML could also offer benefits for communication network management, including
dynamic network configuration, network traffic analysis, and efficient resource alloca-
tion. In the article by Hamdan et al. (Contribution 15), Open RAN (O-RAN), recognized
for its potential in interoperability, scalability, and cost efficiency, is studied. Despite its
advantage, the intricate management of the O-RAN system poses challenges, and the
article conducts a thorough survey of current research endeavors while outlining research
opportunities about how to uses ML for network automation in O-RAN. In the paper
by Baek et al. (Contribution 16), ML is employed to monitor and analyze network traffic,
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providing benefits in various domains including traffic control, network security, and re-
source planning. The focus of this paper lies in web services, which are a combination of
multiple applications where various application traffic sflows can be intertwined within
service traffic. For web services, classifying traffic solely based on service units may lead to
high errors in misclassification. To tackle this challenge, a DL-based algorithm performing
multitask classification is proposed. This algorithm aims to classify application traffic by
considering the relationships between browser, protocol, service, and application tasks
within web services.

By leveraging data-driven insights, ML can be useful for service-specific decision making.
The following two papers consider distinct service contents, focusing on e-Health and vehicu-
lar communication, respectively. In the contribution by AlZailaa et al. (Contribution 17), the
emphasis is on addressing the real-time urgency inherent to critical tasks within e-Health
applications. Operating within hierarchical fog–cloud networks, the paper employs a sup-
port vector machine (SVM)-based ML approach to classify and schedule tasks efficiently.
A SVM-based task classification method is introduced, tailored for handling of latency-
sensitive critical tasks. Building upon task classification outcomes, the study devises a
task priority assignment and resource mapping algorithm. The overarching objective is
to minimize latency and enhance the overall resource utilization in fog–cloud networks.
In the work by Huang et al. (Contribution 18), the focus shifts to vehicular networks.
ML is harnessed for precise vehicle arrival time estimation. Employing support vector
regression (SVR)-based learning, the ML model incorporates factors like average vehicle
speed, weather conditions, time, and the real-time road traffic information from roadside
units (RSUs). Vehicles utilizing this learning algorithm predict their arrival times at specific
road sections, transmitting this information to the RSUs. The significance of these data lies
in their utilization by RSUs to efficiently manage bandwidth, particularly for supporting
reliable real-time video applications. When vehicle users compete for bandwidth, RSUs
leverage arrival information to prioritize services, optimizing overall user experiences by
offloading traffic to vehicle-to-vehicle (V2V) links.

The traditional approach to analyzing extensive datasets using ML involves centralized
ML models. However, the surge in data generation from diverse end devices and concerns
over privacy issues have sparked significant interest in federated and distributed learning.
Federated learning (FL) allows clients to cooperate to generate a global model without
sharing sensitive client data with a server. In the work by Seol et al. (Contribution 19),
the impact of statistical heterogeneity indicating non-independent and identical distribution
(non-IID) of the training datasets (generated by clients) is highlighted, which clients will use
for local training in an FL framework. A novel approach is proposed to reduce statistical
heterogeneity and dynamically control batch size and learning rate, aiming to enhance
FL performance. In the investigation by Bemani et al. (Contribution 20), the emphasis is
on understanding the impact of communication-induced noise during FL training on the
convergence and accuracy performance of the ML mode. The paper proposes the use of
analog over-the-air aggregation to effectively manage noise in communication channels,
ultimately contributing to improved convergence in ML algorithms.

3. Conclusions

This compilation of articles sheds light on the transformative impact of machine
learning on communication systems and networks. As evident from the diverse range of
contributions, ML not only enhances traditional aspects of communication networks but
also paves the way for novel applications and optimizations. The showcased articles empha-
size the role of ML in addressing intricate challenges, from intelligent resource allocation and
dynamic network management to efficient channel estimation and service-specific decision
making. The application domains span across e-Health, transportation, agriculture, and more,
highlighting the versatility of ML in shaping the future of communication technologies.

Despite significant strides, challenges in applying ML persist. The heterogeneity of
communication environments and the ever-evolving nature of network dynamics present
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ongoing hurdles. Issues related to the privacy, security, and interoperability of ML models
in communication contexts also call for further research. Additionally, the scalability and
adaptability of ML algorithms to handle the burgeoning volume of data generated in
real-time pose continuous challenges.

Looking ahead, collaborative efforts between the ML and communication technology
communities will be essential to address these challenges. Interdisciplinary research,
harmonization of data formats, standardization of ML methodologies in communication
protocols, and the development of scalable, privacy-preserving algorithms will be crucial
for the sustainable advancement of ML applications in communication environments.

Author Contributions: All authors contributed equally to this editorial. All authors have read and
agreed to the published version of the manuscript.
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Abstract: In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting
the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system
(PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks
(DQN) algorithm will be developed and incorporated into the NOMA system so that this developed
DQN model can be employed to estimate the channel coefficients for each user device in NOMA
system. The developed DQN scheme will be structured as a simplified approach to efficiently predict
the channel parameters for each user in order to maximize the downlink sum rates for all users in the
system. In order to approximate the channel parameters for each user device, this proposed DQN
approach is first initialized using random channel statistics, and then the proposed DQN model
will be dynamically updated based on the interaction with the environment. The predicted channel
parameters will be utilized at the receiver side to recover the desired data. Furthermore, this work
inspects how the channel estimation process based on the simplified DQN algorithm and the power
allocation policy, can both be integrated for the purpose of multiuser detection in the examined
NOMA system. Simulation results, based on several performance metrics, have demonstrated that
the proposed simplified DQN algorithm can be a competitive algorithm for channel parameters
estimation when compared to different benchmark schemes for channel estimation processes such
as deep neural network (DNN) based long-short term memory (LSTM), RL based Q algorithm, and
channel estimation scheme based on minimum mean square error (MMSE) procedure.

Keywords: DRL; DQN; Q-learning; LSTM; NOMA

1. Introduction

It can be noticed that the high energy consumption by the connected terminals in the
current wireless networks can create an essential challenge in designing the upcoming 6G
wireless systems [1]. Therefore, it is important to consider this energy consumption issue
in future wireless communication networks, and at the same time, we need to maintain
the required quality of service (QoS) for devices or services in that networks. Basically,
NOMA system utilizes a superposition coding (SC) procedure that involves multiplexing
different signals related to different users before transmission, which can contribute to the
energy efficient transmission scheme. Moreover, NOMA system can also be designated
to ensure the desired quality of service (QoS) levels for all superimposed user devices.
Numerous research efforts have been dedicated to NOMA system in order to find an
efficient strategy for different challenging tasks such as power allocation, beamforming,
and channel assignment [2].

Recently, many authors have investigated different machine learning algorithms
and artificial intelligence tools to optimize the resource allocation problems in NOMA
system [3]. Furthermore, reinforcement learning (RL) based Q-learning algorithm and
deep reinforcement learning based Q network (DQN) have gained a remarkable interest
among authors in various fields. The Q-learning algorithm is a subclass of reinforcement
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learning that depends on Q-tables to store the optimal Q-values for each state-action pair
in order to maximize the future reward in the system. Alternatively, deep reinforcement
learning-based Q network (DQN) algorithm is mainly dependent on adopting hidden
layers that can effectively enhance network convergence and system performance.

1.1. Related Works

In the context of optimizing communication systems, several works have employed the
Q-learning algorithm to enhance the performance of wireless networks based on different
perspectives. The work in [4] applied the Q-learning algorithm to introduce a framework
for enabling mobile edge computing in NOMA system. In [5], authors suggested a dynamic
reinforcement learning scheme for power allocation in order to jointly maximize the sum
rate and the spectral efficiency in MIMO-NOMA system when smart jamming is considered.
The authors applied the Q-learning algorithm to allocate a certain power level to each user
terminal, to mitigate the jamming effects.

Basically, by incorporating deep learning into RL, deep reinforcement learning (DRL)
can address the challenges associated with Q-learning in terms of Q-table storage. Based
on that, the work in [6] introduced a deep Q-network (DQN) to model a multiuser NOMA
offloading problem, while the work in [7], proposed a power allocation technique based on
deep reinforcement learning in cache-assisted NOMA system. Furthermore, authors in [8]
introduced a DRL based actor-critic algorithm to handle the dynamic power allocation
policy. Likewise, DRL based actor-critic algorithm was also applied in [9] to attain the
optimal policy for user scheduling and resource allocation in HetNets. In [9], the authors
designed the actor network in order to decide the policy that can select a stochastic action
based on Gaussian distribution, while the critic network role is to evaluate the value
function and guides the actor network to discover or learn the optimal policy.

Deep reinforcement learning was also introduced in [10] to arrive at a sub-optimal
power allocation scheme for an uplink multicarrier NOMA cell. The work in [11], con-
sidered a joint channel assignment and power distribution procedure in NOMA system.
Authors in [11], derived a near-optimal power allocation scheme by considering two users
per channel, and the channel assignment was performed using deep reinforcement learning
algorithm to boost the overall sum rate while the minimum rate for each user device
is considered.

1.2. Research Gap and Significance

Several machine learning (ML) algorithms have been suggested to clearly address
diverse issues in wireless networks such as channel assignment, beamforming, and power
allocation. Also, several RL algorithms have been proposed to handle the channel esti-
mation task in wireless communication systems. However, most of the current research
that covers the channel prediction task in the NOMA system is mainly dependent on deep
neural networks (DNN) which include some sort of complexity in the network structure.
Hence, in this work, we aim to introduce a deep reinforcement learning scheme based on a
simplified DQN approach to reduce the complexity structure and at the same time enhance
the channel estimation process. Furthermore, to the best of the authors’ knowledge, there
is no study that explores the utilization of deep reinforcement learning (DRL) based deep
Q network (DQN) algorithm for estimating the channel parameters for user devices in the
NOMA system. In addition, and to the best of the authors’ knowledge, there is no study
that has investigated the performance of NOMA system when both the DQN algorithm
that used as channel estimator and the optimized power scheme are jointly implemented
for user detection in NOMA system.

It is worth mentioning that unlike classical deep learning algorithms, which mainly
depend on learning from a training data set, the proposed DQN algorithm is developed
based on the LSTM network to adapt to the variations in the channel and to dynamically
enhance the system performance based on the interaction with the environment.
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1.3. Contributions to Knowledge

In this work, the contributions can be summed up as shown:

• A simplified DQN structure is proposed to demonstrate how RL based DQN algorithm
is developed to predict the channel parameters for each user in the NOMA cell in
Rayleigh fading channels.

• Investigate the combination between the RL algorithm and the LSTM model, to
compose the simplified DQN structure in order to be utilized as a channel estimator.

• Validate the efficiency of the proposed DQN scheme, by establishing different bench-
mark schemes for comparison. Three different simulation environments are estab-
lished as follows: (1) Channel prediction scheme based on standard minimum mean
square error (MMSE) procedure [12]; (2) Standard DNN based on LSTM network
for channel prediction applied in [13], (3) The RL based Q-algorithm for channel
prediction applied in [14]. The simulation outcomes of these benchmark schemes were
compared with the results of our proposed DQN model, and the results emphasized
that reliability can be guaranteed by our developed DQN algorithm for predicting
channel parameters even when the number of users in NOMA cell is increased.

• Simulate the impact of integrating the simplified DQN structure for channel prediction
and the optimized power scheme derived in [13] for the purpose of multiuser detection
in the power domain NOMA system.

The remainder of this paper is structured as follows. Section 2 describes the system
model. The Deep Reinforcement Learning Framework is presented in Section 3. The
Channel Estimation Based DQN Algorithm is discussed in Section 4. DQN Operation and
framework are discussed in Section 5. DQN Dataset Generation is introduced in Section 6.
Section 7 discusses the DQN Policy and Algorithm. DQN state space, action space, and
reward are introduced in Section 8. Detailed DQN Procedure and workflow are listed in
Section 9. Complexity analysis is also discussed in Section 10. The simulation environment
is described in Section 11, and simulation results are presented in Section 12. Finally,
conclusions are given in Section 13.

2. System Model

In a NOMA cell, numerous user devices can be served via the same resource block (RB)
by employing the power domain (PD) in both uplink and downlink transmissions. In this
paper, we are considering a downlink NOMA cell, where the BS can serve distinct types of
users or devices at the same time via different fading channels. At the transmitter side, the
BS can assign a specific channel or subcarrier to every set of user devices, and the signals
of these devices can be multiplexed using unique power levels. At the receiver side, each
user device will receive the desired signal beside the undesirable signals related to other
devices in the same channel that will be considered either as interference or noise. The
undesirable received signals will be considered as noise if the power level of the desired
signal is high, otherwise, these additional signals will be regarded as interference. To
decode the desired signal, each user device will use the successive interference cancelation
(SIC) procedure. The SIC technique will first decode the signal with the highest power level
and then subtract that signal from the principal signal, and this process will continue until
the desired signal is decoded.

Typically, before applying the SIC procedure at the receiver side, the channel param-
eters for each user need to be available or estimated to perform the equalization process.
Also, to calculate the data rate or channel capacity for each user, we need to calculate the
signal to interference plus noise ratio (SINR), and SINR itself includes the channel gain |hi|2,
where hi represents the fading channel between the BS and user device i. In the NOMA
scenario, the data rate Ri for user device i can be expressed as follows:

Ri = log2

(
1 +

PTαiηi

∑i−1
j=1 PTαjηi + 1

)
(1)
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where αi is the power allocation factor for user device i, and ηi is the channel to noise ratio
(CNR) for user i and PT is the total power assigned by the BS. The channel to noise ratio ηi
for user i, can be expressed as follows:

ηi =
|hi|2
σ2

n
(2)

where |hi|2 is the channel gain for user device i, and σ2
n is the noise power. In this work,

we are considering a downlink NOMA system, and the total number of devices in the
cell is N. In the NOMA cell, all signals related to the N devices are combined, and the BS
will transmit this composed signal to all users in the cell. The composed signal X can be
represented as follows [15]:

X =
N

∑
i=1

√
PTαixi i = 1, 2, . . . ., N (3)

where xi is the desired signal for user device i. The composed transmitted signal X can
be received at the receiver side of each user terminal, with path loss and Additive White
Gaussian noise (AWGN), hence the received signal Y can be represented as

Y =
N

∑
i=1

√
PTαihixi + n i = 1, 2, . . . ., N (4)

where hi is the fading channel between BS and user device i and n denotes the AWGN
component. After receiving the composed signal and estimating the channel parameters,
the receiver at each user device will activate the SIC procedure to decode the desired signal.
In PD-NOMA, distinct power levels will be given to user terminals in the cell, and the
highest power level will be given to the user device with the lowest CNR, while the lowest
power level will be given to the user device with the highest CNR. Therefore, if user devices
have the following CNRs:

η1 > η2 > . . . . > ηN (5)

Then, these user devices will be assigned power levels as follows:

P1 < P2 < . . . . < PN (6)

The SINR for user device i can be represented as shown:

SINRi =
PTαiηi

∑i−1
j=1 PTαjηi + 1

i = 1, 2, . . . ., N (7)

The BS can allocate power Pi to any user terminal as shown in the following expres-
sion [15]:

Pi =

(
PT −

(
i−1

∑
j=1

PTαj

))
≥ Pth (8)

The expression in (8), can be interpreted as follows: for proper achievement for the
SIC process, the user device with low CNR must have a higher power level than the sum of
power levels for other devices that have high CNR.

Based on the aforementioned analysis, in what follows we will consider the scenario
for three users downlink PD-NOMA system, and we will provide some sort of mathematical
analysis for the achievable capacity for each user when both perfect SIC and imperfect SIC
are applied [16]. As indicated before, BS can send the superposition coded signal X which
can be expressed as

X =
√

Pt

(√
αnxn +

√
αmxm +

√
α f x f

)
(9)
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where αn, αm, and α f are the power factors allocated to the near user, middle user, and far
user, respectively. Likewise, xn, xm, and x f denote the desired symbols related to the near,
middle, and far users respectively. Hence, the signal received at far user can be represented
as follows:

y f = Xh f + n f (10)

where h f represent the fading channel among BS and the far user, while n f represents the
AWGN noise component at far user with zero mean and σ2 variance. The received signal
at far user can be expressed in details as follows:

y f =
√

Ptα f x f h f +
√

Pt(
√

αmxm +
√

αnxn)h f + n f (11)

The 1st term in (11) represents the desired signal for far user, but the 2nd term denotes
the interference term from the middle and near users. Far user is usually described by
poor channel condition and his particular signal x f can be assigned additional power by BS
compared to other users. Thus, according to the SIC scheme, far user can directly decode his
own signal x f from received signal y f . The possible rate for far user R f could be expressed
as follows:

R f = log2

(
1 +

η f Ptα f

η f Pt(αn + αm) + 1

)
(12)

Likewise, the attainable bit rate for the middle user Rm in the case of perfect SIC, can
be expressed as follows:

Rm = log2

(
1 +

ηm Ptαm

ηm Pt(αn) + 1

)
(13)

Typically, the user near the BS has a good channel condition; therefore, his signal xn is
usually assigned low power level. Therefore, at near user side when perfect SIC is applied,
firstly immediate decoding for far user signal x f is accomplished, then it is removed from
the composite signal. Next, the middle user signal xm is decoded and removed from the
remaining signal. Finally, the near user achieved rate Rn can be expressed as follows:

Rn = log2(1 + ηn Ptαn) (14)

In the case of imperfect SIC, the attainable bit rate for the middle user can be
expressed as:

Rm = log2

⎛⎝1 +
ηm Ptαm

ε ηm Pt

(
α f

)
+ ηm Pt(αn) + 1

⎞⎠ (15)

where ε ηm Pt

(
α f

)
represents the error residual term from far user signal decoding. Like-

wise, the attainable bit rate for the near user in case of imperfect SIC can be expressed as:

Rn = log2

⎛⎝1 +
ηn Ptαn

ε ηn Pt

(
α f

)
+ ε ηn Pt(αm) + 1

⎞⎠ (16)

where ε ηn Pt

(
α f

)
is the error residual term from far user signal decoding and ε ηn Pt(αm)

is the error residual term from middle user signal decoding.

3. Deep Reinforcement Learning Framework

In this section, we will introduce the concept of deep reinforcement learning (DRL),
which is a special case of reinforcement learning procedure [17,18]. Reinforcement learning
is a fork of machine learning, where an agent interacts with the environment to carry
out the best sequences of actions that can maximize the expected future reward in an

11



Sensors 2023, 23, 9010

interactive environment. Generally, reinforcement learning can be classified as single-agent
or multi-agent based on the quantity of agents in the environment. In the scenario of a
single agent RL, the agent needs to recognize the entire states in the environment and the
decision-making task can be modeled as a Markov decision process (MDP) framework. In
this work, our proposed DQN structure assumes a single agent, and the best sequence of
actions that can be chosen by the agent will be generated based on the adopted deep neural
network (DNN).

The fundamental elements in the deep reinforcement learning (DRL) algorithm can be
listed as follows [14,18]:

1. Observations: the continuous measurements of the properties of the environment,
and all of the observed properties in the environment can be included in the state
space S.

2. States: the discret observation at time step t can be denoted as state st ∈ S.
3. Actions: an action at is one of the valid decisions that the agent can select at time step

t from the action space A.
4. Policy: a policy denoted by π(.), is the criteria that control how to select a certain

action at any given state while interacting with the environment.
5. Rewards: the immediate reward rt, is obtained after an agent carries out a specific

action at in a given state st, which leads to moving to a new state st+1.
6. State-action value function: denoted by Qπ(s, a), and represents the expected dis-

counted reward when the agent starts at a certain state st and selects a specific action
at based on the policy π.

In the DQN framework, when an agent selects an action at at a given time step t, the
agent’s state will change from the current state st to the subsequent state st+1 and as a result
of this transition, the agent will receive an immediate reward rt from the environment.
Based on that scenario, the network can generate an experience tuple e = (st, at, rt, st+1)
that can be stored in the experience replay buffer D. The primary target of the agent in
RL scheme is to maximize the long-term cumulative discounted reward Rγ

t , which can be
defined as follows [14,18]:

Rγ
t =

∞

∑
i=0

γirt+i (17)

where γ is the discount factor. To enhance the Rγ
t , an optimal policy π∗ is essential to map

the best actions to states. In other words, the optimal policy π∗ can significantly assist the
agent in deciding which action should be selected at any given state, to satisfy the optimal
long-term cumulative reward. Typically, the state action Q-value function is defined as the
expectation of the cumulative discounted reward Rγ

t . Overall, we can notice that based on
the current state st, the considered policy π, and the selected action at, the state-action Q
value function can be further expressed as follows [14,19]:

Qπ(st, at) = E
[
Rγ

t |st , at
]
= E

[
∞
∑

i=0
γirt+i|st , at

]
= E[rt + γQπ(st+1, at+1)|st , at]

(18)

where E[ .] denotes the expectation parameter. When the optimal policy π∗ is applied for
maximizing all states and action pairs, then the optimal Q-value function Qπ∗(st, at) that
follows the optimal policy π∗ can be expressed as follows:

Qπ∗(st, at) = E[rt + γQπ∗(st+1, at+1)|st , at] (19)

The expression in (19) is known as the Bellman equation. The benefit of the Bellman
equation is to represent the state-action Q-value function into two components: the instan-
taneous reward rt and the long-term discounted reward. However, the Bellman equation
is nonlinear, and hence, there is no closed form solution to it. As a result, an iterative
procedure such as the Q-learning algorithm has emerged to converge the Bellman equation
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to obtain the optimal Q-value function [18,19]. On the other hand, the computation of the
Q-learning algorithm may become more complex in multi-user environments that have
huge state and action spaces, and as a result, the size of the Q-table will be extremely large.
Hence, the regular solution to this limitation is to estimate the Q-values using a function
approximator, by adopting hidden layers, which is the core component in our developed
deep Q network.

The basic DQN architecture is shown in Figure 1, and it consists of three main phases:
The first phase represents the input layer that includes the current states of the environment.
The second stage includes the hidden layers that act as a function approximator. Mainly
in the hidden layers, the Rectified Linear Unit (ReLU) activation function is applied to
compute the hidden layer values. The primary gain of utilizing ReLU as an activation
function is the computational efficiency [20], which may lead to faster convergence. At
the end phase, the output layer is responsible for predicting the optimal state-action value
function, Qπ∗(s, a, Wt), where Wt is the updated weights of the hidden layers at time
instant t.

Figure 1. DQN basic structure with two hidden layers.

4. Channel Estimation Based DQN Algorithm

In this section, the simplified DRL structure will be introduced, and Figure 2 illustrates
the architecture of the simplified DRL scheme that mainly relies on the DQN algorithm
and LSTM network to achieve the most appropriate performance. The DQN network
will be trained, and the weights of the hidden layers will be updated to approximate the
state-action value function Qπ(s, a). As indicated in the aforementioned discussion, each
experience tuple is described as et = (st, at, rt, st+1), and all experience tuples will be stored
in an experience replay buffer D = {e1 e2 e3 . . . et}, and these experience tuples can be
utilized to train the DQN using the gradient descent algorithm [21]. It is optimum for the
DQN algorithm to exploit all available experience tuples in each training iteration, but this
will be costly when the training set is huge. A more effective procedure is to update the
DQN weights in each iteration using an arbitrary subset from the replay buffer D, and
this subset is described as a mini batch. Based on the architecture of the proposed DQN
structure shown in Figure 2, it can be noticed that the loss function can be computed based
on the difference between the output of the target DNN and the output of the policy DNN.
Hence, the loss function can be defined as follows [18,19]:

L(W) = ∑
e∈D

(
rt + γ maxQπ∗

(
st+1, at+1, Ŵ

)− Qπ∗(st, at, W)
)2 (20)
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where L(W) denotes the DQN loss function for a random mini batch sampled from the
replay buffer D at time slot t and Ŵ represents the nearly static weights in the target DNN
and these weights are mainly updated every T time steps. To minimize the loss function
L(W), the weights W of the policy DNN will be updated every t time step using a stochastic
gradient descent (SGD) algorithm applied on a batch of random samples selected from the
replay buffer D. Typically, the SGD algorithm can update the weights of the policy DNN
W in an iterative process with a learning rate of μ > 0 as follows [21]:

Wt+1 = Wt − μ ∇Lt(Wt) (21)

Figure 2. Proposed DQN Architecture.

5. Proposed DQN Operation and Phases

Phase 1: Initialization and generation of training data

1. Perform a few random actions with the environment to initialize the experience
replay data.
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2. Initialize the weights for the policy DNN and copy these weights to the Target DNN.
3. Starting with the first time step,

• Based on the initial interaction with the environment, random states can be
generated to be used as input for the policy DNN.

• The policy DNN will predict the Q-values for all actions that can be decided in
the current state, and then those Q-values will be inspected to select or identify a
certain Q-value based on the most suitable action.

• Based on the selected and executed action, the experience replay will receive the
reward and move to the next state.

• The experience replay will store the results in the replay buffer.
• Each result will be considered as a sample training data, that can be later used as

training data.

Phase 2: Select a random batch for training

1. Select a batch of random samples from the replay buffer and use these samples as an
inputs for both the policy DNN and the target DNN.

2. From the random sample, use the current state as input to the policy DNN.
3. The policy DNN can predict the Q-values for all actions that can be performed in the

current state.
4. Based on the decided or selected action, the policy DNN will identify the predicted

Q-value.
5. The next state from the selected random sample will be used as input to the Target DNN.
6. The Target network will predict the Q-values for all actions that can be performed in

the next state, then the Target DNN will select the maximum of those Q-values.

Phase 3: Get the Target Q-value

1. The Target Q-value can be decided based on two components

• The immediate reward from the environment
• The max Q value that has been predicted by the target DNN in the next state

Phase 4: Compute the Loss function

1. Compute the loss function between the Target Q value and the predicted Q Value in
terms of mean squared error (MSE).

Phase 5: Back-propagate the Loss function

1. Back-propagate the loss in order to update the weights of the policy DNN using SGD.
2. At this stage, the weights of the Target DNN are not updated and remain fixed, and

this completes the processing for this time step.

Phase 6: Repeat for next time step

1. The process will be repeated for the next time step.

• The policy DNN weights have been updated but not the Target DNN.
• This allows the policy DNN to learn to predict more accurate Q-values, while the

weights for the target DNN remain fixed for a while.

2. After T time steps, copy the policy DNN weights to the Target DNN. This step will
enable the Target DNN get the updated weights so that it can also predict more
accurate target Q-values.

Long-short term memory (LSTM) network is a developed design from the recurrent
neural network (RNN), which can inspect long-term dependencies and has the ability to
remember previous information for future usage. The LSTM network has a chain structure
consisting of multiple LSTM cells and the proposed DQN structure shown in Figure 2 is
clearly adopting the LSTM network as the DNN hidden layers. The DNN based LSTM
in Figure 2 is mainly consists of four layers, and each layer contains several neurons,
and the weighted sum of each neuron will be the input to an activation function. In our
proposed DQN approach, the length of each training sequence is specified as L, which is
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the dimension of the input layer. In our scenario, we choose the input layer of the DNN to
include 128 neurons, and the input states to the input layer will be shifted to the subsequent
layer after updating the weight parameters [13,22].

As shown in Figure 2, we have applied one LSTM layer as the second layer in both the
policy DNN and the target DNN, and the LSTM layer itself includes 300 hidden cells. For
each hidden cell, the learnable weights are specified as follows: the input weights W, the
recurrent weights R, and the bias b.

The third layer in both the policy DNN and the target DNN is a fully connected layer
that processes the outputs of the LSTM layer, and it assembles all of the characteristics
and internal information gathered by the prior layers. The fully connected layer behaves
separately at each time step, and all neurons in a fully connected layer are connected to all
the neurons in the previous layer.

The last adopted layer in both the policy DNN and the target DNN is the regression
layer, which is responsible for computing the mean square error (MSE), improving the
cell status, and updating the cell weights. A regression layer can also predict the response
of the trained network. It is worth mentioning that normalizing the training data in the
LSTM network enables the stabilization and acceleration of the training process for neural
networks. It is shown in Figure 2, that in the simplified DQN structure, the input states
are established according to the size of the input layer, then these states will be passed
into both the policy DNN and the target DNN and the state action value functions will be
predicted at the output.

The design of a single LSTM cell is basically shown in Figure 3 [13,22]. Each LSTM
cell has three inputs and two output parameters. The hidden state ht−1 and the cell state
ct−1 are the shared parameters between inputs and outputs and the other parameter is the
current input. The LSTM cell also includes three sigmoid functions and two tanh functions
to regulate the flow of information. In the initialization stage, random hidden states will be
generated along with the input for the first LSTM cell. Then the current outputs that include
the current hidden state ht and current cell state ct and the new input xt will comprise the
three inputs to the next cell.

Figure 3. LSTM Cell Structure.

6. DQN Dataset Generation

Typically, the DQN framework involves an agent, a deep neural network (DNN), and
the environment. The agent will interact with the environment via the DNN and decide
which action to take. In our proposed DQN framework, the BS will be considered as an
agent, and it will interact with the environment, which includes the user devices and fading
channels. At the start, the agent (BS) will start exploring the environment to collect the
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information or the states for each user device in the cell, such as power distribution, user
distance, channel model, and path loss [23,24].

Typically, at each time step t, and based on the current state st for each user device,
the agent can decide on a certain action at using the DNN to maximize the sum rates for all
users in the NOMA network. Accordingly, the agent (BS) will receive an instant reward
rt and move to the next state st+1 in the environment. By taking decisions on actions, the
agent (BS) can learn more about the environment to achieve an optimal channel prediction
policy πc. In our scenario, we aim that this optimal policy πc for predicting or estimating
the channel parameters for each user device can be learned and updated at each time
step t via the simplified DQN structure illustrated in Figure 2. Furthermore, the agent
(BS) can further enhance the policy πc by repeating the channel estimation process for
multiple episodes. Based on the proposed DQN architecture shown in Figure 2, it is clearly
noticed that the DNN based LSTM replaces the Q-table to estimate the Q-values for each
state–action pair in the environment, and this designed DNN can be considered as the
policy controller for the channel estimation procedure.

7. DQN Policy

The period of time in which the agent interacts with the environment via the proposed
DQN scheme is termed an episode, and every episode has a total duration of T time steps.
At each episode, the main aim is to estimate the channel parameters for each user in order
to maximize the sum rates for all users in the NOMA cell. In our simplified DQN approach,
the dimension of the input layer for the DNN based LSTM is set equal to the available
states in state space S for each user, and correspondingly the dimension of the output
layer is equal to the number of possible actions in the action space A for each user. As
indicated in Figure 2, The LSTM layer, and the fully connected layer are both comprising
the hidden layers part of the proposed DQN model, and this may provide a reasonable
balance between the network performance and computational complexity. Typically, the
Q learning procedure is considered an off-policy algorithm, which means that without
applying any greedy policy, the Q algorithm can iteratively estimate the best action for
maximizing the future reward. In our developed DQN algorithm, we decide to apply a
near-greedy action selection policy, that has two approaches as shown in Figure 4 [25]:

Figure 4. Near-greedy action selection scheme.

The first approach is the exploration, where the agent discovers and carries out
random actions at a time step t. The second approach is the exploitation, where the agent
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can decide on an action to maximize the state-action value function Qπ(st, at, Wt) based on
the previous experience and the current network weights.

In our proposed near-greedy action selection policy, the agent has an exploration
rate of ε and an exploitation rate of (1 − ε) where 0 < ε < 1, and ε is considered a
hyperparameter that can control the trade-off between exploitation and exploration during
the training process. Hence, based on that designated action selection policy, the agent (BS)
can select an explicit action at at a given state st at every time step t and correspondingly,
the agent can receive a positive or negative reward and move to a new state st+1.

8. DQN State Space, Action Space, and Reward

Initially, the distance between each user device and the BS and channel path loss needs
to be specified in the dataset to facilitate the random generation of the channel coefficients
for every user in the examined NOMA system [13,14,22]. In addition, pilot symbols will be
created, transmitted, and identified at both the BS and at the receiver side of each device to
also assist in the initial channel parameters estimation process. As well, the power factor
for each device in the NOMA cell needs to be initially assigned in the dataset. To set up
the Q values, the channel parameters for every user device in the cell can be initialized
either using the random generation of the channel parameters based on the path loss and
the distance or using the pilot symbols. In our simplified DQN algorithm, we initialize
the channel parameters based on both schemes, the random generation and pilot symbols.
Throughout the DQN algorithm iterations, the Q-values will be predicted according to the
DQN algorithm procedure.

As previously mentioned, in our channel estimation procedure, we need to efficiently
predict the channel parameters for each user device in the examined NOMA cell to facilitate
the maximization of the sum rates for all users in the considered NOMA system at each
time step t. Hence, the state space S can be created to include the following states:

(a) The current power factor αi for each user in the NOMA cell,
(b) The current user distance di that represents the distance between BS (agent) and the

user device i.
(c) The present channel path loss ϕ.

Accordingly, the resultant state space S for N users NOMA system can be represented
as [13,14,25]

S = {α1 α2 α3 . . . αN d1 d2 d3 . . . dN , ϕ } (22)

For each user, all the actions that can be chosen by the agent (BS) can be selected from
action space A. In our scanario, the possible actions in the action space A can be introduced
as follows:

(a) Change the distance of the user device within a limited range of 5 m.
(b) Increase or decrease the power distribution factor αi by a certain step size of 0.05.

The reward function also plays an principal role in the DQN algorithm, and there are
many ways to assign the rewards based on the selected action. In our developed DQN
scenario, we decided to calculate the rate for each user in the NOMA system using (1),
to reflect the immediate reward r returned from the environment to the agent (BS) after
choosing a certain action at at state st. Hence, based on the selected action, if the calculated
data rate is higher than a specified threshold Rth, this will reflect a positive reward for the
agent, while a lower data rate will reflect a negative reward. Based on the aforementioned
discussion, Algorithm 1 can summarize the algorithm steps for estimating the channel
parameters for each user in the NOMA cell, based on our simplified DQN structure.
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Algorithm 1 Proposed DQN Algorithm for channel parameters estimation

1. Initialize policy DNN and target DNN networks with random weights (W, Ŵ).
2. Initialize experience replay memory (ERM).
3. Randomly generate the exploration rate ε.
4. for each episode do
5. for each step do
6. for each user device do based on ε, and based on the current state si,

Select the channel parameters and add to action space ai
7. end for
8. Observe the immediate rewards ri and move to the next state st+1.
9. Insert (si, ai, ri, st+1) in experience replay memory (ERM).
10. Create a mini batch with random sample of tuple (si, ai, ri, st+1) from ERM.
11. for each tuple in mini batch do
12. Predict the Q-values using policy DNN.
13. Approximate Q∗ values using target DNN.
14. Calculate the loss between Q∗ values generated from Target DNN and Q values generated

from Policy DNN.
15. Update the weights W of the policy DNN using SGD.
16. end for
17. end for
18. Ŵ ← W after a certain number of T steps.
19. end for

9. Detailed DQN Procedure and Workflow

In this section, we can list the detailed workflow for the developed DQN algorithm
that is responsible for estimating the channel parameters for each user in the examined
NOMA system:

• Initialize the weights for both the policy DNN and the target DNN.
• Initialize the ERM with a typical size of 10,000 (it can be 106).
• Initialize the ε parameter for near-greedy action selection policy with a large value of

ε = 0.999 (start by exploration then decay).
• Initialize data records (tuples).

(a) Generate a random channel coefficients based on the fading model parameters
with size = 120).

(b) Based on the pilot symbols, approximate the channel coefficients with size = 8).
(c) For each user, both the randomly generated channel parameters and the coef-

ficients generated based on the pilot symbols will be combined and used as
initial channel parameters.

• Assign initial distance, initial power factor, and path loss, and prepare the state space
S for each user.

• Select a random state st from the sate space and used it as an input for policy DNN.
• The policy DNN will select a random action and correpondigly select a random

Q-value, and based on this step, the policy DNN can predict the channel coefficients.
• Calculate the rate, and based on the calculated rate the reward can be assigned.
• Go to the next state st+1
• Compose a tuple e1 = (st, at, r, st+1)
• Store a tuple e1 in ERM.
• Generate experience tuples = 1000, and store these tuples in ERM.
• Select a random batch of the tuples from ERM with batch size 32 tuples.
• Number of episodes = 20, and number of steps = 104

• For each tuple in the random batch do the following:

(a) From the policy DNN, select the Q-values (channel coefficients) randomly.
(b) From the Target DNN select the Q-values based on the greedy policy
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(c) Assign the Reward.
(d) Calculate the Loss function as follows: (Target Q-value (Reward + Qmax value)

− policy Q-value).
(e) Update the weights of the policy DNN based on the SGD.

• Every T = 102 steps, copy the weights of the policy DNN to the Target DNN.
• Activation functions used in LSTM layers are (sigmoid and tanh), while activation

functions used at the output layer are (linear or Relu).
• SGD optimizer is utilized for weight updates.

10. Complexity Analysis

It is important to quantify the computational complexity of the proposed algorithm.
Overall, deep learning algorithms are mainly dependent on hyperparameters, hence,
applying analytical methods to guarantee the convergence of the proposed DQN algorithm
usually has some sort of difficulty. Hence, it is a common challenge in literature to prove
the optimality and convergence of the algorithm in an analytical way [26–28]. Alternatively,
in this section we can focus on showing the amount of work per iteration in the developed
DQN algorithm. For the NOMA system with N users and K base stations, the computational
complexity of the proposed DQN algorithm can be introduced as follows: it is known
that the size of the state space is denoted by S and the size of the action space is denoted
by A and both have a significant role in the complexity of the deep Q-learning algorithm.
Following [14,29], the computational complexity of the Q-learning algorithm with the
greedy policy is estimated to be O(S × A × M) for each iteration, where S is the number
of states, A is the number of actions, and M is the number of steps per episode. In our
proposed DQN scenario, it can be shown that the size of the state space is K + N, and the
size of the action space is 2(K + N). Therefore, the amount of the work per iteration can be
described as follows O((

2K2 +×4NK + 2N2)× M
)
. According to [12], the corresponding

computational complexity for the traditional channel estimation method based on MMSE
procedure can achieve a relatively low complexity O(

N2.37) [12,30] but at the cost of
performance degradation. Based on the aforementioned analysis, it can be shown that the
developed DQN algorithm has some sort of complexity but at the cost of performance
improvement as will be verified in the simulations results.

11. Simulation Parameters and Environment

Discussion for the simulation parameters and settings is described in this section. The
simulated downlink NOMA system includes three distinct user devices and one BS. The
BS is equipped with a single antenna and each user device in the cell is also equipped with
a single antenna. In the simulated NOMA environment, the modulated signal related to
each user in the downlink transmission will be superimposed and transmitted by the BS
to each user device via independent Rayleigh fading channels, and the path loss is set to
3.5. At the receiver side, we assume that a perfect SIC procedure is applied and AWGN is
considered and the noise power density is set to N0 = −174 dBm/Hz.

MATLAB simulation tool is employed to realize the following: (1) inspect, characterize,
and evaluate the performance of the proposed deep reinforcement learning based DQN
algorithm which developed to be utilized as a channel estimator in the examined NOMA
system, (2) Diverse performance metrics will be measured to evaluate the efficiency of
the proposed DQN algorithm when being utilized in the channel estimation process.
Simulations are accomplished with 104 iterations, and limited pilot symbols are generated
and recognized at the BS and each user device to assist in the estimation process. The main
simulation parameters can be summarized as shown in Table 1.
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Table 1. Summary of Simulation Parameters.

Parameter Value

Simulation Tool MATLAB

Modulation type QPSK

Number of Users 3, [2–20]

System Bandwidth B 1000 kHz

Fading distribution Rayleigh

Path loss ϕ 3.5

Number of Iterations 104

Noise PSD N0 −174 dBm/Hz

Learning Rate α 0.01

Discount factor γ 0.9

Batch size 32

Initial exploration rate ε 0.999

Optimizer SGD

Rth 2 b/s

The simulation figures are created based on the assumption that the channel param-
eters for each user will be estimated based on the simplified DQN algorithm. Therefore,
in order to examine the impact of utilizing the proposed DQN approach, the channel esti-
mation technique based on standard minimum mean square error (MMSE) procedure [12]
is also simulated for the sake of comparison. As indicated in Section 9, initially both the
randomly generated channel parameters and the channel coefficients generated based on
the pilot symbols will be combined and used in the simulation environment, to model the
Rayleigh fading channel. In our developed DQN algorithm, at the end of each training
episode, the predicted Q(s, a) values generated from the policy DNN will be employed as
an approximated channel coefficients for each user device to recover the desired signal.
Different power factors are initially assigned for every user device according to the current
distance from the BS and the present channel condition. Power factors αn, αm, and α f
are assigned for near, middle, and far users, respectively. In a fixed power allocation
setup, we initially assign α f = 0.65, αm = 0.3, and αn = 0.05. In the simulation files,
the transmission distance for every user device with respect to BS is initially defined as
follows: d f = 1000 m, dm = 500 m, and dn = 100 m. User data and pilot symbols are
modulated using the Quadrature phase shift keying (QPSK) modulation format and the
applied transmitted power range is set to vary from 0 to 30 dBm for many reasons, firstly, to
match with the benchmark environments that simulated from the literature, secondly, most
of the simulation environments are applying this classical range, and thirdly, on average,
the performance metric behavior can be certainly predictable after 30 dBm power level.

12. Simulation Results and Analysis

Simulation results that describe the comparison between the proposed DRL based
DQN algorithm and the MMSE procedure when both being utilized to estimate the channel
parameters for each device are shown in Figure 5 in terms of BER versus power. The
estimated channel parameters using both procedures will be employed for the signal recov-
ery for each user and the simulated results are generated where a fixed power allocation
scheme is considered. It is clearly noticed that when the developed DQN algorithm is
applied for predicting the channel parameters, each user device in the examined NOMA
cell shows the ability to provide a visible enhancement in lowering the BER compared
to the MMSE technique. As an example, at a particular transmitted power of 20 dBm,
the realized BER value for far user device using the MMSE procedure is 10−1, while the
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achieved BER in the case of DQN is 10−2. Similarly, the improvment in the BER for middle
and near user devices is obviously observed when the simplified DQN algorithm is applied
compared to the MMSE procedure.

Figure 5. BER vs. power (DQN—MMSE).

In terms of the outage probability against applied power, Figure 6 illustrates the
simulation results for the inspected user devices in NOMA cell when both the simplified
DQN algorithm and the standard MMSE technique are implemented separately as a channel
estimators. Similar to BER results, all user devices simulation outcomes indicate about
10 dBm enhancement in the power saving when the proposed DQN algorithm is applied
compared to the MMSE technique. The reduction in the power transmitted also supports
the improvement achived in minimizing the outage probability when the DQN algorithm
is adopted. These visible improvements verify the advantage of usage the simplified DQN
scheme as a channel estimator compared to the traditional MMSE procedure.

Figure 6. Outage Probability vs. power (DQN—MMSE).
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Figure 7 presents the simulation results for the attainable capacity for each user in
the examined NOMA system when both the simplified DQN algorithm and the standard
MMSE channel estimation procedures are applied separately. The achieved rate for the near
device shows significant enhancement by about 20 bit/s/Hz compared to far and middle
users’ rates. The dominance of the near user in terms of the possible rate may be justified
by the stable channel condition for the near user compared to other users in NOMA system.
Moreover, the results indicate that the proposed DQN algorithm still can deliver a stable bit
rate compared to the MMSE technique for far and middle users’ scenarios, and this slight
improvment can be justified by the interference factor and inadequate link conditions for
far and middle users.

Figure 7. Achievable rates vs. power (DQN—MMSE).

In Figure 8, three distinct channel prediction schemes are investigated here as a bench-
mark comparison: (1) standard minimum mean square error (MMSE) procedure for channel
estimation [12]; (2) DL based LSTM network for channel prediction applied in [13]; and
RL based Q algorithm for channel estimation applied in [14]. Figure 8 displays the simu-
lation outcomes for the sum rate for all user devices in the examined NOMA cell versus
the applied power. It is apparent that the developed DRL based DQN algorithm shows
superiority over the standard MMSE procedure approximately by more than 20 bit/s/Hz.
Furthermore, the simplified DQN algorithm shows an improvement over the DL based
LSTM procedure presented in [13] by nearly 10 bit/s/Hz. For the third benchmark applied
in [14], the simplified DQN procedure shows a performance enhancement by 8 bit/s/Hz,
approximately compared to the RL based Q algorithm. These findings support that this sim-
plified DQN algorithm can be a strong candidate technique compared to other procedures
when it is being utilized as a channel estimator.

Simulation results for the sum rate performance metric against different numbers
of users in the examined NOMA cell are also illustrated in Figure 9, where the reference
power is assigned to be 1 dBm. Similar to the simulation environment in Figure 8, three
distinct channel prediction schemes are also investigated here as a benchmark comparison:
(1) channel estimation based on standard minimum mean square error (MMSE) proce-
dure [12]; (2) DL based LSTM structure for channel prediction applied in [13]; and RL
based Q algorithm for channel estimation applied in [14]. As revealed from the results in
Figure 9, it is clearly noticed that our simplified DQN algorithm can realize a substantially
greater sum rate with respect to the MMSE procedure, by at least 4 bit/s/Hz when the
cell capacity is initialized with 2 users. It can also be noticed that as the number of user
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devices in the cell keeps increasing, the developed DQN algorithm still shows dominance
in accomplishing higher sum rates compared to the DL based LSTM scheme by 2 bit/s/Hz
approximately. Similarly, the hidden layers feature in the simplified DQN scheme play a
sufficient role in providing a noticeable enhancement in the sum rates compared to the
Q-learning algorithm while the number of user devices in the NOMA cell is increasing.
Generally, these findings reveal that dependability can be ensured by our simplified DQN
algorithm even when the user devices in the cell increase. Furthermore, it is worth saying
that while increasing the user devices in the cell, the interference will also grow up, thus
the performance and the sum rate could be affected.

Figure 8. Sum rate vs. power (MMSE, LSTM, RL Q-learning, DQN).

Figure 9. Sum rate v. number of users (MMSE, LSTM, RL Q-learning, DQN).
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Simulation results in terms of BER against the applied power are also shown in
Figure 10, where both the proposed DQN approach and the RL based Q algorithm [14]
are utilized as different approaches for channel parameters estimation. Moreover, the
optimized power coefficients derived in [13] for the examined NOMA cell are also applied
in this simulation environment. Simulation outcomes indicate that all user devices in the
cell can provide a perceivable enhancement in the performance when the simplified DQN
algorithm is applied as a channel estimator compared to the case when the Q learning
algorithm is implemented when the optimized power scheme is considered. Based on
the simulation results, it can be clearly noticed that the developed DQN algorithm for
channel estimation and the optimized power scheme can both provide an imprvment in
the power saving by more than 5 dBm compared to the case when Rl based Q algorithm
and optimized power scheme are both applied.

Figure 10. BER vs. power (DQN—Q learning—Optimization).

13. Conclusions

In this paper, the impact of utilizing a simplified deep reinforcement learning based
DQN algorithm to specifically estimate the channel parameters for each user device in
the NOMA system is discussed. In the proposed algorithm, the DQN model is initialized
based on generating a random channel parameters then the weights of the simplified DQN
model are updated based on the interaction between the agent and the environment in
order to maximize the received downlink sum rates and at the same time minimize the
loss function. The reliability of the developed DQN structure to estimate the channel
parameters is examined by comparing the performance of the proposed DQN algorithm
with a diverse benchmark schemes. A selective benchmark schemes were simulated, such
as MMSE procedure for channel estimation, DNN based LSTM for channel estimation,
and RL based Q algorithm for channel estimation. Simulation outcomes have proven
that the simplified DQN algorithm can provide a noticeable enhancement in terms of the
system performance compared to the simulated benchmark schemes. Furthermore, various
performance metrics have been examined, and the simulation results also verified the
superiority of the simplified DQN structure even when the cell capacity is increased.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BER bit error rate
BS Base Station
CSI Channel state information
DL Deep Learning
DNN Deep Neural Network
FPA Fixed Power Allocation
OPS Optimized Power structure
LSTM Long Short-Term Memory
DQN Deep Q networks
ML Machine Learning
MSE Mean Square Error
MMSE Minimum Mean Square Error
MUD Multiuser detection
PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service
SIC Successive interference cancellation
RL Reinforcement Learning
DRL Deep Reinforcement Learning
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Abstract: In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel
parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple
Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-
learning algorithm is developed and incorporated into the NOMA system so that the developed
Q-model can be employed to predict the channel coefficients for every user device. The purpose
of adopting the developed Q-learning procedure is to maximize the received downlink sum-rate
and decrease the estimation loss. To satisfy this aim, the developed Q-algorithm is initialized
using different channel statistics and then the algorithm is updated based on the interaction with
the environment in order to approximate the channel coefficients for each device. The predicted
parameters are utilized at the receiver side to recover the desired data. Furthermore, based on
maximizing the sum-rate of the examined user devices, the power factors for each user can be
deduced analytically to allocate the optimal power factor for every user device in the system. In
addition, this work inspects how the channel prediction based on the developed Q-learning model,
and the power allocation policy, can both be incorporated for the purpose of multiuser recognition
in the examined MISO-NOMA system. Simulation results, based on several performance metrics,
have demonstrated that the developed Q-learning algorithm can be a competitive algorithm for
channel estimation when compared to different benchmark schemes such as deep learning-based
long short-term memory (LSTM), RL based actor-critic algorithm, RL based state-action-reward-state-
action (SARSA) algorithm, and standard channel estimation scheme based on minimum mean square
error procedure.

Keywords: RL; Q-learning; MISO-NOMA; KKT conditions

1. Introduction

The Non-Orthogonal Multiple Access (NOMA) system has been characterized as an
inspiring multiple access form for upcoming wireless approaches to enhance the spectral
efficiency and throughput [1]. NOMA system can develop the available resources more
realistically by efficiently, taking into consideration the users’ channel environments and
also giving support to several users with distinctive Quality of Service (QoS) needs [2].
The integration of NOMA and multiple antenna techniques can be exploited to improve
and reinforce system performance [3], therefore, inspecting Multiple Input-Single Output
(MISO) NOMA system can be a good example in the direction of characterizing the expected
upgrade in achievable data rates [4]. In downlink NOMA structure, the receiver device
can receive a multiplexing of signals transmitted to several user terminals in the NOMA
cell, thus eliminating the interference generated by other user devices come to be essential
for coordinated detection. Frequently in power domain NOMA (PD-NOMA), multiuser
detection can be handled via successive interference cancellation (SIC) [5]. In the SIC
procedure, symbols from numerous users are decoded successively on the basis of the
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Channel State Information (CSI) and power percentage designated for each user. A broad
investigation of CSI for various users is demanding because pilot data that can be exploited
in channel prediction, might interfere with symbols from other user terminals, therefore
affecting the performance of a conventional prediction scheme, such as the Minimum Mean
Square Error (MMSE) estimator [6]. Furthermore, power allocation policy is considered an
essential issue for user devices when PD-NOMA is considered [7].

Deep Learning (DL) or Reinforcement Learning (RL) techniques, have the ability to
track the differences in the channels among users and BS, thus, they are recently considered
a powerful tool for upcoming radio systems [8,9]. Hence, allocating the power factors
or estimating the CSI for user devices with the assistance of Machine Learning (ML)
algorithms, triggered the authors for more deep investigations into this field in order to
enhance the performance and detection process.

1.1. Related Works

Different techniques were introduced by authors in [10] to realize the optimal MMSE
channel estimator in the Reconfigurable Intelligent Surfaces (RIS)-based MISO system. In
the first technique, the authors suggest an analytical linear estimator to adjust the phase
shift matrix of the RIS during the training phase, and the estimator based on that technique
is shown to produce sensible accuracy compared to the least-squares method when the
statistical properties of the applied channel and noise are considered. In the other approach,
authors have expressed the channel prediction problem as an image denoising problem,
then they introduce a Convolutional Neural Network (CNN) to achieve the denoising and
predict the optimal MMSE channel parameters. Numerical outcomes have clarified that the
proposed estimator based CNN algorithm can offer improved performance compared to
the linear estimation method and low computational intricacy is preserved.

Toward enhancing the link reliability, a neural network model for a wireless channel
estimator is proposed in [11] to be used with uncoded space-time diversity procedure in
Multi Input Multi Output (MIMO) system. Based on the neural network ML structure,
a channel estimator is suggested, and a mathematical scheme is presented to derive an
optimum power transmission factors that can assist in lessening the channel prediction
bandwidth utilization. Simulation results revealed that the channel estimator based on the
proposed neural network structure can deliver an improvement in Bit Error Rate (BER) and
Mean Square Error (MSE) compared to the standard MMSE channel estimation technique.

In a massive MIMO system and on the basis of a deep autoencoder scheme, authors
in [12] performed experimental verifications on two tasks, one task for channel estimation
modelling for wireless links, and the other task is belonging to a power allocation policy.
The proposed deep learning autoencoder is also used to manage the issue raised from
inadequate training datasets that may cause critical overfitting problems and consequently
affect the model’s reliability. Results based on the autoencoder procedure clarified that the
suggested scheme could successfully enhance performance when the extent of the training
dataset is mainly within a specified threshold selection.

To get over limitations raised when standard iterative power control techniques are
utilized, such as high complexity and unnecessary latency, the work in [13] introduced a
deep learning framework to manage these issues. In the presented structure, the outdated
and partial CSI is exploited, and a Deep Neural Network (DNN) framework is created to
construct an optimization problem to boost the spectral efficiency in device-to-device com-
munication systems. User fairness and energy efficiency constraints were examined, and
simulation outcomes showed that the proposed DNN model can attain better spectral and
energy efficiency compared to the MMSE procedure when numerous channel correlation
factors are considered.

Based on CSI, the position of each user device with respect to BS, and the path loss, a
deep learning framework labelled PowerNet is introduced in [14]. The authors attempt
to prove that it is possible to avoid the time consumption involved with intricate channel
estimation procedures, and at the same time, power control can be managed. Different
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from traditional DNNs that employ a fully connected structure, the presented PowerNet
method utilizes a CNN layers to recognize the interference model through several links in
wireless networks. Simulation outcomes revealed that the suggested PowerNet scheme can
realize a stable performance without explicit channel estimation.

Recently, approximating the channel parameters or predicting the power factors with
the assistance of Reinforcement learning (RL), is investigated by many researchers. The
authors of [15] proposed an end-to-end channel estimation framework for a downlink
multiuser multiple antenna system. The authors presented an RL-based actor-critic scheme
for channel estimation without the assumption of ideal CSI. The authors mainly depend
on the agent to bring and utilize the pilot symbols into the estimation process and then
employ the estimated channel parameters to create downlink beamforming matrices. To
satisfy the purpose of maximizing the sum rate reward, network parameters are adjusted
based on the deep policy gradient method. The results proved that the suggested channel
estimation algorithm can provide convergence and stable performance under various
channel statistics and can perform better than the typical MMSE procedure when the sum
rate metric is examined.

In [16], the authors developed a Deep Reinforcement Learning (DRL) method for
device-to-device pairing to understand the correlation patterns between wireless networks.
The introduced RL algorithm is adopted to explore the joint channel selection and power
control problem for device-to-device pairing and to boost the weighted sum rate. Based
on the suggested DRL learning procedure, each device-to-device pair can make use of
the outdated and local information to understand the network parameters and perform
decisions independently. Results showed that without a global CSI, the suggested DRL
scheme is capable to attain a stable performance close to that achieved using standard
analytical approaches.

The combination between a DNN as a tool for channel prediction and an optimized
power scheme is explored in [17] for the purpose of multiuser detection in the NOMA
system. The DNN based Long Short-Term Memory (LSTM) network is developed for
channel prediction based on complex data processing. The DNN network is trained on the
basis of both the correlation between successive training sequences and the normalised
channel statistics. The efficiency of the suggested DNN based LSTM for channel prediction
is inspected using different fading models and simulation outcomes, in terms of different
performance metrics, have proved that the presented DNN scheme for channel estimation
can provide a consistent performance compared to the MMSE procedure even when cell
capacity is expanded.

1.2. Research Gap and Significance

Based on the preceding works, many of the proposed schemes that consider predicting
the channel parameters task are mainly focused on implementing several deep neural
networks (DNN) while applying RL approaches, which in turn leads to an increase in the
number of hidden layers with a massive number of neurons in each layer. The significance
of this study is to illuminate that we can eliminate the need for such DNN approaches,
and instead, we can adopt the RL based developed Q-learning algorithm to predict the
channel coefficients for each user device in MISO-NOMA cell, and at the same time, a
notable improvement in system performance and network convergence is realized. The
most prominent gain of the developed channel estimator scheme is that it can enhance the
system performance without the need for hidden layers or an external training set.

In addition, several RL algorithms have been proposed to explicitly address the issues
associated with channel state information (CSI), beamforming, and power allocation. To the
best of the authors’ knowledge, there is no study that explores the incorporation between Q-
learning algorithm for channel prediction and the power allocation policy as an integrated
scheme for multiuser detection in downlink MISO-NOMA system in fading channels.

Furthermore, it is worth mentioning that unlike deep learning algorithms, that mainly
depend on learning from a training data set, the proposed Q-learning algorithm in our
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study is developed to dynamically enhance the system performance and adjust to the
variations in the channel based on the feedback from the environment.

1.3. Contributions to Knowledge

The channel prediction problem in downlink NOMA systems was considered in
numerous works. In addition, there have been several works that apply machine learning
(ML) to handle the channel estimation task in wireless communication systems. However,
most of the current research on channel prediction in the NOMA systems based on ML
is introduced via deep neural networks. To the best of the author’s knowledge, currently,
there is no research that manages the channel approximation task in a multiuser multi-input
single-output NOMA system through an RL based Q-learning algorithm. The RL based
Q-learning algorithm is developed based on maximizing the sum rates for all users in the
network such that it can be used efficiently to predict the channel parameters for each user
in the MISO-NOMA cell.

In addition, in this work, a structured mathematical analysis is introduced to formulate
a non-complex analytical form for the power allocation for user devices in the examined
MISO-NOMA system based on boosting the sum rate of the system while considering the
constraints of the total power budget in the system, and the QoS for each user. Furthermore,
the performance of the MISO-NOMA system is investigated when both the developed
Q-learning algorithm for channel estimation and the derived power allocation scheme are
jointly implemented. In this work, the contributions can be summed up as shown:

• In this study, a framework is proposed to illuminate how RL based Q-learning algo-
rithm is developed based on maximizing the sum rates for all users in a MISO-NOMA
system in order that it can be used dynamically to predict the channel parameters for
each user in the MISO-NOMA cell.

• As a reference comparison, four further simulation environments are established.
(1) the standard minimum mean square error (MMSE) based channel prediction
scheme (Neumann et al.); (2) the DNN algorithm based on LSTM network for channel
prediction applied in [17], (3) the RL based actor-critic procedure for channel prediction
applied in [15], (4) the fourth simulation environment is dependent on applying
RL based State-Action-Reward-State-Action (SARSA) procedure (Ahsan et al. and
Mu et al.). The simulation outcomes of these environments are compared with the
results of our proposed RL based Q-learning scheme, and the results emphasized
that dependability can be assured by our developed Q-model for predicting channel
parameters even when the number of devices in the cell is increased.

• To validate the efficacy of the developed Q-learning algorithm for channel prediction,
the developed Q-model is investigated using Rayleigh and Rician fading channels.

• Evaluate the beneficial impact of cooperatively integrating the RL based Q-learning
algorithm for channel prediction and the derived power allocation scheme for the
purpose of multiuser recognition in the power domain MISO-NOMA system.

• The optimized power allocation scheme and the fixed power allocation scheme
are both compared when the developed Q-learning scheme is implemented as a
channel estimator.

The remainder of this paper is structured as follows. Section 2 describes the system
model. Analysis of the optimization problem is presented in Section 3. The optimization
framework and procedure are discussed in Section 4. The RL structure is introduced in
Section 5. Section 6 discusses the Q-learning algorithm-based channel prediction. The RL-
based Q-model architecture and channel estimation algorithm are summarized in Section 7.
The simulation environment is described in Section 8, and simulation results are presented
in Section 9. Lastly, conclusions are shown in Section 10.

Notation: bold lower-case letters denote vectors, bold upper-case letters denote
matrices, and lower-case letters denote scalars. The subscript on a lower-case letter xi
represent ith element of vector x. E(·) refers to the expectation and (·)T refers to the
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transpose of the vector. For two real numbers a ≤ b, [a, b] is the set for all real numbers in
the range from a to b.

2. System Model

2.1. Multiuser Environment

In this work, a multiuser environment with a single Base Station (BS) and multiple
user devices (UDs) is considered. The BS is supplied with N antennas and all the UDs are
supplied with a single antenna. The network is assumed to work with equal length time
intervals and each time interval includes one transmission, which contains either uplink or
downlink transmissions. The pilot-assisted channel prediction is considered in this work,
where pilot symbols can be identified by BS and UDs [15,17]. Each user device initially
transmits its pilot symbols to BS via an uplink channel. Then, prior to data transmission,
the BS can inspect the pilot symbols and the available network information to facilitate
estimating the downlink CSI. The main aim of this work is to model the channel prediction
task and to manage the power allocation scheme. We can refer to the matrix of downlink
channel coefficients from BS with N antennas to UD i as:

Hi = [h1i; h2i; . . . ; hNi] (1)

where hji represents the vector channel parameters from jth antenna at BS to the ith UD,
with j ∈ [1, 2, . . . , N] and i ∈ [1, 2, . . . , M], where N is the number of antennas at BS and
M is the number of users in MISO-NOMA cell. Furthermore, we can denote the data signal
transmitted to UD i as

si = [si1, si2, . . . , siK] (2)

where K is the length of the signal. Then, the matrix of all the UD’s sequences can be
expressed as

S = [s1; s2; . . . ; sM] (3)

The received kth signal at jth UD can be denoted as:

ykj = ∑N
i=1 hijski + zkj (4)

where zkj denotes the AWGN with zero mean and variance σ2 at jth UD through kth signal
duration. The received kth symbol at all UDs is:

Yk = ∑N
i=1 hiski + zk (5)

where
Yk = [yk1; yk2 ; . . . ; ykM] (6)

zk = [zk1; zk2; . . . ; zkM] (7)

Many of the current works depend on pilot symbols to approximate the uplink channel
parameters and then utilize channel reciprocity to realize the prediction of downlink
channel weights [15,18]. These schemes for CSI prediction may not be reliable, especially
in cases of inadequate channel reciprocity owing to hardware constraints. Furthermore,
this kind of estimator may introduce estimation errors in case the uplink and downlink
channel parameters are not stationary within a certain transmission.

In the developed Q-learning procedure, we plan to get assistance from the pilot
symbols, and network information to explicitly predict the downlink channel parameters.
The set of estimated channel coefficients among BS and M UDs can be indicated as

Ĥ =
[
Ĥ1; Ĥ2; . . . ; ĤM

]
(8)
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where Ĥi is the predicted matrix channel coefficients between BS that contains N antennas
and ith UD, and can be expressed as follows:

Ĥi =
[
ĥ1i; ĥ2i; . . . ; ĥNi

]
(9)

where ĥji represents the predicted channel parameters between jth antenna at BS and the
ith UD.

2.2. MISO-NOMA Environment

The fundamental idea of NOMA is to achieve non-orthogonal resource allocation
between users while increasing the processing at the receiver side [19]. With non-orthogonal
resource allocation, NOMA can attain massive connectivity and accomplish higher spectral
efficiency. Existing research on the NOMA system mainly focuses on the code domain and
power domain. In the code domain NOMA, distinct spread-spectrum codes are designated
to different users and then multiplexed over the same time-frequency resource block.
In the power domain NOMA (PD-NOMA) [19], the transmitter superimposes signals
with different power levels to be sent to several users on the shared spectrum. At the
receiver, each user can decode his own desired signal by means of successive interference
cancellation (SIC).

In this subsection, the downlink MISO-NOMA system is explored where user devices
and BS are linked by different fading channels. NOMA cell is assumed where one BS with
two antennas is implemented to assist user devices (UDs), and each device terminal has
one antenna. In PD-NOMA [19], user devices receive the superimposed signal sent from
BS which involves target and interfering signals sent through the same resources. Thus,
combining different signals supported by unique power portions is critical to distinguish
signals and strengthen the successive interference cancellation (SIC) technique. The system
structure for the basic components implemented in the examined MISO-NOMA system is
shown in Figure 1.

Figure 1. MISO-NOMA system basic Structure based RL channel prediction.

In our observed MISO-NOMA cell, three user devices are considered in the cell, and
the examined user devices are identified corresponding to their fading channels and the
distances from BS. Fading channels with Rayleigh distribution are adopted to characterize
the channel model for every user. The user terminal at the boundary of the cell is realized
as a far user, while the nearest user equipment is designated as a near user terminal. The
examined cell contains three user devices and the fading path can be distinguished for
every user as follows [3]: hn ∼

(
0, d−k

n

)
for near users, hm ∼

(
0, d−k

m

)
for the middle user,

and h f ∼
(

0, d−k
f

)
for the user at the edge of the cell, where hi implies a vector represents

the fading path coefficients among BS and user i. Path loss exponent is represented by k,
and AWGN is considered with noise power indicated as σ2. In terms of channel gains, the

relation between user devices can be indicated as |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2 [20] and overall
power transmitted from BS to all users in the cell is labelled as Pt. Every user device
contains a receiving element that can activate the SIC process to get rid of signals related to
other devices with bad channel environments. In contrast, signals related to user devices
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with good link conditions may not be separated and regarded as interference. According
to the aforementioned assumptions, the superposition-coded signal x sent from BS can be
stated as follows [3,17]:

x =
√

Pt

(√
ηnxn +

√
ηmxm +

√
η f x f

)
(10)

where η f , ηm and ηn represent power factors given for a far device, middle device, and
near device separately. Furthermore, x f , xm and xn refer to the signal vectors related to far,
middle, and near users respectively. The received downlink signal at a far device in the
MISO-NOMA cell can be shown as:

y f = xh f 1 + xh f 2 + z f (11)

where h f 1 represents the channel coefficients among a far device and the 1st antenna at BS,
h f 2 represents the channel coefficients among the far device and 2nd antenna at BS and z f

is AWGN noise component at the far device with mean zero and variance σ2. The far user
is signified by weak link condition, and signal x f is usually given further power percentage
by BS where η f > ηm > ηn. The obtained signal at a far device can be formulated as:

y f =
√

Ptη f x f

(
h f 1 + h f 2

)
+
(√

Ptηmxm +
√

Ptηnxn

)(
h f 1 + h f 2

)
+ z f (12)

The 1st term in (12) implies the target signal for far device and the 2nd term indicates
the interference term from other user devices. The possible bit rate for a far device could be
shown as [3,21]:

R f = log2

⎛⎜⎝1 +

∣∣∣h f 1 + h f 2

∣∣∣2Ptη f∣∣∣h f 1 + h f 2

∣∣∣2Pt(ηn + ηm) + σ2

⎞⎟⎠ (13)

Typically, the near user device has a good link status alongside BS, therefore, a low
power factor can be assigned to xn, and the near user received signal can be stated as

yn =
√

Ptηnxn(hn1 + hn2) +
(√

Ptηmxm +
√

Ptη f x f

)
(hn1 + hn2) + zn (14)

In Equation (14), the 1st term represents the anticipated signal, and the 2nd term
implies interference from other devices. It can be noted from Equation (14), that the
interference can be principal since the far user may be assigned a further power percentage.
Thus, at a near device, SIC is accomplished, where direct decoding for the far user signal
x f is implemented first, then eliminated from the aggregate signal. After that, the middle
device signal xm is decoded and gets rid of it from the resultant signal and the possible rate
for a near user Rn can be shown as:

Rn = log2

(
1 +

|hn1 + hn2|2Ptηn

σ2

)
(15)

3. Optimization Problem Characterization

The key objective here is to maximize the sum rates for user devices in the MISO-
NOMA cell. Sum rate maximization is considered based on optimizing the power coeffi-
cients for each user terminal in compliance with the status of the channel between each
user and the BS. In downlink MISO-NOMA, the objective function or the sum rates for M
user devices can be formulated as [3,22]:

Rsum =
M

∑
i=1

log2

⎛⎝1 +
|hi1 + hi2|2Ptηi

|hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2

⎞⎠ (16)
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In the optimization problem, the constraints can be presented as follows:

3.1. Power Constraint

The power designated for every user device in the cell is a fraction of the whole power
Pt sent from BS, therefore the power percentage for each device must conform with [22]:

M

∑
i=1

ηi ≤ 1 (17)

where ηi is the power percentage allocated for the ith user.

3.2. QoS Constraints

In our analysis, we consider that all the user devices in the examined MISO-NOMA
cell need to satisfy a QoS requirement where the minimum rate Rmin is required to be
realised in the system [22,23], this constraint can be expressed as follows:

Log2(1 + SINRi) ≥ Rmin (18)

where SINRn is the signal-to-interference plus noise ratio for ith user and Rmin is the
minimum required transmission rate in the examined MISO-NOMA cell. The expression in
(18) can be redeveloped as follows [24]:

|hi1 + hi2|2ρ

(
ηi − (2Rmin − 1)

i−1

∑
j=1

ηj

)
> (2Rmin − 1) (19)

where ρ represents the SNR and ηj is the power percentage given for jth user device.

4. Optimization Framework

The main aims in this part include the following: (1) present the objective function
and the constraints in a standard form, (2) find a general expression for the 1st and 2nd
derivative of the objective function, (3) based on the mathematical analysis and the derived

formulas, we can inspect that ∂2RSum
∂ηi

2 is a negative function, which validates that the objective
function is a concave with distinctive global maximum, and (4) finally, we deduce the
optimal power factors for each user based on applying the Lagrange function and the KKT
necessary conditions.

On the basis of the objective function in (16) and the constraints in (17) & (19) and
the fact that there are two antennas at the BS and one antenna at each user terminal, the
standard optimization problem can be generally reformulated as follows [24,25]:

max
η

Rsum =
M

∑
i=1

log2

⎛⎝ |hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2 + |hi1 + hi2|2Ptηi

|hi1 + hi2|2Pt ∑i−1
j=1 ηj + σ2

⎞⎠ (20)

such that
M
∑

j=1
ηj ≤ 1

(2Rmin − 1)− ρ|hi1 + hi2|2
(

ηi − (2Rmin − 1)
i−1
∑

j=1
ηj

)
≤ 0

ηi ≥ 0 ∀i = 1, 2, . . . , M

In this part, the power optimisation framework is accomplished with regards to
three user devices in the MISO-NOMA cell, therefore, the examined constraints can be
represented as shown [25,26]:

ψ1(η) = ηn + ηm + η f − 1 (21)
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ψ2(η) = (2Rmin − 1)− ρ
∣∣∣h f 1 + h f 2

∣∣∣2(η f − (2Rmin − 1)(ηm + ηn)
)

(22)

ψ3(η) = (2Rmin − 1)− ρ|hm1 + hm2|2
(

ηm − (2Rmin − 1)(ηn)
)

(23)

Since the constraints ψ1(η), ψ2(η) & ψ3(η) are linear in terms of η, they are considered
convex.

Typically, to prove that the objective function RSum is concave with a distinctive global

maximum, we need to find the first derivative ∂RSum
∂ηi

and the second derivative ∂2RSum
∂ηi

2 of
the objective function [3,24]. The first derivative of the objective function can be deuced in
general form as follows [23]:

∂RSum
∂ηi

= 1
ln2

⎛⎝ |hi1+hi2|2Pt∣∣∣∣hi1+hi2

∣∣∣∣2Pt∑i
j=1 η

j
+σ2

⎞⎠
− 1

ln2

M−i
∑

k=1

⎧⎨⎩
⎛⎝ (|h(i+k)1+h(i+k)2|2Pt)

2ηi+k

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k
j=1 η

j
+σ2)

⎞⎠
×
⎛⎝ 1

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k−1
j=1 η

j
+σ2)

⎞⎠⎫⎬⎭
(24)

Similarly, the second derivative of the objective function can be derived in general
form as follows [23,24]:

∂2RSum
∂ηi

2 = − 1
ln2

⎧⎪⎨⎪⎩
⎛⎜⎝ (|hi1+hi2|2Pt)

2

(

∣∣∣∣hi1+hi2

∣∣∣∣2Pt∑i
j=1 η

j
+σ2)

2

⎞⎟⎠
−M−i

∑
k=1

{(∣∣∣h(i+k)1 + h(i+k)2

∣∣∣2Pt

)3
ηi+k

×

⎛⎜⎝ [2(
∣∣∣h(i+k)1+h(i+k)2

∣∣∣2Pt∑k+i−1
j=1 ηj+σ2)+

∣∣∣h(i+k)1+h(i+k)2

∣∣∣2Ptηi+k ]

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k
j=1 η

j
+σ2)

2

⎞⎟⎠
×

⎛⎜⎝ 1

(

∣∣∣∣h(i+k)1+h(i+k)2

∣∣∣∣2Pt∑i+k−1
j=1 η

j
+σ2)

2

⎞⎟⎠
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

(25)

Based on the above mathematical analysis and the derived formulas, we can inspect

that ∂2RSum
∂ηi

2 is a negative function, which verifies that the objective function is a concave
with a distinctive global maximum [3,24,27]. To derive the optimal power factors, the
Lagrange function and the KKT necessary conditions can be applied [28].

L
(

ηn, ηm, η f , μ1, μ2,, μ3

)
= RSum − μ1ψ1(η)− μ2ψ2(η)− μ3ψ3(η) (26)

where μ1 , μ2, and μ3 represent Lagrange multipliers for the 3 users’ scenario.

• Optimality conditions can be written as follows [3,24,27]:

∂RSum
∂ηn

− μ1
∂ψ1(η)

∂ηn
− μ2

∂ψ2(η)

∂ηn
− μ3

∂ψ3(η)

∂ηn
= 0 (27)

∂RSum
∂ηm

− μ1
∂ψ1(η)

∂ηm
− μ2

∂ψ2(η)

∂ηm
− μ3

∂ψ3(η)

∂ηm
= 0 (28)

∂RSum
∂η f

− μ1
∂ψ1(η)

∂η f
− μ2

∂ψ2(η)

∂η f
− μ3

∂ψ3(η)

∂η f
= 0 (29)
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Given the fact that |hn|2 > |hm|2 >
∣∣∣h f

∣∣∣2, we can demonstrate that the analyzed
constraints are feasible [3] and after a few mathematical manipulations the closed form for
the power factors η f , ηm, and ηn can be deduced as follows [27]:

η f =

(
(2Rmin − 1)

2Rmin

)⎛⎜⎝1 +
1

ρ
∣∣∣h f 1 + h f 2

∣∣∣2
⎞⎟⎠ (30)

ηm =

((
(2Rmin−1)

2Rmin

)(
1 + 1

ρ|hm1+hm2|2
)
−
(

2Rmin−1
2Rmin

)2
(

1 + 1
ρ|h f 1+h f 2|2

))
(31)

ηn = 1 −
(

ηm + η f

)
ηn = 1

(2Rmin )

((
1+ρ|h f 1+h f 2|2

(2Rmin )ρ|h f 1+h f 2|2
)
+

(
(2Rmin−1)

ρ|hm1+hm2|2
− 1

ρ|h f 1+h f 2|2
)) (32)

5. Reinforcement Learning Framework

Typically, RL is developed on the basis of a Markov Decision Process (MDP) design,
that contains basic elements [29,30]: a state space ‘S’, which is the set of states or observa-
tions in the environment and these states can be observed by the agent. An action space ‘A’,
which is the set of actions that can be selected by the agent at each state. An instantaneous
reward ‘R’, which is the direct reward that is given to the agent after selecting an action
a ∈ A to transfer to a state s ∈ S . Policy ‘P’ represents the mapping criteria to move from
the current observed state to a new state based on the action that will be taken by an agent.
Another important element in the RL process is the State-action value function Q(s, a),
which is formally described as the expectation or the average of cumulative discounted
rewards when an action a ∈ A is selected by an agent in the state s ∈ S when a certain
policy is considered. Furthermore, RL can be considered a method of understanding the
agent’s interaction in a stochastic environment by successively selecting actions during a
sequence of time periods. Therefore, the main aim of reinforcement learning is to train an
agent to carry out a certain task within an uncertain environment [30].

The interaction between the agent and the environment can be described as follows:
at each time period, the agent can recognize the observations or states in the environment,
and based on the current observation, the agent can identify and carry out a specific action.
Then, an immediate reward will be sent from the environment to the agent. The reward is a
measure of how effective the action is, when the agent performs a certain action to achieve
a specific goal [31]. Basically, at each learning time interval, the RL agent interacts with
the environment by following a particular policy that controls the transition between state
space to action space.

Based on the aforementioned discussion and as shown in Figure 2, the RL agent can be
essentially represented by two elements: a policy and a learning algorithm [32]. The policy
is the mapping criterion that chooses actions on the basis of the observations or status
observed in the environment. Usually, the policy can be represented as a function with
tunable parameters, such as DNN, while the learning algorithm constantly improves the
parameters of the policy based on observations, actions, and rewards [33]. In general, the
objective of the learning algorithm is to realize the best possible policy that can maximize
the expected cumulative long-term reward received during the task.
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Figure 2. Reinforcement Learning Framework.

6. Channel Estimation Based Q-Learning Algorithm

In the considered channel prediction scheme, it is assumed that the action spaces
are discrete, therefore, we manage to use an RL-based Q-learning procedure as one of
the candidates of RL schemes for parameters update in our examined cell [34,35]. The
Q-learning algorithm is categorized as a model-free, and off-policy reinforcement learning
procedure, also a Q-learning agent is characterized as a value-based RL agent that has
the role of updating a specific critic value function to enhance the future rewards. At a
certain state, the agent can inspect and select the action for which the expected reward is
maximized. In this section, RL based Q-learning is employed for channel prediction tasks
in the MISO-NOMA cells where pilot symbols are also adopted to assist in the channel
estimation process [36]. Therefore, it is assumed that there is coordination between BS and
user devices such that the pilot symbols can be recognized at the BS and user terminals.
In our work, we have considered the BS as the Q-learning agent, and we assume that the
BS will start estimating the channel parameters for each user after user devices complete
sending the pilot signals [37]. Therefore, in our developed RL based Q-learning algorithm
can be utilized to estimate the CSI after the BS receives the pilot signals.

The scenario for the channel prediction process based on the developed Q-learning
model can be outlined in this way [38]. Firstly, at the start of each transmission time slot,
user devices can send pilot symbols to BS across the uplink channel. Secondly, on the basis
of the developed RL based Q-learning algorithm and availability of network information
such as user’s distance and path loss, BS (agent) can predict the downlink CSI for user
devices. Thirdly, BS will generate the superposition coding signal and performs downlink
data transmission. Finally, the receiver of each user terminal will receive the downlink
transmitted data and the estimated channel parameters based on Q-learning algorithm will
be utilized to decode the desired signal. In addition, each user device can feedback the
signal-to-interference plus noise ratio (SINR) or the achieved rate to the BS to enhance the
detection process.

In this study, the main objective of the developed RL based Q-learning algorithm is
to maximize the downlink sum rate and reduce the estimation loss. Instead of estimating
the received signal, we primarily concentrate on incorporating the developed Q-learning
model in the NOMA system for the purpose of channel estimation [39]. The RL-based
Q-agent is designed to estimate the channel parameters by interacting with the environ-
ment, hence strict orthogonal pilot symbols are not required as shown in the standard
procedures. Throughout the learning iteration, the Q-learning agent decides on the ac-
tion that can enhance the approximated state-action value function Q(s, a) therefore, the
expected long-term reward can be also maximized in the neural networks. It is worth
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mentioning that when increasing the number of learning iterations, updating Q-values
becomes more sufficient, and an improved channel approximation and sum rate reward
can also be achieved [34,36,40].

In the proposed Q-learning scheme, the sum rate is presented at the learning time interval
t as Rt, hence, the instantaneous sum rate at time instant t can be shown as follows [15,34]

Rt =
M

∑
i=1

log(1 + SINRit) (33)

where SINRit is the signal-to-interference plus noise ratio of user i at time instant t and
M is the number of users in the MISO-NOMA cell. In this work, the optimum goal of the
developed Q-learning algorithm is to maximize the total discounted reward Rγ starting
from time instant t, which can be denoted as

Rγ
t =

∞

∑
k=t

γk−tRk+1 (34)

where Rγ
t is the discounted reward at time slot t, and γ is the discount factor. Substituting

the sum rate from (33) into (34), the discounted sum rate reward, can be expressed as [41]:

Rγ
t =

∞

∑
l=t

γl−t
M

∑
i=1

log
(

1 + SINRi(l+1)

)
(35)

As previously stated, the Q-learning agent is the BS, whose aim is to boost the accu-
mulative transmission sum rate. Therefore, two value functions can be inspected while con-
sidering the RL maximization problem [34,36,42], the first one is the state value function V(s)

V(s) = E[Rγ/(St = s)] (36)

and the other one is the state-action value function Q(s, a)

Q(s, a) = E[Rγ/(St = s, At = a)] (37)

where E denotes the expected value given that the agent follows a certain policy within the
applied procedure. Due to unspecified transition probabilities and limited observed states,
an optimal policy is difficult to achieve. Therefore, the Q-learning procedure is developed
to approximately achieve the best possible policy. In the developed Q-learning procedure,
the state-action value function Q(s, a) values are learned via trial and error and are updated
according to the following formula [15,34,36,42]:

Q(s, a) ← (1 − α)Q(s, a) + α

[
R(s, a) + γmax

a′∈A
Q
(
s′, a′

)]
(38)

where α is the learning rate, s′ denotes the new state, and a′ is the new action that will be
considered by the agent from the action space A to maximize the new state-action value
function Q(s′, a′).

7. Q-Learning Network Architecture

Basically, in data transmission, the frame transmitted includes data and pilot symbols.
It is supposed that the implemented channel model is stationary throughout one frame
transmission of data and pilot signals and the channel parameters are varying from one
frame to another. The basic architecture of the channel prediction scenario based on the
developed Q-learning procedure employed in our examined network is illustrated in
Figure 3, which primarily consists of several stages [17,43].
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Figure 3. The architecture of the proposed Channel prediction scheme based developed Q-Learning
algorithm.

In the first stage, initial channel parameters will be created based on a distinct Rayleigh
channel models. In the second stage, we initialize the Q table and initialize the reward
matrix R with zero values. The signal-to-interference plus noise ratio (SINR), and the
minimum required rate Rt, can be calculated for every user device in the MISO-NOMA cell
with the aid of the availability of the network information such as the initial assigned power
percentage for each user terminal, and the entire power transmitted from BS PT . Primarily,
the Q-values can be adjusted based on the difference between the assigned target rate RT
and the initial generated user rate for each device. In the third stage, the best action will be
explored and implemented by the Q agent, and then updating the values for the Q-table
that represent the observation action pair Q(s, a). Furthermore, the values for the reward
matrix R will be dynamically assigned according to the actions executed by the Q-agent.

In the fourth stage, the state action value function Q(s, a) that represent the values
for the Q-table will be modified according to a Q-learning procedure with the aid of the
following parameters, the discount factor γ, the assigned immediate reward matrix R, and
the learning rate α. Throughout the learning phase, the generated state action values Q(s, a)
will be sampled to calculate the new channel rate and at the same time update the Q-table
until the optimum rate or the terminal state is achieved.

Dataset Preparation

Essentially, path loss and the distance between every user terminal and the BS need
to be specified in the dataset to facilitate the random generation of the channel weights
for every user device in the examined MISO-NOMA network [43]. In the beginning,
pilot symbols are created, transmitted, and identified at the BS and at the receiver of
every device. Additionally, power factors for every device in the cell need to be initially
assigned. The channel weights for every device in the cell are initialized to set up the
Q-table values, and during the algorithm iterations, the Q-values are modified according to
a Q-learning procedure [34–36].

Throughout the learning process and for the sake of updating the Q-table, the discount
factor γ, learning rate α, the target rate RT , current state, and the terminal state should be
identified. In our developed Q-learning algorithm, the Q-agent will choose the next state
at random and set it as the next state, then the Q-learning agent will inspect all possible
actions available to move to the next state. Next, the Q-learning agent will carefully identify
the best action a, that satisfies the maximum value for Q(s, a) to move to the new state.
After moving to the new state, a reward value will be assigned to the agent as a measure
of how successful this transition was in order to move to the new state [44]. During the
update phase, we compute ΔQ, which represents the difference between the new generated
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value function and the preceding value function of Q(s, a). Then, update the resultant
Q(s, a) value in the Q-table according to the following formula.

Q(s, a) = Q(s, a) + α·ΔQ (39)

Based on the updated Q-values in Q-table and the updated channel gain, a new
achieved rate can be calculated and compared to the target rate for each user device in
the cell. In the developed Q-learning algorithm, once the optimum rate or the terminal
state is reached, the developed Q-matrix will be employed to compose the channel taps for
each user device. The developed Q-learning procedure for channel approximation can be
summarized as presented in Algorithm 1.

Algorithm 1: Developed Q-learning Channel Prediction Structure.

1. Initialize the Q table values and initialize the reward matrix R with zeroes.

Inputs

2. Number of Iterations and the size for the channel parameters for every user device.
3. Initial distance “di” of every user device from the BS.
4. Path loss parameter “ϑ”.
5. Design random pilot symbols.
6. Initialize the random channel parameters for each user “hij” based on fading model,

j ∈ [1, 2, . . . , N] and i ∈ [1, 2, . . . , M]. N is the number of antennas at BS and M is the
number of devices in the cell.

7. Designate the power percentage “ηi” for each user.
8. Determine system bandwidth “B”, Total transmit power “PT”, and noise spectral density

“No”
9. Assign the desired channel parameters “hid” and the target rate “RT”

Procedure

10. Based on the channel gain
∣∣∣hij

∣∣∣2, total transmit power “PT”, and initial power factor for each
user “ηi”, signal to interference noise ratio “SINRi”, minimum required rate “Ri” can be
calculated for each device.

11. At each iteration, compare the initial generated rate “Ri” with the target rate “RT”.
12. Update the values for the Q-table that represent the current state and action pair Q(s, a).

Q-algorithm

13. identify discount factor “γ”, learning rate “α”, the current state, and the terminal state.
14. Choose the next state at random and set it as the next new state.
15. Inspect all possible actions “ai” to move to the new state.
16. Select the best action ai ∈ A, which satisfies the maximum value for the Q-value function

argmax Q(s, a) to move to the new state.
17 Identify the immediate Reward “R”, based on the action implemented to move to the new

state.
18. Based on the following: (1) maximum Q-value Q(s, a) obtained in (16), (2) the

corresponding reward “R”, (3) the discount factor “γ”, then Q(s, a) can be updated based
on bellman’s equation

Q(s, a) ← R + γ argmax Q(s, a)
Outputs

19. Based on the updated Q(s, a) values in Q-table, the channel coefficients “hij” and channel

gain
∣∣∣hij

∣∣∣2 can be updated and a new user rate can be calculated and compared to the target
rate “RT”.

20. Compute the difference “ΔQ” between the updated value function Qnew(s, a) and the
previous Q(s, a).

21. Based on (20), Q(s, a) value in the Q-table can be further updated according to
Q(s, a) ← Q(s, a) + α·ΔQ

22. Check whether the terminal state has been reached or the episode has been completed.
23. Compose predicted channel taps ĥi
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8. Simulation Environment

Characterization of the simulation parameters and settings is discussed in this section.
The examined downlink MISO-NOMA system contains three distinct user devices and
one BS in which the BS is supplied with two antennas and every user device in the cell is
provided with a single antenna. In the examined NOMA structure, the modulated signals
in downlink transmission are superimposed and transferred by BS to user devices via
independent Rayleigh or Rician fading channels that are influenced by AWGN with noise
power density assigned as N0 = −174 dBm/Hz and the path loss is set to 3.5. MATLAB
software is utilized as a simulation tool to satisfy the following aims, (1) inspect, character-
ize, and evaluate the performance of the developed RL based Q-learning algorithm when
implemented as a channel estimator in the considered MISO-NOMA system, (2) investigate
the reliability of incorporating the developed Q-algorithm as channel estimator scheme
with the optimized power scheme in the examined MISO-NOMA network, and perfor-
mance metrics are considered to explore the impact of this integration. (3) optimized
power allocation scheme and fixed power allocation scheme are both compared when the
developed Q-learning scheme is utilized as a channel estimator in the cell. Monte-Carlo
simulations are performed with N = 105 iterations, and at the outset of each iteration, pilot
symbols are randomly generated and recognized at the BS and each device. The main
simulation parameters are summarized in Table 1.

Table 1. Summary of Simulation Parameters.

Parameter Value

Simulation Tool MATLAB

Modulation type QPSK

Number of Users 3, [2–10]

System Bandwidth B 1000 kHz

Fading channel (Rayleigh, Rician)

Path loss exponent 3.5

Number of Iterations 105

Noise PSD N0 −174 dBm/Hz

Learning Rate α 0.1

Discount factor γ 0.9

The presented Simulation figures are generated based on the assumption that the
channel coefficients are not available at each user device. Thus, in order to examine
the effectuality of the developed RL based Q-learning procedure, and for the sake of
comparison, four further simulation environments are established, (1) standard minimum
mean square error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based
on LSTM network for channel prediction applied in [17], (3) RL based actor-critic procedure
for channel prediction applied in [15], (4) the fourth simulation environment is dependent
on applying RL based State-Action-Reward-State-Action (SARSA) procedure (Ahsan et al.,
Mu et al. and Jiang et al.). Throughout the simulations, we point out to MMSE technique
as conventional NOMA, to denote that user devices are applying the MMSE technique for
predicting the channel state information (CSI) prior to reconstructing the desired signal.

In the simulation environment, NOMA parameters are generated on the basis of the
LTE standard [46,47], and channel parameters are created to initially model the Rayleigh
fading channels based on the ITU models. In our developed Q-learning algorithm, at
the end of the training episode, or if the terminal state is reached, the updated Q(s, a)
values in the Q-table will be employed as a practical channel coefficients for the user
devices. Different power percentages are initially assigned for every user device according
to channel gain and based on the existing distance from the BS. Power factors ηn, ηm, and
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η f are specified for near, middle, and far users respectively. In a fixed power allocation
setup, we designate η f = 0.65, ηm = 0.25, and ηn = 0.1. In the optimized power structure
(OPS), power factors are allocate d for user devices in proportion to the analytical formula
concluded previously for every device in Section 4. In the simulation files, the transmission
distance for each user device with respect to BS is assigned as follows: d f = 900 m,
dm = 400 m, and dn = 100 m. Data and pilot symbols are modulated using Quadrature
phase shift keying (QPSK) as the modulation format and the applied transferred power is
mostly varying from 0 to 30 dBm.

9. Simulation Results and Discussion

Simulation outcomes that clarify the comparison between the developed RL based
Q-learning algorithm and the conventional NOMA scheme that applies MMSE method to
predict the channel coefficients for each device are shown in Figure 4 in terms of BER versus
power transmitted. The predicted channel parameters using both schemes are employed
for the signal detection for each user device and the simulated results are shown where
fixed power allocation (FPA) is considered. When the developed Q-algorithm is applied
for channel estimation, each user device in the examined MISO-NOMA cell provides
a noticeable improvement in lowering the BER compared to the MMSE procedure. At
particular BER values such as 10−2, the attained power saving by the Q-learning algorithm
is within 2 dBm for far and middle user devices, while a power reduction within 1 dBm is
recorded for the near user.

Figure 4. BER vs. power (Q-learning & Conventional NOMA (MMSE)).

In terms of the outage probability against applied power, Figure 5 illustrates the results
for the inspected user devices in the MISO-NOMA cell when the developed Q-learning and
standard MMSE are considered as a channel estimator schemes. Far, and middle devices
simulation outcomes indicate about 2 dBm enhancement in saving power to realize 10−2

outage probability when the developed Q-learning algorithm scenario is applied compared
to the MMSE procedure. Similarly, a near user with the developed Q-learning algorithm
displays a 1 dBm improvement in power saving with respect to the MMSE scheme. This
enhancement in power saving verifies the advantage of the developed Q-model as a channel
estimator compared to the MMSE technique.
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Figure 5. Outage Prob. vs. power (Q-learning & Conventional NOMA (MMSE)).

In Figure 6, we implement three baselines for comparisons: (1) standard minimum
mean square error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based on
LSTM network for channel prediction applied in [17]; and RL based actor-critic procedure
for channel prediction applied in [15]. This figure shows simulation results for the sum
rate for all the user devices in the MISO-NOMA network versus applied power. Based on
the simulation outcomes, it is evidently shown that the developed RL based Q-learning
algorithm reveals superiority over standard MMSE procedure by 12 b/s/Hz approximately.
Furthermore, the developed Q-learning scheme performs an enhancement over the DL
based LSTM procedure presented in [17] by 2 b/s/Hz. For the third benchmark in [15],
we generate the simulation environment according to the following: the actor and critic
networks are both composed of two hidden layers with 400 and 300 nodes, respectively.
The learning rate for actor and critic networks are 10−4 and 10−3 respectively. The discount
factor γ is set to be 0.9 and has a buffer size of 105 [15]. Our developed RL based Q-learning
procedure, shows superiority over the RL based actor-critic procedure at low power levels
while starting from 23 dBm the actor-critic procedure starts showing some enhancement
in terms of sum rates compared to the Q-learning process. These findings can validate
that the developed Q-learning algorithm can be a competitive scheme compared to other
algorithms that mainly depend on hidden layers to predict channel parameters.

Simulation outcomes for the sum rate against different number of users in the applied
MISO-NOMA cell are illustrated in Figure 7, where the reference power is chosen to be 1
dBm. In addition to our proposed Q-learning algorithm, three distinct channel prediction
methods are investigated as a benchmark comparison: (1) standard minimum mean square
error (MMSE) based channel prediction scheme [45]; (2) DL algorithm based on LSTM
network for channel prediction applied in [17]; and RL based actor-critic technique for
channel estimation applied in [15]. As revealed from the results, our developed RL based
Q-learning algorithm can achieve a substantial greater sum rate with respect to standard
MMSE procedure, by at least 2 b/s/Hz. It can be observed that as the number of user
devices in the cell is increasing, the suggested RL based Q-learning algorithm still shows
dominance in accomplishing higher rates with respect to MMSE and DL based LSTM
channel estimation methods. Similar to Figure 6, the RL actor-critic procedure applied
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in [15] is created in our MISO-NOMA environment with the following parameters: the
actor and critic networks are both composed of two hidden layers with 400 and 300 nodes,
respectively. The learning rate for actor and critic networks are 10−4 and 10−3 respectively.
The discount factor γ is set to be 0.9 and has a buffer size of 105 [15]. As shown in the
results, the developed Q-learning scheme is showing an advantage over the actor-critic
scheme with up to 6 users in the cell. Then, the hidden layers feature in the actor-critic
procedure starts producing some sort of improvement in the sum rates compared to the
Q-learning algorithm while the number of user terminals in the cell is increasing. Overall,
these outcomes reveal that dependability can be assured by the suggested Q-learning
algorithm even when the user devices in the cell are increased. In addition, it is worth
saying that while increasing the user devices in the system, the interference will also grow
up, thus the sum rate could be degraded.

Figure 8 illustrates simulation outcomes for the achievable capacity for every device
in the examined MISO-NOMA system when both the developed Q-learning algorithm and
MMSE channel estimation procedures are implemented. The attained rate for near devices
reveals substantial improvement by 10 b/s/Hz over far and middle users’ rates. The
superiority of the near user in terms of the achievable rate is anticipated, due to the stable
channel situation for the near user compared to other devices in the system. Additionally,
the suggested Q-learning algorithm still can deliver few visible improvements compared
to the MMSE technique for far and middle users’ environments, this slight improvement is
associated with the interference and inadequate link conditions for far and middle devices.

In addition to the three baselines comparisons implemented in Figures 6 and 7, we also
create and implement RL based State-Action-Reward-State-Action (SARSA) algorithm [48–50]
in Figures 9–11 for the purpose of more investigations and benchmark comparisons. The
features and parameters of the SARSA algorithm are adapted in order that the SARSA
procedure can be used as a channel estimator and compare the results of SARSA algorithm
with the results obtained based on our developed Q-learning algorithm.

Figure 6. Sum rate vs. power (MMSE, LSTM, RL actor-critic, RL Q-learning).
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Figure 7. Sum rate vs. number of users (MMSE, LSTM, RL actor-critic, RL Q-learning).

Figure 8. Individual rate vs. power (Q-learning, Conventional NOMA (MMSE)).
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Figure 9. BER vs. power (Q-learning, SARSA).

Figure 10. Outage Prob. vs. power (Q-learning, SARSA).
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Figure 11. Sum rate vs. power (Q-learning, SARSA).

The Q-learning algorithm and SARSA algorithm are two efficient RL algorithms, they
are both table-based procedures with a Q-table to record equivalent Q-values of each state-
action pair. However, when the size of state space increases, it will need a considerable
amount of memory. Similar to the Q-learning algorithm, the SARSA algorithm also has
exploration and exploitation processes, and it also needs a Q-table to record Q(st, at)
value corresponding to state st and action at. Differently, the running steps of the SARSA
algorithm are as follows. First, according to the action selection scheme, the gent at the
current state st, will select the action at. Then, the agent gets an immediate reward R
based on the corresponding Q(st, at) value. Finally, st will transfer to st+1 and the agent
will choose the next action at+1. Hence, the SARSA algorithm is a bit different from the
Q-learning procedure, where the Q-value in the SARSA method is updated based on the
action at implemented by the agent at the state st. While in the Q-learning algorithm, the
action with the greatest Q-value in the next state st+1 is employed to update Q-table.

In Figures 9 and 10, where BER and outage probability metrics are simulated against
transmitted power, both our developed Q-learning and SARSA algorithms show compara-
ble performance. However, at high power levels, the suggested Q-learning algorithm shows
little improvement compared to the SARSA algorithm, which may be justified that the Q
agent deciding the greedy action, which is the action that provides the maximum Q-value
for the state. More investigations for the comparison between SARSA and the developed Q-
learning algorithms are shown in Figure 11. Sum rates versus applied power are simulated
in Figure 11, and it is noticed that the suggested Q-learning scheme provides an advantage
over the SARSA algorithm, and a power saving is recorded by 1–2 dB approximately.

The proposed Q-learning method and traditional MMSE technique will be further
examined when the Rician channel is applied for the path between BS and each user device.
Rician channel is a stochastic model for wireless transmission where the signal reaches the
receiver device via various scattered paths. Figure 12, illustrate simulation outcomes for
BER against power transmitted when the Rician fading channel is applied. In the Rician
simulation environment, we assign parameter K = 10, where K is described as the fraction
of the signal power of the line-of-sight path to the signal power of the remaining scattered
components. In addition, maximum doppler shift = 100 and sample rate = 9600 Hz are
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used. Results for the Rician channel indicate that the Q-learning algorithm still can provide
some sort of enhancement in decreasing the BER compared to the MMSE procedure. This
slight improvement can be explained by the existence of a line of site component among BS
and user terminal which can enhance the work of the MMSE procedure.

Figure 12. BER vs. Power (Q-learning, Conventional NOMA (MMSE)—Rician channel).

In Figure 13, two separate simulation setups are accomplished here to produce these
results. In the first setup, the Fixed Power Allocation (FPA) structure is assigned for every
user terminal in the MISO-NOMA cell. The second setup depends on the Optimized Power
Structure (OPS) applied in accordance with the analytical power scheme that previously
concluded in Section 4. FPA or OPS will be applied in conjunction with the suggested
Q-learning algorithm as a channel estimator. Simulation outcomes in terms of BER indicate
that far and middle users show the dominance of the OPS over the FPA. It can be noted
that at specific BER values such as 10−2, the achieved power saving by OPS policy is about
5 dBm for the far user, and 1–2 dBm approximately for the middle user. For near user
results, the developed Q-learning algorithm jointly with the FPA scheme provide evident
improvement in terms of BER over OPS, this could be clarified that for near device scenario,
the stable channel condition provides more advantageous for the performance than the
assigned power.

Outage probability results versus power are shown in Figure 14, where OPS and FPA
schemes are also implemented. Both arrangements of OPS and FPA are implemented in
conjunction with the proposed Q-learning algorithm as a channel estimator in the MISO-
NOMA cell. Both far user and middle user results reveal an improvement in outage
probability where a power reduction can be observed within 1–2 dBm when OPS is applied
compared to the FPA scheme. On the other hand, near user with a Q-learning algorithm
and FPA scenario shows a considerable outage improvement compared to the OPS case. A
power reduction within 5 dBm is achieved when the FPA scheme is applied. These findings
verify the results obtained for BER in Figure 13, which indicate that the FPA scheme is more
adequate for user devices with high channel gains.
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Figure 13. BER vs. Power (Q-learning, Optimization, FPA).

Figure 14. Outage Prob. vs. Power (Q-learning, Optimization, FPA).

In Figure 15, attainable rates for user devices are simulated against power transmitted
when OPS and FPA schemes are applied in conjunction with the proposed Q-learning
algorithm that is applied as a channel estimator. Results for far and middle devices point
out that OPS provides 1 b/s/Hz improvement compared to the FPA scheme. This limited
improvement might be clarified where the management of the power allocation for devices
is not necessarily sufficient enough to alleviate the influence of interference particularly for
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far and middle devices that mainly experience unstable links environments. As expected,
results for near user device reveal superiority in achieved rate with respect to middle and
far devices with at least 10 b/s/Hz. Furthermore, the results for the near user with FPA
indicate a noticeable improvement compared to OPS, which validates the results obtained
in Figures 13 and 14.

