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A B S T R A C T

Large medical imaging data sets are becoming increasingly available. A common challenge in these data sets is
to ensure that each sample meets minimum quality requirements devoid of significant artefacts. Despite a wide
range of existing automatic methods having been developed to identify imperfections and artefacts in medical
imaging, they mostly rely on data-hungry methods. In particular, the scarcity of artefact-containing scans
available for training has been a major obstacle in the development and implementation of machine learning
in clinical research. To tackle this problem, we propose a novel framework having four main components: (1)
a set of artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment
a training dataset, (2) a set of abstract and engineered features to represent images compactly, (3) a feature
selection process that depends on the class of artefact to improve classification performance, and (4) a set of
Support Vector Machine (SVM) classifiers trained to identify artefacts. Our novel contributions are threefold:
first, we use the novel physics-based artefact generators to generate synthetic brain MRI scans with controlled
artefacts as a data augmentation technique. This will avoid the labour-intensive collection and labelling process
of scans with rare artefacts. Second, we propose a large pool of abstract and engineered image features
developed to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection
block that, for each class of artefacts, finds the set of features that provide the best classification performance.
We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in
a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed
pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up
to 12.5 percentage points on the accuracy, F1, F2, precision and recall. At the same time, the computation
cost of our pipeline remains low – less than a second to process a single scan – with the potential for real-time
deployment. Our artefact simulators obtained using adversarial learning enable the training of a quality control
system for brain MRI that otherwise would have required a much larger number of scans in both supervised and
unsupervised settings. We believe that systems for quality control will enable a wide range of high-throughput
clinical applications based on the use of automatic image-processing pipelines.
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1. Introduction

Large and well-organized data sets are key for training and val-
idating machine learning solutions. Real-world data sets are critical
to enabling the development of robust approaches for clinical use. A
feature of such data sets is that they contain data corruption, such as
image artefacts or errors in data acquisition, that can degrade machine
learning method performance. A quality control system to identify and
remove corrupted samples is essential. Quality control and artefact
removal are key for automatic image-analysis pipelines embedded in
clinical workflow (Saeed et al., 2022) and large-scale data-collection
initiatives.

In general, when a substantial artefact appears in the target area of
the image (e.g. inside the brain), the scan may not be suitable for use
for diagnostic purposes, for research or by downstream algorithms to
aid clinical decisions (Hann et al., 2021). Visual inspection by experts
has traditionally been used to evaluate image quality and identify po-
tentially problematic scans. However, this solution is time-consuming,
does not scale to large amounts of data, suffers from relatively poor
inter-rater reliability that is typical of human experts, has large over-
head costs and is not suitable for real-time data streams. Automatic
deep learning methods offer an alternative, but they may require
substantial computational resources (i.e. use of GPUs) at training and
inference time, as well as very large data sets. Finally, they often fail
to generalize well across data centres.

The development of an automatic system that detects artefacts in
real-time and with minimal resource requirements (reduced training
set, no GPUs, etc.) would bring significant benefits at little cost. Such
a system would improve diagnosis efficiency by repeating problematic
scans instantly instead of requiring repeat patient visits to the hospital,
freeing time for the scanner that can be used to examine other patients.
From a research point of view, a quality control system is useful to
remove corrupted images from large datasets to increase the statistical
power of a study.

As of today, automatic approaches to quality control can be divided
into four classes of solutions that depend on the type of training (su-
pervised and unsupervised) and the granularity of artefacts identified
(pixel-based, image-based). In supervised learning, because samples
with artefacts are not as frequent as the artefact-free samples, it is diffi-
cult to create a balanced dataset required for the training. Unsupervised
approaches, instead try to first learn the artefact-free image distribution
and then identify artefacts by finding samples out of the distribution. To
do so they require large datasets of artefact-free images that adequately
represent the entire population heterogeneity. These large datasets are
not always available or are difficult to collect. Therefore, unsuper-
vised approaches often fail to generalize and lack adequate fine-tuning
(i.e. finding the optimal threshold to separate images with artefacts
from the good ones).

Generating new images to augment the training set can be an alter-
native solution for these training problems. However, since artefacts are
scarce and originate from a wide range of root causes, state-of-the-art
generative models, such as Schlegl et al. (2019), often learn only the
distribution of normal images (artefact-free images) instead of focusing
on the generation of artefacts. In addition, it is very challenging to
simulate MRI scans that look realistic and that, at the same time, are
artefact-free.

To overcome the limitations above we propose to corrupt existing
MRI scans to add controlled artefacts as an alternative solution to sim-
ulating new artefact-free MRI scans. Therefore, instead of learning the
distribution of artefact-free images, we developed a set of generators
that learn to create MRI with controlled artefacts in a data-efficient
manner.

Since data with artefacts are very limited, fully data-driven gener-
ators are not easy to be trained. For this reason, our generators are
based on MR physics domain knowledge and are obtained by using
2

a set of parametric functions to create specific types of artefacts. The
parameters control the severity of each artefact and they are learned by
using adversarial training on a set of artefact-free images. This allows
the generation of large and diverse data sets that otherwise would be
unfeasible to collect in the real world.

After building the proposed artefact generators, we extract a com-
bination of data-driven and engineered features from both corrupted
and artefact-free scans to build a suitable image representation that
could be used for the identification of artefacts inside the images. To
extract these features, we use the traditional imaging domain and the
k-space domain (the radio-frequency domain where the MRI scans are
acquired). Currently, only a small number of approaches use the k-
space domain to identify artefacts (e.g. Shaw et al. (2020), Stuchi et al.
(2020)). However, due to the nature of the problem, the k-space is
essential to generate and identify MRI artefacts and therefore to assist
in the training of an automatic quality evaluation model for MRI.

Finally, our proposed quality control models include a novel artefact-
based feature selection block, developed to find the best set of features
for each class of artefact. Selected features are then used to train a set
of SVM classifiers and detect images with artefacts in real-time.

Our main objectives in this study are: (i) to determine that brain
scans with generated artefacts, obtained by physics-based artefact gen-
erators, can be used to augment an available training set and to improve
the classification model, especially in comparison with unsupervised
approaches based only on learning the artefact-free image distribution
(i.e. Schlegl et al. (2019)) and (ii) to combine a pool of brain imaging
features that provides a robust and efficient solution to identify scans
with artefacts in real-time.

2. Related work

Below we review the state-of-the-art literature on quality checking
of medical images. We have identified four classes of work.

2.1. Supervised - pixel-level classification

Supervised deep learning models have achieved impressive results
in a wide range of medical applications. Supervised training requires
a large amount of data, paired with precise labels, which are ob-
tained by experts’ evaluation and which introduce significant data
preparation costs. Many supervised approaches have been proposed to
identify artefacts and control the quality of images using segmenta-
tion (Monereo-Sánchez et al., 2021). They usually exploit a subset of
hand-labelled segmented images obtained by experts who have delin-
eated the artefacts at the pixel/voxel level. Supervised learning is then
performed by deep neural networks, often based on a U-Net encoder–
decoder architecture (Ronneberger et al., 2015). Fully convolutional
networks (CNNs) have also shown excellent results, even when trained
on small datasets (Ben-Cohen et al., 2016). More advanced work, such
as Ali et al. (2021), proposed to detect and classify artefacts based on
a framework that combines a multi-scale convolutional neural network
detector with an encoder–decoder model aimed to identify irregularly
shaped artefacts.

More recent works have also shown that attention-based supervision
can be used to alleviate the requirement for a large training dataset for
training (Li et al., 2018). For example, Venkataramanan et al. (2020)
has proposed using attention maps as an additional supervision cue and
enforcing the classifier to focus on all artefact-free regions in the image.

2.2. Supervised - image-level classification

This class of approaches aims to bypass the classification at the
voxel level, thereby reducing the required computational cost. They
are based on training supervised models that require both high and
low-quality images and predict the quality scores using a set of scored
images labelled by experts. For example, Bottani et al. (2021) devel-

oped a supervised method based on CNN to compute quality scores.
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Table 1
Summary of Artefacts, Related Parameters, and Corresponding Ranges considered to generate them.

