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Step 2: Flood forecasting

➢Today, many early warning systems are introduced 

in which advanced deep learning, recurrent neural 

network or ensemble-based data mining techniques 

are applied to provide more accurate and reliable 

flood forecasting [1]. 

➢A novel addition in this community is the physics-

informed neural network models (PINN), 

integrating physical principles and constraints into 

architecture of data driven models [2]. 

Introduction

PINN-based ensemble multi-class data mining model, 

inspired by [3] is developed for the application of 

UDS (Figure 1). In addition to conventional inputs 

such as rainfall intensity, duration, session, and soil 

moisture, two physics-informed rainfall inputs - 

namely, the potential future return period of current 

rainfall and the current return period class - are 

incorporated (Figure 2). This model is verified by the 

case study located in the UK (Figure 3)
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The results indicate a substantial improvement in hit 

rates - from 67% to 88% - compared to a benchmark 

model. Notably, time lags in the correct detection of 

water level classes, are halved on average, reducing 

from 2-timstep intervals. More specifically, the rate 

of event underestimation decreases from 7% to 2%, 

showcasing that the new method has the potential to 

reduce false alarms in EWS. The application of PINN 

is currently limited to using only physics-informed 

input data. However, a promising avenue for future 

exploration involves extending this approach to 

adjusting hyperparameters of data-driven models 

with physics equations.

Result

Figure 1. Schematic 

structure of proposed 

framework
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Figure 3. Geographical location of the 

pilot study: (top) location of catchment 

and monitoring stations, and (bottom) 

layout catchment
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Figure 4. Multistep performance of : (a) ensemble-based, (b) voting-based, (c) weighting-

based, and (d) multi-class stacking
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Figure 5. ROC and AOC of: (a) flood class in 3hrs 

ahead, (b) drained class in 3hrs ahead, (c) evaporation 

class in 3hrs ahead, and (d) different classes forecasted 

by multi-class stacking model in 5hrs ahead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

T
P

R

FPR

AOC

Ensemble-based: 0.81   

Voting-based: 0.81

Weighting-based: 0.85

Multi-class stacking: 0.97

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

T
P

R

FPR

AOC

Ensemble-based: 0.86   

Voting-based: 0.80

Weighting-based: 0.89

Multi-class Stacking: 0.96

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

T
P

R

FPR = 1 - sepcifity

AOC

Ensemble-based: 0.81   

Voting-based: 0.81

Weighting-based: 0.85

Multi-class stakcing: 0.92

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

T
P

R

FPR

AOC

Class 1: 0.76

Class 2: 0.81

Class 3: 0.87   

(d)

Physics-Informed AI-based Modelling for Flood Early Warning Systems
 

                       Farzad Piadeh1,2, Kourosh Behzadian1

1 School of Computing and Engineering, University of West London, St Mary’s Rd, London, W5 5RF, UK                                  2 Centre for Engineering research, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK                                              

e-mail: f.piadeh@herts.ac.uk ; kourosh.behzadian@uwl.ac.uk

How to cite: Piadeh, F. and Behzadian, K.: Physics-Informed AI-based Modelling for Flood Early Warning Systems, EGU General Assembly 2024, Vienna, Austria, 14–19 
Apr 2024, EGU24-10381, https://doi.org/10.5194/egusphere-egu24-10381, 2024.


	Slide 1