Figure 15. Individual rate vs. Power (Q-learning, Optimization, FPA).

In the end, we can further provide the analysis of the computational complexity
as follows: The complexity of the reinforcement learning algorithm mainly depends on
the size of the state space and the size of the action space [51]. According to [51], we
can approximate the computational complexity of the Q-learning algorithm as O(SAH)
per iteration, where S is the number of states, A is the number of actions, and H is the
number of steps per episode. According to the state space and action space defined in
our simulation environment, the amount of work per iteration can be approximated as
O(NMK) [51,52], where N represents a number of antennas in BS, M represent a number
of user devices in the cell, and K represents the size of channel coefficients. On the other
hand, the computational complexity for the benchmark scheme implemented in [15], is
described as follows: the sizes of the input layer, the first hidden layer, the second hidden
layer, and the output layer for each network implemented in [15] is denoted as I, h1, h2,
and U respectively. Thus, the total number of parameters in each network can be denoted
as θ = I + h1 + h2 + U, therefore, the complexity of this scheme regarding the channel
estimation task can be approximated as O(MNA(I + h1 + h2 + U) [15], where M represents
the number of user terminals and NA represent the number of antennas at BS. According
to [53], the corresponding computational complexity for the traditional channel estimation
method based MMSE can achieve a relatively low complexity, O(

M2.37) [45,53], but, at
the cost of performance degradation. Based on the aforementioned analysis, it can be
shown that the complexity of the developed RL based Q-learning algorithm is competitive
compared to other procedures.
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10. Conclusions

In this study, the influence of adopting a developed RL based Q-learning algorithm
to distinctly predict the channel parameters for every user device in the MISO-NOMA
system is analyzed. In the developed Q-learning algorithm, the Q-model is created on the
basis of the initialized channel statistics then updated based on the interaction between the
Q-agent and the environment to maximize the received downlink sum rate and minimize
the estimation loss. The efficacy of the developed Q-learning procedure is investigated
by inspecting the performance of the proposed algorithm against different benchmark
channel estimation schemes. The first benchmark scheme is based on standard MMSE
procedure, the second approach is applying DL based LSTM network, the third scheme
is implementing RL based actor-critic algorithm, and the fourth benchmark scheme is
using RL based SARSA algorithm. In addition, the reliability of the proposed Q-learning
procedure is validated by analyzing the behavior of the developed Q-learning algorithm
in different fading channels. Furthermore, we provided a scenario that explores how the
proposed channel prediction method based on Q-learning algorithm and the derived power
allocation structure are both cooperatively employed for multiuser recognition in the MISO-
NOMA network. Simulation results emphasized that dependability can be ensured by the
developed Q-model even when the number of users in the cell is increased. Furthermore,
the simulation outcomes in terms of BER, Outage probability, and individual user rate have
demonstrated that the developed Q-learning algorithm for channel estimation jointly with
an optimized power scheme can both realize consistent performance.
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Abbreviations

The following abbreviations are used in this manuscript:

AWGN Additive White Gaussian Noise
BER bit error rate
BS Base Station
CSI Channel state information
DL Deep Learning
DNN Deep Neural Network
FPA Fixed Power Allocation
OPS Optimized Power structure
KKT Karush-Kuhn–Tucker
LSTM Long Short-Term Memory
LTE Long Term Evolution
ML Machine Learning
MSE Mean Square Error
MMSE Minimum Mean Square Error
MUD Multiuser detection
PD-NOMA Power Domain Non-Orthogonal Multiple Access
QoS Quality of Service
SIC Successive interference cancellation
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MISO Multi-input single-output
SARSA State-Action-Reward-State-Action
RL Reinforcement Learning
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Abstract: In this paper, we propose a radio environment map (REM) update methodology based
on clustering and machine learning for indoor coverage. We use real measurements collected by
the TurtleBot3 mobile robot using the received signal strength indicator (RSSI) as a measure of link
quality between transmitter and receiver. We propose a practical framework for timely updates to the
REM for dynamic wireless communication environments where we need to deal with variations in
physical element distributions, environmental factors, movements of people and devices, and so on.
In the proposed approach, we first rely on a historical dataset from the area of interest, which is used
to determine the number of clusters via the K-means algorithm. Next, we divide the samples from the
historical dataset into clusters, and we train one random forest (RF) model with the corresponding
historical data from each cluster. Then, when new data measurements are collected, these new
samples are assigned to one cluster for a timely update of the RF model. Simulation results validate
the superior performance of the proposed scheme, compared with several well-known ML algorithms
and a baseline scheme without clustering.

Keywords: radio environment map (REM); random forest (RF); machine learning; clustering

1. Introduction

Recently, the dramatic increase in the number of wireless devices and the required
data rates to satisfy QoS for users’ applications have made it essential to guarantee high-
quality communication links. In this regard, the multipath fading effect is one of the
main considerations for wireless signals in indoor scenarios. The presence of obstacles
such as walls, roofs, furniture, and so on leads to attenuation of the received signal and
variations in the received power on the user side while impacting the coverage area of the
wireless transmitter.

To solve this issue, a radio environment map (REM) is proposed to detect shadow
areas with a poor quality signal. Construction of the REM is based on real measurements
from the area of interest in order to characterize the behavior of the wireless environment
by representing it as a temperature map [1]. The detection of shadow areas contributes
to successful network planning and leads to an increase in the quality of communication
for users. A REM can also provide useful information about the positions of wireless
devices, interference levels, and other related information that can be used to improve the
performance of the services by using resource allocation schemes [2]. In [3], the authors
proposed construction of a REM based on machine learning (ML) methods, which showed
better performance compared with conventional statistical models. A REM framework
for IoT networks was presented in [1], where the authors considered ML algorithms to
construct the REM. Their results proved the superior performance of ML learning models
compared with conventional interpolation methods such as Kriging and nearest neighbor.
However, the aforementioned work did not consider a methodology to update the REM in
a timely manner.
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One important aspect of REM management is the need for a timely update mechanism
responding to wireless environment changes due to variations in physical element distri-
butions, environmental factors, movements of people and devices, and so on. Updating
radio maps can help network planners adjust the network configuration to compensate
for these changes. Moreover, in indoor localization systems, updating radio maps can
significantly improve the accuracy of localization, which is crucial for applications such as
asset tracking and indoor navigation. On the other hand, clustering is considered a mean-
ingful, energy-efficient technique because it contributes to reducing power consumption
by organizing user nodes into groups denominated as clusters [4]. Clustering can be used
in radio maps to group similar signal strength measurements into clusters based on their
proximity to each other in physical space. This allows for a more efficient representation
of the radio map since similar signal strength measurements can be processed together
to create a more accurate estimate of signal strength in a particular area. Our objective
is to update the REM in real time by using a combination of the K-means algorithm and
a machine learning model. Specifically, the K-means algorithm constructs clusters and,
for each cluster, we develop a ML model that is trained using actual data measurements
specific to that cluster. As new data are collected, they are assigned to their respective
cluster to update the corresponding ML model.

1.1. Related Work

For indoor localization systems, mobile crowd sensing has become a popular method
for updating radio maps [5–12]. In [5–7], the authors propose an approach where mobile
users generate reports at their current locations to update the radio maps. The radio
map is based on a database, and the predicted location for a query point is obtained by
using the nearest neighbors. The method to update the radio map is based on simply
appending the new fingerprints into the database and removing those that are older than a
certain period. In [8], the authors use an integrity check algorithm to determine whether to
update the radio map used for indoor localization. In this method, several new fingerprints
are accumulated before updating the received signal strength indicator (RSSI) value at a
particular location. The update is performed by using the average value of the accumulated
points to update the database.

In [9,10], the authors propose a method for adapting radio maps used for indoor
localization to changes in the environment. The proposed method utilizes data gathered
from typical wireless users’ devices that were stationary at certain locations. RSSI values
received from several reference locations are used to update the mapping of the RSSI value
to a particular location. In [11], the decision of whether to update the radio map for each
reference point is made by a periodic adaptive estimate algorithm. The authors repre-
sent the radio map using a matrix expression, and the update process involves updating
the fingerprints in the radio map with the average of valid RSSI measurements collected
from users. However, the success of the previous approaches heavily depends on the
location and behavior of mobile users to gather new measurements, and their proposed
algorithms require collecting new data for each location to update the predictive relation-
ship between the RSS value and corresponding positions. In [12], the authors propose an
updating method for signal maps based on Bayesian compressive sensing (BCS). Several
crowdsourced samples are first mapped to the nearest reference point, and the BCS-based
approach computes the signal change for each reference point based on the correlation
between the new samples and reference points. In the aforementioned works, the radio
map construction is based on collecting data and organizing it into a database, and the
methodology to update the radio is focused on indoor localization approaches, where
new measurements in each of the reference locations are required to correctly update the
radio map. Unlike the previously mentioned methods, our proposed method only requires
newly collected data in specific sectors to update a large area of interest. Additionally, the
prediction of RSSI values is performed using powerful ML algorithms.
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The authors in [13] propose a scheme for REM updates based on hypothesis testing,
which is used to decide whether to update the REM each time. In [14], the authors propose
a REM update mechanism based on Siamese neural networks to determine the level of
similarity between an already-constructed REM and a new REM. However, previous work
only considered a simple average of collected measurements to construct the REM. In [15],
the authors propose a REM update scheme based on clustering and Gaussian process
regression (GPR). They manually collected RSSI data with a smartphone in particular areas
of the experiment room, and they use the collected dataset to predict the RSSI at specific
reference points by using GPR with clustering. However, the objective of the GPR-based
scheme is the RSSI prediction of only reference points to later be used for indoor localization,
where a complete prediction of the whole area of interest is not obtained. Moreover, the
authors only consider scenarios by varying the number of training samples and do not
analyze the errors under changes in the wireless conditions such as in the presence of new
obstacles or under the relocation of the AP. This is contrary to our proposed method, which
is able to obtain the RSSI prediction of any point of the area of interest and represent it as a
temperature map. Moreover, we extensively evaluate the proposed scheme by considering
several comparative ML methods and several different scenarios, including the presence of
obstacles and relocation of the AP.

1.2. Main Contributions

In this paper, we propose a REM update methodology based on clustering and ML
algorithms. In particular, we consider the K-means algorithm to create K clusters in the
area of interest, and the random forest (RF) algorithm is applied to predict the quality of
the wireless signal for each cluster. The proposed REM update can be applied in different
scenarios, such as technology industries, where several sensor nodes interact to carry
out different tasks, such as maintenance or scheduled programming. Many times, it is
difficult to collect measurements in the whole area to evaluate coverage prediction and
build the REM because sensor nodes need to move frequently. Similarly, in hospitals, users
storing measurements on every floor for coverage prediction may disturb other users,
and measurement collecting tasks cannot be done as many people walk around the area.
Therefore, the application of REM updating via clustering can reduce time-consuming tasks
and optimize network resources. The main contributions of this paper are summarized
as follows:

• We propose an efficient methodology to update a REM based on clustering and RF
in a timely manner. In the proposed scheme, the K-means algorithm is applied to
divide the area of interest in K clusters, where one RF model is deployed per cluster.
The REM is constructed to cover every point within the area of interest, where the
prediction of the RSSI values for each location is obtained by the corresponding RF
model in each cluster.

• The RSSI measurements were collected by a mobile robot, which can reduce the
risk of human error because the robot can be programmed to move in a controlled
manner. This can help ensure that RSSI measurements are taken at consistent intervals
and under consistent conditions, while improving the accuracy and reliability of the
measurements. Moreover, mobile robots can operate autonomously, which can save
time and resources compared to manual data collection methods.

• In the REM construction, to avoid abrupt changes in the border areas between the
clusters, we propose a methodology that utilizes the weighted average of the RF model
predictions from the two nearest centroids to determine the RSSI value of the points
within the border areas. Moreover, when new measurements are available, only the
RF models for clusters that have enough measurement samples are updated.

• We extensively evaluate the proposed scheme for different scenarios, including the
presence of obstacles and relocating the AP, and we consider several comparative
ML methods, including the case without clusters. Moreover, the computational
complexity of the proposed scheme is analyzed along with the comparative schemes.
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The simulation results demonstrated the superior performance of the proposed scheme
compared to the baseline methods in effectively adapting to changes in the wireless
environment. Moreover, the proposed approach requires only newly collected data in
specific sectors to update a large area of interest.

The rest of this paper is organized as follows. Section 2 describes the measurement
methodology. Section 3 presents the proposed REM updating framework. In Section 4,
we present comparative models and an evaluation of simulation results. Finally, Section 5
concludes the paper.

2. Measurement Methodology

The scenario considered for indoor REM analysis was Room 302 in the Engineering
Building at the University of Ulsan. The equipment used for the analysis included the
TurtleBot3 [16] mobile robot, which is equipped with sensors, navigation systems, and
decision-making algorithms that enable it to operate and complete tasks without human
intervention. In particular, TurtleBot3 is composed of several parts, including an embedded
controller, a light detection and ranging (LiDAR) sensor (laser distance sensor LDS-02), an
inertial measurement unit (IMU) sensor, an encoder, a single board computer (SBC), and the
robot operating system (ROS). A Raspberry Pi powers the SBC, which configures algorithms
in a Linux environment and relies on ROS to enable communication between different
processes. Meanwhile, the embedded controller, which utilizes OpenCR, is responsible for
controlling the movement of the mobile robot through various sensors. The LiDAR sensor
utilizes laser beams to calculate the distance to objects in its surroundings. By scanning the
laser beams in a 360-degree horizontal field of view, LiDAR can generate a 2D point cloud
map of the robot’s surroundings. This map can be utilized for obstacle detection, mapping,
and localization. Moreover, TurtleBot3 utilizes the odometry technique that employs sensor
data from the encoders and the IMU to estimate the position and orientation of the robot in
relation to its starting position. The odometry data are then combined with the LiDAR data
to provide a more accurate and robust localization system, where the coordinates of the
location points are presented in a 2D Cartesian coordinate system [17].

RSSI was utilized to estimate the link quality between the transmitter and receiver.
RSSI is a measurement of the power present in a received radio signal, and it is commonly
used in wireless communication systems like Wi-Fi, Bluetooth, and cellular networks to
determine the signal strength received from a transmitter. The RSSI value is typically
expressed in dBm (decibel-milliwatts) and reflects the power of the signal received by the
receiver’s antenna. A higher RSSI value indicates a stronger signal, while a lower RSSI
value indicates a weaker signal. In our experiments, we used the built-in Wi-Fi module
of the Raspberry Pi to collect RSSI data, along with the SSID, signal frequency, and link
quality. The RSSI and location data were assembled in Ubuntu 22.04LTS through a shell
script and synchronized based on timestamps.

The access point (AP) for the experiments was the IPTime N704M at 2.4 GHz. Figure 1
is a floor plan of the room used for the experiments, indicating the location of the AP. The
floor plan presented in Figure 1 was obtained with the Hovermap HF1 [18], which is a
mobile LiDAR 3D scanner, to map GPS-denied environments. Hovermap uses innovative
simultaneous localization and mapping (SLAM) algorithms along with LiDAR data to
produce 3D point clouds of the scanned area.
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Figure 1. Floor plan of the room used for the experimental evaluations.

3. Proposed Approach for REM Updates

3.1. Overview

Figure 2 illustrates an overview of the proposed approach to REM updates based on
clustering and the RF algorithm. First, assume the initial dataset is DH = {z1, ..., zn, ..., zN},
where N is the total number of collected historical measurements and zn = {xn, yn, Rn},
in which xn is the location in the x-axis, yn is the location in the y-axis, and Rn is the RSSI
value at position (xn, yn). The initial module of the proposed approach conducts clustering.
In particular, we consider the K-means algorithm where N samples are separated into K
groups. A detailed description of the K-means algorithm can be found in Section II of [19].
The K-means algorithm is applied to initial dataset DH to obtain K cluster centers, which
are used to assign each n-th sample to one of the K clusters based on the nearest centroid.

The second module, based on the RF algorithm, is where we train one RF model per
cluster. Once each n-th measurement of dataset DH has been assigned to a cluster, we have
Dk =

{
z1k , ..., zmk , ..., zMk

}
at the k-th cluster with k = 1, ..., K and zmk =

{
xmk , ymk , Rmk

}
.

Then, K RF models are trained based on the corresponding dataset Dk. A detailed descrip-
tion of the RF algorithm is presented in Section 3.2.

Once we have the K-trained RF models, we construct a grid, G = {f1, ..., fh, ..., fH},
where H is the total number of samples in the grid, and fh =

{
xh , yh

}
. The grid is created

to cover the whole area of interest and corresponds to the positions to be estimated by the
RF algorithm. Next, each fh is assigned to one cluster, and the corresponding RSSI value in
that cluster is predicted by the RF model. Then, we construct the REM by using the location
coordinates and by mapping the RSSI values to a specific color in a color map. A detailed
description of REM construction is presented in Section 3.3.
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Figure 2. Proposed approach for REM update.

Next, we consider the REM update, denoted as t1 in Figure 2, based on newly collected
measurements. Once we have trained the RF models based on the historical dataset, we
apply the procedure to update the REM because the wireless environment constantly
changes over time. For instance, in a smart warehouse, the positions of the products
constantly change during the day. In general, the proposed scheme for the REM updates is
based on training the RF models with newly collected data only in clusters with enough
samples. We denote the newly collected dataset as Dt1 =

{
z1t1 , ..., znt1 , ..., zNt1

}
, where Nt1

is the number of newly collected measurements at the time t1, and znt1 = {xnt1 , ynt1 , Rnt1}.
First, we assign each nt1-th sample to one of the K clusters, which creates K possible
datasets, each of them denoted Dkt1 =

{
z1, ..., zmk,t1 , ..., zMk,t1

}
. Since the newly collected

measurements are not guaranteed to cover the whole area of interest, some datasets may
contain no (or a very small number of) samples, which can lead to degradation when
training the new RF model. Therefore, at the k-th cluster, to replace the k-th RF model with
a new RF model trained with dataset Dkt1 , we establish a condition calling for a minimum
number of samples needed in the dataset to train a new k-th RF model:

∣∣Dkt1

∣∣ ≥ Nmin,
where Nmin is the minimum number of samples. If

∣∣Dkt1

∣∣ ≥ Nmin is satisfied, the k-th RF
model is trained based on the corresponding new dataset, Dkt1 , replacing the old RF model
in the k-th cluster. On the other hand, if dataset Dkt1 does not contain the minimum number
of samples, Nmin, the previous k-th RF model is used to predict the points in the k-th cluster.
Finally, we update the REM by using the current K RF models to predict the RSSI values of
grid G.

3.2. Random Forest

An RF regressor is a type of ensemble learning method composed of W decision
tree regressors, where the predicted RF value corresponds to the average value of the
predictions for each independent decision tree regressor. Figure 3 shows the structure of a
decision tree composed of a root node as the starting point, split nodes where a split rule is
applied, and leaf nodes.
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Figure 3. Example of a decision tree regressor.

We denote the training dataset of the RF algorithm as DRF = {z1, ..., zm, ..., zM},
where M is the total number of training samples, and zm = {xm, ym, Rm}. The features
correspond to position (xm, ym), and Rm is the target RSSI value at position (xm, ym). First,
the RF algorithm creates W datasets, {DRF,w}, from the original dataset, DRF, with the
bootstrap aggregation technique. Then, each w-th decision tree regressor is trained with
corresponding dataset DRF,w.

In each decision tree regressor, dataset DRF,w is used to select a split rule in each split
node until reaching a leaf node. Let us define Db

RF,w as the subset of training samples at
the b-th split node of the w-th decision tree regressor. Then, the best-split rule to be used
at the b-th split node is determined with dataset Db

RF,w. A candidate split rule is defined
as follows:

sb,w
f ,α (zi) =

{ 1, if fzi > α
0, otherwise,

(1)

where fzi is the value of feature f ∈ {xi, yi} in sample zi, with zi ∈ Db
RF,w during the

training procedure and α representing a threshold. In the training process, at the b-th split
node, a small pool of random features is selected, and a set of possible thresholds for each
feature is evaluated to select the best-split rule based on the lowest mean squared error
(MSE). Split rule (1) divides the samples in dataset Db

RF,w into two groups: DRb
RF,w contains

the training samples satisfying the b-th split rule, and DLb
RF,w contains the rest. The MSE of

each candidate split rule is evaluated as follows [3,20]:

MSE
(

sb,w
f ,α

)
=

1∣∣∣DRb
RF,w

∣∣∣∑i∈DRb
RF,w

(
Ri − R̂DR

b

)2
+

1∣∣∣DLb
RF,w

∣∣∣∑i∈DLb
RF,w

(
Ri − R̂DL

b

)2
, (2)

where
∣∣∣DRb

RF,w

∣∣∣ represents the number of samples in dataset DRb
RF,w,

∣∣∣DLb
RF,w

∣∣∣ represents

the number of samples in dataset DLb
RF,w, Ri is the true target value of the i-th sample,

while R̂DR
b and R̂DL

b are the predicted values based on the average RSSI of the training
samples in datasets DRb

RF,w and DLb
RF,w, respectively, when the candidate split test, sb,w

f ,α ,
is applied. Then, the candidate split test with the lowest MSE is selected as the best-split
rule for the b-th split node. The aforementioned procedure is repeated in the next split
node until reaching a leaf node, which is determined by the minimum number of training
samples required to split a node, mmin. Finally, the RSSI value associated with the leaf node
corresponds to the average of the RSSI values of the training samples in that leaf node.

Once the RF model is successfully trained, the test sample goes to each w-th decision
tree regressor and evaluates the split rule at each split node to continue to the next split
node. The process finishes when reaching the leaf node, where the associated value of
that leaf node determines the predicted RSSI value for the sample in the w-th decision tree
regressor. The final prediction of the RF model is the average of the RSSI values predicted
by all the W decision tree regressors.
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3.3. REM Construction

Given K cluster centers, the K-trained RF models, and grid G, we construct the REM
for the area of interest. First, each fh sample from grid G is assigned to one cluster among
the K clusters available. Next, the border samples in the area of the intersection of the
clusters are determined to avoid a hard change in the REM between clusters. Then, P
neighbor samples are obtained for each sample in the border area based on Euclidean
distance. Next, we group all the P neighbor samples of the border areas, and we remove
duplicate points to create grid Gborder. Finally, we remove the samples of Gborder from
original grid G to obtain grid Gin. Therefore, we have divided G into grids of the border
areas, Gborder, and a grid with the internal points in each cluster, Gin.

To obtain the RSSI value for the points of grid Gin, we assign each sample from Gin to
one of the K clusters, and we use the corresponding RF model to predict the RSSI value. In
the samples in grid Gborder, we determine the two nearest cluster centers for each sample,
and the predicted RSSI value is the weighted average of the corresponding two RF models.
In detail, let us consider sample fh,border from grid Gborder. First, we evaluate the distance
from fh,border to all K cluster centers, selecting two clusters with the nearest Euclidean
distance, denoted as dfh,boder ,Ca and dfh,boder ,Cb

, where dfh,boder ,Ca < dfh,boder ,Cb
and where Ca

represents one of the K available clusters. Then, we use the RF model of cluster Ca to
predict the first RSSI value of fh,border, denoted as Rh,border,Ca , and the RF model of cluster
Cb predicts the second RSSI value of fh,border, denoted as Rh,border,Cb

. Finally, the RSSI value
for fh,border is determined with the following weighted average:

Rh,border =

(
dfh,boder ,Cb
dfh,boder ,Ca

)5
Rh,border,Ca +

(
dfh,boder ,Ca
dfh,boder ,Cb

)5
Rh,border,Cb(

dfh,boder ,Cb
dfh,boder ,Ca

)5
+

(
dfh,boder ,Ca
dfh,boder ,Cb

)5 . (3)

Once all RSSI values are obtained for all samples in grids Gin and Gborder, we use
Matplotlib in Python to create the REM based on the color map. Moreover, we superpose
the SLAM map of the room by carefully adjusting the opacity of the REM with the alpha
parameter from Matplotlib.

4. Evaluation

4.1. Historical Dataset and Comparative Models

Initial dataset DH is composed of measurements collected inside Room 302, illustrated
in Figure 1, with a total of N = 1160 samples covering the whole room. We considered
three different error metrics to evaluate the performance of the proposed scheme: mean
absolute percentage error (MAPE), root mean square error (RMSE), and R2 score. As
comparative schemes, we considered the support vector regression (SVR) algorithm [21],
multilayer perceptron (MLP) [22], and the AdaBoost regressor [23]. Moreover, we obtained
error results by considering different numbers of clusters. The RF model and the AdaBoost
regressor were trained with 200 decision tree regressors; the comparative SVR algorithm
considered the amount of regularization, C = 1000, and the radial basis function (RBF)
kernel; and MLP had three hidden layers with 100 hidden units per layer from using a
rectified linear unit (ReLU) activation function. The computer used for the simulations had
an AMD Ryzen 9 5900X 12-Core processor and 48 GB of RAM.

Table 1 presents the aforementioned error metrics of the proposed scheme and several
comparative approaches by using 5-fold cross-validation with historical dataset DH , where
the presented results are averaged over several independent simulations. We can see that
the RF-based scheme achieved the fewest errors among the comparative methods, and
the AdaBoost algorithm was the second-best scheme. In addition, the impact from the
number of clusters in the RF algorithm was very small since the same error rate can be
obtained by using one cluster or four clusters. Note that Table 1 analyzes the error results
on dataset DH , where measurements for the whole area of interest are available. However,
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in Section 4.2, we analyze the performance from different numbers of clusters in a realistic
case when only partial data from the area of interest are available.

Table 1. Error evaluation of the dataset DH .

MAPE

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 1.511% 1.513% 1.507% 1.515%
SVR 3.565% 3.718% 3.828% 4.504%
MLP 4.325% 4.174% 4.254% 4.835%
AdaBoost 3.001% 3.178% 3.603% 4.064%

RMSE

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 1.295 1.290 1.290 1.285
SVR 2.418 2.486 2.537 2.793
MLP 2.648 2.556 2.602 2.977
AdaBoost 1.810 1.912 2.150 2.409

R2 Score

Model for Prediction 4 Clusters 3 Clusters 2 Clusters 1 Cluster

RF 0.948 0.949 0.949 0.949
SVR 0.819 0.809 0.801 0.760
MLP 0.783 0.799 0.791 0.727
AdaBoost 0.899 0.887 0.857 0.821

Figure 4 illustrates the REMs obtained for the historical dataset by using 4 clusters
with the RF model, SVR, and AdaBoost. We can see that the REMs obtained with the RF
algorithm and AdaBoost have similar patterns since both algorithms use the decision tree
regressor as the base estimator. However, the REM obtained with RF is considered the most
realistic because it has the lowest error, as we can observe in Table 1.

(a) (b) (c)

Figure 4. REM for the initial measurements by considering four clusters. (a) RF; (b) SVR; (c) AdaBoost.

4.2. REM Update Evaluation

In this subsection, we present the performance of the proposed scheme for REM
updates. In particular, we considered a practical scenario where obstacles are added
around the AP, which degrades coverage of the area of interest. Figure 5 shows the REM
obtained by using RF in the ideal case where we can collect data measurements of the
whole room after adding the obstacles. The data collected for this ideal case were used
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as testing data to analyze the error in the proposed scheme compared with the baseline
method. By comparing Figures 4a and 5, we can see that adding obstacles around the AP
degraded the coverage, particularly in the quality of the received signal in the bottom area
of the room, compared with no obstacles.

Figure 5. Target REM after changing the physical environment of the room by using RF.

Next, we analyzed a scenario where newly collected data were obtained only from a
partial area of the room, which is a realistic assumption since it is not always possible to
measure the whole area of interest each time. We considered three sets of newly collected
data (at times t1, t2, and t3). It was assumed that during t1, t2, and t3, coverage by the Wi-Fi
signal was stable in the whole room. Figure 6 shows the newly collected measurements at
the three different times.

(a) (b) (c)

Figure 6. The three areas considered for newly collected measurements. (a) Data collected at time t1;
(b) Data collected at time t2; (c) Data collected at time t3.

Figure 7 illustrates the proposed REM update mechanism for the three sets of newly
collected data that followed the scheme in Figure 2. In detail, data collected at time t1 were
used to train the RF model only for the corresponding clusters, while the remaining clusters
used the previous RF model. We observe in Figure 7a that only the right area of the room
was updated to the new scenario, which can be confirmed from Figure 5. On the other
hand, the left part of the room was still predicted as having the historical measurements.
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The reason is that, at time t1, there were no data available to update the left part of the
REM. Next, at time t2, we could update the bottom area of the room while the upper left
area was still not updated due to the lack of measurements in that area. Finally, at time t3,
we updated the upper left area, leading to a complete update of the whole room, compared
with Figure 5.

(a) (b) (c)

Figure 7. The proposed REM update mechanism considering four clusters. (a) The REM at time t1;
(b) The REM at time t2; (c) The REM at time t3.

Figure 8 shows a baseline REM update mechanism without clustering for the 3 newly
collected datasets. In this baseline scheme, the newly collected data were used to train an
RF model for the whole room without using clustering. First, at time t1, the newly collected
measurements were not enough to show the position of the AP; i.e., the upper left area was
poorly predicted, leading to a high error. Next, at time t2, the collected measurements at the
center of the room provided some small insight into coverage of the room, but the obtained
REM is not ideal when we compare it with Figure 5. Finally, at time t3, the measurements
collected in the area close to the AP make the RF model trained with those data overestimate
the coverage of the room, leading to high error and an absence of shadow areas.

(a) (b) (c)

Figure 8. The baseline REM update mechanism without clustering. (a) The REM at time t1; (b) The
REM at time t2; (c) The REM at time t3.

Table 2 shows error evaluations for the 3 times when data were newly collected. In
the four clusters, we can see that the error lessened as time passed because new clusters
could be updated as new measurement data were collected. As presented in Figure 7, at
time t3, we could update the whole room, leading to a significant reduction in the error
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metrics. In the case of the baseline method without clustering, the error was not reduced as
time passed, and the errors obtained at each time significantly depended on the area where
the new data were collected. For instance, we observe that the baseline method without
clustering obtained the lowest error at time t2 for most of the compared methods because
the data were collected in the middle of the room, which can provide a small insight into
the coverage of the area of interest. The above-mentioned observation is consistent with the
results shown in Figure 8 where, among the 3 time cases, the REM at time t2 is the closest
representation to the target REM illustrated in Figure 5.

Table 2. Error evaluations from newly collected measurements.

MAPE 4 Clusters Without Clustering

Model for Prediction t1 t2 t3 t1 t2 t3

RF 6.10% 5.03% 1.92% 10.52% 6.60% 12.40%
SVR 7.90% 6.01% 4.90% 15.89% 8.74% 15.54%
MLP 12.98% 5.76% 4.55% 27.27% 18.56% 7.97%
AdaBoost 6.40% 5.49% 3.82% 13.37% 6.78% 9.03%

RMSE 4 Clusters Without Clustering

Model for Prediction t1 t2 t3 t1 t2 t3

RF 3.731 3.401 2.069 6.100 4.019 8.167
SVR 4.952 3.823 3.439 8.996 5.174 9.514
MLP 9.959 3.538 3.018 15.811 11.235 5.193
AdaBoost 3.952 3.422 2.527 7.513 3.960 6.064

R2 Score 4 Clusters Without Clustering

Model for prediction t1 t2 t3 t1 t2 t3

RF 0.646 0.735 0.842 0.055 0.630 −1.463
SVR 0.563 0.598 0.440 −1.056 0.387 −2.342
MLP −1.520 0.714 0.664 −5.351 -1.888 0.004
AdaBoost 0.603 0.732 0.764 −0.434 0.641 −0.358

Table 3 presents the computational time for the training and prediction phases of
the historical dataset and the newly collected data using the proposed approach and the
baseline methods. The computational time of the K-means algorithm to select the best
centroids based on the historical dataset DH (consisting of 1160 samples) is 0.097 s, and
the computational time to predict the nearest cluster for the total number of samples is
0.013 s. The number of samples in the newly collected datasets at times t1, t2, and t3 are
1800, 1800, and 2400, respectively. In Table 3, we observe that the computational time of
the historical dataset is higher than the time when updating the model at time t1 because
the historical dataset is used to train all the ML models for each cluster, while the data at
time t1 are only used to update the ML model of the corresponding cluster. Moreover, we
see that the computational time in the training phase increased as the number of samples
increased because, in general, more samples mean more computations and larger memory
requirements, leading to longer processing times. The higher computational time of the
RF with four clusters compared to the RF without clustering is due to the need to split
the samples into their respective clusters and the requirement of training four different
instances of RF.

In the grid prediction phase, the computational time corresponds to the time to split
the samples of the grid into their respective clusters and the time to predict the total number
of points in the grid with their respective ML algorithm. For instance, in the case of RF
with 4 clusters and a 100 × 100 grid, a total of 10,000 samples were assigned to their
respective clusters, and the corresponding RF model predicted the RSSI value for each
sample, resulting in a total time of 0.112 s. Moreover, we see that the proposed RF algorithm
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achieved the second lowest computational time among the compared ML methods with
clustering. Note that MLP has the lowest computational time for the grid prediction with
clustering but also has the highest error in the prediction as presented in Table 2.

Table 3. Computational time for the training and prediction phases.

Training Time (s)

Model for Prediction Historical Data DH Data at t1 Data at t2 Data at t3

RF 4 clusters 0.539 0.366 0.375 0.418
RF without clusters 0.213 0.215 0.234 0.341
SVR 4 clusters 0.111 0.205 0.231 0.374
MLP 4 clusters 1.14 0.669 1.48 1.13
AdaBoost 4 clusters 0.502 0.234 0.369 0.301

Grid Prediction Time (s)

Model for Prediction 100 × 100 grid 300 × 300 grid

RF 4 clusters 0.112 0.285
RF without clusters 0.04 0.251
SVR 4 clusters 0.195 1.25
MLP 4 clusters 0.038 0.218
AdaBoost 4 clusters 0.134 0.625

Next, we consider a second scenario by moving the location of the AP. In particular,
the AP is relocated to the other corner of the room, which significantly changes the coverage
condition in the area of interest. Figure 9 illustrates the REM that was obtained with RF
under ideal conditions when data measurements for the entire room were collected after
the relocation of the AP. The colormap limits for the current axes have been adjusted for
better data visualization. By comparing Figures 4a and 9, we can observe the significant
changes in the wireless conditions of the area of interest and the importance of timely
REM updates.

Figure 9. Target REM after the relocation of the AP by using RF.

Similar to the previously considered scenario, new data were acquired at different
times as illustrated in Figure 10. Then, the proposed update methodology was performed
based on the three datasets collected at times t1, t2 and t3. Figure 11 shows the results of
the proposed update methodology for the three sets of newly collected data. In Figure 11a,
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we can see that only the left area of the room was updated to the actual wireless coverage
condition because the newly collected data at time t1 do not have information about the
remaining areas of the room. Next, by using the newly collected data at time t2, the upper
area of the room was updated, while the bottom right area remained unaltered because of
insufficient measurements. Finally, the entire room was updated with the newly collected
data at time t3, as evidenced by comparing it to Figure 9.

(a) (b) (c)

Figure 10. The three areas considered for newly collected measurements after the relocation of the
AP. (a) Data collected at time t1; (b) Data collected at time t2; (c) Data collected at time t3.

(a) (b) (c)

Figure 11. REMs obtained with the proposed update mechanism after the relocation of the AP. (a) The
REM at time t1; (b) The REM at time t2; (c) The REM at time t3.

Table 4 presents the error evaluation for the newly collected data after the relocation
of the AP at three different times by using the RF algorithm. Similar to the results obtained
in Table 2, the error in the prediction decreased as time passed because new clusters could
be updated as new measurement data were collected. For instance, the low error observed
at time t3 is in concordance with the REM presented in Figure 11c, which is very similar
to the ideal REM of Figure 9. In the case of the baseline scheme without clustering, the
error remains consistent over time, and the errors at each time are greatly influenced by the
location of the newly collected data.
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Table 4. Error evaluations from newly collected measurements after the relocation of the AP.

4 Clusters Without Clustering

Error metric t1 t2 t3 t1 t2 t3

MAPE 7.11% 4.24% 2.19% 8.61% 7.45% 5.96%
RMSE 5.806 4.018 2.346 6.317 6.422 4.749
R2 score 0.044 0.255 0.826 −0.132 −0.902 0.288

Recently, reconfigurable intelligent surfaces (RIS) have been explored as a potential
solution to enable a smart radio environment that can be dynamically configured using
software. RIS is a type of metasurface that can be used to manipulate radio waves in
order to control wireless communication [24]. An RIS is essentially a two-dimensional
array of small, controllable elements that can adjust the phase and amplitude of incident
electromagnetic waves to create a desired wavefront. Using RIS can enable the creation
of smart environments that can adapt to changing electromagnetic conditions in real time.
Field-programmable gate array can be used to control the operation of the RIS, or it can
be manually controlled, as proposed in [25], by using touch controls. Therefore, analyzing
the information in the REM can enable the optimization of the placement and reflection
properties of an RIS to maximize the performance of wireless communication systems.
Moreover, the REM can facilitate the dynamic adjustment of the reflection coefficients of RIS
elements to adapt to changes in the wireless environment. For example, a REM can be used
to identify areas with poor wireless coverage, such as areas with high levels of interference
or signal attenuation. Then, an RIS can be strategically deployed in these areas to improve
wireless coverage by reflecting and redirecting signals in the desired direction. Moreover,
by using the information contained in a REM, we can optimize the design of the reflecting
elements in the RIS to avoid interference with other wireless signals in the environment.

5. Conclusions

In this paper, we proposed a REM update methodology based on clustering and the
RF algorithm. The proposed approach divides the area of interest into several clusters by
using the K-means algorithm, and it trains one RF model per cluster based on real data
measurements assigned to the corresponding clusters. A mobile robot was used to collect
the RSSI measurements, which can reduce the risk of human error while improving the
accuracy and reliability of the measurements. Next, only the RF models for clusters with
enough measurement samples were updated when newly collected measurements became
available. As time passed, the proposed scheme could update the whole REM by sector
while reducing the error each time. Simulation results proved the superior performance of
the proposed scheme compared to several well-known ML models, as well as the conven-
tional case without clustering, in various scenarios, including the presence of obstacles and
AP relocation. Subsequently, the proposed framework will be very useful for REM man-
agement in wireless scenarios where the physical element distribution constantly changes.
For future research directions, an exciting topic is the utilization of information from the
REM to optimize the allocation of resources in wireless networks, including spectrum,
power, and antennas. This can improve overall system performance by leveraging the
knowledge of the wireless propagation environment provided by the REM. For instance,
the development of schemes to optimize the placement and the reflection properties of
an RIS based on the information contained in a REM can help achieve desired wireless
communication performance.
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Abstract: The application of wireless sensor networks (WSNs) in smart agriculture requires accurate
path loss prediction to determine the coverage area and system capacity. However, fast fading
from environment changes, such as leaf movement, unsymmetrical tree structures and near-ground
effects, makes the path loss prediction inaccurate. Artificial intelligence (AI) technologies can be
used to facilitate this task for training the real environments. In this study, we performed path
loss measurements in a Ruby mango plantation at a frequency of 433 MHz. Then, an adaptive
neuro-fuzzy inference system (ANFIS) was applied to path loss prediction. The ANFIS required two
inputs for the path loss prediction: the distance and antenna height corresponding to the tree level
(i.e., trunk and bottom, middle, and top canopies). We evaluated the performance of the ANFIS by
comparing it with empirical path loss models widely used in the literature. The ANFIS demonstrated
a superior prediction accuracy with high sensitivity compared to the empirical models, although the
performance was affected by the tree level.

Keywords: adaptive neuro-fuzzy inference system; path loss prediction; Ruby mango; 433 MHz
wireless sensor network

1. Introduction

A wireless sensor network (WSN) can be deployed in plantations to control the crop
quality and quantity. However, the presence of trees and vegetation in the signal path
can substantially degrade the performance of radio communication systems by causing
signal attenuation, diffraction, scattering, and polarization [1]. Plantations comprise rows
of densely foliated trees that can cause a significant path loss. Moreover, tree leaves tend
to absorb water, which can cause further scattering of the signal. Low frequencies such as
240 MHz are less likely to be affected by weather conditions, such as rain and strong winds.
Understanding path loss in the presence of vegetation is critical to the application of WSNs
for smart agriculture.

Recently, empirical models, such as the log-distance and exponential decay models,
have been developed for predicting the path loss around different types of vegetation in
different frequency bands [2–13]. Raheemah et al. [2] proposed an empirical path loss model
for a mango greenhouse at a frequency of 2.425 GHz with seven different antenna heights
of 0.5, 1.0, 1.5, 2, 2.5, 3, and 3.5 m. The greenhouse contained 13 mango trees in three rows
with a separation distance of 3.2 m between trees in the same row and 2.2 m between each
row. The trees were 5 years old with a mean maximum height of 2 m, main trunk height of
1 m, and mean trunk diameter of 0.16 m. They demonstrated that their model had a better
prediction accuracy than previous models in the literature. Anzum et al. [3] proposed a
log-distance model with multiwall attenuation based on long-range (LoRa) measurement
data at 433 MHz for oil palm trees planted in a symmetric pattern. Anderson et al. [4]
characterized the path loss at a low antenna height (1.3 m) for ultrawideband propagation
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(830–4200 MHz) in four forest environments: light brush, light forest, medium forest, and
dense forest. Azevedo et al. [5] proposed an empirical path loss model at frequencies of
870 and 2.414 MHz that considers the tree trunks of different trees. They multiplied the
tree density and average trunk diameter to obtain a coefficient for the path loss exponent.
Barrios-Ulloa et al. [6] reviewed log-distance and exponential decay models for the path
loss at 200 MHz–95 GHz and compared their performances in terms of the root mean
squared error (RMSE). Meng et al. [7,8] proposed a plane-earth model for near-ground
wireless communication in the very high frequency (VHF) and ultrahigh-frequency (UHF)
bands. They limited their interest to specific phenomena, such as the impact of near-ground
or surface components on the signal propagation in different environments. Tang et al. [9]
analyzed path loss models with the breakpoint distance on, near, and above the ground
(heights of 5 cm, 50 cm, and 1 m, respectively) at a frequency of 470 MHz. Jong et al. [10]
proposed a scattering model for a single oak tree at a frequency of 1.9 GHz. Pinto et al. [11]
proposed a semi-deterministic model depending on the distance between transceivers of
WSN nodes and the vegetation height for tomato greenhouses and demonstrated a superior
prediction accuracy. Leonor et al. [12,13] proposed a raytracing scattering model for Ficus
benjamina and Thuja pelicata trees at frequencies of 20 and 62.4 GHz.

Some researchers have used artificial intelligence (AI) technologies such as machine
learning (ML) to improve the accuracy of empirical models in specific areas [14–22]. Chi-
roma et al. [14] reviewed the performances of AI models, such as support vector machines,
neural networks (NNs), genetic algorithms, and the adaptive neuro-fuzzy interference sys-
tem (ANFIS) in several types of communication environments: urban, suburban, and rural.
Hakim et al. [15] developed ANFIS path loss models for forest, jungle, and open dirt road
environments at frequencies of 433, 868, and 920 MHz and obtained a superior prediction
accuracy compared to conventional empirical models. Faruk et al. [16] applied ML models
including ANFIS to VHF and UHF bands in a typical urban environment and obtained
a high prediction accuracy. Nunez et al. [17] showed that an artificial neural network
(ANN) improved the prediction accuracy for indoor communication at 26.5–40 GHz [21].
Famoriji et al. [18] applied a backpropagation NN to path loss prediction in a tropical
region and achieved a better prediction accuracy than a conventional log-distance model.
Cruz et al. [19] applied an ANN and neuro-fuzzy system to the path loss prediction of a
long-term evolution signal transmitted at a frequency of 1.8 GHz and compared the RMSE
with those of commonly used empirical models in the literature. Wu et al. [20] applied a
multilayer perceptron neural network (MLPNN) to predicting the path loss of three base
stations at 2.5 GHz and achieved a better prediction accuracy than empirical log-distance
models. Ostlin et al. [21] applied an ANN to predicting the path loss of a code-division
multiple-access mobile network in a rural area and obtained good results. Egi et al. [22]
proposed an ANN to predict the received signal level according to the detected tree canopy
and location. Their model achieved an error of 4.26%, while the empirical model had an
error of 6.29–16.9%.

Non-uniform vegetation is a common source of error for both empirical and intelligent
path loss models. Some empirical models have been developed, providing a good pre-
diction performance in uniform environments, such as an oil palm plantation and mango
greenhouse. However, they still provided an error because of fast fading. The AI models
are generally applied to specific non-uniform environments, such as urban, suburban, and
rural areas, to improve the large errors at some measurement points. The models were
trained with the measured data to provide a good prediction. However, in the case of a
specific environment, such as the Ruby mango plantation, the AI model needs an expert
system to create a rule base for training. Therefore, we applied an ANFIS in this study to
predict the path loss of a signal in a Ruby mango plantation. Ruby mango trees are trimmed
to limit their height and are planted in symmetric patterns for a uniform environment.

The ANFIS only requires two inputs: the distance and antenna height in relation to
the tree level (i.e., trunk and canopy). The regular pattern of trees should allow the ANFIS
to predict the path loss with high accuracy. To evaluate the performance of the proposed
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model, we compared it against existing empirical models. The contributions of this article
are summarized as follows:

• An accurate semi-deterministic path loss prediction for a uniform Ruby mango planta-
tion with an ANFIS engine, which consists of two inputs, namely, the distance between
the transceivers of WSN nodes and vegetation height together, and an output of path
loss prediction.

• The validation of the model using RMSE, MAE, and MAPE against benchmark models.

The rest of this paper is organized as follows. Section 2 presents related path loss
models. Section 3 presents the proposed model. Section 4 presents the experimental
procedure. Section 5 presents the results. Section 6 concludes the paper.

2. Related Path Loss Models

Four empirical models are widely used to predict the path loss considering vegetation
and are presented here.

2.1. ITU-R Model

The International Telecommunications Union Recommendations (ITU-R) model [23]
was developed from measurements mainly at the UHF band and was proposed for cases
where either the transmit or receive antenna is near a small grove of trees through which
the signal propagates. This model is commonly used for frequencies between 200 MHz and
95 GHz, and it is expressed as

ITU − R(dB) = 0.2f0.3d0.6 (1)

where f is the frequency (MHz) and d is the tree depth.

2.2. COST 235 Model

The COST 235 model [24] is based on measurements at the millimeter-wave frequency
band (9.6–57.6 GHz) through a small grove of trees performed over two seasons: when
the trees were in-leaf and out-of-leaf. This model is also applicable to frequencies between
200 MHz and 95 GHz, and it is expressed by

COST 235(dB) =
{

26.6f−0.2d0.5 out of leaf
15.6f−0.009d0.26 in leaf

(2)

2.3. FITU-R Model

The fitted ITU-R (FITU-R) model is based on datasets collected during the in-leaf and
out-of-leaf states at 11.2 and 20 GHz [7]:

FITU − R(dB) =

{
0.37f0.18d0.59 out of leaf

0.39f0.39d0.25 in leaf
(3)

This model was developed because the lateral wave becomes dominant in both the
VHF and UHF bands at relatively large forest depths, especially when both the transmit
and receive antennas are inside the forest. Based on measurement data from an oil palm
tree plantation, the FITU-R model becomes the following:

LITU(dB) = 0.48f0.43d0.13 + 40log(d)− 20log(ht)− 20log(hr) (4)

where f is the carrier frequency (MHz), ht is the height of the transmit antenna (m), hr is the
height of the receive antenna (m), and d is the distance between the transmit and receive
antennas (m). The model in (4) is for a theoretically free space, which can be used to obtain
a reference model for estimating the path loss in different environments:

PL f ree(dB) = 32.4 + 20log10( f ) + 20log10(d) (5)
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where f is the frequency (MHz) and d is the distance between the transmit and receive
antennas (km). In a forest environment, Equation (5) can be modified to

PL f orest(dB) = A f BdC + 32.4 + 20log10( f ) + 20log10(d) (6)

For near-ground path loss, a plane-earth model is often used to consider both line-of-
sight (LOS) and ground-reflected rays received by the receive antenna [7]:

PLPlaneEarth(dB) = 40log(d)− 20log(ht)− 20log(hr) (7)

where ht is the height of the transmit antenna (m), hr is the height of the receive antenna
(m), and d is the distance between the transmit and receive antennas (m). If the excess loss
is considered, then (6) becomes

PL f orest(dB) = A f BdC + 40log10(d)− 20log10(ht)− 20log10(hr) (8)

Because of lateral wave propagation from diffraction over treetops and beside trees,
especially in VHF and UHF bands, the effect induced by the perfect plane-earth model is
reduced. Thus, the fitted ground reflection model becomes applicable:

LFGR(dB) = 10nlog10(d)− 20log10(ht )−20log10(hr) (9)

where n is an empirical path loss exponent for LOS ground reflection. Then, the path loss
model becomes

PL f orest(dB) = A f Bdc + LFGR(dB) (10)

In this study, we used the path loss model in (6) because the excess loss (i.e., first term)
includes the near-ground effect of different antenna heights. Table 1 summarizes the A, B,
and C parameters.

Table 1. Path loss exponent parameters at 433 MHz (SF 7, BW 125 kHz).

Antenna Height
(m)

PL(d0)
(dB)

PLE (NLOS) A B C

0.3 26.57 3.79 0.98 0.39 0.34
1.2 23.2 3.84 0.8 0.39 0.35
2.2 17.54 4.33 0.98 0.39 0.33
2.7 22.1 3.71 1.0 0.39 0.3

2.4. Log-Distance Model

The log-distance model specific to forest environments is given by [25,26]

PL f orest(dB) = PL(d0) + 10nNLOSlog10(d) (11)

where PL(d0) is the path loss at a distance of 1 m (floating intercept) and nNLOS is the
non-LOS (NLOS) path loss exponent (PLE).

3. Proposed ANFIS Model

From the path loss model involved in Section 2, various empirical models have been
developed. These empirical models are created using mathematical/statistical methods.
In some cases, the environment is complex and finding a mathematical model is not easy.
However, if a researcher has expertise in analyzing the nature of electromagnetic propaga-
tion, researchers can use that expertise to create fuzzy rules to predict the propagation of
electromagnetic waves. This research proposes to use an ANFIS to generate fuzzy rules for
path loss model prediction.

The ANFIS is a hybrid of an NN and fuzzy system, which is an inferential linguistic
processing that incorporates fuzzy rules into a knowledge base [27]. The knowledge base
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contains fuzzy rules obtained from experts and can be adapted to produce appropriate
results. However, the input–output pair must be learned to optimize the output. The NN is
used to learn input–output relationships to adjust the fuzzy rules until a suitable output is
found. Figure 1 shows the general architecture of an ANFIS, which has five main layers [28].
The rectangular boxes are adaptive nodes, while round boxes are fixed nodes.

Figure 1. General architecture of the ANFIS.

Our ANFIS has two inputs and one output. Each input is divided into two fuzzy sets:
A1, A2, and B1, B2. The output parameters are pj, qj, and rj, with n rules:

Rule 1: IF x1 is A1
1 and x2 is B1

1 THEN f1 = p1x1 + q1x2 + r1

Rule 2: IF x1 is A2
2 and x2 is B2

2 THEN f2 = p2x1 + q2x2 + r2
. . .
Rule n: IF x1 is An

i and x2 is Bn
i THEN fn = pnx1 + qnx2 + rn

where, Aj
i and Bj

i are the fuzzy description of the input sets, and fj are the crisp description
of the outputs.

Layer 1: This layer comprises antecedent parameters obtained via fuzzy determination
from the Crisp input x to membership value μAi or μBi using the following membership
function:

O1
j = μAi (x) (12)

where O1
j is the membership of Ai derived from the input x. The membership function may

be a triangular, inverted bell, or other shape.
Layer 2: This layer comprises the T-norm operator or fuzzy rule base, which associates

fuzzy values from each dimension and sends the product as an output signal:

wj = μj1(x1)μj2(x2) (13)

where wj is the firing strength from each rule and μji(xi) is the fuzzy value from the ith
dimension of rule j.

Layer 3: This layer involves normalizing the firing strength or weighted layers so that
all conditions from all rules can be combined into a single value:

∼
wj =

wj

w1 + w2 + . . . + wn
, j = 1, 2, . . . , n (14)

77



J. Sens. Actuator Netw. 2023, 12, 71

Layer 4: The layer comprises consequent parameters obtained as follows:

∼
wj fj =

∼
wj
(

pjx1 + qjx2 + rj
)

(15)

Layer 5: This layer comprises the overall output, which includes all incoming signals
and their defuzzification:

∼
w

T
f =

n

∑
j=1

∼
wj fj =

∑n
j=1 wj fj

∑n
j=1 wj

= overall output (16)

where
∼
w

T
= [

∼
w1

∼
w2 . . .

∼
wn

]
is the fuzzy value normalized from 1− n rules and f T = [ f1 f2 . . . fn]

is the output of 1 − n rules.
From the proposed model, there are two major issues, as mentioned in Sections 2 and 3:

(1) the mathematical/statistical models, as in Section 2, and (2) the fact that the ANFIS
is a black box method, and the fuzzy rules that are tuned from artificial neural networks
(ANNs) are not easily understandable. Based on ANFIS concepts, many models have been
proposed and applied to the subject of time series. The relationship between CO2 emissions
from the energy sector and global temperature increases was investigated using ANFIS,
ANN, and fuzzy time series models. This research aimed to avoid strict assumptions
and study the complex relationships between variables [29]. A time series forecasting
model using a hybrid method of an autoregressive adaptive network fuzzy inference
system (AR-ANFIS) was studied. The AR-ANFIS was trained by using particle swarm
optimization, and fuzzification was performed using the fuzzy C-Means method [30].
Multivariate time series prediction using a neuro-fuzzy model was proposed. Gaussian
membership functions and a learning algorithm were used in the consequent layer [31]. The
reviewed literature included training and optimization methods using complex functions
and learning algorithms. This technique increases the complexity of the analysis. However,
in this study path loss is determined based on a trajectory with a linear relationship between
the variables. Therefore, this research uses linear relationships in layer 4 as consequent
parameters. This is enough to create an accurate model. This section uses numerical
data, which consist of distances, the height of the antenna, and the signal strength of
electromagnetic waves. A collection of related datasets consists of a training dataset and a
testing dataset. The training dataset is used to generate fuzzy rules and adjust the fuzzy
set using a neural network. In general, the principle of fuzzy rules is to optimize the input
set of rules in a given operating environment. Traditional methods use experts’ expertise
to modify fuzzy rules. The ability to predict the results depend on the expert’s expertise.
Furthermore, fuzzy rules can be created by simulating real situations to learn to create rules,
which is inconvenient in the case of electromagnetic wave propagation. In this research, the
fuzzy tuning setup has been developed using a neural network to achieve more accurate
predictions. Adapting fuzzy rules will require training from the training data to optimize
fuzzy sets and fuzzy rules, as detailed in the section above.

The antenna height and distance between the communication nodes influences the
propagation path loss. Therefore, two inputs of the ANFIS are the antenna height in meters
and logarithm of distance in meters. The output is the propagation path loss in dBm. A
flowchart of the ANFIS path loss modeling is shown in Figure 2. The next section describes
the site survey and measurement setup in detail.

78



J. Sens. Actuator Netw. 2023, 12, 71

Figure 2. Flowchart of the ANFIS path loss model.
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4. Experimental

4.1. Study Site

The study site was a Ruby mango plantation in Sakaeo Province, Thailand, with the
GPS coordinates 13.4166954 N, 102.1368925 E. To ensure a good harvest, Ruby mango trees
must be planted at a certain density. Thus, the mango tree plantation follows a specific
pattern. The trees are planted in straight rows with 6 m between rows and 5 m between
their trunks in the same row, as shown in Figure 3. The plantation has 320 trees per hectare.
The tree dimensions are summarized in Table 2. The average total tree height was about
4.5 m, which comprised a trunk height of 0.55 m, a trunk diameter of 0.51 m, a canopy
depth of 3.96 m, and an average canopy diameter of 5.69 m.

 

Figure 3. Plan of Ruby mango plantation.

Table 2. Measured dimensions of Ruby mango trees.

No. Total Height Trunk Height
Trunk
Diameter

Canopy
Depth

Canopy
Diameter

Tree 1 3.82 0.56 0.4 3.4 5.5
Tree 2 4.66 0.66 0.56 4.0 6.0
Tree 3 4.79 0.49 0.45 4.3 5.6
Tree 4 5.15 0.65 0.64 4.5 6.5
Tree 5 4.77 0.47 0.63 4.3 6.2
Tree 6 3.96 0.46 0.46 3.5 4.7
Tree 7 4.85 0.65 0.54 4.2 6.0
Tree 8 3.97 0.47 0.43 3.5 5.0
Average 4.50 0.55 0.51 3.96. 5.69

All numerical values are in meters.

4.2. Measurement Setup

The measurement equipment comprised a fixed 433 MHz LoRa module (transceiver
and omnidirectional antenna) as the receiving station and a portable LoRa module as the
transmitter. These modules were connected to a microcontroller (Arduino board) that
programmed the transmitter to send a data packet containing the word “hello” with the
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received signal strength indicator (RSSI) wirelessly to the receive antenna every 1.5 s. Three
physical layer parameters were considered that influence the effective bit rate during mod-
ulation to cause noise and signal interference in a communication channel: the spreading
factor (SF), bandwidth (BW), and coding rate (CR) [32].

Spreading factor: The SF is the ratio between the symbol rate and chip rate. A higher
SF increases the sensitivity and transmission range with a lower packet error rate (PER) and
RSSI, but it increases the airtime of the transmitted packet. Therefore, a lower SF should
result in a higher PER and minimum RSSI.

Bandwidth: A higher BW increases the transmission range and data rate and thus
decreases the airtime, but it also decreases the sensitivity by integrating additional noise.
A lower BW increases the sensitivity but decreases the data rate. A typical LoRa network
operates at a BW of 125, 250, or 500 kHz.

Coding rate: A LoRa network sets a CR to protect against bursts of interference. The
CR is usually set to 4/5, 4/6, 4/7, or 4/8. A higher CR better protects the system against
decoding errors by transmitting more redundant data bits but increases the airtime.

In this experiment, we only focused on the wave propagation characteristics of Ruby
mango trees. Therefore, we used an SF of 7, BW of 125 kHz, and CR of 4/5 to increase the
minimum RSSI, PER, sensitivity, and protection against decoding errors. The RSSI can be
converted to the path loss by [33]

PL(dB) = Pt + Gt + Gr − (RSSI + K) (17)

where K is an offset that depends on the characteristics of the transceiver chips used, the
frequency, and the chosen technology and its features. However, K may be obtained via
calibration. Table 3 summarizes the equipment parameters. To model the path loss, the
RSSI data were captured via a notebook computer at the receiving station while the portable
transmitting node was moved in 5 m intervals to a maximum distance of 40 m in both the
forward and reverse directions. The heights of the transmit and receive antennas were set
equal but varied at 0.3, 1.2, 2.2, and 2.7 m above the ground, as shown in Figure 4. Table 4
shows the path loss parameters of Equation (11), which was used for comparison with the
ANFIS model.

Table 3. Parameter setup.

No. Parameters Value Unit

1 Power amplifier (PA) 18 dBm
2 Antenna gain 2.2 dBi
3 Frequency 433 MHz
4 Bandwidth (BW) 125 kHz
5 Spreading factor 7 -
6 Code rate (CR) 4/5 -
7 Offset factor (K) 28 dBm

Figure 4. Propagation measurement.
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Table 4. RMSE of ANFIS model and validation.

Antenna Height (m) ANFIS Validation

0.3 (Trunk) 3.17 3.31
1.2 (Canopy_bottom) 1.34 1.58
2.2 (Canopy_middle) 1.65 1.57
2.7 (Canopy_top) 2.61 2.60

The following metrics were used to evaluate the model performances based on their
deviation from the measurement data: the absolute mean error (AME), mean absolute error
(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). These
metrics were calculated as follows:

AME =
1
N

∣∣∣∑N
i=1 Mi − PLi

∣∣∣ (18)

MAE =
1
N ∑N

i=1|Mi − PLi| (19)

MAPE =
100
N ∑N

i=1

∣∣∣∣Mi − PLi
Mi

∣∣∣∣ (20)

RMSE =

√
∑N

i=1(Mi − PLi)
2

N
(21)

where Mi is the measured path loss, PLi is the predicted path loss, N is the total number of
data, and the subscript i is the number of a given data.

5. Results and Discussion

5.1. ANFIS Model and Validation

The measurement data described in Section 4 were used for the training and validation
of the proposed ANFIS model. The training dataset comprised input–output data pairs,
such as the antenna height (m), distance (m), and measured path loss (dB). A first-order
Sugeno fuzzy model was used for the ANFIS structure, where the inputs were the antenna
height and distance and the output was the path loss. The membership functions used
the psigmf model with a mixed learning process (Hybrid), [5, 5] mfs, and 100 epochs for
calculation. The results are shown in Figures 5 and 6. The crisp input was divided into
five fuzzy sets to obtain the minimum error. Each set contained {in1mf1, in1mf2, in1mf3,
in1mf4, and in1mf5} for the antenna height input and {in2mf1, in2mf2, in2mf3, in2mf4,
and in2mf5} for the log-distance input, and the output {out1mf1-out1mf25} was obtained
according to the following 25 rules:

Rule 1: IF x1 is mf1 and x2 is mf1, THEN y is mf1
Rule 2: IF x1 is mf1 and x2 is mf2, THEN y is mf2
Rule 3: IF x1 is mf1 and x2 is mf3, THEN y is mf3
Rule 4: IF x1 is mf1 and x2 is mf4, THEN y is mf4
Rule 5: IF x1 is mf1 and x2 is mf5, THEN y is mf5
Rule 6: IF x1 is mf2 and x2 is mf1, THEN y is mf6
Rule 7: IF x1 is mf2 and x2 is mf2, THEN y is mf7
Rule 8: IF x1 is mf2 and x2 is mf3, THEN y is mf8
Rule 9: IF x1 is mf2 and x2 is mf4, THEN y is mf9
Rule 10: IF x1 is mf2 and x2 is mf5, THEN y is mf10
Rule 11: IF x1 is mf3 and x2 is mf1, THEN y is mf11
Rule 12: IF x1 is mf3 and x2 is mf2, THEN y is mf12
Rule 13: IF x1 is mf3 and x2 is mf3, THEN y is mf13
Rule 14: IF x1 is mf3 and x2 is mf4, THEN y is mf14
Rule 15: IF x1 is mf3 and x2 is mf5, THEN y is mf15
Rule 16: IF x1 is mf4 and x2 is mf1, THEN y is mf16
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Rule 17: IF x1 is mf4 and x2 is mf2, THEN y is mf17
Rule 18: IF x1 is mf4 and x2 is mf3, THEN y is mf18
Rule 19: IF x1 is mf4 and x2 is mf4, THEN y is mf19
Rule 20: IF x1 is mf4 and x2 is mf5, THEN y is mf20
Rule 21: IF x1 is mf5 and x2 is mf1, THEN y is mf21
Rule 22: IF x1 is mf5 and x2 is mf2, THEN y is mf22
Rule 23: IF x1 is mf5 and x2 is mf3, THEN y is mf23
Rule 24: IF x1 is mf5 and x2 is mf4, THEN y is mf24
Rule 25: IF x1 is mf5 and x2 is mf5, THEN y is mf25
Figure 5a shows the ANFIS structure for training comprising five membership func-

tions with the two adjusted inputs (Figure 5b,c) for 25 rules and 25 membership functions to
obtain the output. Figure 6 shows the inference engine based on 25 rules with the first input
as the antenna height of 1.2 m and the second input as the log-distance (d) of 0.698 (5 m),
which provides a path loss output of 57.0 dB. Table 4 shows a good agreement of the ANFIS
with validation.

(a) 

(b) 

Figure 5. Cont.
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(c) 

Figure 5. ANFIS with two inputs: (a) structure, (b) antenna height as input 1, and (c) log-distance as
input 2.

 

Figure 6. Inference engine.

5.2. Data Analysis of Proposed Model

The performance of the proposed ANFIS was evaluated in terms of the metrics pre-
sented in Equations (18)–(21). Tables 5–8 compare the ANFIS and measured data described
in Section 4 according to the AME, MAE, MAPE, and RMSE, respectively. From the graphs
in Figures 7–10, the proposed ANFIS model can predict output values for the accurate
estimation of measured path loss because mathematical models are obtained by averaging
data to create a model. The real environment of the mango trees consists of different trunks
and canopies. They are completely asymmetrical. Moreover, the wave attenuation value is
not constant at each distance between the mango trees. It is difficult to find mathematic
equations to explain these differences. However, the ANFIS model is a machine learning
model that uses fuzzy rules to predict outcomes. The nature of the fuzzy rule depends
on the linguistic variables used to describe the mango tree’s environment, which affects
wave propagation. The fuzzy set is adjusted with a neural network to obtain the fuzzy
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sets with suitable values for prediction. Therefore, the ANFIS model makes predictions
more accurate. Overall, the proposed ANFIS provided better prediction accuracy than the
empirical models, especially at the bottom canopy, where it achieved AME, MAE, MAPE,
and RMSE values of 0.01, 1.03, 1.64, and 1.34, respectively. However, it obtained a relatively
large error at the trunk level with AME, MAE, MAPE, and RMSE values of 0.32, 2.43, 3.81,
and 3.17, respectively. The MAE was smaller than the RMSE because of deviations in the
measured path loss. The AME had the smallest values because the upper measurement
data refuted the lower measurement data, while the MAPE had similar values to the RMSE.

Table 5. Model comparison using AME.

Antenna Height (m)

AME

Exponential Decay
Equation (6)

Log-Distance
Equation (11)

ITU-R COST235 FITU-R ANFIS

0.3 (Trunk) 0.11 5.73 19.33 5.41 20.26 0.32
1.2 (Canopy_bottom) 0.28 3.14 15.91 7.91 15.69 0.01
2.2 (Canopy_middle) 1.71 5.36 17.64 5.76 17.24 0.06
2.7 (Canopy_top) 0.77 7.3 16.82 6.54 16.47 0.02

Table 6. Model comparison using MAE.

Antenna Height (m)

MAE

Exponential Decay
Equation (6)

Log-Distance
Equation (11)

ITU-R COST235 FITU-R ANFIS

0.3 (Trunk) 6.17 6.32 19.63 10.19 20.55 2.43
1.2 (Canopy_bottom) 2.66 3.36 16.39 7.91 16.49 1.03
2.2 (Canopy_middle) 4.71 5.52 19.08 6.86 19.09 1.27
2.7 (Canopy_top) 0.77 7.61 17.69 7.45 17.84 2.08

Table 7. Model Comparison Using MAPE.

Antenna Height (m)

MAPE

Exponential Decay
Equation (6)

Log-Distance
Equation (11)

ITU-R COST235 FITU-R ANFIS

0.3 (Trunk) 11.91 8.89 25.09 15.49 26.20 3.81
1.2 (Canopy_bottom) 5.8 4.9 22.3 14.04 22.73 1.64
2.2 (Canopy_middle) 12.48 7.51 27.57 17.11 28.22 1.76
2.7 (Canopy_top) 11.08 10.51 24.42 15.5 25.28 3.16

Table 8. Model comparison using RMSE.

Antenna Height (m)

RMSE

Exponential Decay
Equation (6)

Log-Distance
Equation (11)

ITU-R COST235 FITU-R ANFIS

0.3 (Trunk) 7.74 8.59 21.65 11.77 22.59 3.17
1.2 (Canopy_bottom) 3.69 4.08 16.96 8.61 17.1 1.34
2.2 (Canopy_middle) 6.7 7.05 19.84 8.63 19.87 1.65
2.7 (Canopy_top) 6.52 9.1 18.62 9.09 18.53 2.61
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Figure 7. Predicted and observed path losses at an antenna height of 0.3 m (trunk).

 

Figure 8. Predicted and observed path losses at an antenna height of 1.2 m (bottom canopy).

Figure 9. Predicted and observed path losses at an antenna height of 2.2 m (middle canopy).
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Figure 10. Predicted and observed path losses at an antenna height of 2.7 m (top canopy).

5.3. Comparison with Empirical Path Loss Models

The ANFIS demonstrated good agreement with the measurement data compared
with the empirical models in Section 2. The empirical model in Equation (6) provides
the best prediction with an AME, MAE, MAPE, and RMSE values of 0.11, 0.77, 5.8, and
3.69, respectively (please see Tables 5–8). In the case of the three conventional models,
ITU-R (1), COST 235 (2), and FITU-R (3) provide large error prediction where either the
transmit or receive antenna is near a small grove of trees. However, the COST 235 provides
better prediction in the UHF band, as shown in Tables 5–8, which the signal propagates at
different antenna heights with the selected AME, MAE, MAPE, and RMSE values of 5.41,
6.86, 14.04, and 8.61, respectively. Additionally, the proposed ANFIS model provides a
very high sensitivity compared with the empirical models, as indicated by the red dots in
Figures 7–10 for the trunk level and bottom, middle, and top canopy levels, respectively.
These confirm the advantage of the proposed ANFIS model as well.

6. Conclusions

In this study, we applied an ANFIS to predict the path loss of a WSN in a Ruby
mango plantation at 433 MHz. It is a combination of a neuro-fuzzy system and a learning
algorithm. The ANFIS is able to learn from data and make predictions based on those
data. The learning algorithm is able to adjust the weights of the connections between
the neurons in the network and the parameters of fuzzy sets. This allows the ANFIS to
learn and adapt to new data. We performed path loss measurements with two transceiver
nodes between the trees at difference antenna heights. The ANFIS requires two inputs to
predict the path loss: the antenna height corresponding to the tree level and the distance
between the transmitter and receiver nodes. Each input was classified into five adjected
fuzzy sets. The influence engine with 25 rule bases predicted the path loss with minimum
error. We compared the performance of the proposed ANFIS with empirical models. The
results showed that the proposed ANFIS demonstrated a superior prediction accuracy
and high sensitivity with the best AME, MAE, MAPE, and RSME values of 0.01, 1.03,
1.64, and 1.34, respectively, at the antenna height of 1.2 m above ground (canopy bottom),
although the performance fluctuated with the tree level. In future work, the capacity of
the ANFIS will be improved to predict the path loss of inflorescence and fruit on tree,
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especially at a frequency of 2.4 GHz with a wave length of approximately 0.125 cm, which
is smaller than the dimension of the inflorescence and fruit. This will significantly improve
the signal attenuation, enabling the detection of inflorescence and fruit using the ANFIS for
monitoring as well. The advantage of the ANFIS model is that is combines both numerical
and linguistic knowledge. The ANN ability of the ANFIS is used to classify data and
identify patterns. Compared to the ANN, the ANFIS model is more transparent to the user
and causes less recognition errors.

Future research could extend the intelligence model by using a larger dataset to
examine if better predictions can be obtained. The number of inputs in terms of attendance
determinants, type of tree, difference frequency of wireless nodes, and amount of data can
be expanded to develop more accurate and intelligent models and several applications.
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Abstract: This paper presents a novel vehicular environment identification approach based on
deep learning. It consists of exploiting the vehicular wireless channel characteristics in the form of
Channel State Information (CSI) in the receiver side of a connected vehicle in order to identify the
environment type in which the vehicle is driving, without any need to implement specific sensors
such as cameras or radars. We consider environment identification as a classification problem, and
propose a new convolutional neural network (CNN) architecture to deal with it. The estimated CSI
is used as the input feature to train the model. To perform the identification process, the model is
targeted for implementation in an autonomous vehicle connected to a vehicular network (VN). The
proposed model is extensively evaluated, showing that it can reliably recognize the surrounding
environment with high accuracy (96.48%). Our model is compared to related approaches and state-of-
the-art classification architectures. The experiments show that our proposed model yields favorable
performance compared to all other considered methods.

Keywords: Vehicle-To-Everything (V2X) communications; channel state information; deep learning;
vehicular network; autonomous vehicle; intelligent transportation systems

1. Introduction

Autonomous connected vehicles have been the focus of recent research works on
intelligent transportation systems (ITS), in which autonomous vehicles are anticipated to
be widely used as part of the smart road vision and the next generation of transportation
systems. The development of autonomous driving system aims to achieve the highest level
of autonomy, at which no driver is required. When this goal is met, Vehicle-To-Everything
(V2X) communications will emerge as a paramount enabler for leveraging the full potential
of these vehicles. Furthermore, V2X communication is mandatory to ensure the transition
from self-autonomy to full collaborative autonomy [1–3]. Thus, to allow connectivity
between vehicles, vehicular networks (VN) should be set up in ad hoc fashion by forming
Vehicle Ad Hoc Networks (VANETs) and Mobile Ad Hoc Networks (MANETs) [4].

Because V2X communication is quite important, the automotive industry is declaring
its intent to deploy V2X communication technology in their future cars. Moreover, it is
further supported by transportation system governments, such as the proposed mandate
from the National Highway Traffic and Safety Administration (NHTSA) that suggests all
vehicles have V2X capability [5]. On the other hand, the goal of deploying autonomous
vehicles is to improve road safety through cooperative driving that uses the available
roadway efficiently and reduces road congestion.

According to the NHTSA, most crash accidents are caused by vehicles traveling over
the speed limit. Consequently, in order to provide road safety, autonomous vehicles should
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be aware of the speed limit and the environment. Thus identifying the type of environment
in which the vehicle is driving allows the vehicle to make good a self-decision as to the
correct driving speed.

In this context, Artificial Intelligence (AI) has been established as a leading actor
towards the developments of intelligent systems, enabling autonomous vehicles to make
correct decisions [6,7]. Thus, in this paper we introduce a new approach towards vehicular
environment identification without the need for specific sensors. The proposed method
consists of using exchanged Cooperative Awareness Messages (CAM) between vehicles as
well as between vehicles and infrastructure to explore channel characteristics, which are
then used to recognize the vehicular environment, as shown in Figure 1.

Figure 1. Vehicular environment identification process.

2. Related Work

In the literature, many research works have focused on deep learning-based environ-
ment perception in order to make critical decisions such as vehicle speed in the context of
correct decision-making for autonomous cars. In [8], the authors proposed a new method
called the integrated perception approach to construct the environment. They used road
information data such as the distances to surrounding lane markings provided from video
images. These data were used as the input features of a neural network model in order to
reach the correct driving decisions.

A highway environment identification approach has been presented in [9]. The authors
used video data of a highway area recorded under various weather conditions in order to
develop a vision system for recognizing the bounds of highway areas and updating the
vehicle with respect to the highway driving conditions. In [10], the authors presented a
new perception method for urban environments. Their approach was based on the use of
video images provided from an embedded camera in a vehicle, which were then used to
train a neural network in order to develop a conditional navigation model that allows for
prior reception of high-level directional commands.

A vehicular urban environment perception method for autonomous vehicles was
presented in [11]. The approach consists of a Global Positioning System (GPS), Radar,
and Light Detection And Ranging (LiDAR)-based data fusion algorithm for reaching safe
driving decisions. An environment perception approach for a self-driving vehicle in an
urban area was established in [6]. In this method, the authors used a 64-beam rotating
LiDAR with a specific unsupervised algorithm, then generated high-resolution maps of the
surrounding environment, allowing the vehicle to enable the suitable driving parameters
for its environment. The authors of [12] established an approach based on the use of data
fusion in order to obtain a presentation of the environment that includes a camera, 360-
degree LiDAR, and GPS/Inertial Measurement Unit (IMU) sensors deployed in a vehicle.
Thus, the vehicle can make correct self-driving decisions depending on the environment in
which it drives. In [13], the authors proposed an environment perception framework to
enhance the environmental awareness of autonomous vehicles. This framework incorpo-
rates Voxel Region-based Convolution Neural Network (PVRCNN)-based vision features
and leverages Vehicle-to-Infrastructure (V2I) communication technology. The Normal
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Distributions Transform (NDT) point cloud registration algorithm is used both onboard
and at the roadside to obtain the position of autonomous vehicles and objects detected
by the multi-sensor system at the roadside are sent back to the autonomous vehicles to
improve their perception. An end-to-end machine learning model that combines control
algorithms, convolutional neural networks (CNNs), and multitask (MT) learning for au-
tonomous driving was introduced in [14]. The proposed model is able to simultaneously
perform regression and classification tasks for estimating perception indicators and driving
decisions, and can be used to evaluate inference efficiency and driving stability. In [15],
a new approach of enhancement perception for Autonomous Driving Using Semantic
and Geometric Data Fusion was presented based on low-level fusion of semantic scene
information and geometry from LiDAR-based 3D point clouds. This method provides
better range coverage and enables improved perception through 3D object classification and
detection. In [16], the authors introduced real-time object identification, distance estimation,
and instantaneous position tracking in all environmental conditions using a deep learning
algorithm with no additional sensors. The proposed framework was implemented on a
Raspberry Pi 4 Model B using the Raspberry Pi NoIR Camera Module V2.

Almost all of the approaches described above are essentially based on the use of
specific sensors such as cameras, radars, and LIDARs. Data collection based on these
sensors requires a significant amount of computing resources and power [17].

To avoid this, we propose a novel environment identification approach based on deep
learning dedicated to autonomous vehicles without the need for specific sensors. For this,
we exploit the shared wireless channel characteristics between vehicles communicating in
vehicular networks.

Because the CSI values are the most accurate representation of wireless channel charac-
teristics [18], we use the CSI values estimated from the packets exchanged between vehicles
through Vehicle-to-Vehicle (V2V) communications as input features for our proposed con-
volutional neural network model. This model is able to reliably identify the surrounding
environment by learning the channel characteristics (CSI) for each environment. Thus,
the vehicle can set up the right automotive driving parameters (such as speed limits)
corresponding to the identified environment.

The remainder of this paper is organized as follows. Section 3 describes our wireless
communication model. Section 4 provides an overview of the proposed vehicular environ-
ment identification process, while Section 5 describes our tests setups and the evaluation of
the performance of our proposed method. Finally, we provide our conclusions in Section 6.

3. System Model

To begin, we establish a wireless communication vehicular network model in which
each vehicle uses a half-duplex transmitter/receiver pair to communicate with other ve-
hicles. These vehicles exploit the wireless channel effect (characterized by CSI) on the
received messages as the input features for the CNN model used to identify the vehicular
environment.

The proposed V2X network operates on the IEEE 802.11p standard. The main physical
(PHY) layer of this protocol is based on the Orthogonal Frequency Division Multiplex
(OFDM) waveform. The exchanged frames in the vehicular network are constituted as
shown in the figure below (Figure 2).

Figure 2. IEEE 802.11p PHY layer frame structure.
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The vehicular wireless channel is structured as a double selective fading propagation
channel, which is characterized by the delay spread and the Doppler spread [18]. The
base-band time-varying response of the multi-path channel is provided by

h(t, τ) =
L−1

∑
l=0

Al(t, τ)δ(τ − τl(t)), Where

Al(t, τ) = |Al(t, τ)| exp[j(2π f0τl(t) + φl(t, τ)]

(1)

where L represents the number of non-zero paths, Al(t) represents the time-varying com-
plex amplitudes, and τl(t) represents the time-varying path delays. Moreover, note that the
phase of the complex amplitude Al(t) in this instance depends on the variation of Doppler
shift. In addition to the time delay, the signal’s transmission over this channel may cause a
Doppler shift in each path. As a result, the various delayed and frequency-shifted versions
of the transmitted signal are superimposed at the receiver side [19].

We assume that the channel characteristics are static over a constant time Tc (coherence
time) [20], which is inversely proportional to the maximum Doppler shift fd:

Tc ≈ 0.423
fd

(2)

In vehicular communication, fd can be expressed by the speed difference between the two
communicating vehicles ΔV, as shown below:

fd =
ΔV

c
f0

ΔV = |V1 − V2|
(3)

where c and f0 represent the celerity (speed of light) and the communication center fre-
quency, respectively.

Depending on the coherence bandwidth ( 1/Tc), when the channel’s coherence band-
width exceeds the signal’s bandwidth, the channel exhibits flat fading. When the coherence
bandwidth of the channel is smaller than the bandwidth of the signal, it is known as a
frequency-selective fading channel (inter-symbol interference in the time domain).

According to the European Telecommunications Standards Institute (ETSI), the V2X
scenario has a major impact on wave propagation, and thus the channel model [21]. We can
consider five major vehicular environments depending on the different channel modeling
characteristics of power, delay, and doppler [19,22,23]. These vehicular environment
characteristics are shown in Table 1.

Because the vehicular environment is highly mobile, the transmitted messages are
affected by the wireless channel. The received signal over the vehicular wireless channel
can be written as

Y(k) = X(k)H(k) + W(k) (4)

where X(k) denotes the transmitted data symbols, W is the noise in the receiver, and H(k)
denotes the wireless channel response. This channel response is characterized by the CSI.
At the receiver side, a channel estimation task is mandatory; this aims to calculate the CSI,
which is required in order to recover the transmitted data. Because channel estimation is
quite important in V2X communications, a great deal of research work has been carried out
in this field [24–26]. The channel estimation approaches in the literature are mainly based
on observation and long training sequences (LTS). The most common channel estimation
method used in industrial implementations on V2X communication boards is the LS (Least
Square) estimator, thanks to its low complexity; it can be expressed as

ĤLS = min
HLS

||Yt − Xt.H||22 (5)
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where ‖.‖2 is the L2 norm, Xt is the long training sequence vector, and Yt denotes the
corresponding observation vector. A close optimization of the LS estimator was established
in [27], as follows:

ĤLS = X−1
t Yt (6)

Table 1. Vehicular environment characteristics.

Taps
Power
[dB]

Delay [ns]
Doppler

[Hz]
U

-L
O

S
Tap 1 0 0 0

Tap 2 −8 117 236

Tap 3 −10 183 −157

Tap 4 −15 333 492

U
-N

LO
S

Tap 1 0 0 0

Tap 2 −3 267 295

Tap 3 −4 400 −98

Tap 4 −10 533 591

R
-L

O
S Tap 1 0 0 0

Tap 2 −14 83 492

Tap 3 −17 183 −295

H
-L

O
S

Tap 1 0 0 0

Tap 2 −10 100 689

Tap 3 −15 167 −492

Tap 4 −20 500 886

H
-N

LO
S

Tap 1 0 0 0

Tap 2 −2 200 689

Tap 3 −5 433 −492

Tap 4 −7 700 886

4. Vehicular Environment Identification Methodology

In this work, we consider the vehicular environment identification process as a multi-
class classification problem. Thus, we propose two methods to tackle it, as shown in
Figure 3. The first is based on the use of the long training sequences (LTSs) of the received
frame, while the second approach is based on the calculated CSI values. Both the LTSs and
the CSI values include 128 data samples, and these samples are used as the input features
of the CNN model.
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Figure 3. Flow chart describing vehicular environment identification process.

4.1. The Proposed Model

To tackle to problem of vehicular environment identification, we propose the Convo-
lutional Neural Network (CNN) architecture shown in Figure 4.

Figure 4. Proposed CNN Architecture.

The proposed CNN model is constructed as follows: First, it begins with two similar
one-dimensional (1D) convolutional layers; these two layers include 45 filters. Then, we
have a third 1D convolutional layer, including 20 filters. This is followed by two other
1D convolutional layers that include 45 and 20 filters, respectively. The size of the filters
utilized in all the previous convolutional layers is (4 × 1). After that, we have an average
pooling layer with a pool size of 2. This average pooling layer has three 1D convolutional
layers and employs 45 fillers of (4 × 1) kernel size. The ReLu function is used as an
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activation layer for all the previous convolutional layers. These layers are followed by three
fully connected layers, which include 128, 256, and 512 neurons respectively, with the ReLu
activation function used for these three dense layers. To reduce the overfitting effect, we
add two dropout layers (with p = 0, 3) after the first and the second fully connected layer.
Furthermore, second-norm regularization is used for all the fully connected layers [28].
Finally, the output layer is a fully connected layer in which the number of neurons is 5
(equal to the number of environment classes), with SoftMax used as the activation function.

The proposed architecture was built using the Tensorflow library [29], and we used 20
epochs and a batch size of 50 to train the model.

4.2. Data-Set Generation

For training, we considered 5 classes of vehicular environments: Rural LOS (Line-
of-sight), Urban LOS, Urban NLOS (Non-Line-of-sight), Highway LOS, and Highway
NLOS. Each environment is modeled by a wireless channel based on real-world vehicular
environment measurement of the delay, gain, and Doppler frequency.

The vehicular channel characteristics of each environment can be found in Table 1. A
label is assigned to each environment corresponding to the class outputs of the CNN model
(Table 2).

Table 2. Vehicular environment labels and required speed limits.

Vehicular Environment Label Speed Limits

Highway NLOS 0 130 km/h

Highway LOS 1 130 km/h

Rural LOS 2 90 km/h

Urban LOS 3 50 km/h

Urban NLOS 4 50 km/h

To generate the dataset samples we employ a half-duplex V2V communication based
on OFDM, which was developed using Matlab. To simulate the different vehicular environ-
ments (wireless channels models) we used the V2VChannel framework in Matlab, which is
referenced in [19].

Several 802.11p packets are transmitted through the different channel models. For
each environment, the packets are transmitted at a different value of the Signal-to-Noise
Ratio (SNR), where the SNR range is from 15 dB to 40 dB with a step of 0.5 dB.

This process was repeated 400 times with different releases of the channel model for
each environment. At each step, we computed the LTS in the received packet and the
calculated CSI values, obtaining the 128 symbols (features) of both LTS and CSI associated
with the specific label corresponding to each environment, as shown in Table 2.

The saved sequence features (Fi) for either CSI or LTS can be expressed as

Fi = [[A(1), A(2), ...., A(N)]] (7)

where A(i) is the CSI or LTS sample. At the end of the process, we had 100,000 dataset
samples, of which we used 80% as the training set and 20% as the validation set.

5. Evaluation and Results

In order to assess the validity and accuracy of the proposed model, we evaluated
the system on different datasets. We generated a test set by transmitting several 802.11p
packets through the different channel models (V2VChannel framework of Matlab). For
each environment, the SNR range was set from 15 dB to 40 dB with a step of 0.25 dB.
This process was repeated 30 times with different releases of the channel model for each
environment, resulting in 15,000 test sequences (LTS and CSI).
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Before evaluating the proposed architecture, we trained our model using the categor-
ical cross-entropy loss function and the Adam optimizer [30]. The training process was
carried out on a machine including an NVIDIA Tesla P100 GPU.

Because both the CSI and LTS are complex numbers, we use training and test sets with
three configurations depending on the input data format for each configuration. We use
the magnitude for the first test-bed, the angle for the second, and a two-channel input for
the third one, wherein the real part of the complex number is used for the first-channel
input and the imaginary part is set for the second-channel input.

5.1. LTS Approach Performance Evaluation

As shown in Table 3, the two-channel configurations has high accuracy, achieving
93.42%, which is better than the magnitude and the angle configurations, which are 92.22%
and 91.78% respectively.

Table 3. LTS approach accuracy for magnitude angle and two-channel configurations.

Configuration Accuracy

Magnitude 92.22 %

Angle 91.78 %

2-Channel 93.42 %

Figure 5 represents the confusion matrix of the test samples for the proposed CNN
architecture using the LTS as input features within a two-channel configuration. From
this confusion matrix, it can be seen that our proposed CNN model is able to reliably
recognize the different vehicular environment; it correctly identifies the H-NLOS and
H-LOS environments with an individual accuracy of 98.3% and 86.7%, respectively, and
the R-LOS, U-LOS, and U-NLOS environments with 94% accuracy.

Figure 5. Confusion matrix based on LTS approach for the proposed CNN.

We compared the proposed CNN architecture to an ANN architecture containing four
dense fully connected layers, including 64, 128, 256, and 512 neurons before the output layer,
each of which have five neurons (equal to the number of environments to identify). Other
machine learning classifier candidates used for comparison are the Random Forest classifier
(RF, with 100 trees), K-Neighbors classifier (K-NN), where K was set to five neighbors,
Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) with a linear kernel.

Table 4 shows the comparison between our proposed model and the approaches men-
tioned above based on test accuracy and environment identification prediction time. The
prediction time has been determined using an NVIDIA Tesla P100 GPU. From Table 4, it is
obvious that the prediction time of our proposed CNN Architecture has better performance
than either SVM or K-NN, providing a prediction time of 51.33 μs. This time is comparable
to the other approaches (ANN, RF, GNB) that have llowess prediction times; moreover, the
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accuracy of our model is significantly greater than these approaches; indeed, it has the best
overall test accuracy at 93.42%.

Table 4. Classification accuracy and average prediction time comparison for LTS approach.

Approach Accuracy (%) Prediction Time (μs)

Proposed CNN 93.42 51.33

ANN 86.16 23.11

RF 68.34 25.71

K-NN 63.18 7180

GBN 20.62 4.11

SVM 31.38 10499

In order to provide more detail about the test accuracy classification, the confusion
matrices of all the considered approaches are presented in Figures 5–10.

It can be seen that the K-NN and RF approaches can identify H-NLOS and U-LOS
environments with acceptable individual accuracy (up to 80%) and provide less than
65% of individual test accuracy for H-LOS, R-LOS, and U-LOS environments. From
Figures 9 and 10, it is clear that both the GNB and SVM classifiers fail to provide reliable
environment identification.

Figure 6. Confusion matrix for ANN based on LTS approach.

Figure 7. Confusion matrix for KNN based on LTS approach.
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Figure 8. Confusion matrix for RF based on LTS approach.

Figure 9. Confusion matrix for GNB based on LTS approach.

Figure 10. Confusion matrix for SVM based on LTS approach.

5.2. CSI Approach Performance Evaluation

Vehicular environment identification based on the CSI approach was performed using
three input feature configuration: two-channel, magnitude, and angle.

From Table 5, it is clear that that the two-channel input feature configuration provides
the best performances; it has 96.48% accuracy, which is greater than the accuracy provided
by the LTS approach (93.42% in two-channel configuration).

Table 5. CSI approach accuracy for magnitude angle and two-channel configurations.

Configuration Accuracy

Magnitude 90.63 %

Angle 91.50 %

2-Channel 96.48 %
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Figure 11 presents the confusion matrix of the proposed CNN architecture on the
test set when using CSI values as input features for the model. The presented results
are calculated taking into account a two-channel input shape, as this provides the most
accurate performance. From this confusion matrix, it is clearly apparent that our proposed
model can reliably identify all the vehicular environments based on CSI values, with high
individual accuracy up to 92%.

Our model achieves 99.9%, 95.2%, 92.7%, 97.4%, and 97.2% for H-NLOS, H-LOS,
R-LOS, U-LOS, and U-LOS environments, respectively.

The proposed CNN model based on CSI was compared to the related machine learning
classifiers RF, K-NN, GBN, and SVM, as well as to an ANN architecture, in terms of test
accuracy and the average time required to identify the environment (prediction time,
performed using an NVIDIA Tesla P100 GPU). The ANN architecture and parameter
settings of these classifiers are the same as described in Section 5.1.

Figure 11. Confusion matrix for the proposed CNN based on CSI approach.

Figure 12. Comparison of our model’s accuracy to state-of-the-art alternatives.

From Table 6, it can be seen that our proposed CNN model has better performance
than either SVM or K-NN in terms of prediction time, as it yields in 39.56 μs. While this
achieved prediction time is comparable to the other approaches (ANN, RF, GNB) that have
low prediction time, in term of the test accuracy our CNN model highly outperforms all
the other approaches, reaching 96.48%.
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Table 6. Classification accuracy and average prediction time comparison for CSI approach.

Approach Accuracy (%) Prediction Time (μs)

Proposed CNN 96.48 39.56

ANN 85.64 21.11

RF 67.77 24.04

K-NN 59.26 8999

GNB 27.06 4.38

SVM 32.33 15756

According to these performance results, it is clear that the CSI approach is more accu-
rate than the LTS approach in terms of both test accuracy and environment prediction time.

5.3. Comparison between Our Model and State-of-the-Art Architectures

Our proposed CNN architecture was compared against the popular state-of-the-art
classification architectures ResNet50 [31], Xception [32], InceptionV3 [33], InceptionRes-
NetV2 [34], DenseNet201 [35], and MobileNetV2 [36]. We trained these architectures on the
same training datasets. Then, we evaluated their classification performances on the test set.
Prior to this process, we updated the input shape of the input layer to fit our data inputs
and updated the output layer size to five classes in order to equal the number of vehicular
environments to identify.

Because the previously mentioned state-of-the-art architectures are designed to receive
two-dimensional (2D) inputs for shape size, we considered a 2D channel matrix in the
input features instead of a 1D channel vector. Thus, we rearranged our dataset from 1D to
2D, as follows:

H2D
[n∗n]

= Diag(H1D
[1∗n]

) (8)

where Diag() is the diagonal matrix, H2D and H1D are the channel matrix and correspond-
ing channel vector, respectively, where their coefficients are the CSI values, and n is equal
to 128, which is equivalent to the number of CSI values estimated per packet; thus, we have
an input shape size of 128 × 128.

In Table 7, our proposed model is compared to the indicated state-of-the-art architec-
tures in terms of average test accuracy (Acc), individual test accuracy for each environment,
and the average time required to identify the environment (prediction time).

Table 7. Comparison between our model and state-of-the-art alternatives.

Architecture H-NLOS Acc (%) H-LOS Acc (%) R-LOS Acc (%) U-LOS Acc (%) U-NLOS Acc (%) Acc (%) Prediction Time (μs)

Our Model 99.9 95.2 92.7 97.4 97.2 96.48 39.56

ResNet50 98.1 88.2 77.8 90.1 93.5 89.54 672

Xception 97.8 91.7 81.4 91.2 94.5 91.32 794

InceptionV3 99.1 79.8 86.9 96.1 93.9 91.08 683

Inception ResNetV2 98.5 89.1 80 86.5 95.8 89.98 1621

DenseNet201 98.5 92.7 85.7 91.2 96.6 92.94 1349

MobileNetV2 96.8 77.8 96 58.2 65.5 78.86 318

DCNN [37] 98.9 96.9 94.3 95.8 99.2 97.02 125

From Table 7, it is clear that our proposed model has the best performance in terms
of prediction time compared to all the other architectures presented in the table, with
a prediction time of 39.56 μs. The architectures ResNet50, Xception, and InceptionV3
have prediction times around of 700 μs, whereas the InceptionResNetV2, DenseNet201,
MobileNetV2, and DCNN [37] architectures have 1621 μs, 1349 μs, 318 μs and 125 μs,
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respectively. Thus, the prediction time achieved by our model is significantly (at least
three-fold) lower than the prediction time attained by the other architectures.

Regarding the overall test accuracy (Figure 12), our model reaches 96.48%. This
achieved accuracy is greater than the test accuracy attained by ResNet50, Xception, Incep-
tionV3, InceptionResNetV2, DenseNet201, and MobileNetV2, which have 89.54%, 91.32%,
91.08%, 89.98%, 92.94%, and 78.86%, respectively. Although the proposed DCNN architec-
ture in [37] scores slightly higher than our model in term of test accuracy (by 0.54%), the
prediction time achieved by our model is three times faster than DCNN [37].

To attain more insight into the classification performance of the considered architec-
tures, the individual test accuracy of each vehicular environment is presented in Table 7.
It can be seen that all the architectures are able to successfully discriminate the H-NLOS
environment with accuracy of more than 96%; our model has the best accuracy, at 99.9%.
Concerning the H-LOS environment, the individual accuracies are acceptable (close to
80%) for MobileNetV2 and InceptionV3, and the other architectures provide good indi-
vidual accuracies of around 90%. The test accuracies for the R-LOS environment are less
significant compared to other environments. This is due to the channel characteristics of
this environment, which are close to the channel characteristics of the U-LOS and H-LOS
environments. However, the accuracy for the R-LOS environment is considered good for
our model, MobileNetV2, and DCNN (up to 90%), and is acceptable for the other models
(around 80%). For the U-LOS environment, the test accuracy is generally around 90%,
while our proposed model has the best accuracy at 97.4%. For the U-NLOS environment,
all the architectures except MobileNetV2 are able to recognize this environment with high
accuracy (up to 93%).

5.4. Minimum Performance Overhead and Reliability

Because our proposed vehicular environment identification approach based on CSI
is intended to be implemented in autonomous connected cars for use in a time-critical
setting, it is important that the environment identification prediction time consistently meet
latency requirements in every scenario. According to [38], this hard time limit typically
falls within a few milliseconds. As seen in the results, our proposed CSI-based vehicular
environment identification model demonstrates a prediction time that is consistently within
the microsecond range, which is well under the required range time.

In addition, our proposed CNN architecture using the CSI values as an inputs features
proves that it can reliably identify different vehicular environments with high accuracy
(96.48%) that meets the requirements for autonomous connected cars.

6. Conclusions

In this paper, we have presented a deep learning-based vehicular environment identi-
fication approach using vehicular wireless channel characteristics in the form of estimated
CSI as input features for a CNN model. The results of our validation tests have demon-
strate that our methodology can reliably recognize the surrounding environment with high
accuracy (96.48%). These same results show that our approach has minimal performance
overhead, measured in microseconds, which is well within the expected operational range
across various autonomous driving scenarios. In addition, our CNN model has comparable
performances to existing state-of-the-art architectures. In summary, our CSI-based vehicu-
lar environment identification approach is validated as a reliable solution to enable speed
limit decisions for autonomous vehicles. However, because our vehicular environment
identification method is based on the use of channel characteristics, it requires a continual
exchange of messages. Moreover, we demonstrate promising results with our simulation
scenarios. Hence, real-world CSI-based vehicular environment identification testbeds on a
larger scale involving more vehicles in specific road conditions remains an open research
problem worth investigating in the future.
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Abstract: Automatic modulation classification is an important component in many modern aeronau-
tical communication systems to achieve efficient spectrum usage in congested wireless environments
and other communications systems applications. In recent years, numerous convolutional deep learn-
ing architectures have been proposed for automatically classifying the modulation used on observed
signal bursts. However, a comprehensive analysis of these differing architectures and the importance
of each design element has not been carried out. Thus, it is unclear what trade-offs the differing
designs of these convolutional neural networks might have. In this research, we investigate numerous
architectures for automatic modulation classification and perform a comprehensive ablation study to
investigate the impacts of varying hyperparameters and design elements on automatic modulation
classification accuracy. We show that a new state-of-the-art accuracy can be achieved using a subset
of the studied design elements, particularly as applied to modulation classification over intercepted
bursts of varying time duration. In particular, we show that a combination of dilated convolutions,
statistics pooling, and squeeze-and-excitation units results in the strongest performing classifier
achieving 98.9% peak accuracy and 63.7% overall accuracy on the RadioML 2018.01A dataset. We
further investigate this best performer according to various other criteria, including short signal
bursts of varying length, common misclassifications, and performance across differing modulation
categories and modes.

Keywords: automatic modulation classification; machine learning; convolutional neural networks

1. Introduction

Automatic modulation classification (AMC) holds particular significance in aerospace
applications, specifically in radio frequency (RF) signal analysis and modern software-
defined radios. It serves a multitude of crucial tasks including “spectrum interference
monitoring, radio fault detection, dynamic spectrum access, opportunistic mesh network-
ing, and numerous regulatory and defense applications” [1]. Upon detection of an RF signal
with unknown characteristics, AMC is a crucial initial procedure in order to demodulate the
signal for receivers supporting a variety of standard and non-standard modulation schemes.
Efficient AMC allows for maximal usage of transmission mediums and can enhance re-
silience in modern cognitive radios. Systems capable of adaptive modulation schemes can
monitor current channel conditions with AMC and adjust exercised modulation schemes
to maximize usage across the transmission medium.

Moreover, for receivers that have a versatile demodulation capability, AMC is a
requisite task. The correct demodulation scheme must be applied, as a first step, to recover
the modulated message within a detected signal. Aerospace communication systems,
such as those employed in satellites, unmanned aerial vehicles (UAVs), and aircraft often
operate in dynamic and congested environments [2]. AMC is critical in these applications
to ensure efficient spectrum utilization. In systems where the modulation scheme is
unknown a priori, AMC allows for efficient prediction of the employed modulation scheme.
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Higher performing AMC can increase the throughput and accuracy of these systems;
therefore, AMC is currently an important research topic in the fields of machine learning
and communication systems, specifically for software-defined radios.

Common benchmarks are formulated with the underlying assumption that the AMC
model needs to perform classification for both the modulation mode (e.g., QAM) and
the specific variant within that mode (e.g., 32QAM as opposed to 64QAM). While many
architectures have proven to be effective at high signal-to-noise ratios (SNRs), performance
degrades significantly at lower SNRs that often occur in real-world applications. Other
works have investigated increasing classification performance at lower SNR levels through
the use of SNR-specific modulation classifiers [3] and clustering based on SNR ranges [4].
For the purpose of classification, various signal characteristics have been explored. Tradi-
tionally, AMC has made use of statistical moments and higher-order cumulants derived
from the received signal [5,6]. Recently, direct employment of the raw in-phase (I) and
quadrature (Q) components in the time domain have been embraced [1,7–9]. Additionally,
alternative studies have investigated supplementary attributes, including I/Q constellation
plots [10–13].

Upon the selection of signal input features, the subsequent step involves the utilization
of machine learning models to discern statistical patterns within the data for classification.
Classifiers such as support vector machines, decision trees, K-nearest neighbors, and
neural networks are commonly used for this application [1,4,7–10,14–17]. Residual neural
networks (ResNets), along with convolutional neural networks (CNNs), have been shown
to achieve high classification performance for AMC [1,4,7–10,18–21]. Thus, deep learning-
based methods in AMC have become more prevalent due to their promising performance
and their ability to generalize to large, complex datasets comprising a variety of standard
and non-standard modulation schemes.