Artefact Parameter Range

Folding Spacing size added to the K-space (in lines) [1, 6]
Ghosting Rotation angle [0, 𝜋∕2]
Ghosting Degree of translation [0, 𝑤∕20], [0, ℎ∕20]
Ghosting Percentage of K-space lines to swap [1%, 50%]
Gibb’s Percentage of K-space lines to remove (vertically) [1%, 30%]
Gibb’s Percentage of K-space lines to remove (horizontally) [1%, 30%]
Bands Amplitude of the spike (Intensity) [Mean Intensity, Max Intensity]
Bands Distance from the centre [ 1

4
ℎ, 3

4
ℎ], [ 1

4
𝑤, 3

4
𝑤]

Bands Number of Corrupted points [1, 8]
Blurring Standard deviation 𝜎 [0.8, 6]
Zipper Number of zipper regions [1, 8]
Zipper Artefact size (in lines) [1, 21]
Noise Standard deviation 𝜎 [0.05, 25.0]
Bias field Polynomial degree [2, 7]
Bias field Coefficients range lower bound [0.2, 1.2]
Bias field Coefficients range upper bound [0.7, 2.7]
To train and validate the model, they asked trained raters to annotate
the images following a visual pre-defined QC protocol. Similarly, in Ma
et al. (2020) they proposed to use several supervised CNN-based frame-
works capable of assessing medical image quality and detecting if an
image can be used for diagnostic purposes. In particular, they visualized
activation maps from different classes to investigate discriminating
image features learned by the model. In a similar vein, Graham et al.
(2018) conducted a study that introduced a CNN-based approach for
reducing the reliance on manual labelling in a supervised setting. The
approach utilized simulated data for training and a small amount of
labelled data for calibration and was demonstrated to be effective in
detecting severe movement artefacts in diffusion MRI.

2.3. Unsupervised - pixel-level classification

Unsupervised methods are an alternative to supervised approaches.
They often rely on training a generative model that learns the distribu-
tion of artefact-free images. Once trained, the model is used to identify
potential artefacts by comparing an input image with the generated
normal counterparts, and anomalies are identified by measuring the re-
construction error between the observed data and the model-generated
image. The idea behind this is that these generative models, trained
on only artefact-free images, cannot properly reconstruct anomalies.
Approaches based on Generative Adversarial Networks (GANs) (Baur
et al., 2020; Schlegl et al., 2019, 2017; Sun et al., 2020) and Variational
Auto-Encoders (VAEs) (Chen and Konukoglu, 2018; You et al., 2019;
Pawlowski et al., 2018), which use reconstruction error, have been
widely employed in the literature.

In a similar research direction, An and Cho (2015) introduced a
method for artefact detection that relies on the reconstruction probabil-
ity, which is defined as the likelihood that the decoded image matches
the original input. This probability can be used to identify potential
anomalies in the input data. Specifically, areas with low reconstruction
probabilities are more likely to contain artefacts, while pixels with high
reconstruction probabilities are more likely to represent the underlying
signal. Therefore, by examining the distribution of reconstruction prob-
abilities across the input data, one can identify regions that are likely
to contain artefacts and focus further analysis on those regions.

Recent works in the field of unsupervised knowledge distillation
and representation learning have also developed algorithms to identify
abnormalities. For example, it is possible to train a set of small networks
(called students) to replicate the exact behaviour of a larger network
(called teacher), and abnormalities can be measured by computing the
difference between the students and the teachers (Bergmann et al.,
2020). If the outputs are different it means that the students fail to gen-
eralize and a possible anomaly is occurring. Additionally, the student
3

networks’ uncertainty can be used as a scoring function for anomalies.
Another solution is proposed in Pinaya et al. (2022), which combines
the latent representation of vector quantized variational autoencoders
with an ensemble of autoregressive transformers to obtain an unsu-
pervised anomaly detection and segmentation on FLAIR images from
the UK Biobank dataset. The combination of these 2 frameworks was
proposed to overcome the limitations of transformers which demand
a very large dataset and high computational resources to have a good
performance (Trenta et al., 2022).

Unsupervised approaches often identify the class thresholds re-
quired to separate the anomalies from the artefact-free images. Accu-
rate thresholds are not easily identified. To tackle this problem (Silva-
Rodríguez et al., 2021) proposed a novel formulation that does not
require accessing images with artefacts to define these thresholds. In
particular, they obtain this by an inequality constraint, implemented
by extending a log-barrier method.

2.4. Unsupervised - image-level classification

Similarly to the previous class, these approaches are trained in an
unsupervised manner which requires only images without artefacts
during training. Additionally, they are also developed for real-time
processing obtained by working at the image level. For example, Mor-
tamet et al. (2009) proposed an unsupervised approach developed
for real-time processing where a set of quantitative tools are used to
quickly determine artefacts in MRI volumes for large cohorts. These
tools are based on fast quality control features developed to detect
image degradation, including motion, blurring, ghosting, etc. Simi-
larly, Sadri et al. (2020) proposed a framework that can identify MR
images with variation in scanner-related features, field-of-view, image
contrast, and artefacts by using a set of quality measures and metadata
designed for real-time filtering. These measures can be used as a feature
representation to fit a binary (accept/exclude) classifier and identify
when abnormalities occur (Esteban et al., 2017). Another unsupervised
approach that has been proposed to find fast features is proposed
in Oksuz et al. (2019). This approach automatically detects the presence
of motion-related artefacts in cardiac MRI. In particular, it uses a 3D
spatiotemporal CNN and a long-term recurrent convolutional network.
However, since the data set is highly imbalanced – a relatively small
number of images with artefacts when compared with the number of
good-quality images – they propose a data augmentation technique to
alter the k-space and generate realistic synthetic artefacts. Following a
similar direction, (Shaw et al., 2020) integrates four different simulated
classes of artefacts that can be used for extending existing training
data. Our artefact generators are inspired by these ideas while bringing

novelty with more classes of artefacts, as outlined in Table 1.
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Fig. 1. Proposed pipeline developed to detect artefacts from MRI scans.
2.5. Limitations of the state-of-the-art

The use of supervised learning is not always straightforward. Ob-
taining training labels is time-consuming, expensive and subject to
mistakes typical of human raters and their bias. Additionally, since pure
artefacts are very rare, collecting a sufficiently large dataset of these
labelled artefacts may not be feasible.

Several problems limit the use of unsupervised approaches as well.
First, it is hard to collect a large set of medical images where no
artefacts exist and where the data represent the entire population
heterogeneity. The lack of a representative dataset with millions of
images makes it infeasible to learn when an abnormality comes from an
actual artefact or unseen patients with unusual structures. Second, in
an unsupervised setting, where no abnormal samples are available for
training, it is hard to identify the class thresholds required to separate
the anomalies from the artefact-free images.

One of the main disadvantages of the approaches working at the
pixel level is that they often do not take into consideration computa-
tional constraints (i.e real-time processing) and they perform computa-
tionally expensive operations, which require powerful GPUs to process
an entire 3D MRI efficiently. Additionally, although voxel classifica-
tions or segmentation produce fine details, these solutions are often not
suitable for modalities with lower-resolution scans.

The approaches working at the image level provide greater benefits
since they offer a time-efficient solution obtained by bypassing the
classification at the voxel level. However, these approaches still require
a large dataset of artefact-free images for unsupervised learning, where
the model learns to identify artefacts without any prior knowledge of
their presence. For supervised learning, where the model is trained to
classify images with and without artefacts, a combination of artefact-
free and artefact-containing images is necessary to ensure the model
can accurately distinguish between the two.