While other works have contributed to increased AMC performance, the importance
of many design elements for AMC remains unclear and a number of architectural elements
have yet to be investigated. Therefore, in this work, we aim to formalize the impact
of a variety of architectural changes and model design decisions on AMC performance.
Numerous modifications to architectures from previous works, including our own [7],
and novel combinations of elements applied to AMC are considered. After an initial
investigation, we provide a comprehensive ablation study in this work to investigate
the performance impact of various architectural modifications. Additionally, we achieve
new state-of-the-art classification performance on the RadioML 2018.01A dataset [22] that
benefits from the results of the ablation study. Using the best-performing model, we provide
additional analyses that characterize its performance across modulation modes and signals
with variable duration bursts.

2. Related Work

The area of AMC has been investigated by several research groups. We provide a
summary of recent results in AMC to provide context and motivation for our contributions
to AMC and the corresponding ablation study described in this paper. The results of the
ablation study are then used to determine a new AMC architecture that demonstrates
increased performance.

Corgan et al. demonstrate that deep convolutional neural networks exhibit notable
classification efficacy, particularly under low SNRs, evidenced by their study on a dataset
encompassing 11 distinct modulation types [8]. It was found that CNNs exceeded perfor-
mance over expertly crafted features. Comparing results with architectures in [1,8], Liu
et al. improved AMC performance utilizing self-supervised contrastive learning [23]. First,
an encoder is pre-trained in a self-supervised manner through creating contrastive pairs
with data augmentation. By creating different views of the input data through augmen-
tation, contrastive loss is used to maximize the cosine similarity between positive pairs
(augmented views of the same input). Once converged, the encoder is frozen (i.e., the
weights are set to fixed values) and two fully-connected layers are added following the
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encoder to form the classifier. The classifier is trained using supervised learning to predict
the 11 different modulation schemes. Chen et al. applied a novel architecture to the same
dataset where the input signal is sliced and transformed into a square matrix and applies a
residual network to predict the modulation schemes [24]. A multidimensional CNN-LSTM
architecture was utilized in [25], where the CNN performed feature extraction that would
later be processed by LSTM (long short-term memory) [26] and classification layers. Other
work has investigated empirical and variational mode decomposition to improve few-shot
learning for AMC [27]. In our work, we utilize a larger, more complex dataset consisting of
24 modulation schemes, as well as modeling improvements.

Spectrograms and I/Q constellation plots in [28] were found to be effective input
features to a traditional CNN achieving nearly equivalent performance as the baseline
CNN network in [1], which used raw I/Q signals. Furthermore, Refs. [10–12] employed
I/Q constellations as input features in their machine learning models, focusing on a more
constrained context involving four or eight modulation types. Additionally, other ap-
proaches have been explored for AMC. For instance, Refs. [29,30] utilized statistical features
in conjunction with support vector machines, while [31,32] integrated fusion methodolo-
gies into CNN classifiers. Mao et al. utilized various constellation diagrams at varying
symbol timings, alleviating symbol timing synchronization concerns [33]. A squeeze-and-
excitation-inspired [34] architecture was used as an attention mechanism to focus on the
most important diagrams.

Although spectrograms and constellation plots have shown promise, they require
additional processing overhead and have had comparable performance to raw I/Q signals.
In addition, models that use raw I/Q signals could be more adept at handling varying-
length signals than constellation plots because they are not limited by periodicity constraints
for short-duration signals (i.e., burst transmissions). Consequently, we utilize raw I/Q
signals in our work.

Expanding upon these investigations, Tridgell’s dissertation [35] explores the appli-
cation of these architectures within the context of resource-limited Field Programmable
Gate Arrays (FPGAs). His research underscores the significance of parameter reduction
for modulation classifiers, given their typical deployment in embedded systems character-
ized by resource constraints. Addressing this concern, Mendis et al. proposed the use of
multiplierless deep belief networks that map directly to binary circuits [36].

In [1], Oshea et al. created a dataset with 24 different types of modulation, known
as RadioML 2018.01A, and achieved high classification performance using convolutional
neural networks, specifically using residual connections (see Figure 1) within the network
(ResNet). A total of six residual stacks were used in the architecture. A residual stack is
defined as a series of a convolutional layers, residual units, and a max pooling operation as
shown in Figure 1. The ResNet employed by [1] attained approximately 95% classification
accuracy at high SNR values. Wang et al. also made use of residual connections along with
depthwise separable convolutions for feature extraction [37]. This architecture was able
to achieve a maximum performance of 97% accuracy and an average of 53.85% accuracy
across all signal-to-noise ratios while greatly reducing model complexity.

Harper et al. proposed the use of X-Vectors [38] to increase classification performance
using CNNs [7]. X-Vectors are traditionally used in speaker recognition and verification
systems making use of aggregate statistics. X-Vectors utilize statistical moments, specifically
the mean and variance, computed over convolutional filter outputs. It can be postulated
that computing the mean and variance of the embedding layer contributes to the removal
of signal-specific details, leaving broader modulation-specific characteristics. Figure 2
illustrates the X-Vector architecture, where statistics are computed over the activations from
a convolutional layer producing a fixed-length vector.

107



Electronics 2023, 12, 3962

Figure 1. ResNet architecture used in [1]. Each block represents a unit in the network, which may be
composed of several layers and connections as shown on the right of the figure. Dimensions of the
tensors on the output of each block are also shown where appropriate.

Figure 2. X-Vector architecture overview. The convolutional activations immediately before pooling
are shown. These activations are fed into two statistical pooling layers that collapse the activations
over time, creating a fixed-length tensor that can be further processed by fully connected dense layers.

Additionally, this architecture upholds a completely convolutional framework, en-
abling adaptability to inputs of varying sizes within the network. The utilization of
statistical aggregations capitalizes on this characteristic. With statistical aggregations, the
input to the initial dense layer becomes contingent upon the quantity of filters in the final
convolutional layer. The number of filters is a hyperparameter that remains distinct from
the temporal length of the input signal fed into the neural network.

In the absence of statistical aggregations, input signals for a conventional CNN or
ResNet would require resampling, cropping, or padding to attain a consistent temporal
length for the subsequent dense layers. While the dataset used in this work has uniformly
sized signals in terms of duration, (1024 × 2), this is an architectural advantage in our
deployment, as received signals may vary in duration. Instead of modifying the inputs to
the network via sampling, cropping, padding, etc., the X-Vector architecture can directly
operate with variable-length inputs without modifications to the network or input signal.
Work by Li et al. [39] utilizes LSTMs while highlighting this desirable characteristic.

Figure 3 outlines the employed X-Vector architecture in [7] where F = [ f1, f2, ..., f7] = 64
and K = [k1, k2, ..., k7] = 3. Mean and variance pooling are performed on the final con-
volutional outputs, concatenated, and fed through a series of dense layers creating the
fixed-length X-Vector. A maximum of 98% accuracy was achieved at high SNR levels.
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Figure 3. Proposed CNN Architecture in [7]. This is the first work to employ an X-Vector-inspired
architecture for AMC showing strong performance. This architecture is used as a baseline for the
modifications investigated in this paper. The f and k variables shown designate the number of kernels
and size of each kernel, respectively, in each layer. These parameters are investigated for optimal
sizing in our initial investigation.

The work of [7] replicated the ResNet architecture from [1] and compared the results
with the X-Vector architectures as seen in Figure 4. Harper et al. [7] were able to reproduce
this architecture, achieving a maximum of 93.7% accuracy. The authors attribute the
difference in performance to differences in the train and test set separation that they used,
since these parameters were unavailable.

Figure 4. Accuracy comparison of the ResNet reproduced in [1] and the X-Vector-inspired model
from [7] over varying SNRs. This accuracy comparison shows the superior performance of the
X-Vector architecture, especially at higher SNRs, and supports using this architecture as a baseline for
the improvements investigated in this paper.

As expected, the classifiers perform with a higher accuracy as the SNR value increases.
At low SNR values, the classification task becomes more difficult due to the increased
presence of noise. High SNR values are not invariably guaranteed in software-defined
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radios. However, notable enhancements are evident when compared to random chance,
even under conditions of diminished SNR. In time-critical classification scenarios, this
factor gains heightened significance, potentially leading to a pivotal advantage, as fewer
demodulation schemes would require trial-and-error application to ascertain the correct
scheme, thus streamlining the process.

One challenge of AMC is that it is desirable for performance to work well across a
large range of SNRs. For instance, Figure 4 illustrates that modulation classification perfor-
mance reached a plateau beyond +8 dB SNR, and approached chance-level classification
performance when the SNR dipped below −8 dB on the RadioML 2018.01A dataset. This
range is denoted by the shaded region. Harper et al. investigated methods to improve
classification performance in this range by employing an SNR regression model to aid
separate modulation classifiers (MCs). While other works have trained models to be robust
across diverse SNR scenarios, Harper et al. employed SNR-specific MCs [3].

Six MCs were created by discretizing the SNR range to ameliorate performance be-
tween −8 dB and +8 dB SNR. These groupings were chosen in order to provide sufficient
training data to avoid overfitting the MCs and provide enough resolution, so that combining
MCs provided more value than a single classifier.

Firstly, by predicting the SNR of the received signal with a regression model, an
SNR-specific MC that was trained on signals with the predicted SNR is applied to make
the final prediction. While the dataset’s SNR values are discretized, the SNR is measured
on a continuous scale in practical deployment scenarios, subject to temporal fluctuations.
Consequently, a regression approach is adopted instead of classification. By employing
this methodology, various classifiers can tailor their feature processing to accommodate
distinct SNR ranges. Each MC in this approach uses the same architecture as that proposed
in [7]; however, each MC is trained with signals within each MC’s SNR training range (see
Table 1).

Table 1. SNR-specific modulation classifiers (MCs) groupings during training and inference phases,
adapted from [3].

AMC Model Training Range (dB) Employed during Inference (dB)

MC 1 [−20, −8] (−∞, −8)
MC 2 [−8, −4] [−8, −4)
MC 3 [−4, 0] [−4, 0)
MC 4 [0, 4] [0, 4)
MC 5 [4, 8] [4, 8)
MC 6 [8, 30] [8, ∞)

Illustrating enhancements across diverse SNR levels, Figure 5 presents the performance
improvement (expressed as percentage accuracy) achieved through the employment of
the SNR-informed architecture, contrasted with the baseline classification architecture
detailed in [7]. While a marginal decline in performance was evident at −8 dB and a more
substantial reduction at −2 dB, discernible enhancement is observable across most SNR
conditions, with a pronounced emphasis on the desired range, spanning from −8 dB to
+8 dB.

Declined performance at specific SNRs could be attributed to the optimization of a
specific modulation classifier (MC), which led to an enhanced performance for a specific
SNR grouping at the cost of lower performance for an individual value within the same
group. To elaborate, the MC designed for the [−4, 0) dB range may have bolstered the
overall performance by accurately classifying signals at −4 dB and 0 dB, potentially at
the expense of −2 dB accuracy. Given the substantial size of the testing dataset, these
marginal percentage gains hold significance, as they result in thousands of additional
correct classifications. Importantly, all outcomes achieve statistical significance according to
McNemar’s test [40], consequently achieving new state-of-the-art performance at the time.

110



Electronics 2023, 12, 3962

Figure 5. Summary of percentage improvement in accuracy over [7] seen in [3]. This work showed
how the baseline architecture could be tuned to specific SNR ranges. Positive improvement is
observed for most SNR ranges.

Soltani et al. found that SNR regions of [−10,−2] dB, [0, 8] dB, and [10, 30] dB had
similar classification patterns [4]. Instead of predicting exact modulation variants, the
authors grouped commonly confused variants into a more generic, coarse-grained label.
This grouping increases the performance of AMC by combining modulation variants that
are commonly confused. However, it also decreases the sensitivity of the model to the
numerous possible variants.

Cai et al. utilized a transformer-based architecture to aid performance at low SNR
levels with relatively few training parameters (approximately 265,000 parameters) [41].
Ren et al. proposed ResSwinT-SwinT, making use of transformers to denoise signals under
low SNR conditions prior to classification [17]. A multi-scale network along with center
loss [42] was used in [43]. It was found that larger kernel sizes improved AMC performance.
We further explore kernel size performance impacts in this work. Zhang et al. proposed
a high-order attention mechanism using the covariance matrix achieving a maximum
accuracy of 95.49% [44].

Although many discussed works use the same RadioML 2018.01A dataset, there is a
lack of a uniform dataset split to establish a benchmark for papers to report performance.
In an effort to make AMC more reproducible and comparable across publications, we have
made our dataset split and accompanying code available on GitHub (https://github.com/
caharper/Automatic-Modulation-Classification-with-Deep-Neural-Networks).

While numerous works have investigated architectural improvements, we aim to
improve upon these works by introducing additional modifications, as well as a compre-
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hensive ablation study that illustrates the improvement of each modification. With the new
modifications, we achieve new state-of-the-art AMC performance.

3. Dataset

In order to assess different machine learning architectures, we employ the RadioML
2018.01A dataset, which encompasses a collection of 24 distinct modulation types [1,22].
Due to the complexity and variety of modulation schemes in the dataset, it is fairly repre-
sentative of typically encountered modulation schemes. Moreover, this variety increases
the likelihood that AMC models will generalize to more exotic or non-existing modulation
schemes in the training data that are derived from these traditional variants.

There are a total of 2.56 million labeled signals, S(T), each consisting of 1024 time
domain digitized intermediate frequency (IF) samples of in-phase (I) and quadrature (Q)
signal components where S(T) = I(T) + jQ(T). The data were collected at a 900 MHz IF
with an assumed sampling rate of 1MS/sec, such that each 1024 time domain digitized I/Q
sample is 1.024 ms [8]. The 24 modulation types and the representative groups that we
chose for each are listed as follows:

• Amplitude: OOK, 4ASK, 8ASK, AM-SSB-SC, AM-SSB-WC, AM-DSB-WC, and AM-
DSB-SC.

• Phase: BPSK, QPSK, 8PSK, 16PSK, 32PSK, and OQPSK.
• Amplitude and Phase: 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,

64QAM, 128QAM, and 256QAM.
• Frequency: FM and GMSK.

Each modulation type has a total of 106,496 observations ranging from −20 dB to
+30 dB SNR in 2 dB increments. In total, there are 26 different SNR values. The SNR is
assumed to be consistent over the same window length as the I/Q sample window.

The dataset was partitioned into 1 million training observations and 1.5 million testing
observations through a random shuffle split, as carried out in [3,7]. This division was
performed in a stratified manner, taking into account modulation type and the SNR. As a
result of this balanced approach, the anticipated performance for a classifier employing
random chance is 1/24 or approximately 4.2%. Considering the dataset’s incorporation of
diverse SNR levels, it is reasonable to expect that the classifier’s accuracy would increase
with the SNR. For consistency, each model investigated in this work was trained and
evaluated on the same train and test set splits.

4. Initial Investigation

In this work, we use the architecture described in [7] as the baseline architecture. We
note that [3] improved upon the baseline; however, each individual MC used the baseline
architecture, except each is trained on specific SNR ranges. Therefore, the base architectural
elements were similar to [7], but separated for different SNRs. In this work, our focus is to
improve upon the employed CNN architecture for an individual MC rather than the use of
several MCs. Therefore, we use the architecture from [7] as our baseline.

Before exploring an ablation study, we make a few notable changes from the baseline
architecture in an effort to increase AMC performance. This initial exploration is for clarity
as it reserves the ablation study that follows from requiring an inordinate number of
models. It also introduces the general training procedures that assist and orient the reader
in following the ablation study—the ablation study mirrors these procedures. We first
provide an initial investigation exploring these notable changes.

We train each model using the Adam optimizer [45] with an initial learning rate
lr = 0.0001, and a decay factor of 0.1, if the validation loss does not decrease for 12 epochs,
and a minimum learning rate of 1 × 10−7. If the validation loss does not decrease after
20 epochs, training is terminated and the models are deemed converged. For all experi-
ments, mini-batches of size 32 are used. As has been established in most programming
packages for neural networks, we refer to fully connected neural network layers as dense
layers, which are typically followed by an activation function.
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4.1. Architectural Changes

A common property of neural networks is using fewer but larger kernels in the early
layers of the network, and an increased number of smaller kernels is used in the later layers,
compared to the baseline architecture. This is commonly referred to as the information
distillation pipeline [46]. By utilizing a smaller number of large kernels in early layers, we
are able to increase the temporal context of the convolutional features without dramatically
increasing the number of trainable parameters. Numerous, but smaller kernels are used
in later convolutional layers to create more abstract features. Configuring the network in
this manner is especially popular in image classification, where later layers represent more
abstract, class-specific features.

We investigate this modification in three stages, using the baseline architecture de-
scribed in Figure 3 [7]. We denote the number of filters in the network and the filter sizes as
F = [ f1, f2, ..., f7] and K = [k1, k2, ...k7] in Figure 3. The baseline architecture used f = 64
(for all layers) and k = 3 (consistent kernel size for all layers). Our first modification to
the baseline architecture is F = [32, 48, 64, 72, 84, 96, 108], but keeping k = 3 for all layers.
Second, we use the baseline architecture, but change the size of filters in the network where
f = 64 (the same as the baseline) and K = [7, 5, 7, 5, 3, 3, 3]. Third, we make both modifi-
cations and compare the result to the baseline model where F = [32, 48, 64, 72, 84, 96, 108]
and K = [7, 5, 7, 5, 3, 3, 3]. These modifications are not exhaustive searches; rather, these
modifications are meant to guide future changes to the network by understanding the
influence of filter quantity and filter size in a limited context.

4.2. Initial Investigation Results

As shown in Table 2, increasing the size of the filters in earlier layers increases both
average and maximum test accuracy over [7], but at the cost of additional parameters. A
possible explanation for the increase in performance is the increase in temporal context
due to the larger kernel sizes. Increasing the number of filters without increasing temporal
context decreases performance. This is possibly because it increases the complexity of the
model without adding additional signal context.

Table 2. Initial investigation performance overview. All architectures employ the baseline with
varying numbers of kernels and kernel sizes.

Notes # Params
Avg.

Accuracy
Max

Accuracy

Reproduced ResNet [1] 165,144 59.2% 93.7%

X-Vector [7] 110,680 61.3% 98.0%

More Filters
(Same Filter Sizes) 149,168 61.0% 96.1%

Larger Filter Sizes
(Same # Filters) 143,960 62.6% 98.2%

Combined 174,000 62.9% 98.6%

Figure 6 illustrates the change in accuracy with varying SNR. The combined model,
utilizing various kernel sizes and numbers of filters, consistently outperforms the other
architectures across changing SNR conditions.

Although increasing the number of filters decreases performance alone, combining the
approach with larger kernel sizes yields the best performance in our initial investigation.
Increasing the temporal context may have allowed additional filters to better characterize
the input signal. Because increased temporal context improves AMC performance, we
are inspired to investigate additional methods, such as squeeze-and-excitation blocks and
dilated convolutions, that can increase global and local context [34,47].
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Figure 6. SNR vs. accuracy comparison of the initial investigation using the X-Vector baseline
architecture [7]. Noticeable improvements can be observed across all SNRs.

5. Ablation Study Architecture Background

Building upon our findings from our initial investigation, we make additional mod-
ifications to the baseline architecture. For the MCs, we introduce dilated convolutions,
squeeze-and-excitation blocks, self-attention, and other architectural changes. We also
investigate various kernel sizes and the quantity of kernels employed from the initial
investigation. Our goal is to improve upon existing architectures while investigating the
impact of each modification on classification accuracy through an ablation study. In this
section, we describe each modification performed.

5.1. Squeeze-and-Excitation Networks

Squeeze-and-excitation (SE) blocks introduce a channel-wise attention mechanism,
first proposed in [34]. Due to the limited receptive field of each convolutional filter, SE
blocks propose a recalibration step based on global statistics across channels (average
pooling) to provide global context. Although initially utilized for image classification
tasks [34,48,49], we argue the use of SE blocks can provide meaningful global context to
the convolutional network used for AMC over the time domain.

Figure 7 depicts an SE block. The squeeze operation is defined as temporal global
average pooling across convolutional filters. For an individual channel, c, the squeeze
operation is defined as:

zc = Fsq(xc) =
1
T

T

∑
i=1

xi,c (1)

where X ∈ RT×C = [x1, x2, ..., xC], Z ∈ R1×C = [z1, z2, ..., zC], T is the number of samples
in time, and C is the total number of channels. To model nonlinear interactions between
channel-wise statistics, Z is fed into a series of dense layers followed by nonlinear activa-
tion functions:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (2)

where δ is the rectified linear (ReLU) activation function, W1 ∈ R
C
r ×C, W2 ∈ RC× C

r , r is
a dimensionality reduction ratio, and σ is the sigmoid activation function. The sigmoid
function is chosen, as opposed to the softmax function, so that multiple channels can
be accentuated and are not mutually exclusive. That is, the normalization term in the
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softmax can cause dependencies among channels, so the sigmoid activation is preferred.
W1 imposes a bottleneck to improve generalization performance and reduce parameter
counts, while W2 increases the dimensionality back to the original number of channels
for the recalibration operation. In our work, we use r = 2 for all SE blocks to ensure a
reasonable number of trainable parameters without over-squashing the embedding size.

Figure 7. Squeeze-and-excitation block proposed in [34]. One SE block is shown applied to a single
layer convolutional output activation. Two paths are shown: a scaling path and an identity path. The
scaling vector is applied across channels to the identity path of the activations.

The final operation in the SE block, scaling or recalibration, is obtained by scaling the
the input X by s:

x̂c = Fscale(xc, sc) = scxc (3)

where X̂ ∈ RT×C = [x̂1, x̂2, ..., x̂C].

5.2. Dilated Convolutions

As proposed in [47], Figure 8 depicts dilated convolutions, where the convolutional
kernels are denoted by the colored components. In a traditional convolution, the dilation
rate is equal to 1. Dilated convolutions build temporal context by increasing the receptive
field of the convolutional kernels without increasing parameter counts, as the number of
entries in the kernel remains the same.

Figure 8. Dilated convolutions diagram. The top shows a traditional kernel applied to sequential time
series points. The middle and bottom diagrams illustrate dilation rates of two and three, respectively.
These dilations serve to increase the receptive field of the filter without increasing the number of
trainable variables in the kernel.

Also, dilated convolutions do not downsample the signals like strided convolutions.
Instead, the output of a dilated convolution can be the exact size of the input after properly
handling edge effects at the beginning and end of the signal.
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5.3. Final Convolutional Activation

We also investigate the impact of using an activation function (ReLU) after the last
convolutional layer, just before statistics pooling. Because ReLU transforms the input
sequence to be non-negative, the distribution characterized by the pooling statistics may
become skewed. In [3,7], no activation was applied after the final convolutional layer, as
shown in Figure 3. We investigate if this transformation impacts classification performance.

5.4. Self-Attention

Self-attention allows the convolutional outputs to interact with one another, enabling
the network to learn to focus on important outputs. Self-attention before statistics pooling
essentially creates a weighted summation over the convolutional outputs, weighting their
importance similarly to [50–52].

We use the attention mechanism described by Vaswani et al. in [53], where each output
element is a weighted sum of the linearly transformed input, where the dimensionality of
K is dk, as seen in Equation (4).

Attention(Q, K, V) = so f tmax
(

QKT

|√dk|
)

V (4)

In the case of self-attention, Q, K, and V are equal. A scaling factor of 1
|
√

dk |
is applied

to counteract vanishing gradients in the softmax output when dk is large.

6. Ablation Study Architecture

Applying the specified modifications to the architecture in [7], Figure 9 illustrates the
proposed architecture with every modification included in the graphic. Each colored block
represents an optional change to the architecture that will be investigated in the ablation
study. That is, each combination of network modifications is analyzed to aid understanding
of each modification’s impact on the network.

Figure 9. Proposed architecture with modifications including SENets, dilated convolutions, optional
ReLU activation before statistics pooling, and self-attention. The output tensor sizes are also shown
for each unit in the diagram. * denotes where the sizes differ from the baseline architecture.

Each convolutional layer has the following parameters: number of filters, kernel size,
and dilation rate. The asterisk next to each dilation rate represents the changing of dilation
rates in the ablation study. If dilated convolutions are used, then the dilation rate value in
the graphic is used. If dilated convolutions are not used, each dilation rate is set to 1. That
is, a traditional convolution is applied. All convolutions use a stride of 1, and the same
training procedure from the initial investigation is used.
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7. Evaluation Metrics

We present several evaluation metrics to compare the different architectures considered
in the ablation study. In this section, we will discuss each evaluation technique used in the
results section.

Due to the varying levels of SNRs in the employed dataset, we plot classification
accuracy over each true SNR value. This allows for a visualization of the trade-off in
performance, as noise becomes more or less dominant in the received signals. Additionally,
we report average accuracy and maximum accuracy across the entire test set for each
model. While we note that average accuracy is not indicative of the model’s performance,
as accuracy is highly correlated to the SNR of the input signal, we share this result to give
other researchers the ability to reproduce and compare works.

As discussed in [35], AMC is often implemented on resource-constrained devices.
In these systems, using larger models in terms of parameter counts may not be feasible.
We report the number of parameters for each model in the ablation study to examine the
trade-off in AMC performance and model size.

Additional analyses are also carried out. However, due to the large number of models
investigated in this study, we will select the best-performing model from the ablation
study for brevity and analyze the performance of this model in greater detail. For example,
confusion matrices for the best-performing model from the ablation study are provided to
show common misclassifications for each modulation type. Additionally, there exist several
use-cases where relatively short signal bursts are received. For example, a wide-band
scanning receiver may only detect a short signal burst. Therefore, signal duration in the
time domain versus AMC performance is investigated to determine the robustness of the
best-performing model when short signal bursts are received.

8. Ablation Results

8.1. Overall Performance

Table 3 lists the maximum and average accuracy performance for each model in the
ablation study. A binary naming convention is used to indicate the various methods used for
each architecture. Similarly to the result found in Section 4, increasing the temporal context
typically results in increased performance. Models that incorporate dilated convolutions
tended to have higher average accuracies than models without dilated convolutions.

The best-performing model, in terms of average accuracy across all SNR conditions,
included SE blocks, dilated convolutions, and a ReLU activation, prior to statistics pooling
(model 1110), with an average accuracy of approximately 63.7%. This model also achieved
the highest maximum accuracy of about 98.9% at a 22 dB level. Both values achieve new
state-of-the-art performance on the RadioML 2018.01A dataset. In terms of overall accuracy,
model 1110 outperforms the results reported in prior work [1,3,7,37,54] (all between 52.47%
and 61.3%) and all other models investigated in this work. In terms of peak accuracy, model
1110 outperforms the methods proposed in [1,3,4,7,37,39,41,43,44,54]—each with a reported
peak accuracy between 80% and 98%.

SE blocks did not increase performance compared to model 0000, with the exception
of models 1110 and 1111. However, SE blocks were incorporated in the best-performing
model, 1110. Self-attention was not found to aid classification performance in general with
the proposed architecture. Self-attention introduces a large number of trainable parameters,
possibly forming a complex loss space.

Table 4 lists the performances of single modification (from baseline) architectures. Each
component of the ablation study, with the exception of dilated convolutions, decreased
performance when applied individually. When combined, however, the best-performing
model was found. Therefore, we conclude that each component could possibly aid the
optimization of each other—and, in general, dilated convolutions tend to have the most
dramatic performance increases.
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Table 3. Ablation study performance overview.

Model Name Notes SENet
Dilated

Convolutions
Final

Activation
Attention # Params

Avg.
Accuracy

Max
Accuracy

— Reproduced ResNet [1] — — — — 165,144 59.2% 93.7%

— X-Vector [7] — — — — 110,680 61.3% 98.0%

0000
Best-performing

model from the initial
investigation

— — — — 174,000 62.9% 98.6%

0001 — — — � 221,088 62.3% 97.6%

0010 — — � — 174,000 62.8% 98.6%

0011 — — � � 221,088 62.3% 97.5%

0100 — � — — 174,000 63.2% 98.9%

0101 — � — � 221,088 63.1% 97.9%

0110 — � � — 174,000 63.2% 98.9%

0111 — � � � 221,088 63.0% 98.0%

1000 � — — — 202,880 62.9% 98.5%

1001 � — — � 249,968 62.6% 98.2%

1010 � — � — 202,880 62.6% 98.3%

1011 � — � � 249,968 62.8% 98.1%

1100 � � — — 202,880 62.8% 98.2%

1101 � � — � 249,968 63.0% 97.7%

1110
Overall best

performing model � � � — 202,880 63.7% 98.9%

1111 � � � � 249,968 63.0% 97.8%

Table 4. Individual network modification performance overview. Entries are repeated from Table 3
for clarity.

Model Name Notes SENet
Dilated

Convolutions
Final

Activation
Attention # Params

Avg.
Accuracy

Max
Accuracy

— X-Vector [7] — — — — 110,680 61.3% 98.0%

0000 — — — — 174,000 62.9% 98.6%

0001 — — — � 221,088 62.3% 97.6%

0010 — — � — 174,000 62.8% 98.6%

0100 — � — — 174,000 63.2% 98.9%

1000 � — — — 202,880 62.9% 98.5%

1110 Best-performer � � � — 202,880 63.7% 98.9%

8.2. Accuracy over Varying SNR

Figure 10 summarizes the ablation study in terms of classification accuracy over
varying SNR levels. We add this figure for completeness and reproducibility for other
researchers. The accuracy within each SNR band is shown along with the modifications
used, similar to Table 3. The coloring in the figure denotes the accuracy in each SNR band.
The performance follows a trend similar to that of a sigmoid function, where the rate at
which peak classification accuracy is achieved is the most distinguishing feature between
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the different models. With the improved architectures, a maximum of 99% accuracy is
achieved at high SNR levels (starting around 12 dB SNR).

Figure 10. Ablation study results in terms of classification accuracy across SNR ranges. The repro-
duced ResNet [1] and X-Vector baseline [7] architectures are included. The best-performing model is
in the second-to-last row and displays strong performance across SNR values.

While the proposed changes to the architectures generally improve performance at
higher SNR levels, the largest improvements occur between −12 dB and 12 dB, compared
to the baseline model in [7]. For example, at 4 dB, the performance increases from 75%
up to 82%. Incorporating these modifications to the network may prove to be critical
in real-world situations, where noisy signals are likely to be obtained. Improving AMC
performance at lower SNR ranges (<−12 dB) is still an open research topic, with accuracies
at near-chance level.

A receiver using model 1110 within its demodulator achieves a notable 91% classifica-
tion accuracy at 6 dB SNR, which is an improvement compared to previous work [1], which
achieved a similar accuracy of around 10 dB, and [7], which achieved a similar accuracy
of around 8 dB. Wireless communications systems employed in various applications can
suffer from poor reception in low SNR environments due to environmental conditions,
such as complex channel characteristics, multipath interference, fading, and man-made
conditions, such as congested channels, among other factors. Therefore, any improvement
that can increase performance at low SNR is desirable. Because AMC can directly impact
decision-making algorithms, in situations where reliable communications are essential,
such as emergency response systems, military operations, or autonomous vehicle networks,
the ability to accurately classify modulations under challenging SNR conditions becomes a
pivotal determinant of system effectiveness and safety.

One observation is that the best-performing model can vary with the SNR. In systems
that have available memory and processing power, an approach similar to [3] may be used
to utilize several models and intelligently choose predictions based on estimated SNR
conditions. That is, if the SNR of the signal of interest is known, a model can be tuned to
increase performance slightly, as shown in [3]. Using the results presented here, researchers
could also choose the architecture differences that perform best for a given SNR range
(although performance differences are subtle).

8.3. Parameter Count Trade-Off

An overview of each model’s complexity and overall performance across the entire
testing set is shown in Table 3. This information is also shown graphically in Figure 11
for the maximum accuracy over SNR and the average accuracy across all SNRs. Whether
looking at the maximum or the average measures of performance, the conclusions are
similar. The previously described binary model name also appears in the figure. We
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found a slight correlation between the number of model parameters and overall model
performance; however, with the architectures explored, there was a general parameter
count where performance peaked. Models with parameter counts between approximately
170 k and 205 k generally performed better than smaller and larger models. We note that
the models with more than 205 k parameters included self-attention, which was found
to decrease model performance with the proposed architectures. This implies that one
possible reason self-attention did not perform as well as other modifications is because of
the increase in parameters, resulting in a more difficult loss space, from which to optimize.

Figure 11. Ablation study parameter count trade-off including the reproduced ResNet [1] and X-
Vector baseline [7]. The x-axis shows the number of trainable variables in each model and the y-axis
shows max or average accuracy. The callout for each point denotes the model name, as shown in
Table 3.

9. Best-Performing Model Investigation

Due to the large volume of models, we focus upon the best-performing model, model
1110, for the remainder of this work. As previously mentioned, this model employs all
modifications except self-attention.

9.1. Top-K Accuracy

As discussed, in systems where the modulation schemes must be classified quickly,
it is advantageous to apply fewer demodulation schemes in a trial-and-error fashion.
This is particularly significant at lower SNR values, where accuracy is mediocre. Top-k
accuracy allows an in-depth view of the expected number of trials before finding the
correct modulation scheme. Although traditional accuracy (top-1 accuracy) characterizes
the performance of the model in terms of classifying the exact variant, top-k accuracy
characterizes the percentage of the classifier predicting the correct variant among the top-k
predictions (sorted by descending class probabilities). We plot the top-1, top-2, and top-5
classification accuracy over varying SNR conditions for each modulation grouping, as
defined in Section 3 in Figure 12.

Although performance decays to approximately random chance for the overall (all
modulation schemes) performance curves for each top-k accuracy, it is notable that some
modulation group performances drop below random chance. The models are trained to
maximize the overall model performance. This could explain why certain modulation
groups dip below random chance but the overall performance and other modulation groups
remain at or above random chance.

Using the proposed method greatly reduces the correct modulation scheme search
space. While high performance in top-1 accuracy is increasingly difficult to achieve with low
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SNR signals, top-2 and top-5 accuracies converge to higher values at a much faster rate. This
indicates that our proposed method greatly reduces the search space from 24 modulation
candidates to fewer candidate types when employing trial-and-error methods to determine
the correct modulation scheme. Further, if the group of modulation is known (e.g., FM),
one can view a more specific trade-off curve in terms of SNR and top-k accuracy, as given
in Figure 12.

Figure 12. Top-1 (top left), top-2 (top right), and top-5 (bottom) accuracy over varying SNR conditions
for model 1110. Random chance for each is defined as 1/24, 2/24, and 5/24, respectively.

9.2. Short-Duration Signal Bursts

Due to the rapid scanning characteristic of some modern software-defined radios, we
investigate the performance trade-off of varying signal duration and AMC performance.
This analysis is meant to emulate the situation wherein a receiver only detects a short RF
signal burst. We investigate signal burst durations of 1.024 ms (full length signal from
original dataset), 512 μs, 256 μs, 128 μs, 64 μs, 32 μs, and 16 μs. We assume the same
1 MS/sec sampling rate, as in the previous analyses, such that the 16 μs burst is captured
in 16 I/Q samples.

In this section, we use the same test set as our other investigations; however, a
uniformly random starting point is determined for each signal such that a contiguous
sample of the desired duration, starting at the random point, is chosen. Thus, the chosen
segment from a test set sample is randomly assigned.

We also note that, although the sample length for the evaluation is changed, the best-
performing model is the same architecture with exactly the same trained weights, because
this model uses statistics pooling from the X-Vector-inspired modification. A significant
benefit of the X-Vector-inspired architecture is its ability to handle variable-length inputs
without the need of padding, retraining, or other network modifications. This is achieved
by taking global statistics across convolutional channels, producing a fixed-length vector,
regardless of signal duration. Due to this flexibility, the same model (model 1110) weights
are used for each duration experiment. This fact also emphasizes the desirability of using
X-vector-inspired AMC architectures for receivers that are deployed in an environment
where short-burst and variable duration signals are anticipated to be present.
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For each signal duration in the time domain, we plot the overall classification accuracy
over varying SNR conditions, as well as the accuracy for each modulation grouping defined
in Section 3 in Figure 13, which demonstrates the trade-off for various signal durations,
where n is the number of samples from the time domain I/Q signal. The first observation
is, as we would expect, that classification performance degrades with decreased signal
duration, similarly to [39]. For example, the maximum accuracy begins to degrade at
256 μs and is more noticeable at 128 μs. This is likely a result of using sample statistics that
result in unstable or biased estimates for short signal lengths, since the number of received
signal data points are insufficient to characterize the sample statistics used during training.
Random classification accuracy is approximately 4% and is shown in the black dotted line
in Figure 13. Although classification performance decreases with decreased duration, we
are still able to achieve significantly higher classification accuracy than random chance,
down to 16 μs of signal capture.

Figure 13. Trade-off in accuracy for various signal lengths across the SNR, grouped by modulation
category for the best-performing model, 1110. The top plot shows the baseline performance using the
full sequence. Subsequent plots show the same information using increasingly smaller signal lengths
for classification.

FM (frequency modulation) signals were typically more resilient to noise interference
than AM (amplitude modulation) and AM–PM (amplitude and phase modulation) signals
in our AMC. This was observed across all signal burst durations and our top-k accuracy
analysis. This behavior indicates that the performance of our AMC for short bursts, in the
presence of increasing amounts of noise, is more robust for signals modulated by changes
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in the carrier frequency and is more sensitive to signals modulated by varying the carrier
amplitude. We attribute this behavior to our AMC architecture, the architecture of the
receiver, or a combination of both of the AMC and receiver.

9.3. Confusion Matrices

While classification accuracy provides a holistic view of model performance, it lacks
the granularity to investigate where misclassifications are occurring. Confusion matrices
are used to analyze the distribution of classifications for each given class. For each true
label, the proportion of correctly classified samples is calculated along with the proportion
of incorrect predictions for each opposing class. In this way, we can see which classes
the model is struggling to distinguish from one another. A perfect classifier would be the
identity matrix where the diagonal values represent the true class, and which match the
predicted class. Each matrix value represents the percentage of classifications for the true
label and each row sums to 1 (100%).

Figure 14 illustrates the class confusion matrices for SNR levels greater than or equal
to 0 dB for models 1110, the reproduced ResNet architecture from [1], and the baseline
X-Vector architecture from [7], respectively. Shown in [7], the X-Vector architecture was able
to distinguish PSK and AM-SSB variants to a higher degree and performed better overall
than [1]. Both architectures struggled to differentiate QAM variants.

Figure 14. Confusion matrices for model 1110—the best-performing model from this work (top left),
the reproduced ResNet model from [1] (top right), and the X-Vector-inspired model from [7] (bottom)
with SNR ≥ 0 dB.

Model 1110 improved upon these prior results for QAM signals and, in general, has
higher diagonal components than the other architectures. This, again, supports a conclusion
that model 1110 achieves a new state of the art in AMC performance.

10. Conclusions

A comprehensive ablation study was carried out with regard to AMC architectural
features using the extensive RadioML 2018.01A dataset. This ablation study built upon
a strong performance of a new baseline model that was also introduced in the initial
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investigation of this study. This initial investigation informed the design of a number of
AMC architecture modifications—specifically, the use of X-Vectors, dilated convolutions,
and SE blocks. With the combined modifications, we achieved a new state of the art in
AMC accuracy, improving upon prior work by approximately 2.5% overall accuracy on the
RadioML 2018.01A dataset. We also achieve a new state of the art in peak performance with
98.9% accuracy at high SNR values. Among these modifications, dilated convolutions were
found to be the most critical architectural feature for model performance. Self-attention was
also investigated, but was not found to increase performance—although increased temporal
context improved upon prior works. Additionally, the best-performing model was found
to be robust against signals of varying duration, down to 128 μs of signal capture.
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Abstract: Coding blind recognition plays a vital role in non-cooperative communication. Most of
the algorithm for coding blind recognition of Low Density Parity Check (LDPC) codes is difficult to
apply and the problem of high time complexity and high space complexity cannot be solved. Inspired
by deep learning, we propose an architecture for coding blind recognition of LDPC codes. This
architecture concatenates a Transformer-based network with a convolution neural network (CNN).
The CNN is used to suppress the noise in real time, followed by a Transformer-based neural network
aimed to identify the rate and length of the LDPC codes. In order to train denoise networks and
recognition networks with high performance, we build our own datasets and define loss functions
for the denoise networks. Simulation results show that this architecture is able to achieve better
performance than the traditional method at a lower signal-noise ratio (SNR). Compared with the
existing methods, this approach is more flexible and can therefore be quickly deployed.

Keywords: coding blind recognition; low density parity check codes; deep learning; denoise

1. Introduction

Forward error correcting codes counteract the random errors over the noisy channel
by inserting redundant bits into code words [1]. In order to balance the quality and rate of
communication, different coding schemes have been proposed over the past few decades,
and the corresponding decoding scheme has increasingly attracted the attention of many
researchers. In the traditional communication system, only the decoder knows the encoding
parameters it can decode accurately. However, under the conditions of non-cooperative
communication [2], such as cognitive radio, it is impossible for the non-cooperative receiver
to decode without prior knowledge of the code parameters. Hence, coding blind recognition
is urgently required, and has attracted extensive research interest [3].

Among the existing coding schemes, Low Density Parity Check (LDPC) code, which
was first proposed by Gallager in the 1960s [4], has been widely used in modern communi-
cation systems, and has been identified as the long code coding scheme in the 5G enhanced
mobile broadband scene due to its long code length, rich combination, and sparse check
matrix. Since LDPC codes have these basic characteristics, it also poses a challenge to
decoding and coding blind recognition. In practical terms, LDPC codes are usually too
long to reconstruct the parity-check matrix directly.

In order to solve the problem of high time complexity and high computational complexity,
most of the existing methods of LDPC coding blind recognition proposed in recent years use
closed set identification. The identification methods based on the closed set utilize a known set
which contains all probable parameters [5–8]. The log likelihood ratio (LLR) used in [5,6] for
coding blind recognition performs well at a low SNR. In [7], LDPC code is identified by the
average likelihood difference (LD) of parity-checks. Since the LLR of syndrome a posterior
probability is widely used in these methods, it is often limited by channel conditions. Wu
proposed to calculate the average cosine conformity (CC) for recognition, which not only
has an explicit probability density, but also has low computational complexity [8]. The code
parameters within a given closed set can be recognized using the methods above. However, the
identification methods without a candidate set are more universal, and take a longer time to
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calculate. The minimum Hamming weight vector is used in the search algorithm proposed by
Valembois [9], but the fault tolerance capability is weak. Cluzeau used iterative coding [10] to
improve the tolerance of the method in [9] followed by the problem of longer time consumption
for finding sparse parity-check vectors.

Deep learning as an emerging technique has been widely applied in the many fields,
such as image classification [11] and natural language processing [12]. The best solutions
are found in specific problems through the connection of multi-layer networks. Different
network models have been proposed by scholars in different fields—e.g., the Transformer
model proposed by A. Vaswani [13] is a well-known sequence to sequence (seq2seq)
architecture that performs well by treating a sentence as a sequence of words in the field of
natural language processing (NLP). The self-attention layer structure in the Transformer
greatly reduces computation time using the trick of parallel calculation.

In recent years, the combination of neural networks and coding blind recognition has
progressed rapidly [14–17]. It has been proven that both of the coding schemes and the
coding parameter are able to be identified using neural networks [14]. Two types of LDPC
codes can be identified in [15], while a 2-dimensional convolution neural network is used
to identify the parity-check matrix of LDPC codes with the help of a candidate set [16].
Moreover, a joint modulation and channel coding recognition framework is proposed in [17]
for the practical 5G-PDSCH protocols using the novel Res-Inception convolutional NN and
the algorithm based on maximal ALLR. Inspired by the deep learning model used in NLP,
we propose a novel method based on Transformer for recognizing the coding parameter of
LDPC codes.

Furthermore, channel condition is the key factor in coding blind recognition. Almost
all of the traditional coding blind recognition methods of LDPC codes adequately utilize
the channel condition. On the contrary, most existing recognition methods based on deep
learning pay little attention to the channel condition, which made these deep learning
methods identify accurately at high SNR but fare badly when the channel condition is
not good enough. Channel noise is similar to image noise in some areas. The deep
learning method for two-dimensional image denoising has been widely studied in the
field of computer vision [18], and has made considerable progress over the last couple
of years [19,20]. In addition to this denoising, the design aims for two-dimensional data.
Denoising networks are also widely used in other fields. In the area of decoding, a novel
receiver architecture [21] concatenates a belief propagation (BP) decoder for decoding with
a convolution neural network (CNN) for denoising. The iteration between BP decoding
and CNN will gradually improve the SNR, and achieve better decoding performance.
In [22], the double-CNN denoiser is designed to surpass the noise by estimating the
channel state information (CSI) under the Rayleigh fading channel. However, these two
methods can hardly be applied in practical terms due to the constraint of the information
bit length [23], which can cause the dimension explosion of the neural network.

In this paper, we design a deep-learning-based architecture for coding blind recogni-
tion of LDPC codes under an additive white Gaussian noise channel with different SNRs.
Briefly, the main contributions of this paper include: The code words are treated as a
sequence of words which is sent to the proposed Transformer-based neural network for
coding blind recognition. A denoising network and new loss functions are proposed in
order to get reliable recovery of the bit stream for recognition. Besides, the denoising
network and blind recognition network are cascaded, and the simulation results show
that the accuracy of the cascade structure is better than that of the non-cascade structure.
Furthermore, we compared the proposed method with traditional methods. When the SNR
is low, our method performs better than the traditional one.

2. Related Work

In this section, the communication principles of typical digital systems and the loca-
tion of blind recognition in the communication system are briefly introduced. In order
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to illustrate our method clearly, the encoding method of the LDPC code and the basic
knowledge of the neural network related to this design are introduced.

2.1. Communication System

The typical digital system communication block diagram is shown in Figure 1. The
binary information sequence after the source coding is converted into code word informa-
tion by means of channel coding. The code words are then converted into a waveform
signal that can be transmitted on the channel after modulation. During the transmission,
the signal is interfered with by various noises, so that the waveform information received
by the demodulator may be wrong. When the information from the channel is transmitted
to the receiving end, it will firstly be demodulated, and then enter the channel decoding
module.

Figure 1. The typical digital system communication block.

In cooperative communication, the decoding module knows the channel conditions
and encoding parameters used for real-time communication. In contrast, coding parameters
need to be identified in non-cooperative communication before decoding. The block
diagram of a typical non-cooperative communication system is shown in Figure 2.

Figure 2. The digital system communication block diagram with blind recognition.

2.2. Basic Theory of LDPC Code

LDPC code is a linear block code whose parity-check matrix contains only a few
non-zero elements. The selection of check matrix is very important for LDPC codes, which
can not only affect the error correction ability, but also can affect the complexity of LDPC
encoding and decoding. The theoretical analysis and formula derivation in this section are
all based on Error Control Coding [24].
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As shown in Figure 2, GΘ =
{

G1, G2, · · · , GN} represents the set of encoders, where N
is the number of generator matrix, and G represents the generation matrix of size (k, n). The
encoder is switched by the transmitter according to the channel conditions. At the sending end,
original bits are divided into A groups, and each group has a length of k. The ith information
mi = [mi,1, mi,2, · · · , mi,k] is sent into encoder with n-bits code word ci = [ci,1, ci,2, · · · , ci,n]
output, where mi,j, ci,j ∈ GF(2).The encoding formula is shown in (1):

ci = mi · G (1)

The parity check matrix H of size (n − k, n) satisfies ci · H = 0. Since H is a dual matrix of
G, the reconstruction of H and G carries the same meaning for blind recognition of LDPC code.
In binary phase-shift keying (BPSK) modulation, the result can be expressed as

y = 2ci − 1 (2)

After modulation, channel transmission, and demodulation, the code word ĉ is sent
to the receiving end for decoding. The additive white Gaussian noise (AWGN) of n with
zero-mean and variance of σ2 is considered in this paper. ĉ can then be represented by

ĉ = y + n (3)

Traditional soft decision for decoding is to calculate the LLR using the prior informa-
tion of channel condition.

LLRi = ln
(

P(c[i] = 0|ĉ[i])
P(c[i] = 1|ĉ[i])

)
(4)

where P(c[i] = 0|ĉ[i]) and P(c[i] = 1|ĉ[i]) donate the probability of c[i] to be considered as
0 and 1 at the receiver with a known channel condition. When channel is AWGN, we get:

P(c[i] = 0|ĉ[i]) = e−2·ĉ[i]/σ2

1 + e−2·ĉ[i]/σ2 (5)

Substitute (5) for (4). The LLR is represented as follows:

LLRi = −2 · ĉ[i]
σ2 (6)

LLR is then used for decoding or blind recognition. Furthermore, LLR can be also
used for describing the relationship H and ĉ.

2.3. Deep Learning Method

In this subsection, we introduce the basic theory of CNN and Transformers, and then
give some examples of the applications of CNN in the area of coding blind recognition.

2.3.1. Convolution Neural Networks

The CNN is mainly composed of convolution layers, pooling layers, and fully con-
nected layers. The features of adjacent data are extracted by convolution layer. Pooling
layer retains the main feature, and reduces the number of parameters. The cascade of
convolution layer and pooling layer transforms local features into global features. Finally,
the fully connected layer takes the global feature as the input and the prediction result as
the output. The CNN is widely used in computer vision.

In [16], authors use CNN for LDPC code blind recognition with the help of closed
set. It firstly receives the output sequence. The output sequence ĉ processed by LLR
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generators is described by (6). In order to make better use of LLR, this method utilizes LLR
of syndrome a posteriori probability (SPP) [7],

φθ
i,j = 2arctanh

⎛⎝ ∏
λ∈{Λ}

tanh(L(ĉ[λ])/2)

⎞⎠ (7)

and then get the set of SPP vectors Φ = {φ1, φ2, · · · , φN}. The elements φ = {φθ
1, φθ

2, · · · , φθ
(n−k)}

in Φ are generated by parity-check matrix H and different channel conditions. Since the size of
parity-check matrices H is different, φ is of different length correspondingly. In order to get feature
matrix F, each φ picks α elements randomly, where α is the smallest length of φ. Obviously, F is of
size α× N. Finally, F is sent to blind recognition network for recognition. Since it considers channel
condition within known data sets, the calculation of SPP with different LLR will cause a waste of
time. This method cannot applied in the real scene.

2.3.2. The Model Architecture of the Transformer

Figure 3 describes the model architecture of the Transformer in [13]. The encoder stack
and decoder stack are two critical components with most of the trainable parameters and
the most complex computations. The encoder layers and the decoder layers are composed
of the multi-head attention (MHA) ResBlock and the position-wise feed-forward network
(FFN) ResBlock.

FFN ResBlock

MHA ResBlock

FFN ResBlock

MHA ResBlock

N×
Encoder
Layers

Positional Encoding

Input Embedding

Input Sequence

FFN ResBlock

MHA ResBlock

MHA ResBlock

FFN ResBlock

MHA ResBlock

MHA ResBlock

N×
Decoder
Layers

Positional Encoding

Output Embedding

Last Output Sequence

Encoder 
Stack

Decoder 
Stack

Linear and Softmax

Output Probabilities

Figure 3. The model architecture of the Transformer.

According to the description in [13], 1an MHA ResBlock has h Attention Heads.
For each Head, the input is the same, including three tensors: Queries(Q), Keys(K), and
values(V). Figure 4 shows the detail of the MHA ResBlock. The Attention function in the
MHA of one Head can be expressed as follows:

Attention(Qi, Ki, Vi) = so f tmax

(
Mask

(
QiKT

i√
dk

))
Vi (8)

The output tensors from different Heads are put together as tensor P. (9) represents
the output of the MHA ResBlock:

MHA(x) = LayerNorm(PWG + x) (9)
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The FFN ResBlock is composed of two linear sublayers and a ReLU activation function
between them. The output of this block is expressed as:

FFN(x) = LayerNorm(x + ReLU(xW1 + b1)W2 + b2) (10)

Figure 4. The MHA ResBlock with h Heads.

3. Proposed Cascade Neural Network

This section contains the main innovation of this work: a cascade neural network
for LDPC coding recognition. In order to better present the proposed design, we firstly
describe the system framework. Then, the CNN structure and the coding blind recognition
network will be introduced, and their functions will be explained specifically.

The input of the denoising CNN is a 1-D vector x, while the output vector is y. Both
x and y are of size (1, N). As shown in Figure 5, the received code words ĉ are uniformly
distributed as N bits, and then sent into CNN. After denoising, y are used to recalculate
LLR(L). L̂ denotes the concatenation of L with of size (1, 15N). The blind recognition
network based on the Transformer takes L̂ as input. The output of the recognition network
is the label, corresponding to the parity-check matrix H.

Figure 5. The system framework of the proposed network.

3.1. Denoising Networks

Figure 6 shows the denoising networks using CNN. The input of our networks is a
1-D vector. The feature map at the ith layer oi can be expressed in (11) as

oi,j = ReLU
(
wi,j ∗ oi−1 + bi,j

)
(11)
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where ∗ represents the convolution operation, and wi,j is the jth convolution kernel in layer
i. bi,j represents the corresponding bias. The activation function is ReLU. In addition, the
structure parameters of the proposed denoising network are given in Table 1.

Figure 6. The details of the denoising network.

Table 1. The structure of the denoising network.

Layers Numbers of Filters Filter Size Output Size

Conv2d1 64 (9, 1) (128, 64, 648 )
Conv2d2-8 64 (9, 1) (128, 64, 648)
Conv2d9 1 (9, 1) (128, 1, 648)

In addition to the network framework, the loss function is also important for designing
the network. It guides the training in the correct direction. L2 loss, which is also called the
mean squared error (MSE), is widely used in the area of image denoising. Suppose that
f (x) is the forward calculation output of the network, and y is the expected output. L2 can
be represented by

L2 =

n
∑

i=1
( f (x)− y)2

n
(12)

Inspired by the image denoising, L2 loss is also used in this design. Furthermore, in [22], the
authors propose a method for recalculating the LLR. It obtains the empirical probability distribu-
tion function (EPDF) F of the residual noise through histogram statistics. In order to recalculate
the LLR more easily, we consider that the residual noise preserves Gaussian distribution with
various values of σ̂2. Thus, Lκ [25] is used to evaluate whether the residual noise meets Gaus-
sian distribution. Residual noise is defined as ñ, and the numerical expectation as E[ñ]. Lκ is
expressed by:

Lκ =

(
S2 +

1
4
(C − 3)2

)
S =

1
D ∑D

d=1(ñd − E[ñ])3(
1
D ∑D

d=1(ñd − E[ñ])2
)3/2

C =
1
D ∑D

d=1(ñd − E[ñ])4(
1
D ∑D

d=1(ñd − E[ñ])2
)2

(13)

S is called skewness, and C is called kurtosis. For a Guassian distribution, S = 0, C = 3.
Thus, the loss function is

Ł = αL2 + βLκ (14)
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where α + β = 1.
In this paper, the candidate sets of LDPC codes have the length L = [648, 1296, 1944], and

rate R = [1/2, 2/3, 3/4, 5/6]. IEEE802.11 elaborates on these LDPC codes specifically, and is
used for Wireless Fidelity(Wi-Fi). The H matrix of the LDPC code with n = 648, R = 2/3
is shown in Figure 7. The H matrix is constituted by two basic elements, i.e., a zero matrix
represented by −1 and an identity matrix. The elements in the H matrix which are not equal
to -1 represent the digits of rotating right of the identity matrix. In order to train denoising
networks, we consider the AWGN with different SNR S = [0, 0.5, 1, 2, 4, 6, 8] dB. Three code
words [c1, c2, c3] with different lengths are sent to the channel. In order to prevent the dimension
explosion of the neural network and reduce training time, the appropriate input size of the
network is chosen, which is 648 bits. Thus, these code words are divided into 648 bits c, which
is the shortest code word length. After the process of the sending end and channel, we get ĉ
with white Gaussian noise added. Denoising networks use c and ĉ for training.

H =

− − − − − − − − − − − − −

− −

25 26 14 1 20 1 2 1 4 1 1 8 1 16 1 18 1 0 1 1 1 1 1 1

10 9 15 11 1 0 1 1 −− − − − − − − − − − −

− − − − − − −

1 1 18 1 8 1 10 1 1 0 0 1 1 1 1 1

16 2 20 26 21 1 6 1 1 26 1 7 1 1 1 1 −− − − − − −

− − − − − − − − − − − − −

1 1 0 0 1 1 1 1

10 13 5 0 1 3 1 7 1 1 26 1 1 13 1 16 1 1 1 0 0 1 1 1

233 14 24 1 12 1 19 1 17 1 1 1 20 1 21 1 0 1 1 1 0 0 1 1

6 22 9 20 1 25 17

− − − − − − − − − − − − −

− −11 8 1 1 14 1 18 1 1 1 1 1 1 1 0 0 1

14 23 21 11 20 1 24 1 18 1 19 1 1

− − − − − − − − − − −

− − − − − −11 1 22 1 1 1 1 1 1 0 0

17 11 11 20 1 21 1 26 1 3 1 1 18 1 26 1 1 1 1 1

− − − − − − −

− − − − − − − − − − −− − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥1 1 1 0

Figure 7. H matrix of LDPC code with n = 648, R = 2/3 in 802.11n.

3.2. Recalculation of LLR

As mentioned in Section 3.1, the residual noise preserves the Gaussian distribution
with various values of σ̂2. It is easy to recalculate the L̃LR:

L̃LR = −2 · ĉ[i]
σ̂2 (15)

3.3. Recognition Networks

After the above operation, the L̃LRs are calculated at sizes of (1, 648). Then, 15 L̃LRs
are concatenated into 1-D data of size (1, 9720) defined as IR, which is the input of the
recognition network. However, because of the positional encoding layer in Transformer, the
input of the network must be a fixed size. In order to identify these three different lengths
of LDPC code and reduce the number of parameters, the ideas in the Swin Transformer are
used in the recognition network.

Figure 8 shows the architecture of the network. This network takes IR as input. Since
the token size of this network is 324, IR is divided into 30 × 324 by Patch Partition layer.
The window size is of 10 tokens and the relative position encoding (RPE) B is a learnable
variable of size (1, 19). B is calculated by substituting its index into an RPE matrix of
size (1, 19). The size of the RPE matrix is determined by the number of tokens in the
window, and the relationship between tokens and windows is shown in Figure 9. The Swin
Transformer Block contains two layers: one for MHA calculation, and another for shifted
window MHA(SW-MHA) calculation. Figure 10 shows the detail of the Swin Transformer
block. The window calculates MHA firstly, which is introduced in Section 2.3. In order to
calculate SW-MHA, the feature map must shift circularly as shown in Figure 9. Then, the
SW-MHA can be calculated the same way as the MHA.
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Figure 8. The architecture of the recognition network.

Figure 9. The relationship between patches and windows.

Figure 10. The Swin Transformer block.

It should be noted that the formula is a little different from (8) because of the difference
in the strategy of linear embedding.

Attention(Qi, Ki, Vi) = so f tmax

(
QiKT

i√
dk

+ B

)
Vi (16)

B is the RPE mentioned before, and a mask is useless in this task.
The function of the patch merging layer is similar to the max-pooling layer in CNN,

which is used to expand the receptive field. The vector size of stage 1’s output is the the
same as its input with the size of (30, 324). Then, the outputs are resized into the size of
(10, 324) by taking one of every three pieces of data from the output of stage 1. After a
normalization in each row and a fully connected layer, the output becomes (10, 324). The
Swin Transformer block in stage 2 is similar to stage 1. The difference is only the dimension,
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which is 10 in stage 2. Finally, the outputs of stage 2 of the size (10, 324) are sent to the fully
connected layer and processed using the softmax function for classification.

There are three different types of datasets for the recognition network. The main
difference between these three datasets is that the impact of noise on their data inside varies.
The data in dataset 1 are noiseless, the data in dataset 2 are the output of the recalculation
and combination block, which retain the residual noise, and the data in dataset 3 come
directly from the demodulator without denoising. The label of these datasets is one-hot
codes of 12 bits, which corresponds to each parity-check matrix H. The details of the
datasets are given in Table 2. Each dataset included in Table 2 is randomly divided into 3
groups, i.e., the train set, validation set and test set. The train set accounts for 80%, while
the validation set and test set account for 10%. Note that there is no other mechanism
for accessing channel information, so dataset 1 and dataset 3 are sent to the network for
training directly. The parameters of the recognition network are given in Table 3.

Table 2. The details of the datasets.

Attributes Dataset 1 Dataset 2 Dataset 3

Numbers of H 12 12 12
SNRs for generation ∞ — [0, 0.5, 1, 2, 4, 6, 8]

Modulation BPSK BPSK BPSK
Numbers of training data 24,000 168,000 168,000

Numbers of validation data 7200 50,400 50,400
Whether channel soft information was used - YES NO

Table 3. The parameters of the recognition network.

Layers Input Output dk Number of Heads

Patch Partition (128, 1, 9720) (128, 30, 324) - -
Swin Transformer Block (128, 30, 324) (128, 30, 324) 36 9

Patch Merging (128, 30, 324) (128, 10, 324) - -
Swin Transformer Block (128, 10, 324) (128, 10, 324) 36 9

Fully connected (128, 10, 324) (128, 12) - -
Softmax (128, 12) (128, 12) - -

4. Experiment and Result

In this section, the function of the proposed network is verified in three steps. Firstly, the
denoising network is trained and evaluated. Dataset 2 will also be built at this stage. Then,
the datasets 1, 2, and 3 mentioned in Section 3.3 are used to train the recognition network
respectively and evaluate the accuracy of this network. Finally, we analyse the cascade neural of
the proposed network, and compare with the method in [7,16].

4.1. Denoising Network

As shown in Table 1, the batch size for training is 128. Furthermore, hyperparameters
for training are given in Table 4. The first-order moment estimation and second-order
moment estimation of gradients are calculated using Adaptive Moment Estimation (Adam)
to set the independent adaptive learning rates of different parameters. Kaiming initial-
izers [26] are widely used in convolutional networks and perform well. After extensive
experiments, we found that the convergence speed is the fastest when the learning rate is
1E-4, and the training will stop until the validation loss doesn’t drop in 1E+4 epochs.

Table 4. Hyperparameters for training.

Optimizer Initializer Learning Rate Stop Strategy

Adam Kaiming 1e−4 Val loss not drop in
1e + 4 epoch

In order to intuitively demonstrate that if the function of this network is as expected,
the loss functions will be L2 and Lκ , this is shown in Figure 11.
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Moreover, the residual noise is exported and fitted to the Gaussian function in
Figure 12. The blue line indicates the distribution of the residual noise from −5 dB to
5 dB, while the red one is the Gaussian fitting of these data. Both the Jarque-Bera test
(JB-test) and Figure 12 indicate that the residual noise preserves the Gaussian distribution.
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Figure 11. Loss value at the offline training stage.
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Figure 12. Gaussian function and the residual noise.

As mentioned in Section 3.3, dataset 2 is the output of this network with the corre-
sponding labels. The variance σ̂ of the residual noise generated by the denoising network
with different SNR inputs is counted, and the statistical results show that σ̂2 is around 0.4,
which means that the SNR of the output is about 4 dB, according to the formula below.

SNR = 10log10

(
1
σ̂2

)
(17)

It leads to good results when SNR is smaller than 4 dB. Even if the channel condition
is good enough, this network can also provide approximate channel information, which
can be used for the following work.

4.2. Recognition Network

Similar to the denoising network, the recognition network is trained using the three
datasets mentioned above. The hyperparameters of these three networks are all the same,
which are given in Table 5. The Optimizer is the same as the denoising network, while
the initializer used is Xavier, which initializes the mean value of the weights and bias to
0 and of various other values to 1. The learning rate is initially set to 0.001 and adjusted
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dynamically during training. In order to prevent overfitting, the drop out value we set
is 0.5.

Table 5. Hyperparameters for training.

Optimizer Initializer Learning Rate Drop Out

Adam Xavier 0.001 at the beginning; gradually decreased while training 0.5

In order to verify the accuracy and robustness of the network, twelve types of LDPC
codes with [0, 0.5, 1, 2, 4, 6, 8, 10, ∞] dB are used as the test sets. Figure 13 shows the perfor-
mance of these three networks trained by different datasets.
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Figure 13. The performance of the recognition network trained by different datasets.

[N1, N2, N3] are the networks trained by [dataset1, dataset2, dataset3], respectively, for
convenience. As shown in Figure 13, N1 and N2 perform fairly well when the SNR(S) of
the test set is the same as that of the training set. This network is robust, since it is able to
recognize the LDPC codes with a SNR that has not appeared in the training set. However,
the performance of N1 and N2 gradually deteriorates as the gap in the SNR between the
test sets and training sets becomes larger. The accuracy of N1 is the worst when the S of the
test set is 0 dB. On the contrary, N3 has more flexibility and is more adaptable to multiple
situations due to the large variety of data in its training set. But it is less accurate than
N1 and N2 for a particular SNR The above discussion shows that it is possible to obtain a
highly accurate blind recognition network, as long as we ensure that the SNR deviation of
the data after the denoising network is as small as possible.

Furthermore, it is noticeable that the accuracy is quite low when the S is less than
0.5 dB. We consider the trade-off of the accuracy and flexibility by rebuilding the dataset
for the denoising network. The addition of new data with a low SNR will inevitably cause
the degradation of denoising network performance, resulting in a decline in the accuracy
of the recognition network. In order to improve the accuracy of the prediction of σ̂ from
the denoising network, we rebuild datasets with a low SNR ([−3,−2,−1, 0, 1, 2, 4] dB) for
the denoising network. After removing the low-SNR data, the recognition network using
only high-SNR data can be further optimized. Hence, the proposed optimized structure is
shown in Figure 14. The accuracy of this structure is shown in Table 6. It is noteworthy that
this system performs better with SNRs from −3 dB to 4 dB than with other SNRs due to
the use of the channel information. Its accuracy is around 90% when −3 dB ≤ S ≤ 4 dB,
while the accuracy is around 87% when 5 dB ≤ S ≤ 10 dB.
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Figure 14. The optimized structure for blind recognition.

Table 6. The accuracy of the optimized structure.

SNR/dB −3 −2 −1 0 1 2 4 6 8 10

Accuracy 0.866 0.871 0.895 0.920 0.925 0.951 0.911 0.874 0.862 0.867

4.3. Experimental Setup

Pd represents the probability of correct recognition, which can be described as

Pd =
Nd
Nt

(18)

Nd is the number of correctly recognized code words, and Nt is the total number of the code
words.

The method in [7] firstly estimates the signal amplitude and noise variance for the
construction of the LLRs. It shows that Pd is higher when they collect multiple blocks jointly
for blind encoder identification. They assume that each encoder θ lasts for M consecutive
blocks. As the value of M increases, the reliability of the estimated LLR and the accuracy of
blind recognition will be better. Since a test sample in datasets we built contains at least
five consecutive code words, the Pd for this network is compared with that of the method
in [7] under the condition of M = 5.

The Pd for different code-rates[1/2, 2/3, 3/4, 5/6] is shown in Figure 15a, when the
code word length is fixed at 648. Statistical methods are used in [7] for coding blind
recognition. EM (expectation-maximization) represents the method in [7]. CN (cascade-
network) represents the method we proposed. According to Figure 15a, the probability
of detection increases as the code-rate becomes lower [7], while the Pd of these four code
words is mainly consistent using our method. In addition, it is easy to find that the method
we proposed performs better when the S is between 0 dB and 5 dB. Although the accuracy
of our method is not good enough when S is larger than 5 dB, it can also precisely recognize
H in most cases.

In order to estimate Pd for different code word lengths, the code-rates R are fixed at
the same value of 5/6. Figure 15b demonstrates the Pd of these test samples. The overall
trend of these curves is similar to that of Figure 15.

In addition to comparing with traditional blind recognition algorithms, another blind
recognition method based on deep learning [16] is also compared. Figure 16 shows the
accuracy of these two methods. Since the dataset mentioned in [16] is difficult to build, we
can only roughly compare their accuracy. The results also show that our proposed network
performs better when −4 dB ≤ S ≤ −2 dB. Since our design does not need to generate LLR
information for each SNR, our network is more generic.
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(b)

Figure 15. (a) Recognition performance of these two methods with the fixed code length n = 648.
(b) Recognition performance of these two methods with the fixed rate R = 5/6.
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Figure 16. The results compared with another method based on deep learning.

5. Conclusions and Discussion

In this paper, we proposed a cascade network structure for LDPC coding blind recog-
nition. Compared with the traditional blind recognition algorithm, it performs better under
the condition of low SNR.

The original intention of our design of the denoising network was to filter part of the
noise and obtain the code word, which has residual noise in the Gaussian distribution. The
results show that the denoising network can provide accurate channel information when
the SNR gap in datasets is not large. In addition, it performs better when the SNR is small.
For the recognition network, training for various different SNRs is not reliable. We prefer
focalization training, which coincides with the function of the noise reduction network.

The generation matrix of LDPC codes in datasets is described in IEEE802.11n, which is
widely used in short-range wireless communications technology. The proposed cascade network
can identify the parity-check matrix of LDPC codes in datasets with a probability of 90% when
the S is larger than 0 dB. Furthermore, this network achieves about 80% accuracy when the S is
around −2 dB, which is better than other traditional methods.

After the division of the dataset and the optimization of the structure, this architecture
performed better than the traditional method and another deep learning method. However,
due to the limitation of the cascade structure, the training cost of the network is high,
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and the data division is also critical. Hence, the fusion of this structure and traditional
algorithms may achieve better results. Here, we suppose a hypothetical structure with two
different data paths, PathA and PathB. The demodulated data is sent to two different data
paths, and the final output is the one with higher confidence of these two data paths.

PathA is for data with low SNR, while PathB is on the contrary. Both paths have a
recognition network, but the training sets of the two networks are different. Recognition
networks on PathA use the output of the denoising network for training. The datasets of the
denoising network are of a low SNR, such as [−5,−4,−3,−2,−1, 0] dB or even lower, aimed
to handle the situation of a bad channel condition. On the contrary, PathB is for data with a
high SNR. Firstly, the LLR is evaluated blindly with the help of the traditional method. The soft
information is subsequently used for training. Note that the recognition network can also be
replaced by the traditional blind identification method, since the traditional method has already
given good results when the SNR is high. At the end of these two paths, a discriminant
function must be designed to determine whether the final output is from PathA or PathB.

In short, our work confirmed that it is feasible to use the pure deep learning method
for LDPC blind recognition, and that the performance is better after using the CNN for
denoising. In the subsequent work, we will rebuild the dataset with a different channel
condition and different parity check matrix of LDPC codes, which is widely used in modern
communication, and verify the accuracy of the existing network on the rebuild dataset. In
addition, the hardware acceleration architecture for the network is also being designed
synchronously.
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Abstract: Based on orbital angular momentum (OAM) properties of Laguerre–Gaussian beams
LG(p, �), a robust optical encoding model for efficient data transmission applications is designed.
This paper presents an optical encoding model based on an intensity profile generated by a coherent
superposition of two OAM-carrying Laguerre–Gaussian modes and a machine learning detection
method. In the encoding process, the intensity profile for data encoding is generated based on the
selection of p and � indices, while the decoding process is performed using a support vector machine
(SVM) algorithm. Two different decoding models based on an SVM algorithm are tested to verify the
robustness of the optical encoding model, finding a BER = 10−9 for 10.2 dB of signal-to-noise ratio in
one of the SVM models.

Keywords: machine learning; LG-beams; OAM-beams; optical encoding model

1. Introduction

Since the study of Allen et al. [1], optical beams with orbital angular momentum
(OAM) have aroused growing interest from researchers around the world due to their
wavefront helical shape properties that provide a new degree of freedom for exploration
of new applications in particle manipulation [2,3], image processing [4,5] and optical
communications [6,7]. In this context, optical communications systems have found a possi-
bility of exploring vortex beams properties in multiplexing [8,9] and data encoding [10,11]
pathways. Concerning data encoding, OAM states to encode different data symbols are
evidenced by Fang et al. [12], where OAM holography is performed by OAM selectivity
in a spatial-frequency domain without a theoretical helical mode index limit. In the area
of holographic encryption, Xiao et al. [13] propose a two-coding information metasur-
face to achieve OAM-encrypted holography. OAM encoding has also been explored in
multicasting links; for instance, Shiyao Fu et al. [14] encode digital signals through the
OAM free space one-to-many multicasting link. Within the same research line, data coding
has also been explored experimentally as demonstrated by Willner et al. in [15], where
data encoding at 20 Gb/s, using 4 possible OAM modes, is performed. High-dimensional
data encoding through a hybrid OAM-radial index is also demonstrated in [14]. Optical
encoding and multiplexing techniques in OAM channels for highly dispersive media have
also been implemented [11], where a novel scattering-matrix-assisted retrieval technique
was proposed to demultiplex OAM channels from highly scattered optical fields.

There is a lot of evidence of OAM applications, for instance, in the data encoding
field in free space and fiber-based transmission channels [16,17], polarization-based [18,19]
and intensity and vortices in phase-based channels [20]. However, implementation of an
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OAM-based encoding system requires overcoming several challenges from the point of
view of information medium propagation and system detection implementation. Due
to the nature of information propagation, some effects can be induced in the medium,
such as absorption, scattering and turbulence, spatial distortion (amplitude and phase),
modal coupling and crosstalk. Some of these effects, as in the case of turbulence and
modal crosstalk, have been potentially suppressed in coding and multiplexing systems
through mitigation methods [21], but for the most part, these effects constitute a great
challenge [11,22]. Such challenges have captured the attention of the scientific community
to focus their studies on designing more robust and flexible optical encoders and encryptors
based on coding techniques that minimize noise and information distortion, while correctly
maximizing the amount of data coded. In this way, the efforts to improve optical encoding
systems are reflected in image recognition methods for encoded data, as in the case of [23],
where an index modulation is implemented for OAM states with a uniform scheme circular
array (OAM-UCA) to build low-intensity parity coding to improve error performance
and transmit additional bits of information. Incoherent detection methods have also been
implemented for data decoding [24], where an image information transfer method based
on petal-like beam lattices for coding is used. In this case, a decoding system works
directly with the identification of the intensity patterns captured. Another example of an
image-based method is presented in [20] that employs the amplitude and the phase of
an optical field into a phase-only hologram to control spatial transverse modes for data
symbol mapping. A similar study can be found in [25] that uses an OAM array for a free-
space communication encoding/decoding link with 625 states. A proposal for OAM light
encoding in magnets has also been developed in [26], where the possible sub-wavelength
magnetic phenomena induced by a vortex beam and their applications in the generation of
topological defects in chiral magnets is discussed. Although the aforementioned studies
show the feasibility of encoding systems based on OAM modes, OAM does not increase
the amount of information, nor does it exceed the multiple-input multiple-output (MIMO)
transmission of current standards in optical communications [7,27]. In fact, the number
of spatial modes available for data encoding is limited by the space-bandwidth product
of a given optical system [27,28]. A solution to this problem is to use all spatial degrees
of freedom offered by OAM modes. A commonly used OAM beam for this purpose
is a Laguerre–Gaussian (LG) beam [7,17], which provides eigen-modes dependent on
both radial (p) and azimuthal (�) indices, being able to use the superposition of modes to
increase the number of encoding data in a limited system. On the other hand, a decoding
system (which is generally based on image detection and classification) can present strong
signal distortion (both in the intensity profile and in the phase distribution) due to optical
alignment, turbulence and scattering [29]. Recently, convolutional neural networks (CNNs)
and machine learning techniques have been implemented in optical coding systems as
an alternative solution for image detection and classification [30–32]. High-resolution
recognition techniques based on deep learning to encode data in spatial modes have already
been implemented [33]. The deep-learning-based approach has also been used to recover
the sparse data from multiplexed OAM channels independent of phase information [34].
Although these studies demonstrate the feasibility of encoding systems based on OAM
modes as well as various methods implemented for data decoding, there is still a gap
concerning image detection and classification methods in decoding due to degradation
effects that the medium induces in the transmitted signal, which brings the motivation for
this research work.

Motivated by previous statements, this paper proposes a comprehensive optical
encoding–decoding system based on the intensity profile generated by a coherent super-
position of two OAM-carrying Laguerre–Gaussian (LG) modes and a machine learning
detection method. In the encoding process, an intensity profile for data encoding is gener-
ated based on the selection of p and � indices of LG beams, while the decoding process is
performed using support vector machine (SVM). Different from other existing encoding
systems that require the additional extraction of phase information, this paper proposes
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a novel optical encoder based on the number of spatial modes carrying data symbols
increased in a limited optical system. Moreover, the proposed optical encoding model
opens a pathway to a stable image detection and classification system based on machine
learning that only uses the intensity profile for target modes. As a result, the main con-
tributions of this paper are: (1) a comprehensive design of a coherent optical encoding
system based on the superposition of LG modes carrying OAM that is independent of
phase information and (2) a robust decoding system based on intensity profile recognition
using the machine learning SVM method. Section 2 presents the concept and operating
principle of the optical encoder. In Section 3, the SVM-based decoding method for image
recognition and classification is explained in detail. In Section 4, a case study for a 4-bit
coding system with different types of noise is considered to validate the robustness of the
proposed encoder. Finally, Sections 5 and 6 exhibit the results and conclusion, respectively.

2. Concept and Principle of the Optical Encoding Model

The schematic setup of the conceptual art of this proposed optical encoding model is il-
lustrated in Figure 1. On the transmitter side, an optical system based on a Mach–Zehender
interferometer is used to generate a coherent combination of two Laguerre–Gaussian (LG)
beams carrying orbital angular momentum (OAM). A laser source provides a coherent fun-
damental Laguerre–Gaussian (LG00) beam in free space that is launched to a polarization
beam splitter (PBS) to control relative power between the reference and the selector arm.
Both arms will go through an OAM generator to convert a fundamental LG(p = 0, � = 0)
mode to a higher-order LG(p, �) mode carrying OAM. The reference arm is converted to an
LG(p, � = 1) mode (via OAM Generator 1 in Figure 1), while selector arm is converted to
an LG(p, �) mode carrying OAM (via OAM Generator 2 in Figure 1). Since the topological
charge � and the radial index p at the LG(p, �) selector beam can be properly selected to
generate the intensity pattern for the optical encoder, this mode index will be the code-key
numbers associated with the data symbol. The reference and selector arms are combined
through a beam splitter (BS1), and the intensity profile of this superposition will be the
pattern corresponding to a unique data symbol associated with (p, �) combination. After
encoding, the transmitted output beam is transferred to a communication channel in which
different noise sources will be added in order to affect the signal. On the receiver side, the
received beam is decoded by a machine learning process using an SVM-based method for
image recognition and classification.

LS

OAM Generator 2

PBS OAM Generator 1

M1 M2

BS1
Communication 

Channel

Noise Source

PD 

CCD
Camera

LG(0,0) LG(p, )
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transmitted
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����
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Figure 1. Concept and proposed setup of an optical encoding model. LS: laser source; PBS: polariza-
tion beam splitter, M1,2: mirror; BS1,2: beam splitter; PD: photodetector.

For the generation stage of the intensity pattern that will be used on the transmitter
side, the mathematical formulation of the Laguerre–Gaussian beams [35,36] has been
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used, which is characterized by two indices (p, �) corresponding to radial and azimuthal
distribution, respectively. The optical field of an LG(p, �) mode can be represented by:

LGp,�(r, θ, z)

=

√
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where w(z) is the beam width, zR is the Rayleigh range and Φ(z) is the Gouy phase. L|�|
p are

the generalized Laguerre polynomials, and (r, θ, z) represents the cylindrical coordinate.
Then, the superposition of two LG modes carrying OAM [37] can be expressed as:

u(r, θ, z) = LGp′ ,�′(r, θ, z) + LGp,�(r, θ, z) (2)

The first term in Equation (2) describes the reference field, while the second term
represents the optical field that acts as a selector. As mentioned, for the optical encoder
presented in this work, the LG(p, � = 1) mode will be used as the LGp′ ,�′(r, θ, z) reference
beam, while the selector beam LGp,�(r, θ, z) will be a previously selected LGp,� mode. The
same radial index p has been chosen for both reference and selector beam in order to
simplify the design of the encoder. An intensity profile of u(r, θ, z) is associated with a
data-bit sequence according to the (p, �) parameters used in the selector beam generation.
Since OAM beams have twisted helical phase fronts, often characterized by the azimuthal
index � (also named topological charge), while propagating[11], the intensity profile will be
most affected in rotations along the propagation axis, without significant changes in the
intensity pattern. Additionally, the property of orthogonality between LG modes allows
the resulting intensity pattern to be unique for each data symbol [38].

3. SVM-Based Decoding Method for Image Recognition and Classification

The proposed optical encoding model takes as input a 4-bit code defined by the
variable X. In addition, a signal noise ratio (SNR) is used to emulate the noise in the
communication channel that is given in decibels. The encoding starts with the definition of
the variables �1, �2 and p to establish the intensity profile, which is executed by the function
selectCode. Then, two different intensity profiles are generated using the mathematical
formulation given in Equations (1) and (2) and declared in f unctionLG. This is followed
by the representation of the intensity profile in terms of Cartesian coordinates x, y and the
intensity of the resulting beam profile declared in variable I. Next, with a view to emulate a
real communication, signal noise is added to the transmitted intensity profile stated in the
function addNoise. Later, the extractHOGFeaturesFromIntensity function is used to extract
useful patterns for information recognition through histogram of oriented gradients (HOG)
detection [14]. Finally, the function predict, which is based on a linear regression model, is
used as a 4-bit classifier through a multiclass error-correcting output codes (ECOC) model
using SVM binary learners. For more details about the followed process, Algorithm 1 is
presented. As the process involves training procedures, the decoding processing at the
receiver side of the encoder is based on SVM. More details on this SVM algorithm can be
found in the Appendix A.
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Algorithm 1 Pseudocode for decoding processing using an SVM–ECOC model

1: Input X, SNR
2: Transmission side:
3: [�1, �2, p]=selectCode(X) � Give �1, �2, and p values according to Code Table
4: [x1, y1, z1] = f unctionLG(�1, θo = 0, λ, z = 0, p) � Generate 1st Intensity Profile accord.

Equation1
5: [x2, y2, z2] = f unctionLG(�2, θo = 0, λ, z = 0, p) � Generate 2nd Intensity Profile accord.

Equation1
6: x ← x1
7: y ← y1 � Generate Value for Cartesian coordinates
8: I ← z1 + z2 � Superposition of Intensity Profile accord. Equation2
9: Communication Channel:

10: n = addNoise(I, SNR) � Add Noise to the intensity in order to simulate real communication
signal

11: Receiver Side:
12: TestFeatures = extractHOGFeaturesFromIntensity(n) � Extract HOG features for the

Intensity profile with noise
13: Y = predict(classi f ier, testFeatures) � Use model from SVM-ECOC Multiclass Training
14: Output Y

4. Case Study

As mentioned in the operating principle of the proposed optical encoding model,
each data symbol is mapped to a corresponding u(r, θ) profile according to the selected
modal indices � and p in the selector beam. Since the reference beam is restricted to
the LG(p′, �′ = 1) mode, the alphabet for possible data symbols within a discrete time
window can be calculated as log2N with N = n�np, where n�,p represents the number
of � and p indices used in the selector arm, and N represents the different data symbols
that can be encoded as N -ary numbers: 0, 1, . . . (N − 1) [14]. For validation purposes, a
data symbol code based on a 4-bit data symbol (N = 16) is designed, which is associated
with the resulting intensity profile according to the selection of the (p, �) combination, as
shown in Figure 2. In the simulations presented in this work, LG beams with wavelength
λ = 1550 nm, fundamental beam width w0 = 100λ and a propagation distance z = 200λ
have been considered. This table shows all possible combinations of data symbols and
the normalized intensity profiles of the reference, selector and the transmitted beam for
data mapping.

Since the proposed optical encoding model operates based on the Mach–Zehnder [39,40]
interferometric method on the transmitter side, and an image-based detection system on
the receiver side, the following OAM generation methods must be considered for an experi-
mental implementation: For the experimental generation of OAM modes, it is common to
use mode converters composed of several cylindrical lenses, which can convert high-order
Hermite–Gaussian beams into high-order Laguerre–Gaussian beams. However, mode con-
verters are limited to a specific order Hermite–Gaussian beam, which needs to be generated
by certain technical means as presented in [2]. The size of the mode converter is large, which
presents strict requirements for the relative position and angle of the cylindrical lens. Typical
mode converter configurations can be founded in [41]. Another alternative of mechanism
for the OAM generation mode is the employment of a spatial light modulator (SLM) [11]
that uses configurations based on changing modulation patterns loaded into the spatial light
modulator. This can be achieved with a laser that can achieve various OAM beams with
different output degrees. However, it is important to consider that under current technical
conditions, the reflectivity of liquid crystal spatial light modulators is from 60 % to 90% [11].

147



Sensors 2023, 23, 2755

No.
Data

symbol
Reference
LG(p,

Selector
LG(p,

Transmitted
 profile

0 0000
LG(0, )

LG(0, )

LG(0, )

LG(0, )

LG(0, )

LG(0,2)

LG(0,3)

LG(0,4)

LG( , ) LG( , )

LG( , )

LG( , )

LG( , )

LG( ,2)

LG( ,3)

LG( ,4)

0001

0010

0011

0100

0101

0110

0111

1

2

3

4

5

6

7

No.
Data

symbol
Reference
LG(p,

8 1000
LG(2, )

LG(2, )

LG(2, )

LG(2, )

LG(2, )

LG(2,2)

LG(2,3)

LG(2,4)

LG(3, ) LG(3, )

LG(3, )

LG(3, )

LG(3, )

LG(3,2)

LG(3,3)

LG(3,4)

1001

1010

1011

1100

1101

1110

1111

9

10

11

12

13

14

15

Selector
LG(p,

Transmitted
 profile

Figure 2. Data symbol set based on a 4-bit data symbol for the case study presented.

5. Results

The performance of the proposed optical encoding model is measured in terms of
signal degradation due to the addition of noise and the bit error rate (BER) presented
by the system. It is known that accuracy and precision of an optical encoder depend
on detection method and robustness of the SVM training algorithm used [42,43]. In this
context, to validate the influence of noise on transmission and therefore measure the degree
of degradation and signal detection, a combination of RIN and AWGN noises has been
used as channel noise for all detection and classification cases. The value of α for RIN has
been established by a factor of 0.5 of the uniform random distribution, while for AWGN
the mean μ = 0 and signal–noise ratio (SNR) levels have been established at 36 dB (low),
30 dB (medium) and 24 dB (high) that are typical noise levels in optical communication
systems [44,45].

To understand how the combination of these noises affects the transmitted signal, three
different data symbols are presented in Figure 3: 0011 (Figure 3a.i), 0110 (Figure 3b.i) and
1011 (Figure 3c.i) with their corresponding 2D linear transformations of 200 × 200 pixels
(computational burden), Figure 3a.ii, b.ii and c.ii. With a view to show the impact of the
noises in the transmitted signal, the horizontal position arrangement for pixel 50 of the
vertical position (x,50) has been chosen for display purposes, which is presented as a yellow
dotted line in Figure 3a.ii, b.ii and c.ii. As a result, the normalized intensity curve for such
an array is presented in Figure 3a.iii, b.iii and c.iii.
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Figure 3. Different data symbols and their corresponding normalized intensity curves: (a.i) data
symbol 0011; (b.i) data symbol 0110; (c.i) data symbol 1011; (a.ii,b.ii,c.ii) linear transformation of
(a.i,b.i,c.i); (a.iii,b.iii,c.iii) normalized intensity curve corresponding to a pixel array of a 2D image
(dotted yellow line) with different channel noise levels.

The normalized intensity curves show the original transmitted signal in a black curve,
the received signal with the same α for each case (α = 0.5 for RIN) and with low level
channel noise in a blue curve, medium level in a red curve and high level in a green curve.
The results of Figure 3 reveal that despite observing distortion in the signal due to the
addition of noise for levels greater than 24 dB of SNR, the SVM–ECOC model allows each
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image to be correctly classified and recognized, with a percentage of 100 % recovery for
each data symbol. For this reason, a computed BER measurement for values less than
24 dB of SNR is necessary to validate the robustness of the optical encoding model at much
more critical noise levels.

An end-to-end performance measure for data transmission is BER, which quantifies
the reliability of an entire coding system from “input bits” to “output bits”, including
the behaviour of all components and elements between the transmitted signal and the
received signal in addition to considering the path of the signal in the middle [46,47]. BER
is mathematically defined as the relation between the number of bit errors and the total
number of bits [48], which expresses the probability of a bit error. The machine learning
model for prediction, recognition and classification of images on the receiver side of the
proposed optical encoder is based on the SVM–ECOC multicast algorithm, which can be
modelled with binary combinations of each class (one-vs.-one) or with binary combinations
of one to multiple classes (one-vs.-all) [49,50], so the BER measurement for each machine
learning model becomes a reliable metric of confidence level at the receiving point. To
calculate the BER as a function of SNR at the receiver end using the SVM-ECOC model,
the training model (one-vs.-one or one-vs.-all) is first created based on the data set of 4-bit
symbols (see Figure 2). Then, the algorithm is trained with 750 images at different SNR
levels (from 12 dB to 36 dB in steps of 6 dB) in the received signal, to test the functionality
of the model at these noise levels. Once the functionality of the SVM model has been
verified through the previous training, the images are processed with the model. For image
processing, a database consisting of 10,000 images for each 4-bit data symbol combination
(between 0000 and 1111) was used, resulting in a total of 160,000 processed images. The
HOG features are extracted from each of these images to predict the combination of bits
corresponding to each image, using the model. Finally, after each prediction, the acquired
combination is compared with the original combination, and then the BER is calculated.
Figure 4 shows the computed BER points as a function of signal-to-noise ratio (SNR) from 0
to 14 dB in steps of 1 dB for the two proposed SVM-ECOC models: the multicast one-vs.-one
algorithm (Model 1) in the red curve and the Multicast one-vs.-all algorithm (Model 2) in
the blue curve.

Since the standard maximum BER for most optical systems is 10−9 [51], and for
applications in optical communications the maximum BER range is in the range 10−9 to
10−12) [52], the adjustment curve for each model is also shown in Figure 4 in order to
predict noise levels for these values. The BER curve for Model 1 reaches BER = 10−9 for
12.8 dB of SNR (see green line in Figure 4), and BER = 10−12 for 13.4 dB of SNR. For the
case of Model 2 (blue curve in Figure 4), BER = 10−9 for 10.2 dB of SNR (see green line
in Figure 4), while for a BER = 10−12 for 10.9 dB of SNR. Additionally, for comparison
purposes, a BER estimation curve assuming a probability of error with a Gaussian random
variable [53] is also shown in a black curve. It is observed that both SVM–ECOC models
have better performance compared to the simplified Gaussian BER model in terms of noise
levels, highlighting that Model 2 has a better probability of error compared to Model 1,
with a difference of 2.65 dB of noise level for BER = 10−9. Note that since the channel
noises used in the simulation are AWGN and RIN, the bit errors generated in this case
study are directly due to signal degradation by these types of noise. This fact is observed in
the results of Figure 4 for each model, indicating that for an SNR level greater than 9 dB,
the bit error probability is below 10% for Model 1 and below 0.0001% for Model 2.
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Figure 4. Computed BER for each SVM-ECOC model as a function of SNR for critical noise levels
(from 0 to 14 dB).

6. Conclusions

A comprehensive design of an optical encoding model based on the coherent super-
position of two LG beams with OAM is proposed for the generation of a coding system
independent of phase information. The proposed approach employs an SVM-ECOC algo-
rithm machine learning that enables image prediction, recognition and classification. To
verify the robustness of the proposed optical encoding model, a data symbol code based on
a 4-bit data symbol is designed, which is associated with the intensity profile according to
the (p, �) combination. A channel noise made up of the RIN and AWGN is added to the
images generated in the encoding stage to emulate a real environment. In order to identify
each data symbol, two different algorithms based on an SVM-ECOC model are used. The
efficacy of the proposed approach is validated through BER measurements. The results
reveal that the proposed algorithms are able to recognize the data symbol set with a degree
of confidence greater than 90 % for noise levels up to 9 dB in both models. Even though
both models present high efficiency, the Multicast one-vs.-all model (Model 2) presents the
best BER curve between the two models studied, with a BER = 10−9 for 10.2 dB of SNR.

The proposed encoding model can be employed on optical free-space (OFS) data links,
which according to the state of the art, such encoding potentially increases data capacity
for wireless systems and satellite communication systems [25,54]. These systems present
typical link distances between 1 km and 143 km (verified experimentally), for 532 nm,
633 nm and 1550 nm of operating wavelength and a range between 150 Mbps and 200 Gbps
of data rate [11], which complicates the data transmission. However, the proposed optical
encoding model can be a solution as it can be used over optical fiber links as evidenced
in [25], in which an optical encoding system based on OAM beams has been implemented
for data transmission at 80 Gbps using 5 km few mode fibers (FMF) to data transmission
at 640 Gbps using 18 km of ring-core-fiber. On the other hand, some constraints must be
considered when choosing the type of encrypted data transmission channel. For free-space
links, atmospheric turbulence can cause a random phase and intensity distortion on the
transversal beam profile [55], which can be quantified by the refractive index structure
constant C2

n that has typical values between 10−17 m−2/3 and 10−13 m−2/3. According
to Allen et al. [1], the Rytov variance is an adequate indicator to quantify turbulence
fluctuations in OFS links, since this is related to C2

n and the propagation distance. Also
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demonstrated in [56], for a link with low power fluctuations (low Rytov variance), the
recommended propagation length should be less than 10 km, and for greater distances, the
use of mitigation methods such as adaptive optics beam shaping is recommended [57].
Focusing on optical fiber links, the fundamental limitations lie in the type of fiber used for
the transmission channel. The use of few mode fibers (FMFs) or the use of micro-structured
fibers is necessary to excite OAM modes within the fiber as evidenced in [25].

For future research, it is relevant to mention that the number of circular fringes in
the intensity profile of an LG mode are directly related to the index p, while the spatial
distribution of these fringes is related to the index �; therefore, the number of bits can be
extended to more than 4-bits for the case where � ≥ 5. This fact opens new opportunities
for the development of advanced encoding systems.
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Appendix A. Support Vector Machine Algorithm

As the process involves training procedures, the decoding processing on the receiver
side of the encoder is based on support vector machine (SVM). SVM is a machine learning
algorithm that employs the concept of the kernel function to map the data in a different
dimensional space, such that the information is grouped according to similar attributes.
The algorithm takes as input the raw data, which is classified depending on the kernel
function. Then, the data are saved and compared with the original figure to identify similar
patterns that are used for image identification. This process is repeated until the maximum
number of iterations n is reached, as shown in Figure A1a. As a result, a simplification
of complex nonlinear decision boundaries is obtained to derive in a linear dimensional
space [58]. Mathematically, the characterization is driven by the kernel that can take the
form as presented in Table A1. For a better understanding, a flowchart of SVM is presented
in Figure A1b. The kernel used in the SVM algorithm for the proposed optical encoding
model is the basis function (Gaussian).

Table A1. Brief description of the kernels that are used in the different types of SVM algorithms.

Type of SVM Kernel Description

Base function (Gaussian) K(x1, x2) = e−
‖x1−x2‖2

2σ2

Learning of one class, where σ
represents the width of

the kernel

Linear K(x1, x2) = xT
1 x2 Learning of two classes

Polynomial K(x1, x2) =
(

xT
1 x2 + 1

)ρ
ρ is the polynomial degree

Sigmoid K(x1, x2) =
tanh

(
β0xT

1 x2 + β1
) The kernel is determined by

specific β0 and β1
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Figure A1. (a) Flow diagram of an SVM algorithm. The ensemble classifiers consist of a set of weak
classifiers. The weights (wn) of the incorrectly predicted points are increased in the next classifier.
The final decision is based on the weighted average of the individual predictions; (b) flowchart of the
application of the support vector machine (SVM) algorithm in the decoding processing.
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Abstract: In this paper, we show that applying a machine learning technique called auto-decoder (AD)
to high-rate and short length Reed–Muller (RM) decoding enables it to achieve maximum likelihood
decoding (MLD) performance and faster decoding speed than when fast Hadamard transform (FHT)
is applied in additive white Gaussian noise (AWGN) channels. The decoding speed is approximately
1.8 times and 125 times faster than the FHT decoding for R(1, 4) and R(2, 4), respectively. The number
of nodes in the hidden layer of AD is larger than that of the input layer, unlike the conventional
auto-encoder (AE). Two ADs are combined in parallel and merged together, and then cascaded to
one fully connected layer to improve the bit error rate (BER) performance of the code.

Keywords: Reed–Muller (RM) code; machine learning; auto-decoder; auto-encoder

1. Introduction

Machine learning (ML) techniques are widely used in many fields, such as image
recognition, natural language processing, and autonomous driving [1–3]. Auto-encoder
(AE) unsupervised ML techniques are known for their capacity to extract important features
of data while reducing unwanted noise, and thus are useful in generating new images with
key features [4]. AEs perform roles such as dimensionality reduction, image denosing,
image generation, and abnormality detection, and are used in various fields such as
medical care, autonomous driving, and image recognition [5–8]. In addition, various
studies are being undertaken to apply machine learning technology to communication
systems, such as channel coding, massive multi-input and multi-output, multiple access,
resource allocation, and network security [9,10]. In this study, we modify an AE to a
new model called the auto-decoder (AD), which is suitable for reducing the noise that
corrupts the transmitted information signal in channel coding. The proposed AD is used
to decode Reed–Muller (RM) code of high-rate and short length, which is used in many
communication systems, such as long-term evolution (LTE) and fifth-generation wireless
(5G) cellular systems [11,12], where the minimum latency delay is 5 ms. The requirement
is to further reduce this delay in sixth-generation (6G) wireless systems [13,14]. Since
we consider high-rate Reed–Muller code of short length, such as R(2, 4) with code rate
0.6875, we use a fast Hadamard transform (FHT) decoding method [15] for performance
comparison instead of the recursive decoding of [16,17] which is useful for low-rate RM
code. Because the RM code has an extremely simple structure and can be decoded with
maximum likelihood decoding (MLD) performance using FHT, it is especially useful in
control channels in wireless communication systems. We first illustrate the key differences
between the conventional AE and the proposed AD, and then show how to construct the
decoder for the RM code using it. After training the AD model for the code, we found
that the proposed method showed similar performance to the conventional FHT method
with faster decoding speed. For improved performance, we present a parallel auto-decoder
(PAD) that combines a couple of ADs in parallel.

Appl. Sci. 2022, 12, 9225. https://doi.org/10.3390/app12189225 https://www.mdpi.com/journal/applsci156
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2. RM Decoder Based on AD

This section explains the RM decoder using AD and compares the performance of
FHT decoding. Table 1 shows the notations used in this paper.

Table 1. Summarizes the notation used in the paper.

Symbol Description

n length of codeword (bits)
r, m parameters of RM code (0 ≤ r ≤ m)

k length of message (bits)
N number of nodes in FC layer
y one-hot encoding vector
m message vector
z output of FC layer
S number of validation sets

ρt, ρv,s
SNRs for the training set and the s-th

validation set

2.1. Auto-Decoder

The AD, which plays a central role in decoding of the RM code, is modified from
a conventional AE. Figure 1 shows the basic structures of the conventional AE and the
proposed AD, highlighting the difference between the number of nodes in two different
hidden layers. The number of nodes in the hidden layer of the AE in Figure 1a is less than
that of the input layer. In comparison to the AE, the number of nodes in the hidden layer
of the AD in Figure 1b is larger than that of the input layer. Figure 2 shows the typical
structure of an AD that is composed of three hidden layers for the decoder; the number
of nodes in each layer is presented in Table 2. The number of nodes in the input layer is
the same as the length of the codeword n. The number of nodes in the first hidden layer
is 2n, in the second hidden layer is 4n, in the last hidden layer is again 2n, and finally the
output layer becomes n again. In general, a neural network with a multilayer perceptron
shows much better performance than a single-layer perceptron. From this perspective, we
can speculate that the hidden layer structure of the AD is more suitable for decoding short
length codes, such as RM code, than the AE, in which the number of nodes of the hidden
layer becomes smaller as the depth of the hidden layer increases, which may result in a
smaller number of nodes, especially in the middle of the hidden layer, resulting in poor
decoding performance.

(a)

Figure 1. Cont.
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(b)

Figure 1. Structure of (a) auto-encoder and (b) auto-decoder.

Figure 2. Structure of auto-decoder with 3 hidden layers.

Table 2. Number of nodes for layers in AD.

Layer Number of Nodes

input n
1st hidden 2n
2nd hidden 4n
3rd hidden 2n

output n

2.2. RM Decoding Model

The RM code of n = 2m bits with the minimum Hamming distance of 2m−r used to
encode k = ∑r

i (
m
i ) bits of message is denoted as R(r, m) [15,18]. To illustrate the proposed

decoding model, we consider two cases of RM code, R(1, 4) and R(2, 4) of code length
16, because the model training for longer code consumes more time. Figure 3 shows the
proposed RM decoder structure constructed in such a way that the AD of Figure 2 is
followed by one fully connected (FC) layer with the number of nodes defined as N = 2k,
and, thus, N = 25 for R(1, 4) and N = 211 for R(2, 4). Because N = 2k is equivalent to
the number of all possible messages transmitted, we use the FC layer as the output layer.
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Moreover, a softmax activation function is used to normalize the output of the model to a
probability distribution over all possible transmitted messages. Figure 4 shows the method
used to estimate the transmitted message bits of the (16,11) code of R(2, 4) from the output
layer. The output node index of the FC layer is the decimal value corresponding to the
message bits, and the transmitted message bits are estimated by converting the index of
the maximum output node value into k = 11 binary bits.