We chose to implement a system that belongs to this last category,
but in contrast with the existing approaches, we propose a semi-
supervised adversarial training strategy aiming to generate artefacts
obtained by physics-based MRI-artefact generators and able to augment
the available training set. In particular, we avoid using images with
artefacts during training (which can be rare) and our generators are
trained to add artefacts by finding the minimum level of corruption
for which images are not considered anymore artefact-free. A combi-
nation of features selected for each class of artefact (extracted from the
artefact-free images and the corrupted ones obtained from our genera-
tors) are then used to train a set of supervised SVM artefact classifiers.
To the best of our knowledge, we are the first to build a system to
augment a training dataset by using artefact generators trained using
adversarial learning and aimed to find the best parameters that describe
4

the severity of the artefacts.
3. Methods

Our proposed pipeline is depicted in Fig. 1 and consists of five
blocks coded with different colours: (i) a pre-processing block, (ii) a
set of artefact generators that take pre-processed artefact-free images
as input and generate images with controlled artefacts, (iii) a features
extraction block, (iv) a feature selection process, and (v) an ensemble
of SVM classifiers.

Our pipeline generates artefacts throughout the entire 3D volume by
iterating the artefact simulation on each individual 2D brain slice. To
corrupt the entire 3D volume consistently, we create artefacts with the
same severity and parameters on each slice extracted from the first view
(i.e., axial). We believe this approach adequately generates artefacts
in 3D, which can be more challenging to achieve. Directly modelling
artefacts in 3D would depend on the specific artefact considered. For
the majority of the artefacts we considered (i.e., noise, smoothing,
bias, banding, Gibbs, folding, and zipper), we do not see a significant
difference in modelling them in 2D versus 3D. However, for some
artefacts such as motion, directly modelling it in 3D would be more
realistic. We chose to focus on the 2D plane to simplify the image
generation process, which would have otherwise required a significant
amount of effort.

To train our system we only use a subset of these 2D slices. In
particular, in our training, we use a data set of 𝑋𝑛 with 𝑛 = 1, 2,… , 𝑁
representing artefact-free brain 𝑇1-weighted MRI scans from which we
extract 𝑥𝑘,𝑣,𝑛 ∈ 𝑅𝑠×𝑠 pre-processed slices from 𝐾 = 3 fixed positions and
𝑉 = 3 different views.

We provide the details of each block of our pipeline in the following
sections.

3.1. Pre-processing

The pre-processing block aims to reduce irrelevant variations in
the data and prepare each input MRI 𝑋𝑛 to train the model. To al-
low real-time performance, we exclude computationally intensive pre-
processing operations often used in medical imaging, such as non-linear
image registration.

Our pre-processing consists of five steps: (i) removing 5% of inten-
sity outliers from the entire MRI volume (this essential step ensures
that the successive intensity standardization can act optimally); (ii) per-
forming slice-wise intensity standardization (zero mean, unit standard
deviation), (iii) auto-cropping each slice based on OTSU threshold (Xu
et al., 2011); (iv) normalizing the intensity values in the range [−1,1],
and reshaping each slice to a fixed size of 𝑠 × 𝑠 with 𝑠 = 300. In
cases where the original resolution is smaller than our designated fixed
resolution (a scenario that encompasses the majority of instances within
our dataset), we apply zero-padding to the images. This process ensures
that all images conform to our predetermined resolution without com-
promising their content or quality. It is crucial to emphasize that the
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proposed resolution aligns with the typical requirements for 1 mm MRI
scans, which are the images found in the ADNI dataset. Therefore, we
recommend using images with a resolution of 1 mm in conjunction with
our pipeline to achieve results similar to those obtained in our study.
The recommendations for using a resolution of 300 × 300 pixels have
been also validated through consultations with two expert neurologists,
each boasting more than a decade of specialized knowledge and expe-
rience in this field. Their expert assessment confirmed the suitability of
this resolution for this particular study.

Regarding the process of eliminating intensity outliers this is ac-
complished by identifying and then removing exceptionally high or
low-intensity values within the MRI data. This is achieved by estab-
lishing a threshold based on the 95th percentile of intensity values
and subsequently clipping all values that surpass this threshold. These
intensity outliers can arise from various factors, including noise or
inconsistencies in the MRI scanner. Our primary goal in this pro-
cedure is to eliminate potential artefacts, thus obtaining a class of
artefact-free images which can be utilized for training and validation
purposes. The application of a 5% threshold (95th percentile) to re-
move intensity outliers is consistent with established practices in the
literature (Hadjidemetriou et al., 2009).

3.2. Physics-based artefacts generation

The next step in our pipeline is to build a set of 𝐴 generative models
𝑆𝑎,𝜃𝑎 (one per each class of artefact 𝑎) having parameters 𝜃𝑎. Each
model is a degradation/corrupting function designed to create a class
of artefacts occurring during the MRI acquisition.

To build our artefact generators, we study the cause of different
brain MRI artefacts and we emulate them by corrupting artefact-free
images accordingly. For example, a low-pass filter applied in k-space
would simulate a blurring artefact, while the addition of random spikes
in k-space creates a banding artefact (Moratal et al., 2008; Heiland,
2008).

3.2.1. A proof-of-principle framework to generate artefacts
The artefacts that we are considering in this study are not intended

to be exhaustive but serve as a proof of concept to demonstrate the
power of our solution, which can feasibly be extended to new arte-
facts for MRI and new modalities. In particular, we have identified
9 different common artefacts for 𝑇1-weighted brain MRI divided into
three groups: (1) hardware imperfection artefacts (i.e. noise from mea-
surements, nonuniformity in the static magnetic field or nonuniformity
in the radiofrequency field; (2) patient-related artefacts (e.g. ghosting
and other motion artefacts); (3) sequence-related artefacts (e.g. Gibb’s
artefact, folding and blurring). We have also added a further category
to account for mislabelled images. This category pertains to cases where
the MRI scan does not fully show the brain or shows it only partially,
but is still labelled as a brain MRI (for instance, when an image of the
spinal cord is mistakenly labelled as a brain MRI). We consider this a
potential source of error since it can have a detrimental impact on the
performance of automated image analysis algorithms. A summary of all
these artefacts is shown in Fig. 2 and summarized in Table 1.

The implementation details of each of these artefacts are provided
in the following sub-sections.

3.2.2. Gibb’s artefacts
Truncation or Gibb’s artefacts appear as a ringing effect associated

with sharp edges at transitions between tissues of differing signal
intensity (Fig. 2 a). This artefact is due to i) Fourier transforms recon-
struction obtained from a finite sampled signal and (ii) a lowering of the
sampling coverage in k-space used to speed up the acquisition process.
In our framework, we have implemented Gibb’s artefacts by under-
sampling k-space in both the frequency and phase encoding direction
(see Section 3.4.2 for more details on k-space). In particular, to reduce
the sampling coverage from high-quality images already acquired, we
5

exclude the most peripheral information of k-space during Fourier
reconstruction.

Two parameters control the severity of this artefact: the amount of
data (number of lines or columns) removed from the k-space in each
of the frequency and phase encoding directions.

3.2.3. Folding artefacts
Folding, or wrap-around, artefact corresponds to the spatial mismap-

ping, or overlapping, of structures on the opposite side of the image
from where they may be expected (Fig. 2 b). These artefacts are caused
by corruptions occurring during the spatial encoding of objects outside
the selected field of view. These can overlap the information inside the
field of view. To emulate this artefact we follow the work proposed
in Moratal et al. (2008), which increases the spacing between phase-
encoding lines, thereby emulating a rectangular field of view, which
creates the wrap-around effect.

The parameter that controls the severity of this artefact is the
spacing size added between the lines of k-space.

3.2.4. Patient motion: Ghosting and blurring
MRI scan time is usually relatively long in order to generate high-

resolution images. Therefore, motion artefacts are often unavoidable
and are one of the most frequent issues during an MRI scan. The most
frequent motion artefacts are: ghosting (Fig. 2 c), and blurring (Fig. 2
d). We emulate blurred images by applying a Gaussian low-pass filter
in k-space. Ghosting is emulated by aggregating two k-space matrices,
generated from two slightly different versions of the same images. The
first is an input image, the second is the same input image where a
random affine transformation is applied to emulate the desired patient’s
motion.

We adjust the severity of the ghosting artefacts using 3 parameters:
the degree of the rotation and translation for the affine transformation,
and the amount of k-space data that is taken from the second image
and replaced with the k-space from the first image.

We adjust the blurring artefact by increasing the size of the Gaussian
low-pass filter used.

3.2.5. Band artefacts
Gradients applied at a very high duty cycle, or other electronic

interference can produce spikes in k-space (Moratal et al., 2008). These
spikes result in banding artefacts visible in the reconstructed image
(Fig. 2 e). The location of these spikes in the k-space determines the
angulation and the band pattern that affect the image.

We emulate these artefacts by corrupting a small number of points
in a k-space line by adding a very high-intensity value compared with
the rest of the k-space. The parameters that control this artefact are
the amplitude of the spike, the maximum distance from the centre
of k-spaced where the spike can happen, and the number of points
corrupted.

3.2.6. Bias artefacts
Bias field or intensity inhomogeneity is caused by spatial variations

in the sensitivity of the acquisition coil and/or by spatial variation in
the transmitted RF field. Generally, such intensity variations occur at
a low spatial frequency across the image (Fig. 2 f). Although robust
approaches for correcting these artefacts are today available (N3 and
N4 bias field correction (Tustison et al., 2010; Boyes et al., 2008)),
we decided to include this artefact in our study because in severe
cases and some high field settings (e.g. 7-tesla MRI), this problem still
requires some attention. Following the work proposed in Van Leemput
et al. (1999) we emulate the bias field as a linear combination of
polynomial basis functions. We control the severity of this by using
three parameters that represent the degree of the considered linear
functions.
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Fig. 2. Extreme cases of artefacts randomly generated by our artefact generators and organized in three different classes. In blue sequence-related artefacts, in yellow patient-related
artefacts and in orange hardware-related artefacts.
3.2.7. Zipper artefacts
Zipper artefact is generated by radio frequency interference. This

can happen for example when a device or equipment (e.g. a mobile
phone) is left in the scanning room during the acquisition. The result
of this problem is an abnormal black-and-white signal band across the
entire image, which we emulate by adding random lines of black-and-
white pixels on the reconstructed image (Fig. 2 g). The parameters that
control the severity of these artefacts are the number of zipper regions
that can occur in an image and the max size of each of these regions.

3.2.8. Noise artefacts
Components of MRI scanners (e.g. coils, electronic components,

etc.), electronic interference in the receiver system, and radio-frequency
emissions due to the thermal motion of the ions in the patient’s body
can lead to noise in the final images (Fig. 2 h). We chose to model
the noise in k-space by adding an error with a zero-mean Gaussian
distribution to each of the acquired k-space samples. The parameter
used to control the severity of this artefact is the amplitude of the error
(sigma of the Gaussian) used to perturb the raw data.

3.3. Finding the optimal parameters: Adversarial training

All the parameters 𝜃𝑎 controlling each artefact generator 𝑆𝑎,𝜃𝑎 with
𝑎 ∈ 1..𝐴 are summarized in Table 1. As described in the sections above,
these parameters are developed to control directly the severity of each
class of artefact. For example, when |𝜃𝑎| is close to zero the severity
of the artefacts of class 𝑎 is small and the artefacts in the generated
images are barely visible. At the same time, if |𝜃𝑎| is high, the minimum
severity for this class of artefacts will be high, and strong artefacts are
always generated. Indeed different values of 𝜃 will create different
6

𝑎

types of images used for augmenting the training set and this affects the
final classifiers. In particular, if the artefacts are too small the classifier
may not be able to learn how to separate artefacts from the normal
images, whilst when the artefacts are too strong, the classifier may
learn to separate them well in artefact-simulated images, but it will not
generalize to real data.

To find the optimal parameters for each 𝑆𝑎,𝜃𝑎 we exploit adversarial
training which is a technique used in generative adversarial networks
(GANs) to learn the distribution of a target training set. However, since
we do not have a target training set of artefacts that we could use
to learn this distribution, we exploit adversarial training to find only
the minimum level of corruption for which images are not considered
anymore artefact-free. Regarding the distribution of these artefacts, we
instead assume that this will be uniform across the range of sever-
ity starting from the identified minimum value. We believe that this
assumption will not hamper the training of our classifiers. In fact,
this simply means that since we are not able to model directly the
distribution of artefact, we train the classifiers also with extreme cases
distributed uniformly that are instead unlikely to occur in the real
world.

In particular, for our adversarial training, we make use of a con-
volutional generative adversarial network (DCGAN) (Radford et al.,
2015). DCGAN has a discriminator 𝐷 that is trained adversarially with
another network 𝐺 (the generator) via unsupervised learning. 𝐷 aims
to discriminate realistic images from fake ones while 𝐺 is trained to
fool 𝐷, i.e., to generate brain MRI with a similar distribution to the
initial true distribution.

Our hypothesis is that once the DCGAN has been trained, the
discriminator 𝐷 will acquire the ability to capture the natural variations
present in images (without artefacts) and can serve as an evaluator to
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Fig. 3. The figure shows four different histograms (𝐻𝐿, 𝐻𝐻 , 𝐻𝑇 and 𝐻𝐶 ) computed from four areas of the k-space and used to extract statistical features from each scan.
detect the appearance of synthetic artefacts in such images. This would
enable us to learn the parameters that govern the degree of severity of
these artefacts.

The loss functions used to train 𝐷 and 𝐺 are as follows:

𝐿𝐺𝐴𝑁 = min
𝐺

max
𝐷

E𝑘,𝑣,𝑛
[

log𝐷
(

𝑥𝑘,𝑣,𝑛
)]

+ E𝑘,𝑣,𝑛
[

1 − log𝐷
(

𝐺(𝑧)
)]

, (1)

where E is the expectation, 𝐷 estimates the probability that a slice
belongs to the real distribution (i.e. artefact-free images) and 𝑧 is a
latent vector obtained from 𝑥𝑘,𝑣,𝑛. Additionally, as we can see from
Fig. 1, 𝐺 takes as input the vector 𝑧 which is obtained by another
encode network 𝐸 aimed to map the image domain to a latent space
𝑧 = 𝐸(𝑥𝑘,𝑣,𝑛) while 𝐺 acts as a decoder by mapping 𝑧 back to the image
space.

While 𝐺 and𝐷 are trained simultaneously following a standard GAN
schema (explained above), the networks 𝐸 and 𝐺 are trained following
a convolutional autoencoder architecture using the loss

𝐿𝐴𝐸 = E𝑘,𝑣,𝑛
1
𝑠2

‖𝑥𝑘,𝑣,𝑛 − 𝐺(𝐸(𝑥𝑘,𝑣,𝑛))‖2, (2)

where ‖...‖2 is the sum of squared pixel-wise residuals of values and 𝑠2
is the number of pixels in the image.

The use of three networks (𝐸, 𝐷, and 𝐺) in our approach enables
us to work directly with input images rather than random vector noise,
as is typical in traditional GANs. The encoder (𝐸) plays a critical role
in this process by projecting the input image into a lower-dimensional
representation, which enables the generator network (𝐺) to produce
high-quality synthetic images. Specifically, the encoder’s task is to learn
a representation that is relevant for generating realistic-looking data
while ensuring that the generated data is indistinguishable from real
data by the discriminator. By operating directly on input images and
using the encoder to project them into a lower-dimensional space, our
approach leverages the rich information already present in the input
data to generate new, high-quality synthetic images.