Figure 3. Structure of RM decoder based on AD.

Figure 4. Message estimation of R(2, 4) from the output of FC layer.

2.3. Hyperparameters

Table 3 lists the hyperparameters used for training the RM decoder. Let y = {0, 1}N =(
y0, y1, · · · , yj, · · · , yN−1

)
= (0, 0, · · · , 1, · · · , 0) be the one-hot encoded vector for the

message m = (m0, m1, · · · , mk − 1), where j = ∑k−1
l=0 ml2l is the decimal value for m,

and all bits of y are zeros, except the value of one at the j-th bit. Let zi be the i-th output of
the FC layer. The cross-entropy is given by:

L(y, z) = −
N−1

∑
i=0

[yi log zi + (1 − yi) log(1 − zi)] (1)

is used as the loss function, and the Adam optimizer is used for model training. The training
data set was 2k × 105, the epoch was 102, and the batch size was set to 104. Normalized
validation error (NVE) of [19]

NVE =
1
S

S

∑
s=1

BERAD(ρt, ρv,s)

BERFHT(ρv,s)
(2)
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is used to select the appropriate signal-to-noise (SNR) ratio for model training, where ρt
and ρv,s are the SNRs for the training set and the s-th validation set, respectively, and S
is the number of all possible different validation sets. BERAD(ρt, ρv,s) is the bit error rate
when the RM decoder with AD is trained at ρt and evaluated at ρv,s. Table 4 shows the NVE
values at different training SNRs, from 0 dB to 7 dB with 1 dB intervals, and we observe
that NVE = 0.945 at ρt = 1 dB is the lowest value among them. Thus, the training SNR is
set to 1 dB.

Table 3. Hyperparameters for model training.

loss function cross-entropy
optimizer Adam

training data set 2k × 105

epoch 102

batch size 104

Table 4. NVE for different training SNRs.

Training SNR
(ρt)

0 1 2 3

NVE 0.972 0.945 0.982 1.138

Training SNR
(ρt)

4 5 6 7

NVE 0.981 1.320 1.529 2.489

2.4. Performance Evaluation

To evaluate the performance of the proposed decoder using AD, we consider two
cases of RM code, R(1, 4) and R(2, 4) whose code structure is simple, with a short message
length. Figure 5 shows the BER of RM coding with the AD compared with FHT decoding.
The BER at each SNR was calculated when the maximum number of error bits was 500,
or the number of codewords generated reached 105. From the graph, we can see that
the two methods show almost the same BER performance. Table 5 shows the decoding
times for R(1, 4) and R(2, 4) using FHT decoding and the AD. A computer with a central
processing unit (CPU) of Intel i9-7920, graphics processing unit (GPU) of Nvidia Titan XP,
and 64 GB random access memory (RAM) was used for the evaluation. If a GPU is used
for decoding, the proposed method can have an advantage over the method using FHT,
and for a fair comparison, we measure the decoding time using a CPU without a GPU.
The decoding time of the proposed method was 1.8 times faster than the decoding time of
FHT decoding for R(1, 4) and 125 times faster for R(2, 4). This derives from the fact that
(16,11) R(2, 4) decoding using FHT needs 26 FHTs, considering six masking bits, whereas
(16,5) R(1, 4) decoding needs only one FHT operation [15]. The main difference between
the RM decoding using the AD for R(1, 4) and R(2, 4) is the number of nodes in the FC
layer, which increases the number of parameters.

Table 5. Decoding time of RM code using FHT and AD.

RM Code Method Time (ms)

R(1, 4) FHT 0.6012
AD 0.3327

R(2, 4) FHT 46.625
AD 0.3704
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Figure 5. BER of RM decoding with FHT and AD.

3. PAD

To improve the BER performance of the RM decoder using a single AD, we present
a PAD composed of multiple ADs. We call an AD in a PAD a constituent auto-decoder
(CAD). To illustrate the structure of a PAD, we set the number of CADs in the PAD to
five, as shown in Figure 6, where the output layers of all CADs are simply added at the
merge layer with n = 2m nodes. Each CAD has the same structure, except for the different
number of nodes at the first, second, and third hidden layers, as described in Table 6, where
the first and the third hidden layers have the same number of nodes; thus, we find the
symmetry structure of the PAD based on the second hidden layer or middle layer. As in the
case of the AD, the activation functions for the hidden and output layers of CADs in the
PAD are exponential linear unit (ELU) and tanh functions, respectively [20,21]. The PAD
is followed by the FC layer, and the hyperparameters for the decoder model using PAD
are the same as in the case of the AD. Figure 7 shows the BER performance for R(1, 4) and
R(2, 4) using the conventional FHT decoder, and the proposed decoder model denoted as
PAD-i, where i CADs are used. The specifications of the computer and the conditions for
the BER calculation in Figure 7 for PAD are the same as those used in Figure 5 for the AD.
Figure 7a shows the BER for R(1, 4) in the range from 0 to 6 dB with 1 dB steps, and (b)
in the range of 1.5 dB to 2.5 dB, which provides a better discrimination between different
cases where no significant difference can be observed in terms of BER. However, PAD-2
shows the best performance. Figure 7c shows the BER for R(2, 4) in the range from 0 to
6 dB with a 1 dB step, and (d) in the range of 1.5 dB to 2.5 dB for better observation. PAD-3
demonstrates the best performance, but there is no significant improvement as we increase
the number of CADs in PAD. The comparison of decoding process times and the number
of parameters for R(1, 4) and R(2, 4) using FHT and PADs is described in Table 7, where
the higher the number of CADs in PAD, the higher the number of parameters and the
complexity, and the longer the decoding process time. In R(1,4), the number of parameters
of PAD-1 and PAD-5 are about 10-fold different, but the decoding time is only about 1.3-fold
different. This is because the computation of CADs is performed in parallel.
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Figure 6. Structure of PAD with 5 CADs.

(a) (b)

(c) (d)

Figure 7. BER of RM decoding with FHT and PADs.
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Table 6. The number of nodes in PAD with 5 CADs.

Layer
Number of Nodes

1st 2nd 3rd 4th 5th
CAD CAD CAD CAD CAD

1st hidden n 2n 3n 4n 5n
2nd hidden n 4n 9n 16n 25n
3rd hidden n 2n 3n 4n 5n

output n n n n n

Table 7. RM decoding time using FHT and PADs.

Method
Time (ms) Parameters

R(1, 4) R(2, 4) R(1, 4) R(2, 4)

FHT 0.6012 46.625 - -
PAD-1 0.3327 0.3704 5808 40,080
PAD-2 0.3472 0.3785 6896 41,168
PAD-3 0.3838 0.4037 22,512 56,784
PAD-4 0.4075 0.4367 57,728 92,000
PAD-5 0.4520 0.4854 124,864 159,136
PAD-6 0.4972 0.5241 239,312 273,584
PAD-7 0.5508 0.6225 419,536 388,032
PAD-8 0.6198 0.6352 687,072 502,480

4. Conclusions

In this paper, we proposed R(1,4) and R(2,4) decoders using an AD, with MLD
performance and shorter decoding process time than the FHT decoder. The decoding time
of the RM decoder using the AD is 1.8 times faster than that using FHT decoding for R(1,4),
and 125 times faster for R(2,4). This is because the FHT decoding method relies heavily on
masking bits. We presented PAD with multiple CADs to improve the BER performance
of the RM decoder using a single AD, and found that PAD-2 and PAD-3 showed the best
performance for R(1,4) and R(2,4), respectively; however, the performance difference is
not significant. The proposed fast decoding method with MLD performance can be useful
in mobile communication systems, such as 5G and 6G, which require low latency and BER.
Since the AD shows better performance then the AE when input size is small, it can be
useful for noise removal in signal processing with a relatively small data size. The AD can
be used not only in communication fields, but also in fields using various sensors. As we
have confirmed the performance of the proposed model based on the AD and PAD for
high-rate and short-length RM codes in terms of decoding speed and BER, we will extend
the result to other error-correction coding schemes.
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Abstract: Aiming at the existing intelligent anti-jamming communication methods that fail to consider
the problem that sensing is inaccurate, this paper puts forward an intelligent anti-jamming method
for wireless communication under non-ideal spectrum sensing (NISS). Under the malicious jamming
environment, the wireless communication system uses Q-learning (QL) to learn the change law
of jamming, and considers the false alarm and missed detection probability of jamming sensing,
and selects the channel with long-term optimal reporting in each time slot for communication. The
simulation results show that under linear sweep jamming and intelligent blocking jamming, the
proposed algorithm converges faster than QL with the same decision accuracy. Compared with
wide-band spectrum sensing (WBSS), an algorithm which failed to consider non-ideal spectrum
sensing, the decision accuracy of the proposed algorithm is higher with the same convergence rate.

Keywords: non-ideal spectrum sensing; intelligent anti-jamming; Q-learning; wide-band spec-
trum sensing

1. Introduction

In the past 20 years, wireless communication technology was widely used. However,
due to the openness of the wireless channel, the challenge of artificial interference in wireless
communication is becoming more and more serious. Artificial interference mainly includes
two types. One is unintentional interference [1], and the other one is intentional jamming.
Intentional jamming refers to the jamming behavior taken for the purpose of destroying
the information transmission process of a wireless communication system. According
to whether the strategy is fixed or not, artificial intentional jamming can be divided into
fixed-strategy jamming and dynamic strategy jamming. Fixed-strategy jamming mainly
includes multi-tone jamming, partial-band jamming, periodic-pulse jamming, linear-sweep
jamming, etc., and its strategy is fixed and the law is easily perceived. Dynamic strategy
jamming mainly includes dynamic probability jamming, intelligent blocking jamming, etc.,
and its jamming law is not easily obtained through simple observation or sensing.

1.1. Related Works

In recent years, the continuous development of machine learning algorithms provided
new intelligent ideas for communication anti-jamming. In the frequency domain, the author
in [2] modeled the problem of multi-channel jamming and anti-jamming as a Markov
decision process (MDP). The best defense strategy is obtained through value iteration
under the channel transition probability, and rewards are completely known. Similarly,
in [3], the author modeled the game problem between the secondary user and the jammer in
the cognitive radio system as MDP, using Q-learning and maximum likelihood estimation
to obtain attacker parameters and obtain the optimal channel switching strategy. In [4], the
author also modeled the jamming and anti-jamming process as MDP, and proposed a game
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theory anti-jamming scheme (GTAS), which achieved higher returns. In [5,6], the authors
also studied the anti-jamming problem of user channel selection by using the method of
game theory. In [7], the author used Q-learning to solve the channel allocation problem,
and proposed a channel allocation strategy with the lowest failure rate. In [8], the author
used MDP to model dynamic and complex spectrum environment, and used Q-learning to
obtain the optimal communication strategy. Because Q-learning has the problem of disaster
maintenance, deep learning is introduced to solve the complex anti-jamming strategy
learning problem. In [9], the author proposed a hierarchical deep reinforcement learning
algorithm without a jamming mode and channel model, which solved the problem of
selecting many optional frequencies in the jamming environment. In the power domain,
the author in [10] proposed a power control strategy based on reinforcement learning
for the case of unknown jamming patterns and channel parameters, which improved
the communication efficiency. Aiming at multi-domain joint jamming in the frequency
domain, time domain, and power domain, the authors in [11] proposed a multi-parameter
intelligent anti-jamming method based on 3D Q-learning. The proposed algorithm has
a lower jamming collision rate than the traditional Q-learning algorithm. The authors
in [12] proposed the CAAQ algorithm to solve the problem of multi-user cooperative anti-
jamming. By increasing the distance threshold, the problem of mutual jamming between
users was well avoided. The author in [13] proposed an anti-jamming power control
strategy based on Q-learning, which has better performance in the condition of the game
model unknown. However, the above mentioned algorithms require the acknowledgment
character (ACK) fed back from the receiver after data packets are successfully received
as a means to sense whether the communication channel is subjected to jamming, which
increases the operation overhead and can induce additional risk of ACK frame jamming.
Furthermore, those strategies can only update the Q value of the selected channel one by
one, and their convergence rates are low.

To address these issues, the author in [14] used the wide-band spectrum sensing tech-
nology to sense the jamming state of multiple channels simultaneously, which significantly
improved the convergence rate of the algorithms without the need of an ACK feedback
channel. However, the strategy proposed in [14] assumed that the observed jamming state
by the system was the actual jamming state of the system, which neglected the non-ideality
of the jamming state observation. In practice, due to the existence of many non-ideality
factors, such as false alarm and the missed jamming states in the observed results, the
observed jamming state is not necessarily equivalent to the actual jamming state of the
system, which may lead to large uncertainties in the algorithm. Therefore, if we ignore these
undesirable characteristics of perception, we will not be able to correctly learn the behavior
of jamming, which will lead to large disturbances in the algorithm. Aiming at the problem
that channel quality varies with probability, reference [15] studied the time-constrained
downlink scheduling strategy for the actual channel observation environment, proposed a
simplified partially observable Markov decision process (POMDP) modeling method for
downlink transmission, and proposed a low-complexity suboptimal strategy method based
on finite time domain Q_MDP algorithm.

Inspired by the work in [14], this paper proposes an intelligent anti-jamming method
for wireless communication in the case of non-ideal spectrum sensing. Compared with
the traditional Q-learning algorithms in Refs. [3–13], this paper uses the idea of broadband
sensing technology to update the Q value of multiple channels at a time; compared with
WBSS algorithms in Ref. [14], this paper considers the non-ideal sensing, which is closer
to the actual electromagnetic environment. Firstly, the algorithm models the problem of
communication channel selection in a jamming environment with false alarm and missed
detection as an improved Markov decision process (IMDP) combined with false alarm and
missed detection. Then, it is solved by the NISS algorithm, obtaining the selection of the
optimal communication channel. The advantages for decision accuracy and convergence
rate of the proposed algorithm are proved comparison to the traditional Q-learning [16]
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and the conventional wide-band spectrum sensing algorithm [14] through the MATLAB
simulation results.

1.2. Contribution and Structure

The contribution of this paper is as follows:

• This paper proposes a NISS algorithm, which combines the advantages of Q-learning
and the WBSS algorithm. The proposed algorithm has a fast convergence rate and
high decision accuracy.

• This paper takes the probability of false alarm and missed detection into account in anti-
jamming communication for the first time, which is closer to the actual electromagnetic
environment and fills the blank of intelligent anti-jamming wireless communication in
the case of non-ideal sensing.

The remainder of this paper is organized as follows. Section 2 presents the system
model and problem formulation. In Section 3, we introduce the detailed derivation of
the NISS algorithm. The simulation results and analysis are presented in Section 4. Our
concluding remarks are given in Section 5.

2. System Model and Problem Formulation

2.1. System Model

Figure 1 shows the model of the communication system. There is one communication
transmitter, one communication receiver, and one jammer. The communication transmitter
and receiver can use the communication channel to communicate. There are M possible
channels in the wireless communication system, which are recorded as {1, 2, 3, . . . , M},
selecting one channel at a time for communication. The jammer has a non-intelligent mode
and an intelligent mode. In the non-intelligent mode, the jammer performs conventional
jamming, such as linear sweep; in the intelligent mode, the jammer has a greater probability
of jamming with high-communication frequency channels according to the communication
frequency of each channel detected in advance.

Figure 1. Communication system model.

Figure 2 shows the structure of communication time slot. Each jamming time slot
corresponds to a communication time slot, which can be divided into transmission sub-slot,
sensing sub-slot and learning sub-slot. In the transmission sub-slot, the transmitter selects
an undisturbed channel to transmit information to the receiver according to the judgment
of the previous time slot on the jamming channel. In the sensing sub-slot, the receiver
senses each channel, and transmits the sensing results to the agent for learning. The agent
obtains the judgment of the available channels of the same time slot in the next jamming
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period. The transmitter selects the optimal channel for the communication transmission of
the next time slot according to the judgment.

Figure 2. Structure of the communication time slot.

Figure 3 is a state transition diagram between the actual state and the observed
(sensing) state for channel i due to the existence of false alarm and missed detection. Where
pi is the missed detection probability, indicating that the observation state is no jamming,
while the actual state is jamming. qi is the false alarm probability, indicating that the
observation state is jamming, while the actual state is no jamming.

ip

ip−

iq

iq−

 
Figure 3. Transition diagram between actual state and observation state caused by false alarm and
missed detection.

2.2. Problem Formulation

To simplify the research, the following assumptions are made:

• The communication frequency band is divided into N channels with the same band-
width, and there is no frequency overlap between the channels, and the fading charac-
teristics of each channel are the same and flat fading.

• The sensing result is only affected by false alarm and missed detection, which leads to
inaccuracy, and there is no inaccuracy caused by other factors.

• In the same time slot, the channel of jamming does not change.

Based on the above assumptions, since the agent cannot accurately perceive the state
of the system, we use the improved Markov decision process (IMDP) for modeling and
solving. IMDP can be expressed as a five tuple 〈S, A, P, O, r〉, in which, in addition to the
state space S, action space A, state transition probability P, and real-time reward function r
of the general MDP, there is also observation space O.

The state space S can be expressed as:

S � {n1, n2, . . . , ni : nk ∈ {1, 2, 3, . . . , N}} (1)

where nk = j indicates that the kth channel to be interfered is channel j, and N channels can
be interfered at most in the same time slot.
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Action space A can be expressed as:

A � {a : a ∈ {1, 2, 3, . . . , N}} (2)

where a = i indicates that the transmitter chooses to communicate on channel i.
Observation space O can be expressed as:

O �
{

ot =
(

o1
t , o2

t , . . . , oM
t

)
: oi

t ∈ {0, i}
}

(3)

where oi
t = 0 and oi

t = i, respectively, indicate that the observation status of channel i is
undisturbed and disturbed in time slot t.

The reward function r is defined as follows:

ri
t =

⎧⎨⎩
0
E
−L

a �= i;
a = i&i /∈ st
a = i&i ∈ st

(4)

where ri
t represents the reward function of channel i in time slot t, and −L represents the

loss in case of message transmission failure. E represents the return of successful message
transmission. st represents the jamming status of each channel at time t, and st ∈ S.

The observed state and actual state transition diagram of each time slot are shown in
Figure 4.

Figure 4. The observed state and actual state transition diagram of each time slot.

Where the observed states in time slot t and time slot t + 1 can be obtained through
wide-band spectrum sensing. At the same time, the false alarm probability Pf and missed
detection probability Pd can be calculated according to the energy detection theory [17].

Pd = Pr(Y > λ|H1 ) = Qu

(√
2γ,

√
λ
)

(5)

Pf = Pr(Y > λ|H0 ) =
Γ(u, λ/2)

Γ(u)
(6)

where u = TW is time domain bandwidth product, and γ is jamming to noise ratio (JNR),
and λ is decision threshold of energy detection.

3. Detailed Derivation of Algorithm

Q-learning is a form of typical model-free learning. Its basic idea is to establish a Q
table. The values in the table represent the long-term cumulative rewards of executing the
current strategy after the state st selects the action at. The long-term cumulative reward
can be expressed as follows:

V = E
[
∑+∞

τ=0 γτrt+τ

]
(7)
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where γ is the discount factor, indicating the importance of future returns, and rt is the
immediate reward value obtained in step t. The goal of Q learning is to find a strategy π to
maximize the long-term cumulative rewards under this strategy.

To solve the optimal strategy, the state value function V and the state action value
function Q are defined as follows:

Vπ(s) = Eπ

[
∑+∞

τ=0 γτrt+τ |st = s
]

(8)

Qπ(s, a) = Eπ

[
∑+∞

τ=0 γτrt+τ |st = s, at = a
]
. (9)

Since the MDP model is satisfied, it can be converted into a recursive form as follows:

Vπ(s) = Eπ{rt + γ[rt+1 + γ(rt+2 + . . .)]|st = s}
= ∑a∈A π(a|s )∑s′∈S{P(s′|s, a )[r(s′|s, a ) + γVπ(s′)]} (10)

Qπ(s, a) = ∑s′∈S

{
P
(
s′|s, a

)[
r
(
s′|s, a

)
+ γVπ

(
s′
)]}

(11)

where P(s′|s, a ) represents the probability of taking action a represents the probability
of taking action in state s and transferring the state to s′, and r(s′|s, a ) represents the
corresponding reward.

According to the Bellman optimization principle, the optimal value Qπ∗
(s, a) can be

obtained as follows [18]:

Qπ∗ (s, a) = ∑s′∈S

{
P
(
s′|s, a

)[
r
(
s′|s, a

)
+ γmax

π
Qπ(s, a)

]}
(12)

Qπ∗
(s, a) = max

π
Qπ∗ (s, a). (13)

Therefore, the optimal strategy π∗ can be obtained as follows:

π∗ = argmax
π

{Qπ(s, a)} (14)

Since the Q-learning algorithm does not need prior knowledge, such as state transition
probability, its update formula is as follows:

Qt+1(s, a) = (1 − α)Qt(s, a) + α

(
rt + γmax

a′
Qt
(
s, a′

))
(15)

where α is the learning rate. The reference [19] and [20] proved that if α meets the conditions:

αt ∈ [0, 1), ∑∞
t αt = ∞, and ∑∞

t (αt)
2 < ∞ (16)

then the Q-learning algorithm can converge after finite iterations. When the Q table
converges, the action corresponding to the maximum Q value in each state is the optimal
action in that state.

Wide-band spectrum sensing algorithm (WBSS) senses multiple channels in the same
time slot, obtains the actual state of each channel (whether it is jammed) according to
the sensing, and updates the Q value of each channel at the same time slot. Therefore,
compared with the conventional Q-learning algorithm [16], which only updates the Q value
of the selected channel in one time slot, the convergence rate of the WBSS algorithm will be
greatly improved.

The Q value of the WBSS algorithm is updated as follows:

Qt+1(s, ni) = (1 − α)Qt(s, ni) + α

[
rt + γmax

nj
Qt
(
s, nj

)]
(17)
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where ni refers to different channels, and its value is {1, 2, 3, . . . , M}. That is, for any time
slot, the Q values of the M channels are updated at the same time. rt represents the instant
benefit of the time slot t + 1 selecting channel ni for communication.

It can be seen from Equations (11) and (12) that to update the Q value and obtain the
optimal strategy, it is necessary to know the state of the current time slot. However, in the
actual electromagnetic environment, due to the inaccuracy of observation, the state of the
current time slot is not a completely determined state, but there are multiple possible states
related to the probability of false alarm and missed detection. Therefore, different from the
conventional WBSS algorithm, the proposed algorithm takes the false alarm and missed
detection probability into account when calculating the Q value and making decisions,
obtaining the NISS algorithm.

Since there are different states, such as s1
t = {1, 0, 0, . . . , 0} (only channel 1 is jammed)

and s2
t = {1, 2, 0, . . . , 0} (only channel 1 and channel 2 are jammed) for actions such as

a = 1 (select channel 1 for communication), the communication results are the same and
the benefits are the same. Therefore, we change the state from the set of all channel states
as one state to the time slot as the state. When calculating the immediate return r, we only
need to consider the actual state of the selected communication channel, not the actual state
of other channels.

Then, for the time slots nt−1 and nt, where the system is located, ot−1, ot ∈ O is
observed. For each at ∈ A, the Q value is calculated as follows:

If the observation of the selected channel is jamming, that is at ∈ ot−1, update the Q
value as Equation (18).

Q(nt−1, at) = Q(nt−1, at) + α

[
pir1 + (1 − pi)r2 + γ max

at+1∈A
Q(nt, at+1)− Q(nt−1, at)

]
(18)

If the observation of the selected channel is no jamming, that is at /∈ ot−1, update the
Q value as Equation (19).

Q(nt−1, at) = Q(nt−1, at) + α

[
(1 − qi)r1+qir2 + γ max

at+1∈A
Q(nt, at+1)− Q(nt−1, at)

]
(19)

For the time slot nt, the observation is ot. We obtain the actions as Equation (20).

at+1 = arg max
at+1∈A

Q(nt, at+1) (20)

Algorithm 1 is the flow of intelligent anti-jamming communication decision algorithm
based on NISS.

Algorithm 1: Intelligent anti-jamming communication decision algorithm based on NISS.

1. Initialization: Learning factor α, Discount factor γ and other parameters in Table 1.
The Q table is initialized as a zero matrix with NT rows and M columns, that is, for any nT and a,
let Q(nT , a) = 0.
2. for t = 1, 2, . . . T do

3. In the current transmitter state st, the transmitter performs the optimal policy selection action at
obtained in the last timeslot or the initial action a0.
4. The transmitter detects the energy of each channel.
5. Calculate the probability of false alarm p f and missed detection Pm according to the detection
results.
6. According to the detection results, false alarm, and missed detection, the real-time reward r is
calculated and the next state st+1 is predicted to obtain the optimal communication channel at+1.
7. The agent updates the Q value according to (18) and (19).
8. The agent obtains the optimal strategy π∗ according to (20) and instructs the transmitter to
transmit in the next time slot.
9. t = t + 1
10: end for

171



Electronics 2022, 11, 3402

First, initialize the system. Second, according to the last decision result, the optimal
communication channel is selected. Third, the transmitter detects the energy of all chan-
nels. Fourthly, the false alarm probability and missed detection probability are calculated
according to the energy detection results, the reward of each channel is obtained, and the Q
table is updated. Finally, the optimal communication channel of the next slot is selected
according to the Q table, and an iteration is completed.

4. Simulation Result and Analysis

4.1. Parameter Settings

Table 1 shows the simulation parameters.

Table 1. Simulation parameter settings.

Parameters Value

Communication timeslot length Ts 0.6 ms
Transmission timeslot length Ttrans 0.5 ms
Perception timeslot length Tsensing 0.04 ms
Learning timeslot length Tlearning 0.06 ms

Total transmission timeslots Ta 10,000
Number of available channels N 10

Transmission power of transmitter P 30 dBm
Fading of communication signal BS −130 dB
Transmission power of jamming J 30 dBm

Fading of jamming BJ −134 dB
Power spectral density of ambient noise −174 dBm/Hz

Channel bandwidth BW 1 MHz
Learning rate factor αm 0.1
The discount factor γ 0.5

Transmission success reward E 1
Transmission failure loss L −3

According to the parameters in Table 1, the jamming noise ratio (JNR) can be calculated
as 10 dB, and the time bandwidth product is 5, so we can calculate the false alarm probability
as Pf = 0.0549 and missed detection probability as Pm = 0.1021 according to Equations (5)
and (6). To evaluate the performance of this algorithm, this algorithm is compared with the
traditional QL algorithm and WBSS algorithm.

In this paper, the effectiveness and universality of the algorithm will be verified by
simulation from both fixed-strategy jamming and dynamic strategy jamming. The first
is the fixed-strategy jamming, and the linear sweep jamming is selected as the research
object. Figure 5 shows the time-frequency distribution of linear sweep jamming, and the
red background indicates jamming. The jamming channel changes linearly at any time slot,
and 10 time slots are a jamming period. In the same time slot, the jamming channel does
not change.

The second is the dynamic strategy jamming, and the intelligent blocking jamming is
selected as the research object. Intelligent blocking jamming refers to a jamming strategy
in which the jammer selects the channels with the highest number of communications
to interfere with the relative number of communications in each channel in the previous
period of time.

Figure 6 shows the probability distribution of intelligent blocking jamming. The
number represents the jamming probability of the channel in that time slot, which is
determined by the proportion of the communication times of each channel in the total
communication time of the previous period. A jamming period is 10 time slots.
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Figure 5. Linear sweep jamming distribution.

Figure 6. Probability distribution of intelligent blocking jamming.

4.2. Result Analysis

Figure 7 is a comparison of the decision accuracy (ratio of successful transmission
times to total communication time) of the proposed algorithm anti-linear sweep jamming
with traditional Q-learning and wide-band spectrum sensing algorithms. The decision
accuracy of traditional Q-learning converges to 100% after about 30 rounds of algorithm
iteration. To accelerate the convergence of the algorithm, aiming at the problem that Q-
learning only updates one Q value of the state action pair at a time, the WBSS algorithm
senses the jamming states of all channels in each time slot, and updates the Q value of all
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actions at the same time in each state, which greatly accelerates the convergence rate of the
algorithm. However, due to false alarm Pf = 0.0549 and missed detection Pm = 0.1021,
the sensing results cannot be completely accurate. For example, in a certain time slot,
the channel state perceived is free of jamming, but the sensing result may be caused by
missed detection, and the actual channel may be jammed. Therefore, the WBSS algorithm
takes the sensing result directly as the actual state of the system and does not consider
the impact of false alarm and missed detection on the sensing result. Its accuracy after
convergence is only 90%, which is lower than the Q-learning algorithm. By taking the false
alarm and missed detection probability into account, the inaccuracy of the sensing results
and the decision of the optimal channel is more accurate and reasonable. Therefore, the
decision accuracy of the NISS algorithm for the channel of linear sweep jamming can also
reach 100%.

Figure 7. Decision accuracy of three anti-linear sweep jamming algorithms.

Since the actual jamming cannot be such regular linear sweep jamming, to verify the
applicability of the algorithm under complex jamming patterns, the simulation verification
against intelligent blocking jamming is carried out, and the results are shown in Figure 8.

Figure 8. Decision accuracy of three anti-intelligent blocking jamming algorithms.

As can be seen from Figure 8, since the intelligent blocking jamming interferes with
different channels in each time slot with probability, it is impossible to fully predict the
jamming channel of the next time slot. Therefore, even with Q-learning, the decision
accuracy is only 80%.
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From the results of Figures 7 and 8, we can see that the NISS algorithm can converge
faster than Q-learning with the same decision accuracy, and has higher decision accuracy
than the WBSS algorithm with the same convergence rate.

Figure 9 is a comparison diagram of the change rule of successful transfer rate with
JNR when the false alarm probability of the NISS algorithm and the WBSS algorithm is
Pf = 0.0549. It can be seen from Figure 9 that with the increase in JNR, the decision accuracy
of both algorithms increases. When JNR is taken from 2dB to 12dB, the decision accuracy of
the NISS algorithm is significantly higher than that of the WBSS algorithm, which proves
that the performance of the NISS algorithm is better than that of the WBSS algorithm.
It should be noted that when JNR is low, the reason why the decision accuracy of the
two algorithms is similar is that it is difficult to distinguish whether the channel contains
jamming due to the low JNR. When JNR is very high, both decision accuracies reach the
same maximum. The reason is that the energy of the jamming signal is very strong, the
probability of missed detection is almost negligible, and the observation accuracy is only
related to the probability of false alarm. The probability of false alarm is equal, so the
decision accuracy is equal. The results show that the performance of NISS is greater than
WBSS at the medium JNR.

Figure 9. Variation diagram of decision accuracy with JNR of two anti-intelligent blocking algorithms.

Figure 10 is a channel decision diagram of the WBSS algorithm against intelligent
blocking jamming. The vertical coordinate indicates the channel serial number, the horizon-
tal coordinate indicates the current communication slot. The green area indicates that the
current channel is predicted to be jammed, but there is no jamming in the actual channel.
The light red area indicates that the current channel is jammed but was not predicted.
The dark red area indicates that the current channel has jamming and was successfully
predicted. For the WBSS algorithm, when the algorithm converges, some channels will
be jammed, but the agent was not successfully predicted. If the channel is selected for
communication at this time, the communication will fail and cause great losses.

Figure 11 is a channel decision diagram of the proposed algorithm against intelligent
blocking jamming. Compared with Figure 10, after the algorithm converges, the NISS
algorithm in this paper can accurately judge those channels that are actually jammed, and
there is no missed detection. Although there will be no jamming but predicted jamming,
the loss caused by this false alarm is very small. Therefore, the algorithm proposed in this
paper can effectively solve the problem of wireless communication intelligent anti-jamming
in the case of non-ideal spectrum sensing.

Comparing the performance of the algorithm in the anti-jamming channel decision
under the two jamming patterns, we can see that: Although the accuracy of the Q-learning
algorithm is high, the convergence rate of the algorithm is slow. For jammers with dynamic
jamming patterns, they may not be able to learn the jamming rules in a short time and
make effective anti-jamming decisions. In the anti-jamming channel decision of the WBSS
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algorithm, although the convergence rate of the algorithm is much higher than that of
Q-learning, there is a major defect in the sensing algorithm, that is, due to the problems of
false alarm and missed detection, the sensing results are not necessarily accurate, so the
accuracy of the jamming channel decision after convergence is low. The NISS algorithm is
improved on the WBSS algorithm. By taking the sensing inaccuracy caused by false alarm
and missed detection probability into account and the confidence of the actual channel
state, it more accurately describes the current channel state in the time slot. Therefore, the
NISS algorithm has the same convergence rate as the WBSS algorithm and does not lose
the accuracy of the jamming channel decision.

Figure 10. WBSS algorithm anti-intelligent blocking jamming channel decision diagram.

Figure 11. NISS algorithm anti-intelligent blocking jamming channel decision diagram.

5. Conclusions

This paper proposes a NISS intelligent anti-jamming algorithm. The main purpose of
the proposed algorithm is to solve two problems. One is the problem of low convergence
rate of Q-learning because of updating the Q value of each channel one-by-one, and the
other problem is the non-ideal perception of the WBSS algorithm. By referring to the Q
value update strategy of the WBSS algorithm and taking the probability of false alarm and
missed detection into the calculation of the Q value, the proposed algorithm achieves good
anti-jamming effect. The simulation is carried out under the conditions of linear sweep
jamming and intelligent blocking jamming. The results show that compared with the
traditional Q-learning algorithm, the proposed algorithm converges faster with the same
decision accuracy; compared with the WBSS algorithm, when the convergence rate is the
same, the accuracy of jamming channel decision making is higher, which fully shows that
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this algorithm has better anti-jamming performance in the face of complex and changeable
intelligent jamming.
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Abstract: Fast convergence routing is a critical issue for Low Earth Orbit (LEO) constellation networks
because these networks have dynamic topology changes, and transmission requirements can vary
over time. However, most of the previous research has focused on the Open Shortest Path First
(OSPF) routing algorithm, which is not well-suited to handle the frequent changes in the link state of
the LEO satellite network. In this regard, we propose a Fast-Convergence Reinforcement Learning
Satellite Routing Algorithm (FRL–SR) for LEO satellite networks, where the satellite can quickly
obtain the network link status and adjust its routing strategy accordingly. In FRL–SR, each satellite
node is considered an agent, and the agent selects the appropriate port for packet forwarding based
on its routing policy. Whenever the satellite network state changes, the agent sends “hello” packets to
the neighboring nodes to update their routing policy. Compared to traditional reinforcement learning
algorithms, FRL–SR can perceive network information faster and converge faster. Additionally, FRL–
SR can mask the dynamics of the satellite network topology and adaptively adjust the forwarding
strategy based on the link state. The experimental results demonstrate that the proposed FRL–SR
algorithm outperforms the Dijkstra algorithm in the performance of average delay, packet arriving
ratio, and network load balance.

Keywords: LEO satellite networks; satellite routing; multi-agent reinforcement learning;
distributed routing

1. Introduction

Terrestrial communications already meet much of our daily communication needs,
but for users in remote areas and at sea, their communications needs cannot be met.
Unlike terrestrial communication, satellite communication has a longer range and better
communication quality [1]. It meets the communication needs of users in remote areas and
at sea, and can also be used to complement terrestrial communications to serve urban users.
Therefore, satellite communication research has attracted much attention.

Based on the distance of the orbital plane from the Earth’s surface, satellite systems can
be classified as geostationary Earth orbit (GEO), medium Earth orbit (MEO), and low Earth
orbit (LEO) satellite systems. Unlike GEO and MEO, LEO satellites are usually located in
the orbital plane, at an altitude of 500 to 2000 km [2]. Because of low latency, low path
loss, and low launch costs, LEO satellite networks are a major research direction for the
industry. At present, there are many large LEO satellite constellations in operation, such
as Starlink and Oneweb. The link status of the satellite network LEO is volatile due to the
complex space environment and frequent satellite laser failures. In addition, satellites move
at high speeds, resulting in frequent changes in satellite topology. These two characteristics
are the main differences between satellite networks and terrestrial networks. Therefore,
traditional routing algorithms are not suitable for direct use for satellite networks. New
routing algorithms need to be designed to solve the LEO satellite routing problem.

Typically, the routing problem of the LEO satellite is mainly divided into two parts:
how to obtain the network topology, and how to generate the route paths based on the
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network topology [3]. Mauger [4] first proposed the concept of virtual node. When the
satellite moves to the virtual node location, its logical address becomes the logical address
of that virtual node. The routing method is to give priority to the path with the highest
latitude. The authors in [5] proposed the dynamic virtual topology routing (DV–DVTR),
which divided the system period into time slices. For each time slot, the network topology
was considered to be fixed [6], and then packets were forwarded according to the shortest
path first algorithm. Although DV–DVTR is easy to implement, the division of time
intervals is a very difficult task. Smaller time intervals require more storage space, and
larger time intervals affect the performance of the algorithm. The authors in [7] proposed
the Temporal Netgrid Model (TNM) to portray the time-varying topology of LEO satellite
networks, in which the Dijkstra algorithm was used to generate forwarding policies. The
Dijkstra algorithm needs to obtain global network information to operate, which can cause
an increase in the communication load on the satellite network. Also, the link state of the
satellite network changes very quickly and, by the time the node has collected the global
information, much of it may be invalid. The authors in [8] proposed a distributed routing
method, in which the surface was divided into several spaces with corresponding logical
areas. In [9], each node sent congestion information to neighbor nodes, including queue
length and available resources. Therefore, satellite nodes could route packages based on
congestion information to achieve load balancing.

There has been a significant amount of research on the application of Software Defined
Network (SDN) technology to address satellite routing challenges. For example, a study
conducted in [10] investigated a LEO satellite routing algorithm in a software-defined space
terrestrial integrated network, where SDN technology was applied to the LEO satellite
network. The lattice-like topology of the satellite network created a shared bottleneck
problem, which was addressed in the study. To tackle these issues, ref. [11] proposed an
SDN-coordinated Multipath TCP (scMPTCP) architecture and related algorithms. In [12],
the authors aimed to introduce an SDN-based terrestrial satellite network architecture and
estimate the mean time required to transport data of a new traffic flow from the source
to the destination while considering the time required to transfer SDN control actions. It
should be noted that the proposed algorithms in these studies were centralized routing
algorithms, which require frequent communication with the ground station and may cause
some latency, presenting a significant disadvantage.

The above approaches mainly consider how to shield network dynamics and then
run traditional routing algorithms for static network topology. These methods take up a
certain amount of storage space and do not yield accurate satellite network topology. In
recent years, a lot of research has started to use machine learning methods to solve routing
problems. The difference between machine learning methods and traditional methods
is that the former are data-driven, while the latter are model-driven. If the model does
not describe the problem accurately, the performance of the model-driven method will be
poor. Recently, machine learning has been applied in network areas, such as regulating
congestion at the transport layer [13], optimizing video stream transmission [14], allocating
resources [15], and so on.

The most suitable machine learning method for solving routing problems is the rein-
forcement learning technique. In [16], they used the Q-routing method to decide how to
forward packages in the LEO satellite network. In [17], deep reinforcement learning was
used to solve the routing problem; they used the neural network to replace Q-tables to
store Q values. They both use centralized routing algorithms that viewed all satellite nodes
as the agent that learned packet forwarding policies as it interacted with the network. The
disadvantages of this approach are the need to collect global link state information and
the high signaling overhead. The authors in [18] proposed a dynamic distributed routing
scheme based on reinforcement learning; they considered each satellite node as an agent,
and agents trained and executed routing operations. However, this did not consider the
problem of the convergence speed of the algorithm, but simply provided the approximate
running process of the algorithm.
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Even though many researchers have applied reinforcement learning to routing prob-
lems [19], few of them have improved the convergence speed of the algorithm to face the
dynamically changing link state. In this paper, we propose a distributed reinforcement
learning method named FRL–SR, which not only learns routing and forwarding policies
by distributed reinforcement learning, but also accelerates the convergence speed of the
algorithm and senses the satellite network state faster. Our main contributions can be
summarized as follows:

• We propose a distributed reinforcement learning method named FRL–SR; it has lower
end-to-end latency and lower signaling overhead than traditional algorithms;

• We propose a learning mechanism that allows the algorithm to converge faster in the
face of changes in the network link state;

• We compare the impact of different reward functions on the performance of reinforce-
ment learning algorithms. The experimental results show that the design of reward
functions is crucial for reinforcement learning algorithms.

The remainder of this paper is organized as follows. In Section 2, we describe the
system model and Q-routing algorithm. In Section 3, we give the details of our FRL–SR
method. We discuss the experimental results in Section 4. Finally, Section 5 concludes
our work.

2. System Model

In this section, we first give a model of the LEO satellite constellation and its character-
istics, based on which research scenario is depicted. After that, we describe the traditional
Q learning algorithm and its application in routing problems. The definition of the routing
problem is given in the last sub-section.

2.1. LEO Satellite Constellation

Currently, LEO satellite constellations can be divided into two types based on the
number of satellite orbital planes: single-layer and multi-layer constellations. The Irid-
ium system is representative of single-layer constellations, while Starlink is a multi-layer
constellation with satellite orbital planes mainly distributed between 300 and 600 km. To
facilitate the analysis, this paper uses the Iridium system as the satellite environment.

As shown in Figure 1, the Iridium constellation consists of multiple satellite orbits
that are evenly distributed which intersect at the pole position. The area at the ends
of the constellation is known as the polar region, where satellites are prohibited from
communicating. The direction of motion of the satellite changes as it passes the pole, and
the relative positions between the satellites change, which leads to periodic changes in
the topology of the satellite. There are two satellite-to-satellite links within the satellite
network. The link with an orbiting satellite is an intra-satellite link, and the link between
adjacent orbiting satellites is an inter-satellite link [20]. Thus, each satellite has up to four
neighbor nodes with which to communicate, leaving little decision space for the satellite
when considering packet forwarding.
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Figure 1. LEO satellite constellation.

2.2. Q-routing Algorithm

Reinforcement learning is one of the areas in machine learning [21]. Inspired by
behavioral psychology, it focuses on what actions an agent should perform to maximize
cumulative rewards when confronted with a given environment. Reinforcement learning
consists of agent, environment, state, action, and reward, where the environment consists
of some states. The agent performs an action based on the current state of the environment,
after which the environment moves to the next state based on the action performed and
provides the agent with a reward value to evaluate the action. In the long run, the agent
learns how to perform the optimal action in a given state [22].

Q learning is a traditional reinforcement learning algorithm; it provides the method
by which the intelligence chooses actions in a given state by maintaining a Q-table. Each Q
value in the Q-table represents the total benefit of taking a certain action in a certain state.
The update of the Q value is mainly realized through the Bellman Equation:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
d∈A

Q(s
′
, a

′
)] (1)

where s represents the current state of the agent, a is the action performed, α is the learning
rate, r is the reward value by performing action a under state s, γ represents the discount
factor, and A is the action space in state s

′
; α and γ both are in the interval [0, 1]. Therefore,

max Q(s
′
, a

′
) represents the max Q value of state s

′
.

Q routing is the application of the Q learning algorithm to the routing problem. In
the Q routing algorithm, each communication node is treated as an agent which can
independently learn the forwarding policy and forward packets to the next port [23]. As
shown in Table 1, each node maintains a Q-table, which records the Q value of all actions
and states. The agent looks up the Q-table based on the destination node of the packet,
finds the action corresponding to the maximum Q value, and then executes it, which is a
packet forwarding process. Similar to Equation (1), the update of Q-table is as follows:

Qi(s, a) = (1 − α)Qi(s, a) + α[r + γ max
d∈A

Qj(s
′
, a

′
)] (2)

where α is the learning rate which determines the updating rate, γ is discount factor, and i,
j represent the index of different nodes. This equation is the essence of agent learning.
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Table 1. Q-table of node I.

State Neighbor

N1 N2 N3 . . .

(i, D1) Qi((i, D1), N1) Qi((i, D1), N2) Qi((i, D1), N3) . . .

(i, D2) Qi((i, D2), N1) Qi((i, D2), N2) Qi((i, D2), N3) . . .

(i, D3) Qi((i, D3), N1) Qi((i, D3), N2) Qi((i, D3), N3) . . .

(i, . . .) . . . . . . . . . . . .

2.3. Problem Statement

The LEO satellite network can be represented as graph G=(V,E), where V represents
the set of satellite nodes and E represents the set of satellite links. Consider an Iridium-like
system with M number of orbits and N satellites per orbit; we use (i, j) to represent the
position of a satellite, where i represents the satellite’s orbit number and j represents the
satellite’s number in orbit (1 ≤ i ≤ M, 1 ≤ j ≤ N). There are intra-satellite links between
satellites in the same orbit and inter-satellite links between satellites in different orbits,
which means that each satellite can communicate directly with up to four satellites. For
clarity, we list the notations and definitions in Table 2.

Table 2. Notations of variables.

Notations Definition

G graph of the LEO satellite network
V set of satellite nodes
E set of satellite links
M number of orbits
N number of satellites per orbit
Dij transmission delay between node i and node j
Ngi the set of neighbors of node i

In this article, we only consider the process of packet transmission between satellites.
The packet starts from the initial node Ni; the node first finds the next hop node Nj from
the set of neighbor nodes Ngi, and then sends the packet out. The transmission delay of the
packet is Dij, and then the next hop node repeats the previous action, sending the packet
to its neighbor node, and then updating the transmission delay of the packet D according
to the delay accumulation rule. The above steps are repeated until the data packet is
forwarded to the destination node. The problem is planning a route which minimizes
D. In a real-world scenario, thousands of packets are passed through the network, so the
algorithm needs to consider the congestion of the link. Firstly, the algorithm must be
able to plan a feasible path from the source node to the destination node, and secondly,
the algorithm should minimize the delay of this path, including propagation delay and
queuing delay. Therefore, the ultimate goal of the algorithm is to minimize the transmission
delay of packets while ensuring the packet arrival rate.

3. Proposed FRL–SR Algorithm

In this section, we first discuss the design of the reinforcement learning model, in-
cluding states, reward functions, and actions in Section 3.1. Then, we briefly introduce
the neighborhood discovery and explain the propagation range of ‘hello’ packets in rein-
forcement learning in Section 3.2. The training approach and algorithm are proposed in
Sections 3.3 and 3.4. In Section 3.5, we analyze the time complexity and space complexity
of the FRL–SR algorithm and the Dijkstra algorithm.
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3.1. Reinforcement Learning Model Setting

In solving the satellite routing problem using multi-agent reinforcement learning,
we consider each satellite node as an agent. When the data packet arrives at the satellite
node, it observes the current state and forwards the packet based on the present situation.
The node adjusts the forwarding strategy according to the current state of the network.
Once a link is broken or there is congestion present, the reward of this port is decreased,
and packets are forwarded to another path. This is the main advantage of reinforcement
learning compared with traditional routing algorithms.

The entire packet forwarding process can be viewed as a finite-state Markov decision
process (MDP) whose final state occurs when the packets have arrived at the destination
node. We use (S, A, P, R) to represent a state of the MDP, where S is the state of the current
system, A is the action space, P is the probability of state transition, and R is the reward.
Each satellite node only forwards packets to its neighbor nodes, which means that the
action space is up to four. Therefore, we chose reinforcement learning rather than deep
reinforcement learning to achieve this.

When using reinforcement learning to solve problems, it is crucial to design state,
action, and reward functions [24]. For different scenarios, we should follow different design
principles. In our satellite network routing scenario, the states, actions, and rewards are
defined as follows:

• States: Each state st ∈ S = {Nc, Nd, qt
1, qt

2, . . . , qt
P} indicates the present situation in the

satellite network environment, where Nc, Nd represent current node and destination
node for packet, respectively. The parameter qt

p represents the current queue length
of the p-th node for p = 1 to p = P. In multi-agent reinforcement learning, each agent
observes a different state, and they make independent routing decisions based on the
current state;

• Actions: The action at ∈ A = {p1, p2, . . . , pP} represents the agent choosing a node
from its neighborhood nodes for each upcoming packet, where pp represents the p-th
satellite node. In satellite networks, each satellite has up to four neighbor nodes, so
the length of A is up to four [25];

• Reward: The reward function is designed according to the goal we want to achieve,
such as the minimum time delay and the maximum packet arrival rate. In this paper,
the transmission delay consists of two parts, propagation time and waiting time, so
the reward function consists of the following three parts:

– Propagation delay. In satellite networks, the star link often fails and becomes un-
available, which requires frequent inter-satellite reconnections. For convenience,
we consider both reconnection time and propagation time as propagation time
delay. Dij represents propagation delay between node Ni and node Nj;

– Queue length. Each satellite node maintains the receiving queue qr and the trans-
mitting queue qt. Queuing delay occurs when the number of packets received
by the satellite is larger than the length of the satellite receiving queue. The
agent learns to forward data packets to satellite nodes with small queue length
to reduce the waiting time;

– Load growth. To avoid packets being forwarded centrally to individual satellite
nodes, causing network congestion, we record the receiving queue length in
the previous stage as the load growth of the satellite, which is recorded as gi.
Therefore, gi could be seen as the congestion level of nodes Ni. This avoids the
situation that everyone sends data to “high-quality” nodes at the same time.

Equation (3) gives the expression of reward function, where qmax represents the maxi-
mum queue length, and w1 and w2 represent the growth and delay coefficients, respectively.
When the next hop is the destination node, we set the reward to 20N, which ensures that
the packets are transmitted to the destination node as soon as possible.
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rewardj =

{
20N Nj is the destination
qmax − (qr + qt)− w1 ∗ gj − w2 ∗ Dj Otherwise

(3)

As shown in Figure 2, the system framework consists of three parts: Neighbor Node
Discovery, Offline Training, and Online Training. In multi-agent reinforcement learning,
the learning process of the agent needs the information of the neighboring agents, which
includes Q-table, connection status, and available resources. Therefore, we develop the
neighborhood discovery part for agents to share information. During the offline training
phase, we perform the initial training of the agents in a ground-based network environment.
By randomly generating packets, the agents act by observing the state of the packets and
the state of the neighboring nodes. To avoid local optimal solutions, we use the ε-greedy
strategy to explore a larger unknown space. Static network training results are not fully
suitable for dynamic LEO satellite networks, so online training is required to fine-tune the
Q-table. Agents make routing decisions for satellite networks based on the pre-trained
model and update the Q-table with the feedback results. It is important to note that the
ε-greedy strategy is not used at this stage, as we only need to fine-tune the Q-table. The
advantage of using the pre-trained method is that it saves onboard resources and improves
the performance of the initial phase of the algorithm.

Figure 2. Model framework of FRL–SR.

3.2. Neighborhood Discovery

Since the topology of the satellite network changes dynamically and the links between
satellites are unstable, the neighbor nodes of the satellite change. Therefore, agents must
periodically check the neighbor nodes so that they know where to forward packets when
they arrive.

Satellite nodes receive information about their neighbors by receiving ‘hello’ packets
from neighboring nodes [26]. In addition, the “hello” packet contains a Q-table, link
information, and available resources that nodes can use to calculate reward values and
update their own Q-table. If a node does not receive “hello” packets from a neighboring
node for a long time, it assumes that the neighboring node is down and will not send packets
to it later. In this paper, nodes only send ‘hello’ packets to their neighbors. Compared
to flooding ‘hello’ packets in terrestrial networks, this method saves energy cost for the
satellite and does not burden the network.

3.3. Offline Training

The algorithm proposed in this paper needs offline training before being applied to
satellite nodes. The purpose of this process is to reduce the training time of the algorithm
online and improve its initial performance. The network Gt0 at t0 time is input as the initial
state, and the output is that each satellite node receives a Q-table.
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To simulate the random nature of packet generation, the initial and destination nodes
of packets are randomly selected from the set of satellite nodes. To reduce training time,
if a packet is forwarded to its destination node, a new packet is generated, and its initial
node and destination node are also randomly generated.

To better explore the unknown space, the ε-greedy strategy is used in the offline
training phase. As shown in Equation (4), the agent randomly chooses an action with
probability ε, and, with probability 1 − ε, it chooses the action with the maximum q-value.
This strategy prevents local optimal solutions, but the convergence speed is low. To solve
the above problem, the value of ε gradually decreases as reinforcement learning progresses,
which can speed up the convergence of the algorithm without affecting the learning effect.

at =

{
random action w.p.ε
argmaxaQt+1 w.p.1 − ε

(4)

Algorithm 1 is the process of offline training. First we need to initialize the training
parameters: numstep is the total number of steps trained, ε is the probability value of the
greedy strategy, lr is the learning rate of reinforcement learning, and γ is the discount factor
of the Q value update function. At each step, the algorithm first cleans up the remaining
packets in the network and then randomly generates a preset number of packets. For
each satellite node, we first determine whether its sending queue qt is empty, and the top
packet pops up when it is not empty. Then, we select the next hop node m according to the
ε-greedy strategy. If the receive queue qr of node m is not full, the packet is forwarded to
m, and the current node will receive the Q-table and reward value of node m. After that,
the Q-table of the current node should be updated according to Equation (2). Otherwise,
the network is congested and packets will be inactive until the next round arrives.

Algorithm 1: FRL–SR offline training algorithm.
Input: Gt0 =< N, E >; numstep; ε; lr; γ
Output: Q-tables for each satellite node

1 initial env, Q-tables;
2 for k=1 to numstep do

3 Clear all data packages;
4 Randomly generate xt data packages;
5 for n=1 to N do

6 if qt in current node n �= ∅ then

7 Pop a package p from qt;
8 Select an action m according to ε-greedy;
9 if qr of node m is not full then

10 Forward packets p to node m;
11 Node m send Q-table and reward to node n;
12 Update the state and Q-table of node n;
13 Update the state of node m;
14 if m is the destination node of package p then

15 reward = 20;
16 Randomly generate a package;
17 end

18 else

19 Wait a round;
20 end

21 end

22 end

23 end
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3.4. Online Training

In the online training phase, the pre-trained parameter in Section 3.3 is used as the
initial routing decision strategy. The online training algorithm carries out two things: one
is to make routing decisions based on the pre-trained model, and the other is to fine-tune
the Q-table based on the real satellite network environment.

Unlike offline training, agents in online training do not make decisions according to
the ε-greedy strategy, since agents avoided the local optimal solution in the previous step.
The main purpose of this process is to fine-tune the routing strategy. Moreover, the agents
are already making routing decisions at this stage, and the algorithm must ensure that
these decisions are sound.

We simplify the satellite network routing problem to finding the smallest delay path.
The delay of a packet consists of two parts: propagation delay and queuing delay. The
propagation delay depends on the inter-satellite link distance and link status, and the
queuing delay depends on the available resources. According to Equation (3), we know
that the reward value is linearly related to the delay of the packet. Equation (5) is the
definition of the Q value in reinforcement learning, from which we can conclude that the Q
value represents the estimated total return of an action in the current state, and the larger
the Q value, the smaller the delay. Therefore, the path with the maximum Q is the path with
the minimum delay. According to the greedy algorithm, if each agent chooses the action
with the largest Q value, the latency of the obtained packet is close to the optimal choice.

As shown in Equation (6), we use Qsum to represent the goal of algorithm optimization,
which is a linear combination of the Q values of each agent. Combined with Equation (5),
we can derive the relationship between Qsum and each reward value. If we know that the
reward value and delay are linear, then Qsum and delay are also linear, so we only need to
maximize Qsum to obtain the minimum delay path.

Qi(s, a) = Ri + γ(Ri+1 + Ri+2 + . . . + Rn) (5)

Qsum =
n

∑
i=1

wiQi(si, a) (6)

If we suppose that the link state of a satellite changes, it is obtained first by the two
satellite nodes of this link, followed by the neighboring nodes of the two satellite nodes.
Therefore, the state of links is serial propagation, which causes certain difficulties for the
convergence of the reinforcement learning algorithm. Especially, the state of the satellite
network is prone to change; it is possible that the convergence of the previous stage is not
yet complete and the link state has changed again.

As shown in Figure 3, there are five orbits, each with five satellites. Each satellite is
represented by a dot with a different color. The red node satellite transmits a message
outwards, and the first to receive that message are the yellow nodes around it. The yellow
node then passes the message to the green node, and the white node does not receive the
message until the fourth round of message dissemination. This indicates that the message
transmission in the satellite network is linear. In the traditional Q-routing algorithm, the
agent receives the Q-table and link state information feedback from the neighbor nodes
when and only when it sends a packet to its neighbor nodes. Then, the node updates
its Q-table, which is a learning process. This paper proposes a method named empty
packet convergence method to accelerate the perception of the network state by agents.
Neighboring nodes do not only send status information after receiving a packet, but also
broadcast its message by period t. The traditional learning process only updates a certain
item of the two-dimensional Q-table at a time, while the empty packet convergence method
updates the entire content of a node’s action space at a time. The smaller the t, the more
often agents perceive the network. Therefore, we designed t to be inversely proportional to
the node traffic density; the higher the traffic density, the smaller the t, and the faster agents
perceive the network. This ensures faster awareness of the state of the network without
increasing the network overhead too much.
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Figure 3. Schematic diagram of link state propagation.

Algorithm 2 is the pseudocode of the online learning process of the algorithm. It
differs from the traditional reinforcement learning algorithm in that this paper proposes an
empty packet convergence method, which accelerates the obtaining of network status and
is more suitable for the state-variant satellite network environment.

Algorithm 2: FRL–SR online training algorithm.
Input: Trained routing strategy model; user data request; lr; γ
Output: Real time routing decision

1 while not done do

2 if time mod t == 0 then

3 Neighborhood discovery;
4 Update the Q-table according to Equation (2);
5 end

6 while user data request received do

7 Choose the next hop according to Q-table;
8 if qr of the next hop is not full then

9 Transmit data packets;
10 Calculate the reward;
11 Update the Q-table according to Equation (2);
12 else

13 Wait a round;
14 end

15 end

16 end

3.5. Complexity Analysis

In this paper, we compare FRL–SR with the Dijkstra algorithm in terms of algorithm
complexity. The time complexity of the Dijkstra algorithm is O(n2): it has to obtain global
state information and then compute the shortest path from the current node to any node
through two layers of loops. The FRL–SR algorithm proposed in this paper only queries
the Q-table stored in the satellite when making routing decisions, so the time complexity is
constant. Therefore, FRL–SR is more suitable for solving routing problems for large satellite
constellations. In terms of spatial complexity, both of them store a two-dimensional array.
The spatial complexity of the Dijkstra algorithm is O(E +4N) when using adjacency tables
for data storage, where E is the number of edges in the network diagram. The maximum
action space of the FRL–SR algorithm is 4, so the space complexity is O(4N), which does
not take up more storage space than the Dijkstra algorithm.

Another important indicator is the communication overhead during the execution
of the algorithm. In the Dijkstra algorithm, each satellite node must send its own status
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information in a flood so that each satellite node can receive the global information. The
communication overhead is high and also has some negative impact on the network load.
In the FRL–SR algorithm, each satellite node only needs to send the status information to
its neighboring nodes without forwarding it to the whole network. Even if we increase the
number of communications between neighbor nodes to improve the convergence speed, it
is much lower than the communication overhead of the Dijkstra algorithm.

4. Simulation Results

In this section, we present the simulation results of the FRL–SR algorithm. The
experiment was mainly divided into two parts: First, we simulated different reward
functions in reinforcement learning and found out which one could minimize the delay
for our subsequent experiments. Then, we compared the performance differences between
the FRL–SR algorithm proposed in this paper and the traditional Dijkstra algorithm, both
running in the same network environment and with the same user data requirements.
We compared these two algorithms in terms of average delay, packet arriving ratio, and
network load balance, and explained the reasons for their performance differences. To
make the experimental results more accurate, we repeated all the experiments three times
and took the average of the results as the final result.

In this paper, we chose the Dijkstra algorithm as the comparison algorithm because it
is the most mature and widely used algorithm in satellite routing algorithm, and through
experiments, we verified that the proposed algorithm can effectively improve the satellite
routing strategy and better support communication services [27].

The parameters of the experiment are given in Table 3. The network had a total
of 7 satellite orbits, each containing 7 satellites, for a total of 49 satellites [28]. Because
interstellar links fail frequently and link recovery varies, to simulate a satellite network
more realistically, we set the propagation delay to vary according to a sinusoidal curve.
In the offline training phase, the algorithm ran for 30 episodes—the step for each episode
was 200, which ensured each agent could learn the routing strategy in a limited number
of training steps. In the online training phase, we observed the delivery of packets in the
network every 1 s and recorded it. In order to ensure the stability of the network, we
adjusted the learning rate of this stage to 0.2, and the corresponding learning rate of the
offline training stage was 0.8.

Table 3. Simulation parameters.

Parameters Values

Number of satellites 49
Delay type sinusoidal

Trials 3
Offline training network load 3000

Initial network load for online training 3000
Max queue length 150

Max transmit packages at one time 10
Number of episodes 30

Number of steps peer episode 200
discount factor 0.9

Learning rate for offline training 0.8
Learning rate for online training 0.2

The performance of different rewards is shown in Figure 4. The reward1 function was
designed to be related only to the length of the link between the two nodes, in which Dij
was the distance between node i and node j.

reward1 =

{
980 Next node is the destination
−0.1 ∗ Dij Otherwise

(7)
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The reward2 function was inversely relative to the queue length of the node and the
distance between the two nodes.

reward2 =

{
980 Next node is the destination
300 − (qr + qt)− 5 ∗ gj − 0.1 ∗ Dij Otherwise

(8)

Based on the simulation results, we can conclude that the design of the reward function
has a great influence on the performance of the algorithm. The goal of the algorithm
was to obtain the path with the least delay, so we chose the second reward function for
subsequent simulations.

Figure 4. Comparison of different reward performances.

Both Figure 5 and Figure 6 show the relationship between the average delay and time
in operation for the FRL–SR algorithm and the Dijkstra algorithm. To better demonstrate
the actual effect of the algorithm, we took the study time after the network was relatively
stable, rather than when the system was first put into operation. The initial number of
packages in Figure 5 is 3000, and the initial number of packages in Figure 6 is 5000. We
can see that the FRL–SR algorithm showed consistent performance in environments with
different initial packet counts.

Figure 5. Comparison of the average delay of the FRL–SR algorithm and the Dijkstra algorithm with
3000 initial packages.
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Figure 6. Comparison of the average delay of the FRL–SR algorithm and the Dijkstra algorithm with
5000 initial packages.

The FRL–SR algorithm outperforms the Dijkstra algorithm in terms of average delay
in the same network environment. This is because the FRL–SR algorithm adjusts its
forwarding policy based on the current state of the network and then forwards the packets
to the optimal port, while the Dijkstra algorithm makes forwarding decisions based on
the previously collected global information. The link state of the satellite network changes
rapidly, and the information collected by Dijkstra cannot accurately reflect the state of the
satellite network at that time. As can be observed from the above graph, the average latency
increases slowly with time because the inter-star link is prone to failure, resulting in packet
loss. The algorithm in this paper does not have a data retransmission function, which
means the delay of lost packets will keep increasing, resulting in a rising average delay.

The relationship between cumulative number of packets and time is shown in Figure 7.
We can see that, over time, the advantages of the FRL–SR algorithm over the Dijkstra al-
gorithm gradually become apparent. Each satellite node has limited resources, so the
communication capacity of the whole network is also limited. The FRL–SR algorithm
considers the resource utilization of satellite nodes as an optimization objective. When
a satellite node selects the next hop, it takes the queue length of neighboring nodes as a
consideration parameter and forwards the packets to the satellite with sufficient communi-
cation resources first, which improves the resource utilization of the network and forwards
more packets per unit time.

Figure 7. Comparison of the number of successfully delivered packets by FRL–SR algorithm and
Dijkstra algorithm.

Considering Figures 5–7 together, we observe that the FRL–SR algorithm transmits a
higher number of successful packets in the same amount of time with a smaller average
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delay per packet. This is enough to show the advantages of the FRL–SR algorithm proposed
in this paper over the traditional satellite routing algorithm.

s =

√
∑(x − M)2

n
(9)

Figure 8 shows a comparison of the load balance of nodes in the network. We use
the population standard deviation to express the load balance of the network, as shown
in Equation (9), where M is the mean of the data and n is the total number of nodes in
the network, which is a commonly used parameter to describe the degree of discreteness
of the system. By observing the simulation results, we can observe that, under the same
user request conditions, the FRL–SR algorithm has a better load balancing effect than the
Dijkstra algorithm. The former can make full use of the resources of each node for routing,
while the Dijkstra algorithm is more likely to cause network congestion.

Figure 8. Measure the balance of node load in the network.

Based on the above simulation results, we conclude that the FRL–SR algorithm has
lower network latency and higher data throughput, which is more suitable for satellite
networks with variable network status. In addition, the FRL–SR algorithm also has good
load balancing characteristics, and it considers both satellite link status and satellite load
when making data forwarding decisions, avoiding network congestion. The Dijkstra
algorithm only blindly forwards packets to ports with good link status, causing congestion
on some network links.

5. Conclusions

In this paper, we proposed a fast-convergence reinforcement learning algorithm to
construct the routing issue in the LEO constellation. Aiming at addressing the charac-
teristics of large dynamic satellite network status and unstable inter-satellite links, we
designed a routing method named the fast-convergence reinforcement learning satellite
routing (FRL–SR) for online decision-making. This method is always aware of the network
link status and dynamically adjusts its routing strategy. The FRL–SR algorithm includes
three parts: neighbor node discovery, offline training, and online training. By shortening
the cycle time of agent obtaining network states, we accelerated the convergence speed
of the algorithm, so that the routing decision was more suitable for the current network
state. In addition, we also performed a complexity analysis, and the FRL–SR algorithm was
superior to the Dijkstra algorithm in both time complexity and spatial complexity.

The simulation results showed that the FRL–SR algorithm had a lower average delay
and higher packet arriving ratio compared with the Dijkstra algorithm. In addition, the
FRL–SR algorithm also had a good performance with respect to load balancing. It made
full use of the resources of each node and reduced the probability of network congestion.
Multi-agent cooperation is a promising method to solve the problem of large-scale satellite
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network routing. In future work, we will continue to work on multi-agent reinforcement
learning algorithms to better solve the problem of satellite network routing.
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Abstract: Wireless resource utilizations are the focus of future communication, which are used
constantly to alleviate the communication quality problem caused by the explosive interference
with increasing users, especially the inter-cell interference in the multi-cell multi-user systems. To
tackle this interference and improve the resource utilization rate, we proposed a joint-priority-based
reinforcement learning (JPRL) approach to jointly optimize the bandwidth and transmit power
allocation. This method aims to maximize the average throughput of the system while suppressing
the co-channel interference and guaranteeing the quality of service (QoS) constraint. Specifically,
we de-coupled the joint problem into two sub-problems, i.e., the bandwidth assignment and power
allocation sub-problems. The multi-agent double deep Q network (MADDQN) was developed to
solve the bandwidth allocation sub-problem for each user and the prioritized multi-agent deep
deterministic policy gradient (P-MADDPG) algorithm by deploying a prioritized replay buffer that
is designed to handle the transmit power allocation sub-problem. Numerical results show that the
proposed JPRL method could accelerate model training and outperform the alternative methods in
terms of throughput. For example, the average throughput was approximately 10.4–15.5% better than
the homogeneous-learning-based benchmarks, and about 17.3% higher than the genetic algorithm.

Keywords: uplink; multi-cell multi-user system; joint-priority-based reinforcement learning (JPRL);
prioritized replay buffer; throughput

1. Introduction

The fifth generation (5G) and beyond fifth generation (B5G) era is boosting a mega
growth in the number of mobile devices [1], thereby resulting in explosive increasing
demand that prompts people to explore new technologies to ease the demand strains.
Recently, the large-scale dense network is gradually developing as a trend for the next-
generation communication networks [2,3] due to its advantages traffic capacity and di-
versified services [4]. The densification of the network [5] is one of the key features of the
5G wireless network architecture, which not only contributes to increasing the system
capacity of 5G networks, but also is closely related to user experience enhancement. As an
important technique for improving the efficiency and quality of communications, dense
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networks still suffer from extremely complex interference problems [6]. In the dense multi-
cell multi-user system, explosive rising users in different cells have an interplay due to the
reuse of resources, which leads to increased co-channel interference and scarce resources.
Furthermore, it is not conducive to deliver high throughput and a good quality of service
(QoS) [7]. As a result, reasonable radio resource management [8] is imperative to improve
the performance of future communications.

As pointed out in [9,10], whether resource allocation is rational or not determines the
throughput performance of the system. Consider the multi-cell multi-user system where
multiple resources (e.g., the bandwidth and transmitted power) are allocated to each user.
As one user who interferes other users improving individual throughput causes serious
interference, the coordination of resource allocation can avoid this situation efficiently.
Therefore, bandwidth assignment and power allocation are the essential components of
radio resource management, which can effectively suppress co-channel interference and
conserve frequency resources. For the challenges of bandwidth and power allocations in
the multi-cell multi-user network, a variety of methods have been proposed to increase
throughput. Xu et al. [11] improved the throughput by selecting mobile relay and assigning
subcarriers in the existence of various interferences. Liu et al. [12] increased the throughput
by means of fast power allocation while guaranteeing stringent latency and reliability. The
authors in [13] proposed a metaheuristic algorithm to solve the power control problem,
which relied on discrete power allocation schemes. For the network cost problem of the
large-scale heterogeneous system, Cao et al. [14] improved the network coverage using
an adaptive seagull algorithm. In addition, various joint allocation methods have been
proposed to maximize the rate, energy efficiency, and spectral efficiency [15–17]. The
above-mentioned research works are based on traditional methods, such as the genetic
algorithm [18], game theory [19], water-filling method [20], graph theory [21], and so on.
These approaches are usually able to achieve the goals for different optimizations and
application scenarios. Nevertheless, all of them experience dilemmas in exponentially
growing the search space for the large-scale system, which are unsuitable for addressing
high-dimensional joint optimization problems.

Reinforcement learning (RL) has been an efficient tool to solve optimization problems
with a large number of data. It relies on uncharted exploitation with available samples
for good reward feedback, which has been widely applied in large-scale scenarios [22,23].
Han et al. [24] proposed a State-Action-Reward-State-Action (SARSA) algorithm for power
control to improve throughput. By taking advantage of machine learning, deep RL (DRL)
is more effective for multi-user systems with large action spaces, which speeds the training
process. The deep Q network (DQN) combines deep neural networks with Q-learning to ap-
proximate the value function with the help of maximizing the Q value [25], which has been
deployed in many studies [26–28]. In [26], the authors developed a DQN-based method to
allocate resource blocks in order to reduce the collision ratio and improve the throughput.
Instead of directly using the maximum Q value, the double DQN (DDQN) selects the
action by de-coupling the maximum Q value, which can avoid the overestimation of the Q
value and speed up the convergence. Iqbal et al. [29] designed a DDQN method for power
allocation to minimize the total power consumption. Nevertheless, many optimization
variables, such as power allocation, are continuous in practice and are not applicable to the
DQN and DDQN due to the discrete nature of actions. Furthermore, although the DQN and
DDQN can transform continuous ranges into actions with different discrete granularities,
they are impractical because of the limited granularity. For problems with infinite choices
(e.g., power allocation), continuous action-selection-based algorithms such as the deep
deterministic policy gradient (DDPG) [30] can overcome the disadvantages of discretiza-
tion. Meng et al. [31] customized a DDPG to maximize the sum rate in a downlink cellular
communication system. The authors in [32] optimized the long-term throughput using the
adjusted DDPG extended from the DDPG, which is valid for two absolutely different action
spaces. However, a centralized method such as the above works is feasible but inefficient
and unsuitable for large-scale systems [33]. Multi-agent DRL (MADRL) is an advanced
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RL method that can outperform the single agent in resource allocation, especially in the
multi-cell multi-user system [34,35]. In [36], a joint resource allocation problem is settled by
a MADRL relying on the independent Q-learning method [37]. Similarly, Tian et al. [38]
presented a DDPG-based MADRL method to allocate the channel and power by optimizing
the QoS in vehicular networks.

Though MADRL contributes a great progress in the filed of joint resource allocation,
it still continues to have the following limitations typically: (1) It generally ignoring the
importance of the transition replay in sampling a mini-batch. In the traditional MADRL,
since the complex communication environments usually contain a large amount of infor-
mation, uniform experience replay leads to poor stability and the slow convergence of
neural networks; (2) It weakens the interconnectivity between agents, especially in the
system where the agent plays a direct role with the other agents (for example, an agent
promotes individually and hinders others). Therefore, the traditional MADRL, which uses
a distributed training process to explore solutions, is unsuitable for finding the action char-
acteristics of each agent; and (3) It is not realistic to simplify the channel with a free-space
propagation model, since some test scenarios are neglected in different channel models [39],
including the urban macro-cell (UMa), rural macro0cell (RMa), and rural micro-cell (RMi)
in IMT-2020.

Inspired by the success of DRL and the above research, the joint-priority-based RL
(JPRL) method has been proposed to maximize the average throughput, which considers
the co-channel interference between different cells. Unlike the traditional DRL algorithm
that optimizes multiple variables, we selected different algorithms to optimize variables
according to the problem property and deployed a distributed learning and centralized
training framework. The main contributions of this paper are summarized as follows:

• We proposed a joint bandwidth and power allocation framework based on the JPRL
method to maximize the average throughput of the uplink large-scale system, which
considered the co-channel interference between different cells with the assurance of
the QoS. For the joint optimization problem, since the bandwidth assignment is a
discrete problem, while the power allocation is continuous, we decomposed the joint
problem into two sub-problems and used different algorithms to solve them.

• We proposed a priority experience replay mechanism for power allocation. By ana-
lyzing the characteristics of the optimization sub-problems, the proposed experience
replay mechanism was applied to a multi-agent DDPG (MADDPG), which was named
the prioritized MADDPG (P-MADDPG), which trained valuable experiences to im-
prove the throughput in the training process, thereby surpassing the issue of infinite
power action space.

• The proposed JPRL method is shown in Figure 1. It consists of a multi-agent DDQN
(MADDQN) algorithm and the P-MADDPG algorithm, where MADDQN was de-
veloped to solve the bandwidth assignment sub-problem, and the P-MADDPG was
employed to solve the transmit power allocation. Besides, both the MADDQN and
P-MADDPG used a centralized training framework with a joint action-value function.

The remainder of this paper is organized as follows. Section 2 introduces the system
model and optimization problem. The proposed JPRL method is described in Section 3. Sec-
tion 4 demonstrates the simulation results, and the conclusions are presented in Section 5.
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Figure 1. Joint bandwidth and power allocations scheme.

2. System Model and Problem Formulation

2.1. System Model

Consider a large-scale uplink multi-cell multi-user network, where M single-antenna base
stations (BSs) are collected by the set M = {1, 2, . . . , M} are deployed at the center of M cells,
respectively. Assume that there are N users collecting by the set Lm = {lm,1, lm,2, . . . , lm,N} in
each cell m, where lm,n denotes the index of the n-th user in the m-th BS. The total users
of the considered system are collected by the set K = {1, 2, . . . , K}, where K = MN. The
total bandwidth of the considered system is denoted as W and is divided into three widths,
which are collected by the set B = {Bi} = {15kHz, 30kHz, 60kHz}, where i ∈ {1, 2, 3} [40].
Let Xi = {1, 2, . . . , Xi} denote the set of the sub-bands of the width i of the bandwidth,
where Xi is the total number of allocated bandwidth of width i.

Since users in different cells would occupy the same frequency band when transmitting
their uplink signals, there exists interference between these users. This interference is called
co-channel interference [41]. In this paper, each cell occupies the same frequency band and
serves the same number of users N. For each user lm,n, some users in the neighboring cells
can cause co-channel interference. In other words, users in the same cell can use different
frequency band sub-carriers, and, thus, each user is subject to co-channel interference from
users in other cells. Let M′ = {lm′ ,n|m′ ∈ M, m′ �= m} denote the set of interfering users.
Thus, these users from different cells belonging to the set M′ will interfere with user lm,n.
The channel gain between user lm′ ,n and BS m at the slot t is represented by the following:

g(dlm′ ,n ,m) = hlm′ ,n [β(dlm′ ,n ,m)]
1
2 , where β(dlm′ ,n ,m) = 10

PLlm′ ,n
+σβzβ

10 is the large scale fading
corresponding to the distance dlm′ ,n ,m between user lm′ ,n, BS m , PLlm′ ,n is the path loss
of user lm′ ,n, σβ is the standard deviation of shadow fading, zβ ∼ N (0, 1) is a Gaussian
random variable, and hlm′ ,n ∼ CN (0, σ2

h ) is the small-scale fading with variance σ2
h . Then,

the power of co-channel interference on user lm,n is expressed as follows:

Ilm,n = ∑
m′∈M′

g
(

dlm′ ,n ,m, t
)

plm′ ,n , (1)

where plm′ ,n denotes the transmit power for user lm′ ,n.
The signal ylm,n received by BS m from user lm,n can be written as

yln,m = xln,m + Ilm,n + nlm,n , (2)

where xlm,n = blm,n |g
(
dlm,n ,m, t

)|plm,n denotes the transmitted signal by user lm,n, blm,n is the

transmitted symbol from user lm,n to BS m, and n0 ∼ CN
(

0, σ2
lm,n

)
is the additive white
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complex Gaussian noise. As a result, the received signal-to-interference-plus-noise ratio
(SINR) at BS m of user lm,n is given by

ξlm,n

(
plm,n , Bi,lm,n

)
=

plm,n g(dlm,n ,m, t)

σ2
lm,n

+ Ilm,n

, (3)

where σ2
lm,n

= n f Bi,lm,n indicates the variance of the Gaussian white noise, and n f is the
power spectral density of noise. plm,n is the power vector that includes the power of user
lm,n and its interfering users, and Bi,lm,n is the i-th width of the bandwidth allocated to the
user lm,n. Then, by considering the normalized rate [42], the achievable throughput of user
lm,n at BS m is

THlm,n = log2
(
1 + ξlm,n

(
plm,n , Bi,lm,n

))
. (4)

2.2. Problem Formulation

This paper mainly focuses on maximizing the average throughput of the considered
large-scale multi-cell multi-user system subject to QoS of all users by jointly optimizing the
transmit power and bandwidth allocation of all the users. Denote the average throughput
of all the users by TH; then, the joint resource allocation problem is formulated as follows:

P1 : max
plm,n ,Bi,lm,n

TH � 1
K

M

∑
m=1

N

∑
n=1

THlm,n

s.t. C1 : Pmin ≤ plm,n ≤ Pmax, ∀lm,n ∈ Lm, m ∈ M,

C2 :
3

∑
i=1

BiXi ≤ W,

C3 : THlm,n ≥ THth, ∀lm,n ∈ Lm, m ∈ M,

(5)

where Pmin and Pmax are the minimum and maximum transmit power of each user, re-
spectively. Constraint C1 limits the transmit power budget per user; C2 indicates that the
allocated bandwidth cannot exceed the total bandwidth of the system; and C3 ensures the
QoS of each user. THth denotes the required minimum throughput. Note that plm,n and
Bi,lm,n are the decision variables associated with user lm,n, where plm,n is the allocated power
of the user lm,n, and Bi,lm,n denotes the bandwidth assigned to the user lm,n of width i. This
paper aims at obtaining better throughput by jointly optimizing the two variables.

Problem P1 is non-convex; it is difficult to solve using traditional methods due to the
high computational complexity. Furthermore, owing to the intricacy of the co-channel
interference relationship in large-scale systems and the interaction between users in differ-
ent cells, it is challenging to find the effective solution for joint transmission power and
bandwidth allocation directly. To tackle these challenges, we proposed the JPRL method,
which is excellent for the multi-cell multi-user system. In the proposed method, the MAD-
DQN algorithm was used to allocate the bandwidth, and the P-MADDPG algorithm was
developed to optimize the transmit power.

3. JPRL-Based Joint Resource Allocation Approach

The detailed structure of the joint uplink bandwidth and transmit power allocation
is shown in Figure 2. Joint resource allocation often optimizes multiple variables consis-
tently. However, for the problem of the joint allocation of the bandwidth and transmit
power, there exist infinite combinations of joint assignment schemes that are influenced
by the users interactions, thereby leading to unfortunate performance. In addition, the
bandwidth assignment with limited choices is a discrete assignment scheme, rather than
the continuous range such as for the power allocation. Thus, we de-coupled problem P1
into two sub-problems and designed an efficient JPRL method to solve the joint resource
allocation problem in the considered large-scale multi-cell multi-user system. Specifically,
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the MADDQN algorithm was developed to solve the bandwidth allocation sub-problem
with a discrete action space, and the P-MADDPG algorithm was designed to solve the
transmit power allocation subproblem in the continuous domain. This resource assign-
ment procedure satisfies the decentralized partially observable Markov decision process.
Therefore, the proposed JPRL based on the RL method employed each user as an agent to
model the optimization, which could solve large-scale resource allocation while meeting
QoS constraints.

The RL can be described as a stochastic game, which is defined by a tuple 〈K,S ,A, R, P〉,
where K is the set of agents, and S and A denote the set of states and the joint actions the
space of all agents, respectively. The R is the reward function, and P is the state transition
probability. The game is generally concerned with the interaction between the environment
and one or more agents in a series of iterations. In each iteration, the agent observes the
environmental state S to take action from action space A. Thenm the agent receives an
immediate reward Rt to reflect the quality of this iteration and observes a new state to the
next step. Our goal was to maximize of the long-term rewards over various iterations. The
details of the proposed framework are illustrated as follows.

• Agent: All users K.
• State space: The state sk(t) of agent k is denoted as its co-channel interference, and the

global environment state is thus defined as a set including the state of all agents, i.e.,

St = {s1(t), . . . , sk(t), . . . , sK(t)},

= {Il1,1(t), . . . , Il1,n(t), . . . , IlM,N (t)}.
(6)

• Actions space: The actions of each agent consist of the bandwidth and power allocation
and can be expressed as

At = {
(

ab
1(t), ap

1 (t)
)

, . . . ,
(

ab
K(t), ap

K(t)
)
}, (7)

where Ab
t = {ab

1(t), . . . , ab
K(t)} is defined as the bandwidth allocation, and Ap

t =

{ap
1 (t), . . . , ap

K(t)} is defined as the power allocation of all agents.
• Reward function: Since the whole performance is influenced by all users in the

considered system, the sparse reward is a serious issue. Inspired by the entire long-
term evaluation mechanism, in the learning process, previous lessons are indicative of
the current learning. Therefore, a novel reward function is defined as

Rt = THt − T̃Ht,τ − c, (8)

where THt denotes the average throughput of the current step t, τ denotes the moving
step, and T̃Ht,τ = 1

τ ∑τ
τ=1

(
THt−τ+1

)
is the moving average of THt. c is a non-

negative value. Especially, c = 0 if constraint C3 of Problem P1 is satisfied for all users;
otherwise, c > 0. Unlike the typical reward functions that evaluate the single-step
target by setting a threshold, the proposed reward function employs a long short-term
criterion that varies autonomously as the performance over time, which allows agents
to perform more stable exploration in the multi-cell multi-user system.

In the proposed JPRL method, we developed a distributed learning and centralized
training framework, as shown in Figure 3, which promised to explore the entire action
space fully and encourage each agent to leverage the experience of other agents. Specifi-
cally, all agents are guided by the harmonized loss feedback value of the MADDQN and
P-MADDPG when learning the bandwidth and power individually. The details of the
proposed JPRL method are given as follows, its structure is illustrated in Algorithm 1, and
the flow chart is shown in Figure 4. In the learning phase, the state of each agent is input
into the the MADDQN and P-MADDPG algorithms synchronously, and then each agent
individually performs the bandwidth allocation and power allocation actions. Based on
the actions, rewards and new states are generated and stored in the replay buffers of the
two algorithms. Note that the reward is calculated by Equation (8), which corresponds to
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all actions of the bandwidth and power. In the training phase, the values in the buffer are
randomly selected to compute correlation values to guide the intelligence in the direction
of increasing throughput. The details are described as follows.
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Figure 2. System model of the JPRL-based bandwidth and power allocations.

Figure 3. Framework of centralized training.
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Figure 4. Flow chart of the JPRL method.

3.1. Bandwidth Allocation of MADDQN

Bandwidth allocation is a non-convex problem with discrete space; there are finite
choices. The size of the action space grows exponentially with the number of users.
Therefore, a MADDQN algorithm with centralized training was presented to achieve
sufficient exploration of the actions, which had good performance in large-scale discrete
action spaces.

A MADDQN model consists of a target Q network and an evaluated Q network, which
creates a copy of neural network for the two networks, respectively. For multiple agents, an
arbitrary agent taking actions to improve its performance could lead to the degradation of
the overall performance as the agents are interacting with each other. Therefore, the effect
of mutual synergy between agents cannot be ignored. A centralized training architecture, to
this end, denotes a joint action-state function Qb

sum that composes the action-state functions
from different agents to promote cooperation between agents. The concrete formula is
defined as

Qb
sum

(
St,Ab

t

)
=

K

∑
k=1

Qb
k(sk(t), ab

k(t) | ω), (9)

where ω is the parameter of the evaluated Q network. Qb
k is the k-th user’s action-state

function based on its own state. In the training phase, the joint action-state function is
used for back propagation to promote cooperation, and a mini-batch sample is randomly
sampled from the replay memory D1 that stores the states, actions, next states, and rewards
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of all the agents (note that all the agents have the same reward value) to minimize the loss
function, which is written as

L = E

(St ,Ab
t ,St+1,Rt)∼D1

[
(

Yt − Qb
sum

(
St,Ab

t | ω
))2

], (10)

where E[•] denotes the mathematical expectation and

Yt = Rt + γ1argmax
A

Qb
sum

(
St+1,Ab

t+1 | ω
)

; (11)

γ1 is the discount ratio. For each agent, the soft updating is given by

ω′ ←− ηω + (1 − η)ω′, η ∈ (0, 1), (12)

where ω′ are the parameters (including the weights and biases) of target Q network.
In the multi-cell multi-user system, the MADDQN model of agent k chooses the

bandwidth assignment action according to its own state sk(t) in step t. Note that the agents
can share their past training process (state, the influence based on training). Then, all the
agents are centralized trained to minimize the loss value by Qb

sum.

3.2. P-MADDPG-Based Uplink Power Allocation

For power allocation, a huge action space is not helpful for exploitation. In addition,
although the discrete DRL algorithms can quantize power, they ignore the diversity of
power choices. To this end, a novel P-MADDPG algorithm was proposed to solve the
transmit power allocation subproblem. This is an enhancement of the DDPG with a priori-
tized replay buffer. In contrast to the power quantization, the P-MADDPG directly outputs
the power of all the users in a continuous domain with infinite choices. Furthermore, by
applying the prioritized replay buffer, it is more sensitive to the negative effect of the bad
actions than the general MADDPG algorithms.

Similar to DDPG, an actor-critic architecture [43] applies for learning and training;
both the actor and critic networks of each agent contain two identical neural networks,
which are named the online network and target network, respectively. For a multi-agent
system, the actor network of agent k outputs the power allocation under the current state
through a policy π, i.e., ap

k (t) = π(sk(t)). However, the inherent exploration–exploitation
dilemma in the DRL is prevalent for an inflexible action policy. By taking advantage of
the DQN, it is balanced by a stochastic noise whose function is similar to the ε − greedy
mechanism. Consequently, the actions of all agents are written as

Ap
t = [π(St | ωμ) + Σt]

Pmax
Pmin

, (13)

where ωu is the weight of the actor network, and Σt follows a Gaussian distribution N (0, �);
� is the variance of Gaussian noise and decreases linearly to zero as the iteration proceeds.
Similarly, applying the individual action-value function to each agent ignores the features
of others, which reduces the learning stability and weakens agent interaction. To this end,
the critic network uses the joint action-value function Qp

sum(St,At) to evaluate all actions.
The specific Qp

sum is defined as

Qp
sum(St,At) = ERt ,St∼D2[Rt + γ2Qp

sum(St+1, π(St+1))], (14)

where D2 is the experience replay buffer, and γ2 ∈ (0, 1] is a discount factor. According to
the deterministic policy gradient theorem, the action-value function Qp

sum is used to update
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the actor parameters ωμ in the direction of increasing the cumulative discounted reward
with D samples of a mini-batch, that is

∇ωμ π ≈Eπ′ [∇ωμ Qp
sum(S ,A | ωQ) |S=St ,A=π(St |ωμ)],

=Eπ′ [∇ωμ Qp
sum(S ,A | ωQ) |S=St ,A=π(St) ∇ωμ π(S | ωμ) |S=St ],

=
1
D ∑

k
∇ap

k (t)
Qp

sum

(
St,Ap

t | ωQ
)
|∇ωμ π(sk(t) | ωμ)|sk(t),

(15)

where ωQ is the weight of critic network.
A common method for training neural networks is to randomly and uniformly sample

mini-batches from the buffer D2, which often results in a high probability of selecting
bad actions among the vast combinations of different actions, thereby lowering perfor-
mance. This method is inefficient and poorly helpful for guiding the networks to update
in the correct direction. Considering the transition samples of all agents, we designed the
P-MADDPG algorithm to enhance the MADDPG by customizing a prioritized experience
replay technique, where the more important transition samples have a higher probability of
being replayed to participate in network updating. Specifically, in each step t, the transition
samples of all agents are measured by the corresponding importance denoted by Vt, which
is combined with St, Ap

t , Rt, and St+1 to form a tuple
(
St,Ap

t , Rt,St+1, Vt

)
being stored

in D2. Similar to the MADDQN, the goal of P-MADDPG updating is to minimize the
magnitude between the joint Q-value and target joint Q-value, i.e., joint temporal-difference
(JTD) error. The transitions with the large JTD error contain more information and are
more necessary to the update of neural networks. Thus, the JTD error is a reasonable proxy
measure of important value, and Vt is written as

Vt = |Yt − Qp
sum

(
St,Ap

t | ωQ
)
|. (16)

However, in the sampling process, initially stored transition samples with small JTDs
may not be sampled to replay if the sampling only relies on the importance. This can result
in over-fitting, since the system lacks the sampling diversity of transitions. To avoid the
issue, a probability associated with the importance is assigned to each transition sample,
which can overcome the above issues effectively. The probability of the arbitrary transition
sample ϕ at the step t is expressed as

Pϕ
t =

(
Vϕ

t

)α

(
∑
|D2|
ϕ=1(V

ϕ
t )
)α , (17)

where α ∈ [0, 1] is a contribution factor that controls the impact of importance. In particular,
α = 0 means that all samples are equally distributed, i.e., no contribution is made according
to importance (uniform sampling). Original samples are equally probability-distributed in
the replay buffer, but prioritized experience replay introduces bias, since it changes the orig-
inal distribution by assigning different probabilities to the transitions. The compensation
weight is thus introduced to correct this bias, which is expressed as

λ
ϕ
t =

(
1
D

1
Pϕ

t

)β

, (18)

where β ∈ [0, 1] is a hyperparameter, which regulates the degree of bias compensation.
In particular, there is no compensation for non-uniform probabilities Pϕ

t if β = 0; there
ispartial compensation if 0 < β < 1; and thre is full compensation if β = 1. As a result, The
loss of a mini-batch ϕ after weight compensation is rewritten as

203



Sensors 2023, 23, 6822

L = E

(St ,Ap
t ,St+1,Rt ,V

ϕ
t )∼D2

[
λ

ϕ
t

(
Vϕ

t

)2
]

. (19)

Algorithm 1 JPRL methodfor joint bandwidth and power allocation

Initialize:
Initialize the network parameters in MADDQN and P-MADDPG respectively, ω, ωQ;
Initialize the replay buffer D1 and the prioritized replay buffer D2, |D1|, |D2|;
Initialize a sum tree for D2, α, β.

Excute:
1: for episode i = 1, · · · , I do
2: Receive initial observation state of all agents K, and input sk(t) to agent k.
3: Initialize the actions of all agents.
4: for step t = 1, · · · , Ti do
5: for agent k = 1, · · · , K do
6: if random number ζ < εt then
7: Randomly choose ab

k(t) from bandwidth allocation action space.
8: else
9: ab

k(t) = argmaxab
k(t)

Qb
k

(
sk(t), ab

k(t) | ω
)

.
10: end if
11: Choose power allocation ap

k (t) = [π(sk(t) + σt)]
Pmax
Pmin

.
12: Execute actions ab

k(t), ap
k (t) and observe next state sk(t + 1).

13: end for
14: Calculate reward with all agents’ actions by Equation (8).
15: Store transition with bandwidth allocation

(
St,Ab

t ,St+1, Rt

)
in D1.

16: Store transition ϕ with power allocation
(
St,Ap

t ,St+1, Rt, Vϕ
t

)
in D2.

17: if Both D1 and D2 are full then
18: Sample a mini-batch of transition from D1.
19: Sample a mini-batch of transition from D2 according to sample importance.
20: Compute the action-value function of MADDQN and P-MADDPQ according to

Equations (9) and (14), respectively.
21: Update evaluated Q network of MADDQN by Equation (10).
22: Update actor online network by Equation (15).
23: Update critic online network by Equation (19).
24: Update the MADDQN and P-MADDPG networks by soft updating.
25: end if
26: end for
27: end for

For a mini-batch with D samples, directly traversing the experience buffer D2 for
sampling requires D times, and the complexity is intolerable. To tackle this matter, a sum-
tree frame is designed for D2, where the sample ϕ is stored with the sampling probability
Pϕ

t . As shown in Figure 2, the structure is a binary tree with a root node at the top, and
there are only two child nodes for each node of the upper level. For the leaf nodes at
the bottom, the tuple

(
St,Ap

t , Rt,St+1, Vϕ
t

)
of transition ϕ is stored with its probability

according to Equation (16). Note that the value of each node is the sum of its child nodes’
value. We divided the value of the root node (the sum of the probabilities of all samples)
into D segments, which have an equal interval. In each interval, a random value, which
is no more than the range of the interval generated to backtrack the leaf node from top to
bottom. The specific backtracking rules are listed as follows, until the leaf node is selected,
if the random value is less than or equal to the value of the left child node, and we continue
backtracking from left child node; otherwise, we continue backtracking from the right child
node and calculates the difference between this value and the value of the left child node
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as the basis for the next backtracking. Then, the critic and actor networks are updated by
the selected transition samples. The proposed JPRL method is summarized in Algorithm 1.

3.3. Time Analysis of the Proposed JPRL Method

We analyzed the time complexity of our proposed JPRL method. In Algorithm 1,
let I be the total number of training episodes and Ti be the training steps in the episode
i. Therefore, the total amount of training iterations implies the time complexity, that is
O
(

∑I
i=1 iTi

)
. For each iteration, the computational efficiency is subjected to the the size of

the neural network, i.e., the number of parameters. According to [44], the time complexity
for a fully connected layer is O

(
∑L

l=1 clcl−1

)
, where l is the fully connected layer and cl

denotes the number of neural units in layer l. In the JPRL method, each agent utilizes two al-
gorithms to output the bandwidth and power actions. Note that the two algorithms are run

simultaneously. Thus, the time complexity is c = O
(

max

(
∑L

l=1
{MADDQN,P−MADDPG}

clcl−1

))
.

The total time complexity of the JRPL method is O
(

c ∑I
i=1 iTi

)
.

4. Simulations

In this section, we evaluate the performance of the proposed JPRL method. First of all,
the simulation setup is portrayed. Then, the experience results are discussed in terms of the
convergence, learning rate analysis, and performance comparison. Lastly, the performance
of our proposed method compared to different models is exhibited.

4.1. Setup

Parameter Setting of Environment: We set the location of seven base stations in the
cell center, and four users wererandomly distributed in each cell. The uplink user power
was limited to Pmin = −40 dBm and Pmax = 23 dBm [40]. The total bandwidth of the
system was W = 20 MHz. The minimum throughput requirement of all the users was
THth = 0.15 bit/s, and the power spectral density n f was −174 dBm/Hz.

The size of the cells and channel model change according to different scenarios [39],
which are referenced from the test scenior in the 3GPP protocol, such as UMa, RMa, RMi. By
default, the outsider scenario of the non-line-of-sight of the RMa was selected to evaluate
the proposed method. The RMa stipulates the radius of cell r, and the pathloss is defined as

PLlm,n = max
(

PLlm,n ,1, PLlm,n ,2
)
, (20)

where PLlm,n ,1 and PLlm,n ,2 denote the line-of-sight and non-line-of-sight pathloss, respec-
tively, which are written as

PLlm,n ,1 =

{
PLlm,n ,11, 10 m < dh < dBP,
PLlm,n ,12, dBP < dh < 5 km,

(21)

where
PLlm,n ,11 = min(0.03hε

b , 10) lg(ds)− min(0.044hε
b , 14.77)

+ 0.002 lg(hb )ds + 20 lg(40πds fc),
(22)

PLlm,n ,12 = PLlm,n ,11 + 40 lg(
ds

2πha1ha2 fc/v
), (23)

and

PLlm,n ,2 = 161.4 − 7.11 lg(lw) + 7.5 lg(hb)−
(

24.37 − 3.7
h2

b
h2

a1

)
lg(ha1)

+ (43.42 − 3.1 lg(ha1))(lg ds − 3) + 20 lg( fc)− 10.24(lg(11.75ha2))
2 + 4.97.

(24)
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Here, ds =
√

d2
h + (ha1 − ha2)

2 and dh = dlm,n ,m denote the straight distance and
horizontal distance between BS and user respectively, where ha1 and ha2 are the heights of
the antenna in the BS and user, respectively. hb is the building height, lw is the average width
of the road, and ε is the excitation factor. For the long distance line-of-light pathloss PLlm,n ,12,
fc is the central frequency, and v denotes the propagation velocity. These parameter settings
are listed in Table 1. In this paper, the five benchmarks were considered:

(1) DDQN and DDPG: The existing DDQN for bandwidth assignment and the DDPG
for allocating the power. The architecture with a one-layer fully connected network
was used in the DDQN, and the DDPG deployed two-layer fully connected networks
in the actor and critic networks. Both of them adopted the uniform sampling-based
experience replay.

(2) DDQN andP-DDPG: The settings were the same as (1), except that the DDPG used
the prioritized experience replay.

(3) MADDQN and MADDPG(ct): We treated each user as an agent and deployed the
DDQN and DDPG on each agent. Centralized training was adopted.

(4) MADDQN and MADDPG(dt): The MADDQN and MADDPG with distributed train-
ing. Note that each agents had the exclusive reward and loss.

(5) Genetic algorithm (GA): The GA framework in the DEAP was used to realize this
benchmark [45]. The bandwidth and power allocation schemes were encoded into the
chromosome of each individual, which is the action sequence about the bandwidth
and power allocation of all the users. We set the population size to 200. The crossover
rate and mutation rate were set as 0.8 and 0.05, respectively.

Note that the GA depends on the fitness rather than the learning-based reward; thus it is
appropriate to compare the results after final convergence instead of comparing the entire
optimization process with the learning-based approach.

Table 1. Environmental parameters.

Parameters Values Description

M 7 The number of cells
N 4 The number of users per cell
Pmin −40 dBm The minimum transmitting power
Pmax 23 dBm The maximum transmitting power
W 2 GHz The total bandwidth
THth 0.15 bit/s The minimum throughput constraint
n f −174 dBm/Hz The power spectral density of noise
r 866 m The radius of cells
hb 10 m The average height of building
ha1 10 m The antenna height of BS
ha2 1.5 m The antenna height of user
ε 1.72 Excitation factor
fc 1 GHz The center frequency
v 3 × 108 m/s The propagation velocity
lw 20 m The average road width

Hyperparameter Setting of JPRL: The JPRL method contains an MADDQN algorithm
and a P-MADDPG algorithm. There are the same size of the experience buffer for the
two algorithms, which are set to |D1| = |D2| = 10000. The learning rate, including
the MADDQN, actor network, and critic network of the P-MADDPG was set as 0.0001.
Furthermore, we set the hyperparameters of the prioritized replay buffer in the P-MADDPG
D2 as α = 1 and β = 0.1. In the training phase, both the MADDQN and P-MADDPG
used the Adam optimizer to optimize the loss function. The sampling batch size was
D = 128, and the reward discount factor was γ1 = γ2 = 0.89. The system began to
train the neural network when the memory buffer was full, and it updated the neural
parameters at one-step frequency after training. Besides, we set the number of episodes

206



Sensors 2023, 23, 6822

to I = 500. Note that every episode did not have fixed steps. To determine whether an
episode was completed, a done flag was designed, where the done flag was true if the
reward R increased by 200 steps; otherwise, it was false (the learning of this episode was
not finished). the other parameters of each neural network are listed in Table 2.

All experiences were operated by a computer with the 12-th Gen Intel(R) Core(TM)
i7-12700F @2.10 GHz, 16-GB RAM. The simulation results were presented using Numpy
1.21.5 and Tensorflow 2.3.0 on the Python 3.6 platform.

Table 2. Network parameters.