Once 𝐷, 𝐺 and 𝐸 are set, we use 𝐷 to find the optimal parameters 𝜃𝑎
for our artefact generators. To do so, we minimize a new loss in Eq. (3),
which combines the euclidean 1-norm of 𝜃𝑎 and the discriminative loss
obtained by using 𝐷 on generated images:

𝐿𝑆𝑎 = E𝑘,𝑣,𝑛
[

𝐷
(

𝑆𝑎,𝜃𝑎 (𝑋𝑛)[𝑘, 𝑣]
)]

+ ‖𝜃𝑎‖1. (3)

An intuition behind our new formulation is that the second term of
Eq. (3) (‖𝜃𝑎‖1) aims to decrease the amplitude of 𝜃𝑎 and minimize the
artefacts. However, when 𝜃𝑎 becomes too small the images will not
have realistic visible artefacts and consequently, 𝐷 cannot discriminate
artefacts-free images from those with artefacts. We avoid this by con-
trolling the discrimination loss E𝑘,𝑣,𝑛

[

𝐷
(

𝑆𝑎,𝜃𝑎 (𝑋𝑛)[𝑘, 𝑣]
)]

, which will be
high when 𝐷 is not able to discriminate the two classes. During the
optimization of Eq. (3) the parameters of the network 𝐷 are not trained
but we use 𝐷 only to find the minimum values of 𝜃𝑎 for which the
discriminator loss remains limited.

Once each 𝜃𝑎 is found we use our artefact generators to create new
images to augment our training set.
7

3.4. Feature extraction

This block aims to extract a pool of efficient features (our image
representation) from each slice, which will be used for the final clas-
sification of the scan. As we can see from Fig. 1 (section in blue),
this block operates both on the real images 𝑋𝑛 and on the generated
synthetic images 𝑆𝑎,𝜃𝑎 (𝑋𝑛). More specifically, for each normalized slice
𝑥𝑘,𝑣,𝑛 extracted from the MRI 𝑋𝑛 and for each 𝑠𝑎,𝑘,𝑣,𝑛 = 𝑆𝑎,𝜃𝑎 (𝑋𝑛)[𝑘, 𝑣]
representing the corrupted slices obtained by 𝑆𝑎,𝜃𝑎 using the scan 𝑋𝑛,
we extract three classes of features: (i) engineered features 𝜉(.) extracted
from the imaging domain, (ii) statistical features 𝜓(.) extracted from
the k-space domain, and (iii) abstract features 𝛾(.) extracted using two
popular deep neural networks.

All these features are extracted from every 2D slice. However,
to ensure we capture 3D information in a computationally efficient
manner, we implement a multiple slices configuration (2.5D, that is, 2D
slices encompassing axial, sagittal and coronal views), where multiple
slices are used at the same time.

In particular, in our 2.5D implementation, the features extracted
from the slices at different view 𝑣 and the different position 𝑘 are all
concatenated in a unique representation vector. The reason for this
concatenation is that artefacts may appear in only a local area of the
MRI volume and combining different views and different slices make
it more likely to have at least one slice with visible artefacts in the
proposed image representation. Therefore, for a generic MRI 𝑋𝑛 (with
or without artefacts), our full set of features is

𝐹 (𝑋𝑛) =
𝐾
∏

𝑖=1

𝑉
∏

𝑗=1
⊕

[

𝜉(𝑥𝑖,𝑗,𝑛), 𝜓(𝑥𝑖,𝑗,𝑛), 𝛾(𝑥𝑖,𝑗,𝑛)

]

, (4)

where ⊕ performs this concatenation between features’ vectors.

3.4.1. Engineered features: Imaging domain
The first set of features that we propose are engineered features

𝜉(.) developed to detect specific patterns in the imaging domain or to
measure specific imaging characteristics such as first and second-order
statistics (e.g., mean, variance, skewness, and kurtosis), signal-to-noise
ratio, contrast per pixel, entropy-focus criterion, and ratios of different
regions. All existing engineered features used in our pipeline are listed
in the first part of Table 2.

Additionally, we propose nine new descriptors to identify local
artefacts (e.g. zipper) and measure spatial consistencies inside each
slice, which are not covered by previous existing methods. To do so,
we exploit an edge detector based on a Laplacian filter and an image
integral, obtained by integrating all intensity values along the row and
column of a single slice. These new features are described in the second
part of Table 2. In total, for each slice (imaging domain), we extract 26
engineering features.
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Table 2
Summary of existing and proposed features extracted from the imaging domain and used to represent the scans during the artefact detection task.

Existing engineered features – imaging domain Reference

Mean, range, and variance of the foreground intensities Sadri et al. (2020)
Coefficient of variation of the foreground Wang et al. (2019)
Contrast per voxel Chang et al. (2015)
Peak signal-to-noise ratio of the foreground Sage and Unser (2003)
Foreground standard deviation divided by background standard deviation Bushberg and Boone (2011)
Mean of the foreground patch divided by background standard deviation Esteban et al. (2017)
Foreground patch standard deviation divided by the centred foreground patch standard deviation Sadri et al. (2020)
Mean of the foreground patch divided by mean of the background patch Sadri et al. (2020)
Contrast to noise ratio Bushberg and Boone (2011)
Coefficient of variation of the foreground patch Sadri et al. (2020)
Coefficient of joint variation between the foreground and background Hui et al. (2010)
Entropy focus criterion Esteban et al. (2017)
Foreground-background energy ratio Shehzad et al. (2015)
Global contrast factor on the background Matkovic et al. (2005)
Global contrast factor on the foreground Matkovic et al. (2005)

Proposed engineered features – imaging domain

Max and variance on the edge detector response obtained on the foreground Proposed
Mean, variance and Shannon entropy on the edge detector response obtained on the background Proposed
Min and max value of the integral over the row on the foreground Proposed
Min and max value of the integral over the column on the foreground Proposed
3.4.2. Statistical features: K-space
Signal in k-space represents spatial frequencies in the 𝑥 and 𝑦 direc-

tions rather than an intensity value describing a pixel value as in the
imaging domain. In particular, each point (𝑘𝑥, 𝑘𝑦) in k-space does not
correspond to a single pixel (x,y) in the counterpart imaging domain,
instead, they contain spatial frequency and phase information about
every pixel in the reconstructed image. To reconstruct the MRI scan an
inverse Fourier Transform is used to convert the k-space samples to the
actual imaging intensities.

We note that, in contrast to the imaging domain, correlations be-
tween consecutive points in k-space are less common, which is a
characteristic often exploited by CNNs. Therefore, standard CNNs may
not be ideal for use in k-space. Instead, to process such domain informa-
tion we propose a set of statistical features. These features are identified
as 𝜁 (.) and are as follows: mean, standard deviation, skewness, kurtosis,
interquartile range, entropy, coefficient of variation, k-statistic and
an unbiased estimator of the variance of the k-statistic. We compute
𝜁 (.) from four samples distributions obtained from different areas of
k-space: (i) the centre of k-space containing low spatial frequency
information (𝐻𝐿), (ii) the peripheral area of k-space containing high-
frequency information (𝐻𝐻 ), (iii) the entire k-space (𝐻𝑇 ), and (iv)
an area obtained by integrating k-space samples within an annulus of
signal between circles starting from the centre (𝐻𝐶 ). In Fig. 3 we show
how each of these k-space areas is selected. In total our k-space features
consist of a vector 𝜓(.) of 9 × 4 = 36 features formally defined as:

𝜓(𝑥𝑘,𝑣,𝑛) = [𝜁 (𝐻𝐿(𝑥𝑘,𝑣,𝑛)), 𝜁(𝐻𝐻 (𝑥𝑘,𝑣,𝑛)), 𝜁(𝐻𝑇 (𝑥𝑘,𝑣,𝑛)), 𝜁(𝐻𝐶 (𝑥𝑘,𝑣,𝑛))]. (5)

3.4.3. Deep learning features: Imaging domain
The last set of features 𝛾(.) are obtained in a fully data-driven

fashion by using two popular deep learning networks: (i) ResNet-
101 (He et al., 2016) pre-trained with IMAGE-NET where we use the
last layer as a feature vector and (ii) and a fast anomaly GAN network
(f-AnoGAN) (Schlegl et al., 2019) where we use the reconstruction
errors as a feature set. Since the last layer of ResNet-101 is very
large (2048 nodes), we compress the obtained vector in a smaller
representation using Principal Component Analysis (PCA). We keep the
first 64 components that represent the highest explained variance (95%
of the variance):

𝛾(𝑥𝑘,𝑣,𝑛) = [𝑃𝐶𝐴64(𝑅𝑒𝑠𝑁𝑒𝑡(𝑥𝑘,𝑣,𝑛), 𝐺𝐴𝑁(𝑥𝑘,𝑣,𝑛))]. (6)

3.5. Artefact-based feature selection

In summary, our feature extraction block generates a feature vec-
tor that we identify as 𝐹 . As mentioned above, some features could
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provide contrasting information when they operate on different classes
of artefacts. For example, a feature that measures the sharpness of an
image could be useful to identify blurring artefacts but it would not
contribute when dealing with band artefacts or noise artefacts since
it provides a high-value score for them. For this reason, we group
features in different sets and measure their different performances to
identify which combination provides the highest accuracy for each class
of artefacts.

Specifically, our artefact-based selection block will select for each
class of the artefacts 𝑎 the best combination 𝑐𝑎 ∈ (𝜉, 𝜓, 𝛾, 𝜉⊕𝛾, 𝜉⊕𝜓, 𝛾⊕
𝜓, 𝜉 ⊕ 𝜓 ⊕ 𝛾) so that the classification accuracy from the classifier 𝑄𝑎
on the subset of samples from class 𝑎 is maximized,

max
𝑐𝑎

E𝑘,𝑣,𝑛
[

log𝑄𝑎
(

𝑐𝑎(𝐹 (𝑥𝑘,𝑣,𝑛))
)]

+ E𝑘,𝑣,𝑛
[

1 − log𝑄𝑎
(

𝑐𝑎(𝐹 (𝑠𝑎,𝑘,𝑣,𝑛))
)]

. (7)

To summarize, our feature selection method entails identifying the
optimal combination of features from three distinct sets: imaging (𝜉),
k-space (𝜓), and deep learning (𝛾). This selection process is performed
for each type of artefact examined in our study.

3.6. Ensemble of classifiers

In this section, we will define in more detail the classifiers 𝑄𝑎
mentioned in the previous section. Since our feature vector is small we
believe that the SVM model (Hearst et al., 1998) is a good solution
for our problem and it can provide real-time performance even on
a single processor. SVM is a powerful and fast classifier that con-
structs N-dimensional hyper-planes to optimally separate the data into
two categories. The position of the hyperplane is determined using
a learning algorithm that is based on the principle of structural risk
minimization. Each 𝑄𝑎 is trained using a different combination of
features 𝑐𝑎 and optimized to discriminate only 2 classes of images:
the images with artefacts 𝑎 from the artefact-free images. Formally, to
train each 𝑄𝑎 we make use of 2 sets of data points: (i) 𝑐𝑎(𝐹 (𝐼𝑖),−1),
and (ii) 𝑐𝑎

(

𝐹 (𝑆𝑎,𝜃𝑎 (𝐼𝑖),+1)
)

both ∈ [𝑅𝑑𝑎 ,±1] and for 𝑖 ∈ 1..𝑁 . In this
formulation, 𝑑𝑎 is the dimension of the considered feature set and the
±1 is the binary class describing the label (artefact/no artefact). SVM
takes these data points and outputs the hyperplanes that separate each
of the two-class samples so that the distance between them is as large
as possible (Hearst et al., 1998). In our implementation, we use SVMs
with radial basis function kernel.

To summarize, each classifier 𝑄𝑎 is trained to identify a particular
artefact. As each image is processed by all of the 𝑄𝑎 classifiers, it is
possible for an image to be classified as having one or more artefacts.
However, if an image contains an unknown artefact, our system will
assign it to the closest known ones or label it as ‘‘no artefact’’ if none

of them is close enough, potentially causing a misclassification.
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Fig. 4. Graphical user interface used to annotate images on real clinical data.
4. Dataset and training details

Data used in the preparation of this article were obtained from the
ADNI database (adni.loni.usc.edu). ADNI was launched in 2003 as a
public–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s Disease.

In our experiments, we make use of two datasets. In the first
dataset called 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡, we asked three medical imaging experts to
select n = 4000 𝑇1-weighted MRI scans from the ADNI1 and ADNI2
datasets. The three experts (one radiologist and two medical imaging
researchers) make sure to exclude scans with artefacts through a con-
sensus procedure. On top of these scans, we add 36,000 synthetic MR
images with artefacts, generated by our artefact generators 𝑆𝑎,𝜃𝑎 . We
generate the same number of images for each class of artefact.

Since the scans in ADNI are acquired using an MP-RAGE (Magneti-
zation Prepared - Rapid Gradient Echo) sequence, the synthetic images
that we create have the same type of contrast. Real scans from ADNI are
labelled as artefact-free images and generated scans from our artefact
generators are labelled as images with artefacts. We divided our dataset
into a training set (Artefact-free MRI: 2000; Artefacts MRI: 2000x9), a
validation set (Artefact-free MRI: 1000; Artefacts MRI: 1000x9), and a
test set (Artefact-free MRI: 1000; Artefacts MRI: 1000x9).

Each set is distinct, with unique images selected from ADNI, and
diverse artefacts generated for each scan.

Although this dataset has a large sample size, some of the scans
are generated by a synthetic process and therefore the results may
not be representative of a real-world scenario. For this reason, we use
an external testing dataset from a randomized clinical trial that had
enrolled primary progressive multiple sclerosis (MS) patients (Barkhof
9

et al., 2015) including (i) 48 manually selected scans with expert-
identified artefacts (3 with folding, 7 with motion, 8 with Gibbs’
artefacts, 13 with blurring, 15 with noise and 2 with bias), and (ii)
48 randomly selected scans without artefacts. Using the GUI in Fig. 4
we asked three radiologists to label these 96 images according to the
available 9 classes of artefacts.

Each scan can be associated with multiple artefacts and can have
two possible levels of severity (minor and major). All participants were
instructed to use a common labelling protocol and the results were
merged using a majority voting system.

To train our system we use a workstation provided with an 8-core
CPU (Intel Xeon Bronze 3106 CPU @ 1.70 GHz) and an NVIDIA GTX
TITAN-X GPU card with 12 GB of memory on the training set from
𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡. To optimize the performance of our pipeline and find
the best configuration for the feature selection block, we utilize the
validation set. We also employ a random grid search technique using
the validation set to tune hyperparameters such as the learning rate
= 1e-4 and batch size = 64 for the networks. Once we identify the
optimal hyperparameters, we apply them to the test set to obtain the
final performance metrics for our pipeline. In particular, we utilized
the 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 test set to evaluate the effectiveness of our proposed
approach through an ablation study and a comparison with other state-
of-the-art solutions. Additionally, we validate the generalizability of
our solution by testing it on images from the MS clinical trial, which
involves a different disease diagnosis than the training data. This last
experiment helps us evaluate the performance of our system in a real-
world scenario and provides more accurate results. It also indicates
whether our artefact generators create realistic artefacts adequately.

During our adversarial training, we carefully monitored the con-
vergence of the generator and discriminator. Initially, the generator
produced low-quality data that the discriminator could easily distin-
guish from the real data, leading to a high loss for the generator and
a low loss for the discriminator. However, as the training progressed,
we observed a steady decrease in the generator’s loss, indicating that
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Table 3
Ablation study: Accuracy, F1, F2, Precision and Recall expressed in percentage and obtained by classifying the scans from 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 (synthetic
images) with different configurations of the proposed pipeline. In particular, 𝐹 represents the proposed feature extraction block, 𝐶 is the
proposed feature selection, and 𝑆 is the data augmentation. We also evaluate two different versions: a 2D version where only the slices from
the centre of each volume are used and a 2.5D where nine selected slices per volume are used.