Network Neural Units Activation Optimizer

MADDQN 64 sigmoid Adam Optimizer
Actor Network of P-MADDPG 32, 16 tanh Adam Optimizer
Critic Network of P-MADDPG 32, 16 ReLu Adam Optimizer

4.2. Results

The setting of the learning rate has a profound impact on the learning of the distri-
bution scheme of the proposed method, which determines the ability to explore action
space. Specifically, higher learning rates are detrimental to the exploration of the action
space, as well as to the updating of network parameters in large systems with large action
spaces. Moreover, in large systems with large action spaces, a lower learning rate implies
finer-grained exploration, which does not mean that better actions can be explored, since
having more actions in a large action space degrades performance. Thus, it is necessary
to study the setting of the learning rate in a multi-cell multi-user system. Firstly, Figure 5
compares the loss values of the multiple networks under different learning rates. In order
to view the variation and performance clearly, the loss values within the first 3000 steps
after training are given. Figure 5a–c imply an interaction between the MADDQN and
P-MADDPG in the proposed method. It is worth noting that the curve values in Figure 5b
show a clear loss reduction in the P-MADDPG with a lower learning rate. It reveals the fact
that the MADDQN exploring bandwidth influenced the P-MADDPG training. However,
as shown in Figure 5c, a decrease in loss value did not signify an increase in throughput,
and it may have also been trapped in sub-optimality. As a result, we set the learning rate of
the MADDQN to 0.0001 to achieve a high throughput and fast convergence speed of the
P-MADDPG.

Figure 6 illustrates the loss values and throughput of the actor and critic networks
in the P-MADDPG at different learning rates. For the learning rates of the actor network,
the proposed JPRL achieved the best in terms of the loss value and throughput whenthe
learning rate was 0.0001. The loss curves of the MADDQN in Figure 6a show a slight
increase after 1000 steps, and a similar trend appears in Figure 6d. The reason is that the
power actions selected from the P-MADDPG affected the training process of the MADDQN.
As shown in Figure 6b,c, it is noticed that, the smaller the learning rate, the better the
performance, since the larger learning rate may skip various actions within the infinite
action space. Finally, from Figure 6d–f, in the large action spaces, the critic network with a
higher learning rate converged faster but converged to a worse value. The reason is that a
larger learning rate of the critic network implies a more coarse-grained exploration, which
is prone to learning sub-optimality. As a result, when the learning rate of the actor and
critic networks were set to 0.0001, our method could jump out of the local optimal.
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Figure 5. The loss value and throughput under different learning rates of MADDQN. The learning
rates of both actor networks and critic networks of P-MADDPG are set to 0.0001, and the loss value
was extracted at 3000 steps after the beginning of network training. (a) MADDQN loss function value.
(b) P-MADDPG loss function value. (c) Average throughput.
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Figure 6. The loss function value and throughput of the two networks of P-MADDPG under different
learning rates. (a–c) show the effect of variable learning rates on actor network, and (d–f) are the
exhibitions within the changing learning rates of critic network. Note that the learning rates of other
networks were set as default when a network varied in learning rate.

With respect to recording the reward for every 200 steps, Figure 7 plots the reward
values of the proposed method and benchmarks; the benchmarks included the DDQN and
DDPG, DDQN and P-DDPG, MADDQN and MADDPG based on the centralized training
(ct) and decentralized training (dt). In the process of early random exploration (before the
buffers are full), rewards decrease to negative values. The reason is that there are users
whose throughput does not meet the QoS requirement. As the system begins to train, all
five curves have a sharp augment. After a period of training, the moving average of the
average throughput T̃Ht,τ will be close to the average throughput THt, e.g., the reward
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is close to 0, which indicates that the methods fall into a local optimal or converge to an
optimal. It is seen that the curve of the MADDQN and MADDPG(dt) swung more than that
of the MADDQN and MADDPG(ct). As a result, Figure 7 indicates that the JPRL method
has an excellent ability to jump out of sub-optimal conditions and obtain good feedback.
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Figure 7. Reward comparison of different methods as the number of steps increased.

Figure 8 illustrates the average throughput of the different methods after 500 episodes.
In the random exploration stage, the throughput is unstable and relatively small because of
the impacts of Gaussian noise and the randomly selected actions. All methods are prone to
get stuck in the local optimum during the learning process, and there is a small fluctuation
for the average throughput because of the existence of the Gaussian noise. Since a small
change in power of any user may cause a large variation for co-channel interference, the
benchmarks fall into the local optimum easily and are difficult to jump out of it. We can
also see that the joint method MADDQN and MADDPG(dt) was extremely unstable, since
the distributed training favored the individual performance of the agent at the expense of
the overall performance. In other words, an agent, which follows its own wishes while
neglecting the other characteristics for increasing power, will increase interference and
decrease throughput. It was observed that the proposed JPRL outperformed the other
methods in terms of throughput, since it explored the action spaces fully.
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Figure 8. Average throughput comparison of different methods as the number of episodes increased.
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Figure 9 depicts a comparison of the average throughput for the six methods versus
the cell number M. It should be observed that the average throughput decreased as the
number of cells M increased. This is because fewer cells mean less interference from users
lm,n, which leads to a lower amount of co-channel interference. Obviously, it can be seen
that the RL-based approach was far superior to the GA, which is because the GA fell into
the local optimum easily. We also see that the proposed JPRL had a steeper curve than
the others, since it had better exploration in the small action spaces as cells decreased.
Therefore, the JPRL method could achieve the high throughput.

As shown in Figure 10, we further tested the average throughput of the proposed JPRL
under some different channel models, including the RMa, RMi, and UMa. The average
throughput of the users for the urban environment (UMa model) is generally less than that
of the users in rural scenarios (RMa and RMi models). This is because severe interference is
caused by a lot of users in a small range. It can be seen that the JPRL method is universally
applicable to different environments.
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Figure 9. Comparison of average throughput for the different methods versus the number of cells.

0 100 200 300 400 500
Episodes

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Av
er

ag
e 

Th
ro

ug
hp

ut
(b

it/
s)

RMa
RMi
UMa

Figure 10. Comparison of average throughput for the different channel models versus the number
of episodes.

210



Sensors 2023, 23, 6822

5. Conclusions

This paper mainly studied the resource allocation to maximize the throughput by
jointly optimizing the bandwidth assignment and power allocation subject to the QoS
constraint for the multi-cell multi-user uplink system. According to the variable attributes
of the joint resource allocation problem, we proposed a JPRL method to decouple the
optimization problem into two sub-problems, where the MADDQN was used to allocate
bandwidth, and the P-MADDPG assigned uplink power with the given importance of
transition. In order to compare the loss value and learning performance of the different
networks with various learning rates, we set the appropriate parameters for the proposed
JPRL method and analyzed the impact of the different learning rates. Furthermore, we
evaluated the reward value and throughput of the proposed JPRL method against other
existing methods. the simulation results showed that our approach can (1) obtain a better
performance and be more applicable to the complex environments than other alternative
methods (e.g., the average throughput was approximately 10.4–15.5% better than the
average throughput of the benchmarks.) and (2) be universally applicable to other large-
scale scenarios.

It is worth noting that, for simplicity, the single antenna system was used in this
work. As for multi-antenna systems such as MIMO, the impact of more complex channel
matrices caused by multiple antennas on user interference needs to be considered. In
future work, the multiple antennas, the users’ trajectory, and cloud computing will be
taken into consideration in multi-cell systems to facilitate communication–computing
integration. By considering the interference corresponding to the complex channel matrix,
the optimization is relevant to the compromised performance of the computing delay
and energy consumption, which is based on the resource allocation and task offloading
under various constraints, such as QoS constraints and offloading decisions. Moreover,
multi-dimensional and deep analysis will be researched to validate the system tradeoff.
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Abstract: In the 6G aerial network, all aerial communication nodes have computing and storage
functions and can perform real-time wireless signal processing and resource management. In order
to make full use of the computing resources of aerial nodes, this paper studies the mobile edge com-
puting (MEC) system based on aerial base stations (AeBSs), proposes the joint optimization problem
of computation the offloading and deployment control of AeBSs for the goals of the lowest task
processing delay and energy consumption, and designs a deployment and computation offloading
scheme based on federated deep reinforcement learning. Specifically, each low-altitude AeBS agent
simultaneously trains two neural networks to handle the generation of the deployment and offload-
ing strategies, respectively, and a high-altitude global node aggregates the local model parameters
uploaded by each low-altitude platform. The agents can be trained offline and updated quickly online
according to changes in the environment and can quickly generate the optimal deployment and
offloading strategies. The simulation results show that our method can achieve good performance in
a very short time.

Keywords: aerial network; mobile edge computing; 6G; computation offloading

1. Introduction

Due to the explosive development of various intelligent applications in the 6G era,
user’s demand for computing and communication is expected to increase dramatically. To
meet this challenge, mobile edge computing (MEC) is considered as an efficient paradigm,
which can improve network computing capability and user experience [1]. At the same
time, the aerial network based on new mobile communication systems such as high-altitude
platforms (HAPs) is considered as a potential architecture for 6G and has aroused much
attention recently. The aerial network acts as a supplement and extension of the terrestrial
mobile communication network to provide collaborative and efficient information services
for various network applications in a wide spatial area [2]. The aerial network primarily
consists of low-altitude platforms and high-altitude platforms and plays a key role in
enhancing coverage, enabling edge services, and enabling flexible network reconfiguration.
Communication, computing, caching, sensing, and navigation services will be possible on
a global scale through the fusion of aerial networks and edge computing [3].

Nevertheless, there are numerous obstacles to integrating aerial networks with MEC
systems. A classic MEC system typically deploys edge servers using the ground infras-
tructure. The aerial base station (AeBS) can be formed by carrying the MEC server and
other communication equipment on the aerial platform. An aerial edge computing node
differs from its terrestrial counterpart, since it is capable of flexibly adjusting its deployment
position to achieve better communication conditions [4]. The traditional offloading strategy
for terrestrial MEC networks may not be appropriate for aerial edge computing. In addition,
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in order to extend the coverage or increase the number of users served, a single AeBS is not
feasible and multiple AeBSs can be cooperatively deployed to complete the task [5]. How
to coordinate the deployment of multiple AeBSs is also a critical issue. On the other hand,
although the flexibility of AeBSs brings a higher degree of freedom to the deployment
design of MEC nodes, they often suffer from resource and energy constraints. Therefore,
how to make the AeBSs better provide communication and computing services under the
condition of limited resources is also a problem that needs to be solved [1].

Edge computing and deep learning can naturally be combined with each other. On the
one hand, they complement each other technically [6]. Some recent work has focused
on the generalization problem of deep neural network (DNN) models [7] or designing
resource-friendly models [8,9] to help the DNN model be better applied in actual edge
deployment scenarios. On the other hand, their application and popularization are mu-
tually beneficial. The combination of the two technologies has promoted a wide range
of intelligent applications, from face recognition [10] and drone navigation [11] to the
Industrial Internet of Things [12]. Deep learning has strong perception and expression
ability, while reinforcement learning has decision-making ability. Deep reinforcement learn-
ing (DRL), which introduces deep neural networks in deep learning into reinforcement
learning, holds promise for generating network optimization decisions in complex and
dynamic environments.

Traditional single-agent DRL approaches usually follow a centralized paradigm, per-
forming poorly in scalability and flexibility due to their large state space and action
space [13]. Recently, researchers have discovered that multi-agent deep reinforcement
learning (MADRL), which handles modeling and computation in a distributed manner,
can obtain better performance in solving multi-AeBS cooperation tasks [14]. However,
in MADRL, agents need to interact with each other to exchange state and action informa-
tion in order to maintain the stability of the environment. In practical situations, frequent
communication between AeBSs will consume the communication resources of AeBSs and
increase the complexity of the optimization problem. As a distributed training framework,
federated learning can simplify the model and improve the convergence speed in large-scale
MADRL models. The benefits of applying federated learning to MADRL can be mainly
summarized as follows: (1) federated learning avoids direct data leakage and, thus, can
protect data privacy [15,16], (2) federated learning can make DRL models converge quickly,
so it performs well in some scenarios sensitive to model training time [17], (3) incorporating
federated learning into DRL can improve system scalability [18], (4) federated learning can
also address the data island problem [16,18].

In this paper, we focus on the joint optimization of a mobile device (MD) offload-
ing scheme and AeBS deployment to fully utilize the resources of AeBSs. Considering
the dynamic nature of communication networks and computational tasks, we propose a
federated DRL-based scheme that simultaneously addresses AeBS deployment and MD
computational offloading. The contributions of our work can be concluded as:

1. A federated DRL algorithm was designed to jointly optimize the AeBSs’ deploy-
ment and computation offloading to achieve lower energy consumption and task
processing delay.

2. A new training mechanism is presented in the aerial edge computing network where
low-altitude AeBSs are controlled by their own agents and cooperate in a distributed
manner, and an HAP acts as a global node for model aggregation to improve the
training efficiency.

3. Two neural networks trained together were set up for each agent to deploy the AeBSs
and generate the computation offloading policies, respectively.

The content of this paper is organized as follows. Section 2 introduces some related
work. Section 3 shows the system model of the aerial edge computing network and analyzes
the joint deployment and offloading optimization problem that needs to be addressed.
Section 4 describes the detailed flow and architecture of our proposed federated deployment
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and computational offloading (FedDCO) algorithm. Section 5 presents the results and
analysis of our simulation for FedDCO. Section 6 is a summary of the full paper.

2. Related Work

Several works on integrating edge computing into aerial networks have been con-
ducted. In [3], the survey introduced several desirable attributes and enabling technologies
of aerial computing. In [19], Jia et al. studied the offloading problem in a hierarchical aerial
computing framework composed of HAPs and AeBSs, and the flexible mobility of AeBSs
was ignored. Reference [20] adopted an AeBS to provide computation offloading services
for mobile users, but they did not study the dynamic computation offloading strategy.
In [21], Truong et al. investigated an aerial edge computing network where an HAP plays
the role of MEC and an offloading optimization problem is formulated, aiming to minimize
the cost for task completion.

Researchers have adopted some heuristic algorithms to solve the offloading decision
problem. To increase the system’s weighted computing efficiency, Reference [4] proposed a
heuristic algorithm for maximizing computational efficiency. In order to reduce the energy
used by the AeBSs, Reference [22] jointly optimized the offloading of computation bits and
the trajectory of the AeBS in an AeBS-enabled MEC system. In Reference [19], a matching
game-theory-based algorithm and a heuristic approach for offloading optimization were
presented. However, considering the dynamic nature of the multi-AeBS scenario, network
optimization decisions are expected to be real-time. These aforementioned algorithms
usually take many iterations to reach a local optimum, which makes them unsuitable for
practical computation offloading situations. Besides, their computational complexity tends
to rise significantly with the expansion of MEC network scale.

Recently, deep learning has made a series of achievements in the field of wireless
communication, and researchers have also investigated some advanced models to help the
deep neural network be better applied in practice. To address the generalization issue of
the deep neural network, a two-stage training method was devised to optimize the feature
boundary of the convolution neural network (CNN) to reduce the over-fitting problem in [7].
Several works were devoted to designing a resource-friendly edge artificial intelligence
model. Reference [8] designed a graphics processing unit (GPU)-accelerated faster mean-
shift algorithm, which is valuable for accelerating the speed of the training of the DNN
model and saving computing resources. Reference [9] implemented a classification system
based on the multi-channel CNN, which can work in a hardware environment with limited
computing resources. Some researches also discussed the application of deep learning
in MEC networks. Reference [23] utilized distributed deep learning to make offloading
decisions for MEC networks in parallel. Reference [24] developed a hierarchical deep
learning task distribution framework to deal with the tradeoff between latency and energy
consumption, where the unmanned Aerial Vehicles are embedded with lower layers of the
pretrained CNN model, while the MEC server handles the higher layers. These studies
demonstrate the potential of combining deep learning with edge computing and also reveal
the importance of generalization and resource issues in practical applications.

DRL, a combination of the DNN and reinforcement learning, aims to create an in-
telligent agent that can execute effective strategies and maximize the return of long-term
tasks through controllable actions. Reference [25] designed a fast deep-Q-network (DQN)-
based offloading approach to boost computation performance. Reference [26] provided a
DQN-based online computation offloading policy with random task arrivals in a similar
network setup. The authors in [27] adopted a centralized DRL algorithm to settle the
offloading issue and a differential-evolution-based approach to address the deployment
issue. The optimization issue of maximizing the migration throughput of user workloads
in aerial MEC systems was solved with a DRL method in [28]. Reference [21] utilized the
deep deterministic policy gradient (DDPG) to reduce the overall cost of performing the
tasks. DRL was also used to jointly tackle the optimization problem of user association and
resource allocation in aerial edge computing systems [29].

216



Electronics 2022, 11, 3641

MADRL has numerous advantages over single-agent DRL. It enables agents to work
cooperatively to handle high-complexity tasks in a distributed manner. Different MADRL
algorithms have different agent-to-agent interaction forms and communication costs. A
multi-agent imitation learning technique was presented in [30] to reduce the average task
completion time in edge computing networks. To reduce overall energy usage, Refer-
ence [31] employed a multi-agent path planning strategy for energy consumption mini-
mization. Reference [32] devised an MADRL-based trajectory control approach, which
plans the trajectory of each AeBS individually. To reduce the overall computation and
communication cost, Reference [33] developed a decentralized value-iteration-based rein-
forcement learning approach to make joint computation offloading and resource allocation
decisions. The above research discovered that the multi-agent algorithm performs effec-
tively in the multi-AeBS control scenario. This is because the MADRL framework considers
the system as a whole and can jump out of the local optimal solution, which maximizes the
benefit of each agent.

Some researchers have introduced federated learning into the DRL algorithm. Fed-
erated learning can accelerates the convergence speed of the model and enhances the
generalization ability of the model by aggregating parameters. Reference [34] jointly opti-
mized resource allocation, user association, and power control in a multi-AeBS MEC system
via a federated DQN approach. In a multi-AeBS MEC system, massive amounts of data
have to be transmitted from UEs to the parameter center. The practical deployment and
operation of the algorithm are challenging because of the corresponding communication
delay. To solve this problem, the authors fused federated learning (FL) with the MADRL
framework and proposed a semi-distributed multi-agent federated reinforcement learning
algorithm with the integration of FL and DRL. The proposed algorithm enables the UEs
to quickly learn models by keeping their data training locally. In [35], an edge federated
multi-agent actor–critic approach for resource management, collaborative trajectory plan-
ning, and data scheduling was provided. For cooperation in MEC systems, a federated
heterogeneous multi-agent actor–critic algorithm was designed in [36]. Reference [37]
designed a federated DRL-based cooperative edge caching architecture, which enables base
stations to cooperatively learn a shared model and addresses the complicated and dynamic
control concerns. A hierarchical federated DRL approach was described in [38] in a content
replacement scenario.

The aforementioned works inspired us to design a federated deep reinforcement
learning algorithm in which each AeBS is managed by a separate agent and cooperates in a
distributed way, aiming to reduce the overall task processing time and energy consumption.
Table 1 lists a comparison of our work to the relevant research.

Table 1. Comparison between our work and the existing literature.

Reference Optimization Goal Offloading Deployment Method

[4] Maximize the weighted computational
efficiency of the system Proportional � Alternative computational

efficiency maximization

[19] Maximize the total IoT data computed by the
aerial MEC platforms Binary /

Matching game-theory-based
algorithm and a heuristic

algorithm

[20] Minimize the total energy consumption / � Successive convex
approximation (SCA)

[21] Minimize the total cost function of the system Proportional / Deep deterministic policy
gradient (DDPG)

[22] Minimize the energy consumed at the AeBS Binary � Alternative optimization
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Table 1. Cont.

Reference Optimization Goal Offloading Deployment Method

[23]
Minimize overall system utility including both
the total energy consumption and the delay in

finishing the task
Binary � DNN

[24]
Minimize the delay and energy consumption,
while considering the data quality input into

the DNN and inference error

Binary and
proportional / CNN

[25] Optimal offloading policy Proportional / Fast deep-Q-network (DQN)

[26] Maximize the long-term utility performance Binary / Double DQN

[27] Average slowdown for offloaded tasks One-to-one
correspondence � DQN

[28] Maximize the migration throughput of user
tasks Binary / DQN

[29] Maximize the average throughput of user tasks Binary � Q-learning

[30] Minimize average task completion time Binary / Multi-agent imitation
learning

[31] Minimize the total energy consumption of
AeBSs Binary �

Multi-agent deep
deterministic policy gradient

(MADDPG)

[32]
Maximize the fairness among all the user

equipment (UE) and the fairness of the UE load
of each AeBS

Binary � MADDPG

[33]

Minimize the total computation and
communication overhead of the joint

computation offloading and resource allocation
strategies

Binary / Multi-agent double-deep
Q-learning

[34] Minimize the overall consumed power Binary / Federated DQN

[35] Minimize the average source age (elapsed time) Binary � Federated multi-agent
actor–critic

[36] Minimize the average age of all data sources Binary � Federated multi-agent
actor–critic

[37] Maximize the expected long-term reward Three-way � Federated DQN

[38] Improve the hit rate Binary / Federated DQN

Our work Jointly minimize overall task latency and
energy consumption Binary � Federated DQN

Notes: Binary: tasks can be offloaded to the AeBSs or not; proportional: tasks have the offloading rate, and tasks
can be offloaded partially; one-to-one correspondence: tasks must be offloaded to an associated AeBS; three-way:
tasks can be offloaded to the AeBSs, processed locally, or processed by their neighbors.

3. System Model

Figure 1 depicts our scenario in an aerial edge computing network. There are M
MDs, N low-altitude AeBSs, and an HAP in the system. For simplicity, we abbreviate
low-altitude AeBSs as AeBSs and consider all AeBSs and MDs to be computationally
capable, and additionally, we used a binary offloading strategy for the computational tasks,
i.e., offloading to AeBSs or executing them locally [39]. AeBSs perform local training, and
the model parameters are uploaded to an HAP for federated model aggregation. We chose
an HAP as a global node because of its powerful computing power and lower latency
compared to satellites. In addition, there are almost no other obstacles in the air except
the aircraft itself, which makes the communication link better and more reliable than the
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ground communication. AeBS n trains its own two networks Qn
1 and Qn

2 together, in which
Qn

1 is responsible for deployment and Qn
2 is responsible for the offloading policy.

Figure 1. Federated deep-reinforcement-learning-based joint computation offloading and deploy-
ment control.

3.1. Communication Model

Since the line-of-sight (LoS) channel is dominant in air-to-ground links, we only consid-
ered the LoS propagation characteristics between AeBSs and MDs. Therefore, the channel
gain between MD i and AeBS j can be obtained as:

hi,j = g0d−2
i,j , (1)

where di,j is the distance between MD i and AeBS j, which can be calculated by the locations
of MD i and AeBS j. g0 represents the channel gain at the reference distance of 1 m.

The data transmission rate between MD i and AeBS j is

Ri,j = Blog
(

1 +
Pihi,j

σ2

)
, (2)

where Pi denotes the transmit power of MD i and σ2 represents the noise power.

3.2. Computation Model

For MD i with a computation task, Di represents the size of the input data and Si
represents the CPU cycles required to process 1 bit of data. Let A = {ai,j}M×(N+1) represent
the offloading decision of MDs. If the computation task in MD i is offloaded to AeBS j for
computing, ai,j = 1. If the computation task in MD i is computed locally, ai,0 = 1. Therefore,
there are two kinds of computation modes that each MD can choose: local execution and
offloading execution.

3.2.1. Local Execution

According to the definition of a task, the total CPU cycles required to execute the task
is Si × Di. Then, the time required to process a task in MD i is

Tlocal
i =

Si × Di

f MD
i

, (3)
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where f MD
i is the computational capacity of MD i.

3.2.2. Offloading Execution

In this case, processing the task requires the following three steps. Firstly, MD i
transmits the task data that need to be processed to AeBS j, which takes time Ttran

i,j . Secondly,

AeBS j computes the data, which takes time TAeBS
j . Thirdly, AeBS j transmits the result back

to MD i, which takes a tiny amount of time Tback
j,i , and we usually neglect it. Thus, we have

Ttran
i,j =

Di
Ri,j

, (4)

TAeBS
j =

Si × Di

f AeBS
j

, (5)

where f AeBS
j denotes the computational capacity of AeBS j. Therefore, the total time cost of

offloading execution can be obtained as:

To f f
i,j =

Di
Ri,j

+
Si × Di

f AeBS
j

. (6)

3.3. Energy Model

For local execution, only the computation energy consumption needs to be considered
as there is no data transmission. The energy consumption can be calculated as [40]:

Elocal
i = δ f MD2

i SiDi, (7)

where δ is an energy efficiency parameter, which is related to the chip architecture.
For offloading execution, the energy consumption includes transmission consumption

and computation consumption, which can be written as:

Eo f f
i,j = PiTtran

i,j + δ f AeBS2

j SiDi. (8)

3.4. Problem Formulation

In order to provide better service while taking into account the limited energy of AeBSs,
it is necessary to minimize the system task processing delay and energy consumption. In
this paper, we jointly optimized the AeBSs deployment and offloading strategy, aiming to
minimize the weighted sum of task processing time and AeBS energy consumption, which
can be written as:

min
X,Y,A

w1

N

∑
j=1

M

∑
i=1

(
ai,0Tlocal

i + ai,jT
o f f
i,j

)
+ w2

N

∑
j=1

M

∑
i=1

(
ai,0Elocal

i + ai,jE
o f f
i,j

)
,

C1 : xmin < xj < xmax,

C2 : ymin < yj < ymax,

C3 :
N

∑
j=0

ai,j = 1,

C4 : ai,j ∈ {0, 1}, ∀i, j,

(9)

where ∀i ∈ {1, 2, . . . , M} and ∀j ∈ {1, 2, . . . , N}. w1 and w2 denote the weights of the task
processing time and energy consumption, respectively. Constraints C1 and C2 limit the
range of movement of the AeBSs, and C3 and C4 indicate that each MD can either offload its
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task to an AeBS or execute the task locally and cannot partially offload its task. It is worth
mentioning that, for such mixed-integer programming problems, with multi-objective
optimization, it is difficult for traditional optimization algorithms to find the optimal
solution in a short time, which is unacceptable for user computing tasks that change in
real-time. To meet the real-time and complexity requirements, we propose FedDCO based
on deep reinforcement learning, which can complete the deployment of AeBSs and obtain
the offloading solution in a short time.

4. Federated Deep-Reinforcement-Learning-Based AeBS Deployment and
Computation Offloading

The optimization problem in Equation (9) is defined as a mixed-integer programming
problem, which is often difficult to find solutions to quickly. We designed an algorithm
based on federated deep reinforcement learning called FedDCO, where each AeBS is
equipped with a Qn

1 network responsible for generating deployment schemes and a Qn
2

network responsible for generating offloading policies. For an AeBS, it is unnecessary to
focus on the MDs with weak channel gain, which will lead to information redundancy. Each
AeBS only needs to pay attention to the information of the MDs that are within a certain
distance. Therefore, we used the K-nearest-neighbor algorithm to divide the association
between AeBSs and MDs. Then, each AeBS first moves to the optimal location using the Qn

1
network, followed by using the Qn

2 network to generate the offloading policies for nearby
MDs. The basic components of FedDCO are as follows.

State: For Qn
1 of AeBS n, the state sn

1 (t) includes the computational capacity of AeBS
n and its associated MDs, the amount of computational tasks for its associated MDs, and
the channel gain between AeBS n and MDs. The state s1(t) is the collection of each AeBS’s
state sn

1 (t).
For Qn

2 of AeBS n, the state sn
2 (t) also consists of the computational capacity of AeBS

n and its associated MDs, the amount of computational tasks for its associated MDs,
the channel gain between AeBS n and MDs, the number of MDs, which still have not
generated a computation offloading decision, and a vector indicating the computation
offloading policy for each MD. The state s2(t) is the collection of each AeBS state sn

2 (t).
Action: For Qn

1 , the action an
1 (t) is the movement of AeBS n, including moving back-

ward or forward, left or right, or remaining stationary. For Qn
2 , the action is the offloading

policy of one MD, i.e., local execution or offloading execution.
Reward: We combine the impact of task latency and energy consumption in the overall

task and define the reward function as rc−w1 ∑N
j=1 ∑M

i=1

(
ai,0Tlocal

i + ai,jT
o f f
i,j

)
− w2 ∑N

j=1 ∑M
i=1

(
ai,0Elocal

i + ai,jE
o f f
i,j

)
, where rc is a nonnegative constant.

We let θn
L,1 represent the weight of Qn

1 , which is responsible for generating deployment
decisions. θn

L,2 represents the weight of Qn
2 , which generates the offloading policies. The up-

dating processes of the two networks follow the strategy and principle of the classical DQN.
The optimal Q function for AeBS n can be defined as:

Q∗(sn, an) = maxn
π

E

[
rt + γrt+1 + γ2rt+2 + . . . | st = sn, at = an, πn

]
, (10)

which denotes the maximum expectation of the sum of the future reward at each time step
t that can be obtained by the strategy πn = P(an | sn) after observing state sn and taking
action an and γ is the discount factor. The DQN algorithm adopts the neural network to
parameterize the approximation function Q(sn, an; θn), where θn

L,ζ is the weight parameter
of the local neural network of AeBS n. The DQN utilizes the experience pool and stores the
experiences of the agent at each time step t all in the dataset. During algorithm learning,
the minibatches of the experiences are randomly sampled from the pool of stored samples
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to update the network. The loss function is calculated to measure the error between the
prediction and the target value, which is:

Ln

(
θn

L,ζ

)
= E

{[
yn − Q

(
sn, an; θn

L,ζ

)]2
}

, ζ ∈ {1, 2}, (11)

where Q
(

sn, an; θn
L,ζ

)
is the Q value in the Q-network with the current state sn as the input;

yn is the target value and can be calculated as yn = r + γ · maxa′n Q
(

sn, a′n; θn
L,ζ

′). The Q-
network is optimized in each iteration to minimize the loss function. We adopted the
stochastic gradient descent method to optimize the loss function and update the weight
parameters of the Q-networks. The DQN algorithm introduces two neural networks,
the Q-network and the target Q-network, which have the same structure, but different
parameters, and the parameters of the target Q-network are periodically updated according
to the parameters in the Q-network.

After each AeBS trains its two networks based on its state, it uploads the parameters
of Q1 and Q2 to the HAP for model aggregation at regular intervals fa. The parameter fa is
set because it is unnecessary for AeBSs to upload model parameters to the HAP for each
episode of training to save costs. The weight of the global model can be obtained as follows:

θG,ζ =
1
N

N

∑
n=1

θn
L,ζ , ζ ∈ {1, 2}, (12)

where θG,ζ is the weight of the global network and N is the number of AeBSs. The global
network parameters are sent back to the AeBSs for updating their own local networks.

The detailed steps of the FedDCO algorithm are shown in Algorithm 1. We also depict
the whole training process of the proposed FedDCO algorithm in Figure 2.

Figure 2. Flow chart of FedDCO.

222



Electronics 2022, 11, 3641

Algorithm 1: Proposed FedDCO algorithm

1 Input: maximum number of episodes, states of AeBSs, locations of AeBSs and
MDs

2 Output: deployment and offloading policy for each AeBS and MD
3 Initialize: replay memory size M1, M2, online network Qn

1 , Qn
2 and target network

Qn,

1 , Qn,

2 for each AeBS n, the distribution of MDs, and the aggregation frequency
of federated learning fa

4 Initialize:

5 for episode ← 1 : max_episode do

6 Initialize the locations of AeBSs, and obtain the initial state s1(t), s2(t)
7 for step ← 1 : max_step do

8 Obtain the AeBS-MD association via the K-nearest-neighbor algorithm
9 for AeBS ← 1 : N do

10 Choose an action an
1 (t) according to the ε-greedy policy: with

probability 1 − ε; AeBS n selects action
an

1 (t) = argmaxQn
1 (s

n
1 (t), an

1 (t); θn
L,1), otherwise it selects a random

action
11 Execute action an

1 (t)

12 for MD ← 1 : M do

13 Choose an action an
2 (t) according to the ε-greedy policy: with

probability 1 − ε; its associated AeBS selects action
an

2 (t) = argmaxQn
2 (s

n
2 (t), an

2 (t); θn
L,2), otherwise it selects a random

action
14 Execute action an

2 (t)
15 Observe reward r, and obtain the new state
16 Store (s2(t), a2(t), r(t), s2(t + 1)) in replay memory M2

17 Store (s1(t), a1(t), r∗(t), s1(t + 1)) in replay memory M1 (r∗ is the best
reward in the current episode)

18 for AeBS ← 1 : N do

19 Perform a gradient descent step on the loss function according to
Equation (11)

20 Every C steps, update the target network for each AeBS n

21 if episode mod fa=0 then

22 Each AeBS uploads its θn
L,1 and θn

L,2 weights to the global node for model
aggregation according to Equation (12), respectively.

23 The global node sends the aggregated global model weight of θG,1 and θG,2
back to the AeBSs, and each AeBS updates its own model.

5. Simulation Results and Discussions

We selected a 1 km × 1 km area for simulation, and the performance metrics of
the simulation were the total task processing time and energy consumption. The main
simulation parameters are given in Table 2, which refer to [41]. The Q1- and Q2-networks
of each AeBS were three-layer fully connected neural networks and used ReLU as the
activation function. The simulation environment was Python 3.7 and Pytorch 1.9.1 and was
run on a computer with i5-12500H processor from Intel and an RTX3060 GPU from Nvidia.
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Table 2. Main simulation parameters.

Simulation Parameters Values

AeBS altitude H 100 m
Transmit power Pi 0.5 W

Channel bandwidth B 1 MHz
Reference channel gain g0 10,096

Energy efficiency parameter δ 2
Noise σ2 5 × 10−5 W

ε in ε-greedy 0.1
Memory size 10,000

Batch size 512
Discount factor 0.97

We compared our FedDCO scheme with three other approaches named MADCO, K-
means-based, and throughput-first, to observe the performance gain brought by federated
learning, simultaneous training of two deep Q-networks, and location adjustment of the
AeBSs, respectively [41]. The description of these schemes is listed as follows:

1. FedDCO: Each AeBS has two deep Q-networks, Q1 and Q2, and they are trained
simultaneously to generate deployment and offloading policies. During the training
process, AeBSs upload the Q1 and Q2 weights instead of the raw state and action data
to the global node for model aggregation, and the global node sends the aggregated
global model weight of Q1 and Q2 back to the AeBSs, then each AeBS updates its
own model.

2. MADCO: MADCO optimizes the AeBS deployment schemes and offloading strate-
gies by training two neural networks together to minimize the latency and energy
consumption of computational task processing. Each AeBS exchanges action and state
information with each other when making decisions. Its settings for the input/output,
parameters, and DNN structure are consistent with FedDCO.

3. K-means: AeBSs are deployed based on the MD distribution through the K-means al-
gorithm. The number of clusters of K-means was set as the number of AeBSs, and then,
each AeBS is deployed directly above each cluster center of MDs. Specifically, the max-
imum number of iterations of K-means was 300, and if the sum of squares within
all clusters between two iterations is less than 1 × 10−4, the iteration is terminated.
After the location of AeBSs is fixed, the offloading policy is generated through the
Q2-network, whose input/output settings, parameter settings, and network structure
are the same as Q2 in FedDCO.

4. Throughput-first: AeBSs are first deployed based on the Q1-network with the goal
of maximizing throughput, and the offloading policy is later generated through the
Q2-network. The settings of the input/output, parameters. and DNN structure in
throughput-first are also consistent with FedDCO.

Figure 3 describes the convergence process of the above four algorithms, in the case
that the number of AeBSs is 8 and the number of MDs is 60. We normalized the reward to re-
duce the magnitude difference between the task processing delay and energy consumption.
The average reward of the proposed FedDCO increased rapidly in the first 100 episodes.
After 150 episodes, the algorithm converged, and the reward became stable. It can be found
that the convergence speed of FedDCO was faster than that of MADCO, which indicates
that federated learning can improve the convergence speed of the model. K-means uses
a clustering algorithm to deploy AeBS positions; although its training time was fast, its
performance was the lowest. This is because it does not take advantage of the mobility and
self-adjustment of the deployment location of AeBSs to obtain better performance.

In Figure 4, we mainly evaluate the effect of different algorithms with different num-
bers of MDs in the following three typical scenarios:
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Figure 3. The reward curve of the four algorithms in the training process.

Figure 4. Comparison of network performance metrics at different MD quantities in different
communication scenarios. (a–c) are the task processing delay in the general communication sce-
nario, delay-sensitive scenario, and energy-sensitive scenario, respectively. (d–f) are the energy
consumption in the general communication scenario, delay-sensitive scenario, and energy-sensitive
scenario, respectively.

1. General communication scenario: In this scenario, we regarded delay and energy
consumption as equally important indicators. Thus, we set (w1, w2) = (1, 1) in
the simulation.

2. Delay-sensitive scenario: There may be some real-time services in the network, which
makes the MDs sensitive to delay. For this scenario, we set (w1, w2) = (2, 1) in the
simulation.

3. Energy-sensitive scenario: For some aerial platforms with limited payload capacity,
such as small multi-rotor unmanned aerial vehicles, the battery capacity is limited, so
it is necessary to reduce the energy consumption as much as possible to ensure the
completion of the mission. For this scenario, we set (w1, w2) = (1, 2) in the simulation.

Figures 4a–c depict the task processing delay for the three different scenarios, with dif-
ferent numbers of MDs ranging from 10 to 100 [42]. By comparing different algorithms, it
can be observed that our proposed FedDCO obtained the lowest task processing latency
in all of three cases. It can be seen that K-means had a longer task processing time in
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most cases, which may be due to the fact that it does not use a neural network to obtain
a better deployment position. Figure 4d–f show the energy consumption under each
scenario. FedDCO still achieved the best results compared to the other three algorithms.
K-means and throughput-first performed similarly, probably because Q2 is effective in
minimizing energy consumption, leading them to make similar offloading strategies. By
comparing the network performance metrics in different scenarios, it can be discovered
that the delay of each scheme in the delay-sensitive scenario was basically smaller than
that in the general communication scenario, but at the cost of more energy consumption. In
the energy-constrained scenario, the agent’s strategy prefers a lower energy consumption,
and the task processing latency in this scenario increases slightly. To sum up the above
figures, with the increase of the MDs’ number, the key indicators, task processing delay,
and energy consumption of the system were all on the rise. Taking the three indicators
into consideration, the proposed FedDCO achieved the optimal performance in various
communication scenarios compared to the other algorithms. The K-means-based scheme
performed worst among these algorithms since it does not take advantage of adjusting the
position of the AeBSs. This indicates that the deployment design of the AeBSs is a very
important factor to be considered in the aerial edge computing network.

Figure 5 shows the performance of the four algorithms described in this article at
different data sizes of the tasks. It can be noticed that, with the increasing data size of
computing tasks, task processing delay and energy consumption both showed an upward
trend. This was attributed to the fact that there were more data to be transmitted and
processed, which brought a burden to the system and led to the degradation of the system
performance. In the case of different data sizes of the tasks, our proposed FedDCO had a
lower delay and energy consumption than the other three algorithms.

Figure 5. Comparison of network performance metrics at different data sizes of the tasks. (a) Task
processing delay. (b) Energy consumption.

Figure 6 illustrates the performance of the four algorithms described in this article at
different computational capacities of the AeBSs. With the enhancement of the computing
capability of the AeBSs, the delay of the system decreased, but the system consumed more
energy. This is because, when the computational power of the AeBSs increased, the tasks
on the MDs tended to be offloaded to the AeBSs, which resulted in an increase in both
the signal transmission energy consumption and AeBS computation energy consumption.
By comparing the four algorithms, it can be found that our proposed algorithm FedDCO
had the best performance, while the traditional machine learning algorithm K-means had a
relatively poor performance.
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Figure 6. Comparison of network performance metrics at different computational capacities of the
AeBSs. (a) Task processing delay. (b) Energy consumption.

Figure 7 shows the training time of FedDCO, MADCO, K-means, and throughput-first
with different numbers of AeBSs. As the number of AeBSs in the system increased, the prob-
lem complexity increased, so the training time of FedDCO and MADCO also increased. The
training time of FedDCO was smaller than that of MADCO and throughput-first, which
indicates that federated learning can accelerate convergence and improve algorithm effi-
ciency. This is owed to the fact that federated learning can solve the problem of the difficult
convergence of agents by exchanging experience through parameter aggregation. In the
K-means-based scheme, the K-means algorithm was adopted to decide the deployment
position of the AeBSs instead of training a DRL model, which made its training speed
relatively fast. Especially when the number of AeBSs increased, this gap became larger.
However, the performance of the K-means-based scheme was not as good as FedDCO.

Figure 7. Training time of different algorithms.

Generally speaking, the simulation results above proved that the proposed FedDCO
outperformed the other algorithms in different communication scenarios. Moreover, Fed-
DCO also had the advantages of fast convergence and a short training time, which is very
suitable for the dynamic network environment in aerial edge computing networks.

6. Conclusions

In this paper, we proposed an approach called FedDCO to address the joint opti-
mization problem of AeBSs’ deployment and computation offloading in an aerial edge
computing network with the goal of minimizing the task processing time and energy
consumption. We designed a training mechanism based on federated deep reinforcement
learning, where low-altitude AeBSs train their local neural networks individually and an
HAP plays the role of a global node for model aggregation. The simulation results showed
that our proposed approach can achieve better performance in various communication
scenarios compared with other benchmark schemes.
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Abbreviations

The following abbreviations are used in this manuscript:

MEC Mobile edge computing
HAP High altitude platform
AeBS Aerial base station
MD Mobile device
FL Federated learning
RL Reinforcement learning
DRL Deep reinforcement learning
DQN Deep Q-network
DDPG Deep deterministic policy gradient
MADRL Multi-agent deep reinforcement learning
LOS Line-of-sight
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Abstract: This study examined the implementation of rate-splitting multiple access (RSMA) in a
multiple-input single-output system using simultaneous wireless information and power transfer
(SWIPT) technology. The coexistence of a base station and a power beacon was considered, aiming to
transmit information and energy to two sets of users. One set comprises users who solely harvest
energy, whereas the other can decode information and energy using a power-splitting (PS) structure.
The main objective of this optimization was to minimize the total transmit power of the system while
satisfying the rate requirements for PS users and ensuring minimum energy harvesting (EH) for both
PS and EH users. The non-convex problem was addressed by dividing it into two subproblems. The
first subproblem was solved using a deep learning-based scheme, combining principal component
analysis and a deep neural network. The semidefinite relaxation method was used to solve the
second subproblem. The proposed method offers lower computational complexity compared to
traditional iterative-based approaches. The simulation results demonstrate the superior performance
of the proposed scheme compared to traditional methods such as non-orthogonal multiple access
and space-division multiple access. Furthermore, the ability of the proposed method to generalize
was validated by assessing its effectiveness across several challenging scenarios.

Keywords: simultaneous wireless information and power transfer; SWIPT; power beacon; rate-splitting
multiple access; RSMA; deep neural network; DNN; semidefinite relaxation; SDR

1. Introduction

Rate-splitting multiple access (RSMA) has become a promising multiple-access frame-
work that is being considered for implementation in future 6G networks and beyond [1].
Recent studies have shown that RSMA outperforms traditional multiple-access tech-
niques, such as non-orthogonal multiple access (NOMA) and space-division multiple
access (SDMA), in terms of energy and spectral efficiency for multi-antenna systems [1–4].
The concept behind RSMA involves dividing user messages into multiple parts, which are
transmitted using superposition coding at the transmitter and decoded using successive
interference cancellation (SIC) at the receivers. The most common approach is based on
single-layer rate splitting (RS), involving two parts: a common part and a private part.
The common parts from all users are transmitted simultaneously using a shared codebook
and must be decoded by all users, whereas the private parts are transmitted using private
codebooks. This approach allows RSMA to transmit all the messages simultaneously and in
the same frequency band using the power and spatial domains. Consequently, RSMA offers
flexibility, where interference can be treated as noise or fully decoded, making it a versatile
framework encompassing SDMA and power-division NOMA as special cases [3,5].
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Modern wireless systems consider communication trends, such as the Internet of
Things (IoT) and machine-type communications (MTC). The key priorities in wireless
communications involve advancing green technology and reducing device power consump-
tion [6]. Various studies have been undertaken to establish self-sustainable communication
systems using energy-harvesting (EH) techniques. One of the EH technologies contributing
to these objectives is simultaneous wireless information and power transfer (SWIPT) [7].
SWIPT is an effective technology that enables the base station (BS) to transmit energy
and information simultaneously to wireless users. Within SWIPT, the most well-known
architectures are the power-splitting (PS) architecture and time-switching (TS) architecture,
where both schemes consider an EH module and an information decoding (ID) module
at the receiver. In the TS architecture, the receiver periodically alternates between the
ID and EH modules based on a TS sequence. In the PS architecture, the incoming radio
frequency (RF) signal is divided into two streams based on a PS ratio, which are sent to the
ID and EH modules. The authors of [7] focused on the PS architecture because it has been
established in the literature as achieving the best balance between energy harvesting and
information decoding.

A cost-effective solution was proposed in [8] using low-cost stations called power
beacons (PBs) for wirelessly recharging devices using RF energy. PBs primarily serve as a
source of wireless energy, extending the operational lifespan of battery-powered devices
through wireless recharging. PBs do not necessitate complex computations and have low
backhaul link requirements, enabling cost-effective and adaptable placement, making them
a valuable addition to the system.

SWIPT has been widely studied, ranging from single-antenna systems [9] to multiple-
antenna systems [10,11]. Shi et al. [10] optimized the precoding vectors and PS ratios in a
multiuser multiple-input single-output (MU MISO) system to minimize the transmission
power while considering both the minimum signal-to-interference-plus-noise ratio (SINR)
and minimum EH at the user side. An extension to a multiuser multi-input multi-output
(MIMO) system was explored in [11], considering the EH constraints and a maximum
tolerable mean square error (MSE) for received information. SWIPT has also been im-
plemented along with the NOMA method in multi-antenna systems to maximize data
rates [12], minimize transmit power [13], and enhance energy efficiency [14]. On the other
hand, there is limited research on the performance of networks implementing SWIPT in
conjunction with the RSMA method.

In the context of RSMA, a pioneering study introduced the concept of RS [2]. The
authors elucidated the principal limitations of conventional methods while emphasizing
the potential advantages of RS in terms of spectral and energy efficiencies compared to
traditional techniques. The initial investigations of RS in a multiuser MISO system [15,16]
aimed to maximize the minimum rate and maximize the sum rate. The solutions to these
optimization problems were based on the weighted minimum mean square error (WMMSE)
method and the alternate optimization (AO) algorithm for optimizing the precoding vectors
and common rate variables. These studies reported that the RS framework consistently
outperformed conventional methods, as evidenced by a comprehensive analysis of data
rates and complexity in scenarios involving imperfect channel state information at the
transmitter (CSIT). In [17], an extension analysis was conducted on massive MIMO systems
to maximize the minimum achievable rate of the common message. A hierarchical rate-
splitting approach was proposed to address the challenges posed by the extensive array
of antennas at the transmitter. The simulation results revealed the superior performance
of RS over conventional broadcasting methods, considering perfect and imperfect CSIT.
The RSMA method was initially introduced for downlink multiuser MISO systems [3]. The
authors highlighted the generality of RSMA compared to SDMA and NOMA. They also
addressed the maximization of the weighted sum rate while considering the minimum rate
constraints and power limitations. The validity of the authors’ assertions was confirmed
by the simulation results, emphasizing the superior performance of RSMA across various
scenarios with different network loads and numbers of users. An exhaustive analytical
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analysis was conducted for a two-user case in [5], demonstrating the generality of RSMA
by showcasing how it encompasses SDMA, NOMA, and orthogonal multiple access (OMA)
as particular cases. Furthermore, the energy efficiency maximization and sum-rate max-
imization in multiuser MISO systems examined using RS emphasized the outstanding
performance of RSMA, demonstrating its superior spectral and energy efficiency compared
to SDMA and NOMA [18].

An initial study of RSMA and SWIPT was conducted to maximize the sum rate of
users [19], considering two types of users: one for decoding information only and the other
for harvesting energy only. A previous study [20] investigated the performance of RSMA
with SWIPT in multiuser MISO systems, considering that users can decode information and
harvest energy based on a PS factor. Furthermore, the scenario of RSMA with SWIPT when
an IRS is deployed in the system was investigated in [21]. These studies reported significant
improvements in performance provided by RSMA compared to traditional SDMA and
NOMA methods. On the other hand, the aforementioned studies primarily focused on
users close to the BS, driven by the EH requirements imposed by the optimization problem.
This limitation becomes evident in real-world deployments, where users may be located
far from the BS, posing challenges in meeting the EH requirements. Therefore, this paper
investigated the deployment of a PB with RSMA as an efficient approach to address the
previously mentioned challenge.

Huang et al. [22] introduced a system involving PBs for wireless power transfer (WPT).
These PBs can wirelessly charge receivers and be strategically placed alongside femtocell
base stations (BSs) to provide short-range SWIPT to wireless devices. A PB-assisted wireless-
powered communication network (WPCN) was proposed in [23], consisting of a single-
antenna PB and several single-antenna access points (APs). The PB provides RF energy
to the APs, which transmit their information using the energy harvested from the PB.
An extension of the PB-assisted WPCN, considering multi-antenna PBs, was reported
in [24] to optimize the energy beamformer vector and maximize the spectrum efficiency.
A previous study [25] considered the coexistence of a multi-antenna PB with a multi-
antenna BS, assuming one ID user and several EH users, where the authors addressed the
maximization of the total harvested energy. On the other hand, the aforementioned works
did not consider SWIPT users equipped with a PS architecture and did not incorporate the
RSMA framework.

Regarding state-of-the-art SWIPT systems assisted by a PB, the minimization of trans-
mit power in a single-antenna system was investigated in [10]. Extensions to a multiuser
MISO system incorporating SDMA and NOMA were introduced in [26,27], respectively.
Vu et al. [28] considered a scenario in which a multi-antenna PB transmits RF energy to a
single-antenna transmitter, serving two users with several relays. The transmitter employed
the NOMA method and harvested energy from the PB to transmit the two messages. The
relay applied the PS architecture to harvest energy and decode the message for the distant
user, which was then forwarded. A part of this investigation was presented in a conference
article [29], where the SWIPT system with RSMA was introduced with the aid of a PB,
where the optimal scenario of decoding the whole interference from the PB at the user side
was assumed. On the other hand, this paper considered the general case of treating the
interference from the PB as noise. In addition, a low-complexity and efficient scheme was
proposed based on deep learning (DL).

DL is gaining popularity as a technique for resource optimization in wireless networks
because of its ability to significantly reduce computational complexity compared to tradi-
tional optimization methods. A review of the most common schemes based on machine
learning and reinforcement learning methods for network optimization problems was
published in [30,31]. A deep neural network (DNN) was introduced as an approximation
method for solving the sum-rate maximization problem using the WMMSE algorithm in a
single-antenna system [32]. The results of the simulations demonstrated the effectiveness
of the DNN, which closely approximated the solution of the WMMSE algorithm while
reducing the computational time. Xia et al. [33] addressed three popular optimization prob-
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lems in a multiuser MISO system with SDMA. Their proposed solution leveraged a neural
network module to predict key features based on the channel vectors and a beamforming
module to construct the beamforming vector from the predicted vital features. Building
upon the previous system model, the sum-rate maximization problem was investigated
in [34], and two types of schemes based on a DNN were proposed: one where the beam-
formers are directly generated by the DNN output and the other utilizing a beamformer
recovery module after the DNN module. The simulation results demonstrated performance
close to traditional optimization methods, with the model incorporating the beamformer
recovery module yielding the best results. On the other hand, the aforementioned work
did not consider SWIPT technology and the RSMA method. The solutions are problem-
dependent and rely on expert knowledge. Furthermore, state-of-the-art methods consider
the channel vectors as direct inputs to the deep learning module. This approach involves
using hundreds of features as the number of antennas and users increases, increasing the
complexity of the deep learning model. A previous work [35] considered a MISO SWIPT
system with RSMA, where a deep learning-based solution was proposed. The scheme
comprised three modules: an autoencoder for dimension reduction, a DNN to predict a
set of target variables, and a precoding module to obtain the precoding vectors. On the
other hand, the authors did not account for EH users or the deployment of a PB, which
significantly increased the number of input features. Furthermore, the autoencoder module
required problem-dependent adjustments of its hyperparameters, such as the number of
hidden layers, hidden nodes, activation functions, and learning rate. These factors made it
difficult to generalize the scheme to other scenarios.

The RSMA framework has showcased significant enhancements in spectral and energy
efficiencies compared to conventional SDMA and NOMA techniques. This establishes
RSMA as a promising candidate for future 6G networks, prompting a thorough examination
of its performance across diverse multi-antenna systems. Moreover, the deployment of
PBs holds vital significance in extending the lifespan of wireless devices, especially in IoT
scenarios where battery replacement poses challenges in hard-to-access areas. However,
the interference generated by PBs during the information decoding process at the user side
necessitates a comprehensive investigation into an efficient beamforming design at both the
BS and PB. Consequently, this study aims to develop a high-performance, low-complexity
solution to jointly optimize the beamforming vectors and PS ratios in a multi-antenna
system. The proposed system model integrates a multi-antenna transmitter implementing
RSMA with SWIPT, along with a multi-antenna PB. The primary objective of this study is
to minimize the total transmission power while fulfilling data rates and EH requirements
for EH and PS users. The main contributions of this paper are as follows:

• In the considered system model, the objective is to minimize the total transmission
power of the BS and PB while meeting the minimum EH requirements for EH and PS
users and ensuring a minimum data rate for PS users.

• A two-step approach is adopted to address the non-convex problem presented in
this study. In the first step, we optimize the common rate variables through a DL-
based scheme that combines the principal component analysis (PCA) technique for
dimensionality reduction with a DNN. The second step focuses on optimizing the
beamforming vectors of the BS and PB, along with the PS factors. The SDR technique
is used to accomplish this.

• As a comparative scheme, the proposed minimization problem is addressed using a
PSO-SDR approach, which is an iterative-based method that provides near-optimal
solutions to the proposed problem. This scheme serves as a reference to analyze the
performance of the proposed DL-based solution.

• Simulation results show that the proposed DL-based method can perform similarly
to traditional iterative-based schemes while significantly reducing computational
complexity. Furthermore, the proposed RSMA solution is compared with NOMA and
SDMA, showing that the RSMA approach achieves the lowest transmit power. More-
over, the generalization performance of the proposed DL-based method is validated
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by testing its performance across several challenging scenarios not included in the DL
model training.

The remainder of this paper is structured as follows. Section 2 introduces the system
model and formulates the problem. Section 3 outlines the proposed solution, and presents
the comparative schemes. Section 4 provides the simulation results, and Section 5 reports
the conclusions.

2. System Model and Problem Formulation

A MU MISO RSMA system assisted by a PB with SWIPT is considered, as shown
in Figure 1. The number of antennas at the BS is M ≥ 2, the number of antennas at
the PB is N ≥ 2, and there are K single-antenna PS users and G single-antenna EH
users. EH users are exclusively dedicated to harvesting RF energy, whereas PS users are
equipped with a PS mechanism, allowing them to partition the incoming RF signal into
two components, serving both information decoding and EH based on a designated PS
ratio, θk. The BS transmits information signals to both harvest energy at the EH module and
decode information at the ID module for PS users. The PB, on the other hand, transmits
energy-carrying signals used for energy harvesting by EH users and the EH module of
PS users. However, these energy signals are considered interference at the ID module of
PS users.

Figure 1. MISO SWIPT system aided by a PB.

In one-layer RSMA, the original message intended for the kth PS user, Wk, is separated
into a common message, Wk,c, and a private message, Wk,p. A super-common message is
produced by combining all the K common messages and encoding them into the common
stream zPS

c , which needs to be decoded by all PS users. The K private messages are
independently encoded into K private streams

{
zPS

k
}

to be decoded by their respective user.

At the PB, the energy-carrying signals are represented by
{

zEH
g

}
, g = 1, . . . , G. Therefore,

the signals transmitted at the BS and PB after precoding are xBS = p0zPS
c +

K
∑

k=1
pkzPS

k and

xPB =
G
∑

g=1
egzEH

g , respectively, where p0 ∈ CM×1 and pk ∈ CM×1 represent the information

beamforming vectors, and eg ∈ CN×1 corresponds to the energy beamforming vector
for zPS

c , zPS
k , and zEH

g . Figure 2 shows the RSMA transmission scheme in the considered
system model.
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Figure 2. Proposed RSMA transmission scheme.

At the user side, the kth PS user first decodes the common stream zPS
c with an achiev-

able rate given by

Rk,0 = log2

⎛⎜⎜⎜⎝1 +

∣∣∣qH
k,PSp0

∣∣∣2
K
∑

i=1

∣∣∣qH
k,PSpi

∣∣∣2 + G
∑

g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k +

γ2
k

θk

⎞⎟⎟⎟⎠, ∀k, (1)

where qk,PS ∈ CM×1 represents the channel vector from the BS to the kth PS user;
hk,PS ∈ CN×1 is the channel vector from the PB to the kth PS user; θk ∈ (0, 1) is the
PS factor; nk ∼ CN (

0, σ2
k
)

represents the Gaussian noise at the antenna of the kth PS user;
and vk ∼ CN (

0, δ2
k
)

is the data processing noise at the ID module of the kth PS user.
After decoding zPS

c , RSMA employs the SIC procedure to eliminate interference due
to the common stream zPS

c . The kth PS can decode its private stream zPS
k with an achievable

rate given by

Rk = log2

⎛⎜⎜⎜⎝1 +

∣∣∣qH
k,PSpk

∣∣∣2
K
∑

i=1,i �=k

∣∣∣qH
k,PSpi

∣∣∣2 + G
∑

g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k +

γ2
k

θk

⎞⎟⎟⎟⎠, ∀k. (2)

The rate at which zPS
c is transmitted, expressed as R0, must satisfy R0 ≤ min{R1,0, . . . , RK,0}

because the common stream zPS
c needs to be decoded by all users. Moreover, the rate R0 is

composed of the rates to transmit each Wk,c and can be expressed as R0 =
K
∑

k=1
αk, where αk

is the rate to transmit the common part of the kth message, Wk,c.
The energy harvested at the EH module of the kth PS user can be expressed as follows:

EHPS
k = ςPS

k (1 − θk)

(
K

∑
i=0

∣∣∣qH
k,PSpi

∣∣∣2 + G

∑
g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k

)
, ∀k, (3)

where ςPS
k is the EH efficiency at the kth PS user. Moreover, at the gth EH user, the harvested

energy can be expressed as

EHEH
g = ςEH

g

(
K

∑
i=0

∣∣∣qH
g,EHpi

∣∣∣2 + G

∑
j=1

∣∣∣hH
g,EHej

∣∣∣2), ∀g, (4)

where ςEH
g represents the EH efficiency at the gth EH user, and hg,EH ∈ CN×1 and

qg,EH ∈ CM×1 are the channel vectors from the PB and BS to the gth EH user, respectively.
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We seek to optimize the beamforming vectors, p0,
{

pk, eg
}

; the common rate variables,
αk; and the PS ratios, θk, which together achieve a minimum rate requirement, and at the
same time, they can harvest a required minimum EH for future use. The minimization of
the sum transmission power of the PB and BS can be formulated as follows:

min
p0,{pk ,αk ,θk ,eg}

K

∑
i=0

‖pi‖2 +
G

∑
g=1

∥∥eg
∥∥2 (5a)

s.t. αk + Rk ≥ χk, ∀k (5b)
K

∑
i=1

αi ≤ Rk,0, ∀k (5c)

EHPS
k ≥ εPS

k , ∀k (5d)

EHEH
g ≥ εEH

g , ∀g (5e)

0 < θk < 1, ∀k (5f)

αk ≥ 0, ∀k, (5g)

Constraint (5b) ensures that the kth PS user achieves a minimum rate requirement,
denoted as χk. Constraint (5c) is set to guarantee that the common stream can be decoded
by all PS users. Constraints (5d) and (5e) ensure that each kth PS user and gth EH user
can harvest a minimum EH requirement, denoted as εPS

k and εEH
g , respectively. Solving

the power minimization problem (5) is challenging because of its non-convex constraints
(5b)–(5e). In the following, a near-optimal solution is proposed based on DL techniques
and the SDR method.

3. Proposed Approach for Addressing Problem (5)

A DL-based scheme and SDR method are developed to address the non-convex
problem (5). First, problem (5) is reformulated into two subproblems, denoted as follows:

min
{αk}

(Υ(αk)) (6a)

Υ(αk) = min
p0,{pk ,θk ,eg}

K

∑
i=0

‖pi‖2 +
G

∑
g=1

∥∥eg
∥∥2

s.t. (5b)–(5f), (6b)

where the first subproblem, represented in (6a), optimizes the common rate variables, αk,
for the given beamforming vectors, p0,

{
pk, eg

}
, and PS ratios, θk. Section 3.1 presents a

DNN-based scheme with PCA to solve this first subproblem. The second subproblem,
represented by Υ(αk) in (6b), optimizes the beamforming vectors, p0,

{
pk, eg

}
, and the

PS ratios, θk, for the given common rate variables, αk. The proposed solution for the
second subproblem is based on the SDR technique with the penalty function method and is
described in Section 3.2.

Figure 3 illustrates the overall procedure of the proposed scheme during both the
training and online stages. In the training phase, the initial step involves generating the
dataset. The dataset is generated by solving a minimization problem using conventional
optimization methods, such as combining the PSO algorithm and SDR method. The features
of the dataset consist of the rate and EH requirements, along with a reduced representation
of the channel vectors obtained through PCA. The target values in this dataset correspond to
the common rate, αk. Subsequently, the K-fold cross-validation method is used to partition
the dataset into training and validation subsets. These subsets are used to determine the
optimal hyperparameters for the DNN module, including the number of hidden layers,
hidden nodes, learning rates, batch size, and others. Once the DNN is trained, it is deployed
at the BS for the online stage. During the online stage, the current channel vectors undergo
dimensionality reduction via PCA. The reduced representations, rate, and EH requirements
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serve as inputs for the trained DNN. The result of the DNN is the prediction of the common
rate variables, αk, which are used in the SDR module to optimize the PS factors, θk, and the
beamforming vectors, p0,

{
pk, eg

}
.

Figure 3. Overall procedure of the proposed approach.

Moreover, by utilizing the predicted common rate variables, αk, the minimization
problem (5) can be reformulated as follows:

min
p0,{pk ,θk ,eg}

K

∑
i=0

‖pi‖2 +
G

∑
g=1

∥∥eg
∥∥2 (7a)

subject to ∣∣∣qH
k,PSpk

∣∣∣2
K
∑

i=1,i �=k

∣∣∣qH
k,PSpi

∣∣∣2 + G
∑

g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k +

γ2
k

θk

≥ ωk, ∀k (7b)

∣∣∣qH
k,PSp0

∣∣∣2
K
∑

i=1

∣∣∣qH
k,PSpi

∣∣∣2 + G
∑

g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k +

γ2
k

θk

≥ ϕ, ∀k (7c)

along with (5d), (5e) and (5g),

where ϕ = 2

K
∑

i=1
αi − 1, and ωk = max{0, 2χk−αk − 1}.

3.1. Deep Learning-Based Scheme for Optimizing αk

This subsection describes the PCA module for dimensionality reduction and the
DNN-based method to predict the common rate variables, αk.

Figure 4 presents the PCA module used to derive a reduced representation of each
channel vector. The PCA technique [36] projects the input data onto a lower-dimensional
subspace to maximize the variance of the projected data. The training dataset is defined
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as X =
{

x1, . . . , xn, . . . , xND

}
, where ND is the total number of channel vectors used as

the training dataset, and xn is a W-dimensional vector composed of the real and imagi-
nary components of the nth channel. The PCA module maps a channel vector onto an
L-dimensional subspace that satisfies L < W. The projection of xn can be represented by
yn= UT

L xn, where UL =
[
uT

1 , . . . , uT
L
]

with uT
l ul = 1 for l = 1, . . . , L. A UL that maximizes

the trace of the covariance matrix of {yn} is needed to maximize the variance of {yn},
which can be expressed as:

U∗
L = arg max

UL

(
tr
(
Cy

))
, (8)

where Cy = 1
ND

ND
∑

n=1
(yn − ȳ)(yn − ȳ)T, and ȳ = 1

ND

ND
∑

n=1
xn. Let Cx = 1

ND

ND
∑

n=1
(xn − x̄)(xn − x̄)T

represent the covariance matrix of {xn}, and x̄ = 1
ND

ND
∑

n=1
xn. The solution of (8), described

in [36,37], is obtained when
Cxul = λlul , (9)

which means that the variance of the projected data is maximized when ul is an eigenvector
of Cx. Therefore, the optimal U∗

L is a matrix composed of the first L eigenvectors of Cx as
columns. Algorithm 1 summarizes the steps for performing the PCA technique.

q
1

�(       )

�(       )

...
PCA for

dimensionality
reduction

1,PS

q
11,PS

q
2

�(       )

�(       )

1,PS

q
21,PS

q
M

�(       )

�(       )

1,PS

q
M1,PS

PC (1)

...

q
k,PS

PC (L)q
k,PS

Figure 4. PCA module representation for the channel q1,PS.

Algorithm 1 PCA for dimensionality reduction

1: inputs: Training dataset X =
{

x1, . . . , xn, . . . , xND

}
containing the wireless channels

and the number of components to keep, L.
2: Evaluate the mean x̄.
3: Calculate the covariance matrix Cx.
4: Decompose Cx to obtain the eigenvectors and eigenvalues.
5: Select L eigenvectors corresponding to the L largest eigenvalues and create UL.
6: Map the W-dimensional channel vector into an L-dimensional representation by

yn = UT
L xn.

7: output: Reduced representation of the channel vectors qk,PS, qg,EH , hk,PS, hg,EH by
performing step 6 for each channel vector.

Figure 5 shows the DNN model for the proposed approach, composed of an input
layer, HD hidden layers, and an output layer. The number of nodes in the input layer is
determined by the user’s rate requirements, EH requirements, and the reduced represen-
tation of the channel vectors after the PCA module,

{
PCqk,PS , PCqg,EH , PChk,PS

, PChg,EH

}
.

Each hidden layer consists of NH hidden nodes, where the number of hidden layers and
the number of hidden nodes are determined by fine-tuning the hyperparameters, as dis-
cussed in Section 4. The common rate variables specify the number of nodes in the output
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layer, {αk}. During the training stage, the weights of the DNN are optimized using the
backpropagation algorithm [38], given a training dataset with {αk} as the real-valued
targets. In conjunction with the grid search method, the K-fold cross-validation method
is employed to select the best hyperparameters, including the number of hidden layers,
hidden nodes, learning rates, and activation functions. Subsequently, during the online
stage, after successfully training the DNN, the predicted common rate variables for the
current channel vectors are constrained to feasible ranges, defined by the constraints (5b)
and (5g), and are expressed as follows:

αk =

⎧⎪⎨⎪⎩
0, if αk < 0, ∀k, (10a)

αk, if 0 ≤ αk ≤ χk, ∀k, (10b)

χk, otherwise, ∀k (10c)

...
...

...

...

PC (1)...

q

... ...

...

α1

...
...

...

...

...

...

χ
k

ɛ k

ɛ g

PS

EH

k,PS

PC (L)q
k,PS

PC (L)h
g,EH αK

Figure 5. DNN module scheme for the proposed approach.

The modified common rate variables are passed to the SDR-based scheme to opti-
mize the PS ratios, θk, and the beamforming vectors, p0,

{
pk, eg

}
. Within the DNN, we

analyze the computational complexity in the online stage, as the training process takes
place offline. This complexity is closely tied to the number of nodes and layers within the
DNN. In particular, there are a total of L(2K + 2G) + 2K + G nodes in the input layer, K
nodes in the output layer, and each ith hidden layer has NH,i nodes, where i = 1, . . . , HD.
Consequently, the computational complexity of the DNN module can be expressed as
O((L(2K + 2G) + 2K + G)NH,1 + NH,1NH,2 + . . . + NH,HD K

)
, even though this can be ap-

proximated to O(L(2K + 2G)) when the DNN parameters are considered fixed.

3.2. SDR-Based Method for Optimizing p0,
{

pk, eg, θk
}

We introduce an approach based on the SDR technique to jointly optimize the PS
factors and beamforming vectors, with a fixed value for {αk}. The matrix variables
are denoted as Pi = pip

H
i , Eg = egeH

g , Qk,PS = qk,PSqH
k,PS, Hk,PS = hk,PShH

k,PS,
Qg,EH = qg,EHqH

g,EH , and Hg,EH = hg,EHhH
g,EH . In addition, the matrix variable Pi enforces

the conditions Pi � 0, rank(Pi) = 1, while matrix Eg enforces Eg � 0 and rank
(
Eg
)
= 1.

Problem (7) can be transformed into a convex problem by removing the rank-one constraints
and given {αk}, as follows:

min
P0,{Pk ,θk ,Eg}

K

∑
i=0

Tr(Pi)+
G

∑
g=1

Tr
(
Eg
)

(11a)

subject to(
K

∑
i=1,i �=k

Tr(Qk,PSPi) +
G

∑
g=1

Tr
(
Hk,PSEg

)
+ σ2

k +
γ2

k
θk

)
ωk − Tr(Qk,PSPk) ≤ 0, ∀k (11b)
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(
K

∑
i=1

Tr(Qk,PSPi) +
G

∑
g=1

Tr
(
Hk,PSEg

)
+ σ2

k +
γ2

k
θk

)
ϕ − Tr(Qk,PSP0) ≤ 0, ∀k (11c)

εPS
k

ςPS
k (1 − θk)

−
K

∑
i=0

Tr(Qk,PSPi)−
G

∑
g=1

Tr
(
Hk,PSEg

)− σ2
k ≤ 0, ∀k (11d)

− ςEH
g

K

∑
i=0

Tr
(
Qg,EHPi

)− ςEH
g

G

∑
j=1

Tr
(
Hg,EHEj

)
+ εEH

g ≤ 0, ∀g (11e)

P0, Pk, Eg � 0, ∀k, ∀g (11f)

0 < θk < 1, ∀k. (11g)

Problem (11) is convex and can be solved efficiently using the CVX toolbox in
MATLAB [39]. Problem (11) involves K + 1 matrices of size M × M and G matrices of size
N × N, along with the LC = 3K+G linear constraint variables. Therefore, the computational
complexity of addressing problem (11) amounts to O

(√
(K + 1)M + GN

(
(K + 1)3M6

+ G3N6 + Lc
(
(K + 1)M2 + GN2)) log(1/ζ)

)
while maintaining a solution accuracy of

ζ > 0 [40]. The optimal solutions are represented in problem (11) as
{

P∗
k , E∗

g

}
. When

the matrix solutions have a rank of one, the optimal beamforming vectors,
{

p∗
i , e∗g

}
, are

given by

pi =
√

λH(Pi)vH,Pi , i = 0, . . . ., K (12a)

eg =
√

λH
(
Eg
)
vH,Eg , g = 1, . . . ., G, (12b)

where λH(A) represents the largest eigenvalue of the matrix A, and vH,A denotes its

corresponding eigenvector. If
{

P∗
i , E∗

g

}
are rank-one, alternative approaches, such as

the penalty function method [41] or the Gaussian randomization technique [20], can be
employed to approximate the beamforming vectors.

The following details the penalty function method for the scenario where the matrix
variables

{
P∗

i , E∗
g

}
are not rank-one. The proposed penalty-based method is based on the

definition of
{

P∗
i , E∗

g

}
being positive semidefinite matrices, which satisfy the conditions

Tr(Pi) ≥ λH(Pi) and Tr
(
Eg
) ≥ λH

(
Eg
)
, where the matrices

{
P∗

i , E∗
g

}
are rank-one if

Tr(Pi) = λH(Pi) and Tr
(
Eg
)
= λH

(
Eg
)
. Hence, the proposed penalty-based approach aims

to minimize Tr(Pi)− λH(Pi) and Tr
(
Eg
)− λH

(
Eg
)

by introducing a penalty factor, κ, and
incorporating these terms into the objective function as follows:

min
P0,{Pk ,θk ,Eg}

K
∑

i=0
Tr(Pi)+

G
∑

g=1
Tr
(
Eg
)
+ κ

K
∑

i=0
(Tr(Pi)− λH(Pi)) + κ

G
∑

g=1

(
Tr
(
Eg
)− λH

(
Eg
))

subject to (11b), . . . , (11g).
(13)

Problem (13) is non-convex because of the terms −λH(Pi) and −λH
(
Eg
)
. Therefore,

the following inequality that holds for any Zk ≥ 0 is used to handle the aforementioned
non-convex terms:

λH(Pi) ≥ λH(Zi) + vH
H,Zi

(Pi − Zi)vH,Zi , (14)

where vH,Zi represents the unit-norm eigenvector associated with the largest eigenvalue

of Zi. Hence, (14) is used to approximate λH(Pi) based on a feasible matrix P
(j)
i at the jth

iteration as follows:

λH(Pi) ≥ λH

(
P
(j)
i

)
+ vH

H,P(j)
i

(
Pi − P

(j)
i

)
v

H,P(j)
i

, ∀k. (15)
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By applying a similar procedure as in (15), the term λH
(
Eg
)

can be equivalently
transformed. As a result, problem (13) can be reformulated as follows:

min
P0,{Pk ,θk ,Eg}

K
∑

i=0
Tr(Pi)+

G
∑

g=1
Tr
(
Eg
)

+κ
K
∑

i=0

(
Tr(Pi)− λH

(
P
(j)
i

)
+ vH

H,P(j)
i

(
Pi − P

(j)
i

)
v

H,P(j)
i

)
+κ

G
∑

g=1

(
Tr
(
Eg
)− λH

(
E
(j)
g

)
+ vH

H,E(j)
g

(
Eg − E

(j)
g

)
v

H,E(j)
g

)
subject to (11b), . . . , (11g).

(16)

Note that problem (16) is convex, and the solution can be obtained using the CVX
toolbox in MATLAB. Algorithm 2 lists the proposed iterative scheme based on the penalty
method, which is applied when the solutions to problem (11),

{
P∗

i , E∗
g

}
, are not rank-one.

Algorithm 2 Penalty-based method for solving problem (11)

1: inputs: Matrix solutions of problem (11),
{

P∗
i , E∗

g

}
, tolerance value, φ, penalty factor, κ,

channel vectors, rate, and EH requirements.
2: Set iteration counter j = 0.
3: Set initial feasible matrices, P

(j)
i = P∗

i , E
(j)
g = E∗

g.
4: repeat

5: Solve problem (16) given the feasible matrices
{

P
(j)
i , E

(j)
g

}
and denote

the solutions as
{

P∗
i , E∗

g

}
.

6: Increase counter j = j + 1.
7: Update the feasible matrices for the next iteration: P

(j)
i = P∗

i , E
(j)
g = E∗

g.

8: until
K
∑

i=0
(Tr(Pi)− λH(Pi)) +

G
∑

g=1

(
Tr
(
Eg
)− λH

(
Eg
)) ≤ φ

9: Obtain the beamforming vectors with (12a) and (12b).
10: Output:

{
p∗

i , e∗g
}

.

3.3. PSO-Based Approach for Optimizing {αk} with a Given p0,
{

pk, eg, θk
}

This subsection presents a comparative scheme for optimizing the common rate
variables using a PSO-based approach [20] with given PS factors and beamforming vectors.
PSO is a potent metaheuristic algorithm inspired by the social behavior of flocking birds,
where the collective knowledge of the swarm guides each particle through the search space
to discover the optimal solution. In the proposed PSO-based scheme, there is a population
of S particles whose position represents the common ratio variables to be optimized, i.e.,
the position of the sth particle is given by xs =

[
αs

1, . . . , αs
K
]
, s = 1, . . . , S. The position of

each particle is initialized randomly within the range [0, χk]. The local best position for the
sth particle, denoted as xl

s, represents the best location of the sth particle. Moreover, the
global best position, denoted as xg, represents the best location of all the swarm particles.
The location of the sth particle is based on its velocity and is expressed as

vs ← wvs + acun
1

(
xl

s − xs

)
+ bcun

2
(
xg − xs

)
, (17)

where w is the inertia weight; ac, bc are the acceleration parameters; and un
1 , un

2 ∼ U(0, 1).
Subsequently, the position of the sth particle is modified according to the following:

xs ← xs + vs. (18)
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The objective function, f (xs), is defined by the sum transmission power (7a), obtained
by solving problem (11), with {αk} being determined by the position of the sth particle, xs.
The computational complexity of the PSO-based method is given by O(S · Tmax · OSDR),
where OSDR represents the complexity of solving problem (7) using the SDR method
detailed in Section 3.2. Algorithm 3 presents the algorithm based on PSO designed to
optimize {αk}.

Algorithm 3 Comparative scheme based on PSO for optimizing {αk}
1: inputs: Number of particles, S, maximum number of iterations, Tmax, rate, and EH

requirements.
2: Set iteration counter t = 0 and initialize the position of each particle and its velocity,

vs,t = 0.
3: Set the initial xl

s,t = xs,t and xg,t = arg min
1≤s≤S

f
(

xl
s,t

)
.

4: While t ≤ Tmax do
5: for s = 1, . . . , S, do
6: Update the velocity and the position based on (17) and (18) to obtain

vs,t+1 and xs,t+1.
7: Restrict the value of the position based on (10).
8: Solve problem (11) with the common rates given by xs,t+1 to get f (xs,t+1).

9: if f (xs,t+1) < f
(

xl
s,t

)
then

xl
s,t = xs,t+1

end if
10: end for
11: xg,t = arg min

1≤s≤S
f
(

xl
s,t

)
12: Increase counter t = t + 1.
13: end while
14: Output: Best common rates,

{
α∗k
}

, defined by xg.

4. Simulation Results

Numerical simulations were conducted to assess the performance of the proposed
DL-based solution in minimizing the sum transmission power of the BS and PB in the
considered MISO SWIPT system with RSMA. The simulation parameters were set to
K = 3 PS users, G = 2 EH users, M = 8 antennas at the BS, N = 8 antennas at the PB,
σ2

k = γ2
k = −60 dBm, ςPS

k = ςEH
g = 1, χk = χ, and εPS

k = εEH
g = ε. The channel vector

between the kth PS user and the BS is given by

qk,PS =
√

βd−ν
BS−PS,kq̃k,PS, ∀k, (19)

where ν = 2.2 defines the path-loss exponent; β = 10−3; d−ν
BS−PS,k denotes the distance

between the BS and the kth PS user; and q̃k,PS is subject to independent Rician fading.
qg,EH , hk,PS, hg,EH are channels established according to (13). The BS is positioned at coordi-
nates (8 m, 20 m), whereas the PB is located at (13 m, 7 m). PS users are randomly distributed
within a designated region defined by xPS ∈ [13 m, 18 m] and yPS ∈ [13 m, 25 m]. Similarly,
EH users are randomly distributed within an area bounded by xEH ∈ [17 m, 22 m] and
yEH ∈ [2 m, 12 m].

The effectiveness of the proposed DL-based method was evaluated by comparing
it with a PSO-SDR method and conventional techniques, such as SDMA and NOMA.
The proposed scheme is denoted as DNN-RSMA, and the comparative scheme based
on PSO and SDR is denoted as PSO-RSMA. In SDMA [26], the kth PS user’s message,
Wk, is encoded directly into the data stream, zPS

k , without common rate variables, and
interference originating from other users is considered noise. In addition, a comparative
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scenario was incorporated by assuming the absence of the power beacon (PB) deployment
in the network.

In NOMA [27], interference originating from other users is mitigated by employ-
ing multiple layers in the SIC process. The message intended for the kth PS user, Wk,
is encoded into the private stream, zPS

k,N . The transmitted signal at the BS is given by

xBS,NOMA =
K
∑

k=1
pk,NzPS

k,N , where pk,N ∈ CM×1 is the information beamforming vector for

zPS
k,N . The signal transmitted at the PB is the same as in the proposed RSMA-based frame-

work. On the user side, the decoding order for PS users is determined by their respective
channel strengths, denoted as ‖q1,PS‖ ≥ . . . ≥ ‖qK,PS‖. In particular, the kth PS user begins
by decoding messages intended for the Kth, (K − 1)th, . . . , (k + 1)th PS users. Subsequently,
the kth PS user proceeds to decode its intended message while treating the interference
from the remaining messages as noise. The achievable rate to decode the lth message at the
kth PS user is given by

Rl
k,NOMA = log2

⎛⎜⎜⎜⎝1 +

∣∣∣qH
k,PSpl,N

∣∣∣2
l−1
∑

k′=1

∣∣∣qH
k,PSpk′ ,N

∣∣∣2 + G
∑

g=1

∣∣∣hH
k,PSeg

∣∣∣2 + σ2
k +

γ2
k

θk

⎞⎟⎟⎟⎠, ∀k, ∀l ≥ k. (20)

Two datasets were considered in the simulation analysis: a training/validation dataset
and a testing dataset. As described in Section 3, the PSO-SDR method was used to process
all the datasets considered. A fivefold cross-validation method was used to divide the
training/validation dataset into separate training and validation datasets. These datasets
were used to determine the optimal hyperparameters for the DNN module, including the
number of hidden layers, hidden nodes, learning rates, activation functions, and batch
sizes. Subsequently, the testing dataset was used to evaluate the ability of the model
to generalize. The testing dataset encompassed scenarios not encountered during the
training and validation phases to assess the generalization performance of the model.
These scenarios included different user distances and varying numbers of antennas at
the BS. The training/validation dataset consisted of 14,000 samples, covering data rates
ranging from χ = 1 bits/s/Hz to χ = 10 bits/s/Hz, EH requirements from ε = −16 dBm
to ε = −30 dBm, eight antennas at the BS, and the previously mentioned range of distances.
The specifics of the testing dataset for each scenario are outlined later in this paper. In
addition, the exponential linear unit (ELU) was selected as the activation function for the
hidden layers, and the Adam algorithm was used as the optimizer. The training data for the
PCA module were composed of 6000 channel vectors. Regarding the PSO-SDR method, the
simulation parameters considered for the PSO algorithm after fine-tuning the parameters
were S = 15, w = 0.7, ac = bc = 1.494, and Tmax = 25.

Firstly, this paper presents an analysis of the convergence behavior of the DNN module
while considering different hyperparameters. Figure 6 shows the convergence performance
of the DNN module under varying learning rates (lr), numbers of hidden layers, and
numbers of principal components (PCs) in the PCA module. In the legend in Figure 6, the
last term represents the number of units × the number of hidden layers, where all hidden
layers have the same number of hidden units. Regarding the learning rate, a high learning
rate leads to rapid convergence, but it can also result in overfitting, as observed in the case
of lr = 0.005. On the other hand, low learning rate values require a significantly higher
number of epochs to achieve convergence, and they may not guarantee the lowest error
value, as observed in the case of lr = 0.0001. Regarding the number of PCs, it is important
to note that the PCA module was applied to each channel vector, resulting in each channel
vector being represented by a certain number of PCs. The lowest error was achieved when
the number of PCs was 2 or 3. In particular, when PC = 2, it implies a lower number of
required input nodes in the DNN module. For the remainder of the simulations, a learning
rate of lr = 0.001 and PC = 2 were selected based on these observations.
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Figure 6. Convergence behavior of the proposed DNN module.

We utilized the recurrent neural network (RNN) model [38] in our simulation results
for comparative analysis. RNN, a type of neural network, is specifically designed to
analyze sequences of vectors, where values in successive vectors exhibit interrelationships.
However, it is noteworthy that each sample in our dataset comprised a singular vector
containing the user’s rate requirements, EH requirements, and the reduced representation
of the channel vectors post-PCA module. To incorporate the RNN into our simulations,
we configured the number of vectors in the sequence to one and set the size of the hidden
layer to 150.

Figure 7 shows the variation of the sum transmission power of the PB and BS with
respect to the data rate requirements, χ, considering a minimum EH requirement of
ε = −24 dBm. The data rate requirement serves as a constraint in the proposed opti-
mization problem (5) and must be satisfied by the BS for all users in the system. As the rate
requirement increases, the BS must allocate more transmission power to meet the specified
rate, thereby increasing the total transmission power. Although the PB does not transmit
information signals, their energy-carrying signals aid in meeting the EH requirements
but are considered interference at the ID module of PS users. In particular, we observed
that deploying the PB enabled a reduction of up to 3 dBm in the total transmission power
for all the multiple-access methods compared. Furthermore, the RSMA scheme achieved
significantly lower transmission power with and without the PB compared to their respec-
tive SDMA- and NOMA-based counterparts. Moreover, the proposed DNN-RSMA-based
solution achieved a similar result to the near-optimal scheme of the PSO-SDR RSMA while
significantly reducing the computational complexity. In particular, the complexity of the
PSO-SDR method is denoted as O(S · Tmax · OSDR), and the complexity of the DNN-based
method is represented as O(ODNN +OSDR), where OSDR is the computational complexity
of solving problem (7) using the SDR method, and ODNN represents the computational
complexity of predicting the common rate variables. Consequently, the proposed DNN-
based method was approximately S × Tmax times faster than the PSO-SDR near-optimal
scheme. In addition, we observed that the RNN model achieved performance comparable
to that of the proposed DNN. This similarity arises because when the input is a single
vector, the RNN exhibits a layer-wise architecture similar to that of a basic neural network.
Furthermore, the proposed DNN demonstrated lower computational time compared to the
RNN. Specifically, the RNN required a computational time of 191.232 s for training and
0.002 s for testing, whereas the proposed DNN required a computational time of 40.295 s
for training and 0.001 s for testing. These simulations were conducted on a computer
equipped with an Intel Core i7-6700 CPU and 16 GB of RAM. Therefore, the proposed
DNN emerges as the most suitable neural network architecture for solving the proposed
optimization problem.
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Figure 7. Total transmission power of the PB and BS versus the required data rate targets of PS users.

RSMA outperformed SDMA because of its capability to decode a portion of the
interference through the SIC process on the common message (Figure 7), whereas SDMA
treats all interference as noise. In the NOMA scheme, the difference arises from using the
SIC process. In RSMA, the SIC process aims to cancel the interference from the common
message. In contrast, in the NOMA scheme, the SIC process is employed to eliminate
interference from the messages of users with weaker channel strengths. On the other
hand, achieving excellent performance under the NOMA scheme in multi-antenna systems
necessitates that users whose messages will be decoded by SIC have weaker channel
strengths and sufficiently aligned channels. This alignment requirement is uncommon in
real-world deployments and the channel model considered in Equation (13). Furthermore,
as the rate requirement of the PS users increases, the transmission power needed for the
beamforming vectors also increases, leading to performance degradation in the NOMA
scheme after reaching χ = 4 bits/s/Hz.

The variation of the sum transmission power of the PB and BS with respect to the
EH requirements, ε, is presented in Figure 8, considering a minimum rate requirement of
χ = 4 bits/s/Hz. Similar to Figure 7, a significant reduction of approximately 3 dBm was
observed in the total transmission power due to the deployment of the PB. Furthermore, the
benefit of applying RSMA compared to conventional methods, such as NOMA and SDMA,
in considerably reducing the transmission power was demonstrated. This is because RSMA
employed the SIC procedure, which improved the data rate at the ID module of PS users
while simultaneously reducing the PS factor to enhance harvested energy, thus reducing the
transmission power. Furthermore, the proposed DNN-based approach performed similarly
to the PSO-based method while significantly reducing computational complexity.
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Figure 8. Total transmission power of the PB and BS versus the required EH of PS and EH users.
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Next, we analyzed the generalization performance of the proposed DNN-based
method across considerably different scenarios from those used in the training phase.
In particular, we kept the trained DNN module fixed and tested its generalization perfor-
mance by varying the number of antennas, resulting in a modification of the components
of the channel vectors, and by varying the distance from the BS, resulting in a significant
alteration of the channel strengths. The channel vectors, along with the requirements for
data rates and energy harvesting, served as inputs for the PCA and DNN modules in the
proposed scheme to generate the common rate variables, as detailed in Section 3.1.

Figure 9 presents the variation of the sum transmission power of the PB and BS with
respect to the number of antennas equipped at the BS, considering a required minimum
rate of χ = 4 bits/s/Hz and a required minimum EH of ε = −25 dBm. As the number
of antennas at the BS increased, there was a reduction in the transmission power due to
the increased degrees of freedom. In the case of the DNN-based method, the training
dataset solely consisted of samples representing a scenario with a BS equipped with eight
antennas, as detailed at the beginning of Section 4. In contrast, the testing data in Figure 9
contained samples encompassing scenarios with varying numbers of antennas at the BS.
The utilization of the same trained DNN module with different numbers of antennas can be
attributed to the PCA module. In particular, independent PCA modules for each scenario
were trained based on the number of antennas while maintaining the same number of
principal components, L. Consequently, despite variations in the dimensionality of the
channel vectors, the output of the PCA module remained consistent across all different
numbers of antennas. Training a PCA module is a straightforward task because it only
requires channel vector samples and does not necessitate labels or target values.
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Figure 9. Total transmission power of the PB and BS versus the number of antennas at the BS.

The proposed DNN-based scheme demonstrated remarkable performance comparable
to that of the PSO-based method, even when the number of antennas differed from the train-
ing scenarios (Figure 9). This indicates strong generalization capabilities and robustness
to environmental changes. Furthermore, the RSMA-based methods consistently achieved
lower total transmission power compared to the traditional NOMA and SDMA methods.
Moreover, the deployment of the PB resulted in a significant decrease in the transmission
power, even with an increasing number of antennas at the BS. This can be attributed to the
ability of the PB to mitigate signal attenuation because of the distance from the transmitter,
a critical factor in scenarios with EH requirements for users.

Figure 10 shows the variation of the sum transmission power of the PB and BS
with respect to the position of the PS users, considering a minimum rate requirement
of χ = 4 bits/s/Hz and a required EH of ε = −25 dBm. In particular, the range of the
position of the PS users on the x-axis, xPS, was varied. This position was randomly selected
within the region of xPS ∈ [dx m, (dx + 5) m], where dx varied to analyze performance as
the distance between the PS users and the BS increased. The transmission power increased
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as dx increased because the average distance from the user to the BS also increased with
higher values of dx. Additionally, the difference in the transmission power between scenar-
ios with and without the PB diminished as the value of dx increased, owing to the fixed
location of the PB across all dx values. As dx increased, users were positioned farther from
the PB, resulting in increased attenuation of the energy signal. Although the energy signal
at the PS users was utilized for energy harvesting at the EH module, it was considered
interference for the ID module. Consequently, as the received energy signal power from
the PB diminished due to increased distance, it contributed less to the EH at the PS users.
Meanwhile, reliance on the received power from the information signal transmitted by
the BS became more dominant, leading to a reduction in the impact of the PB deployment.
Moreover, as shown in the previous figures, the RSMA method consistently achieved a
considerable decrease in the total transmission power in comparison to the NOMA and
SDMA methods.
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Figure 10. Total transmission power of the PB and BS versus the initial position range of PS users on
the x-axis.

In the case of the DNN-based method, the training dataset consisted solely of samples
representing a scenario with dx = 13 m, as detailed at the beginning of Section 4. In
contrast, the testing data in Figure 10 contained samples encompassing scenarios with
varying values of dx. The proposed DNN-based scheme exhibited high generalization
performance, achieving comparable transmission power to the PSO-based method. Fur-
thermore, this study analyzed the effect of slightly changing the number of PCs in the PCA
module. Similar to the results shown in Figure 6, the cases of PC = 2 and PC = 3 achieved
similar results, with PC = 2 having lower transmission power and demonstrating the best
generalization performance.

5. Conclusions

A multiuser MISO SWIPT system using RSMA was evaluated with the assistance
of a PB. The objective was to minimize the combined transmission power from the BS
and PB while optimizing the beamforming vectors, common rate variables, and PS ratios.
The proposed optimization problem was carried out under constraints that included EH
requirements for both EH and PS users and data rate requirements for PS users. The
proposed non-convex problem was divided into two parts. The first part was solved using
the PCA method to reduce dimensionality and a DNN to predict the common rate variables.
The second part used the SDR technique to optimize the PS factors and beamforming
vectors. Comparative schemes were developed based on the PSO algorithm and SDR
method for RSMA, along with a baseline scheme using NOMA.

Numerical simulations showed that RSMA significantly reduced the transmission
power compared to conventional methods such as NOMA and SDMA. Moreover, the pro-
posed DNN-based method achieved high performance, closely matching the results of the
near-optimal PSO-based scheme while considerably reducing computational complexity.
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Furthermore, this study tested the proposed DNN-based scheme across challenging sce-
narios that were significantly different from those used for training during data collection.
Across these scenarios, the DNN-based scheme exhibited high generalization performance.
Furthermore, strategically placing the PB close to EH users substantially decreased the
overall transmit power, effectively meeting their EH requirements.
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Abstract: The evolution of network technologies has witnessed a paradigm shift toward open and intel-
ligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising
solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy
multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN
ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have
gained considerable attention in recent years, offering promising avenues for network automation in
O-RAN. This paper presents a comprehensive survey of the current research efforts on network automa-
tion using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key
components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML
techniques. The survey then explores challenges in network automation using ML within the O-RAN
environment, followed by the existing research studies discussing application of ML algorithms and
frameworks for network automation in O-RAN. The survey further discusses the research opportunities
by identifying important aspects where ML techniques can benefit.

Keywords: open radio access networks; machine learning; artificial intelligence

1. Introduction

Open Radio Access Network (O-RAN) is a revolutionary concept in the field of wireless
telecommunications that aims to transform traditional, proprietary Radio Access Networks
(RAN) into open, intelligent, and interoperable networks. The O-RAN concept involves
separating the hardware and software components of RANs and enabling interoperabil-
ity and integration of solutions coming from different vendors. This open architecture
is made possible through the use of open Application Programming Interfaces (APIs),
standardized interfaces, and virtualization technologies, which allow RAN components to
be disaggregated and easily swapped out or upgraded. Thus, O-RAN is expected to bring
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greater flexibility, innovation, cost-efficiency, design flexibility, operational adaptability,
system functionality, deployment scalability, and function expandability to RANs, while
also supporting the demands of next-generation networks and services such as 5G/6G,
Internet of Things (IoT), and edge computing.

Over the past couple of decades, wireless communications have gone through several
transformations to support massive connectivity and to meet the demands of modern real-
time and mission-critical applications, as the target 5G and 6G Key Performance Indicators
(KPIs) include ultra-high reliability, low latency, and high-throughput. However, despite of
all advancements made in wireless systems, particularly in 5G, achieving all these goals
remains challenging. The key problems confronting stakeholders in 5G and 6G systems
include efficiently supporting wireless access across diverse frequency bands, dealing
with heterogeneous technologies, addressing a wide variety of application requirements
leading to complex protocol stacks, and managing the rising capital and operational
expenditure (CapEx and OpEx) needed for infrastructure upgrades and maintenance [1].
These challenges include the need to design an independent, service-focused network
architecture due to the diversity of Quality of Service (QoS) requirements, achieving
network agility while ensuring backward compatibility with existing equipment and
support for future upgrades, and guaranteeing network efficiency to avoid increased
computational complexity and a heavy load on the backhaul network [2].

The motivation behind the development of the O-RAN concept lies on the fact that
traditional RAN systems are proprietary, i.e., closed systems, limiting mobile network
operators (MNO) to obtaining all the radio, hardware, and software systems from a single
supplier when deploying a network at each region. Aside from the considerable impact on
RAN deployment CapEx and OpEx, this implies the lack of openness and interoperability,
which can hinder innovation and agility. Traditional RANs are monolithic systems, which
are designed to operate as integrated products, seen by the operators as black-boxes.
Traditionally, at its most basic level, the RAN architecture consists of a radio unit (RU) or
remote radio unit (RRU), a baseband unit (BBU), antennas, and various software-based
interfaces. As described above, this results in difficulty meeting the very strict and diverse
KPIs of modern networks. Consequently, the consensus was that the mobile network
should be more software driven, virtualized, flexible, and intelligent to provide all the KPI
goals and address the aforementioned challenges.

The RAN evolution towards O-RAN started with disaggregation, defined by 3GPP in
Release 15 [3], where the 5G NR RAN (more specifically gNB) functionalities split into three
logical nodes: the Central Unit (CU), the Distributed Unit (DU), and the Radio Unit (RU).
The CU handles gNB functions like transfer of user data, radio access management, po-
sitioning, mobility, and session management. A DU function is dependent on the func-
tional split option, but mainly manages baseband processing functions across cell sites.
The CU operation is controlled by the CU. The RU component is located near or integrated
into the antenna unit where the radio signals are transmitted, received, amplified, and
digitized. In traditional RAN configuration, sometimes called distributed RAN (D-RAN),
BBU and RRH are co-located in the same place in the cell site, in which they are directly
connected via Common Public Radio Interface (CPRI). Disaggregation option provides
new levels of flexibility and efficiency at RAN level by enabling the network operators to
decide where to locate each function and maximize performance. In 2009, centralized or
cloud RAN (C-RAN) has emerged as an efficient solution, exploiting disaggregation to
move the BBU functionalities to a centralized location, called BBU pool, while leaving the
RRU and antenna on cell site. The principle design idea of C-RAN is to move some of RAN
functionalities to the cloud infrastructure, the BBU pool could be implemented on a cloud
platform [4]. The path towards O-RAN making mobile networks “more software driven,
virtualized, flexible, intelligent and energy efficient”, as well as “cost-efficient and reli-
able” [2], is paved through the use of Network Function Virtualization (NFV) concepts. The
O-RAN concept is supported by several standard bodies such as the O-RAN Alliance [5],
the Third Generation Partnership Project (3GPP) [6], the European Telecommunications

252



Sensors 2023, 23, 8792

Standards Institute (ETSI) [7], the Next Generation Mobile Networks (NGMN) [8], and the
Optical Internetworking Forum (OIF) [9], to ensure interoperability and interconnection
between O-RAN components from different vendors.

As O-RAN environments are inherently complex, characterized by heterogeneity
and dynamism, with various hardware and software components from different vendors
working together, Machine Learning (ML) is expected to be an invaluable tool. The effec-
tiveness and efficiency of O-RAN architectures are intricately tied to the integration of ML
capabilities. ML techniques offer a plethora of advantages within O-RAN architectures.
ML algorithms excel at real-time analysis of extensive network data, including KPIs, end-
user behaviors, and network traffic patterns, all in real-time. This analytical strength
empowers the prompt identification of trends, anomalies, and performance issues, fa-
cilitating network optimization and predictive maintenance [10]. Moreover, ML plays
a vital role in resource allocation by intelligently assigning radio resources, optimizing
resource utilization, and enhancing QoS [11]. Additionally, ML algorithms facilitate data-
driven decision-making in O-RAN management and orchestration functions, such as auto-
mated network configuration, dynamic spectrum allocation, and intelligent traffic steering.
This streamlined approach reduces network management complexity and empowers MNOs
to optimize network performance. Overall, ML is a very important tool for O-RAN as it
allows for the provision of insights, efficient resource allocation, and automated manage-
ment capabilities.

In this paper, we embark on a comprehensive exploration of the current landscape
concerning ML applications in O-RAN. Our objective is to identify and analyze the pre-
vailing challenges that remain unresolved, preventing the full harnessing of ML’s potential
for enhancing O-RANs. While there have been several O-RAN survey papers in the liter-
ature [1,4,12–19], our survey paper stands out as it concentrates on the applications and
potential of ML within the O-RAN context, which has not been extensively addressed
in prior surveys. Table 1 provides a summary of the topics covered in relevant surveys,
along with their contributions, in order to provide a clear comparison with our work.
It can be noted that most of the existing surveys aim to provide a detailed tutorial on RAN
evolution, O-RAN architecture, and components and use cases. They all have different
focuses compared to our paper. For example, ref. [16] specifically focuses on the security
and privacy risks associated with Open RAN architecture, which complements our survey.
Meanwhile, ref. [17] centers its attention on the Non-Terrestrial Network (NTN), offering
an architectural solution for an O-RAN-based NTN system. In addition, although [18,19]
both acknowledge the prevailing challenges and prospective research directions in this
field, ref. [18] primarily examines the existing O-RAN specifications, while [19] focuses
on how Explainable AI (XAI) can contribute to O-RAN networks. Among the existing
survey papers, refs. [14,15] have a similar focus on ML in O-RAN. Ref. [14] mainly provides
a tutorial on how intelligent applications can improve the efficiency of O-RAN and the
future opportunities in O-RAN, while [15] looks into how deep learning solutions can be
integrated to the O-RAN architecture, as well as case studies. However, ref. [15] primar-
ily focuses on deep learning techniques rather than general ML techniques. Moreover,
while [14,15] discuss open problems and future research directions, they primarily look
at these from the perspective of O-RAN, rather than looking at the specific challenges
and opportunities associated with ML-empowered O-RAN. Different from the existing
surveys, in this article, we dive deep into the ML integration in O-RAN, covering re-
cent research works that study the application of ML in O-RAN, discussing emerging
issues and research opportunities that shall be addressed to fulfill its design commitment.
We believe this survey marks a significant milestone as the first comprehensive endeavor
aimed at summarizing recent studies and providing crucial technical guidance to re-
searchers interested in ML-enabled O-RAN. Within this paper, we also present research
opportunities across diverse areas encompassing data collection and analysis, as well as the
development, deployment, maintenance, and operation of ML within the O-RAN domain.
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Table 1. Summary of surveys relevant to ML-enabled O-RAN. H: High, M: Medium, and L: Low.
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Remarks

2023 [1] H M M This paper provides a detailed tutorial on O-RAN, describing its
architecture, design principles, and the O-RAN interfaces.

2021 [4] H L L This paper overviews the idea of O-RAN and presents ongoing
O-RAN Alliance standardization activities in this context, fol-
lowed by a study of traffic steering use case.

2022 [12] H L L This paper provides a comprehensive survey of O-RAN develop-
ment, encompassing a summary of the RAN evolution history, an
introduction to O-RAN technology, an overview of Open RAN-
related projects and activities, a discussion of standardization
efforts, challenges, and potential solutions.

2021 [13] M L L This paper provides an overview of the O-RAN Alliance RAN
architecture, highlighting its core building blocks and, subse-
quently, it presents a practical use case that leverages AI/ML-
based innovations.

2022 [14] H M M This paper presents an O-RAN architecture overview, delves into
AI applications within Op-RAN, and discusses the challenges
and opportunities in implementing intelligent solutions in 5G
and B5G telecommunications.

2022 [15] H M M This paper focuses on mapping existing deep-learning-based
studies to the O-RAN architecture, highlighting key technical
challenges, open issues, and future AI-enabled O-RAN research
directions.

2023 [16] M L L This paper examines security and privacy risks in O-RAN ar-
chitecture, proposes possible solutions and presents relevant
security standardization efforts.

2023 [17] M L L This paper focuses on Non-Terrestrial Networks exploring the
possible implementation of an O-RAN-based NTN solution.

2022 [18] H L L This paper identifies critical limitations in current O-RAN speci-
fications: security, latency, real-time control, and AI-based RAN
control.

2023 [19] H M L This paper focuses on XAI methods and explores their deploy-
ment within the context of O-RAN.

The structure of the remaining sections in this paper is as follows. Section 2 provides an
overview of the O-RAN architecture and its development, highlighting its design principles
that support network automation. In Section 3, we survey the existing ML applications
in the context of O-RAN. Section 4 focuses on the potential of O-RAN and discusses the
research opportunities for applying ML techniques to enhance various aspects of mobile
network operation within the O-RAN framework. Finally, Section 5 concludes the survey
and discussion presented in this paper. We illustrate the organization of this paper in
Figure 1.
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Figure 1. The overall structure of this paper.

2. O-RAN Architecture and Development

O-RAN architecture is a virtualized, software-driven, and open radio access network
(RAN) architecture that enables the integration of hardware and software components from
multiple vendors. It is designed to be modular, scalable, and flexible, with standardized
interfaces that enable interoperability between different RAN components. The O-RAN
architecture consists of multiple functional components that can be separated and managed
independently. Some of the key components in O-RAN are Radio Unit (RU), Distributed
Unit (DU), Central Unit (CU), RAN Intelligent Controller (RIC), and Service Management
and Orchestration (SMO). In the following, we shall first describe the O-RAN alliance,
architecture and softwarization developments, as well as their role in ML for O-RAN
network automation.

2.1. O-RAN Alliance

The O-RAN Alliance is a global industry consortium that was founded in 2018 to drive
the development and adoption of open and intelligent Radio Access Networks (RAN).
The alliance is made up of more than 200 member organizations, including mobile network
operators, network equipment vendors, and software companies.

The goal of the O-RAN Alliance is to create a more open, interoperable, and cost-
effective RAN ecosystem that can accelerate the deployment of 5G networks and support
new use cases and services. To achieve this goal, the O-RAN Alliance focuses on three
main areas:

• Standardization: the O-RAN Alliance works to develop and promote open standards
for RAN interfaces and APIs, enabling multi-vendor interoperability and reducing
network deployment costs;

• Software: the O-RAN Alliance develops and promotes open software for RANs,
including software-defined radio (SDR), virtualized RAN (vRAN), and open APIs for
software integration;

• Testing and integration: the O-RAN Alliance provides specifications, conformance
testing, and integration guidelines to ensure that O-RAN solutions can be easily inte-
grated into existing network environments and can interoperate with other vendors’
solutions.

Through its work in these areas, the O-RAN Alliance is helping to create a more open,
flexible, and efficient RAN ecosystem that can meet the demands of 5G networks and
support new use cases and services, such as industrial IoT, autonomous vehicles, and
smart cities.

255



Sensors 2023, 23, 8792

2.2. O-RAN Architecture

The O-RAN architecture is a set of open interfaces and protocols designed to enable
multi-vendor interoperability and support a wide range of use cases and services in RAN.
The architecture defines a modular and disaggregated approach to building RAN systems,
where different functional components can be developed and deployed independently by
a variety of vendors. Such an approach intends to increase innovation, reduce costs, and
enable faster deployment of new services and features.

The O-RAN architecture specifies main components and interfaces connecting the
components. The interfaces allow the Service Management and Orchestration (SMO) frame-
work to connect with O-RAN network functions and O-Cloud. Figure 2 illustrates the high
level O-RAN architecture, which can be viewed as Virtualized Network Functions (VNFs)
placed above the O-Cloud and/or Physical Network Functions (PNFs). The A1 Interface
between the Non-RT RIC in the SMO and the Near-RT RIC used for RAN Optimization,
O1 Interface between the SMO and the O-RAN Network Functions used for Fault, Con-
figuration, Accounting, Performance, Security (FCAPS) support and in the hybrid model.
The Open Fronthaul M-plane interface between SMO and O-RU supports FCAPS too.
While the O2 Interface between the SMO and the O-Cloud provides platform resources and
workload management, the O-Cloud Notification interface allows event consumers such
as an O-CU implemented on O-Cloud to subscribe to events or status. Moreover, the Y1
interface permits the Y1 consumers to subscribe or request the RAN analytics information
delivered by Near-RT RIC. Where the Y1 consumer stands for an entity or more, within
or outside of the public land mobile network (PLMN) trust domain that ingests analytics
information services after mutual authentication and authorization by subscribing to or
requesting the RAN analytics information via the Y1 service interface. There are three
main control loops that run simultaneously in O-RAN, depending on the use cases, which
are real-time (RT), which is limited to a maximum of 10 ms execution time texe; Near-RT,
with 10 ≤ texe ≤ 1000 ms; and None-RT, which can take 1000 ≤ texe ms. Multi-vendor
Slices use case targets enabling functions that belong to different vendors; there are many
possible configurations to deploy the Multi-vendor slicing, all of which share that one
O-RU is connected to one or more O-DUs. The advantages of such a use-case include a
higher flexibility and rapid deployment of services to market by network operators, sharing
RAN equipment among operators, optimizing CAPEX and OPEX among their existing
assets, and future investments. In addition, reducing the supply chain risk; for example,
if an existing vendor supplies a certain pair of vO-DU and vO-CU functions and if, for
business reasons or even political situations, it has to withdraw from a certain market,
then the operator can outsource and deploy alternative vO-DU and vO-CU that support
multi-vendor slicing functions. The O-RAN specification work has been covered by eleven
technical Work Groups (WG) to covers all the O-RAN Architecture parts, each WG has been
supervised by the O-RAN alliance technical steering committee. Below is a brief overview
of each WG:

• WG1: Use Cases and Overall Architecture. This WG is responsible for defining the
overall architecture of Open RAN and the use cases that it will support;

• WG2: Non-Real-Time RAN Intelligent Controller and A1 Interface. This WG is
responsible for defining the specifications for the Non-Real-Time RIC (Non-RT-RIC)
and the A1 interface. The Non-RT-RIC is a centralized controller that manages the non-
real-time aspects of the RAN. The A1 interface is the interface between the Non-RT-RIC
and the radio units;

• WG3: Near-Real-Time RIC and E2 Interface. This WG is responsible for defining the
specifications for the Near-Real-Time RIC (nRT-RIC) and the E2 interface. The nRT
RIC is a centralized controller that manages the near-real-time aspects of the RAN.
The E2 interface is the interface between the nRT RIC and the radio units;

• WG4: Open Fronthaul Interfaces. This WG is responsible for defining the specifications
for the open fronthaul interfaces. The fronthaul is the interface between the baseband
unit and the radio units;
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• WG5: Open F1/W1/E1/X2/Xn Interfaces. This WG is responsible for defining the
specifications for the open F1/W1/E1/X2/Xn interfaces. These interfaces are used to
communicate between different parts of the RAN;

• WG6: Cloudification and Orchestration. This WG is responsible for defining the
specifications for cloudification and orchestration of the RAN. Cloudification is the
process of moving the RAN to the cloud. Orchestration is the process of managing
the RAN;

• WG7: White-box Hardware. This WG is responsible for defining the specifications
for white-box hardware for the RAN. White-box hardware is hardware that is not
proprietary to a specific vendor;

• WG8: Stack Reference Design. This WG is responsible for defining the stack reference
design for the RAN. The stack reference design is a model of the RAN that can be used
to develop and test different RAN implementations;

• WG9: Open X-haul Transport. This WG is responsible for defining the specifications
for open X-haul transport for the RAN. X-haul transport is the transport of data
between the baseband units and the radio units;

• WG10: OAM. This WG is responsible for defining the specifications for operation, ad-
ministration, and maintenance (OAM) for the RAN. OAM is the process of monitoring
and managing the RAN;

• WG11: Security. This WG is responsible for defining the specifications for security
for the RAN. Security is a critical part of the RAN, and this WG is responsible for
ensuring that the RAN is secure.

Figure 2. High-level architecture of O-RAN showing internal, 3GPP, and external system inter-
faces [20].

Figure 3 provides further detail of the O-RAN architecture. As can be seen, O-RAN
consists of O-RU, O-DU, O-CU, Near-RT RIC, Non-RT RIC, and SMO. The Uu interface
between UE and O-RAN components inside the green dashed area, as well as the UE
and O-eNB, denote all the O-RAN functions required to support the Uu interface NR. On
the other hand, the O-eNB terminates the Uu interface for LTE. The 3GPP defined and
maintained interfaces and is considered part of the O-RAN architecture includes the E1,
F1-c, F1-u, NG-c, NG-u, X2-c, X2-u, Xn-c, and Xn-u, as depicted in Figure 3 [20]. In the
following, we shall elaborate these O-RAN components.
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Figure 3. Logical architecture of O-RAN, its associated interfaces, and the three control loops.

2.2.1. O-RU

The major O-RU hardware and software components in Figure 4 highlight the internal
and external interfaces that are required. The O-RU terminates the O-RAN Fronthaul
(FH) interface, known as Lower Layer Split, as well as Low-PHY functions of the radio
interface towards the UE. This is a physical node. The O-RU terminates the O-RAN
Fronthaul M-Plane interface towards the O-DU and SMO. The O-RU termination of the O1
interface towards the SMO is under study under the O-RAN Operations and Maintenance
Architecture. A single split point, known as “7−2x”, but which allows a variation, with
the precoding function located either “above” the interface in the O-DU or “below” the
interface in the O-RU. For the most part, the interface is not affected by this decision, but
there are some impacts, namely to provide the necessary information to the O-RU to execute
the precoding operation. O-RU(7−2) within which the precoding is not done (therefore
of lower complexity) are called “Category A” O-RUs, while O-RU(7−2) within which the
precoding is done are called “Category B” O-RUs, as in Figure 5.

Figure 4. O-RU high-level architecture showing the main hardware components, and internal and
external interfaces.

258



Sensors 2023, 23, 8792

Figure 5. The O-DU(7−2)/O-RU(7−2) split point option showing requirements for Category A and
Category B for the O-RU.

2.2.2. O-DU

The O-DU is designed as a white box that performs the O-DU functions, such as
upper L1 and lower L2 functions. The hardware includes a motherboard that contains a
processing unit, memory, the internal I/O interfaces, and external connection ports. There
are two split options for the O-DU, which are O-DU(6) and O-DU(7−2). WG4 considers the
O-DU(7−2) functional split option due to the two competing interests. The first is to keep
an O-RU as simple as possible, because size, weight, and power draw are the primary
deciding considerations, and the more complex an O-RU, the larger, heavier, and more
power-hungry the O-RU tends to be. The second is to have the interface at a higher level,
which tends to reduce the interface throughput relative to a lower-level interface. However,
the O-RU tends to be the more complex with higher levels of interface.

The fronthaul and backhaul interface are used to carry the traffic between O-RU(7−2),
FHM(7−2), FHGW(7−2)→8 and O-DU(7−2), as well as O-CU and O-DU(7−2). The O-DU(7−2)
design may also provide an interface for hardware accelerator option design. The other
hardware functional components include synchronization and timing, the storage for
software, hardware and system debugging interfaces, and board management controller,
just to name a few; the O-DU(7−2) designer will make decision based on the specific needs
of the implementation. Note that the O-DU(7−2) hardware reference design is also feasible
for O-CU and integrated O-CU/O-DU(7−2).

2.2.3. O-CU

The O-CU is another white box hardware that performs the O-CU function of upper L2
and L3. The O-CU hardware motherboard contains a processing unit, memory, the internal
I/O interfaces, and external connection ports. The midhaul (MH) is used to carry the traffic
between O-CU and O-DU(7−2), and the backhaul (BH) interface is for carrying the traffic
between the O-CU and core network. Other hardware functional components, such as
the storage for software, hardware and system debugging interfaces, board management
controller, and more, are based on the specific needs of the implementation. The hardware
of the O-CU is similar to the O-DU(7−2). However, the hardware accelerator is mandatory
to offload computationally intensive functions and to optimize the performance under
varying traffic and loading conditions.

2.2.4. Near-RT RIC

The Near-RT RIC is a logical function that can control and optimization RAN elements
and resources in near real time by collecting detailed data from the O-RAN logical compo-
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nents and provide actions over the E2 interface. In addition, the A1 Interface enables Non-
RT RIC to drive the policy guidance of the Near-RT RIC applications/functions and support
AI/ML. Near-RT RIC hosts many functions in Figure 6, which include the following:

• Database and related Shared Data Layer (SDL) services: to exchange information
between RAN and UE to support specific use cases;

• xApp subscription management: to manage subscriptions from different xApps and
provides unified data distribution to xApps;

• Conflict mitigation: to resolve potentially overlapping or conflicting requests from
multiple xApps;

• Messaging infrastructure: to allow message interaction within the Near-RT RIC functions;
• Security, which provides the security scheme for xApps;
• Management services: to manage fault, configuration and performance as a service

producer to SMO;
• Logging service: to provide tracing and metrics collection which capture, monitor,

and collect the status of Near-RT RIC internals and transfer to external systems for
further evaluation if needed;

• Interface termination: to provide interfacing to other O-RAN components;
• Functions hosted by xApps: to allow services to be executed at Near-RT RIC;
• API-Enabled function: to support capabilities related to Near-RT RIC API operations

such as API repository/registry, authentication, discovery, generic event subscrip-
tion, etc.;

• AI/ML support: to feature data pipelining, training, and performance monitoring for
xApps;

• xApp Repository function: to manage selection of xApps for A1 message routing,
based on the A1 policy types and operator policies, and Access control of A1-EI types
for xApps based on operator policies.

Figure 6. Near-RT RIC functional architecture including the Near-RT RIC API component for the
xApps.

2.2.5. SMO and Non-RT RIC

The telecom industry widely considers the service-based architectural in network
implementation to give flexibility and future-proof solutions. In addition, the choice of
components that produce and/or consume certain services to the deployment allows
multi-vendor interoperability through the definition of standardized services and service
interfaces. It is important to have the perspective of two Non-RT RIC architecture views;
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the first one is the “Functional” view in Figure 7, showing the internal SMO framework and
the three categorical components: rApps, Non-RT RIC framework and the open APIs for
the rApps, while the “Service-based” view allows wide range of flexibility for deployment
and is future-proof, the main principles for this architecture illustrated in Figure 8 are
modularity, extensibility, functional abstraction, discoverability, composability, reusability,
and loose coupling.

Figure 7. Non-RT RIC functional architecture, showing the R1 and external interfaces [21].

Figure 8. Non-RT RIC architecture service-based view, in which the services are exposed to rApps
via the R1 [21].

2.2.6. O-RAN Interfaces

The O-RAN architecture is designed to promote interoperability, multi-vendor support,
and innovation in the RAN. Here are the main interfaces specified in the O-RAN architecture:

• Open Front Haul (OFH) interface: this interface connects the O-RU to the O-DU and
carries the digitized baseband signal and control information between the two units;
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• Fronthaul interface: This interface connects the O-RU to the O-CU in the O-RAN
Cloud RAN architecture. The interface carries the digitized baseband signal and
control information between the O-RU and the O-CU;

• E1 interface: This interface connects the O-DU to the O-CU and carries control and
management information between the two units;

• E2 interface: This interface connects the O-CU to the O-CU-CP and carries control and
management information between the two units;

• A1 interface: This interface connects the O-RAN Controller to the O-RAN Element
Management System (EMS) and provides management and monitoring capabilities
for the O-RAN network;

• O1 interface: This interface connects the O-RAN SMO to the O-RAN Controller and
provides service orchestration and management capabilities;

• O2 interface: This interface connects the O-RAN Controller to the O-RAN Radio
Resource Management (RRM) and provides resource management and optimization
capabilities for the O-RAN network;

• O3 interface: This interface connects the O-RAN Controller to the O-RAN Network
Management (NM) and provides network management and monitoring capabilities.

2.2.7. Interface with 3GPP

3GPP interfaces are also used in O-RAN to provide message exchanges between O-RAN
components following 3GPP signaling specifications. They are summarized as follows:

• X2 interface: The X2 interface is used to exchange control information and user data
between different eNodeBs (eNBs) in a 4G/LTE network. It is also used to facilitate
inter-cell handovers and load balancing. O-RAN uses the same X2 interface for
communication between O-RAN radio units and between the O-RAN radio units and
3GPP core network;

• S1 interface: The S1 interface is used to exchange control and user plane information
between the eNodeB and the 4G/LTE core network. This interface is responsible for
mobility management, session management, and connection management. O-RAN
uses the same S1 interface for communication between the O-RAN radio unit and the
3GPP core network;

• F1 interface: The F1 interface is a new interface introduced by O-RAN that connects
the O-RAN radio unit to the O-RAN distributed unit. This interface carries the radio
frequency (RF) signals and also supports the exchange of control and management
information. The F1 interface is similar to the W1 interface used in 3GPP’s split
architecture;

• E2 interface: The E2 interface is used in the 5G RAN to exchange control and man-
agement information between different network functions, including the radio access
network function (RANF), central unit (CU), and distributed unit (DU). The O-RAN
Alliance has developed an E2 interface specification that is compatible with the 3GPP
E2 interface.

2.3. ML Workflow in O-RAN

ML workflows in O-RAN involve a series of steps that enable the development,
deployment, and optimization of ML models for network operations. The workflow
consists of several stages of processing. We shall elaborate the processes involved in ML
workflow in the following [22]:

• Data collection: The first step in the ML workflow is to collect and preprocess the data.
This involves identifying the relevant data sources, collecting the data, and preparing
it for analysis. This step is crucial as the quality of the ML model depends on the
quality of the data used to train it;

• Data exploration and analysis: In this step, the collected data are explored to gain
insights and identify patterns. This involves data visualization, statistical analysis, and
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other data exploration techniques to understand the underlying structure of the data.
This step is important for selecting appropriate ML algorithms and for identifying
relevant features that can be used to train the models;

• Model development: In this step, ML algorithms are selected and trained using the
data. This involves selecting the appropriate algorithms, feature engineering, and
tuning the model hyper-parameters. Once the model is trained, it is evaluated and
validated to ensure that it is accurate and reliable;

• Model deployment: In this step, the trained model is deployed into the O-RAN
environment. This involves integrating the model into the network operations en-
vironment and deploying it in a way that allows it to access the relevant data and
provide real-time predictions or recommendations. This step also involves monitoring
the performance of the deployed model to ensure that it is performing as expected;

• Model optimization: Once the model is deployed, it needs to be optimized to improve
its performance. This involves monitoring the performance of the model in real-time,
identifying areas for improvement, and updating the model as necessary. This step
is crucial for ensuring that the ML models continue to provide accurate and reliable
predictions and recommendations over time;

• Model maintenance: The final step in the ML workflow is model maintenance. This
involves maintaining the ML model, updating it as necessary, and ensuring that it re-
mains aligned with the evolving needs of the O-RAN network operations environment.

Overall, the ML workflow in O-RAN involves a series of steps that enable the develop-
ment, deployment, and optimization of ML models for network operations. By leveraging
the power of ML, network operators can improve network performance, reduce energy
consumption, and provide a better user experience.

2.4. O-RAN Open Source Development Landscape

During the past few years, open source platforms for cellular networks have been
developed to move away from proprietary hardware and mitigate technological bar-
riers [23–26]. The main open source projects implementing O-RAN specifications are
OpenAirInterface (OAI) [24], srsRAN [25] and O-RAN Software Community (O-RAN
SC) [23]. These three communities are sharing the source code of different modules with
different states of progress. For example, the OAI has implemented the CU/DU split by
supporting Software Defined Radio (SDR) USRP devices [27] for RU and on-the-shelf UEs.
The testbed Colosseum [28] was built to provide remote access to OAI resources configured
with 256 SDRs. It is a large-scale wireless testbed with a massive channel emulator, which
enables the design, development, and testing of solutions at scale in various deployments
and channel conditions. The testbed is open to the research community and can be used
for experimental research with different applications. On the other hand, srsRAN has
developed full stacks of UE and gNB with a simple setup compared to the OAI platform.
The O-RAN SC has published partly their industrial solutions of the O-DU with Medium
Access Control (MAC) and Radio Link Control (RLC) protocols. In parallel, the Software-
Defined Radio Access Network (SD-RAN) paradigm enables RAN programmability and
introduces new APIs for control extending platforms like OAI and srsRAN to support
control/data plane separation [29]. The objective of SD-RAN is to focus on the L2 proto-
cols: Radio Resource Control (RRC), RLC, MAC and Packet Data Convergence Protocol
(PDCP) protocols. FlexRAN [30] is an example of SD-RAN platforms promising flexibility
by supporting dynamic control functions and robustness by handling network applica-
tions with critical real-time requirements. Other new SD-RAN controllers, such as the
5G-EmPower [31], deal with other challenges like heterogeneity of mobile RANs or RAN
slicing with NexRAN [32]. These open source platforms and APIs represent key first steps
toward the availability of a fully open-source O-RAN solution.

These platforms allow the research community to experiment with new methods
and replace the simulation hypothesis. The research results would be with significant
impact. Furthermore, without the shift of the softwarization of the RAN functions as
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close as possible to the antenna, the ML algorithms cannot be applied efficiently for
the reconfiguration of the network. In addition, the 3GPP specifications are upgraded
frequently with new interfaces and protocols to improve the global network performances
and handle new applications. For example, the 3GPP release 17 introduces new NTN and
satellite communications and the new Multicast/Broadcast Session (MBS) in the definition
of protocols’ functions. If the RAN is closed with a full hardware implementation, the
solution would not be maintained quickly and the research community would not have
access to new challenges. However, the flexibility of the software radio would allow the
designer and the researcher to quickly maintain the O-RAN solutions as well as design,
prototype, demonstrate, and analyze the O-RAN functions in the real-world settings.

There remain challenges in the implementation and testing of open source O-RAN
solutions. Limited use cases, missing functionalities in the current implementation, as
well as the affordability of hardware devices are some obstacles to make further progress
in O-RAN implementation. For example, at the time of writing, O-RAN SC [23] shares
only the O-DU without the complete implementation of the CU. This O-DU handles the
registration of one UE with one distributed unit and without the possibility to test it with an
SDR. The srsRAN [25] and O-RAN SC [23] support the release 15 of the 3GPP specifications,
and they do not support the side link V2X communications use case. The OAI [24] uses
USRP X300, which is a capital outlay. Therefore, research and development efforts, such as
developing a specific SD-RAN for existing RIC implementation (for example, FlexRIC [33]),
or supporting new 3GPP specifications (for example, splitting of the CU into CU-UP and
CU-CP [34]), are open for both research and industrial communities to contribute.

3. ML Application in O-RAN

One key advantage of the Open RAN architecture is its ability to separate intelligent
controls from the core network. This architecture gives flexibility for RAN to incorporate
intelligence toward network control. With this architecture, ML can be easily integrated into
Open RAN, not only to automate and optimize network operations, but also to improve
network efficiency, introducing new use cases and services that are traditionally challenging
to implement in the RAN.

While being developed, the concept of Open RAN has already sparked many research
works in investigating the potential of Open RAN and its performance benefits. Notably,
substantial research works focusing on applying ML algorithms in Open RAN have ap-
peared in the literature. Improvements, such as optimizing radio resource management
and network slicing, automating component deployment for efficient use of computing
and communication resources, or improving energy efficiency, are some research activities
receiving attention. The structure of this section is summarized in Table 2, and the content
in each subsection is summarized in Tables 3–12.

Table 2. The structure of Section 3 for ML applications in Open RAN.

Title Ref Title Ref

Section 3.1 O-RAN Deployment [15,35] Section 3.2 AI/ML Implementation [22,36]

Section 3.3 Network Slicing [37–40] Section 3.4 Dynamic Function Split [41–43]

Section 3.5 Resource Management [44–47] Section 3.6 Session Management [48–50]

Section 3.7 Traffic Steering [4,51,52] Section 3.8 Mobility Management [53]

Section 3.9 Energy Efficiency [54] Section 3.10 Satellite NTN [55]

3.1. O-RAN Deployment

The deployment of an Open RAN poses challenges in terms of computing and network
resources. Integrating hardware and software components from multiple vendors can
lead to issues with resource allocation, such as conflicts over computing power, storage,
and bandwidth. Interoperability challenges can also lead to inefficiencies in resource
utilization, as different components may have different requirements and capabilities.
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In addition, security concerns related to access control, data protection, and privacy can
require additional computing and network resources to address. Overall, the deployment
of O-RAN requires careful planning and management of computing and network resources
to ensure optimal performance and security.

In [15], the authors investigate how the deep-learning mechanisms could be deployed
in an O-RAN architecture, via its hierarchical RIC modules. In particular, its O-RAN
placement within the Near-RT RIC, O-CU, O-DU, and O-RU modules, as well as the
associated functional blocks and O-RAN interfaces, is discussed. The authors describe
the general procedure to implement automated DL models in O-RAN to achieve stable
performance of these models by introducing ML system operations (MLOps) concept in
O-RAN. They then go deeper and explore two case studies for DL deployment in O-RAN,
which are classified as supervised and/or deep reinforcement learning (DRL).

For supervised learning, the authors identify two approaches to deployment: a central-
ized approach and a federated learning (FL) distributed architecture. The authors propose
that for either approach, in order to enhance RAN performance and reduce operational
cost, RICs would integrate embedded ML capability. To achieve this, local models (i.e.,
“xAPPs”) would run in the Near-RT RIC and global model parameters would be generated
by the Non-RT RIC. In the centralized case, the data would be held in the Non-RT RIC, but
for FL, the xApps could be built in the Near-RT RIC using O-RU level data, and just the
local parameters transmitted to the Non-RT RIC for aggregation, leaving the data to be held
locally. In either approach, the Non-RT RIC would then send out the global parameters
to the xApps to update their models, which then operate in real-time using data obtained
from the O-RUs via the O1 interface.

In the case of reinforcement learning (RL), the authors focus the deployment strategy
on the actions of the RL algorithm intelligent agent(s), which should be deployed near the
Near-RT RIC to improve the performance of xApps. This agent then uses the E2 interface
to communicate with the O-DU and O-CU-C/U modules to take periodic actions to update
the policy of resource allocation and scheduling in the O-DU’s MAC layer.

Additionally, the agent connects to the O-RU through the O1 interface to receive the
obtained reward based on user experience quality and new state of the system expressed
by the total number of allocated resource blocks and users’ density. By using inputs and
rewards, the ML model can be trained to make data-driven decision more accurately.

The authors then discuss options for control of the training and deployment process
for ML systems. The first option is a fully manual process with review by network staff
before deployment of an updated run-time system. The authors envisage that this will be-
come inadequate, however, in cases where data profiles vary with time, requiring frequent
retraining. They propose an automated pipeline process, triggered by various predefined
criteria, to retrain, validate, and deploy the updated ML systems. Pipeline metadata are
retained in case a roll-back to a previous model is required, and to assist in debugging.
The performance of RAN, which is based on manually created and deployed ML models,
may degrade due to the dynamics of the radio access environment, or even the data profiles
of the environment; as a result, the authors propose a general procedure to implement
automated DL models in O-RAN to achieve the stable performance of such O-RAN models,
called MLOps. Furthermore, the Non-RT-RIC module can monitor the Near-RT-RIC perfor-
mance for implementing the ML models using the A1 interface to pass the information to
enable ML automation. In addition, the article shows that the O-RAN architecture supports
the design of machine-learning-based schemes to provide optimization for the Automatic
Neighbor Relation (ANR) function of a Self Organizing Network (SON), which allows
gNodeB handovers process improvement and provides an example article [56], where both
Acumos Framework and Open Network Automation Platform (ONAP) were used to create
the ML models that the O-RAN RIC module can execute, monitor, and manage the model
design workflow with.

Finally, the authors identify a number of open problems in the deployment of DL
systems in O-RAN. A critical issue is security, where the large number of new interfaces
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and the potential lack of trust between the components results in a significant number of
new threats. The authors also identify issues with the integration of network slicing, self-
organizing network functions and edge computing entities, the use of online DL systems,
scalability, and challenges with energy management.

In order to overcome the challenges with the integration of network slicing capabili-
ties within the O-RAN environment, the authors of [35] tried to optimize the admission
and placement of O-RAN slices using DRL. The authors emphasize that while previous
works considered the placement of slices to optimize processing and bandwidth resources,
they have not considered admission control or the long-term impact of admitting a slice.
The authors propose an optimization model using a joint RL approach to intelligently
admit and place network slices in the available resources of different load scenarios.
The proposed solution is compared with two baseline methods, a greedy heuristic and a
DRL-based solution (RMAX) [57], under two load scenarios, low and high load. The results
show that the proposed solution outperforms the baseline methods in terms of revenue,
cost, and total profit for both scenarios, and therefore maximizes the long-term profit of
infrastructure providers by considering revenue factors of slices and the idle cost of servers
to deploy them.

Table 3. Summary of current efforts on ML applications for O-RAN deployment.

Year Ref Contribution

2022 [15]

Proposed a centralized/federated learning approach for the deployment of deep
learning mechanisms in the O-RAN architecture, while the integration of RL mecha-
nisms is associated with the Near-RT RIC, O-CU, O-DU, and O-RU modules. The E2
and O1 interfaces are explored for RL-based resource allocation and scheduling.

2022 [35]
Proposed a joint DRL-based solution using PPO to solve an optimization problem
aiming to intelligently admit and place network slices in the O-RAN environment
considering the available resources and different network loads.

3.2. AI/ML Workflow Implementation in O-RAN

The O-RAN specification addresses the overall architecture and solution for AI/ML
Workflow-related requirements in [22] for the O-RAN use cases. These requirements allow
automating AI scaling, where Data, Model Training, and Model Evaluation pipelines are
key points to make AI faster, easier to deploy, and able to scale to larger and more complex
problems.

In [36], the authors adopt the importance of ML training pipeline automation to
propose ML pipeline automation techniques to apply the MLOps level 1 (ML pipeline
automation) to the RIC platform, where they use Kubeflow for supporting the end-to-end
lifecycle of the model management and propose the training pipeline automation to the RIC
Platform to conduct the online training process. However, the authors use the KFServing
inference service to deploy Kubeflow’s trained model. The new ML xApp type structure
removed the RMR/gRPC adapter and replace it by using a Shared Data Layer (SDL) and
RIC Message Router (RMR) libraries directly from the ML xApp. The authors show that
the round trip time of the inference request between assisted xApp and ML xApp reduced
significantly when the number of requests is more than 300. To find how an RL model
application performs under the proposed RIC AI/ML workflow, the authors trained it
to solve the resource allocation in the DU optimization problem using PPO to show the
improvement in user throughput.
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Table 4. Existing studies on ML applications for AI/ML implementation in O-RAN.

Year Ref Contribution

2021 [22] Provides an initial O-RAN standard the terminology, workflow, and requirements,
related to AI/ML model training, distribution and deployment.

2021 [36] Proposed ML pipeline automation technique to manage ML training in O-RAN RIC.

3.3. Network Slicing

Network slicing in O-RAN refers to the ability to partition a physical network into
multiple virtual networks, each tailored to specific use cases or applications. Each network
slice has its own set of resources, including bandwidth, processing power, and storage,
which can be dynamically allocated and managed according to the needs of the specific use
case. O-RAN network slicing enables operators to offer customized services to their cus-
tomers, such as low-latency communication for industrial applications or high-bandwidth
streaming services for consumers. It also allows multiple services to be delivered over the
same physical infrastructure, maximizing resource utilization and improving efficiency.
The O-RAN architecture provides a framework for implementing network slicing, with the
RAN and the CN working together to manage and allocate resources. The RAN is respon-
sible for managing the radio access resources, while the CN is responsible for managing
the core network resources. Together, they can allocate and manage resources across the
network slices as required.

The synergies between O-RAN and network slicing, as well as SON and MEC tech-
nologies, were explored in [58], where the O-RAN platform was proposed as a common
denominator for the integration of those technologies via proper modifications and exten-
sions of its present architecture. It has been shown that an O-RAN-centric approach is
beneficial, and such integration solves some of the issues not well-addressed by the current
O-RAN implementation. Also, due to the integration, some components of the contributory
technologies can be removed or reused.

ML algorithms can be used to automate the process of creating, modifying, and
deleting network slices based on changing network conditions. By combining predictive
analytics, real-time monitoring, optimization, and intelligent resource allocation, ML al-
gorithms can create a closed-loop feedback system that can automatically adjust network
slices to meet changing network conditions. The main point is to enable the third party to
develop better ML algorithms. Particularly for network slicing, we can capture data for
training purposes so as to improve the efficiency of network slicing. Based on real-time
monitoring, ML algorithms can identify changes in network conditions. By monitoring
network performance, ML algorithms can detect changes in network traffic, demand, and
capacity, and can modify network slices in response. Then, ML algorithms can be trained to
learn how to optimize network slicing based on changing network conditions. By consider-
ing factors such as network traffic, user demands, and network capacity, machine learning
algorithms can adjust the size and characteristics of network slices to improve network
performance and reduce energy consumption. With the network slicing, ML algorithms
can then optimize the allocation of network resources to different network slices based on
changing network conditions. By learning from historical data and network performance
metrics, machine learning algorithms can adjust the allocation of network resources to
different slices in real-time, and can optimize resource utilization to improve network
performance and reduce energy consumption.

In particular, ML can be of help to network slicing by (i) traffic forecasting; (ii) ad-
mission control; and (iii) resource allocation [37]. They reflect three key network slicing
building blocks that, together, aim at ensuring network slicing service level agreements
(SLAs) are fulfilled. The traffic forecasting block allows us to predict the evolution of traffic
load and resource usage for slices over future time instants. The outcome of the traffic
forecasting solution can be fed into the slice admission control solution and slice resource
allocation solution to enable better decisions (e.g., maximize system resource utilization).
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The admission control decides upon the slices to be served over future time instants, based
on different criteria, e.g., resource availability, resource efficiency, operator revenue, etc.
It can also be built on the outcome of the traffic forecasting for refining admission deci-
sions in an anticipatory manner. Once a slice/user is admitted, the resource allocation
block assigns the resources to each slice/user by avoiding over-provisioning and under-
provisioning of the resources and ensuring the SLAs are respected.

O-RAN is a promising RAN architecture that inherits all the necessary features, such
as intelligence, open and standard interfaces, and closed control loops, to facilitate resource
management in a network shared among verticals. In [38], AI techniques are used to
perform predictions of future SLA violations and perform corrective actions in advance.
Specifically, a recurrent neural network model is utilized to predict the amount of resources
required over each slice, given the volume of traffic it carries. E2E O-RAN setup has been
used for evaluation of the intelligent closed control loop and resource provisioning scheme,
for network slicing and control of the radio and cloud resources of slices, respectively.

In O-RAN, distinct network slices must be dynamically controlled to avoid SLA
variation caused by rapid changes in the environment. A novel framework is introduced
in [39] to manage network slices through provisioned resources intelligently. Due to diverse
heterogeneous environments, the intelligent machine learning approaches require sufficient
exploration to handle the harsh situations in a wireless network and accelerate convergence.
To tackle this issue, a solution based on evolutionary-based DRL (EDRL) is proposed to
accelerate and optimize the slice management learning process in the RIC modules.

An elastic O-RAN slicing problem is addressed in [40] for industrial monitoring and
control in the industrial internet of things (IIoT) networks. This work aims to reduce the age
of information (AoI) penalty of fresh information updates from different IIoT devices while
considering the energy consumption of the IIoT devices. A matching game for solving the
IIoT association problem is introduced and an actor-critic-based DRL model applied for
O-RAN slicing-based resource allocation.

Table 5. Summary of ML studies for network slicing in O-RAN.

Year Ref Contribution

2022 [37] Introduced the application of ML to network slicing; discussed some open challenges
and potential solutions.

2022 [38]
Provided an intelligent closed-loop SLA assurance scheme for O-RAN slicing. A real-
world dataset of a large operator is used to train a learning solution for optimizing
resource utilization in the proposed closed-loop service automation process.

2022 [39] Developed a novel O-RAN slicing framework over an evolutionary-based DRL ap-
proach to manage network slices dynamically in the rapid changing environment.

2022 [40]

Addressed the elastic O-RAN slicing problem for industrial monitoring and control
in IIoT and introduced a matching game for solving the IIoT association problem,
and then applied an actor-critic-based deep reinforcement learning model for O-RAN
slicing-based resource allocation.

3.4. Dynamic Function Split

Dynamic function splitting is an essential technique for enhancing the efficiency and
flexibility of O-RAN. It involves breaking down a network node or application’s functions
into smaller and more modular components, which can be distributed across different
computing resources. By leveraging ML, O-RAN can benefit from real-time intelligence
and decision-making capabilities. ML algorithms can analyze network traffic patterns and
resource usage to predict future demand and allocate computing resources accordingly,
leading to better resource utilization, reduced latency, and improved overall network
performance. Additionally, ML can optimize the selection of computing resources for
specific functions based on factors like location, processing power, and energy efficiency,
resulting in better dynamic function splitting and better service delivery to users.
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In [41], the authors provide a RL-based approach to the problem of optimizing dy-
namic function splitting in O-RAN compliant disaggregated and virtualized RANs. Their
paper addresses the specific scenario of function splitting between a CU and one or more
DUs in a fully virtualized environment, as opposed to splitting between virtual and phys-
ical resources. They adopt a multi-agent RL approach using either Q-Learning or State
Action Reward State Action (SARSA); a similar but slightly different alternative to Q-
Learning. Optimization takes into account the traffic type (e.g., eMBB or URLCC) and also
energy efficiency. It is assumed that the CU and each of the DUs run on separate physical
environments, each with their own renewable energy source backed up by a battery-based
energy storage facility, with a grid connection as a reserve input. Optimization is designed
to minimize operational expenditure (Opex), including maximizing the usage of the re-
newable energy source, taking into account the energy remaining in the battery and also
the variation in grid electricity prices during the day. Optimization takes place over a
48-h period and comparative Opex results are presented using solar radiation data from
Stockholm, Cairo, Jakarta, and Istanbul, combined with broad traffic level assumptions.

In [42], a novel and efficient energy-efficient RAN disaggregation and virtualization
method tailored for O-RAN is presented. This method effectively tackles challenges
related to dynamic traffic conditions. By formulating the energy consumption as a multi-
objective optimization problem, the authors integrate the Advantage Actor-Critic (A2C)
algorithm with a sequence-to-sequence model to effectively address the sequential nature
of RAN disaggregation and capture long-term dependencies. The results demonstrate the
effectiveness of the proposed solution to reduce energy consumption for dynamic Virtual
VNF splitting over traditional approaches like D-RAN and C-RAN.

In [43], the authors propose a novel DRL-based algorithm to jointly solve the optimal
placement of network functions between the CU, DU, and user RU in an O-RAN archi-
tecture. In the meantime, the proposed algorithm aims to minimize the end-to-end delay
and deployment cost, while considering constraints such as processing capacity and link
bandwidth. The proposed method evaluates the impact of user mobility on the proposed
DQN-based joint user association and CU-DU placement scheme (DJRCD) using the SUMO
traffic simulation tool. The algorithm is tested using a mixed highway-urban region in
the north of the Greater Toronto Area in Canada, and it is found to be superior to existing
methods, achieving a reduction of up to 30% and 40% in end-to-end delay and deployment
cost, respectively.

Table 6. Summary of current efforts on ML applications for dynamic function splitting in O-RAN.

Year Ref Contribution

2021 [41] Applied RL to dynamically perform function split decisions for DUs and CU in a
virtualized O-RAN architecture.

2023 [42] Applied DRL to propose an energy-efficient RAN disaggregation and virtualization
approach across edge sites, including DUs, and a cloud site, including CUs.

2022 [43] Proposed a DRL-based algorithm to jointly solve the optimal placement of network
functions between the CU, DU, and user RU in an O-RAN architecture.

2023 [59]
Proposed a DRL-based algorithm for a multi-objective optimization to minimize
computational costs and the overhead associated with periodically reconfiguring
dynamic VNFs splitting.

The dynamic nature of O-RAN environments often necessitates VNF reconfigurations
during operation, resulting in additional overhead costs and traffic instability. To tackle this
challenge, the work in [59] introduced a multi-objective optimization approach aimed at
simultaneously minimizing VNF computational expenses and the periodic reconfiguration
overhead. This solution relies on constrained combinatorial optimization with deep rein-
forcement learning, where an agent works to minimize a penalized cost function derived
from the proposed optimization problem. The evaluation of this solution demonstrates
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substantial improvements, including a remarkable 76% reduction in VNF reconfiguration
overhead, accompanied by a modest increase of up to 23% in computational costs. Further-
more, when compared to the most resilient O-RAN system, Centralized RAN (C-RAN),
which does not necessitate VNF reconfigurations, this solution delivers savings of up to
76% in bandwidth while revealing a 27% overprovisioning of CPU resources.

3.5. Resource Management

In [44], the authors compare the performance of on-policy and off-policy DRL methods.
The former is based on Proximal Policy Optimization (PPO) and the latter on a Sample
Efficient Actor-Critic with Experience Replay (ACER). This process was conducted under
an O-RAN setup. The O-RAN architecture is a suitable technology for DRL implementation,
since it includes mechanisms that enable AI for more efficient network management and
orchestration. In particular, both Near-RT and Non-RT RICs are designed for hosting AI
workflows, namely DRL models. Since the objective is to optimize the resource allocation
of a real-time surveillance video application, the types of services were classified as latency-
sensitive and latency-tolerant. In this direction, two slices are established and managed
by an O-RAN cross-slice resource orchestrator hosted by the SMO. One slice serves video
surveillance cameras to transmit real-time videos via O-RAN to the 5G Core Network (CN)
and then to a Control Center (CC) for real-time monitoring, and a slice serving the latency-
tolerant users. The performance of the DRL on-policy mechanism was shown to provide
better overall results namely in terms of implementation simplicity, performance stability,
good trade-off between users latency and energy consumption, and faster convergence.

In [45], the authors consider the problem in which the eMBB and URLLC services
compete for limited and insufficient computing resources, and the operator must bal-
ance the allocation of these resources to users of both services in multiple O-RUs/shared
O-Cloud while maximizing fairness. The problem is initially modeled as an Integer Linear
Programming (ILP) problem. However, given the high complexity of solving the NP-Hard
ILP problem, a policy gradient-based RL algorithm aiming to solve a Markov Decision
Process (MDP) is used instead. The latter is expected to perform similarly to the ILP solver,
and both approaches are compared. Simulation results showed that the RL agent performed
close to the optimal results of the ILP solver not deviating from the ILP by more than 6%,
while being fairer at the same time.

The authors of [46] proposed an RL-based framework to manage traffic flows while
taking advantage of the O-RAN ecosystem. The framework receives periodic reports from
the O-RAN DU about the network status and dynamically adapts the per-flow resource
allocation for which each traffic flow can compete, and identifies the corresponding modu-
lation and coding scheme (MCS) that best fits the traffic flow KPIs and the channel quality.
The RL-based dynamic resource controller solution that leverages a policy differential
semi-gradient State-Action-Reward-State-Action (SARSA) targets the minimization of the
maximum difference between desired and actual throughput, across all active traffic flows.
The framework was integrated into an O-RAN platform, and is deployed as an xApp in
the Near-RT RIC. The deployed framework is very flexible, and can adapt its architecture
based on the number of traffic flows. Additionally, it is possible to create multiple policy
instances, each independently and sequentially serving a subset of users, improving the
framework’s scalability.

The research conducted in [47] employs RL for adaptive resource allocation, demon-
strating its utility in the context of Non-RT RIC. The ML agent deployed in the Non-RT
RIC acquires knowledge and learns a radio resource allocation policy capable of adapting
to dynamic environments, while simultaneously meeting diverse energy-driven criteria.
Within the learning context, key information such as the mean and variance of the channel
quality indicator (CQI) from the previous period and the bit number of new data are
aggregated at the onset of each period. Subsequently, three transmit parameters, including
transmit power, the highest MCS, and the maximum transmission airtime, are selected
and transmitted to the Near-RT RIC so that the transmit parameters can be applied to
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BSs. The chosen resource allocation policy’s effectiveness is evaluated at the end of each
period by the Near-RT RIC, which computes a reward indicative of the transmission rate.
This reward is then sent to the Non-RT RIC. Through this iterative learning process, the ML
agent gradually acquires knowledge and discerns the optimal resource allocation policy
capable of adapting to dynamically changing environments.

Table 7. Summary of current efforts on ML applications for O-RAN resource management.

Year Ref Contribution

2022 [44]

Demonstrated the performance of on-policy and off-policy DRL methods in the
form of PPO and ACER, respectively, and the performance was compared in an
O-RAN setup for resource allocation optimization in a real-time surveillance video
application.

2022 [45]

Employed a policy gradient-based RL algorithm as an alternative to the initially
proposed ILP, to solve an MDP and address the challenge of fairly allocating lim-
ited resources to eMBB and URLLC users from multiple O-RUs while providing a
significantly less complex solution.

2021 [46]
Proposed a RL-based dynamic resource controller leveraging policy differential semi-
gradient SARSA to optimize traffic flow management by effectively and dynamically
allocating per-flow resources within an O-RAN platform.

2021 [47] Designed ML deployed in a Non-RT RIC to adapt the resource allocation policy to
environment dynamics while satisfying various energy-driven criteria.

3.6. Session Management

Session management in O-RAN refers to the process of establishing, maintaining, and
terminating communication sessions between network components. These sessions are
used to transmit data, control signals, and other information between different components
of the network. Session management is an essential function of O-RAN, as it enables the
coordination and control of network operations and services. It involves the management of
session parameters, such as session identifiers, session timeouts, and session initiation and
termination procedures. Effective session management in O-RAN is critical for ensuring
the efficient and reliable operation of the network, as well as for enabling the delivery of
high-quality services to end-users.

The authors of [48] explore the efficiency of RL-based methods for intelligent ses-
sion management when taking advantage of the intelligent gNB architecture of O-RAN.
This architecture is again assumed to facilitate the inclusion of AI/ML algorithms mainly
due to the introduction of the RIC, which is designed for sustainable deployment of these
algorithms. The work is focused on the lack of effort to reduce the packet transmission la-
tency in the Core and Data Networks, which can go up to hundreds of seconds compared to
several milliseconds in the gNB fronthaul/backhaul links. By installing intelligent session
management schemes based on policy evaluation RL methods such as Q-learning, double
and State-Action-Reward-State-Action (SARSA) on the RIC of an O-RAN emulated gNB, it
becomes able to effectively predict room to accommodate new PDU sessions with given
service requirements. Therefore, the gNB can decide whether to grant a new PDU session
or QoS flow, preventing existing and new sessions from violating the latency requirements.

In [49], the authors study connection management under the session management
function (SMF), specifically for user-cells associating the user with a BS, considering sub-
optimal and greedy solutions such as the received signal reference power (RSRP). Even
though the greedy approach is simple and effective, it does not take into consideration the
network’s local and global status. This causes the lack of load balancing where a certain BS
can be overloaded while the neighboring BSs are underutilized. So, the O-RAN architecture
features support global RAN automation to balance the load over the network resources by
deploying ML algorithms as rApps and xApps in the RIC. The authors proposed a Deep
Q-learning algorithm to infer the weights of the graph neural networks (GNN) for optimal
user-cell association.
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While user access management in O-RAN refers to the process of controlling and
securing access to network resources and services by users and applications, it includes
the management of user identities, authentication, authorization, and accounting (AAA).
The goal of user access management is to ensure that only authorized users and applica-
tions can access the network, and that they can do so in a secure and controlled manner.
User access management in O-RAN typically involves the use of access control policies,
authentication mechanisms, and auditing tools to manage user access and monitor network
activity. It is a critical component of network security and privacy, as unauthorized access
to network resources can lead to data breaches, network disruptions, and other security
incidents. Effective user access management is essential for ensuring the secure and reliable
operation of O-RAN with session management.

In [50], the authors address the anticipated handover-rate and load balancing issues if
O-RAN is deployed under the conventional user access control schemes typically based
on signal strength or capacity measurements. This is a result of the openness nature of
O-RAN, where the BS functions are decomposed and virtualized into CUs, DUs, and RUs,
where they are massively deployed throughout the network. Therefore, typical access
control procedures would make this a practically intractable process due to the massive
signaling overhead and system complexity. This can be considerably mitigated if each
UE autonomously selects proper BSs (or CUs/DUs/RUs). In this direction, a federated
DRL-based scheme to address user access control in the O-RAN is proposed to estab-
lish intelligent user-centric access control mechanism to optimize the overall throughput
and avoid frequent handovers. This is achieved by enabling the UE to train two deep
Q-networks (DQNs) using its own observations, and making access decisions based on
its DQNs outputs. Then, the DQN parameters are forwarded to a global model server
installed in the RIC. This server can select just a group of UEs in each instance to further
mitigate the signaling overhead. Afterward, the global model is updated by aggregating
DQN parameters obtained from the selected UEs. The DQN global parameters are then
disseminated to each UE to further improve its access decision. The achieved results show
that the proposed scheme can reduce the frequency of handover in a O-RAN environment
up to 53% when compared to a conventional access control based on signal strength UE
measurements.

Table 8. Summary of current efforts on ML applications for O-RAN session management.

Year Ref Contribution

2021 [48] Applied an ML algorithm in O-RAN to maintain QoS satisfaction by controlling
admission of PDU sessions.

2021 [49] Applied DQN to optimize user-cell association in O-RAN by supporting the global
RAN automation through load balancing over the network resources.

2021 [50] Proposed a smart user-centric access control in O-RAN using Federated DRL-based
learning to mitigate frequent handover.

3.7. Traffic Steering

O-RAN traffic steering research aims to optimize network traffic management by
intelligently routing traffic based on real-time network conditions and user demand.
This involves analyzing various network parameters, such as traffic load, network con-
gestion, and user behavior, to determine the best path for traffic flow. Traffic steering
techniques can also be used to dynamically split traffic across different network functions
and resources in real-time, improving network performance and reducing latency. ML al-
gorithms can play a critical role in traffic steering research, providing real-time intelligence
and decision-making capabilities to optimize traffic flow and improve overall network
performance. However, there are still challenges related to scalability, complexity, and
limited resources that need to be addressed to achieve optimal traffic steering in O-RAN.
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In O-RAN, more processing is done by placing virtual network functions (VNF) in the
DU before transferring data over midhaul links. This means that placing VNFs in the CU
needs more bandwidth compared to placing in the DU [60]. Therefore, the question is how
many functions should be left in the DUs to prevent network congestion on midhaul links
arises. This is especially the case when DUs have limited computing/storage capacities
compared to CUs. The authors of [61] have proposed an optimization problem to select
the split points in O-RAN. The objective of this study is to balance the load across CUs as
well as midhaul links with respect to the required delay and bandwidth and processing
capacity of the DUs and CUs. Going beyond the static optimization, it is also noted that in
real-world scenarios under traffic demands dynamicity and uncertainty at RUs, methods
like RL and DRL can be used to provide dynamic VNF splitting across CUs and DUs.

In [62], O-RAN decouples the Control Plane (CP) from the User Plane (UP) through
the E1 interface, which is derived from the software defined network (SDN) architecture.
This separation of CP and UP allows a network to be more flexible in programming.
The CP is implemented in hierarchical RICs, and manages radio resource functions through
A1 and E2 interfaces. The authors of [62] proposed using the hierarchical RICs to minimizes
end-to-end delay of the data plane traffic by placing Containerized Network Functions
(CNFs) effectively. In comparison to VNFs, CNFs are lighter and can be implemented
through microservice architectures, enabling a dynamic, scalable, and flexible architecture
towards 5G [63].

Additionally, paper [4] discusses the use of ML methods to achieve modular and
flexible O-RAN implementations in 6G networks, with a focus on the traffic steering use
case and O-RAN xApps. The authors describe several ML algorithms that can be used for
traffic steering, including decision trees, k-nearest neighbor (KNN), and neural networks.
They also discuss the use of RL to train an agent to make traffic steering decisions in
real-time. In [51], a federated meta-learning approach for traffic steering in O-RAN systems
is proposed. This approach allows multiple Radio Access Technologies (RATs) to learn
from each other without sharing their private data. The authors present a neural network
architecture that uses meta-learning to adapt to different RATs and learn to steer traffic in a
decentralized manner.

Paper [52] proposes a traffic steering use-case in O-RAN systems that exploits the
benefits of Non-Orthogonal Multiple Access (NOMA) to improve radio resource efficiency.
The authors introduce a resource allocation algorithm that dynamically allocates radio
resources based on the traffic demand and channel conditions of the users. The proposed
algorithm leverages NOMA to allow multiple users to share the same radio resources, while
ensuring a high-quality user experience. Paper [64] proposes a traffic steering approach
that ensures the efficient coexistence of eMBB and uRLLC services in O-RAN systems.
They introduce a multi-objective optimization problem and a traffic steering algorithm that
dynamically steers traffic based on the network load and user demands while ensuring a
minimum QoS requirement for both eMBB and uRLLC users.

Table 9. Summary of current efforts on ML applications for traffic steering in O-RAN.

Year Ref Contribution

2021 [4] Proposed logistic regression for modular and flexible O-RAN in 6G networks, focus-
ing on traffic steering and O-RAN xApps.

2022 [51] Introduced federated meta-learning with DQN for privacy-preserving multi-RAT
knowledge sharing.

2022 [52] Proposed Q-learning-based algorithm for power and frequency allocation in O-RAN
to minimize macro gNB interference and maximize device QoS.

3.8. Mobility Management

Mobility management is a key function for cellular communication to maintain service
continuity and ensure a good level of service quality for users moving across a network.
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This requires efficient coordination of radio resources to achieve predictive, timely, and
successful handovers for preventing communication disruptions in highly dynamic mobile
environments. To support this, the O-RAN architecture offers various capabilities, including
the collection of, maintenance of, and access to historical traffic and radio data. Additionally,
real-time monitoring of traffic and radio conditions is achievable through the support of
the Near-RT RIC framework, which enables the deployment of AI/ML-based applications
for detecting and predicting handover anomalies at the user level.

In [53], the authors proposed a new predictive handover method to predict target cells
in advance, hence to reduce handover failures. Handover cases are simulated by random
user movement within an environment with three eNBs and coverage holes. The handover
prediction algorithm is implemented within a software developed by O-RAN Software
Community (O-RAN SC), where an Anomaly Detection use case has been installed in the
Near-RT RIC platform, which consists of three xApps: Anomaly Detection, Traffic Steering,
and QoE Predictor. The process starts with the Anomaly Detection xApp, which analyzes
UE data and sends notifications to the Traffic Steering xApp via the RMR protocol when
anomalies are detected. The Traffic Steering xApp then requests a prediction of the target
cell from the QoE Predictor xApp, which uses the Vector Autoregressive (VAR) algorithm to
forecast time-series data based on past throughput data. As user mobility is not considered
by the original QoE Predictor xApp, the paper has contributed by adding mobile users’
RSRP measurements to the predict cells’ throughput. The proposed intelligent predic-
tion method achieves higher successful transmission rates than conventional handover
algorithms and allows the traffic steering xApp to send commands to the RAN, such as a
handover command using the REST API interface.

Table 10. Summary of ML studies for mobility management in O-RAN.

Year Ref Contribution

2022 [53]
Implemented a NN-based handover prediction method for the next target cell
in Near-RT RIC using software developed by O-RAN Software Community
(O-RAN SC).

3.9. Energy Efficiency

Energy efficiency is a significant challenge in O-RAN due to their highly flexible and
scalable design, where several components and technologies must work together seamlessly.
Achieving energy efficiency also requires balancing trade-offs with other performance
metrics such as latency or throughput. Although dynamic function splitting and ML-based
optimization techniques can be used to allocate computing resources efficiently, challenges
related to limited resources, scalability, and the dynamic environment of O-RAN must be
addressed to achieve optimal energy efficiency.

To address this, the authors in [54] propose an online learning-based energy-aware
scheduling method for virtualized Base Stations (vBS) in O-RAN. The goal is to optimize
scheduling policies that reduce energy consumption while maximizing vBS performance.
The novelty of this work lies in the application of adversarial bandit learning to vBS
operations. The authors introduce a Policy Decider application within Non-RT RIC to learn
and implement optimal policies, which can be adjusted based on network conditions and
user needs. The policy decision is shared with Near-RT RIC through A1 interface, and the
Data Monitor calculates the reward based on achieved performance and energy cost, which
is then sent to the Policy Decider via the O1 interface at the end of each decision time slot.
Data-driven experiments based on real-world traffic traces and testbed measurements are
conducted to evaluate the effectiveness of the proposed method and compare it to state-
of-the-art approaches. The proposed approach outperforms state-of-the-art methods by
achieving energy savings between 35.5% and 74.3%, as demonstrated through data-driven
experiments based on real-world traffic traces and testbed measurements.
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Table 11. Summary of ML studies for energy efficiency in O-RAN.

Year Ref Contribution

2022 [54]
Proposed online adversarial bandit learning for energy-aware scheduling policy
optimization to maximize the performance of virtualized Base Stations (vBS)
in O-RAN.

3.10. Satellite NTN

Interference management in satellite networks involves reducing interference between
multiple satellites and traditional cellular communication systems, which can lead to
degraded signal quality and decreased network performance. O-RAN can be used for
interference management in satellite networks by leveraging its cutting-edge function-
alities. One way to use O-RAN for interference management in satellite networks is by
using a dynamic spectrum access techniques to dynamically allocate and manage spectrum
resources based on real-time network conditions. This involves monitoring network pa-
rameters, such as channel quality and interference levels, and dynamically reconfiguring
the network to avoid interference and optimize network performance. Another approach is
to use machine learning algorithms to analyze network data and make intelligent decisions
on interference management. For example, machine learning algorithms can be trained
to identify patterns in network data that indicate interference and automatically adjust
network parameters to mitigate interference. Finally, O-RAN can also be used to implement
beamforming techniques to improve signal quality and reduce interference in satellite
networks. Beamforming involves adjusting the phase and amplitude of transmitted signals
to create directional beams focused on specific network areas. By optimizing beamforming
parameters based on network conditions, interference can be minimized and network
performance improved. Additionally, the radio spectrum is a finite and highly sought-after
resource; therefore, spectrum sharing aims to help resolve this issue by creating regulatory
frameworks and developing wireless technologies to share spectrum bands between hetero-
geneous users. The authors in [55] proposed O-RAN with machine learning for 5G/XG and
closed-loop feedback via sensing can reduce harmful interference between heterogeneous
5G and Low Earth Orbit (LEO) satellite communication systems.

Table 12. Existing study of ML applications for Satellite NTN relevant to O-RAN.

Year Ref Contribution

2021 [55] Investigated how O-RAN can be used for 5G/XG to mitigate interference between
terrestrial and space communication systems.

4. Research Opportunities in O-RAN

Applying ML in O-RAN networks has the potential to significantly improve net-
work performance, automate complex network operations, and enable new use cases and
business models. ML algorithms can analyze large volumes of network data, enabling
intelligent decision-making in real-time and optimizing network resources for enhanced
user experiences. In the previous section, we provided overview of the state-of-the-art
research works that demonstrate the use of ML to improve O-RAN and the underlying
network elements. However, challenges remain to apply and integrate ML into O-RAN
for network automation. These challenges include the need for high-quality and diverse
training datasets, ensuring robustness and fairness of ML models, addressing privacy
concerns, and developing efficient computational frameworks capable of handling the scale
and complexity of O-RAN deployments. In this section, we shall describe the potential of
ML applications in O-RAN and their challenges. Table 13 shows a summary of identified
research opportunities.
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Table 13. Research opportunities for ML applications in O-RAN.

Category Issues

Section 4.1 ProactiveMaintenance

- How to evolve the O-RAN framework in conjunction with ML system design;
- To develop ML training approaches across the network irrespective of
equipment vendor or site location (i.e., different configurations of multiple vendor
equipment and unharmonized data across multiple sites).

Section 4.2 xApps,rApps,dAppsOperation

- Orchestration of xApps, rApps, and dApps in the O-RAN RIC when they are
simultaneously operated for network automation;
- Orchestration across the domain with SON functions in a core network and any
newly added xApps, rApps, and dApps to the RAN.

Section 4.3 SatelliteNTN
- To optimize the resource allocation for capacity enhancement;
- To mitigate network interference sources such as adjacent satellite interference
and inter-system interference.

Section 4.4 MassiveMIMO

- To provide right interfaces to integrate multi-antenna processing in O-RAN to
maximize the spectral efficiency;
- To dynamically adjust the level of coordination/cooperation between DUs and
to efficiently perform the RU clustering;
- To effectively distribute the channel state information between the split baseband
functions.

Section 4.5 MobilityManagement - To jointly optimize the trajectory of UAV and the task offloading among diverse
O-RAN elements.

Section 4.6 NetworkManagement - To optimize the flexible functional split of RAN slices dynamically to respond to
changing network environments.

Section 4.7 DataPrivacySecurity

- To make ML models to access and utilize the data without compromising user
privacy;
- To secure ML models against adversarial attacks and to develop the measure
indicating protection against potential data breaches or cyberattacks.

Section 4.8 Big DataCollectionfor ML - To improve data collection by using O-RAN, including collection and consolida-
tion of hybrid empirical and synthetic data.

4.1. Proactive Maintenance

A significant fraction of the cost of maintaining a cellular radio network is due to
the need for site visits. Virtualization of the RAN within the O-RAN framework may
help considerably by extending the scope for remote or automatic intervention to miti-
gate hardware failures, but ultimately the only way to repair faulty on-site hardware is
by making a site visit. Ideally, it would be possible to predict failures before they occur,
allowing proactive scheduling of site visits. Deep learning systems can potentially assist
here by trawling very large datasets to detect “precursor” events occurring before fail-
ures, which might be difficult to find by an engineer tasked with scanning the fault logs.
Before this can happen, however, at least two open issues need to be addressed. The
first is to evolve the O-RAN framework in conjunction with ML system design so that
detailed fault-related data are provided at the O1 interface, including additional informa-
tion required by the virtualization of the RAN. The second is related to the fact that in a
reliable network fault data are relatively scarce, with the further issue that equipment from
different vendors may operate in slightly different ways. Here, the challenge is to develop
ML training approaches which can be applied in a standardized way across the network,
irrespective of equipment vendor or site location.

In relation to the first issue, in [65], members of Chungwha Telecom Taiwan and
their academic partner present a view of a proposed high level architecture for an O-RAN
Network Management System from the network operator’s perspective. The authors de-
scribe the architectures for 3GPP NG- and O-RAN, and provide a list outlining the key
Operations and Maintenance (OAM) functions supported by the O-RAN O1 interface.
They then provide a high-level layered architecture for an O-RAN-based network manage-
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ment system, together with a diagram indicating the relationships between the proposed
NMS and other system entities. The paper references a TM Forum white paper published
in 2003 on the New Generation Operations System and Software (NGOSS), but at this
stage no attempt is made to evaluate this in relation to the current O-RAN context, where
extensive use is made of virtualized network functions. The authors suggest that further
work is needed to clarify the work distribution between the network management system
and the entities managing the relevant clouds, as well as the approach to management of
the virtualized O-RAN elements.

On the second issue, one opportunity to increase the amount of available fault data
could be to make use of the emergence of self-healing networks, especially in the context
of virtualization, in which faults being compensated for by the self-healing process may
persist in dormant form for some considerable time and yield valuable information.

Another possibility is suggested by Mulvey et al. [66], in which they survey the
literature on fault management in cellular networks and outline a number of suggestions
for further work which are relevant to O-RAN. In particular, they consider the issue of multi-
vendor equipment configurations, and suggest that transfer learning may be a possible
approach, especially for distributed ML systems, which would allow ML subsystems
to be trained on one vendor’s equipment, and the learning approach transferred with
appropriate adjustments to equipment provided by other vendors.

Recently, there has also been growing interest in federated learning [67], which can
potentially harmonize data across multiple site locations, allowing a centralized ML system
to utilize data from a large number of locations, when translated into a common format.

4.2. xApps, rApps and dApps Operation

The O-RAN architecture allows the RIC to host and run applications developed by
third party for automation and intelligent orchestration to the network through ML and
AI, which will leverage the enormous amount of data generated by the RAN and exposed
through the O-RAN interfaces to analyze the current network conditions, forecast future
traffic profiles and demand, and implement closed-loop network control strategies to
optimize the RAN performance. The add-on xApps, rApps, and dApps will make the
monolithic RAN “black-box” obsolete and provide open, programmable and virtualized
solutions that expose status and offer control knobs through standardized interfaces [68].
The rApps are residence of the Non-RT RIC and control the optimization objectives such
as policies, models and slicing that the time scale of the close control loop of the network
requires more than one millisecond. The Near-RT RIC hosts the xApps that require the
response of control loops time between 10 and 1000 ms for optimizing objectives such as
the RRM and session management. However, the notion of dApps, custom and distributed
applications can complement xApps/rApps by implementing RAN intelligence at the
CUs/DUs for real-time use cases outside the timescales of the current RICs. The control loop
response timescale in such use cases is ≤10 ms to optimize objects such as the beamforming
and modulation management. The dApps receive real-time data and KPMs from the
RUs (e.g., frequency-domain I/Q samples), DUs (e.g., buffer size, QoS levels), and CUs
(e.g., mobility, radio link state), as well as enrichment information from the Near-RT
RIC, and use it to execute real-time inference and control of lower-layer functionalities.
Such dApps enable network intelligence at the edge of the O-RAN ecosystem [69].

It is clear that intelligent and dynamic xApps, rApps and dApps are key enablers for
future network automation. However, it also introduces novel practical challenges concern-
ing. One of the challenges is the orchestration of the existing xApps, rApps, and dApps in
the O-RAN RIC. In addition, the question is how to maintain the orchestration cross domain
with core network SON functions in 3GPP and any newly added xApps, rApps, and dApps
to the RAN without creating conflicts between all these apps. As a result, the network
intelligence orchestration for the different types such as the xApps, rApps, and dApps is an
unprecedented problem that requires innovative, automated and scalable solutions. In [69],
the authors formulate an orchestration problem where the orchestration policy variable
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X is computed to maximize the total value of requests being accommodated by selecting
(i) which requests can be accommodated; (ii) which AI/ML models should be instantiated;
and (iii) at what location the AI/ML and requests should be executed to satisfy request
performance and timescale requirements to avoid or mitigate the conflict between then and
at the same time, complying with the requirements of each request [70].

4.3. Satellite NTN

One of the challenges of Satellite NTN low-latency communications is long latency due
to the significant distance between the terrestrial UE and the satellite [71–73].
Using a distributed computing model, O-RAN can help a satellite solve its latency draw-
back. In this model, the O-RAN intelligent controller can be deployed closer to the end-user
(for example, at the satellite gateway or user terminal) to reduce the round-trip time for
control and management signals. The controller can also use advanced algorithms to
intelligently allocate radio resources, reducing the need for frequent signaling between the
user terminal and the satellite. Another way O-RAN can help reduce latency is through the
use of edge computing. Edge computing involves moving tasks closer to the user or device,
reducing the amount of data that must be sent back and forth between the user and the
satellite. This approach can be used to run applications such as video streaming, gaming,
or IoT applications, which require low-latency and high-bandwidth connections.

For massive devices involved in NTN, ML-empowered O-RAN architecture can play
an essential role in optimizing the performance, e.g., throughput, coverage probability,
latency, and energy efficiency. Firstly, for capacity optimization, ML can help predict
the capacity requirements of the NTN and optimize the allocation of resources such as
bandwidth, power, and antenna coverage. Secondly, ML can help identify and mitigate
network interference sources, such as adjacent satellite interference, co-channel interference,
and inter-system interference. Thirdly, ML can optimize the energy consumption of the
O-RAN-assisted NTN, such as by reducing the power consumption of individual network
elements or adjusting the power levels based on traffic demand. Finally, as latency remains
one of the main challenges in Satellite NTN, reducing latency is important for Satellite NTN
to support a wide range of applications. Some recent papers introduce the use of generative
AI and digital twin in the communication system to deal with bandwidth limitation and,
particularly, the latency [74]. As O-RAN offers convenient hosting of ML models, ML
models can be pervasively deployed in O-RAN to encourage use of generative AI and
digital twin in satellite communications.

4.4. Massive MIMO

In the last two decades, the idea of using multiple antennas for transmitting and
receiving information over the air has evolved from the classic single-cell MIMO technol-
ogy, to the distributed cooperative massive MIMO with no cell boundaries technology,
also known as cell-free technology. With mMIMO and cell-free becoming ubiquitous in
5G and 6G, O-RAN will need to accommodate these technologies and provide the right
interfacing for making the most of their large spectral efficiency (SE) potential. In this
regard, the work of [75] looks at how mMIMO and cell-free can be integrated in O-RAN.
They provide several options of integrating the multi-antenna processing (mMIMO precod-
ing/beamforming) of cell-free MIMO in the O-RAN architecture, by adjusting the level of
coordination/cooperation between the open-distributed units (ODUs) and open-radio units
for performing this processing. It turns out that increasing the centralization (exchange
of information between the various units) increases significantly the SE. Even though the
current O-RAN architecture can, in their view, already support cell-free networks, there
are opportunities for achieving higher SE in the future by specifying the inter-O-DU inter-
face in O-RAN and performing the multi-antenna processing at the O-DU. Finally, they
also point out the importance of RU clustering (which is, itself, tied to user grouping)
for achieving better SE performance; this could be efficiently implemented at the Near-
RT RIC in O-RAN. We can foresee that AI and ML will help to dynamically adjust the
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level of coordination/cooperation between the ODUs, as well as efficiently perform the
RU clustering.

As pointed out by [75], the integration of the multi-antenna processing for the mMIMO/
cell-free technology is clearly an important issue in O-RAN, given the split of baseband
functionalities, and the work [76] investigates this issue in a more practical manner.
More specifically, it investigates how to effectively distribute the channel state information
(CSI) between the split baseband functions to minimize the performance degradation it
incurs when performing multi-antenna processing. This work also identifies further re-
search opportunities on the same topic, as for instance, the optimization of the fronthaul
bandwidth allocated to different users according to their mobility, priority, or channel
conditions, and reduce the exchange of information over the fronthaul interface between
O-DU and O-RU. This optimization process can obviously made more generic and efficient
by using ML.

Another important technology that will deploy in 6G is the intelligent reflective surface
(RIS) technology. The idea behind RIS is to increase the SE/EE of wireless communications
systems by dynamically improving the propagation environment, without the need of de-
ploying extra costly access points (APs). The work in [77] mentions the possible integration
of RISs in the O-RAN architecture, where RISs are managed via a dedicated controller.
This controller is then linked to O-RAN via a new interface at the Near-RT RIC.
Accordingly, it is clear that the design of a practical and effective signaling interface
will be the main challenge for integrating RISs into the O-RAN architecture. This work
sees the deployment of RISs as an the opportunity to create fully inter-operable so-called
’smart-radio environments’ which, in turn, can provides more openness and flexibility for
the network operators. The management of such ’smart-radio environments’ will require
intelligence provided by AI/ML.

4.5. Mobility Management

In V2X communication, the meticulous design of an efficient handover strategy holds
paramount importance in effectively managing challenges such as short stays, ping-pong ef-
fects, and remote cell scenarios. Furthermore, with the proliferation of UAVs across various
applications, such as agricultural plant protection, police enforcement, and environmental
monitoring, the reliability of connection, inherently influenced by mobility factors, emerges
as a critical area of investigation.

Within the framework of the O-RAN architecture, ML emerges as a powerful tool for
designing a proactive and data-driven strategy for mobility management. Specifically, lever-
aging Non-RT RIC, multi-dimensional data can be obtained, including metrics derived from
vehicle-related measurements based on UE reports, trajectory information pertaining to vehi-
cle paths, and spatial constraints. Subsequently, using this acquired data, the Non-RT RIC can
construct machine learning models by leveraging historical information, enabling informed
decisions to facilitate reliable connection support. These ML models, once constructed within
the Non-RT RIC, can be effectively deployed and executed by the Near-RT RIC, enabling it to
discern optimal radio resource configurations for establishing and maintaining dependable
communication links [78].

As highlighted in [79], the integration of flying UAV BSs with O-RAN introduces
notable challenges concerning agility, distributed computation, and dynamic mobility
of UAVs. The efficient control of UAV-BSs can be significantly enhanced through the
utilization of intelligent O-RAN functionalities, playing a pivotal role in addressing the
requirements of unforeseen applications where terrestrial networks may prove inadequate.
In this context, it would be imperative to explore innovative approaches rooted in ML for
jointly optimizing the trajectory of UAVs acting as flying BSs and the task offloading among
the diverse O-RAN elements, including O-RU, O-DU, and O-CU. The comprehensive
evaluation of performance metrics, encompassing resource utilization, service acceptance
rate, and utility values, alongside a multi-agent learning framework, becomes essential [79].
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In mobility management, location information provides an additional dimension of
inputs to improve its decision making. Localization techniques can also be enhanced using
ML techniques [80]. With O-RAN, not only can ML techniques can be introduced into the
network to enhance the localization, but the output of localization can, in turn, provide
useful inputs to improve the mobility management in O-RAN.

4.6. Network Management

As mobile networks become increasingly complex, there is a growing need for ad-
vanced solutions to effectively manage network operations. Although research has explored
the application of ML techniques for automating network management, further efforts
are required to enhance various aspects of network management. O-RAN, with its open
architecture, presents a convenient platform for leveraging ML techniques in network
management. The flexibility and openness of O-RAN enable the seamless integration of
ML-based approaches, providing opportunities to enhance and optimize various aspects of
network management.

For supporting different network slices (e.g., eMBB, URLLC, and mMTC slices), the
efficient placement of VNFs of slices onto the network infrastructure is crucial. The necessity
of the optimization of the functional split of individual RAN slices between CU, DU, and
RU entities, based on the functional split options defined by 3GPP, is studied in [81].
In addition, the optimal placement of RAN slices in a multi-tier 5G Open RAN architecture,
including multi-tier aggregation sites, has been emphasized in [81] by demonstrating that
a flexible functional split can lead to enhanced utilization of physical network resources.
Considering the various types of data available, such as network traffic patterns, resource
usage availability, and future resource demand, these can be leveraged to determine the
VNF split for each network slice. By harnessing the power of ML, characterized by its
remarkable ability to forecast future patterns and make data-driven decisions, the flexible
function split can be dynamically adjusted in response to evolving network environments,
thereby optimizing target objectives encompassing resource utilization, data rate, power
efficiency, and cost-effectiveness.

4.7. Data Privacy and Security

As ML relies heavily on data, ensuring the privacy and security of sensitive network
data are paramount. O-RAN handles vast amount of data, including user information
and network configurations. It is crucial to manage ML algorithms to access and utilize
these data without compromising user privacy. In addition, O-RAN often involves in
collaborations between different operators and vendors. Then, secure data sharing proto-
cols must be established to ensure that sensitive network information is shared only with
authorized parties. ML models requiring data from multiple sources should adhere to
strict data sharing policies. As O-RAN becomes more software-centric and dynamic, it can
be vulnerable to cyberattacks. While ML can be used to detect and respond to threats, it
is crucial to secure ML models themselves against adversarial attacks [16]. In this case,
what measures can be implemented to protect against potential data breaches or cyberat-
tacks targeting ML models is worth investigating. Striking the right balance between data
accessibility for ML and maintaining robust data security would be critical for network
operators and developers. Successfully addressing the data privacy and security challenge
will be essential to foster trust in ML applications with O-RAN and ensure compliance with
evolving data protection regulations.

4.8. Big Data Collection for Machine Learning

Given its openness, using O-RAN for big data collection in the context of ML offers
substantial advantages. O-RAN promotes interoperability among different vendors’ net-
work components, allowing for diverse data sources, which is vital for ML model training
and accuracy. It also fosters vendor neutrality, reducing lock-in and enabling network
operators to select the best-suited hardware and software components, enhancing data
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collection capabilities. The scalability of O-RAN accommodates the growing volume of data
generated by modern networks and encourages innovation by enabling custom software
applications, including data collection and analytic tools tailored to specific ML use cases.
O-RAN development can further advance with the more data available for ML, including
use of synthetic data from network simulators [82]. Simulation tools such as OpenRAN
Gym [83] and WiThRay [84] offer data generation for ML training when empirical data are
insufficient or difficult to collect. However, data may be out-of-distribution due to different
domains, and new learning techniques should be explored to tackle the out-of-distribution
issue [85].

5. Conclusions

ML applications have sparked significant interest in O-RAN for their potential to
revolutionize network automation. By exploiting ML to analyze vast amounts of network
data in real-time, identifying performance issues and optimizing network parameters on
the fly, ML is expected to facilitate predictive maintenance, intelligent resource allocation,
and network optimization. Furthermore, predictive analytics can help anticipate and
prevent network failures, reducing downtime and maintenance costs. Ultimately, ML holds
the promise of making O-RAN networks more efficient, reliable, and responsive to the
dynamic demands of modern communication environments.

In this paper, focusing on network automation in O-RAN using ML techniques, we first
presented the design principles and architecture of O-RAN, highlighted the openness and
disaggregation of RAN components, and its capability to extend network operation with
native ML support. The current research landscape of ML applications in O-RAN was then
presented. Several key aspects of network management were surveyed, including session
and user access management, radio resource management, network slicing, mobility and
traffic management, energy efficiency, O-RAN component deployment and function splits,
ML workflow management, and support for NTN and satellite networks. For instance, ML
can play a pivotal role in automating fault detection and recovery processes by meticulously
analyzing data traffic and identifying anomalies. This reduces the necessity for manual
intervention, subsequently bolstering network resilience. ML can also prove invaluable in
the realms of capacity planning and elevating customer experiences. By forecasting network
traffic growth, aiding in optimizing capacity, and analyzing user behavior and feedback,
ML can contribute to a more efficient and customer-centric network management approach.

However, numerous challenges must be surmounted to unlock the full potential of
ML in propelling O-RAN network forward. Upon identifying several pivotal research
domains, these challenges manifest across diverse realms encompassing data collection
and analysis, as well as the development, deployment, maintenance, and operation of
ML models. A fundamental hurdle arises from the various types of data emanating
from different vendor equipment, necessitating harmonization for effective data analysis.
Utilization of synthetic data collectible from network simulators could be also considered
when real-world empirical data are difficult to obtain. Once data acquisition hurdles
are overcome, data-driven decision-making processes must be thoughtfully tailored for
target optimizations, such as enhancing network capacity and mitigating interference.
In complex scenarios (e.g., O-RAN-including UAVs), consideration of multiple objec-
tives would be required simultaneously, such as optimizing the trajectory of UAVs and
task offloading among heterogeneous O-RAN components, including UAVs. The multi-
faceted nature of O-RAN components provide various options for deploying ML models,
prompting careful deliberation on compatible components and interface for ML model and
data exchange. When multiple components are selected for ML model deployment, the
level of coordination and cooperation between components should be also investigated.
Furthermore, the dependable operation of multiple ML modules such as xApps, rApps, and
dApps within O-RAN RIC, mandates unwavering attention to reliability. Equally critical is
the dynamic and autonomous responsiveness of deployed ML models to ever-changing
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network environments. Furthermore, we discussed the issue to find the balance between
data accessibility for ML and maintaining robust data security.

These challenges, when conquered, will usher in an era where ML empowers O-RAN
network automation, leading to heightened efficiency, reduced operational costs, fortified
security, and an enriched user experience. They also position network operators to adapt
to the evolving demands of the communication landscape, conferring a competitive edge
in this rapidly transforming terrain.
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4. Dryjański, M.; Kułacz, Ł.; Kliks, A. Toward Modular and Flexible Open RAN Implementations in 6G Networks: Traffic Steering

Use Case and O-RAN xApps. Sensors 2021, 21, 8173. [CrossRef] [PubMed]
5. O-RAN Alliance. Available online: https://www.o-ran.org/ (accessed on 6 September 2023 ).
6. 3rd Generation Partnership Project (3GPP). Available online: https://www.3gpp.org/ (accessed on 6 September 2023).
7. European Telecommunications Standards Institute (ETSI). Available online: https://www.etsi.org/ (accessed on 6 Septem-

ber 2023).
8. Next Generation Mobile Networks Alliance (NGMN). Available online: https://www.ngmn.org/ (accessed on 6 September 2023).
9. Optical Internetworking Forum (OIF). Available online: https://www.oiforum.com/ (accessed on 6 September 2023).
10. Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.O.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H.V. 6G for Vehicle-to-Everything

(V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE 2022, 110, 712–734.
11. Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential,

Limitations, and Future Directions. IEEE Access 2019, 7, 137184–137206.
12. Azariah, W.; Bimo, F.A.; Lin, C.W.; Cheng, R.G.; Jana, R.; Nikaein, N. A Survey on Open Radio Access Networks: Challenges,

Research Directions, and Open Source Approaches. arXiv 2022, arXiv:2208.09125.
13. Garcia-Saavedra, A.; Costa-Pérez, X. O-RAN: Disrupting the Virtualized RAN Ecosystem. IEEE Commun. Stand. Mag. 2021,

5, 96–103. [CrossRef]
14. Arnaz, A.; Lipman, J.; Abolhasan, M.; Hiltunen, M. Toward Integrating Intelligence and Programmability in Open Radio Access

Networks: A Comprehensive Survey. IEEE Access 2022, 10, 67747–67770.
15. Brik, B.; Boutiba, K.; Ksentini, A. Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and

Challenges. IEEE Open J. Commun. Soc. 2022, 3, 228–250. [CrossRef]
16. Liyanage, M.; Braeken, A.; Shahabuddin, S.; Ranaweera, P. Open RAN security: Challenges and opportunities. J. Netw. Comput.

Appl. 2023, 214, 103621.
17. Campana, R.; Amatetti, C.; Vanelli-Coralli, A. O-RAN based Non-Terrestrial Networks: Trends and Challenges. In Proceedings

of the 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg,
Sweden, 6–9 June 2023; pp. 264–269.

18. Abdalla, A.S.; Upadhyaya, P.S.; Shah, V.K.; Marojevic, V. Toward Next Generation Open Radio Access Networks–What O-RAN
Can and Cannot Do! IEEE Netw. 2022, 36, 206–213. [CrossRef]

19. Brik, B.; Chergui, H.; Zanzi, L.; Devoti, F.; Ksentini, A.; Siddiqui, M.S.; Costa-Pérez, X.; Verikoukis, C. A Survey on Explainable AI
for 6G O-RAN: Architecture, Use Cases, Challenges and Research Directions. arXiv 2023, arXiv:2307.00319.

20. O-RAN ALLIANCE. O-RAN-Architecture-Description, v06.00; O-RAN: Alfter, Germany, 2021.

282



Sensors 2023, 23, 8792

21. O-RAN ALLIANCE. O-RAN Non-RT RIC: Functional Architecture 1.01-March 2021 (O-RAN. WG2. Non-RT-RIC-ARCH-TR-v01.01);
v01.01; O-RAN: Alfter, Germany, 2021.

22. O-RAN. AI/ML Workflow Description and Requirements 1.03; v01.03; O-RAN.WG2.AIML-v01.03 Technical Specification; O-RAN:
Alfter, Germany, 2021.

23. O-RAN Software Community. GitHub. Available online: https://github.com/o-ran-sc (accessed on 6 September 2023).
24. OpenAirInterface Software Alliance. GitHub. Available online: https://github.com/openairinterface (accessed on 6 September 2023).
25. GitHub—srsran/srsRAN: Open Source SDR 4G/5G Software Suite from Software Radio Systems (SRS). Available online:

https://github.com/srsran/srsRAN_4G (accessed on 6 September 2023).
26. Upadhyaya, P.S.; Abdalla, A.S.; Marojevic, V.; Reed, J.H.; Shah, V.K. Prototyping Next-Generation O-RAN Research Testbeds with

SDRs. 2022. Available online: https://doi.org/10.48550/arXiv.2205.1317 (accessed on 6 September 2023).
27. Ettus Research. High Performance Software Defined Radio (SDR). Ettus Research, a National Instruments Brand. The Leader in

Software Defined Radio (SDR). Available online: https://www.ettus.com/product-categories/usrp-x-series/ (accessed on 6
September 2023).

28. Bonati, L.; Johari, P.; Polese, M.; D’Oro, S.; Mohanti, S.; Tehrani-Moayyed, M.; Villa, D.; Shrivastava, S.; Tassie, C.; Yoder, K.; et al.
Colosseum: Large-Scale Wireless Experimentation Through Hardware-in-The-Loop Network Emulation. In Proceedings of the
2021 IEEE International Symposium on Dynamic Spectrum Access Networks, DySPAN 2021, Virtual, 13–15 December 2021;
pp. 105–113.

29. Papa, A.; Durner, R.; Goshi, E.; Goratti, L.; Rasheed, T.; Blenk, A.; Kellerer, W. Marc: On modeling and analysis of software-defined
radio access network controllers. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4602–4615. [CrossRef]

30. Foukas, X.; Nikaein, N.; Kassem, M.M.; Marina, M.K.; Kontovasilis, K. FlexRAN: A flexible and programmable platform
for software-defined radio access networks. In Proceedings of the 12th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT 2016, Irvine, CA, USA, 12–15 December 2016; pp. 427–441.

31. Coronado, E.; Khan, S.N.; Riggio, R. 5G-EmPOWER: A software-defined networking platform for 5G radio access networks.
IEEE Trans. Netw. Serv. Manag. 2019, 16, 715–728. [CrossRef]

32. Johnson, D.; Maas, D.; Van Der Merwe, J. NexRAN: Closed-loop RAN slicing in POWDER-A top-to-bottom open-source
open-RAN use case. In Proceedings of the 15th ACM Workshop on Wireless Network Testbeds, Experimental Evaluation &
CHaracterization, New Orleans, LA, USA, 31 January–4 February 2022; pp. 17–23.

33. Schmidt, R.; Irazabal, M.; Nikaein, N. FlexRIC: An SDK for next-generation SD-RANs. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies, CoNEXT 2021, Virtual, 7–10 December 2021; pp. 411–425.

34. NG-RAN. E1 Application Protocol (E1AP); Release 17; 3GPP: Sophia Antipolis, France.
35. Sen, N.; A, A.F. Intelligent Admission and Placement of O-RAN Slices Using Deep Reinforcement Learning. In Proceedings of

the 2022 IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 307–311.
36. Lee, H.; Jang, Y.; Song, J.; Yeon, H. O-RAN AI/ML Workflow Implementation of Personalized Network Optimization via

Reinforcement Learning. In Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December
2021; pp. 1–6.

37. Phyu, H.P.; Naboulsi, D.; Stanica, R. Machine Learning in Network Slicing—A Survey. IEEE Access 2022, 11, 39123–39153.
[CrossRef]

38. Thaliath, J.; Niknam, S.; Singh, S.; Banerji, R.; Saxena, N.; Dhillon, H.S.; Reed, J.H.; Bashir, A.K.; Bhat, A.; Roy, A. Predictive
Closed-Loop Service Automation in O-RAN Based Network Slicing. IEEE Commun. Stand. Mag. 2022, 6, 8–14. [CrossRef]

39. Lotfi, F.; Semiari, O.; Afghah, F. Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in O-RAN.
In Proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4–8 December 2022; pp. 227–232.

40. Abedin, S.F.; Mahmood, A.; Tran, N.H.; Han, Z.; Gidlund, M. Elastic O-RAN Slicing for Industrial Monitoring and Control:
A Distributed Matching Game and Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2022, 71, 10808–10822.
[CrossRef]

41. Pamuklu, T.; Erol-Kantarci, M.; Ersoy, C. Reinforcement Learning Based Dynamic Function Splitting in Disaggregated Green
Open RANs. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Virtual, 14–23 June 2021;
pp. 1–6.

42. Amiri, E.; Wang, N.; Shojafar, M.; Tafazolli, R. Energy-Aware Dynamic VNF Splitting in O-RAN Using Deep Reinforcement
Learning. IEEE Wirel. Commun. Lett. 2023, early access.

43. Joda, R.; Pamuklu, T.; Iturria-Rivera, P.E.; Erol-Kantarci, M. Deep Reinforcement Learning-based Joint User Association and
CU-DU Placement in O-RAN. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4097–4110. [CrossRef]

44. Hammami, N.; Nguyen, K.K. On-Policy vs. Off-Policy Deep Reinforcement Learning for Resource Allocation in Open Radio
Access Network. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX,
USA, 10–13 April 2022; pp. 1461–1466.

45. Sharara, M.; Pamuklu, T.; Hoteit, S.; Vèque, V.; Erol-Kantarci, M. Policy-Gradient-Based Reinforcement Learning for Computing
Resources Allocation in O-RAN. In Proceedings of the 2022 IEEE 11th International Conference on Cloud Networking (CloudNet),
Paris, France, 7–10 November 2022; pp. 229–236.

283



Sensors 2023, 23, 8792

46. Mungari, F. An RL Approach for Radio Resource Management in the O-RAN Architecture. In Proceedings of the 2021 18th
Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Rome, Italy, 6–9 July 2021;
pp. 1–2.

47. Ayala-Romero, J.A.; Garcia-Saavedra, A.; Costa-Perez, X.; Iosifidis, G. Bayesian Online Learning for Energy-Aware Resource
Orchestration in Virtualized RANs. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications,
Virtual, 10–13 May 2021; pp. 1–10.

48. Lien, S.Y.; Deng, D.J.; Chang, B.C. Session Management for URLLC in 5G Open Radio Access Network: A Machine Learning
Approach. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China,
28 June–2 July 2021; pp. 2050–2055.

49. Orhan, O.; Swamy, V.N.; Tetzlaff, T.; Nassar, M.; Nikopour, H.; Talwar, S. Connection Management xAPP for O-RAN RIC: A
Graph Neural Network and Reinforcement Learning Approach. In Proceedings of the 2021 20th IEEE International Conference
on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; pp. 936–941.

50. Cao, Y.; Lien, S.Y.; Liang, Y.C.; Chen, K.C.; Shen, X. User Access Control in Open Radio Access Networks: A Federated Deep
Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2022, 21, pp. 3721–3736. [CrossRef]

51. Erdol, H.; Wang, X.; Li, P.; Thomas, J.D.; Piechocki, R.; Oikonomou, G.; Inacio, R.; Ahmad, A.; Briggs, K.; Kapoor, S. Federated
Meta-Learning for Traffic Steering in O-RAN. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-
Fall), London, UK, 26–29 September 2022; pp. 1–7.

52. Akhtar, M.W.; Mahmood, A.; Abedin, S.F.; Hassan, S.A.; Gidlund, M. Exploiting NOMA for Radio Resource Efficient Traffic
Steering Use-case in O-RAN. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de
Janeiro, Brazil, 4–8 December 2022; pp. 5771–5776.

53. Prananto, B.H.; Iskandar; Kurniawan, A. O-RAN Intelligent Application for Cellular Mobility Management. In Proceedings of
the 2022 International Conference on ICT for Smart Society (ICISS), Virtual, 10–11 August 2022; pp. 1–6.

54. Kalntis, M.; Iosifidis, G. Energy-Aware Scheduling of Virtualized Base Stations in O-RAN with Online Learning. In Proceedings of
the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 6048–6054.

55. Smith, R.; Freeberg, C.; Machacek, T.; Ramaswamy, V. An O-RAN Approach to Spectrum Sharing Between Commercial 5G
and Government Satellite Systems. In Proceedings of the MILCOM 2021—2021 IEEE Military Communications Conference
(MILCOM), San Diego, CA, USA, 29 November–2 December 2021; pp. 739–744.

56. Lee, H.; Cha, J.; Kwon, D.; Jeong, M.; Park, I. Hosting AI/ML Workflows on O-RAN RIC Platform. In Proceedings of the 2020
IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6.

57. Bakri, S.; Brik, B.; Ksentini, A. On using reinforcement learning for network slice admission control in 5G: Offline vs. online. Int.
J. Commun. Syst. 2021, 34, e4757. [CrossRef]
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Abstract: As IT technology advances, the number and types of applications, such as SNS, content,
and shopping, have increased across various fields, leading to the emergence of complex and diverse
application traffic. As a result, the demand for effective network operation, management, and analysis
has increased. In particular, service or application traffic classification research is an important area of
study in network management. Web services are composed of a combination of multiple applications,
and one or more application traffic can be mixed within service traffic. However, most existing
research only classifies application traffic by service unit, resulting in high misclassification rates
and making detailed management impossible. To address this issue, this paper proposes three
multitask learning methods for application traffic classification using the relationships among tasks
composed of browsers, protocols, services, and application units. The proposed methods aim to
improve classification performance under the assumption that there are relationships between tasks.
Experimental results demonstrate that by utilizing relationships between various tasks, the proposed
method can classify applications with 4.4%p higher accuracy. Furthermore, the proposed methods can
provide network administrators with information about multiple perspectives with high confidence,
and the generalized multitask methods are freely portable to other backbone networks.

Keywords: application traffic classification; network management; multitask learning

1. Introduction

With the recent advancement of IT technology, web services have become increasingly
important in daily life, and due to the influence of COVID-19, the use of video streaming
and online shopping has dramatically increased as indoor activity time has prolonged [1].
As a result, the demand for monitoring and analyzing network traffic, including application
traffic classification and traffic prediction, has increased due to the emergence of complex
and diverse application traffic resulting from the increase in the number and types of
applications, such as SNS (Social Network Service), content streaming, and shopping.
In particular, application traffic classification research is essential for effective network
monitoring and analysis [2]. It can be widely used in areas such as cloud service pricing,
resource planning, traffic control, and network security. For instance, in schools or public
institutions, network resources can be restricted to limit non-work-related traffic, and
companies subscribing to cloud services can classify the traffic of the services they use to
subscribe to the appropriate services without unnecessary consumption.

Web services are software systems for application interaction between different types
of computers on the network and can be composed of a combination of multiple applica-
tions. Therefore, the traffic generated by web services is also composed of a combination of
traffic generated by various applications. However, most existing research only classifies
network traffic by service unit and application unit, and this approach is similar to MCC
(Multiclass Classification) shown in Figure 1. This can result in misclassification of mixed
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traffic in a service that includes multiple services or application traffic. For example, the
traffic flow of Googlefonts in the Naver service and the traffic flow of Googlefonts in the
YouTube service represent two different ground truths, even though they are both under the
same sub-service. This can confuse the learning model when learning the characteristics of
the traffic. Moreover, simply classifying multiple sub-service traffic or application traffic
within a service only by service unit makes detailed management impossible. To address
this issue, this paper proposes a method for classifying traffic using the relationships among
four tasks, as shown in MTC (Multitask Classification) in Figure 1. Multitask learning
(MTL) [3] is applied in a variety of fields, with the aim of simultaneously learning multiple
related tasks so that the knowledge contained in one task is used for other tasks to improve
the generalization performance of all tasks [4]. Ref. [5] performs multitask learning through
the task lists provided by CICIDS 2017 [6], ISCX VPN-nonVPN 2016 [7], and ISCX Tor
2016 [8]. The task lists include normal/abnormal application categories, detailed applica-
tions, encryption, etc. Ref. [9] performed multitask learning through the task list provided
by ISCX VPN-nonVPN 2016, which includes a total of three task lists. Ref. [10] performed
multitask learning by creating a new task called Bandwidth and Duration from the QUIC
and ISCX datasets. Unfortunately, there are not many multitask-based classification meth-
ods in the field of network traffic classification, and this is also often dependent on the
task list provided by the dataset. Therefore, various tasks that can improve generalization
performance in the field of network traffic classification need to be proposed. We set the
goal of improving classification performance under the assumption that the tasks are not
completely independent and have relationships among them. For instance, when using the
Edge browser, a web browser released by Microsoft, Microsoft traffic mainly occurs when
using the Edge browser to access web services. Similarly, when using the Firefox browser,
Mozilla traffic mainly occurs when using the Firefox browser to access web services. In
another case, the YouTube service communicates using the HTTP/3 protocol, and most of
the traffic using the HTTP/3 protocol occurs within the YouTube service. The proposed
method includes four tasks for traffic classification, and classifies accurate services and sub-
services or applications by performing four tasks simultaneously using MTC. In addition,
the proposed method provides detailed classification results for traffic, which can satisfy
various requirements of network administrators. Our representative contributions include
the following:

(i). Improved classification accuracy: improved classification performance considering re-
lationships between multiple tasks (browsers, HTTP protocols, applications, services);

(ii). Generalizability and portability of the four multitask classification methods: the
generalized classification model for multiple classifications improves classification
performance across diverse backbone networks;

(iii). Possibility to monitor and analyze from multiple perspectives: network administrators
can gain more detailed information and insights into the traffic occurring on the
networks under their jurisdiction when monitoring and analyzing their networks.

This paper is structured as follows: Related research is described in Section 2 following
the introduction. Section 3 provides a detailed explanation of the proposed method, and
Sections 4 and 5 describe the experimental setup and results, respectively. Finally, in
Section 6, the conclusion and future research are discussed, concluding this paper.
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Figure 1. Overview of classification types.

2. Related Works

2.1. Task Description

This subsection describes four tasks of the proposed methodology. The first task is
browser classification, where browsers are graphical user interface-based software applica-
tions that enable bidirectional communication between users and web servers, allowing
the display of HTML documents or files. The labels included in the browser classification
task are Chrome, Edge, and Firefox, whose combined usage accounts for the majority of
global browser usage. Ref. [11] proposed real-time lightweight identification of HTTPS
clients based on network monitoring and SSL/TLS fingerprinting and reported that 95.4%
of HTTPS network traffic could be retrieved by the proposed method. Additionally, the
study reported that the handshake fingerprints of SSL/TLS, including the cipher suite
list of different clients, differ. This indicates that prior information about the browser or
communication client can influence the classification results. The second task is protocol
classification, where collected protocols include HTTP/1.1, HTTP/2 (HTTPS), and HTTP/3.
HTTP/1.1 is one of the HTTP protocol versions released in 1999 and is still the most widely
used. HTTPS refers to the second major version of the HTTP protocol, which was released
in 2015. HTTP/3 is the third major version of the HTTP protocol, which was released in
2020, and uses the QUIC (Quick UDP Internet Connections) protocol instead of the TCP
protocol used in previous versions, providing faster and more reliable data transfer. Web
applications utilize various HTTP protocol versions, and the protocol version can serve as
useful prior information for classifying specific applications. Ref. [12] proposes a method to
improve the service classification performance by using the protocol classification results of
the application traffic test dataset as prior information in the service classification process.
The third task is service classification, where services are defined as software systems for
interaction between different types of computers on the network, consisting of Aladin,
Amazon, Google, Nate, Naver, and YouTube. For convenience, the services referred to in this
paper denote the top-level service that includes multiple applications or sub-services. The
fourth task is application classification, where applications or sub-services responsible
for specific interactions within a service are identified. For example, Google Fonts and
Gstatic are applications (sub-services) provided by Google, while search.naver and pstatic
are applications provided by Naver. In other words, a service may consist of multiple
applications or sub-services. The four tasks selected in this study are closely interconnected,
and when performing each task, the other tasks can serve as valuable prior information.
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2.2. Classification Type

This subsection describes the types and definitions of classification tasks. Classification
tasks can be divided into BC (Binary Classification), MCC (Multiclass Classification), MLC
(Multi-label Classification), and MTC (Multitask Classification), as shown in Figure 1.

BC is a classification task with two classes, where each sample can be labeled with only
one class. For example, in an anomaly classification task to distinguish between anomaly
and benign, the user can assign a label to each sample with only one of the two classes.
There have been many studies on detecting the presence of malicious traffic in network
traffic data [13–15].

MCC is a classification task with more than two classes, where each sample can be
labeled with only one class. The majority of research in the field of application traffic
classification is focused on MCC, where various application traffic types are labeled with a
single label. For example, in the application classification task [7], to distinguish between
Mail, File Transfer, P2P, VoIP, Streaming, and Chat, the user can assign a label to each
sample with only one of the six classes.

MLC is a classification task in which multiple labels are assigned to each sample, equal
to the number of possible classes when there are multiple classes. For example, in a weather
classification task that includes seven classes, such as clear, cloudy, snow, rain, fog, thunder,
and hail, the user can assign one or more labels from the seven classes to each sample.

MTC is a Multiclass–Multioutput Classification. MTC is used in the proposed method-
ology, where there are multiple tasks, and the user can assign only one label for
each task.

2.3. Structured Inference Neural Network

The Structured Inference Neural Network (SINN) was inspired by a deep learning-
based method that utilizes various label relationships to improve image classification
performance by using a cumulative label prediction neural network [16]. In this neural
network, structural graph formation is possible through relationships between labels, and
different interpretations of various units are possible for representing images. For example,
an image can be represented in terms of indoor or outdoor, specific location, and specific
object units. As a result, SINN is a structural inference neural network that can model
relationships between labels by considering dependencies between classification units
through CNN and RNN. Figure 2a shows a baseball field image that can be represented as
a structural graph, as shown in Figure 2b. The baseball field in Figure 2a belongs to the
scene unit’s artificial outdoor, the scene attribute unit’s sports field or artificial element,
the detailed scene unit’s home plate, and the object unit’s field, baseball bat, baseball,
grass, and person classes, which are all represented by the structural graph in Figure 2b
and are represented by red nodes. If the image belongs to the indoor class at the scene
unit, the baseball bat object cannot be present, as the baseball bat object is dependent on
artificial outdoor, which serves as evidence for using SINN. Inspired by these structured
representations, we propose four units (browser, protocol, application, service) to represent
traffic flows and use them to perform MTC.