Configuration Accuracy (%) F1 (%) F2 (%) Precision (%) Recall (%)

𝐹 _2𝐷 87.22 ± 13.24 88.75 ± 11.96 88.81 ± 11.00 88.64 ± 12.64 88.86 ± 10.42
𝐹 _2.5𝐷 84.55 ± 15.37 85.71 ± 12.91 86.52 ± 11.87 84.40 ± 16.08 87.07 ± 10.38
𝐹 _𝐶_2𝐷 92.59 ± 6.36 92.30 ± 6.75 92.21 ± 6.92 92.45 ± 5.47 92.16 ± 6.03
𝐹 _𝐶_2.5𝐷 91.80 ± 4.66 91.67 ± 6.71 91.18 ± 7.20 92.49 ± 4.78 90.86 ± 6.51
𝐹 _𝑆_2𝐷 96.69 ± 3.39 96.75 ± 3.32 96.72 ± 3.42 96.80 ± 4.24 96.70 ± 4.44
𝐹 _𝑆_2.5𝐷 97.88 ± 2.14 96.87 ± 4.14 96.90 ± 4.20 96.83 ± 3.10 96.91 ± 3.25
𝐹 _𝐶_𝑆_2𝐷 96.82 ± 3.06 96.82 ± 4.05 96.81 ± 3.05 96.83 ± 4.05 96.81 ± 4.05
𝐹 _𝐶_𝑆_2.5𝐷 97.91 ± 2.08 96.90 ± 3.08 96.96 ± 3.04 96.80 ± 3.16 97.00 ± 3.00
it was learning to generate increasingly realistic data. Simultaneously,
the discriminator’s loss slightly increased until it reached a plateau, in-
dicating that the generator was making its task more difficult. Although
we encountered some minor oscillations in the generator’s loss during
training, the system convergence after 500 epochs.

In our experiments, we realized that some of the existing methods
used as a comparison approach are not developed for the full classifica-
tion of artefacts and they are either developed to extract only features
(without performing the final classification) or developed to perform
only the classification (without the initial feature extraction). Therefore
to be able to compare our approach against theirs, we complement
these approaches with the missing part (features extraction or classifi-
cation) taken from our pipeline. Without this additional step, it would
not be possible to analyse some of the existing approaches specifically
on the task of artefact detection for brain MRI.

The blocks of our pipeline that we use to run the existing approaches
are: (i) 𝐹 – the proposed features extraction (Section 3.4), (ii) 𝐒𝐛 –
the SVM classifiers (Section 3.6), trained without data-augmentation –
one-class SVM and (iii) 𝐒𝐬 – the SVM classifiers, trained using a dataset
augmented with our corrupted images (Section 3.2) – two-class SVM. In
particular, the state-of-the-art approaches that we have considered are:
(i) PCA-based, (ii) Autoencoder, (iii) Variational Autoencoder (An and
Cho, 2015) and (iv) (Zenati et al., 2018) and they were trained using
the bloc 𝐹 that uses the features we have proposed in our pipeline.
Additionally, we have considered two more unsupervised methods
(Schlegl et al., 2019; Sadri et al., 2020) designed to extract features,
which we combined with our two classifier setups (blocks 𝐒𝐛 and 𝐒𝐬).
Finally, we compared our approach with a standard fully supervised
Inception network trained on both original and simulated data (Szegedy
et al., 2016).

While both feature extraction techniques (𝐹 ) and data augmentation
methods (𝐒𝐬) have the potential to enhance the performance of state-
of-the-art approaches, their implementation may be constrained by
various factors, such as the choice of features and the nature of the
training approach. For example, the approaches proposed in Schlegl
et al. (2019), Sadri et al. (2020) only used one class of features, which
limited their ability to explore other feature combinations. On the
other hand, unsupervised techniques such as PCA-based, Autoencoder,
Variational Autoencoder (An and Cho, 2015; Zenati et al., 2018) were
trained exclusively on artefact-free images, and incorporating artefacts
into these unsupervised training methods would require modifying the
training process. As a result, we have refrained from applying data
augmentation techniques (𝐒𝐬) to these unsupervised techniques.

5. Experimental results

In our experiments, we first perform an ablation study (Section 5.1)
where we test different configurations of our pipeline to assess the con-
tributions of each proposed block. We then compare the proposed solu-
tion against state-of-the-art approaches on the two proposed datasets:
(i) the synthetic dataset 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 in Section 5.2 and (ii) the real-
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world MS dataset in Section 5.3. Finally, in Section 5.4 we assess
the computation time for all the approaches to verify the real-time
capability. For the evaluation of the different approaches, we used 5
different metrics: accuracy, F1 score, F2 score, precision and recall. The
F1 and F2 scores are defined as follows:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (8)

𝐹2 = 5 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
4 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (9)

We believe that the combination of metrics that we have considered
is adequate to validate our pipeline. In particular, the precision shows
that the approach returns more relevant results than irrelevant ones
and the recall that the algorithm returns most of the relevant results.
F1 and F2 are instead a combination of precision and recall, where in
the first case, there is a balanced weight on precision and recall and
the latter less weight on precision and more weight on recall.

5.1. Ablation study on 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡

Our ablation study is designed to analyse three components of the
system: (i) the feature extraction block 𝐹 (presented in Section 3.4), the
feature selection 𝐶 (presented in Section 3.5) and the data augmenta-
tion obtained using the proposed artefact generators 𝑆 (presented in
Section 3.2). Additionally, we proposed two different versions of our
pipeline: (i) a 2D version where only the slices from the centre of each
MRI (first view) are used and (ii) a 2.5D version where nine slices
are instead extracted from 𝑉 = 3 different views (axial, sagittal and
coronal) and 𝐾 = 3 different positions (1/3, 1/2, and 2/3 of the full
size 𝑠).

The quantitative results obtained using our system with the test set
from 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 are reported in Table 3. We can see that when no
data augmentation is used during training (configuration 𝐹 and 𝐹 _𝐶)
the 2D version shows better performance than the 2.5D version. In par-
ticular, the configuration 𝐹 _2.5𝐷 in comparison to its 2D counterpart
(𝐹 _2𝐷) loses performance in the range of −1.8 and −4.2 percentage
points across the different quality metrics, whereas the configuration
𝐹 _𝐶_2.5𝐷 in comparison to the counterpart 𝐹 _𝐶_2𝐷 loses performance
in the range of 0 and −1.3 percentage points. This result was not
expected and it is probably due to an overfitting problem during the
training of the 2D version happening since the amount of data used in
these configurations is limited and no data augmentation is used. On
the other hand, when corrupted images are included during training
(configurations 𝐹 _𝑆2.5 and 𝐹 _𝐶_𝑆), this problem is overcome, and the
2.5D version provides better results than the 2D counterpart increasing
the performances in the range of 0 and 1.2 percentage points.

In Table 3 we also assessed the contribution of each component
of our system. The configuration with all the blocks enabled (𝐹 _𝐶_𝑆)
is the one that has the highest performance (average performances
are 97%). The use of corrupted images (configurations 𝐹 _𝑆) is the
element that provides the largest improvement in our system (it in-
creases performances in the range of +7.8% and +9.5% in comparison
with the baseline) while the artefact-based feature selection process
(configurations 𝐹 _𝐶) increases performances in the range of +3.3% and
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Table 4
Ablation study: Accuracy, F1, F2, Precision and Recall expressed in percentage and obtained by classifying the scans from 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 (synthetic
images) with different numbers of slices and different views.