 

(a) (b) 

Figure 2. These represent a baseball field image (a) and its corresponding structural graph (b).
(a) Baseball field image. (b) An image of a baseball field represented as a structural graph.
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2.4. DL-Based Spatial-Temporal Feature Extraction

In this section, we describe the deep learning-based spatial and temporal feature
extraction methods used in the multitask learning approach.

CNN is the most widely used method for extracting spatial features, especially for
processing images or video data. CNNs are inspired by the structure of the visual cortex in
animals, which has layers of neurons that are sensitive to specific visual features. Similarly,
CNNs have layers that extract hierarchical representations of the input image or video,
starting from low-level features, such as edges, and gradually moving towards high-level
features, such as object parts and whole objects. The basic component of a CNN is the
convolutional layer, which applies a set of filters or kernels to the input image, extracting
local features that are then pooled and passed on to the next layer. We utilized two famous
CNN-based backbone networks and two deep learning architectures proposed in previous
studies to clearly demonstrate the contribution of applying the MTC method. The first one
is Lenet [17], an initial model designed for handwritten digit recognition. Lenet consists of
two convolutional layers, pooling layers and fully connected layers, and its model structure
is shown in Figure 2. The second backbone network is Resnet [18] (Residual Network), a
deep learning architecture proposed to solve the gradient vanishing problem that occurs in
deep neural networks. Resnet solves the gradient vanishing problem by introducing skip
connections, direct connections that skip several layers in the network, unlike traditional
CNN architectures. Resnet still shows good performance in various fields. Ref. [19]
proposes MISCNN (Multi-Input Shape Convolutional Neural Network) that utilizes various
input forms that can be derived from fixed-length packet bytes. By observing packets from
various angles through the different forms that can be derived from a single input, it shows a
significant improvement in performance compared to previous research. Ref. [20] proposes
HAST-IDS (Hierarchical Spatialtemporal Features-based Intrusion Detection System), an
intrusion detection system that uses CNN to learn spatial features of packets and LSTM to
learn temporal features between multiple packets. HAST-IDS performs a classification of
multiple normal and abnormal traffic, and experiments show that HAST-IDS outperforms
other approaches in terms of accuracy, detection rate, and FAR.

RNN (Recurrent Neural Network) is a type of deep learning that is used to handle
sequential data [21]. RNN has the advantage of being able to solve the long-term depen-
dency problem by using the output of the previous step as the input of the current step,
thereby reflecting the previous information in the current processing. However, RNNs can
suffer from vanishing gradient and exploding gradient problems. To solve this problem,
a model based on RNN called GRU (Gated Recurrent Unit) was proposed [22], and this
paper applies GRU to extract temporal features. GRU has the advantage of faster learning
speed and the ability to handle longer sequences than RNN. GRU combines the hidden
state and cell state used in RNN into one and updates it using two gates: the update gate
and the reset gate. The update gate determines how much information to update using the
current input and previous state, and the reset gate determines how much the previous
state is forgotten. Through this, GRU can solve the long-term dependency problem while
mitigating problems that arise during the learning process.

2.5. MTC-Based Traffic Classification

Ref. [5] proposes the use of multitask deep neural network in federated learning
(MT-DNN–FL) to simultaneously perform network anomaly detection, VPN (Tor) traffic
recognition, and traffic classification tasks. They report that the multitasking approach
reduces training time overhead compared to multiple single-task models. Experimental
results conducted on well-known datasets, such as CICIDS2017, ISCXVPN2016, and ISX-
Tor2016, demonstrate that the proposed method achieves superior anomaly detection and
classification performance compared to baseline models in a centralized training archi-
tecture. Ref. [10] proposes the use of multitask learning to predict the bandwidth and
duration of network traffic flows while simultaneously classifying the traffic into different
classes. Predicting bandwidth and duration does not require extensive labeling efforts or
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specific environments, allowing for the utilization of abundant training data. This approach
significantly reduces the number of labeled samples required for traffic class prediction.
Furthermore, the predicted bandwidth and duration can be applied in ISPs for resource
allocation, routing, and QoS purposes. The experiments conducted on the QUIC and ISCX
VPN-nonVPN datasets demonstrate that the multitask learning approach outperforms
single-task learning and transfer learning methods. Ref. [9] proposed a novel multimodal
multitask deep learning approach called DISTILLER. This approach is designed to address
the challenges of encrypted traffic and diverse network visibility in traffic classification.
DISTILLER leverages deep learning techniques to automatically extract complex patterns
from various modalities of traffic and simultaneously solve multiple traffic categorization
problems. The authors evaluate DISTILLER using public datasets and report superior per-
formance compared to state-of-the-art deep learning architectures. Ref. [23] proposes a new
multimodal deep learning framework called MIMETIC. MIMETIC overcomes performance
limitations by leveraging the diversity of traffic data and achieves superior performance
compared to existing single-modal deep learning-based traffic classification methods. It also
highlights the effectiveness of multimodal deep learning in classifying traffic by capturing
the characteristics of diverse traffic that carry information.

3. Proposed Method

In this chapter, we describe three multitasking learning methods that can learn rela-
tionships between tasks.

3.1. MTC-Based Traffic Classification
3.1.1. Single Task Single Inference

To compare with the proposed three multitask learning methods, we introduce the
ST–SI (Single Task–Single Inference) learning method used in existing application traffic
classification research. With ST–SI, a main classifier performs the main classification of
one task through a single classifier. As shown in Figure 3, ST–SI uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 4a shows the
structure of the model that performs the browser classification using the extracted features
from the flow as the input to the backbone network. The output of the Figure 3a model is
one of the three classes of the browser task. Similarly, Figure 3b–d are models responsible
for each task, such as protocol, service, and application.

    
(a) (b) (c) (d) 

Figure 3. Overview of ST–SI (Single Task–Single Inference). (a) ST–SI-based browser classification;
(b) ST–SI-based browser classification; (c) ST–SI-based browser classification; and (d) ST–SI-based
browser classification.
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Figure 4. Overview of MT (Multitask).

3.1.2. Multitask

The first multitask learning method is MT (Multitask), which performs four main
classifications simultaneously through four main classifiers. As shown in Figure 4, a single
model is used to perform the four tasks of browser, protocol, service, and application. The
features extracted from the backbone network are input to each main classifier responsible
for the four tasks to predict a single class for each of the four tasks. In this case, each main
classifier has an error weight equal to 0.25, meaning that the model learns with equal effort
on all four tasks. There may be some common information between the four tasks, and the
interactions between them can complement each other and improve performance. Also, by
handling multiple tasks and learning common patterns, models that are more robust and
flexible for new tasks can be created.

3.1.3. Multitask Single Inference

The second multitask learning method is MT–SI (Multitask–Single Inference), which
performs the pre-classification of four tasks simultaneously through four pre-classifiers.
Then, using the pre-classification results, a main classifier performs the main classification
of one task. As shown in Figure 5, the MT–SI learning method uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 5a shows
the structure of the model that performs the browser classification using the extracted
features from the flow as input to the four pre-classifiers and one main classifier. Similarly,
Figure 5b–d are models responsible for each task, such as protocol, service, and application.
The error weight of the four pre-classifiers in the model is set to 0.1, and the main classifier
is set to 0.6. The spatial features generated by the backbone network are input to the
pre-classifiers to output classification results (probability of belonging to each class), which
are merged with the previously generated spatial features. The main classifier performs
the main task using the classification results and and spatial features of four pre-classifiers.
The common information shared among tasks extracted during the training process of the
pre-classifiers enhances the classification performance of the main classifier.
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(a) (b) (c) (d) 

Figure 5. Overview of MT–SI (Multitask–Single Inference). (a) MT–SI-based browser classification;
(b) MT–SI-based browser classification; (c) MT–SI-based browser classification; and (d) MT–SI-based
browser classification.

3.1.4. Multitask Multi Inference

The third multitask learning method is MT–MI (Multitask–Multi Inference), which per-
forms the pre-classification of four tasks simultaneously through four pre-classifiers. Then,
using the pre-classification results, four main classifiers perform the main classification of
four tasks simultaneously. As shown in Figure 6, the MT–MI learning method uses a single
model for the four tasks of browser, protocol, service, and application. The error weight
of each pre-classifier in the model is set to 0.05, and each main classifier is set to 0.2. The
spatial features produced by the backbone network are input to the pre-classifiers, which
output pre-classification results for each task. The pre-classification results are merged
with the previously extracted spatial features and input to each main classifier to perform
the corresponding task. The MT–MI method differs from MT in that it performs a brief
pre-classification before performing each main classification and uses the results when
performing the main classification.

Figure 6. Overview of MT–MI (Multitask–Multi Inference).
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3.2. Dataset Description

This section describes the dataset collected for validating the proposed methodology.
When collecting data in a typical environment, traffic unrelated to the target web service
can be collected due to the background services that are running. Therefore, a Docker
platform that can be isolated from the host network is a good choice. The traffic dataset
was collected using Selenium in containers on a Docker platform and consists of six types
of web service traffic.

For the three additional tasks, apart from web service traffic, the labeling methods are
as follows:

• Service: labeled at the time of collection;
• Browser: labeled at the time of collection;
• HTTP protocol: check the HTTP version of the GET or POST method response header

when the protocol of the traffic flow is HTTP (perform the same process after decryp-
tion in the case of HTTPS);

• Application: check the Request URL for HTTP or the Service name indicator (SNI) in
the Transport Layer Security (TLS) layer for HTTPS.

The collected dataset consists of 10,497 bidirectional flows, and the task-specific distri-
bution is shown in Figure 7. In this figure, the value of each pie is in the form; the number
of bi-flows, its percentages. The browser task consists of Chrome, Edge, and Firefox, with
Chrome and Firefox accounting for a high percentage. The protocol task consists of HTTP/1.1,
HTTP/2, and HTTP/3, with HTTP/2 accounting for a high percentage. The service task
consists of Aladin, Amazon, Google, Nate, Naver, and YouTube, with all six accounting for an
equal ratio. The application unit consists of Aladin, Amazon, Google, Nate, Naver, YouTube,
Microsoft, Mozilla, and Etc, with Google and Mozilla accounting for a high percentage. To
prevent excessive granularity, labeling was performed for traffic that belongs to major
applications, and traffic that does not belong to the eight major applications was assigned
to the Etc class.

 
(a) (b) (c) (d) 

Figure 7. The task-specific distribution. (a) Browser distribution. (b) Protocol distribution. (c) Service
distribution. (d) Application distribution.

Figure 8 shows the protocol ratio by service, with most services primarily using
HTTP/2, but Aladin and Nate services have a relatively high percentage of using the
HTTP/1.1 protocol. Also, since the YouTube service uses the QUIC protocol, the percentage
of using the HTTP/3 protocol is high.

Figure 9 shows the application ratio by browser, and the ratio of applications used by
the company that developed each browser is high.

Table 1 shows the application ratio by service, indicating that one or more applications
are mixed within a single service traffic.
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Figure 8. The protocol ratio by service.

Figure 9. The browser ratio by service.

Table 1. The application ratio by service.

Service Aladin Amazon Google Nate Naver YouTube Microsoft Mozilla Etc

Aladin
1778 447 364 50 5 1 660 251
100% 25.1% 20.5% 2.8% 0.3% 0.1% 37.1% 14.1%

Amazon
1632 873 27 4 2 612 114
100% 53.5% 1.7% 0.2% 0.1% 37.5% 7

Google 1479 707 102 2 668
100% 47.8% 6.9% 0.1% 45.2%

Nate
1788 1 76 537 10 2 597 565
100% 0.1% 4.2% 30% 0.6% 0.1% 33.4% 31.6%

Naver
1603 17 1022 101 451 12
100% 1.1% 63.8% 6.3% 28.1% 0.7%

YouTube
2217 1122 226 81 777 11
100% 50.6% 10.2% 3.7% 35% 0.5%

4. Experiments

In this chapter, we describe the parameters used in the experiments. The experiments
were performed with various parameters, and a total of 576 experiments were conducted
by combining five types of parameters.

The first parameter is the four learning methods described in the methodology. The
second parameter is the number of packets within a flow, which has three values of 4,
9, and 16. The third parameter is the packet size, which has four values of 324, 400, 484,
and 576 (bytes). The fourth parameter is the backbone network, which has four values of
LeNet, ResNet, HAST-IDS, and MISCNN. The four backbone networks are used as the
backbone network within each learning method during the experiments. HAST-IDS [20] is
an intrusion detection system that uses CNN to learn spatial features and LSTM to learn
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temporal features. MISCNN is a CNN-based service classification that utilizes various
input forms that can be derived from fixed-length packet bytes [19]. The fifth parameter is
the input form, which has three values: CP, MP, and MPG. CP (Concatenated Packet input)
is an input form that collects and merges the first N bytes of packets within a flow, and
extracts features by inputting them to the backbone network, as shown in Figure 10a. MP
(Multiple Packet input) is an input form that inputs the first N bytes of packets within a
flow to independent backbone networks, and merges the extracted features as shown in
Figure 10b. MPG (Multiple Packet input with GRU) has the same form as MP but considers
the temporal aspect of packets by inputting the extracted features to GRU, as shown in
Figure 10c. A total of 576 experiments are conducted by combining the five parameters.

  

 
(a) CP (b) MP (c) MPG 

Figure 10. Overview of flow input type. (a) Input type CP (Concatenated Packet Input); (b) input
type MP (Multiple Packet Input); and (c) input type MPG (Multiple Packet Input w/GRU).

5. Experiment Results

In this chapter, we focus on comparing the classification performance based on the
learning method, the number of packets within a flow, the packet size, the backbone
network, and the input type.

5.1. Comparison of Task Performance According to Parameters
5.1.1. MT Method and Backbone Network

Figure 11 represents the browser classification accuracy based on the multitask ap-
proach and backbone network. Figure 11a shows the highest accuracy achieved when
applying different experimental parameters to a fixed multitask approach and backbone
network. From the perspective of the multitasking approach, methods that utilize the multi-
tasking approach generally achieve higher accuracy compared to the single-task approach,
except for when using the Resnet backbone. In terms of the backbone network, Resnet
consistently demonstrates good results in browser classification, with the combination
of Resnet and MT–SI showing the highest accuracy. Figure 11b represents the standard
deviation of the accuracy for combinations of different experimental parameters applied to
a fixed multitask approach and backbone network. Overall, experiments that apply the
multitask approach tend to have lower standard deviations, indicating that providing prior
information to the model is beneficial for generalization. Figure 12 represents the accuracy
of HTTP protocol classification based on different multitask approaches and backbone
networks. In terms of multitask approaches, except for the case with the Lenet backbone,
the method with the application of MT-SI shows higher accuracy. In terms of backbone
networks, MISCNN demonstrates overall better results in protocol classification.
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(a) (b) 

Figure 11. Browser classification accuracy according to the MT method and backbone network.
(a) The highest accuracy among the combinations of experimental parameters; (b) standard deviation
of the results within the combination. (a) Best accuracy. (b) The standard deviation of accuracies.

 
(a) (b) 

Figure 12. Protocol classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

Figure 13 represents the accuracy of service classification based on different multitask
approaches and backbone networks. In terms of multitask approaches, except for the case
with the Lenet backbone, the method with the application of multitask approaches shows
higher accuracy. In terms of backbone networks, HAST-IDS demonstrates overall better
results in service classification.

 
(a) (b) 

Figure 13. Service classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

Figure 14 illustrates the accuracy of application classification based on different multi-
task approaches and backbone networks. Except for the MISCNN backbone, single-task
approaches show better performance. However, it can be observed that when applying
multitask approaches, the model’s variance is not significant.
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(a) (b) 

Figure 14. Application classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

5.1.2. Performance Comparison by the Number of Tasks

This section describes the performance comparison based on the number of tasks
as an additional experiment. Assuming that tasks are not completely independent and
have relationships with each other, we compare the performance based on the number
of tasks to demonstrate more accurately the classification of other tasks by utilizing the
relationships between tasks. We conduct experiments to see if the service classification
accuracy improves when the service task is trained with other tasks. To compare the
service classification accuracy, the service task is included in all experimental cases. The
performance results based on the number of tasks are shown in Table 2. We can observe
that the service classification accuracy improves when the service and application tasks are
trained simultaneously and when the service, browser, protocol, and application tasks are
trained simultaneously. In other words, when training with the application task included,
the service classification accuracy improves. Furthermore, we can confirm that the service
classification accuracy is the highest when all four tasks are trained simultaneously. Thus,
we can see that the service classification task’s accuracy improves when trained with
other tasks.

Table 2. The average accuracy comparison by the number of tasks.

Task
Accuracy (Service)

Service Browser Protocol Application
√

86.124% ± 0.541%
√ √

88.698% ± 0.723%
√ √

89.028% ± 0.613%
√ √

90.357% ± 0.568%
√ √ √

89.52% ± 1.195%
√ √ √

89.81% ± 0.733%
√ √ √

90.286% ± 0.735%
√ √ √ √

90.512% ± 0.827%

5.2. Ablation Study
5.2.1. Number of Packets and Backbone Network

Figure 15 illustrates the difference in accuracy based on the change in packet count. In
browser and service classification, the accuracy increases as the packet count increases. On
the other hand, in protocol and application classification, the accuracy remains similar or
decreases as the packet count increases. These results show a consistent trend regardless of
the backbone network used.
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Figure 15. Task-specific classification accuracy based on the number of packets and backbone network.

5.2.2. Packet Length and Backbone Network

Figure 16 illustrates the difference in accuracy based on the change in packet length.
Except for Lenet, there is not a significant variation in accuracy based on the packet length.

 

Figure 16. Task-specific classification accuracy based on packet length and backbone network.

5.2.3. Input Type and Backbone Network

Figure 17 represents the difference in accuracy based on the input type. In Lenet and
Resnet, there is not a significant variation in accuracy based on the input type. However, in
HAST-IDS and MISCNN, MPG generally exhibits higher accuracy in most tasks.

 

Figure 17. Task-specific classification accuracy based on input type and backbone.

5.2.4. Overall

Task-specific overall results based on parameters are shown in Table 3. The following
table summarizes the parameters of the model that show the highest performance for each
task and backbone network. The multitask learning-based model shows high classification
accuracy in the browser, protocol, service, and application tasks, with high accuracy mainly
observed between packet lengths of 9 and 16. High accuracy is also observed between
packet sizes of 400 and 576, with MP or MPG input type showing high accuracy. When
using the multitask learning method for all task classifications, higher classification accuracy
is achieved than the conventional ST–SI learning method.
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Table 3. Best task-specific classification accuracy based on parameters. LN: Lenet; RN: Resnet; HI:
HAST-IDS; MC: MISCNN; NP: number of packets; PL: packet length; IT: input type; MT: MT method.

Browser Protocol Service Application

LN RN HI MC LN RN HI MC LN RN HI MC LN RN HI MC

NP 16 16 16 16 16 16 16 16 9 4 4 4 16 9 or 16 9 16

PL 576 576 484 324 400 400 324 576 484 576 576 324 484 400 or 576 484 400

IT MPG CP MPG CP MPG CP MPG CP MP CP MPG MPG MP MP or MPG MPG MPG

MT MTSI MTSI MTSI MTSI STSI MTSI MTSI MTSI STSI MTSI MT MT MTSI MT or MTSI MTSI MTSI

Acc 0.965 0.97 0.964 0.965 0.994 0.994 0.993 0.994 0.866 0.89 0.909 0.898 0.958 0.957 0.965 0.972

5.2.5. Confusion Matrix for the Service Task

This section compares the confusion matrices of the service task for ST–SI and MT
learning methods. Figure 18a shows the confusion matrix of the service task for the ST–SI
learning method. The horizontal axis represents the actual labels, and the vertical axis
represents the predicted labels. The result of predicting YouTube as Aladin in the service
task classification using the ST–SI learning method is 8.5, which can be predicted to be a
misclassification due to the YouTube streaming API call in the Aladin product description.
Figure 18b shows the confusion matrix of the service task for the MT learning method.
The result of predicting YouTube as Aladin in the service task classification using the MT
learning method is 1.2, which has a lower probability of misclassification than the ST–SI
learning method. In addition, the result of predicting YouTube as Google in the service
task classification using the ST–SI learning method is 5.7, which can be predicted to be
a misclassification due to similar traffic between Google and YouTube as they belong to
the same company’s platform. The result of predicting YouTube as Google in the service
task classification using the MT learning method is 0.6, which has a lower probability of
misclassification than the ST–SI learning method. The service task confusion matrix shows
that the misclassification of YouTube into other classes has been improved. Figure 19a shows
the confusion matrix of the application task for the ST–SI learning method. The result of
predicting Google as YouTube in the application task classification using the ST–SI learning
method is 54.6, which can be predicted to be a misclassification due to similar traffic
between Google and YouTube as they belong to the same company’s platform. Figure 19b
shows the confusion matrix of the application task for the MT learning method. The result
of predicting Google as YouTube in the application task classification using the MT learning
method is 25.8, which has a lower probability of misclassification than the ST–SI learning
method. The application task confusion matrix shows that the misclassification of Google
into YouTube has been improved.
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(a) (b) 

Figure 18. Confusion matrix for the service task. (a) Confusion matrix for the service task of ST–SI;
(b) confusion matrix for the service task of MT–SI.

 
(a) (b) 

Figure 19. Confusion matrix for the application task. (a) Confusion matrix for the application task of
ST–SI; (b) confusion matrix for the application task of MT–SI.

6. Conclusions

This paper proposes a multitask learning method for application traffic classification
using the relationships between browser, protocol, service, and application tasks. Three
multitask learning methods, Multitask, Multitask Single Inference, and Multitask Multi-
Inference, are proposed according to the pre-classification status and the number of main
classifications. The experimental results show that more accurate application traffic classifi-
cation can be achieved by utilizing the relationships between tasks. The practicality of the
proposed learning methods has been demonstrated through experiments, and accuracy
has been improved by 4.4%p on average while maintaining real-time performance. This
means that simple model improvements allow network administrators to obtain more ac-
curate classification results without further consideration of the resources of the hardware
on which the existing classification model is installed. Specifically, experimental results
suggest that if a service is called with another application that does not belong to it, it
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is likely to be misclassified in terms of service classification, and that the combination of
service and application tasks solves this problem. In addition, applications provided in
the form of APIs by Google appear to be confusing in classifying other services, but this
is also mitigated by the application of multitask learning. Although the combination of
service and application tasks has shown high classification accuracy improvements, there
is also a small improvement in the combination with the proposed browser and protocol
tasks. Also, the multitask learning method can provide accurate and detailed classification
results for application traffic, making it widely applicable for various purposes of traffic
analysis. Network administrators can receive classification results about the browser (96.5%
accuracy), protocol (99.4% accuracy), service (90.9%), and application (97.2% accuracy)
of web traffic. Moreover, the experimental results show that the proposed method can
be applied to various existing research models. Furthermore, the proposed generalized
method of multitasking learning can be combined with state-of-the-art high-performance
classification models and has shown high performance in combination with the four back-
bone networks presented in this study. In future research, we plan to improve the multitask
learning method to achieve higher performance by analyzing which classes are difficult
to classify in the browser, protocol, service, and application tasks. Several limitations are
set for future research. First, the consideration of the gradient conflict problem that may
arise in multitask learning has not been addressed. The model’s parameters need to be
adjusted to satisfy the loss functions for various tasks simultaneously, but the loss functions
of different tasks typically have gradients in different directions, which can degrade the
performance of multitask learning or make the learning process more difficult. Therefore,
there is a need to improve performance through appropriate techniques such as weight
sharing or adjustment of loss functions [24]. Second, optimization of the backbone network
is another challenge. The backbone network used in this study was only employed to
validate multitask learning through newly proposed tasks, so there is a need for model
structure adjustments and various parameter adjustments to enhance its capabilities.
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Abstract: Fog–cloud-based hierarchical task-scheduling methods are embracing significant chal-
lenges to support e-Health applications due to the large number of users, high task diversity, and
harsher service-level requirements. Addressing the challenges of fog–cloud integration, this paper
proposes a new service/network-aware fog–cloud hierarchical resource-mapping scheme, which
achieves optimized resource utilization efficiency and minimized latency for service-level critical
tasks in e-Health applications. Concretely, we develop a service/network-aware task classification
algorithm. We adopt support vector machine as a backbone with fast computational speed to sup-
port real-time task scheduling, and we develop a new kernel, fusing convolution, cross-correlation,
and auto-correlation, to gain enhanced specificity and sensitivity. Based on task classification, we
propose task priority assignment and resource-mapping algorithms, which aim to achieve mini-
mized overall latency for critical tasks and improve resource utilization efficiency. Simulation results
showcase that the proposed algorithm is able to achieve average execution times for critical/non-
critical tasks of 0.23/0.50 ms in diverse networking setups, which surpass the benchmark scheme by
73.88%/52.01%, respectively.

Keywords: fog–cloud computing; task scheduling; service aware; support vector machine; network
optimization; e-Health

1. Introduction

e-Health is becoming the backbone for upgrading the conventional healthcare system
by validating remote services, which are specifically important under pandemic conditions
(e.g., COVID-19) to release the pressure of lack of trained healthcare professionals [1,2].

Predicted to process 92% of the overall workload within 5 years, cloud computing has
proved its high centralized computational and storage capacity in e-Health, e.g., developing
health information technology (HIT) systems [3]. Additionally, to prevent inefficient
massive data aggregation to centralized cloud computing in the conceived ultra-large-
scale e-Health system with the rapid increase in the number of users, fog computing has
emerged, since it is located physically closer to users [4]. To integrate the aforementioned
strengths of cloud and fog computing, the fog–cloud hierarchical structure, as well as
efficient fog–cloud resource management, has provided a glimmer of hope to support
high portability and automatic provisioning for future e-Health development [5]. There
are plenty of efforts for resource management among fog and cloud nodes, e.g., resource
mapping [6] and task scheduling [4], where task classification is essential to identifying the
features of both computing nodes (e.g., computational capacity, potential latency, etc.) [7]
and tasks (e.g., payload, etc.) [8].
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Despite the foreseen advantages, the fog–cloud hierarchical structure for e-Health
is a significantly complicated system, as a cross-layer optimization problem, with new
challenges. To start, the cross-layer task scheduling of the fog–cloud hierarchical structure
for e-Health gains an irregular solution space due to the quantitatively large difference
between features of fog and cloud nodes. Therefore, it requires higher complexity of model-
ing and solving, which might fail to support critical/latency-sensitive tasks due to tedious
computation. To the best of the authors’ knowledge, there is still a lack of research efforts for
the real-time task scheduling of fog–cloud hierarchical structures for e-Health services. Ad-
ditionally, task classification also encounters serious computational complexity, particularly
for the foreseen ultra-large-scale e-Health systems. Improper task classification directly
results in inefficient resource utilization regarding diverse demands for task scheduling,
optimization of QoS, and latency. Moreover, due to the uniqueness of e-Health services,
critical tasks are defined with very low latency tolerance margin, which is determined by
services/patients’ information, e.g., medical records/real-time symptoms [9]. Therefore,
task scheduling in e-Health should fuse features at the service level and network level
simultaneously, which directly complicates the computational process.

Targeting the aforementioned challenges, we propose an e-Health infrastructure for
real-time fog–cloud hierarchical task scheduling by dynamically considering the real-time
requirements of tasks with the modeling of both networking and computation simultane-
ously. The contributions in the paper can be summarized as follows:

1. We propose a task classification algorithm, fusing features at the network level and ser-
vice level for e-Health, which is efficient in achieving user-centric QoS maximization,
with latency minimized for critical tasks. Support vector machine (SVM)-based task
classification which is efficient in handling the defined latency-sensitive critical tasks is
proposed. It is necessary to note that although deep learning algorithms increasingly
gain markets, shallow machine learning (e.g., SVM) with low computational costs still
presents strengths for latency-sensitive e-Health applications [5].

2. A new kernel type is proposed for comprehensively classifying network-level and
service-level features, fusing convolution, cross-correlation, and auto-correlation, which
gains high overall classification accuracy for specificity and sensitivity enhancement.

3. We propose a task priority assignment algorithm and a resource-mapping algorithm,
which achieve sufficient overall latency for the defined critical tasks while improving
the overall resource utilization efficiency.

The rest of the paper is organized as follows: Section 2 presents a survey of related
efforts. Section 3 introduces the system modeling with the formulation of communication
and computational processes. Section 4 proposes optimization modeling and the SVM-
based task-scheduling algorithm, with a newly developed kernel type to optimize resource
utilization efficiency and communication latency. Section 5 explores three key algorithms.
These algorithms collaboratively prioritize tasks, classify resources, and effectively allocate
tasks to suitable fog and cloud nodes. Section 6 showcases the result analysis of the
proposed scheme. Section 7 concludes the paper.

2. Related Work

Task scheduling for fog–cloudcomputing is highly demanded due to uneven distri-
bution of workload and heterogeneous computing capacity. Conventionally, task schedul-
ing is performed among cloud nodes to improve computational efficiency. For instance,
tasks are prioritized according to their payload, which is further scheduled based on
the cloud’s MIPS, ensuring processing reliability for tasks with high priority [10]. Com-
pared with cloud computing, the popularity of fog computing increases demand for
task scheduling, resulting from the limited computational capacity of individual fog
nodes (FNs) when dealing with heterogeneous data densification for e-Health. Depend-
ing on criteria such as user-preference-oriented features of FNs [11], energy efficiency
maximization [12], and overall latency minimization [13], fog-based task scheduling is
modeled and solved. As illustrated in Table 1, critical network- and service-level fac-
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tors that comprehensively cover the typical demands and indicators to achieve optimal
service-aware fog–cloud resource mapping for e-Health are selected and considered in this
paper. Concretely, FN capacity relates to the number of fog nodes available, influencing
performance and task offloading decisions. Task features, encompassing computational
complexity, data size, and latency requirements, are the essential criteria to be considered
when achieving service-level task scheduling in the network layer. Task priority is a critical
indicator to guide scheduling based on service-level urgency. Latency, i.e., delay in task
completion, impacts the quality of service, particularly in e-Health scenarios. In addition,
execution time is specifically considered, besides overall latency, to further highlight the im-
pact of task complexity and fog node resources simultaneously. Network and computation
modeling are responsible for ensuring accurate latency and execution time predictions in
service-aware task scheduling, respectively. Offloading decisions to the cloud, in contrast
to fog-level offloading, should be considered a key criterion in fog–cloud resource mapping,
with the cloud providing centralized computational/storage power to data-intensive tasks
for a trade-off among network latency, balancing proximity, and computational power.

Many current research efforts focused on either fog-based or cloud-based task schedul-
ing, where nodes share similar features. For example, FNs normally gain a similar compu-
tational capacity level (i.e., much lower than cloud nodes), leading to a relatively regularly
shaped optimization solution space for task classification [4]. For instance, a deep learning-
based fog-computing architecture was proposed in order to diagnose heart diseases, which
offloaded tasks based on the CPU load of FNs as a metric [14]. Similarly, greedy algorithm-
based resource allocation and classification for FNs based on the availability of CPU and
bandwidth were proposed [15].

The fog–cloud-based hierarchical structure has drawn significant research attention
in recent 5G development and research on next-generation communications thanks to its
benefits of enhanced connectivity between sensors/devices/users and computing nodes
while reducing transmission and computational latency with high QoS. In fact, fog–cloud
hierarchical task scheduling has been foreseen to be dominant for future heterogeneous
network (HetNet) deployment, requiring systemic optimization regarding service-centric
and user-centric performance, e.g., energy efficiency, QoS, overall latency, etc. [16]. How-
ever, complicated features with multi-layer modeling cannot be tackled with the above-
mentioned homogeneousfog–cloud-only task scheduling. There have been attempts to con-
struct hierarchies among cloud nodes (e.g., cloudlet [1]) or FNs (e.g., multi-layer FNs [17]),
aiming to increase utilization efficiency while reducing latency, as these are still not re-
placeable in fog–cloud hierarchical task scheduling with more diverse features. The most
adopted strategies for fog–cloud task scheduling generally follow the principle that latency-
tolerant and large-size tasks are assigned to cloud nodes, and latency-sensitive tasks, to
FNs [9], based on which minimizing the overall makespan, maximizing resource utilization
efficiency, or load balancing is targeted [16,18–21].

To facilitate task scheduling in fog–cloud hierarchical e-Health systems, task classifica-
tion is essential, with tasks being normally categorized/prioritized (e.g., critical, moderate,
normal [18]). Concretely, the priority of tasks is mostly determined with reference to the
overall latency requirement [19], deadline and available resources in FNs [22], payload [23],
makespan constraints with available resources [20], or task length [24]. For instance, a
mobility-aware scheduling scheme to dynamically distribute tasks to the fog or the cloud
was proposed for e-Health [25] by prioritizing tasks based on data size, response time, and
complexity. A static scheduling method in a fog–cloud heterogeneous environment was
also proposed to reduce CPU execution time and network usage [26]; it classifies tasks
according to the required MIPS and the trade-off between CPU execution time and alloca-
tion memory of FNs. Task offloading to cloud nodes is still based on the aforementioned
“latency-tolerant and large-size tasks to cloud nodes” principle.
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Table 1. Literature review.
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[20] � � � � � � � �
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However, due to the nature of e-Health, besides network-level requirements, tasks
should be further classified based on service-level demands, e.g., patients’ profile, etc.,
which should play a vital role in minimizing critical tasks (e.g., time-sensitive tasks, emer-
gencies, etc.). For instance, detection of abnormal cardiovascular conditions might be
much more serious for patients with related EHR than for normal users, which cannot be
reflected by network-level features. Some attempts were made to reduce the computational
process for mobile patients based on offloading high-priority tasks to the core with higher
computational power based on the predefined priority of tasks in the application layer [27].
Comprehensive determination of task priority is still missing for e-Health regarding both
network-level requirements and service-level demands. Therefore, we propose a task-
scheduling scheme, comprehensively considering network-level and service-level features
for task classification.

3. Fog–Cloud Hierarchical Infrastructure and Modeling for e-Health

This section outlines an innovative task-scheduling framework in a fog–cloud hierar-
chy specifically designed to enhance e-Health services by optimizing task allocation and
reducing latency.

3.1. Fog–Cloud Hierarchical Infrastructure for e-Health

We propose an optimal cross-layer task-scheduling scheme based on a generic fog–
cloud hierarchical infrastructure for e-Health, as shown in Figure 1. e-Health devices in
the IoT layer are connected to base stations (BSs), which further relay the aggregated data
to the task orchestrator (also known as fog-layer broker), centralized for task schedul-
ing. Allocation between e-Health devices and BSs can be achieved using our previously
published schemes, achieving optimal link quality with interference mitigation [6]. Conven-
tionally, task-scheduling methods either schedule tasks among fog nodes (FNs) or forward
latency-insensitive tasks to cloud nodes, which results in inefficient resource utilization
of the fog–cloud hierarchical infrastructure while potentially failing to support critical
tasks in e-Health according to service-level demands. Therefore, we focus on cross-layer
task scheduling by embedding a support vector machine (SVM)-based task classification
algorithm at the orchestrator, the output of which guides real-time task scheduling to
fog–cloud nodes. Compared with the conventional methods, the proposed algorithm
is capable of achieving real-time fog–cloud cross-layer task scheduling with minimized
overall latency for critical tasks in e-Health while ensuring efficient computation for all
users. The proposed task classification and task-scheduling algorithm will be discussed in
Sections 4 and 5, respectively.
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Figure 1. Generic cloud–fog hierarchical architecture for e-Health.

Suppose that there are M cloud nodes and N FNs in the infrastructure designed with
heterogeneous computational capacities as

Ac
M = {ac

1, ac
2, . . . , ac

M}
A f

N = {a f
1 , a f

2 , . . . , a f
N}

(1)

where M + N fog–cloud nodes support UIoT e-Health devices, with each device u generat-
ing xu

1 , xu
2 , . . . , xu

Ku
tasks in unit time period t. To model this random generation, we have

employed a Poisson distribution, which is commonly considered [28] and well proved to
reflect the scenarios in our paper, i.e., events happening independently, at a steady rate,
whose exact occurrence is random. Concretely, Dxu

ku
and Lxu

ku
, with ku ≤ Ku, u ≤ U, are

the latency and the payload of the kth task generated by device u, respectively, which are
well recognized for task classification, especially for emergent and critical e-Health applica-
tions [9]. However, specifically in e-Health, critical tasks should be defined according to
service-level demands. For instance, it is intuitive that tasks related to acute diseases should
gain higher critical level than chronic diseases, with much higher probability of leading to
serious drawbacks.

To correlate tasks according to service-level demands, we consider the type of tasks
according to their service-level functionality, θ, which holds four different values, defined as

θu
x = {inquiry, backup, noti f ication, alarm} (2)

where:

1. Inquiry: triggered for storing information in medical records;
2. Backup: generated periodically to update medical records;
3. Notification: set as reminders, e.g., pill time and therapy appointment for patients,

medical status alert to medical workers, etc.;
4. Alarm: generated based on the diagnosis results, which are also affected/referenced

by the proposed orchestrator, regarding task classification.

The final value of θu
x is set by the scheduler, after examining all indicated parameters

in Algorithm 1.
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Algorithm 1 Task priority determination algorithm.

1: /* 1.0 for each task (xu
ku
) check (βu

xku
), (μu

xku
) fields */

2: if (βu
xku

) == (μ
βu

x
l ) then

3: SVM_weight(xu
ku
) == High

4: else if (βu
xku

)! = (μ
βu

x
l ) then

5: SVM_weight(xu
ku
) == Medium

6: else
7: SVM_weight(xu

ku
) == Low

8: end if
9: /* 2.0 assign the priority to the task */

10: priority(xu
ku
) = SVMweight(xu

k ) +weight(PL(xu
k ))

11: /* 2.1 label the task, assign the value (type of task) */
12: θu

xku
= {inquiry, backup, noti f ication, alarm}

13: /* 2.2 order tasks descending based on priority */
14: P(xu

k (p)) =
{

xu
k (p), xu

k−1(p − 1), · · · , xu
0 (0)

}
15: /* 3.0 send the prioritized tasks from the fog nodes */
16: P(xu

k (p)) ⇒ Orchestrator
{[

X(p)U
K
][

AN
F
]}

Additionally, patients’ medical records, βu
x , are considered, in task scheduling, a key

feature reflecting service-level demands and are generalized as acute and chronic diseases
(x ∈ {xu

1 , . . . , xu
Ku
}, u ∈ {1, . . . , UIoT}):

βu
x = {Acute, Chronic} (3)

Similar to θ, tasks related to acute diseases should be considered critical tasks, com-
pared with chronic diseases. To model βu

x numerically, we define μ as preliminary symp-
toms of diseases, according to patients’ medical records:

μu =

⎡⎢⎢⎣
μ

βu
1

1 . . . μ
βu

1
L

...
. . .

...

μ
βu

Ku
1 . . . μ

βu
Ku

L

⎤⎥⎥⎦ (4)

where ∀u ∈ {1, . . . , UIoT , μu ∈ {0, 1}, with μu = 1 indicating that patient u has correspond-
ing symptoms of acute or chronic diseases and μu = 0 indicating that no symptoms have
been detected.

3.2. Network Modeling

Since θ is considered a key parameter set for task scheduling, network modeling
should be formulated to reflect the stringent latency and QoS requirements, which are
modeled in a cross-layer fashion.

As illustrated in Figure 1, UIoT devices are connected to FNs through a wireless
network, with distance δ

f
u,n between device u and FN n. Similarly, with the conceived large

throughput in the next generation of communications, the connection between fog and
cloud layers is also assumed to be wireless, with distance being represented by δc

n,m.
For each task xu

ku
, ku ∈ {1, . . . , Ku}, u ∈ {1, . . . , UIoT}, the overall end-to-end transmis-

sion latency can be constrained as

Du
xku

< τcomm,xu
ku
+ τwait,xu

ku
+ τproc,xu

ku
(5)

where τcomm,xu
ku

, τwait,xu
ku

, and τproc,xu
ku

refer to latency of propagation, waiting, and process-
ing for task xu

ku
, respectively.
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τcomm,xu
ku

is affected by the transmission delay (ttrans,xu
ku

), estimated as

ttrans,xu
ku

=
J f
u

R f ,u
n

+
Ic
u

Rc,u
m

(6)

where J f
u = ∑ xu

ku
and Ic

u = ∑ xu
ku

represent the number of bits of task xu
ku

from device u to

FNs and cloud nodes, respectively. R f ,u
n and Rc,u

m refer to the data rates for transmitting the
bits of xu

ku
to FN n and cloud nodes m, respectively, as [6]

R f ,u
n = (W f

n ) ∗ log(1 + SINR f ,u
n ) (7)

Rc,u
m = (Wc

m) ∗ log(1 + SINRc,u
m ) (8)

where Wz
i , i ∈ {m, n}, z ∈ {c, f }, is the bandwidth assigned to node i and SINRz,u

i repre-
sents the signal-to-interference-plus-noise ratio for node i regarding device u. In the case of
i = n, the SINR is calculated as

SINR f ,u
n =

Pwuhu(δ
f
u,n)

−αpl

σ2 + I f
n

(9)

where Pwu refers to the transmission power of device u (uplink considered). hu is the channel
power coefficient. Path loss is defined according to δu with path loss coefficient αpl. σ2 and I f

n
are the noise variance and the residual interference power for FN n, respectively [29]. Similarly,
for the connection between device u and cloud node m, the SINR is calculated as

SINRc,u
m =

Pwuhu(δc
u,m)

−αpl

σ2 + Ic
m

(10)

Together with the propagation delay related to multi-hopping, φz,u
i , i ∈ {m, n}, z ∈

{c, f }, has a proportional relationship with δ
f
u,n and δc

n,m; τcomm,xu
ku

is derived as

τcomm,xu
ku

= ttrans,xu
ku
+ φz,u

i i ∈ {m, n}, z ∈ {c, f } (11)

τwait,xu
ku

is derived as the summation of the delay for task xu
ku

requesting network
access (γxu

ku
) and the server response time (νi,xz,u

ku
) required for computing nodes to respond

to the task:
τwait,xu

ku
= γxu

ku
+ νi,xz,u

ku
i ∈ {m, n}, z ∈ {c, f } (12)

τproc,xu
ku

is affected by the payload of task xu
ku

and the computing capacity of the
associated computing nodes, i ∈ {m, n}, z ∈ {c, f }, and is calculated as

τproc,xu
ku

=
Lu

xku

az
i

, i ∈ {m, n}, z ∈ {c, f } (13)

3.3. Computation Modeling

Both cloud and fog nodes share basic features, e.g., computing capacity, including
virtual central processing unit (vCPU) cores, MIPS, RAM, and storage, regarding A f

n and
Ac

m defined in (1):

Az
i = ∑ {vCPU + MIPS + RAM + storage}, i ∈ {m, n}, z ∈ {c, f } (14)
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We suppose that Tz
u,i, i ∈ {m, n}, z ∈ {c, f }, refers to the total number of time slots in

the computing node, where

Tz
u,i =

T

∑
t=1

Δτz
u,i(t), Z = c, f . (15)

where T is the total processing time. Δτz
u,i(t) is the available time of computing node i in

time slot t.
The required computing resource for task xu

ku
is defined as rqu

xu
ku
(t) in a given time

slot t. It is highlighted that rqu
xu

ku
(t) is heterogeneous for diverse devices, which compli-

cates task scheduling, with user/service-centric QoS and latency optimization. rqu
xu

ku
(t) is

constrained as

∀u ∈ {1, . . . , UIoT} :
Ku

∑
k=1

T

∑
t=1

rqu
xu

ku
(t) ≤

N

∑
i=1

a f
i +

M

∑
j=1

ac
j (16)

4. Support Vector Machine-Based Multi-Layer Task Classification

This section addresses the proposed SVM-based multi-class algorithm for weighting
each task. The result of this stage is used together with Algorithm 1 to determine the
priority of the tasks. The proposed SVM-based algorithm determines the weight of the task
into three categories, “high”, “med”, and “norm”, according to two features, where the
first one is the patient profile, which represents the medical history of the patient, and the
second one is the symptom, which is related to the sensor’s response to an action. Figure 2
shows the transitions between states of the weights for the three classes.

1. High: This state indicates that the notification from one of the sensors has one of the
symptoms labeled risky, in addition to the fact that the patient has an illness history
within their profile; additionally, the received symptom is directly connected to the
patient’s medical case.

2. Medium: This state includes two cases: The first one implies that the notification
has one of the risky symptoms but the patient’s medical profile is marked as healthy
and has no illness history; this case is represented by (01). The second case is when
the patient is labeled as having one of the chronic diseases which requires constant
surveillance and the patient has no symptoms at the moment; this case is represented
by (10).

3. Normal: This state refers to the situation where all incoming notifications are within
safe limits, such as periodic readings, with a clear illness history for the patient.

Figure 2. State diagram for task weight determination.
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It is worth to highlight here that three classes are sufficient and efficient in targeting
low latency for the high class and offering sufficient coverage and connectivity for the
normal class. The medium class is classified as the transitional class; it is distinguished from
the normal class and is potentially classified as high class once the extracted features tend
to be more ”critical”, e.g., more severe symptoms are detected. To increase classification
accuracy among the three classes, three classifiers are required for classifying high/med,
med/norm, and high/norm [30].

Highly nonlinear and heterogeneous features lead the task priority determination in
this paper to require machine learning-based algorithms [19]. Given the need for machine
learning algorithms, SVM, well known for its capability of handling classification in nonlin-
ear solution spaces with fast computation [30], is adopted as the backbone algorithm for
task priority determination. Regarding the heterogeneous features considered in task prior-
ity determination, new kernel fusing cross-correlation, convolution, and auto-correlation
are developed.

In the same manner as in Algorithm 1, the machine learning algorithm SVM is used
in Algorithm 2 to classify FNs into three levels (high, medium, and low) based on three
aspects: the first one is the physical characteristics of the FNs, which include MIPS, RAM,
storage, and the number of CPUs; the second aspect reflects network communication
features up/downlink between the FNs and the physical layer; and finally, the third aspect
refers to the availability of the resources in each FN and their ability to receive and process
new tasks. This procedure is periodically employed to scan the FNs in the service area
and update the SVM value in Algorithm 2 to classify the FNs into three levels to meet the
latency limits for critical tasks.

Task priority determination, together with fog/cloud computing ranking, which will
be described in Section 5, contributes to Algorithm 3, i.e., resource mapping, for efficiently
supporting critical tasks in e-Health with low latency and high QoS while ensuring effective
connectivity and computation for normal tasks (e.g., monitoring). The resource-mapping
algorithm is further illustrated in detail in Section 5.3.

Algorithm 2 Resource classification algorithm.

1: /* Scan for the available fog node A f
N */

2: for n = 0, 1, 2 . . . , N do
3: /* 1.0 SVM classify computational capacity (CC) */

4: SVM

⎧⎪⎪⎨⎪⎪⎩
MIPS
RAM
CPUs

Storage

⎫⎪⎪⎬⎪⎪⎭ ⇒ (CC(A f
n))

5:
6: /* 1.1 SVM classify connection features (CF) */

7: SVM
{

uplink
distance

}
⇒ (CF(A f

n))

8:
9: /* 1.2 The Availability of the fog node (A) */

10: Availabl
{

Task spots
available resources

}
⇒ (A(A f

n))

11:
12: end for
13: /* 2.0 Classify and order fog nodes using SVM */

14: SVM

⎧⎪⎨⎪⎩
(CC(A f

n))

(CF(A f
n))

(A(A f
n))

⎫⎪⎬⎪⎭ ⇒

15:
{
(A f

n)High, (A f
n)Medium, . . . , (A f

n)Low

}
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Algorithm 3 Resource-mapping algorithm.

1: /* 1.0 Receiving prioritized fog nodes for Algorithm 2 */
2:
{
(A f

n)High, (A f
n)Medium, . . . , (A f

n)Low

}
3: /* 2.0 Receiving prioritized tasks for Algorithm 1 */
4: prioritized task=

{
(x fn

high), (x fn
med), (x fn

low)
}

5: /* checking task’s parameters */
6: /* 2.1 checking the value of task’s Payload */
7: if PL(xu

ku
) >= PL(high) then

8: weight(PL(xu
ku
)) == high

9: else if PL(medium) =< PL(xu
ku
) =< PL(high) then

10: weight(PL(xu
ku
)) == medium

11: else
12: weight(PL(xu

ku
)) == low

13: end if
14: /* 3.0 The Orchestrator maps & offloads tasks to FNs or CNs */

15:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(A f
1)

(A f
2)

(A f
n)

...
(A f

N)
...

(Ac
m)

(Ac
M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇐

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x f1
1 )

(x f1
1 )

(x fn
k )
...
...

(x fN−n
K−k )

...
(x fN

K )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
16: /* 4.0 The connection capacity */
17: if D(u

xku
) < τ(comm)(xu

ku
) + τ(wait)(xu

ku
) + τ(proc)(xu

ku
) then

18: (θu
xku

) = alarm
19: Forward xu

ku
⇒ Cloud node

20: end if

4.1. Feature and Database Determination

The data used for SVM classification algorithms are real open-source data for scientific
research purposes; here, a dataset of heart attack data from [31,32] is used for the SVM
algorithm as a critical application, taking into account many parameters, such as the type of
chest pain, blood pressure, and cholesterol levels. Using the dataset, the parameters were
identified as symptoms for each of the diseases, which helped determine the thresholds for
SVM in Algorithm 1 to prioritize tasks.

On the other hand, the datasets used in Algorithm 2 are obtained through our experi-
ments. The used parameters are extracted from the tests in the iFogSim simulator and input
into SVM (Algorithm 2). The used parameters include MIPS, RAM, storage, the number of
CPUs, connection features, and the available resources. These parameters are used to train
the data to classify the FNs.

Both algorithms incorporate these carefully selected features to ensure accurate task
classification. We employed five-fold cross-validation for robust model validation and to
confirm the effectiveness of these features in practical scenarios.

4.2. New Kernel Design and Margin Maximization

It is commonly recognized that conventional kernels (e.g., linear, quadratic, etc.)
cannot effectively be applied to ubiquitous applications [30]. Therefore, in this section, we
develop a new type of kernel for enhancing classification accuracy. Conventional kernels
and cross-correlation kernels are fused, reflecting symmetric features and anti-symmetric
features, respectively, to enhance classification accuracy.
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As mentioned previously, three classes, normal, medium, high, represented by C0, C1, C2,
respectively, are developed. For each class, qmax tasks are considered for the supervision of
each class, derived as XCi = {x1,Ci , . . . , xqmax,Ci}, i = {0, 1, 2}. Suppose that L features are

considered for each task; then, the similarity between tasks xq,Ci and xq′,Cj
, i, j = 0, 1, 2, S

xq′ ,Cj
xq,Ci

,
is defined as a cross-correlation [30]:

S
xq′ ,Cj
xq,Ci

(l) =
+∞

∑
n=−∞

xq,Ci (n) · xq′ ,Cj
(n − l) (17)

In general, tasks classified in the same class should gain higher value of S
xq′ ,Cj
xq,Ci

, with higher
similarity compared with tasks in different classes.

Similarly, convolution and auto-correlation (auto-correlation only for tasks in the same
class) [30], representing reversed similarity and self-similarity, respectively, are derived as

R
xq′ ,Cj
xq,Ci

(l) =
L

∑
n=1

xq,Ci (l) · xq′ ,Cj
(l − n) (18)

SS
xq′ ,Ci
xq,Ci

(l) =
L

∑
n=1

xq,Ci (n) · xq′ ,Ci
(n − l) (19)

By nature, cross-correlation reflects the similarity of two tasks, while convolution
enhances the accuracy of similarity determination, reversely. Auto-correlation is also
adopted, further improving classification performance in sensitivity and specificity.

In this paper, the information obtained by S
xq′ ,Cj
xq,Ci

, R
xq′ ,Cj
xq,Ci

, and SS
xq′ ,Ci
xq,Ci

is used to model
the kernels of task classification, which are derived based on the kernel matrix:

KS
q,q′ =

⎡⎢⎢⎣
KS

1,1 . . . KS
1,3qmax

...
. . .

...
KS

3qmax ,1 . . . KS
3qmax ,3qmax

⎤⎥⎥⎦ (20)

KR
q,q′ =

⎡⎢⎢⎣
KR

1,1 . . . KR
1,3qmax

...
. . .

...
KR

3qmax ,1 . . . KR
3qmax ,3qmax

⎤⎥⎥⎦ (21)

Ki,SS
q,q′ =

⎡⎢⎢⎣
Ki,SS

1,1 . . . Ki,SS
1,qmax

...
. . .

...
Ki,SS

qmax ,1 . . . Ki,SS
qmax ,qmax

⎤⎥⎥⎦, i = {0, 1, 2} (22)

where

KS
q,q′ =

L

∑
n=1

ωS(n) · S
xq′ ,Cj
xq,Ci

(n) (23)

KR
q,q′ =

L

∑
n=1

ωR(n) · R
xq′ ,Cj
xq,Ci

(n) (24)

Ki,SS
q,q′ =

L

∑
n=1

ωSS(n) · SS
xq′ ,Ci
xq,Ci

(n), i = {0, 1, 2} (25)

The weighting of features, i.e., {ωS(n), ωR(n), ωSS(n)}, should be determined ac-
cording to the demand of applications. For instance, weighting for the feature related to
“patients’ medical record” should be designed as relatively higher, to potentially increase
the specificity of defined critical tasks classified with high priority.
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Mercer kernels (i.e., inner product kernels, KS
q,q′ , KR

q,q′ , KSS
q,q′ ) obey the Mercer theorem,

which satisfies the symmetric and positive semi-definite requirements [30]. Therefore, the
kernel for task classification is defined as the sum of the inner product kernels:

Ko
q,q′ = μS · KS

q,q′ + μR · KR
q,q′ +

2

∑
i=0

νi,SS · Ki,SS
q,q′ (26)

where {μS, μR, μSS, νi,SS}, i = {0, 1, 2}, are weights for the defined inner product kernels.
Ko

q,q′ , as the sum of Mercer kernels, is also a Mercer kernel, which fuses the strengths of cross-
correlation, convolution, and auto-correlation for enhancements in overall classification
accuracy. The maximum margin function of Ko

q,q′ is derived as

max M̃(α) =
qmax

∑
q=1

αq +
1
2

qmax

∑
q=1

qmax

∑
q′=1

αqαq′yqyq′K
o
q,q′ (27)

subject to

∀q ∈ [1, qmax], αq ≥ 0 (28a)
qmax

∑
q=1

αqyq = 0 (28b)

where α is the Lagrange multiplier and y ∈ {0, 1} is the output of classification, with 0 and 1
representing the binary side of each classifier. M̃(α) is developed for all the classifiers and
its maximization optimizes overall accuracy in task classification.

Figure 3 clarifies the margins to detect one of the classified (high, medium, and low)
cases, when a new notification is generated. The “high” case is highlighted in the middle of
the figure with blue color; it represents the matching between high-risk symptoms which
are connected to the patient’s medical history (patient profile). On the other hand, the other
two cases, “medium” and “low”, highlighted in red color on either side of the blue zone,
reflect either that the present symptoms are not dangerous under normal limits or that the
following notifications are normal for those without a previous history of diseases.

Figure 3. Training dataset and margins for the SVM-based task-scheduling algorithm.
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5. Task Scheduling Based on Resource Mapping

In this section, we delve into the intricate process of task scheduling through resource
mapping. We introduce three pivotal algorithms that collaborate to ensure efficient task
prioritization, resource classification, and the effective mapping of tasks to the most suitable
resources. Algorithm 1 focuses on determining the priority of tasks based on various factors,
including patient profiles and symptoms. Algorithm 2 classifies fog nodes (FNs) based
on their capacity and availability, setting the stage for optimal task allocation. Finally,
Algorithm 3 oversees the mapping and offloading of tasks to the appropriate fog or cloud
nodes, ensuring that each task is handled by the most fitting resources. Figure 4 shows
the collaborative execution and compatibility of these algorithms to serve the proposed
priority-based task-scheduling and resource allocation framework.

Start

SVM Task weight

computational capabilities

Patient Profile

Prioritized tasks

Start

SVM fog node
classification

Availability

MIPS RAM CPU Storage

connection feature

num of
tasks

Percentage
 %

Offload tasks
to fog nodes

UL DLDistance
Source of Sense

Type of task

Orderd fog nodes

Orchestrator

Task Payload

medium lowhigh

Offload tasks
to Cloud

Algorithm 3: Resource Mapping

Algorithm 2: Resource ClassificationAlgorithm 1: Task Priority Determination

fog nodes
statusConnection

capacity

Figure 4. Flowchart showing collaborative execution of the three algorithms.

5.1. Task Priority Determination Algorithm

The task priority determination algorithm (Algorithm 1) contains the following steps,
where the orchestrator is responsible for extracting the information from each incoming task:

1. Algorithm 1 checks the values of two fields (patient profile and symptom) in addition
to other parameters, such as the payload of the task. If the two values of patient profile
and symptom are equal, the SVM_weight of the task is high. On the contrary, if the
values of patient profile and symptom are not equal, the SVM_weight of the task is
medium. The case of SVM_weight equal to low is when the patient’s health record is
labeled healthy and the symptom field contains vital indicators in the normal limits.

2. The task’s priority value is assigned based on the previously mentioned values.
3. The value of the field type of task is assigned based on the task’s priority value.
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4. The tasks are ordered in descending order based on their priority.
5. The prioritized-labeled tasks are sent to the orchestrator to be distributed to the proper FNs.

5.2. Resource Classification Algorithm

The resource classification algorithm (Algorithm 2) is a recursive procedure responsible for
classifying FNs based on their capacity and availability and includes the following steps:

1. The FN computational capacity, which includes MIPS, RAM, storage, and the number
of CPUs and their capacity, is extracted.

2. The topology of the service area is scanned to determine the characteristics of the
connection, including the uplink/downlink bandwidth and the distance between the
FNs and the devices that should connect to them; this distance is divided into three
levels (near, medium, and far) based on the area where the device is located.

3. The FN sends the processing occupancy percentage, i.e., the volume of resources
occupied in favor of processing tasks and the percentage of resources available to
process new tasks.

4. According to the previous parameters, using the SVM algorithm, the FNs are classified
and ordered in descending order into three levels: high, medium, and low.

5. The order of the classified FNs is sent to the orchestrator.

The output of Algorithm 2 is a set of FNs classified and ordered based on their capacity
and availability. The capacity is considered a fixed attribute related to an FN’s physical
characteristics. In contrast, availability is treated as a dynamic attribute, reflecting the
current resource usage within each FN. Algorithm 2 performs periodic assessments of
the FNs, considering not only their computational capacity and connectivity features
but also the processing occupancy percentage. The resulting order of these classified
FNs is then communicated to the orchestrator for further task distribution and resource
mapping processes.

5.3. Resource-Mapping Algorithm

Algorithm 3 involves the orchestrator mapping tasks to the appropriate FNs based on
the classifications provided by Algorithms 1 and 2 through the following steps:

1. The orchestrator receives the classified fog nodes from Algorithm 2.
2. The orchestrator receives the prioritized tasks from Algorithm 1.
3. It checks the value of the payload field and assigns it the label high or medium based

on the SVM threshold.
4. The orchestrator maps and offloads tasks to the FNs or CNs based on priority

and classification.
5. The orchestrator checks if the network connection capacity is sufficient to serve the

incoming requests to meet the latency requirement. If not, the type of task (θu
xku

) field
is labeled with an alarm and forwarded to the cloud node.

In summary, the integrated use of these algorithms forms an effective strategy for
managing task scheduling and resource mapping in complex computing environments.
They collectively enhance resource utilization, prioritize critical tasks, and ensure optimal
task distribution, leading to improved system performance and efficiency.

5.4. Complexity Analysis

The computational complexity of the three algorithms is as follows:

• Algorithm 1 task priority determination algorithm: The complexity of this algorithm
is primarily dependent on the number of tasks. If N represents the total number of
tasks, then the complexity is O(N), as each task requires a constant amount of time
for processing.

• Algorithm 2 resource classification algorithm: The complexity is influenced by the
number of fog nodes, denoted by M. Since each node is classified independently, the
algorithm exhibits linear complexity, O(M).
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• Algorithm 3 resource-mapping algorithm: This algorithm combines aspects of both
task prioritization and resource classification. With N tasks and M fog nodes, the
worst-case complexity could be O(N × M), particularly in scenarios where each task
must be considered for every node.

5.5. Offloading Scheme

This section explains the collaborative execution of Algorithms 1–3 in order to effec-
tively offload the ordered tasks to the corresponding fog nodes and cloud nodes.

As mentioned in Section 5, the prioritized task list from Algorithm 1 and the classified
FNs from Algorithm 2 are then used as input for Algorithm 3. In this algorithm, the
orchestrator maps the highest-priority tasks to the available FNs with the highest capacity.
Tasks with medium priority are assigned to FNs classified as having medium capacity, and
low-priority tasks are offloaded to FNs with a low classification.

The task distribution process is a continuous and dynamic operation managed by
Algorithm 3. The orchestrator periodically scans all existing FNs, assessing their current
capacity and availability. After each assessment round, the FNs are reordered based on
their updated capacity and availability status, ensuring the most efficient utilization of
resources for processing the remaining tasks.

Figure 5 shows the change in the order of the FNs after each round of scanning,
where the FNs that were originally classified as high are placed at the end of the or-
dered FN list; this is due to the lack of available resources in these FNs, as these FNs
are busy handling other tasks. The other FNs that were originally labeled medium are
moved to be classified as high among the available FNs. Figure 5 is plotted to clarify the
reordering and transformation process of the FNs and the received tasks. In Figure 5,
state = 1 shows that the high-priority tasks were sent to the FNs labeled high, e.g., tasks
ID = 14, ID = 75, and ID = 1 were assigned to FNs ID = 14, ID = 2, ID = 10, respectively, and
the tasks with medium priority were sent to the FNs labeled medium. Tasks and FNs with a
low classification are handled in the same manner. In the next round, as shown in Figure 5
(state = state + 1), we can notice that FN ID-14 is placed with the low-class nodes based on
its weak availability to receive and process new tasks. In the same figure, we notice that
there is a new FN (ID-13) listed in the high class due to its capacity and availability and that
FN ID-23, which was primarily classified as a medium-capacity FN, has been reallocated in
a new spot in the high-capacity class.

Figure 5. Resource allocation recursive procedure.

6. Performance Analysis

The performance of the proposed algorithm was evaluated by simulating task schedul-
ing and resource mapping and allocating in an iFogSim simulator. In our simulations, the
results of our algorithm were compared to those of the widely used first-come, first-served
(FCFS) algorithm. FCFS has been well acknowledged in recent works, and its framework
represents a widely represented state-of-the-art method for network-level resource map-
ping and allocation [33–35]. The simulated scenarios considered modifying the number of
clusters, FNs per cluster, and their connected IoT devices. The values of the parameters
(CPU, RAM, bandwidth, etc.) of the fog devices and the tasks were selected randomly
among certain groups of simulation settings, as tabulated in Table 2. A tree-based network
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topology was used in the simulated scenarios, where the number of fog devices and related
sensors is equal in each cluster. As a starting stage, many bio-potential signals from patients
were frequently captured and analyzed. Then, we compared the analyzed data with the
database that contains the health records of the patients in order to detect any critical
bio-potential.

Table 2. Summary of experimental configuration.

Element Parameter Units Value

Cloud CPU MIPS 44,800
RAM MB 40,000

Uplink bytes/ms 20,000
Downlink bytes/ms 20,000

Fog device CPU MIPS {2048, 1024, 768, 512, 256}
RAM MB {2048, 1024, 768, 512, 256}

Uplink bytes/ms {8000, 4000, 2000}
Downlink bytes/ms {8000, 4000, 2000}

Task CPU length MIPS {2000, 1000, 700, 500, 200}
Network length bytes {4000, 2000, 1000}

6.1. Execution Time

Figure 6 presents the difference between the proposed task scheduling/resource
mapping and allocation and the built-in scheduling algorithm. We can notice that in the
case of Figure 6a, which has one cluster, the difference in execution time between the two
algorithms remains close when the number of tasks is 40 or 80, respectively; when the
number of tasks becomes large (120 tasks), the difference between the two execution times
in the case of one cluster becomes clear in favor of our proposed algorithm.

In the four cases (a, b, c, and d) illustrated in Figure 6, we can notice that increasing the
number of the tasks per cluster, in the case of the built-in algorithm, leads to an exponential
increase in execution time. This increase in execution time is clearly visible when there is
a large number of tasks, in contrast to the proposed algorithm, which keeps the increase
in execution time in direct proportion to the increase in the number of tasks per cluster.
The proposed algorithm is able to achieve an average execution time for critical tasks of
0.2393 ms, and for non-critical/normal task, it achieves an average execution time equal to
0.5001 ms. In the case of utilizing the FCFS algorithm with the same architecture, we can
notice that the average execution times for the critical tasks and normal tasks are 0.9162
ms and 1.0419 ms, respectively. Hence, the proposed algorithm is able to achieve better
execution time for all cases (critical/normal) compared with the FCFS algorithm, which
has almost similar average execution time values.

6.2. Latency

Latency is one of the main KPIs (key performance indicators) to be considered when
implementing a real-time healthcare system and has to be reduced to achieve the required
high efficiency. In the fog–cloud architecture, using FNs reduces latency and enhances
the overall execution time by processing tasks in the FNs locally, utilizing the available
resources and decreasing the number of tasks that should be transmitted to and handled
by the cloud. For the purpose of emphasizing the efficiency of the proposed algorithm, a
comparison of latency is evaluated in both cloud-only and fog–cloud architectures, where
the variable factor is the number of connected devices. In the cloud-only architecture, we
can notice that the increase in the number of sensors directly leads to a steady increase in
latency. Moreover, when the number of connected devices is above 45, the latency starts
increasing in a more rapid way from 224.91 ms and reaches 331.81 ms when the connected
devices are 60, as illustrated in Figure 7. Contrarily, in the fog–cloud architecture, increasing
the number of devices has a limited effect on the achieved delay. When varying the number
of connected devices from 20 to 60, the delay limit only varies between 11.4 ms and
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23.06 ms, achieving an almost 90% reduction in delay compared with the cloud-only
architecture, as highlighted in Figure 7.

Figure 6. Total execution time in different clusters: (a) one cluster; (b) two clusters; (c) three clusters;
(d) four clusters.

Figure 7. Comparison of latency.

6.3. Network Utilization

Regarding the network utilization efficiency aspect, which is measured in KByte
per second, Figure 8 highlights the total network usage for four different cases (one
cluster, two clusters, three clusters, four clusters). Each cluster is tested for three vari-
ous groups of tasks (40, 80, 120), applied with FCFS-based algorithms (averaged based
on [34,35], representing recent works related to machine learning-based FCFS and hierar-
chical FCFS, respectively) and the proposed algorithm. In the case of one, two, and three
clusters, network usage in both scenarios is almost convergent, and our proposal attains
lower network usage.
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Figure 8. Network usage among different clusters.

Specifically, our proposed algorithm achieves better results when the number of tasks
and clusters is high. In the last case, the FCFS algorithm results in about four times larger
network usage compared with our work.

Consequently, the increase in network usage affects the total execution time, waiting
time, and communication time. Furthermore, it also results in increased costs of network
usage and power consumption. Concretely, comparing the results achieved in [34] for
solving task scheduling with a time–cost-aware scheduling (TCaS) algorithm and the per-
formance of our proposed solution, it can be seen that when the number of tasks is more
than 100 in each cluster with five FNs, our proposed algorithm achieves better execution
time. When the number of tasks is 120, 160, or 180, our solution achieves a delay of 80 ms,
83 ms, or 105 ms, whereas TCaS produces a delay of almost 150 ms, 195 ms, or
230 ms, respectively. Additionally, authors of the work in [35] proposed a method to
reduce latency and network consumption in a remote pain-monitoring system. Comparing
the achieved results, the delay obtained with our algorithm when the number of sensors is
20, 30, 40, or 50 in a cloud-only architecture is 88 ms, 138 ms, 202 ms, or 239 ms compared
with 215 ms, 225 ms, 233 ms, or 238 ms in the cited paper, respectively. While in a fog–cloud
architecture, our solutions produce slightly better values, especially when the number of
sensors is high.

7. Conclusions

In this paper, we propose a fog–cloud hierarchical task-scheduling scheme for e-
Health applications. Different from conventional task scheduling, we formulate features of
tasks comprehensively, fusing network-level and service-level parameters simultaneously,
which are further considered in the proposed support vector machine (SVM)-based task
classification algorithm. Classified tasks are assigned priorities, giving guidance to be
allocated to proper fog/cloud nodes, for network utilization efficiency maximization and
overall latency reduction. In particular, the proposed task-scheduling scheme is capable of
effectively achieving latency minimization for critical tasks as defined based on the demand
of both networks and services. Simulation results show that the proposed algorithm was
able to minimize the total execution time for all tasks and especially for the critical ones. The
integration of SVM enhanced the latency and network usage in parallel with the increased
number of tasks.

The current use of SVM algorithms limits the model’s performance in complex datasets
with higher dimensions to comprehensively serve ubiquitous healthcare applications. Future
work will focus on integrating advanced algorithms, including deep learning and hybrid
models combining SVM with other techniques, to discuss their feasibility with comprehen-
sive consideration of computational complexity and algorithmic efficiency simultaneously.
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Abbreviations

The following abbreviations are used in this manuscript:

Ac
M Cloud node

A f
N Fog node

UIoT IoT device
xu

Ku
Task

C(xu
ku
) Cost

P(xu
ku
) Priority of a task

D(xu
ku
) Latency of a task

L(xu
ku
) Payload of a task

θ(xu
ku
) Type of task

β(xu
ku
) Patient profile

μ(xu
ku
) Patient preliminary symptoms

δ
f
u Distance between an IoT device and a fog node

δc
u Distance from a fog node to the cloud

τ(comm) Communication time of a task
τ(wait) Waiting time of a task
τ(proc) Processing time of a task
t(trans) Transmission delay
Rcloud, R f og Data rate of a fog node and that of a cloud node
Wac

M
, Wa f

N
Link bandwidth of a fog node and that of a cloud node

SINR Signal-to-interference-plus-noise ratio
rUL

u(IoT)
Uplink transmitting rate

ψ(xu
ku
) Processing time of a task

Γ(Ac
n), Γ(A f

m) Computing capacity of a fog node and that of a cloud node
Tz

u Total number of time slots in a processing node
rqu

x(t) Required resources for a task in a given slot time
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Abstract: The popularity of video services such as video call or video on-demand has made it
impossible for people to live without them in their daily lives. It can be anticipated that the explosive
growth of vehicular communication owing to the widespread use of in-vehicle video infotainment
applications in the future will result in increasing fragmentation and congestion of the wireless
transmission spectrum. Accordingly, effective bandwidth management algorithms are demanded
to achieve efficient communication and stable scalability in next-generation vehicular networks. To
the best of our current knowledge, a noticeable gap remains in the existing literature regarding the
application of the latest advancements in network communication technologies. Specifically, this
gap is evident in the lack of exploration regarding how cutting-edge technologies can be effectively
employed to optimize bandwidth allocation, especially in the realm of video service applications
within the forthcoming vehicular networks. In light of this void, this paper presents a seamless
integration of cutting-edge 6G communication technologies, such as terahertz (THz) and visible light
communication (VLC), with the existing 5G millimeter-wave and sub-6 GHz base stations. This
integration facilitates the creation of a network environment characterized by high transmission rates
and extensive coverage. Our primary aim is to ensure the uninterrupted playback of real-time video
applications for vehicle users. These video applications encompass video conferencing, live video,
and on-demand video services. The outcomes of our simulations convincingly indicate that the
proposed strategy adeptly addresses the challenge of bandwidth competition among vehicle users.
Moreover, it notably boosts the efficient utilization of bandwidth from less crowded base stations,
optimizes the fulfillment of bandwidth prerequisites for various video applications, and elevates
the overall video quality experienced by users. Consequently, our findings serve as a successful
validation of the practicality and effectiveness of the proposed methodology.

Keywords: electric vehicle; bandwidth allocation; video service; 6G; data mining; machine
learning; optimization

1. Introduction

As the greenhouse effect worsens, environmental regulations for vehicles are now
becoming more stringent in numerous countries. In order to meet the increasingly stringent
regulations on greenhouse gas emissions and to solve the problems associated with tradi-
tional engine vehicles, such as air pollution, climate change, and high fuel prices, electric
vehicles (EV), which use green energy to reduce carbon emissions, have been recognized as
the future alternative to traditional automobiles.

Affected by the COVID-19 epidemic that started in late 2019, academics and organi-
zations have been turning to video conferencing to match the COVID-19 precautionary
measures, as well as to improve efficiency and convenience. Video conferencing applica-
tions account for an increasing share of Internet applications and bandwidth usage [1].
Nowadays, video conferencing plays an important role in people’s lives. As video con-
ferencing requires real-time transmission, the issue of resource allocation of uplinks is of
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concern. If a large amount of data is uploaded at the same time during rush hours, the
smoothness and stability of the video conferencing may be affected. In addition, multime-
dia streaming plays a key role in various emerging in-vehicle infotainment applications [2].
The rise of video service providers such as TikTok and YouTube has emphasized the popu-
larity of video services in everyday life. Video traffic has been growing in recent years [3],
and these video service providers offer video on demand (VoD) streaming services to users
through websites, mobile apps, or social networks [4]. Live video has also become one
of the most popular consumer contents, such as online education, trade shows, sports
events, concerts, and video games [5]. With the advancement of self-driving technology,
autonomous electric vehicles are bound to become the mainstream of human transportation
in the future, which will enable people to spend their time in the vehicle on entertainment
and office work.

Encoding plays a vital role in modern digital media, ensuring efficient and reliable
transmission and playback of videos in various situations. Currently, a significant portion
of videos use Advanced Video Coding (AVC) [6] as their chosen encoding method, which
was introduced in 2003 and is one of the most commonly used video coding standards.
It is widely applied in various applications, such as video conferencing, mobile services,
and high-definition video storage [7]. While a subsequent development, namely, High-
Efficiency Video Coding (HEVC) [8], did lead to a notable reduction in the bitrate for 4K
videos, it still proved insufficient in terms of efficiency for 8K applications [9]. The latest
international video coding standard, Versatile Video Coding (VVC) [10], was introduced
in 2020. Compared to HEVC, VVC offers higher compression efficiency [11]. VVC adopts
various new coding technologies [12]. Multiple coding unit partitions and numerous coding
tools improve compression performance, but also greatly increase coding complexity [13].
There are already studies comparing the performance of different codecs. Menasri and
Skoudarli [14] proposed a performance comparison of throughput between context-based
adaptive binary arithmetic decoding processes adopted in the AVC, HEVC, and VVC.
Bonnineau et al. [9] evaluated 8K videos using HEVC and VVC, noting that VVC resulted
in an average bitrate reduction of around 41%. Choi [15] conducted a comparison of
the complexity between HEVC and VVC, revealing that VVC’s encoding time was up to
27 times greater than HEVC in certain instances. Belda et al. [16] compared the encoding
time of VVC, AVC, and HEVC. Their experimental results demonstrated that the encoding
delay of VVC was significantly higher than that of AVC and HEVC. Accordingly, the above-
mentioned experimental results indicate that VVC is not suitable for real-time transmission
application demands.

Commencing in 2019, the official deployment of 5G witnessed the incorporation of
sub-6 GHz and millimeter wave (mmWave) frequencies [17]. In response to the dramatic
increase in video traffic, several technologies were employed to alleviate traffic burdens.
However, if all video requests are served through wired backhaul links during rush hours,
it would burden the wireless transmission channels heavily, leading to capacity bottlenecks
for wireless video traffic [18]. Moreover, traditional data transmission within networks
faces several limitations, including elevated latency, significant packet loss, and network
congestion. These challenges must be effectively addressed by the next generation of wire-
less networks. Liu et al. [19] introduced a dual-layer algorithm to tackle the transmission
challenge within a mobile wireless-powered communication network. The algorithm’s pri-
mary objective is to optimize throughput by strategically pairing the energy consumption
of a single transmission with the energy harvesting probability. Zheng et al. [20] conducted
a study on the radio frequency-powered ambient backscatter-assisted hybrid underlay
cognitive radio network. An adjusted deep deterministic policy gradient algorithm was
proposed to establish an effective policy for time scheduling and energy management,
with the ultimate aim of optimizing long-term secondary throughput. Furthermore, they
integrated convex optimization into this algorithm to accelerate convergence and identify
the optimal solution. Mei et al. [21] successfully adapted to the dynamic nature of the
system and upheld stability in connection to task queues and battery levels through the
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application of Lyapunov optimization theory. They formulated an algorithm with the pri-
mary objective of optimizing system throughput to its maximum capacity. Wang et al. [22]
placed their emphasis on effective throughput as the primary performance metric. They
not only derived the mathematical expression for effective throughput, but also posed an
optimization challenge with the objective of maximizing it.

Beyond tackling the issues of the next-generation network by enhancing network
architecture and optimizing algorithms for resource allocation, the forthcoming generation
of networks will predominantly revolve around 6G technology. Thus, 6G promises to
usher in an era characterized by continuous connectivity, immersive experiences, robust
support for a multitude of simultaneous users, ultra-low latency, universal accessibility,
unmatched data capacity, unwavering reliability, and stringent security measures [23]. In
recent literature, Pei et al. [24] introduced several pivotal technologies aimed at facilitating
the implementation of 6G. They anticipated that 6G networks would not only rely on
conventional spectrum usage, but also explore previously uncharted frequency bands
within the context of cellular communication standards. These unexplored bands specifi-
cally included the terahertz (THz) frequency band and visible light communication (VLC).
Expanding on these emerging concepts, the investigation of the THz frequency band has
garnered significant attention in recent years. This untapped realm holds the potential to
reshape the landscapes of wireless communication. The THz band occupies a frequency
range situated between microwave and infrared within the electromagnetic spectrum. Its
frequencies span from 300 GHz to 3 THz, accompanied by wavelengths ranging from
1 mm to 0.1 mm [25]. In order to support potential applications related to future vehicles,
vehicle communication demands higher reliability and lower latency for transmitting large
amounts of data. The THz band can provide ultra-high-speed data transmission, large
bandwidth, and extremely low latency [26].

Scholars have already conducted research on the applications of THz in vehicle
communications. Li et al. [27] analyzed vehicular communications in a 300 GHz urban
scenario, providing a detailed characterization of path loss, shadow fading, and other
properties. Lin et al. [28] addressed vehicle tracking and resource allocation for THz
vehicle-to-infrastructure communication networks, proposing a solution using the Un-
scented Kalman Filter. Moltchanov et al. [29] established a mathematical framework for
comparing multi-hop relaying systems with antennas installed at different positions on
vehicles using IEEE 802.15.3d parameters and 300 GHz propagation measurements. They
claimed that placing the antenna on the windshield effectively reduces the sensitivity of the
technology penetration rate and increases transmission coverage. However, THz suffers
from severe attenuation caused by molecular absorption due to its wavelength size being
similar to atmospheric particles like raindrops and dust [30]. Additionally, THz waves
encounter spreading loss caused by electromagnetic wave diffusion in the medium. As the
transmission distance increases, the path loss from absorption and diffusion becomes more
significant [31], limiting the long-range transmission capability of THz.

To address these limitations, the dense deployment of base stations is required to
extend coverage. Moreover, the expenses associated with THz equipment are substan-
tial [32]. To extensively implement THz base stations, telecommunication providers would
be required to make substantial financial investments. Researchers have proposed deploy-
ing base stations in different frequency bands to overcome the transmission challenges of
high-frequency base stations. Kouzayha et al. [33] deployed THz base stations for high data
rates and radio frequency base stations for coverage. Wang and Chun [34] introduced a
hybrid network architecture that includes both THz and mmWave frequencies. Moltchanov
et al. [35] reviewed communication network deployment, propagation, antennas, blockage,
micro mobility, beam searching, traffic, and service models. They explored the deployment
and transmission challenges of mmWave and THz base stations in urban environments,
considering different system and environmental conditions along with base stations oper-
ating at THz, mmWave, and sub-6 GHz frequencies. Yin et al. [36] deployed mmWave base
stations to overcome the limited bandwidth of traditional microwave frequencies. They
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densely deployed mmWave base stations in existing base stations to form a heterogeneous
mmWave network.

Alongside the THz frequency range, another set of frequencies currently unutilized in
existing communication standards is VLC. This alternative spectrum brings forth specific
advantages over other communication technologies. Firstly, VLC is relatively safe for
human eyes [37] and can be easily integrated with existing LED lighting infrastructure,
such as streetlights, traffic lights, and vehicle headlights, making it a convenient commu-
nication transmitter [38]. VLC not only integrates communication and lighting, but also
presents benefits such as low power consumption, the utilization of a license-free spectrum,
strong security, and resilience to electromagnetic interference [39]. With its limited field of
view and line-of-sight transmission, VLC is well-suited for high-speed short-range wireless
communication [40]. This makes VLC particularly suitable for vehicle-to-vehicle (V2V) com-
munication, especially for applications requiring highly secure, reliable, and low-latency
communication between vehicles, such as vehicle platoons [41]. Recently, Aghaei et al. [42]
undertook a comprehensive analysis that contrasted the distinctions and benefits of VLC
and mmWave within V2V communication. They presented the received signal strengths
of both systems, delved into channel characteristics for inter-vehicle communication, and
evaluated the impact of vehicle density on communication efficacy. Kamiya et al. [43]
showcased the effective capturing of VLC signals during vehicular movement at a velocity
of 40 km/h. The transmission occurred via an LED array, with the signals being received by
an image sensor employing a rolling shutter mechanism. This investigation affirmatively es-
tablished the feasibility of receiving VLC signals while in motion. Yang et al. [44] delineated
the challenges linked with vehicular VLC and proposed an inventive architecture featuring
tracking and environment sensing capabilities. The results of their simulations provided
validation for the effectiveness of the proposed VLC system, showcasing its potential
to achieve a bit error rate below 10−4, even when confronted with substantial interfer-
ence from external lighting sources. Additionally, a multiple input and multiple output
(MIMO) VLC system with custom-designed pin arrays and headlights achieved data rates of
336 Mbps and 362 Mbps at distances of 100 m during the day and night, respectively [45].
The above-mentioned studies verify the feasibility of VLC in next-generation vehicular
communication applications.

Beyond the realm of 6G technology, the significance of edge computing has risen
substantially within contemporary communication networks. This strategy, involving
the proximity of computation and resources to users, harmonizes seamlessly with the
high-speed and low-latency benefits inherent in 6G. It is foreseeable that within the land-
scape of vehicular networks in the years to come, the fusion of 6G technology and edge
computing will engender heightened efficacy in data processing and real-time applications.
The advancement of mobile edge computing has also inspired the development of edge
transcoding technology, where service providers can distribute transcoding tasks from
central servers to edge servers closer to users for video transcoding. Edge transcoders can
convert high-bitrate video into low-bitrate versions for user selection, improving the per-
formance of video services by reducing transmission delay [46]. Furthermore, lightweight
edge computing servers can be deployed at edge nodes like base stations. Video files can
be stored on these servers for users to download, and if THz base stations are used, video
transmission can become more efficient and faster, benefiting the provision of high-quality
video services and meeting user demands [47]. Moreover, user equipment’s computing
and storage capabilities have significantly improved, enabling their participation in edge
computing, storage, and communication as well [48].

As the demand for future multimedia traffic continues to rise, bandwidth shortages
become unavoidable during peak periods. At present, multiple research endeavors have
introduced techniques to allocate bandwidth and improve mobile network throughput,
aiming to tackle the challenge of allocating network resources efficiently among users.
Yuan et al. [49] introduced an algorithm supporting mobile video streaming applications
in heterogeneous wireless networks. Their research allocated bandwidth among multiple
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users based on user experience quality and mobility-related information, enhancing user
experience quality through a push strategy using the HTTP/3 protocol. Liu et al. [50]
designed a federated deep reinforcement learning-based video streaming scheduling al-
gorithm. Their algorithm predicted reasonable bandwidth allocation weights based on
the current player’s state and information provided by servers, subsequently allocating
available bandwidth. Tung and Gündüz [51] utilized deep neural networks for end-to-end
compression and channel coding of video frames, optimizing video frame bandwidth
allocation through reinforcement learning.

The advent of 6G technology holds the promise of significantly enhancing vehicular
mobility. Vehicles operating at high speeds can leverage the capabilities of 6G connectivity
to establish cooperative communication, thereby ensuring safe following distances and
smooth traffic flow [52]. Consequently, as we enter the era of 6G networks, the optimiza-
tion of bandwidth allocation among vehicles is poised to become a pivotal concern. In
recent years, a plethora of studies have surfaced, introducing inventive bandwidth alloca-
tion schemes customized for multimedia applications within vehicular networks. Xiong
et al. [53] proposed an algorithm based on predictions of the vehicular communication
and edge computing network states. It optimizes communication resource allocation,
transmission paths, and power consumption for computation modes. Zhang et al. [54]
employed radar communication rates, bandwidth allocation, and base station selection as
parameters, utilizing reinforcement learning techniques to handle uncertainty in vehicle
movement and fluctuations in multimedia data volume. Yun et al. [55] presented a video
streaming strategy tailored for mobility-aware vehicular networks, harnessing the power
of deep reinforcement learning. Within this scheme, millimeter-wave base stations were
harnessed for the delivery of videos to users. Additionally, it crafted a dynamic video
delivery approach that intelligently determined the content, quality, and quantity of video
chunks. Cheng et al. [56] devised a cost-efficient task processing scheme for a dual-band
cooperative vehicular network. This scheme allowed tasks to be processed locally or
offloaded to either the macro-cell base station or road-side units (RSU). By optimizing
task scheduling, computation, and communication resource allocation, while taking into
account the vehicle’s sojourn time, they aimed to minimize the total cost, considering both
energy consumption and latency. Jiang et al. [57] conducted a comprehensive review of
resource allocation strategies used for video streaming in vehicular ad hoc networks. They
also explained in detail the widely adopted and practical optimization tools. Furthermore,
they summarized the technologies that enable video streaming over vehicular ad hoc
networks, with a particular focus on the integration of video communication, caching,
and computing. Dai et al. [2] introduced a mobile edge computing-based framework for
adaptive-bitrate multimedia streaming within the internet of vehicles. They employed
deep Q-learning (DQN) to enhance solutions by revisiting past experiences and updat-
ing Q-functions using gradients. They also presented an adaptive-quality-based chunk
selection (AQCS) algorithm that factored in service quality, available playback time, and
freezing delay to determine both bandwidth allocation and video quality levels.

Based on the literature cited above, it is evident that most recent studies have primarily
focused on RSUs and base stations for video downloading and transmission, while over-
looking the potential of vehicular communication technology to enhance these processes
and neglecting the prioritization of real-time applications. With the expanding user base of
video applications, it is apparent that perceived video quality could be adversely affected
by bandwidth constraints during peak traffic hours. In view of different characteristics
and requirements of multimedia applications, future bandwidth allocation schemes should
be planned according to the multimedia requirements so that the real-time multimedia
applications can be prioritized to receive sufficient bandwidth.

To the best of our knowledge, there is a noticeable gap in the existing literature when
it comes to exploring the utilization of the most recent 6G network communication tech-
nologies for distributing bandwidth in multimedia applications within upcoming vehicular
networks. In light of this, our paper employs THz base stations, as well as mmWave and
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sub-6 GHz band base stations, to fulfill the bandwidth requirements for video applications
targeting EV users. Due to the continuous growth of video traffic, service providers need
to offer high-quality streaming approaches to meet user expectations. In addition, this
paper adopts EVs as edge devices, enabling them to provide edge computing, storage, and
communication capabilities. VLC technology is being utilized in V2V communications
to provide high data rate and high security for inter-vehicle video transmissions. Con-
sidering the different characteristics and requirements of multimedia applications, this
paper employs the most widely used AVC with high encoding speed for real-time video
conferencing sessions and live videos, and adopts the VVC with high compression rate for
non-real-time VoDs, so that the users can watch high-resolution videos at a lower bit rate.

In view of the significant time delay of traditional centralized computing for multime-
dia applications during peak hours and the increasing computational power of edge nodes,
a decentralized computing architecture is adopted in this paper.

The main contributions of this paper can be outlined as follows:

• Through the utilization of the fundamental technologies of 6G, such as THz frequencies,
in conjunction with the existing 5G mmWave and sub-6 GHz base stations, this
paper facilitates the creation of a network environment characterized by elevated
transmission rates and extensive coverage.

• In order to ensure uninterrupted real-time video playback for EV users, this paper
chooses the low-latency AVC method as the preferred approach. This decision is
especially crucial for applications such as real-time video conferencing and live video.
Moreover, the introduced algorithm places high priority on efficiently allocating
bandwidth for real-time video content. All of these efforts are directed towards
achieving the best possible performance standards for users of EVs.

• This paper demonstrates the capability to employ VLC for V2V communication,
thereby enabling the redistribution of bandwidth from less-congested base stations
located in alternate road sections. Furthermore, this paper capitalizes on base stations
equipped with ample bandwidth and fosters collaboration among other EVs to pre-
download video segments. This strategic approach leads to noteworthy improvements
in bandwidth availability for various video applications, while also markedly enhanc-
ing the efficient utilization of bandwidth resources from less-congested base stations.
Additionally, this paper successfully mitigates prolonged delays in downloading video
content from distant servers and alleviates congestion in vehicular networks arising
from a substantial influx of video applications by EV users during peak hours. Con-
sequently, this paper effectively heightens users’ perceived video quality across all
genres of video applications.

Section 2 provides an extensive outline of the architecture underlying our envisioned
next-generation vehicular networks. It also furnishes an elaborate elucidation of the
techniques and processes undertaken by every module within the proposed algorithm.
Moving on, Section 3 evaluates the effectiveness of the newly introduced algorithm. Lastly,
Section 4 concludes the study and engages in a thorough discussion of the findings.

2. Research Methodology and Steps of the Study

This paper employs a decentralized computing architecture, as illustrated in Figure 1.
This approach aims to mitigate the computational complexity inherent in the conventional
centralized control framework. Each EV sets up its route before starting the journey. The
RSU managing a road section is responsible for the allocation of video bandwidth for each
passing EV according to the video application requirements of each EV user. If an EV
user’s video is unable to meet the bandwidth requirements for certain congested road
sections, the EV will request the RSU managing the road section to assist in scheduling
the required bandwidth for the video application. The foundation of this paper rests on
the categorization of video applications into three distinct types: video conferencing, live
video, and VoD. As mentioned above, video conferencing and live video use the current
mainstream AVC [6], while VoD uses VVC [10] with half the bit rate of the HEVC, and can
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provide high resolution video, such as 4K/8K video, if needed. A VoD can be pre-converted
into multiple bit rate versions. Before each video segment is played, the video segment that
meets the bit rate requirement is downloaded to the on-board storage of the EV according
to the preference set by the video user.

Figure 1. Sample scenario of video transmissions for next-generation vehicular networks.

Figure 2 shows the video bandwidth allocation architecture for the video conferencing,
live video and VoD applications used by EV passengers. The “Real-time Route Planning”
module installed within the on-board unit (OBU) of each EV is activated to set the route
before the EV departs, and then the route is transmitted to the RSU that manages the
road sections along the way. When an EV user activates a video application while the
vehicle is in motion, the “Video Bandwidth Requirement Examination” module, configured
within the OBU, establishes a connection with the video application software provider’s
server to obtain the video specification information according to the pre-set video quality
requirements of the EV user, and confirms whether sufficient bandwidth can be obtained
from the base station coverage area of the roadway along which the EV travels. In this
paper, the aforementioned three types of base stations, namely, THz, mmWave, and sub-
6 GHz, are used to provide bandwidth for video applications on the roadways where
EVs travel.

Figure 2. Schematic diagram of the proposed algorithm.
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In the realm of advancing chip technology, there is a prevailing anticipation that forth-
coming next-generation vehicular networks will prominently integrate chips for a diverse
range of computational functions. Addressing the burgeoning demand for decentralized
computing, as introduced in this paper, dedicated servers are strategically deployed at both
RSUs and base stations. Their primary purpose is to facilitate multimedia processing and
computational transmissions.

Within the context of RSUs, these servers assume a pivotal role in several key aspects.
They diligently record the bandwidth requirements of electric vehicle users within their
respective managed segments. Concurrently, these servers store crucial information regard-
ing the available bandwidth originating from base stations. Moreover, these servers harness
their computational prowess to efficiently execute various RSU modules, optimizing their
operational performance.

On the flip side, base stations also reap the benefits of these servers. Once an EV user
initiates a video service application, the server situated at the base station undertakes the
task of intelligently prioritizing the storage of specific video files. This strategic maneuver
effectively mitigates potential download latency concerns, enhancing the overall user
experience. Additionally, leveraging the robust computational capabilities of these servers,
video transcoding emerges as a feasible capability. This translates to offering users an array
of video resolutions to choose from, tailored to their preferences and requirements.

If the coverage area of the base station of the road section that the EV traverses cannot
meet the bandwidth requirement for the EV user’s video application, the managing RSU
of the road section will activate the “Real-time Bandwidth Allocation” module to assist
in allocating the bandwidth to meet the minimum requirement for the video application
according to the characteristics of the video application and the pre-set video quality
requirement of the EV user. In the case of video conferencing or live video, the RSU
starts with the EV, adds other EVs arriving at the road section at the same time to form
a fleet, and continues to expand the fleet until the last fleet member is on a road section
where the base station’s coverage can provide bandwidth to the requesting EV. For the
scenario involving VoD, this paper proposes a strategy wherein a separate EV traversing
the same road segment pre-downloads the necessary video segment when in a bandwidth-
accessible area. Subsequently, when the two EVs cross paths, the pre-downloaded video
segment is transmitted from the previously prepared EV to the requesting EV user via
V2V communication. Notably, the EV using the video application will also track the EV
users’ satisfaction with the video playback quality at regular intervals during the video
playback process, and if there is a need to adjust the video playback quality, it will notify
the “Real-time Bandwidth Allocation” module of the managing RSU(s) for subsequent
bandwidth adjustments of the video usage.

The modules shown in Figure 2 are described below.

2.1. Real-Time Route Planning for EVs

Before the start of the EV, the EV user starts the OBU to set the departure point,
departure time, and destination, and then starts to run this module. The EV first downloads
the global real-time road traffic information from the cloud, and uses Dijkstra’s algorithm
to estimate the shortest route from the departure point to the destination based on the
average traveling time of each road section. Since the arrival time of EVs at each road
segment is affected by the traffic conditions at the time of arrival at the road section, this
module calculates the arrival time at each road section based on the latest traffic condition
information of each road segment of the shortest driving route, and notifies the RSU
managing the road section of the driving route and the estimated time of arrival at each
road section.

To avoid discrepancies between the latest estimated arrival times of EVs and their
expected arrival times at road sections due to ad hoc changes in itineraries by EV users or
road congestion during peak hours, this module recalculates the arrival time at each road
section at regular intervals based on the latest traffic condition information sent from the
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RSU that manages each road section the EV travels through, and uses a machine learning
technique to recalculate the arrival time at each road section. If the recalculated arrival times
at the road sections are too different from the original predicted times, the module sends the
updated times to the RSUs that manage the road sections of the traveled route. Given the
effectiveness of machine learning in predicting road travel times in the literature [58,59], the
support vector regression (SVR) technique [60] is used in this paper to predict the arrival
time at each road section of a traveled route based on the relevant information.

The steps of this module are described below.
Step 1: Before the EV starts its journey, it first downloads the global real-time traffic

condition information from the cloud, and after setting the starting location and time
as well as the destination, it estimates the shortest path from the starting location to the
destination using Dijkstra’s algorithm based on the cost of the average traveling time of
each road section.

Step 2: The estimated time of arrival at each road section of the traveled route is
given by:
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where SVR(·) is the SVR library.
Step 3: The estimated time of arrival at each intersection is transmitted to the RSU that

manages each road section, along with the EV’s route.
Step 4: This module performs the background execution mode here. After the preset

time interval, the latest traffic condition information is obtained from the RSU managing the
road section, and the arrival time at each road section of the traveled route is recalculated
using Equation (1).

Step 5: If the updated EV arrives at the traveled section in a time that exceeds the
system’s predefined thresholds due to a temporary trip change or peak hour congestion,
the RSU governing the traveled section will be notified of the revised arrival time.

Step 6: Before the EV reaches its destination, go back to step 4 to continue.

2.2. Video Bandwidth Requirement Examination for EV Users

After an EV user activates the video application while the EV is in motion, this module
obtains the requirements and specifications of the application from the server of the video
application software provider, and adjusts the quality and bandwidth requirements of the
video application in a timely manner according to the user video quality requirements
pre-set by the EV user. Then, this module transmits the video bandwidth demand to the
managing RSU of each road section that the application travels through during the video
usage period, and each RSU carries out the bandwidth allocation according to the demand
specification of the video application while the EV traverses on the managing road section.

The steps of this module are described below.
Step 1: After an EV user activates a video application, the requirements and specifica-

tions for the video application is retrieved from the video application software
vendor’s server.

Step 2: The RSU along the route informs the minimum bandwidth that can be provided
by the base station coverage of the road section it manages.

Step 3: Using the driving durations of EVs across individual road sections and con-
sidering the resolution prerequisites for video applications by EV users, the calculation of
the essential minimum bandwidth required for video application within each time slot or
video segment throughout the driving duration takes place. This calculation is followed by
an examination of the bandwidth provisioned by the base station within the coverage area
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of the corresponding road section to ascertain if it aligns with the stipulated requirements
of the video application.
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As shown in Equations (2) and (3), if the quantities of dubσ,v
t and ddbσ,v

t are greater than
zero, it signifies that the base station’s allocated bandwidth within the coverage zone of the
route taken by the EV is sufficient to fulfill the requisite minimum upload and download
bandwidth criteria for applications such as video conferencing or live video streaming,
respectively. Equations (4) and (5) guarantee that the video conferencing or live video
initiation time must be scheduled after the EV’s departure time, and the application should
be concluded prior to the EV reaching its destination.

Equation (6) clarifies that the pre-download of a video segment must be completed
before the playback can begin. Meanwhile, Equation (7) guarantees that the buffer space
available in the EV is sufficient to accommodate a video segment prior to its playback.

Step 4: If all of the base station coverage areas of the EV routes can meet the minimum
bandwidth requirement, this module notifies each RSU of the road section of the bandwidth
used in the road section and proceed to Step 6. On the other hand, this module notifies
the RSUs along the road sections with insufficient bandwidth to assist in adjusting the
bandwidth. The optimization objectives concerning the video quality requirements of EV
users can be formulated by:
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subject to:
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(23)

Equation (8) allocates the required bandwidth for the video application in terms of the
EV user’s perceived video quality. Equations (9) and (10) delineate the upload and down-
load durations for video conferencing/live video during each time slot.
Equations (11) and (12) present the distinct quality metrics utilized to assess the effec-
tiveness of video conferencing and live video, following the guidelines outlined in the cited
reference [61]. Furthermore, Equation (13) defines the quality metric applicable to VoD, as
referenced in the related source [62].

Equations (14)–(16) ensure that the video resolution remains equal to or exceeds the
minimum resolution defined by the video service provider. Simultaneously, Equation
(17) guarantees the complete pre-download of individual video segments before initiating
their playback. Moreover, Equations (18) and (19) delineate the rebuffering time for each
video segment.

Equations (20) and (21) establish the prerequisite that the base stations covering the
road segments traversed by the electric vehicle (EV) must possess the necessary upload and
download bandwidth to support video conferencing and live video, as required. Similarly,
Equation (22) imposes an analogous requirement for VOD. Additionally, Equation (23)
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ensures that the buffer space within the EV is appropriately dimensioned to accommodate
a video segment before its playback.

To be specific, the optimization problem outlined in Equation (8) is being approximated
in this scenario by lowering the requested video resolution from the EV user to align with
the minimum resolution established by the video service provider.

Step 5: Should the bandwidth obtained in the previous step continue to be inadequate
for supporting the minimum resolution specified by the video service provider, the EV user
will receive a notification.

Step 6: This module operates in the background execution mode. Following the time
interval established by the system, the process returns to Step 2 to readjust the quality
and bandwidth prerequisites of the video application, provided that the video application
remains active.

2.3. Real-Time Bandwidth Allocation for RSUs

If the video bandwidth requirement of the EV user cannot be met when the EV
arrives at the road section managed by the RSU, this module assists in allocating the
bandwidth according to the characteristics of the video application. If the user’s video
application is video conferencing or live video, the bandwidth originally allocated for
other VoD downloads in the same time slot will be reallocated to the required video
conferencing or live video. Should the video bandwidth requirement remain unfulfilled,
the EV will assume the role of the ultimate member within a fleet. Subsequently, the fleet
will undergo expansion until the leading EV member enters a road segment where the
base station’s coverage can sufficiently accommodate the demanded video bandwidth. The
bandwidth is then transferred from the leading EV member to the requesting EV through
V2V communication.

In the case of VoD, if a video segment cannot be downloaded in time before the video
segment is played, the RSU checks the routes of other EVs that arrive at the same road
section at the same time as the EV playing the VoD to find out whether there is a base station
that can provide bandwidth for pre-downloading the required video segment. Once a base
station that can support bandwidth is found, the EV traveling through the road section
covered by the base station will download the required video segment to the on-board
storage of the EV. When the EV storing the downloaded video segment arrives at the same
road section as the requesting EV, the video segment can be transmitted to the VoD user via
V2V communication.

The steps of this module are described below.
Step 1: For VoD, proceed to Step 8.
Step 2: The RSU allocates the bandwidth of other VoD(s) in the same time slot to the

demanding video conferencing/live video.
Step 3: If the bandwidth requirement for video conferencing/live video is satisfied, go

to Step 6. Otherwise, proceed to the next step.
Step 4: In cases where the bandwidth necessary for video conferencing or live video is

inadequate, the RSU initiates the process by including the EV as the final member of a fleet
for bandwidth transfer and incorporating other EVs into a fleet. This fleet expansion persists
until the foremost fleet member reaches a road segment where the base station’s coverage
can sufficiently supply the required bandwidth for the requesting EV. The establishment of
the fleet must fulfill the subsequent requirement:
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Equation (24) serves as the foundation for configuring the fleet established during the
transmission relay, optimized for the minimum fleet length. Building upon this, Equation
(25) outlines the specific composition of the fleet, where Equation (26) identifies the desig-
nated EV as the terminal component of this fleet. To guarantee a harmonized sequence,
Equation (27) specifies the scheduling of the initiation time for video conferencing or live
video subsequent to the EV’s departure, while also ensuring the timely conclusion of the
application before the EV reaches its destination.

Equations (28) and (29) guarantee that the leading fleet member reaches a road seg-
ment where the base station’s coverage can adequately provide the necessary bandwidth
for the requesting EV. Additionally, Equations (30) and (31) establish that the V2V commu-
nication bandwidth between two successive fleet members must not fall below the relayed
bandwidth acquired by the requesting EV.

To provide specific details, the process of forming the fleet as defined in Equation
(24) entails a step-by-step assessment of all EVs that reach the same road segment as the
requesting EV. Starting from the selected EV, the expansion of the fleet persists until the
farthest member of the fleet enters a road segment where the coverage from the base station
is proficient in supplying the required bandwidth for the EV that initiated the request.

Step 5: In instances where a certain VoD allocates bandwidth to video conferenc-
ing/live video, resulting in an inability to meet the minimum bandwidth requirement
of the VoD due to reduced bandwidth availability, this module advances to the subse-
quent step in order to acquire the necessary bandwidth for the VoD. Conversely, the
module concludes.

Step 6: To examine whether there are base stations in the coverage area of the road sec-
tions that can provide bandwidth for EVs to pre-download the required video segment(s):

∑
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3 = 1.

(34)

Step 7: If bandwidth is available in the base station coverage area of another road
section, pre-download the video segment from the base station to the on-board storage of
the EV while passing through the base station coverage area. Notify the managing RSU of
the base station and this module ends. If not, proceed to the next step.
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Step 8: Check if other EVs arrive at the same road section as EV σ at time ptσ,v
s .

Step 9: If it is not possible to find an EV that arrives at the same time on the same road
section as EV σ, the RSU notifies the EV user and this module ends. Instead, proceed to the
next step.

Step 10: View the routes of the EVs arriving at the same section of the road at the same
time as σ, and check if there is a base station that can provide bandwidth for the EV to
pre-download VoD segment for σ:
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Step 11: If EV ρ that supports pre-downloading is found, the VoD segment will be pre-
downloaded by ρ, and then will be transferred to the requesting EV via V2V communication
when two EVs meet. If not, the RSU notifies the EV user and this module ends.

3. Experimental Results and Discussion

In this paper, the proposed algorithm is simulated using a personal computer with
an Intel Core i7 2.9 GHz CPU and 64 GB RAM. To assess the effectiveness of the proposed
algorithm, two comparison targets are employed. The first target is the conventional first-
come, first-served (FCFS) method. The second reference benchmark is a contemporary
state-of-the-art algorithm that combines the DQN and AQCS [2]. Remarkably, taking
into account the prevailing trend in recent literature that commonly employs the strategy
of pre-downloading video segments at base stations and RSUs to enhance video service
quality for EV users, this paper specifically opts to evaluate the latest DQN+AQC algorithm
as the second comparative target.

The historical traffic data are obtained from a website of traffic volume counts for
New York City [63]. Video applications are divided into three categories, namely, video
conferencing, live video, and VoD. Video conferencing and live video utilize AVC [6]. VoD
uses VVC [10] with a bit rate half that of HEVC. Each video application has different
bandwidth requirements; this paper refers to the bandwidths suggested by Skype [64], and
Table 1 shows the download and upload bandwidths required for video conferencing. In
addition, Table 2 shows the bandwidth required for live video by referring to the literature
on the use of AVC [65,66]. For VoD, the required bandwidth is shown in Table 3 by referring
to the literature on the use of HEVC [66] and considering half of the bandwidth required
for video using HEVC in the literature as the bandwidth required for video using VVC.

Table 1. Parameters of required bandwidth for video configuration with AVC.

Video Format Download Required Bandwidth Upload Required Bandwidth

Screen Sharing 300 Kbps 300 Kbps
High Quality 500 Kbps 500 Kbps

High Definition 1.5 Mbps 1.5 Mbps
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Table 2. Parameters of required bandwidth for live video with AVC.

Video Format Download Required Bandwidth

720 p 30 fps 3 Mbps
1080 p 60 fps 17 Mbps
2160 p 60 fps 60 Mbps

Table 3. Parameters of required bandwidth for VoD with VVC.

Video Format Download Required Bandwidth

1080 p 60 fps 7.5 Mbps
2160 p 60 fps 20 Mbps
4320 p 60 fps 50 Mbps

Three types of base stations, including THz [28], mmWave [67], and sub-6 GHz [68],
were set up in the simulated area to provide the bandwidth required for the video applica-
tions. Table 4 shows the bandwidth and transmission distance that can be provided by the
three types of base stations. In addition, for V2V communication using VLC, this paper
cites the relevant literature that involves simulations incorporating the use of car lights [45].
Additionally, Table 5 provides an overview of the variable bandwidths of VLC at different
distances, distinguishing between daytime and nighttime circumstances.

Table 4. Parameters of bandwidth available for VLC in different situations.

Distance Daytime Bandwidth Nighttime Bandwidth

10 m 2790 Mbps 2810 Mbps
100 m 336 Mbps 362 Mbps

Table 5. Parameters of bandwidth available for THz, mmWave, and sub-6 GHz base stations.

Type of Base Station Bandwidth Transmission Distance

THz 54~24 Gbps 39 m
MmWave 2~1.8 Gbps 150 m

Sub-6 GHz 1~0.5 Gbps 622 m

Figure 3 shows the number of EVs traveling on the road during a day in our simulation.
It can be observed that there is a spike in traffic during the morning and evening peak
hours. The number of EVs starts to increase from 06:00 until the morning peak is reached
at 09:00. After the morning peak, the traffic volume stays above 1500 vehicles. The number
of EVs starts to increase slightly after 16:00, and then the traffic volume starts to decrease
after the evening peak is reached at 19:00, with the lowest number of EVs in the early
morning hours.
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Figure 3. Volume of EVs within a day.

Figure 4 gives the user count of video applications within a day. As aforementioned,
there are three types of video applications: video conferencing, live video, and VoD. It can
be seen that the user counts of each application follow the same trend as the number of
EVs. A small number of users still use video applications during the off-peak hours in
the early hours of the morning, while the number of applications increases dramatically
during the morning and evening peak traffic hours, when EV users have longer commute
times during congestion and therefore have a greater demand for video applications. In
addition, since VoD has the characteristics of flexible viewing time, repeatable viewing,
and content diversity, it can be observed from Figure 4 that the number of users using VoD
is higher than the number of users using video conferencing and live video in most of the
time periods, no matter whether these are during peak or off-peak hours.
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Figure 4. Number of users utilizing video conferencing, live video, and VoD within a day.

Figure 5 shows the video application bandwidth demand of users within a day. The
bandwidth required for video conferencing is very low, as can be seen from Table 1. Even
for high resolution, only 1.5 Mbps is required. Accordingly, even during the three peak
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hours of video conferencing users shown in Figure 4, the bandwidth required is still far less
than the off-peak bandwidth demand of live video and VoD users. In addition, it can be
seen from Figure 5 that the bandwidth demand for the use of live video and VoD is directly
proportional to the number of their respective subscribers, with a significant increase in
bandwidth demand during the morning and evening peak hours. Notably, although the
number of users watching VoD is mostly higher than the number of users watching live
video, as seen from Figure 4, the bandwidth requirement of VoD, as shown in Figure 5, is
not much higher than that of live video, and even less than that of live video in several
time slots.
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Figure 5. Bandwidth requirements for video conferencing, live video, and VoD within a day.

Figure 6 shows the bandwidth obtained by the users of each video application using
the conventional FCFS method. Observing the data, it becomes evident that during the
early morning hours when users’ bandwidth requirements are minimal, the bandwidth
accessible to EV users for each video application adheres to a direct proportionality with
both their individual bandwidth demands and the sequence in which the users initiate their
respective service applications. Due to the utilization of an FCFS strategy for bandwidth
allocation by the base stations, applications initiated later in time struggled to secure
sufficient bandwidth for real-time usage, particularly during peak periods. As a result, it is
evident from the graph that, beginning at 08:00 and continuing until 22:00, the obtained
bandwidth by EV users across different video applications does not align closely with
the bandwidth requirements of these applications, as shown in Figure 5. Furthermore,
the available bandwidth proves inadequate in fulfilling the requisite bandwidth for these
applications, with the pronounced gap of insufficiency becoming notably conspicuous,
particularly during the two peak periods of heightened user bandwidth demand.

Figure 7 illustrates the bandwidth allocation for each video application using the
DQN+AQCS algorithm. As seen in Figure 7, during the early morning and midnight
hours when users have lower bandwidth requirements, the allocated bandwidth for EV
users aligns with their individual demands, similar to the FCFS approach. However, the
DQN+AQCS algorithm consistently enhances the available bandwidth for EV users across
various time intervals when compared to the FCFS algorithm. Notably, starting at 08:00
and continuing until 22:00, the DQN+AQCS algorithm leverages the video pre-download
mechanisms at RSUs and base stations, resulting in a significant increase in the available
bandwidth for EV users compared to the FCFS method. This improvement is particularly
pronounced for VoD applications, where video segments can be pre-downloaded at RSUs
and base stations before their scheduled playback time. Nevertheless, it is important
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to acknowledge that the provided bandwidth still falls short of meeting the demands
of EV users during the peak demand period characterized by heightened bandwidth
requirements, even though urgent applications were prioritized. Consequently, both users
of live video and VoD applications experienced insufficient bandwidth during rush hours.
The performance of live video applications was particularly affected because there is no
provision for pre-downloading in this type of application.
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Figure 6. Bandwidth allocation for three types of video applications using the FCFS method.
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Figure 7. Bandwidth allocation for three types of video applications using the DQN+AQCS.

Figure 8 illustrates the bandwidth assigned to each video application after using the
proposed algorithm. As expected, the bandwidth available to each video service application
is proportional to their demanded bandwidth, and the available bandwidth is significantly
increased during the peak of bandwidth demand after applying the proposed algorithm. To
provide further clarity, in cases where the bandwidth demand of a video conferencing or live
video application cannot be satisfied, the “Real-time Bandwidth Allocation” mechanism
implemented at the RSU was triggered into action. This activation facilitates the acquisition
of bandwidth for the specific video application in need. Initially, the bandwidth allocated
for other VoD downloads within the same time slot is repurposed to cater to the demanding
video’s needs in a priority manner. In cases where the bandwidth requirement of the
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requesting video remains unfulfilled, there exists an alternative solution: bandwidth from
base stations in other road sections can be reallocated to serve the requesting video’s
needs. This process is facilitated through the cooperative efforts of EVs that assist in
transmitting bandwidth via V2V communications. Concerning VoD applications, the
proposed algorithm engages in the process of identifying a suitable EV capable of pre-
downloading the required video segment onto its onboard storage prior to its encounter
with the requesting EV. Subsequently, when these two EVs cross paths on the same road
section, the pre-downloaded video segment is then efficiently transmitted to the requesting
EV through the utilization of V2V communication mechanisms.
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Figure 8. Bandwidth allocation for three types of video applications using the proposed algorithm.

Figure 9 illustrates various curves, each conveying distinct aspects of bandwidth
requirements and allocation for video applications. The curves are color-coded as follows:

• The red curve represents the bandwidth requirements of video applications.
• The yellow curve depicts the bandwidth allocated to video applications using the

conventional FCFS method.
• The green curve showcases the bandwidth allocated to video applications when

employing the DQN+AQCS algorithm.
• Finally, the purple curve demonstrates the bandwidth allocation achieved by video

applications when utilizing the proposed algorithm.

The yellow curve in Figure 9 vividly illustrates that video applications employing the
FCFS method exhaust the available bandwidth provided by base stations in congested road
segments entirely between 08:00 and 22:00. Consequently, there is an insufficient amount
of bandwidth remaining to accommodate the bandwidth requests of applications initiated
later during this congested timeframe. This limitation stems from the fact that applications
launched earlier within this time frame have already consumed a significant portion of
the available bandwidth. Comparatively, as indicated by the green curve in Figure 9, the
DQN+AQCS algorithm offers a substantial improvement in the bandwidth accessible to
EV users between 08:00 and 22:00. This enhancement can be attributed to the algorithm’s
implementation of a pre-downloading mechanism involving base stations and RSUs before
the scheduled video segment playback.

As observed in the purple curve in Figure 9, when contrasting the proposed algorithm
with the other two target algorithms, it consistently outperforms them during the high-
bandwidth demand periods in the morning and evening. A significant portion of the
required bandwidth for live video applications is efficiently delivered through real-time
V2V communication. This process facilitates the seamless transfer of bandwidth from less
congested road sections. The performance improvement of VoD applications involves the
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cooperative participation of other EVs in pre-downloading necessary video segments while
passing by base stations with ample bandwidth. This adaptive approach proposed in the
paper results in a considerable augmentation of the bandwidth allocated to each video
application for EV users’ requests, particularly during the two peak time periods. In sum,
the proposed algorithm not only effectively addresses the bandwidth demands of most
video applications, but also significantly enhances the utilization of the bandwidth within
base stations located in less-congested road sections.

Figure 9. Comparative analysis of allocated bandwidth among the three approaches.

Figure 10 provides a visual comparison, offering insights into the normalized perceived
video quality among EV users and enabling a clear assessment of the relative effectiveness
of these approaches. Notably, during the time frame from 23:00 to 07:00 of the subsequent
morning, a substantial portion of users’ bandwidth demand is met. This occurs because EV
users typically have reduced bandwidth requirements during late-night and early morning
periods. Consequently, there is minimal impact on the perceived video quality for all three
methods—FCFS, DQN+AQCS, and the proposed algorithm—during this time interval.

Figure 10. Comparative analysis of normalized perceived video quality among the three approaches.
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However, as depicted by the yellow curve in Figure 10, the FCFS method performs
poorly due to a significant bandwidth deficit during high-bandwidth-demand periods.
Although the utilization of the DQN+AQCS algorithm, represented by the green curve
in Figure 10, helps alleviate the reduction in perceived video quality for EV users during
high-bandwidth-demand periods, it encounters a challenge of unstable perceived video
quality between 08:00 and 22:00, especially during two peak time periods. Specifically, for
the two compared approaches, the average bandwidth available to EV users decreases
proportionally with the rise in video bandwidth demand within congested road sections,
where the base station’s bandwidth allocation has reached its upper limit. A significant
drop in the quality of video usage by EV users is evident during peak hours. Only during
the midday hours, when the video bandwidth scarcity is less severe, does the perceived
video quality for EV users improve.

Conversely, as shown on the purple curve in Figure 10, the proposed algorithm
effectively addresses these challenges by utilizing V2V communication to relay bandwidth
from base stations with surplus capacity to the requesting live video applications and
by efficiently pre-downloading video segments as requested by VoD applications. To
offer a more detailed perspective, Figure 9 reveals that the proposed algorithm leads to
only a slight decline in user-perceived video quality between 08:00 and 22:00. When
compared to the FCFS method during the same time frame, it delivers a substantial average
improvement of 30% in perceived video quality for EV users. Moreover, during the morning
and evening peak hours, particularly at 09:00 and 19:00, this enhancement becomes even
more significant, with improvements reaching 49% and 63%, respectively. In contrast to
the DQN+AQCS approach, there is an average improvement of 17%. The most significant
enhancements are observed at 10:00 and 18:00, where improvements reach 29% and 37%,
respectively.

4. Conclusions

Although some studies in the literature have proposed bandwidth allocation algo-
rithms to provide video services to EV users, there are no bandwidth allocation algorithms
for video services that utilize emerging communication technologies for next-generation
vehicular networks. In view of this, this paper integrates the THz base stations of 6G
wireless networks with the existing mmWave and sub-6 GHz band base stations to provide
the required bandwidth for EV users. A bandwidth management mechanism that suits
the video quality requirements of different EV users is proposed to allocate the bandwidth
from the three types of base stations mentioned above to the in-vehicle video services.
Meanwhile, VLC technology is utilized in V2V communications to provide a high data rate
and high security for inter-vehicle video transmissions.

A series of simulations is conducted to comprehensively compare the performance of
the proposed algorithm against both the conventional FCFS method and a contemporary
state-of-the-art approach known as DQN+AQCS. This rigorous evaluation process allowed
for a thorough assessment of how the proposed algorithm performed in comparison to these
two benchmark methods. The simulation results clearly demonstrated the efficacy of the
proposed mechanisms, including video pre-downloading for EV users and bandwidth relay,
in conjunction with the utilization of VLC for V2V communication. These mechanisms
collectively enhanced the adaptability of base station bandwidth allocation, particularly
during peak hours. This enhancement ensures that video conferencing, live video, and
VoD applications for EV users can reliably access the necessary bandwidth support even in
scenarios of bandwidth scarcity on congested road segments during peak times. Ultimately,
the perceived video quality for EV users can be maintained at satisfactory levels.

In summary, the algorithm presented in this paper offers a dual advantage. Specifically,
it effectively addresses the challenge of bandwidth contention among EV users, which
stems from the constraints of base station bandwidth. Additionally, it represents a notable
advancement over both the FCFS and DQN+AQCS approaches. To be more precise, it
ensures access to sufficient bandwidth for real-time live video applications and guarantees

345



Sensors 2023, 23, 7767

uninterrupted playback of the vast majority of video applications even during periods of
heightened demand. This enhancement significantly elevates the overall quality of the
video viewing experience for EV users. Remarkably, even when the available bandwidth
from congested base stations reaches its peak capacity, the proposed algorithm demon-
strates a substantial improvement of 30% and 17% in average video quality compared to
the FCFS approach and the DQN+AQCS method, respectively. This further solidifies the
effectiveness of our proposed algorithm in providing satisfactory video quality even within
the constraints of bandwidth limitations.
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Nomenclature

pσ
1 Starting point of the driving route of EV σ

pσ
i The ith road section of the traveling route of EV σ

pσ
hσ The final destination of the EV σ

atpσ
i

The time when EV σ reaches road section pσ
i

SVR(·) The predicted travel time of EV from pσ
i to pσ

i+1 using SVR

sppσ
i ,pσ

i+1

(
atpσ

i

)
The average speed at the time of atpσ

i
arriving at the road section

connecting pσ
i and pσ

i+1

ρpσ
i ,pσ

i+1

(
atpσ

i

)
The traffic volume passing through the road segment

connecting pσ
i and pσ

i+1 at the time of atpσ
i

wdpρ
i ,pρ

i+1

(
atpσ

i

)
The day of the week on which the segment connecting pσ

i and pσ
i+1 is traversed

wtpρ
i ,pρ

i+1

(
atpσ

i

)
The weather condition at the time of atpσ

i

κσ,v
1 Whether the video application is a video conferencing application

κσ,v
2 Whether the video application is a live video application

κσ,v
3 Whether the video application is a VoD application

ubϑ,σ
t The upload bandwidth that base station ϑ allocates for EV σ at time slot t

dbϑ,σ
t The download bandwidth that base station ϑ allocates for EV σ at time slot t

UR
(
uvrσ,v

t
)

The minimum bandwidth requirement for uploading of video application v
at time t

DR
(
dvrσ,v

t
)

The minimum bandwidth requirement for downloading of video application v
at time t

uvrσ,v
t The video resolution chosen by the EV user for uploading

dvrσ,v
t The video resolution chosen by the EV user for downloading

vrv The minimum resolution for video conferencing or live video set by the
software application provider

brv The minimum resolution for VoD v set by the software application provider
Sσ,v The number of selected video segment for VoD v
τs The download time of selected video segment s
ptσ,v

s The playback time of selected video segment s
SSσ,v

s (brσ,v
s ) The length of VoD segment s when the bit rate is brσ,v

s
dbϑ,σ

τs
The bandwidth that base station ϑ allocates for the VoD segment in the time slot τs
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tσ,v
0 The time when the video conferencing/live video application starts

tσ,v
e The time when the video conferencing/live video application ends

ptσ,v
1 The start time of the VoD application

ptσ,v
Sσ,v The end time of the VoD application

bu f σ
τs

The remaining buffer of σ at τs

bu f
σ

The buffer size of σ

ultσ,v
t The upload times of video conferencing/live video at time slot t

dltσ,v
t The download times of video conferencing/live video at time slot t

udσ,v The maximum upload delay limit for video conferencing/live video at time t
ddσ,v The maximum download delay limit for video conferencing/live video at time t
φσ,v The weight of the lower bound of delay for video transmission

in Equation (8)
ξσ,v The weight of the video inter-frame transmission smoothness penalty

in Equation (8)
rbtσ,v

s The rebuffering of the selected video segment of the video application
ψσ,v The weight of rebuffering in Equation (8)
sdσ,v The starting delay time of the video application
ωσ,v The weight of starting delay time of the video application in Equation (8)
βσ,v The weight of the inter-segment smoothness penalty of VoD v
DSσ,v

t
(
uvrσ,v

t
)

The video frame size for video conferencing/live video with uploading
resolution uvrσ,v

t
DSσ,v

t
(
dvrσ,v

t
)

The video frame size for video conferencing/live video with downloading
resolution dvrσ,v

t
urσ,v

t The upload bit rate of v at time t
drσ,v

t The download bit rate of v at time t
DB(brσ,v

s ) The minimum bandwidth requirement of the video segment s of VoD v when
the preset bit rate is brσ,v

s
drσ,v

τs
The actual bandwidth of VoD v downloaded at time τs

bu f ρ
τs The remaining buffer of EV ρ that downloads the segment for σ at τs

bu f
ρ

The buffer size of EV ρ

Rσ,v
t The fleet formed at time t

Pσ,v The number of EVs in the fleet
xrσ,v

i
The x coordinate of the ith EV in the fleet

yrσ,v
i

The y coordinate of the ith EV in the fleet

ut
rσ,v

i+1,rσ,v
i

t The bandwidth uploaded from rσ,v
i+1 to rσ,v

i at time t

dt
rσ,v

i+1,rσ,v
i

t The bandwidth downloaded from rσ,v
i+1 to rσ,v

i at time t
ρ The EV that pre-downloads the VoD segment
dtσ,ρ

τs ′ The bandwidth that EV σ downloads from EV ρ at time slot τs′
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Abstract: Due to the distributed data collection and learning in federated learnings, many clients
conduct local training with non-independent and identically distributed (non-IID) datasets. Accord-
ingly, the training from these datasets results in severe performance degradation. We propose an
efficient algorithm for enhancing the performance of federated learning by overcoming the negative
effects of non-IID datasets. First, the intra-client class imbalance is reduced by rendering the class
distribution of clients close to Uniform distribution. Second, the clients to participate in federated
learning are selected to make their integrated class distribution close to Uniform distribution for
the purpose of mitigating the inter-client class imbalance, which represents the class distribution
difference among clients. In addition, the amount of local training data for the selected clients is
finely adjusted. Finally, in order to increase the efficiency of federated learning, the batch size and the
learning rate of local training for the selected clients are dynamically controlled reflecting the effective
size of the local dataset for each client. In the performance evaluation on CIFAR-10 and MNIST
datasets, the proposed algorithm achieves 20% higher accuracy than existing federated learning
algorithms. Moreover, in achieving this huge accuracy improvement, the proposed algorithm uses
less computation and communication resources compared to existing algorithms in terms of the
amount of data used and the number of clients joined in the training.

Keywords: federated learning; non-IID data; class imbalance mitigation

1. Introduction

As the number of smartphones and Internet of Things (IoT) devices grows rapidly, the
amount of data they are generating is growing explosively [1]. A mainstream in utilizing
this large volume of data distributed over multiple devices is centralized data processing,
i.e., transferring those devices’ data to a server and training a machine learning model
from it. However, transferring this huge amount of data to the processing server causes
network overhead and increases communication costs. Additionally, data processing
servers demand enormous storage and computing power, resulting in high maintenance
costs. Federated learning (FL) has been proposed to solve these problems [2].

FL allows clients to cooperate to generate a global model without sharing the clients’
data with a server. Federated Averaging (FedAVG) [3], a representative algorithm of FL,
sends the local model parameters to a server after each device learns a local model using its
own local dataset. The server configures a global model by aggregating the received local
parameters. However, unlike central data processing, FL uses clients’ resources to learn
models, accordingly, the system heterogeneity (computing power, wireless channel envi-
ronment, size of dataset, etc.) among clients has a significant impact on learning efficiency.

To resolve the problem of system heterogeneity among clients, a lot of research works
were conducted to schedule devices on servers. In [4], the authors proposed a method
of selecting clients based on the available amount of communication and computing
resources with the goal of fast convergence and high accuracy of a global model. The
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methods of effectively utilizing communication resources were proposed in [5,6]. In [5],
a method of controlling the frequency between a global aggregation and a local update
was proposed. In [6], the authors proposed a method of applying hierarchical aggregation.
In [7], the model parameters for servers and local clients were compressed for efficient
use of communication resources. In addition, some research works were conducted to
dynamically allocate batch size for clients based on the available amount of communication
and computing resources [8–10].

One of the most important issues in FL is statistical heterogeneity, i.e., the negative
effect of non-independent and identically distribution (non-IID) of the training dataset.
The distribution of data generated by a client varies depending on the client’s occupation,
lifestyle, residential area, etc. As a result, the local data distribution of a client will be
non-IID with a high probability. Accordingly, the class distribution of the client also has a
class imbalance.

Class imbalance can be categorized into intra-client class imbalance and inter-client
class imbalance. Intra-client class imbalance means that the distribution of data amount
among classes, i.e., class distribution, in a client is different from Uniform distribution. The
larger the distribution gap is, the more severe the imbalance is. Inter-client class imbalance
means that the class distribution of each client is different from other clients’ distribution.
In [11,12], it was confirmed that the accuracy of FL was decreased when these intra- and
inter-client class imbalances were considered.

Although a lot of research works have been conducted to prevent learning efficiency
from decreasing when the class distribution of clients is imbalanced, to the best of our knowl-
edge, an integrated research work incorporating three core components—(1) a method of
reducing the intra-client class imbalance, (2) a method of reducing the inter-client class
imbalance, and (3) a method of dynamic batch size allocation and learning rate control—has
never been conducted.

We propose a novel algorithm that supports intra- and inter-client class imbalance
mitigation and dynamic batch size allocation and learning rate control considering the
amount of local dataset. First, the proposed algorithm performs data oversampling to make
the class distribution of each client close to Uniform distribution. This oversampling scheme
for FL, to the best of our knowledge, is the first approach incorporating an exponential
decay factor, and it dynamically reflects the amount of oversampled data in the previous
round. Second, to avoid performance degradation due to inter-client class imbalance, the
clients to join FL are selected to balance the aggregated class distribution for each round,
and the amount of data to be actually used for local learning is also adjusted by considering
the class distributions of the selected clients. The combination of these two features in
client selection is a unique contribution of this paper and shows significant performance
improvement. Finally, the batch size and the learning rate of the selected clients are adjusted
according to the amount of data for the clients. It is also the first approach presenting
the dynamic batch size and learning rate adjustment assuming a common SGD update in
an FL.

The performance of the proposed algorithm is validated over the CIFAR-10 [13] and
MNIST [14] datasets in non-IID scenarios, and it is confirmed that the accuracy of the global
model from the proposed algorithm achieves about 20% better performance than existing
FL algorithms in non-IID situations. Moreover, despite this remarkable improvement in
accuracy, the computing and communication resource usage in terms of the amount of
data used for learning and the number of clients participating in learning are decreased
compared to existing FL algorithms.

The main contributions of this paper are summarized as follows:

• To mitigate intra-client class imbalance, a novel data sampling to local datasets is
introduced, which results in accuracy improvement in non-IID environments.

• An FL server intelligently selects clients and allocates the amount of data to be actually
used in local learning by balancing the class distributions of the selected clients.
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• The batch size and the learning rate of clients are dynamically controlled according to
the amount of local dataset for each client.

• Performance evaluation in various non-IID scenarios confirms that the proposed
algorithm achieves high accuracy and low usage of computing and communication
resources compared to existing algorithms.

The remainder of this paper describes the following. Section 2 introduces the literature
review, and Section 3 describes the overall system structure and defines the class distri-
bution of clients. Section 4 describes the detailed procedure of the proposed algorithm,
Section 5 shows the experimental results, and finally, Section 6 concludes the paper.

2. Related Works

In the literature, various research works were conducted to improve the performance
of a global model under a non-IID dataset. In an intra-client class imbalance situation, in
order to solve the learning efficiency reduction problem, there was an attempt to make the
local class distribution of clients close to IID by sharing data among clients. In [12], a small
IID dataset was created in a server by collecting data from clients to mitigate the negative
effects of intra-client class imbalance. However, this approach does not meet the original
purpose of FL because the clients’ privacy is not protected by transmitting their data to the
server to generate the small IID dataset.

In [15], both the statistical heterogeneity and the system heterogeneity were considered
to prevent local models from deviating from a global model. Specifically, a proximal term
was added to a loss function. Similarly, in [16], the elastic weight consolidation method
was proposed to add a penalty term to a loss function to prevent the models of non-IID
clients from drifting apart from each other.

Another research approach to alleviating inter-client class imbalance is to more intel-
ligently select the clients to participate in an FL. The authors of [17] have improved the
performance of FL by increasing the selection probability for the clients having a large gra-
dient value. In [18], a scheme of group learning for clients with similar class distributions
and merging the trained models into a global model was proposed. In [19], FL models
could converge with fewer rounds through a hierarchical clustering of clients based on the
similarity of local models of clients. In [20], the data augmentation scheme was proposed as
a solution to a global imbalance situation in which the aggregated class data distribution of
clients differs from Uniform distribution. In addition, mediator-based client rescheduling
is introduced to alleviate local imbalance.

The level of IID for the local dataset was evaluated using weight divergence and
multi-arm bandit [21]-based algorithms in [22] and [23], respectively. Moreover, in [23], the
negative effects of local imbalance were reduced by increasing the selection probability of
clients with high IID levels. The authors in [24] showed that, for performance improvement,
the aggregation weights of local models should be finely adjusted considering the quality
and quantity of local data, the number of classes, and the entropy of local data.

In FedNova [25], the performance degradation due to the differences in the number of
local updates was reported, and this difference was from the heterogeneity in non-IID local
datasets and computation resources. To solve this problem, a normalized model aggregation
method was proposed. In [26], the performance degradation of stochastic gradient descent
(SGD) method over non-IID data was mitigated by introducing a deep reinforcement
learning-based client selection and client-specific batch size allocation scheme.

Although various studies have been conducted until now, research considering both
intra- and inter-client class imbalance mitigation and dynamic batch size and learning rate
adjustment considering the size of the dataset has not been conducted.

3. System Model and Data Distributions

3.1. System Model

An FL system for a multi-class classification task consists of a server to manage the
global model and a set of clients K = {1, 2, . . . , K}. Each client has a local dataset, and
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client k’s local dataset is denoted by Dk. In rth round of the FL, client k, which is selected to
participate in this learning, starts a local learning using its local dataset Dk with the initial
global model vector wr, received from the server. Client k makes up a mini batch set Bk
from the local dataset Dk and proceeds with the local learning using an SGD optimizer.
The update rule for the local learning is expressed as follows:

wk,r+1 ← wk,r − η
1

|Dk| ∑
x∈Bk

∇ fk(wk,r; x), ∀k ∈ K, (1)

where |Dk| denotes the cardinality of Dk, fk(wk,r; x) is a loss function for the local model
vector wk,r and data x, and η is the learning rate. Each selected client trains the local model
until a pre-determined local epoch and transmits the learned local vector to the server. The
server updates the global model vector by aggregating the received local model vectors. In
the aggregation process, a weight for each local model is required, and it is determined to
be the amount of data used in each local training divided by the total amount of data for
the entire clients participating in the learning. The aggregation with the weights is given by

wr+1 ← ∑
k∈S

∣∣D′
k

∣∣
|D| wk, r+1, (2)

where S denotes the set of clients selected by the server to participate in the learning,
D � ∪k∈SDk. D′k denotes data used by client k for local learning and has a relation of
D′

k ⊂ Dk. This process is repeated until a specified round is reached. The main parameters
of the system model are summarized in Table 1.

Table 1. Notation and definitions.

Notation Definition

K Client index set
r Round index

θKLD Kullback–Leibler divergence threshold
h Maximum number of selected clients
L Number of classes
δ Oversampling exponent

bk,r Batch size of client k at round r
ηk,r Learning rate of client k at round r
wr Global model parameter at round r

wk,r Local model parameter of client k at round r
Dk Local dataset of client k
K Number of clients
Bk Mini batch set for client k

fk(· ; ·) Local loss function of client k
α Dirichlet distribution control parameter
nk Class data volume for client k
tk Average amount of class data for client k

sk,r Class training data volume for client k at round r
vr Class training data volume at round r
β Number of SGD updates

ηmax Maximum learning rate

3.2. Data Distributions

As shown in [27], the class distribution of a client is set using Dirichlet distribution.
When a classification task has L classes to classify, it is assumed that all clients’ local learn-
ing data are extracted according to a vector q (q� ≥ 0, � ∈ [1, L] and ‖ q ‖1= 1), which
corresponds to the class distribution. The class distribution of the clients is determined by
q ∼ Dir(αp) of Dirichlet distribution, where p denotes the prior probability distribution
and α is a parameter that adjusts the uniformity of the class distribution among the clients.
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If α > 0 and α → ∞ , then the class distribution of all the clients approaches to Uniform
distribution. Conversely, when α is close to 0, all the clients have only a single class of data,
resulting in a non-IID class distribution.

4. Proposed Algorithm

4.1. Alleviating Intra-Client Class Imbalance

When the clients’ class distribution is IID, the performance of the FL is very close to
centralized learning methods. However, when the class distribution of the local dataset
is non-IID, the accuracy of the FL decreases because the local model learned is biased to
some class data. Hence, the performance of the FL model can be improved when the class
distribution of each client is close to Uniform distribution. Consequently, an oversampling
method of making the class distribution close to Uniform distribution without data sharing
is proposed. The purpose of this scheme is to render the non-IID dataset to IID as close
as possible.

Denote nk =
[
n1

k , n2
k , . . . , nL

k
]T as class data distribution vector for client k, where

nj
k is the data amount of j-th class for client k. Then, the average amount of data over

the classes is tk = 1
L ∑L

� n�
k. Client k randomly oversamples data elements in the classes

having a smaller volume than tk. This oversampling is conducted until the volume of each
class reaches the average tk (n�

k ≥ tk, � ∈ [1, L]). One of the noteworthy features of this
oversampling is that it reduces intra-client class imbalance without losing any of the data
obtained with much effort. Due to this data reserving characteristics of the oversampling,
it outperforms the other method of sampling at the level of an average over classes.

However, note that data oversampling can lead to overfitting, which reduces the
generalizability of the model as the amount of local data increases. To avoid overfitting,
the amount of oversampled data per round should be reduced as the round goes on.
Accordingly, the training load on each client due to the oversampling is diminished rapidly.
Specifically, in the proposed method, the amount of oversampling is exponentially reduced
as e−δr, where r is the round index and the exponent δ is increased when the amount of total
oversampled data in the previous round is greater than the threshold θover. This scheme
enables the early termination of the oversampling to prevent the local model from falling
into overfitting. Figure 1 shows the local data sampling of a client, and the detailed process
is represented in Algorithm 1.

Algorithm 1. Sampling. number of data per class is greater than or equal to the average

• client executes:

• Input

nK , r round index, δ oversampling exponent
• Output

nK
1: tk ← 1

L ∑L
� n�

k × e−δr

2: repeat

3: oversampling for Dk
4: until n�

k ≥ tk, � ∈ [1, L]
5: return nK
• server executes:

• Input

S selected client set
• Output

δ

1: if
∑k

k∈S(∑L
� n�

k−|Dk |)
∑k

k∈S |Dk | > θover //calculate oversample data rate

2: δ ← δ + Δ
3: return δ
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(a) Class distribution before oversampling (b) Class distribution after oversampling 

Figure 1. Class data distribution through data oversampling, where the dotted line in (b) is the
average amount of data per class.

4.2. Alleviating Inter-Client Class Imbalance

To alleviate the class imbalance among the clients, the server utilizes the sum of the
class distributions in selecting the clients to participate in the FL. In addition to this client se-
lection, the server determines the amount of data per class to learn for the selected clients. In
each round, the negative effect of inter-client class imbalance can be alleviated by rendering
the aggregated distribution of the total training data close to Uniform distribution.

Specifically, any client who wants to participate in rth round learning conducts data
oversampling for intra-client class imbalance mitigation and transmits class data volume
information nk to the server. The client can transmit the information about the amount
of data to contribute to the learning in this round by reflecting it in nk. This sharing of nk
may reveal the information of the clients to the server; however, note that not the content
of data but only the class distribution information is transmitted. Moreover, nk can be
different from the actual class distribution of client k. The server manages the data amount

information sk,r =
[
s1

k,r, s2
k,r, . . . , sL

k,r

]T
for each client k, where s�k,r, � = 1, . . . , L is the

amount of �th class data for client k to learn in rth round. Considering all the selected
clients, the server also manages the information of the amount of data per class required in
the learning as vr =

[
v1

r , v2
r , . . . , vL

r
]T , where v�r , � = 1, . . . , L is the total amount of �th

class data to learn in rth round.
The server sorts the clients willing to participate in the learning in descending order

of the amount of local dataset, i.e., ∑L
� n�

k. Let client k be on the top of the sorted client list.
The server updates vr and sk,r with the data amount information nk. In vr, the server finds
out the class with a maximum amount of data and the class with a minimum amount of
data. Now, assume that the volume of the maximum amount class is denoted as m and the
class index for the minimum amount of data is denoted as f . Through the sorted client list,
the server searches for a client i having data to learn in class f . Similarly, vr and si,r are
updated using ni.

However, in this update process, we regulate the accumulated amount of data in each
class to be equal to or smaller than the maximum value m so that this process does not break
the balance among the classes. When vr is updated, the uniformity of class distribution
vr is tested by calculating the Kullback–Leibler divergence (KLD) [28] between vr and
Uniform distribution. This client selection process terminates if the calculated KLD is below
the threshold θKLD, or if the number of selected clients reaches the maximum number of
clients h. Finally, the server informs the selected clients of the amount of data to learn by
delivering ss,r to client s ∈ S . This process is expressed in Algorithm 2.
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Algorithm 2. Client Selection. The server selects clients and adjusts client’s training data

• Input

K, N = {n1, n2, . . . , nK} client
′
s class information set, θKLD KLD threshold,

h maximum number of selected client, L number of classes
• Output

selected client class information set Sinfo =
{

s1,r, s2,r, . . . , sh,r
}T

1: initialize Sinfo ← ∅, data volume vector vr =
[
v1

r , v2
r , . . . , vL

r
]T

2: Sort N in descending order by the amount of data ∑L
� n�

k, k ∈ N
3: repeat

4: for each nc ∈ N do

5: if Sinfo is empty then

6: for each �, � = 1, 2, . . . , L do

7: v�r ← v�r + n�
c

8: s�c,r ← n�
c

9: end for

10: m ← max(vr) //Maximum value among vr
11: add sc,r in Sinfo
12: else

13: f ← argmin� (vr)

14: if n f
c > 0 then

15: for each �, � = 1, 2, . . . , L do

16: v�r ← v�r + min(m—v�r , n�
c)

17: s�c,r ← min(m—v�r , n�
c)

18: end for

19: add sc,r in Sinfo
20: end if

21: end if

22: end for

23: until |Sinfo| == h or DKL (Pvr |Puniform) < θKLD
24: return Sinfo

4.3. Dynamic Batch Size and Learning Rate Control

In an FL, each client has a different amount of training data. Accordingly, each client
needs to use different hyperparameters, e.g., batch size and learning rate. As shown in [26],
under the non-IID dataset situation, if the batch size for local training is not properly
adjusted, performance degradation is inevitable. Hence, the efficiency of the FL can be
increased by dynamically controlling the batch size and the learning rate for each client
by considering the amount of data ∑L

� s�k,r of the clients. By assuming a common number
of SGD updates for the clients, an efficient batch size can be obtained. Specifically, in rth

round of the proposed scheme, client k uses the value
⌊

∑L
� s�k,r
β

⌋
as its batch size bk, r, where

β is the required number of SGD updates and �·� is the floor operator.
Note that the batch size is proportional to the amount of local dataset for each client,

which leads to the improvement of the accuracy of the global model. As the clients learn
using different batch sizes, it is necessary to control the learning rate for each client for the
purpose of converging the global model. Note that when the batch size is small and the
learning rate is too large, the loss function of the local model may diverge. Conversely, if
the batch size is large and the learning rate is small, the convergence of local learning is
too slow. It coincides with the relationship between the learning rate and the batch size
shown in [29]. Therefore, the learning rate is adjusted to be proportional to the batch size.
In addition, when the learning rate is too large, the model may not converge, accordingly,
the learning rate is regulated with arctan function so that the learning rate does not exceed
the maximum learning rate ηmax. This process is explained in Algorithm 3.
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Algorithm 3. DynamicBL. dynamically allocate batch size and learning rate

• Input
sk,r, ηmax maximum learning rate, β number of SGD update
• Output
Batch size bk,r, learning rate ηk,r

1: bk,r ←
⌊

∑L
� s�k,r
β

⌋
2: ηk,r ← ηmax × arctan

(
bk,r

)
3: return bk,r, ηk,r

4.4. Workflow

The training procedure of the proposed algorithm consists of local data sampling,
client selection and training data allocation, and the control of dynamic batch size and
learning rate. This procedure is followed by local training and local model aggregation.
This overall process is shown in Figure 2.

Figure 2. The workflow of the FL with the proposed algorithm, where the orange and green cylinders
are the local datasets with different batch sizes. The solid arrow lines mean the data process inside the
server or the clients, and the dotted lines mean the data transfer between the server and the clients.

• Local data sampling: a client who wants to participate in learning checks the class
distribution of the local dataset and proceeds with oversampling, and then sends the
data distribution information to the server.

• Client selection and allocation of training data: the server selects the clients to make the
class distribution of learning data balanced for each round and delivers the information
about the amount of training data to the selected clients.

• Dynamic batch and learning rate control: each client calculates the batch size and
learning rate of local learning based on the amount of data it learns.

• Local training: Each client learns a local model using the amount of training data
received from the server and the previously calculated batch size and learning rate.
After learning, the client sends the local model parameters to the server.

• Aggregation: When the server receives all the selected clients’ local model parameters,
it updates the global model parameters using Equation (2). Then repeat until the
final round.
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5. Experiment Results

5.1. Experiment Setup

In the performance evaluation of the proposed algorithm, the representative dataset
of CIFAR-10 and MNIST are adopted. The deep learning model for this classification task
is the convolution neural network (CNN) with two 5 × 5 convolution layers for CIFAR-10,
each with 64 and 128 filters. The two convolution layers are followed by a max pool layer,
three fully connected layers, and a softmax layer. Then the classification probabilities are
derived. We also perform experiments with a simple logistic regression classifier, which we
train on the MNIST dataset.

In this evaluation, two baseline algorithms of FedAVG and FedNova [25] are used.
FedAVG is a representative algorithm for FL, and FedNova reduces the negative effect of
non-IID by normalizing the aggregation step of FedAVG with the number of local updates.

For the CIFAR-10 dataset, the range of the Dirichlet parameter which determines the
data distribution of the clients is α ∈ [0, 0.2], and three test cases are considered according
to the setting of Dirichlet distribution. In the case of the MNIST dataset, α = 0 and all the
clients have only a single class. The maximum number of clients participating in each round,
h, is set to 10, and FedAVG and FedNova randomly select 10 clients in each round and
conduct global aggregation. The initial oversampling decay exponent δ is set to 0.01, the
oversampling decay exponent increment Δ is set to 0.1, and the KLD threshold θKLD is set to
0.1 which checks the similarity between the data distribution vr and Uniform distribution.

In the setting for the local model training on CIFAR-10, FedAVG and FedNova set the
local epoch, batch size, and learning rate to 5, 64, and 0.1, respectively. The local epoch is
set as the same value in FedAVG [3]. For MNIST, local epoch, batch size, and learning rate
are 5, 10, and 0.03, respectively. In the proposed algorithm, the number of SGD updates β
is set to 3, 25, and 25 for Test Cases 1–3, respectively. The maximum learning rate ηmax is
set to 0.1. It is assumed that the computation capabilities of the clients are equal.

5.2. Results on Different Non-IID Data Distribution

As mentioned above, the three different non-IID scenarios of CIFAR-10 Cases 1–3 are
considered. In Case 1, α = 0 for all the 200 clients, where these clients have only a single
class of data. In Case 2, α = 0 for 180 out of 200 clients who have only a single class data,
and α = 0.2 for the remaining 20 clients. On average, a client with α = 0.2 has 6 classes of
data, where approximately 4 out of the 6 classes have 26–28% less amount of data than the
average amount of data for each class. In Case 3, α = 0.2 for all 100 clients, and it is the most
balanced class distribution compared to other test cases. In Case 4, α = 0 for 200 clients
who have only a single class MNIST data. Table 2 shows the data distribution parameters
and experimental parameters for all the test cases. Hyperparameter values are derived
experimentally to obtain optimal results.

Table 2. Distribution setup and experiment parameters.

Distribution Setup Experiment Parameter

Datasets Case K α
Sampling Client Selection Dynamic Batch Local Training

θover θKLD ηmax β h epoch

CIFAR-10
1 200 0 0.1 0.1 0.1 3 10 5
2 200 0 or 0.2 0.1 0.1 0.1 25 10 5
3 100 0.2 0.1 0.1 0.1 25 10 5

MNIST 4 200 0 0.1 0.1 0.1 25 10 5

In Figure 3, the average accuracy of the proposed global model is depicted for all
the test cases. In obtaining the average accuracy, each algorithm is executed 10 times
and averaged. As shown in (a)–(c) of this figure, the achieved accuracy of the proposed
algorithm is highest when tested on Case 3 but lowest when tested on Case 1. Note that
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Case 1 has both severe intra- and inter-client class imbalances. The proposed algorithm
achieves 10.4% higher accuracy in Case 2 than in Case 1. As a result, the accuracy of
FL decreases when intra-client class imbalance and inter-client class imbalance are very
high; however, the accuracy can be improved even when the number of clients having a
balanced intra-client class distribution is low. Since Case 3 has the lowest class imbalance,
the proposed algorithm achieves the highest accuracy. Figure 3d shows the results of the
MNIST dataset, where the proposed algorithm achieves higher accuracy than Case 1, but it
has more fluctuation.

 

(a) Case 1 ( ) (b) Case 2 ( ) 

 
(c) Case 3 ( ) (d) Case 4 ( ) 

Figure 3. Accuracy comparison between the proposed algorithm and two baseline algorithms
(FedAVG, FedNova) on non-IID dataset, where the bold lines represent the average of the accuracy
for 10 executions and the light area is the range for the maximum and minimum values. Cases 1–3 are
the results of the CIFAR-10 dataset, and Case 4 is the result of the MNIST dataset.

Comparing the proposed algorithm with other baseline algorithms, as shown in
Figure 3a, in Case 1, the accuracy of the proposed algorithm is improved by 21.8% and
34% compared to FedAVG and FedNova, respectively. Moreover, in this case, the baseline
algorithms have a large fluctuation in accuracy from round to round, leading to poor
training stability. In addition, when comparing the convergence of the three algorithms, the
proposed algorithm converges at a faster rate than the baseline algorithms. In Case 1, since
all the clients have only a single class of data, the intra-client class imbalance alleviation
method in the proposed algorithm is skipped because this method generates duplicate
data elements in non-empty classes. It is noteworthy that the proposed algorithm success-
fully improves the accuracy of the global model and reduces the variability of the global
model without the intra-client class imbalance alleviation method. The baseline algorithms
randomly select clients, hence, the sum of the class distributions of the selected clients
is imbalanced. As a result, in the baseline algorithms, the accuracy decrement and the
high fluctuation are inevitable. On the contrary, the proposed algorithm can improve the
accuracy and stability of the global model by applying the inter-client class imbalance
method and the dynamic batch size and learning rate control method. In Figure 3b, for
Case 2 (α = 0 or 0.2), the proposed algorithm achieves 12.2% and 23.8% accuracy improve-
ments over FedAVG and FedNova, respectively. Moreover, this higher accuracy is achieved
within fewer communication rounds and with less fluctuation than FedAVG and FedNova.
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In the early rounds in Figure 3b, a surge in the accuracy of the proposed algorithm is
observed. This rapid accuracy increment in the early rounds is induced by the data over-
sampling method to mitigate intra-client class imbalance, which enables the learning with
more data in the early stage of the learning. As shown in Figure 3c, for Case 3 (α = 0.2), the
proposed algorithm does not improve accuracy significantly compared to FedAVG. Unlike
Case 1 and Case 2, Case 3 has a balanced class distribution, accordingly, the performance of
the proposed algorithm is similar to FedAVG. However, it still achieves about a 4% accuracy
improvement over FedNova. In Figure 3d for Case 4, the proposed algorithm shows 21.1%
and 11.4% improved accuracy over FedAVG and FedNova, respectively. FedNova performs
better than FedAVG on MNIST, and vice versa on CIFAR-10.

5.3. Results on Class Imbalance Mitigation

Experiments are conducted to validate the effectiveness of the three core methods
which constitute the proposed algorithm. For Cases 1–3 of the CIFAR-10 dataset, which
showed the highest performance improvement, we compare it with the baseline algorithms.
In the following experiments, the local data oversampling method to alleviate intra-client
class imbalance is denoted as ‘data sampling’, the client selection and training data alloca-
tion method to alleviate inter-client class imbalance is denoted as ‘client selection’, and the
dynamic batch size and learning rate control technique is expressed as ‘dynamic batch’.

In Figure 4, the accuracy of ‘client selection’ method is compared with the proposed
algorithm and two baseline algorithms on Case 1–3. As shown in Figure 4a, for Case 1,
the ‘client selection’ method achieves a similar accuracy with the proposed algorithm, and
the accuracy improvements of ‘client selection’ over FedAVG and FedNova are 22.5% and
34.6%, respectively. In Figure 4b of Case 2, ‘client selection’ lowers the fluctuation and
achieves higher accuracy than FedAVG and FedNova by about 13% and 24.7%, respectively,
but it is less accurate than the proposed algorithm. In Case 3, ‘client selection’ achieves a
similar accuracy (about 73%) with FedAVG and a 4% higher accuracy than FedNova.

  
(a) Case 1 ( ) (b) Case 2 ( ) (c) Case 3 ( ) 

Figure 4. Accuracy comparison among the proposed algorithm, ‘client selection’, and two baseline
algorithms on different non-IID situations.

In Figure 5, the accuracy of ‘data sampling’ is compared with the proposed algorithm
and two baseline algorithms in Cases 1–3. In Case 1, ‘data sampling’ is not applied
because all the clients have only a single class of data. However, it shows an accuracy
improvement of 10.7% compared to FedNova. In Case 2, ‘data sampling’ achieves 4% and
16.4% improvement compared to FedAVG and FedNova, respectively. At the beginning of
training, the training accuracy can be improved by increasing the amount of training data
through ‘data sampling’. In the latter part of training, the amount of oversampled data
is reduced to avoid overfitting, hence, the improvement in accuracy gradually decreases
compared to the early part of training. In Case 3, when only ‘data sampling’ is applied, the
accuracy improvement is not noticeable because the effect of ‘data sampling’ is evident in
scenarios having strong non-IID. Nevertheless, it shows an accuracy improvement of about
2% compared to FedNova.
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(a) Case 1 ( ) (b) Case 2 ( ) (c) Case 3 ( ) 

Figure 5. Accuracy comparison among the proposed algorithm, ‘data sampling’, and two baseline
algorithms on different non-IID situations.

In Figure 6, the accuracy of the ‘dynamic batch’ is compared with the proposed
algorithm and two baseline algorithms on Case 1–3. In Cases 1–3, the model fluctuations
are similar to the baseline algorithms. In Case 1 and 3, the accuracy is similar to that
of FedAVG; however, compared to FedNova, the proposed algorithm shows 11.2% and
4% improvement in Case 1 and Case 3, respectively. In Case 2, the accuracy is improved
by about 4% and 16% compared to FedAVG and FedNova, respectively. Compared to
Case 1, in Case 2, the clients have various class distributions, hence, if the batch size and
the learning rate for each client are not properly adjusted, it is difficult to extract high
performance, and it makes the effect of ‘dynamic batch’ conspicuous. In Case 3, the clients
have more classes than in Case 2, accordingly, the contribution of the ‘dynamic batch’ in
improving accuracy is relatively small.

  
(a) Case 1 ( ) (b) Case 2 ( ) (c) Case 3 ( ) 

Figure 6. Accuracy comparison among the proposed algorithm, ‘dynamic batch’, and two baseline
algorithms on different non-IID situations.

5.4. Amount of Training Data

Since the proposed algorithm determines the amount of local training data for the
clients on each round, the clients can learn using only a subset of their local dataset. In
Case 1–4, the total amount of data used for the proposed algorithm is compared to FedAVG
and FedNova, and the results are shown in Figure 7.

As shown in Figure 7a, the amount of data samples used for the proposed algorithm
is about 1,263,000, and it is roughly 1% more than the amount of data for FedAVG. In
Case 1, since all the clients have only a single class, ‘data sampling’ is not applied, hence,
the amount of training data does not increase. However, compared to FedAVG which
randomly selects clients, the proposed algorithm is prone to select clients with more data
to train. Thus, as shown in Figure 7a, the proposed uses 1% more data. In addition, in
Case 1, most of the local datasets are used in training. For this reason, in Case 1, the number
of training data is similar to FedAVG and FedNova, which uses all of the client’s local
data in training. However, it should be noted that even though the proposed algorithm
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uses a small amount of more data (about 1% more) than the baseline algorithms, the
accuracy improvement is remarkably high by 21.8% and 34.4% compared to FedAVG and
FedNova, respectively.

  

(a) Case 1 ( ) (b) Case 2 ( ) 

 
(c) Case 3 ( ) (d) Case 4 ( ) 

Figure 7. Amount of training data (bar graph) and accuracy (red dot) comparison among the proposed
algorithm, FedAVG, and FedNova on different non-IID situations. Cases 1–3 are the results of the
CIFAR-10 dataset, and Case 4 is the result of the MNIST dataset.

In Figure 7b for Case 2, the proposed algorithm uses about 1,005,000 data samples,
and the efficiency of the proposed algorithm is clearly shown in this figure. Specifically, the
proposed algorithm uses 19% less data than the baseline algorithms, while the achieved
accuracy is higher by 12.2% and 23.8% compared to FedAVG and FedNova, respectively. In
Case 2, ‘data sampling’ is applied; however, the amount of oversampled data is quickly
reduced to avoid overfitting. This mechanism also minimizes the potential burden of
increasing the amount of data to train.

In Figure 7c for Case 3, the accuracy difference between the proposed algorithm and
FedAVG is negligible at 0.6%, and between the proposed algorithm and FedNova, it is not
high at 3.9%. However, the proposed algorithm uses 24% less amount of data than FedAVG
and FedNova, and it is a huge gap.

In Figure 7d for Case 4, all three algorithms learn using a similar number of training
data about 1,500,000. However, when comparing the test accuracy of the proposed algo-
rithm with FedAVG and FedNova, it shows 21.1% and 11.4% improved results, respectively.

Figure 7 shows the adaptability of the proposed in improving accuracy and reducing
the amount of training data. More specifically, in a severe non-IID situation like Case 1,
the proposed algorithm mainly focuses on increasing the accuracy rather than reducing
the used training data volume as shown in Figure 7a. When the level of non-IID is low
like in Case 3, the proposed algorithm focuses on reducing the training data volume rather
than increasing the accuracy as shown in Figure 7c. When the level of non-IID is medium
like in Case 2, both the accuracy and the amount of training data are improved as shown
in Figure 7b. Through the amount of training data used in Case 1–3, it is confirmed that,
on average, the proposed algorithm achieves higher accuracy by using lower computing
resources than FedAVG and FedNova.

363



Sensors 2023, 23, 1152

5.5. Average Number of Clients

The average number of clients participating in the learning on each round is depicted
in Figure 8. FedAVG and FedNova randomly select a fixed number of clients on every
round, while the proposed algorithm can terminate the client selection process before the
number of the selected client reaches the maximum h if the data information vr for training
becomes close enough to Uniform distribution. In Case 1 and Case 4, since all the clients
have only a single class, the maximum number of clients must be selected to make vr similar
to Uniform distribution. In Cases 2 and 3, higher test accuracy is achieved even though
fewer clients participate in the learning than FedAVG and FedNova. In FL, the reduced
number of clients results in the reduced usage of communication resources. Therefore, it
is confirmed that the proposed algorithm uses lower communication resources than the
baseline algorithms.

Figure 8. Average number of clients participating in the learning on different non-IID situations.

6. Conclusions

In FL, if the clients’ local data distribution is non-IID, the accuracy and learning
efficiency of the global model decreases. To solve this problem, the intra-client class
imbalance is alleviated through local data sampling, and inter-client class imbalance is
alleviated by selecting the clients and determining the amount of data to be used for training,
which makes the aggregate of the training data class distributions balanced on every
round. In addition, more efficient local learning is possible by dynamically determining
the batch size and learning rate reflecting the amount of training data. The proposed
algorithm achieves faster convergence speed and higher accuracy with lower computing
and communication resource usage than existing algorithms in non-IID environments.
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Abstract: The emergence of Industry 4.0 has revolutionized the industrial sector, enabling the
development of compact, precise, and interconnected assets. This transformation has not only
generated vast amounts of data but also facilitated the migration of learning and optimization
processes to edge devices. Consequently, modern industries can effectively leverage this paradigm
through distributed learning to define product quality and implement predictive maintenance (PM)
strategies. While computing speeds continue to advance rapidly, the latency in communication has
emerged as a bottleneck for fast edge learning, particularly in time-sensitive applications such as PM.
To address this issue, we explore Federated Learning (FL), a privacy-preserving framework. FL entails
updating a global AI model on a parameter server (PS) through aggregation of locally trained models
from edge devices. We propose an innovative approach: analog aggregation over-the-air of updates
transmitted concurrently over wireless channels. This leverages the waveform-superposition property
in multi-access channels, significantly reducing communication latency compared to conventional
methods. However, it is vulnerable to performance degradation due to channel properties like noise
and fading. In this study, we introduce a method to mitigate the impact of channel noise in FL over-
the-air communication and computation (FLOACC). We integrate a novel tracking-based stochastic
approximation scheme into a standard federated stochastic variance reduced gradient (FSVRG).
This effectively averages out channel noise’s influence, ensuring robust FLOACC performance
without increasing transmission power gain. Numerical results confirm our approach’s superior
communication efficiency and scalability in various FL scenarios, especially when dealing with noisy
channels. Simulation experiments also highlight significant enhancements in prediction accuracy and
loss function reduction for analog aggregation in over-the-air FL scenarios.

Keywords: predictive maintenance; over-the-air federated learning; analog aggregation; low latency;
channel noise

1. Introduction

The pervasive connectivity of numerous devices and sensors, fueled by recent ad-
vancements in communication networks and Internet of Things (IoT) applications, has
resulted in the generation of immense volumes of data. The copious volume of data at hand
serves as the training datasets for machine learning (ML) algorithms that find utility across
various applications in industry, such as process optimization, defining product quality,
and PM, critical components within the purview of Industry 4.0 [1]. Conventionally, the
training process for these ML algorithms has followed a centralized approach, wherein
multiple devices transmit their raw and occasionally sensitive data to a PS possessing
robust computational resources dedicated to training tasks. Nevertheless, the data required
for training these ML algorithms are produced by numerous assets and devices in the
industry, which often necessitate privacy-preserving measures to safeguard data integrity.
Furthermore, the presence of bandwidth constraints poses a bottleneck when transmitting
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a massive amount of data from the devices to the PS [2]. For this reason, there has been
considerable focus on federated and distributed learning algorithms, primarily due to their
ability to train ML models in a fully decentralized manner.

FL algorithms have been proposed as an alternative scheme for privacy-preserving
distributed ML, where each device participates in the training process using exclusively
locally available data facilitated by a PS [3]. In the context of FL, devices communicate
with the PS by exchanging model parameters and their respective local updates, while
ensuring that the raw data remain localized on the devices. This approach offers not only
privacy advantages but also proves to be a compelling solution for wireless edge devices,
particularly when dealing with substantial dataset sizes. In the domain of PM applications,
the volume of data obtained from online sensors is significant. Consequently, it becomes
imperative to account for this substantial data volume when implementing federated
learning techniques for PM. Additionally, time sensitivity and temporal awareness are
essential attributes for the effective execution of PM activities. Therefore, time latency
should be considered for PM applications.

The migration learning from centralized clouds to the edge enables edge servers to
quickly obtain real-time data generated by edge devices, facilitating rapid AI model training.
As a result, distributing these models from servers to devices in close proximity enables
the devices to respond effectively to real-time events, making them well-suited for PM
applications. Despite the rapid advancement of computing speeds, wireless transmission
of large amounts of data by any device faces limitations due to limited radio resources and
the adverse conditions of wireless channels. This creates a communication bottleneck that
hinders fast-edge learning [4,5]. Hence, communication efficiency has been at the forefront
of FL, and the paramount objective is to achieve high model accuracy while minimizing
the number of communication rounds of resource usage. In the realm of cutting-edge
research, the fusion of digital twins and multi-access edge computing has gained significant
attention [6]. This innovative approach represents a crucial technology in the context of 6G
networks, primarily serving as a fundamental enabler for the Industrial IoT. The primary
objective of this research is to minimize the total task completion delay for IoT devices by
optimizing various parameters.

Communication schemes for FL can be categorized as digital or analog. Digital com-
munication, though burdensome for wireless networks, assigns communication resources
to each client’s ML model parameters. Analog communication reduces overhead by al-
lowing shared resources for transmitting FL models. Early research aimed to reduce
communication rounds or payload size. However, most FL literature assumes a perfect
communication channel shifting focus to ML design. Recent research addresses this gap
by emphasizing system design, especially for wireless FL [7–9]. Although early studies
have delved deeply into optimizing communication design for FL, the crucial and practical
matter of a noisy channel with over-the-air communication and computation (OACC) has
not been thoroughly investigated. Incorporating the impact of noisy channels in OACC
complicates convergence analysis due to noise propagation during each communication
round. Moreover, the collective impact of these noisy communications in OACC on the
final learning performance necessitates a comprehensive design and analysis approach.

This work addresses the impact of communication-induced noise during FL training
on the convergence and accuracy performance of the ML model, and then proposes robust
algorithms within the OACC framework that mitigate these effects and optimize client
resources concurrently. Our focus lies in analog communication for model updates [10–12]
and the exploration of new distributed algorithms capable of withstanding high levels of
channel noise and low signal-to-noise ratio (SNR) in industrial environments, in accordance
with PM applications.

1.1. Related Work

In recent years, substantial endeavors have been undertaken to implement the FL
framework over wireless networks, with its origins traced back to McMahan’s seminal
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works [13,14]. A comprehensive survey of FL has been conducted in [15], offering an
overview of this paradigm where statistical models are trained on distributed networks
at the edge. These studies explore the distinctive challenges and characteristics of FL
compared to traditional approaches while identifying open problems that necessitate inter-
disciplinary research efforts. However, these works overlook the practical implications of
channel effects and assume a seamless integration of FL algorithms into wireless networks.
Recently, there has been significant attention given to exploring methods for mitigating the
impact of these effects on FL algorithms [16–18].

This study primarily focuses on analog aggregation schemes for over-the-air transmis-
sion, which are driven by the inherent superposition property of signals in the wireless
multiple-access channel. Analog over-the-air aggregation is a highly promising technique
extensively used in Federated Averaging (FedAvg) due to the fact that the ps or clients
require only the sum of their local gradients or model parameters. These schemes have
been explored in various studies, including [2,19], and other relevant works.

In order to provide context and underscore the contributions of this article, we will
now discuss previous studies that have investigated FL in the presence of imperfect or
noisy communication. The main objective of [20] was to tackle the issue of noise in wireless
communications for federated learning. The paper addressed this challenge by formulating
the problem using an expectation-based model and a worst-case model. They introduced
a sampling-based successive convex approximation algorithm for solving the problem.
This approach successfully handles noise by incorporating it as a regularizer in the loss
function during the training process. Simulation results showcased improved prediction
accuracy and reduced loss function values, affirming the effectiveness of the proposed
methods in mitigating the impact of noise. In [21], Amiri et al. examined the impact of
a noisy channel on FedAvg. They determined that when dealing with noisy downlink
transmission, the presence of noise cannot be neutralized through step-size design, resulting
in an inability to ensure precise convergence. Consequently, addressing this fundamental
problem has necessitated imposing strict demands on the estimation noise associated with
the aggregated model weights.

In [22], researchers conducted an investigation into the influence of a noisy channel
in uplink and downlink analog transmission on the training process. The findings of
this analysis led the authors to conclude that for the FedAvg algorithm to converge, it
is necessary for the noise variance to decrease at a rate of O(

1/k2), where k represents
the communication round. Consequently, in order to effectively mitigate the impact of
channel noise on the training procedure, the authors recommend two approaches. Firstly,
it is advised to employ an increased transmission power gain of O(k) in both uplink
and downlink transmissions. Alternatively, if the power gain remains fixed, extending
the transmission time to O(k) is suggested. The implementation of either of these
strategies is crucial for preserving the integrity of the training process when faced with
channel noise.

Another critical issue is analog transmission, which is widely used in over-the-air
aggregation within the wireless channel. It is extensively utilized and plays a crucial role
in enhancing spectral efficiency and reducing multi-access latency. Gau et al. [23] devel-
oped a hardware transceiver and application software to train a real-world FL task using
over-the-air analog aggregation. They focused on developing an over-the-air aggregation
solution for wireless FL based on orthogonal frequency-division multiplexing (OFDM).
The main challenge they faced was achieving perfect waveform superposition, which was
complicated by the presence of frame timing offset and carrier frequency offset. To tackle
these challenges, they proposed a two-stage waveform pre-equalization technique.

The focus of this study pertains to the exploration of algorithms aimed at resolving
optimization problems through over-the-air analog aggregation. While numerous papers
have discussed communication-efficient solutions for distributed learning problems, it is
of paramount importance to thoroughly investigate the optimization of analog FL prob-
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lems over noisy communication channels. This particular problem presents significant
importance and complexity, necessitating meticulous attention and consideration.

1.2. Our Contributions

The major contributions of this work are summarized as follows.

• We propose a hierarchical approach to PM, building upon our prior work [1]. The key
distinction lies in the utilization of OACC for the FL algorithm at the factory level.
This choice is motivated by the benefits of low latency, making it suitable for PM
applications while also improving spectral efficiency. At higher levels, such as fog
and cloud servers, occasional requests are made to the factory level for the aggregate
model, enabling averaging over multiple factory parameters, FedAvg. Our primary
emphasis is on the factory level, specifically investigating FLOACC as the focal point
of our research.

• We propose FSVRG-OACC as a distributed approach to solve the optimization prob-
lem for PM at the factory level based on OACC. FSVRG-OACC leverages analog
over-the-air aggregation, which enables it to effectively handle highly noisy communi-
cation channels and allows for improved convergence in minimizing the cost function
associated with the ML algorithm.

• FSVRG-OACC facilitates the transmission of local gradient updates by individual
agents, capitalizing on the advantages of computation over the air. This algorithm
effectively mitigates the impact of channel perturbations on convergence by incorpo-
rating the effects of the communication channel into the algorithm update process. The
utilization of FSVRG-OACC ensures that convergence is not compromised, enabling
efficient and robust optimization in the presence of varying channel conditions.

• The simulation results demonstrate the substantial reduction in convergence sensi-
tivity to noise achieved by our proposed algorithm. This finding holds significant
implications for the implementation of ML algorithms on analog over-the-air aggrega-
tion in highly noisy industrial environments.

The remainder of this paper is structured as follows. In Section 2, we introduce the
system model, starting with the description of FL over-the-air analog aggregation and
extending it to FLOACC. Section 3 presents our proposed algorithm, FSVRG-OACC, along
with a comparison to other stochastic gradient descent algorithms. Following that, in
Section 4, we evaluate the performance of FSVRG-OACC through a PM application and
present the corresponding experimental results. Finally, in Section 5, we provide concluding
remarks and discuss future research directions.

2. System Model

2.1. Federated Edge Learning System

We consider a distributed learning system specifically designed for a PM application
at the factory level. This system comprises a single parameter server and K edge nodes, as
depicted in Figure 1. Collaboratively, the edge nodes at each factory train a shared learning
process involving the global model w. Each machine collects a fraction of labeled training
data via the interaction with a local dataset, denoted as D1,D2, . . . ,DK. The local loss
function of the model vector w on Dk is given by

Fk(w) =
1
φk

∑
(xj ,yj)∈Dk

f
(
w, xj, yj

)
, (1)

where φk is the number of data points stored on data partition Dk and f (w, xj, yj) is the
loss function quantifying the prediction error of the model w for each data sample j, which
consists of the training sample xj and its ground true label yj. For convenience, we write
f (w, xj, yj) as f j(w) and assume uniform sizes for local datasets φk for all k. Table 1 presents
the typical loss function used in FL for various applications. In the specific case of anomaly
detection over edge nodes at the factory, the squared-SVM loss function has been employed
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in this study as a leading ML method that offers flexibility in modeling complex nonlinear
boundaries between normal and abnormal data points. With these definitions, the global
loss function on all the distributed datasets can be defined as

F(w) =
∑j∈∪kDk

f j(w)

∪kφk
=

1
K

K

∑
k=1

Fk(w), (2)

where |.| denotes the size of the datasets and each dataset satisfies Di ∩Dj = ∅ when i �= j.
The training target is to minimize the global loss function F(w) according to the distributed
process to find w∗.

w∗ = arg min F(w) (3)

In this section, we begin by presenting the problem formulation of FL in the context
of a hierarchical PM scenario. Subsequently, we delve into the specific case of FL-OACC,
where all agents at the factory levels broadcast their updated models over the air, leveraging
the advantages of computation through analog communication.

Figure 1. FL edge system model for a hierarchical PM scenario at the factory level.

Table 1. Several examples of loss functions.

Model Loss Function

Linear regression
∥∥∥1 − yjw

T xj

∥∥∥2

Logistic regression − log
(

1 + exp
(
−yjw

T xj

))
K-means minl

∥∥∥xj − wl

∥∥∥2

Cross-Entropy −∑ yc p(y = c | x, w)
Squared-SVM λ‖w‖2 + max 0; 1 − yjw

T xj

To compute F(w), one method involves directly uploading all local data, which raises
privacy concerns. To address this issue, the FL framework is employed to solve the problem
outlined in Equation (3) through a distributed approach. There are two approaches based
on FedAvg for solving this distributed optimization problem:

1. Model averaging: In this approach, each agent minimizes its local loss function and
transmits the model parameters to the PS for aggregation. In the second round of
iteration, the agent receives the updated model from the PS.

2. Gradient averaging: In this approach, each agent calculates the gradient of its loss
function and transmits the gradient to the PS for aggregation. In the second round of
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iteration, the agent can update its model based on the gradient averaging received
from the PS.

The agents generally employ a gradient descent (GD) algorithm or stochastic gradient
descent (SGD) algorithm to minimize the loss function described in Equation (1). A single-
step SGD for updating the model parameter for device K can be defined following the
model and gradient averaging, respectively.

wk[n + 1] = w[n]− α∇Fk(w[n]), (4)

wk[n + 1] = wk[n]− α∇F(w[n]), (5)

where α is the step size and ∇ is the gradient operator. Hence, the only operation performed
by the PS is to compute the average of the model parameters or the gradients received from
the agents.

w[n + 1] =
1
K

K

∑
k=1

wk[n + 1], (6)

∇F(w[n]) =
1
K

K

∑
k=1

∇Fk(wk[n]). (7)

The learning process entails iterating between Equations (4) and (6) or
Equations (5) and (7) until the model converges. The averaging process on the PS serves
as a motivation for the low-latency FL scheme, utilizing FLOACC. Further details about
FLOACC are provided below.

2.2. Fl Over-the-Air Communication and Computation

In this section, we discuss the details of Federated Learning over-the-Air Commu-
nication and Computation, abbreviated as FLOACC. This method provides an efficient
multi-access scheme in a low-latency scenario, which is crucial for applications like PM
that require very fast and real-time task decision making. The idea of the over-the-air
computation model for FL has been examined in several previous works, such as [8,16].
Their approach was inspired by the PS’s lack of interest in individual model weight vectors.
Instead, the server solely needs the average of the model weights, which is automatically
provided by the wireless multiple-access channel in the form of their sum.

As depicted in Figure 2, the FLOACC enables simultaneous transmission of re-
sult vectors from all devices and assets at the factory level to the PS in an analog

manner. Let wk =
[

wk,1, · · · , wk,q

]T
denote q × 1 local model parameter vector and

∇Fk(w) =
[
∇Fk,1, · · · ,∇Fk,q

]T
be the local gradient vector of the loss function from the

k-th device. In FLOACC, it is assumed that the local gradient of each model is transferred
over an analog medium. In this scenario, the transmitted symbols are denoted by

{∇̃Fk,i
}

and are normalized to have zero mean and unit variance E
(
∇̃Fk,i∇̃F∗

k,i

)
= 1. By employing

OFDM, it becomes feasible to allocate each element of the gradient vector to a distinct
sub-carrier OFDM channel. This approach enables a significant reduction in the learning
process latency for FLOACC.

During each round n, all the local devices at a factory simultaneously transmit their
local gradient based on the distributed loss function as hk [n]pk [n]∇Fk(w[n]), where
hk[n] ∼ CN (0, 1) is the small-scale fading of the channel between the k-th device and
the PS, and pk[n] is the allocated transmission power for each device k. In particular,
the aggregated gradient in the n-th communication round, denoted by y[n], is expressed
as follows.

∇̂F(w[n]) =
K

∑
k=1

hk[n]pk[n]∇Fk(wk[n]) + Z[n], (8)
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where Z[n] ∼ CN (0, σ2
z I) is additive white Gaussian noise. Note that in over-the-air analog

aggregation, it is possible to transfer the model parameters as well. However, in FLOACC,
we only consider the local gradient during aggregation. This is because the aggregated
gradient is less sensitive in the optimization algorithms compared to the model parameters.
We will discuss this issue further in the next section.

Figure 2. FLOACC scenario at the factory level.

We assumed that, similar to the LTE system, there are common downlink reference
symbols in the radio resource block for the devices at the factory level to estimate the
channel fading coefficient. Then, the local devices can transmit the signal with the specific
power they calculated. The received signal at the PS has been depicted with gain blocks in
Figure 3, so the PS can estimate the aggregated gradient as follows:

y[n] =
K

∑
k=1

hk[n]pk[n]∇Fk(wk[n])√
η

+
Z[n]√

η
, (9)

where η is a receiver scaling factor. Owing to the imposed physical constraints, the trans-
mission of each device is subject to a long-term transmission power constraint.

E

∣∣∣∣∣
[

N

∑
n=1

|p[n](h[n])|2
]∣∣∣∣∣ ≤ P0. (10)

Figure 3. Illustration of the system design for FLOACC using analog transmission over-the-air
aggregation.

2.3. Effective Noise and Definition of SNR in FLOACC

In order to keep the problem general, we adopt the effective noise model in analog
aggregation. We assume accurate channel state information at the transmitters. To meet
the aggregation requirement of FL, the local devices implement the channel inversion rule,
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which yields the instantaneous transmit power of user k during the communication round
n for gradient aggregation.

pk[n] =
hk[n]H

|hk[n]| ·
√

η

|hk[n]| ,
(11)

where H is Hermitian transpose. Based on this definition, the received signal can be
formulated as follows.

y[n] =
K

∑
k=1

∇Fk(wk[n]) +
Z[n]√

η
. (12)

η represents a scalar that signifies the average transmission power, based on which
the received SNR of the global gradient can be expressed as follows.

SNR[n] = E

∥∥∥∥∥ 1
K

q

∑
i=1

√
η ∑k∈K ∇Fk(wk,i[n])

Zi[n]

∥∥∥∥∥
2

=
ηE‖∑k∈K ∇Fk(wk[n])‖2

σ2
z K2 . (13)

It is evident that the received SNR is consistent across all users due to devices with
weaker channels compensating by transmitting at higher powers. In various studies, de-
vices with significantly weak channels are often excluded from training due to their inability
to pre-equalize their channels. Many research has been undertaken to optimize η to en-
hance model convergence over the wireless communication network. In [24,25], the optimal
selection of pk and η is determined by solving the corresponding optimization problem.

MSE = E

∥∥∥∥∥y[n]−
K

∑
k=1

∇Fk(wk[n])

∥∥∥∥∥
2

=
1

K2

K

∑
k=1

( |hk|pk√
η

− 1
)2

+
σ2

z
ηK2 , (14)

min
p1,p2,...,pK ,η

1
K2

K

∑
k=1

( |hk|√pk√
η

− 1
)2

+
σ2

z
ηK2

s.t. pk ≤ Pmax, ∀k ∈ {1, 2, . . . , K}.

(15)

Extensive research has been conducted to optimize transmit power for the purpose of
achieving model convergence and mitigating the effects of existing noise in the wireless
transmission medium. However, to the best of our knowledge, no existing studies have in-
vestigated the comparison of convergence performance among different algorithms without
any transmission power control. In the upcoming section, we delve into various gradient
descent algorithms for ML optimization problems, considering the over-the-air scheme,
and provide an analysis of which algorithm demonstrates superior convergence properties.

3. Proposed Adaptive FSVRG-OACC Algorithm

In this section, our specific focus lies on algorithms suitable for solving problem (3)
within the context of over-the-air and analog aggregation. Firstly, in Section 3.1, we examine
baseline algorithms that are compatible with distributed problems and analog gradient
transmission (GT), while also highlighting the distinctions between model transmission
(MT) and GT. Next, in Section 3.2, we delve into randomized methods that, in an initial
approximation, integrate the advantages of cost-effective iterations from SGD with the
rapid convergence of GD. Many of these methods can be categorized into one of two
classes: dual methods of the randomized coordinate descent type and primal methods
of the stochastic gradient descent with variance reduction type. Our emphasis lies on
stochastic variance reduced gradient (SVRG), and we optimize this method for FL within
the framework of analog aggregation while considering the presence of white Gaussian
channel noise.
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3.1. Baseline Algorithms

A fundamental approach for solving a distributed optimization problem with the
structure (4) involves employing the GD algorithm, particularly when the functions f
possess smoothness and convexity characteristics. In a distributed setting, there are two
possible approaches: the GT method, where gradients are transmitted over the air and
an aggregated gradient signal is received, which is subject to noise for model updating
using GD, or the MT method, where the model is updated through GD iterations and then
transmitted for model aggregation. In the presence of noise, the convergence deteriorates
due to the elevated sensitivity of the loss function to the model parameters. Therefore, in
over-the-air distributed algorithms, the GT approach is preferred. This preference stems
from the lower sensitivity of the cost function to the aggregated gradient compared to
the individual model parameters. GD demonstrates a fast convergence rate. However,
each iteration has the potential to be computationally intensive on each local device. In
contrast, SGD selects a random data label and performs the update, which offers a more
efficient alternative.

3.2. Fsvrg-Oacc Algorithm

An additional algorithm within the SGD category is SVRG [26]. The SVRG algorithm
operates through two nested loops. The outer loop involves calculating the full gradient of
the entire function, ∇F(wt[n]), which is typically a computationally expensive operation
to be avoided whenever possible. In the inner loop, the update step is iteratively computed
as follows.

w[n + 1] = w[n]− α
[
∇Fi(w[n])−∇Fi(wt[n]) +∇F(wt[n])

]
, (16)

where ∇Fi(w[n]) represents the stochastic gradient computed based on a randomly selected
data label, ∇Fi(wt[n]) denotes the stochastic gradient computed over the entire dataset,
and α is stepsize. This iteration is specific to a single device, and its fundamental concept
lies in utilizing stochastic gradients to estimate the gradient change from point wt to w,
rather than directly estimating the gradient itself.

Indeed, this algorithm is naturally suited for centralized implementations since it
necessitates computing the stochastic gradient over the complete dataset, thereby making
it well-suited for centralized scenarios. But a notable contribution was made in [27], where
they introduced FSVRG, which is particularly applicable in the context of distributed
optimization. They demonstrated that existing SVRG algorithms are not suitable for
distributed approaches and proposed the FSVRG algorithm, specifically designed for sparse
distributed convex problems. The pseudocode for FSVRG is provided in Algorithm 1. This
algorithm has been implemented and subjected to evaluation, and the results will be
presented in the experimental section. The findings indicate that this algorithm does not
demonstrate satisfactory convergence in the realm of FL for over-the-air analog aggregation,
specifically in relation to the absence of power transfer control.

Let us now elucidate the motivation behind considering a different algorithm suitable
for FL in the context of over-the-air analog aggregation. A crucial aspect that demands
attention is the significant variation in the number of available data points among different
devices, which may differ greatly from the average number of data points available to
any single device. It looks like a similar issue to FSVR, but it should be noted that in our
assumptions, analog communication is the sole communication type between local devices
and the PS. As a result, the PS lacks information regarding the number of data points and
the type of data distribution.

Additionally, this scenario frequently entails the local data being clustered around
a specific pattern, which renders it unrepresentative of the overall distribution we aim
to learn. Consequently, considering an aggregation on the entire gradient direction in
each iteration could be a promising approach that could be undertaken in the concept of
analog aggregation.
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Algorithm 1: Federated SVRG
Parameters: φ = number of data points, φk = number of data points store on device

k, α = stepsize, data partition {Dk}K
k=1.

for n = 0, 1, . . . do

Compute ∇F(wt[n]) = 1
φ ∑

φ
i=1 ∇Fi(wt[n]) » Overall iterations

for k = 1 to K do in parallel over device k do
Initialize: wk = wt and αk = α/φk » Distributed loop
Let {it}φk

t=1 be random permutation of Dk
for t = 1, . . . , φk do

wk[n + 1] = wk[n]− αk
[∇Fit(wk[n])−∇Fit(wt[n]) +∇F(wt[n])

]
end

end

wt[n] = wt[n] + ∑K
k=1

φk
φ (wk[n]− wt[n]) » Model aggregation

end

From a practical perspective, in FSVRG-OACC, it is postulated that all devices
possess a randomly allocated initialization value for the parameter vector, wk . This
assumption holds significant importance in the practical execution of the algorithm.
The proposed algorithm involves two communication rounds, which results in increased
communication costs. However, it offers advantages in terms of the convergence algorithm.
Algorithm 2 introduces the FSVRG-OACC, a modified FSVRG variant tailored for over-the-
air analog aggregation.

During the initial communication round (distributed loop 1), all devices compute
the complete gradient of the entire function and subsequently determine the internal
gradient as gk =

[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
, where it is sampled uniformly from the local

dataset Dk. These gradients are derived using SGD, rendering their computation relatively
inexpensive. The computed internal gradient is then transmitted over the air to the PS,
while the estimated aggregated internal gradient is sent back to the devices via the analog
medium, as shown in Figure 2.

ĝ =
1
K

K

∑
k=1

hk[n]pk[n]gk√
η

+
z[n]√

η
. (17)

The estimated aggregated internal gradient, denoted as ĝ, compels all devices in the
second round of communication (Distributed loop 2) to move in the same direction. In
this communication round, the updated gradient is denoted as Ĝ, which was estimated
in the first round as Ĝ = ∇Fit(wk[n])− ĝ for device k. Subsequently, the PS aggregates
this gradient over the air from all devices and transmits it back to them for the remaining
iterations. Each device k uploads the following gradient over the air for aggregation.

Gk = ∇Fit(wk[n])− ĝ, (18)

Gk = ∇Fit(wk[n])−
⎡⎣ 1

K

K

∑
k=1

hk[n]pk[n]
[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
√

η
+

z[n]√
η

⎤⎦. (19)

By aggregating the gradient Gk at the PS and transmitting it back to each device, a
uniform descent direction can be achieved across all devices.

Ĝ =
1
K

K

∑
k=1

h′k[n]p
′
k[n]Gk√
η′ +

z′[n]√
η′ , (20)
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Ĝ =
1
K

K

∑
k=1

h′k[n]p
′
k[n]

[
∇Fit(wk[n])−

[
1
K ∑K

k=1
hk [n]pk [n]

[
∇Fit

k (wt [n])−∇Fk(w[n])
]

√
η + z[n]√

η

]]
√

η′ +
z′[n]√

η′ .
(21)

Algorithm 2: FSVRG With Over-the-Air Communication and Computation
(FSVRG-OACC)

Parameters: φ = number of data points, φk = number of data points store on device
k, α = stepsize, data partition {Dk}K

k=1, Randomly initialize wk on each device.
for n = 0, 1, . . . do

» Overall iterations
for k = 1 to K do in parallel over device k do

1: Let {it}φk
t=1 be random permutation of Dk » Distributed loop 1

2: Compute ∇Fit
k (w

t[n])
3: Compute ∇Fk(w[n]) = 1

φk
∑

φk
i=1 ∇Fit

k (w
t[n])

4: Over-the-Air Gradient Aggregation: Each device k uploads
gk =

[
∇Fit

k (w
t[n])−∇Fk(w[n])

]
Over-the-Air.

end

Aggregated signal in PS (Server Side)
ĝ = 1

K ∑K
k=1

hk [n]pk [n]gk√
η + z[n]√

η » Model aggregation 1

Aggregated signal ĝ is received by all edge devices
for k = 1 to K do in parallel over device k do

1: Initialize: αk = α/φk » Distributed loop 2

2: Compute ∇Fit(wk[n])
3: Aggregated signal Ĝ is received by the edge device k

n = 0 –> randomly initialize Ĝ
for t = 1, . . . , φk do

wk[n + 1] = wk[n]− αkĜ
end

4: Over-the-Air Gradient Aggregation: Each device k uploads
Gk =

[∇Fit(wk[n])− ĝ
]

Over-the-Air.
end

Aggregated signal in PS (Server Side)

Ĝ = 1
K ∑K

k=1
h′k [n]p

′
k [n]Gk√
η′

+ z′ [n]√
η′

» Model aggregation 2

end

This approach is motivated by the primary goal of maintaining gradient step consis-
tency among all clients by utilizing the aggregated gradient over-the-air signal in stochastic
first-order methods. Therefore, the algorithm’s complexity is exceptionally low due to the
simplicity of first-order gradient calculations at each step. The only cost involved is the
number of communication rounds.

In summary, the gradient update
[
∇Fit(wk[n])−∇Fit

k (w
t[n]) +∇Fk(w

t[n])
]

is di-
vided into two parts for FSVRG-OACC. In the first distributed loop, the last two gradients
∇Fit

k (w
t[n]) and ∇Fk(w

t[n]) are calculated, and afterward, the distance between these
two gradients is aggregated across all edge devices. In the second distributed loop, we
can access the aggregated value of

[
∇Fit

k (w
t[n])−∇Fk(w

t[n])
]

for all devices. In the
first iteration of this loop (n = 1), we calculate the stochastic gradient for each edge de-
vice and subtract it from the aggregated gradient obtained from the first distributed loop[
∇Fit(wk[n])− aggregation(∇Fit

k (w
t[n])−∇Fk(w

t[n]))
]
. This gives us Gk, the overall

gradient update for device k, which is then aggregated with all other gradients over the air.
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Starting from the second iteration (n = 2) and beyond, we can utilize the whole aggregated
gradient Ĝ to directly update the model parameters of each device.

4. Performance Evaluation of FSVRG-OACC

In this section, we evaluate the performance of the proposed algorithm on the task
of anomaly detection for a PM application in an FL manner with over-the-air analog
aggregation. It aims to investigate the convergence characteristics of four optimization
algorithms, GD, SGD, FSVRG, and FSVRG-OACC, in the context of over-the-air analog
aggregation. The primary focus is to analyze the performance of these algorithms in terms
of both model accuracy and convergence time, which are crucial performance metrics
in the field. Similar to prior research in the domain of Federated Machine Learning
Algorithm for Collaborative Predictive Maintenance [1], we employ the widely recognized
and benchmarked CMAPSS [28] dataset in this study.

The C-MAPSS model, developed by NASA and implemented in MATLAB/Simulink,
represents a nonlinear dynamic model of a commercial turbofan engine. By manipulating
the input parameters of this simulation model, it becomes possible to simulate diverse
degradation patterns under various engine conditions. In order to generate datasets
reflecting different fault modes, four distinct time series (FD001, FD002, FD003, FD004)
were produced using these simulation tools. These datasets comprise multivariate time
series, each of which is further divided into training and testing subsets. For the purpose of
this study, we selected and analyzed two datasets: FD003 and FD004. The FD003 dataset
comprises 100 test trajectories and 100 train trajectories, focusing on a single fault mode
and two types of degradation: high-pressure compressor degradation and fan degradation.
On the other hand, the FD004 dataset includes 248 test trajectories and 249 train trajectories,
covering six fault modes and two types of degradation. The time series data in each
dataset include 21 sensor observations, three operating settings, a trajectory ID, and a cycle
count. The Remaining Useful Life (RUL) of an engine is estimated based on the number of
operation cycles remaining before the engine fails.

4.1. Algorithm Implementation

In this study, a federated SVM model was employed to predict the RUL using the
provided time series data. Specifically, FD003 and FD004 datasets were distributed among
ten devices located at the factory site, with the purpose of participating in a collaborative
PM scenario. It is crucial to emphasize that the data distribution was non-independent and
not identically distributed (non-IID). This implies that the instances of failures were not
randomly distributed among the edge devices, and the data distribution was not evenly
spread across all edge devices. Instead, specific edge devices were linked to particular
types of failures, while others experienced different types. We intentionally opted for this
non-IID distribution as a worst-case scenario to thoroughly assess the effectiveness of our
proposed method. This collaboration aimed to achieve low latency through over-the-air
analog aggregation. During all the simulations, the optimizer parameters were configured
to achieve optimal performance. In particular, the learning is kept fixed at 0.01, and the
�2-regularization parameter λ is set to λ = 0.1. The momentum factor is kept equal to
0.9 and the number of local epochs is set to 1. The definition of the loss function for the
federated SVM is as follows.

f (w) =
1
φk

∑
j∈Dk

f j(w) + λ‖w‖2
2

f j(w) = max(0, 1 − yjw
Txj),

(22)

The input data, denoted as xj, are structured in a 2D format resembling an image,
where one dimension corresponds to the sequence length, and the other dimension repre-
sents the number of sensor measurements. The output variable, yj, indicates the condition
of the engine. Specifically, if the input data are associated with a particular condition whose
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RUL is below a specified threshold, the output value is assigned as {−1}, indicating the
detection of an anomaly. Conversely, if the RUL exceeds the threshold, the output value is
assigned as {1}. In all the conducted experiments, the reported convergence and accuracy
averaged over five independent runs were calculated over 500 communication rounds.

4.2. Performance of FSVRG-OACC
4.2.1. General Performance

We first conduct a comparison between FSVRG-OACC and standard FSRVG, SGD,
and GD methods to illustrate the notable enhancements in convergence rate and accuracy
achieved in the context of over-the-air analog aggregation with a noisy environment.
Throughout the experiments, we assessed the performance of each method and observed
the significant gains achieved by FSVRG-OACC. We assume the environment noise variance
to be σ2

z = 1 for Zk ∼ CN (
0, σ2

z I
)
, and the probability of noise presence as p = 1. In

this study, our primary focus is not on the transmission policy. Therefore, we make the
assumption that the channel inversion policy is employed for estimation. Additionally, we
assume that each component of Z[n] has a zero mean and a variance of σ2

z .
The performance is demonstrated on the FD003 and FD004 datasets. In this experiment,

for all of K = 10 devices at the factory site, this implies that the transmitting power is set to
P = 300 mW and the receiving scale factor,

√
η, is set to 0.1. The accuracy formula used is

as follows:

accuracy =
μP + μN

μP + μN + ΓP + ΓN
, (23)

where μP represents the number of true positives, ΓP represents false positives, μN repre-
sents true negatives, and ΓN represents false negatives. The results have been plotted in
Figure 4 for FD003 and Figure 5 for FD004. We observed the following results.

1. In the case of FD003, it is evident that both the GD-MT and FSVRG algorithms fail
to converge under the given noise environment and transmission power settings.
Consequently, these algorithms are excluded from the accuracy analysis. On the other
hand, the GD-GT and SGD-GT algorithms demonstrate convergence, but they exhibit
significant fluctuations during the convergence phase. In contrast, our proposed
FSVRG-OACC method shows excellent convergence performance under the same
environmental conditions and noise levels.
As depicted in the accuracy plot for FD003, both SGD-DT and GD-GT algorithms ex-
perience a considerable drop in accuracy. However, our proposed algorithm achieves
an average accuracy of 91% and demonstrates higher stability compared to the
other algorithms.

2. In the case of FD004, we observed similar results, although this dataset presents
greater challenges due to its inclusion of six fault modes, making the prediction algo-
rithm significantly more complex compared to other CMAPSS datasets. Despite these
difficulties, our proposed FSVRG-OACC algorithm demonstrates robust convergence,
with only minimal fluctuations occurring after the convergence stage. These fluctua-
tions can be attributed to the estimation anomalies present in the most challenging
instances of the dataset.
In the accuracy plot, our proposed method achieved a commendable accuracy of 61%
on the model. In contrast, the average accuracy of the other two converged methods
is lower than that of the proposed method, and their accuracy values exhibited less
fluctuation during the communication rounds.

In conclusion, we provide the average local training runtime and accuracy of FSVRG-
OACC, SGD-GT, and GD-GT at the client level, as summarized in Table 2. It is noteworthy
to mention that the computational runtime is primarily governed by the computation of
gradients in all 500 iterations. Additionally, we assume that the communication round
is negligible in comparison to the gradient computation. As is evident, the runtime in
FSVRG-OACC exceeds that of the other algorithms. However, this method, employed in
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FLOACC, demonstrates substantial reduction in communication latency while achieving
commendable convergence and consistent accuracy.
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Figure 4. Convergence and accuracy versus communication round for different algorithms in Over-
the-Air analog aggregation (σ2

z = 1, p = 1, and dataset: FD003). The pale graphs represent the signal,
while the bold graphs depict the windowed average of the signal.
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Figure 5. Convergence and accuracy versus communication round for different algorithms in Over-
the-Air analog aggregation (σ2

z = 1, p = 1, and dataset: FD004). The pale graphs represent the signal,
while the bold graphs depict the windowed average of the signal.

Table 2. Performance analysis of different algorithms on FLOACC.

Dataset Evaluation Metrics
Optimizer

GD-GT SGD-GT FSVRG-OACC

FD003 Runtime 45.8 s 21.3 s 66.7 s
Final accuracy 76% 61% 91%

FD004 Runtime 70 s 20 s 105 s
Final accuracy 42% 41% 61%

We compared our results with a scenario where there is no communication noise.
In a previous study, we looked at how well the FL algorithm works for PM applications
when there is no communication interference. We summarized those results in Table 3.
As evident from the results, there is a significant disparity in accuracy between GD-GT
and SGD-GT when applied to FLOACC and noiseless communication settings. This
demonstrates that employing a power transmission policy can enhance the accuracy of
both GD and SGD in the context of FLOACC, bringing them closer to achieving results
similar to those in noiseless communication scenarios. It is worth noting that, for the
FSVRG-OACC method and FSVRG applied to noiseless communication, the difference in
accuracy remains minimal. This observation is particularly noteworthy in the case of FD003,
where the RUL prediction task is less challenging than FD004. These findings underscore
the robustness and effectiveness of our proposed approach, which achieves these results
without the need for any power transmission policies.

Table 3. Performance analysis of FL algorithm on noiseless communication channel [1].

Dataset Evaluation Metrics
Optimizer

GD-GT SGD-GT FSVRG

FD003 Runtime 69 s 20.5 s 161 s
Final accuracy 94.2% 92.2% 91.7%

FD004 Runtime 143.5 s 45.5 s 337 s
Final accuracy 78.4% 71.7% 86.6%

4.2.2. Performance of FSVRG-OACC with Varying Noise Level

In this section, we conduct an analysis to assess the robustness of the proposed al-
gorithms for Over-The-Air analog aggregation in the presence of varying levels of noise.
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The performance evaluation is conducted using a part of the FD003 dataset while system-
atically varying the noise level σz. Specifically, we consider noise levels σz from the set
{0.25, 0.75, 1.5, 2.5} to assess the algorithm’s performance under different noise conditions.
For the total of 10 local devices, the receiver scaling factor, denoted as

√
η, is varied across

different values {0.4, 0.13, 0.06, 0.04}. To investigate the impact of noise, we manipulate
the probability of noise presence, denoted as p, throughout the experiments. The set
{0.1, 0.25, 0.5, 1} is utilized to vary the probability of noise. The results for GD-GT and
SGD-GT have been plotted in Figures 6 and 7.
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Figure 6. Convergence analysis for GD-GT by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5}, and
the probability of noise presence p = {0.1, 0.25, 0.5, 1}.

For both GD-GT and SGD-GT, as the noise level increases, there is a significant
degradation in performance, accompanied by amplified fluctuations in the loss function.
Additionally, we observe a parallel trend in the cost function when the probability of noise
presence is elevated. Furthermore, we conducted the same analysis on the FSVRG-OACC
method, and the corresponding results are presented in Figure 8. Notably, the proposed
algorithm demonstrates significantly enhanced robustness against higher noise levels and
increased probability of noise presence.

All of these analyses provide evidence supporting the suitability of the proposed
FSVRG-OACC method for analog aggregation and FL over the air. It is important to note
that all of these analyses were conducted under the same transmission power conditions.
However, we anticipate that employing a power control policy in communication with this
method would yield even more accurate results in convergence and model accuracy.

On the other hand, implementing our proposed approach in real-world industrial
settings has practical implications and challenges. A significant part of this approach
is adjusting the local gradients in large edge devices using an analog waveform and
sending them through the same wireless channels. Our main challenge is achieving
perfect waveform superposition, which is crucial for our algorithm’s success. This task is
complicated because of frame timing offset and carrier frequency offset. To overcome these
issues, we require high-performance devices with substantial computational capabilities.
Another important challenge emerges when we only have access to partial information,
resulting in some edge devices being unable to effectively join the FLOACC aggregation
process. This led to a deviation in the gradient descent regime. This deviation highlights
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the necessity for robust device selection and strategies to manage situations where certain
devices may have limited participation capabilities.
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Figure 7. Convergence analysis for SGD-GT by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5}, and
the probability of noise presence p = {0.1, 0.25, 0.5, 1}.
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Figure 8. Convergence analysis for FSVRG-OACC by varying noise level r ≡ σz = {0.25, 0.75, 1.5, 2.5},
and the probability of noise presence p = {0.1, 0.25, 0.5, 1}.

5. Conclusions

In this paper, our focus was on FL scenarios that leverage wireless transmission
channels for both communication and computation. The design presented capitalizes on the
waveform superposition property inherent in a multi-access channel, which enables efficient
update aggregation, optimizing the communication process. We specifically emphasized
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the potential of over-the-air analog aggregation in FL for hierarchical PM scenarios. Our
study focused on the factory site as the lower hierarchical component, recognizing the
criticality of meeting low-latency requirements for time-sensitive applications. We have
demonstrated that this challenge can be effectively addressed through the utilization of
analog aggregation.

Throughout our investigation, we thoroughly examined the impact of practical chan-
nel effects, including noise and fading, on the learning algorithm’s performance. To enhance
the robustness of learning algorithms against channel noise effects, we proposed a novel al-
gorithm called FSVRG-OACC. The effectiveness and superiority of the proposed algorithm
were demonstrated through the application of a distributed SVM for anomaly detection us-
ing the CMPASS dataset. The simulation results validate the effectiveness of FSVRG-OACC
in reducing aggregation distortion while operating at the same transmission power level.
Furthermore, the learning behavior of the proposed algorithm can be further enhanced by
incorporating power control and device selection policies into its design.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
ML Machine Learning
PM Predictive Maintenance
PS Parameter Server
FL Federated Learning
OACC Over-the-Air Communication and Computation
SNR Signal-to-Noise Ratio
FedAvg Federated Averaging
OFDM Orthogonal Frequency-Division Multiplexing
GD Gradient Descent
SGD Stochastic Gradient Descent
non-IID non-independent and not identically distributed
FSVRG Federated Stochastic Variance Reduced Gradient
FLOACC Federated Learning Over-the-Air Communication and Computation

FSVRG-OACC
Federated Stochastic Variance Reduced Gradient-Over-the-Air Communication
and Computation
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