Configuration Accuracy F1 F2 Precision Recall

Axial 96.82 ± 3.06 96.82 ± 4.05 96.81 ± 3.05 96.83 ± 4.05 96.81 ± 4.05
Coronal 95.36 ± 2.86 95.12 ± 3.85 95.33 ± 2.89 94.78 ± 3.61 95.47 ± 3.65
Sagittal 95.91 ± 2.63 95.54 ± 3.85 95.52 ± 2.88 95.57 ± 3.75 95.51 ± 3.72
3-Axial 97.86 ± 2.43 96.61 ± 4.03 96.49 ± 2.15 96.83 ± 3.87 96.40 ± 3.07
3-Coronal 97.60 ± 2.73 96.55 ± 3.24 96.59 ± 2.45 96.50 ± 3.34 96.61 ± 3.59
3-Sagittal 97.61 ± 2.45 96.36 ± 3.06 96.26 ± 2.67 96.54 ± 3.80 96.19 ± 3.45
9 Slices 97.91 ± 2.08 96.90 ± 3.08 96.96 ± 3.04 96.80 ± 3.16 97.00 ± 3.00
Table 5
Ablation study: Accuracy of our system in classifying scans from the 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 (Synthetic) dataset using a combination of three different
feature sets: Imaging (𝜉), K-Space (𝜓), and Deep Features (𝛾). We evaluate the ability of each feature set to recognize different types of artefacts.

Features Incorrect-Label Folding Gosting Gibb’s Banding Blurring Zipper Noise Bias

𝛾 97.42 93.03 96.23 93.63 92.44 98.91 97.67 97.48 91.13
𝜉 95.63 91.66 95.52 93.49 93.03 98.56 98.53 97.15 91.92
𝜓 92.67 98.03 97.00 98.66 92.55 98.63 97.59 97.76 91.24
𝜉 + 𝜓 94.94 97.10 97.55 98.28 94.98 98.08 98.34 97.61 94.14
𝛾 + 𝜉 99.18 93.27 97.66 93.61 92.79 97.00 98.25 98.18 94.40
𝛾 + 𝜓 98.23 97.35 97.71 98.44 92.22 99.06 97.68 97.61 94.80
𝛾 + 𝜉 + 𝜓 99.68 97.96 98.77 98.31 94.43 99.17 98.51 97.79 94.73
+5.4% in comparison with the baseline. The combined effect of both
these components (configurations 𝐹 _𝐶_𝑆) increases performance in the
range of +8.1% and +10.7%.

In Table 4, we present the performance results of our system,
btained by experimenting with different numbers of slices and views.
hile we observed only minor improvements from changing the views,

ur results indicated that the axial view is optimal for identifying
rtefacts. Interestingly, increasing the number of slices from 1 to 3 was
ound to be more effective than changing the view. Ultimately, we can
ee that the highest performance was achieved when using 3 slices and
ll views (9 slices).

Finally, Table 5 provides a deeper understanding of how different
eatures contribute to identifying various types of artefacts. This infor-
ation is valuable in guiding future efforts to improve the accuracy

f artefact detection systems by focusing on improving specific feature
ets for certain types of artefacts. From these results, we can see that
he selection of different features for each artefact is based on their
nique characteristics and underlying causes. For example, detecting
ncorrect labelling, motion ghosting, and smoothing can be challeng-
ng. Therefore, to accurately identify these artefacts, a comprehensive
nalysis of all available features is necessary. On the other hand, folding
rtefacts are primarily caused by violating the Nyquist criterion, which
an be detected by analysing the k-space data. Similarly, Gibbs artefacts
re often due to undersampling or truncation in k-space, making them
etectable by analysing k-space features. Banding artefacts require
xamining both the k-space data and the image itself. In fact, in k-
pace, banding artefacts manifest as an outlier value, and in the image
omain, they appear as alternating bright and dark bands, which can
e quantified using metrics such as signal-to-noise ratio or contrast-to-
oise ratio. Zipper artefacts manifest as a series of bright and dark lines
n the image, and they can be easily characterized using features from
he imaging domain. Finally, bias artefacts can result from various fac-
ors, such as uneven sensitivity profiles, shading, or calibration errors,
equiring a combination of imaging and deep features to accurately
dentify the problem. In summary, it seems that the selection of dif-
erent features for each artefact is based on the specific characteristics
nd underlying causes, and the optimal approach for detecting each
rtefact may vary accordingly.
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5.2. Comparison against related works on dataset containing artificially
corrupted images

In this section, we present the results of the comparison of our
approach against other methods. Obtained results are reported in Ta-
ble 6 where we can see that our approach provides the highest per-
formance in all the metrics. Notable is the comparison against the
approach in Schlegl et al. (2019), which uses a generative model
to learn the normal distribution (artefacts-free images) as an alter-
native solution to our solution, which instead learns to create arte-
facts directly. In general, our result shows that augmenting the train-
ing set with the proposed synthetic artefacts increases the perfor-
mance of all approaches where it is applied. For example, we ob-
served improvements between +12.8% and +16.6% percentage points
on the approaches (Schlegl et al., 2019)+𝐒𝐛 (with no data augmen-
tation) vs (Schlegl et al., 2019)+𝐒𝐬 (with data augmentation) and
improvements between +12.3 and +18.2 percentage points on the ap-
proaches (Sadri et al., 2020)+𝐒𝐛(with no data augmentation) vs (Sadri
et al., 2020)+𝐒𝐬(with data augmentation).

5.3. Comparison with related works on real-world data

In this section, we present the results of comparing our approach
against other methods using the proposed real-world MS dataset. The
results of this experiment are reported in Table 7 and they show similar
trends of improvements obtained from the synthetic dataset. In particu-
lar, the use of our data augmentation produces improvements between
−0.5 and 1.6 percentage points on the approaches (Schlegl et al.,
2019)+𝐒𝐛(with no data augmentation) vs (Schlegl et al., 2019)+𝐒𝐬(with
data augmentation) and improvements between +7.4 to +12.5 per-
centage points on the approaches (Sadri et al., 2020)+𝐒𝐛(with no data
augmentation) vs (Sadri et al., 2020)+𝐒𝐬(with data augmentation).
Finally, the best configuration of our system improves performances
between −0.8 and 7.3 percentage points in comparison with Schlegl
et al. (2019) and between 7.2 to 13.4 percentage points in comparison
with Sadri et al. (2020). Our proposed method resulted also in an
improvement from 0.54 to 2.43, compared to a standard supervised
framework (Szegedy et al., 2016) trained with the same simulated
artefacts used for data augmentation.

The statistical significance of the results obtained from our approach
in comparison with the other approaches was assessed with a paired t-
test where the p-values are all less than 0.0001 in both the synthetic
dataset (Table 6) and the real-world MS dataset (Table 7). As for the

ablation study (Table 3), we found that only the augmentation method
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Table 6
Quantitative comparison study: Accuracy, F1, F2, Precision and Recall expressed in percentage and obtained by comparing our approach against state-of-the-art methods on the
test set from 𝐴𝐷𝑁𝐼_𝑠𝑦𝑛𝑡 (synthetic images). 𝐹 refers to the use of the proposed feature extraction method, 𝐒𝐛 indicates the use of a one-class SVM, while 𝐒𝐬 indicates the use of
a two-class SVM trained using our corrupted images. The column named ‘Augm.’ indicates whether simulated artefacts were used during training or not.

Approach Accuracy (%) F1 (%) F2 (%) Precision (%) Recall (%)

Features Classifier Augm.

F PCA-based ✗ 68.79 ± 12.29 67.69 ± 10.39 67.62 ± 10.38 67.80 ± 12.78 67.58 ± 11.82
F Autoencoder ✗ 78.66 ± 11.80 78.19 ± 9.43 77.87 ± 8.17 78.73 ± 12.30 77.66 ± 8.25
F An and Cho (2015) ✗ 82.30 ± 11.24 80.04 ± 11.64 79.36 ± 11.84 81.19 ± 11.59 78.92 ± 12.04
F Zenati et al. (2018) ✗ 79.91 ± 12.33 80.69 ± 10.37 80.69 ± 9.82 80.70 ± 12.30 80.69 ± 10.11
Schlegl et al. (2019) 𝐒𝐛 ✗ 77.03 ± 14.07 73.42 ± 23.10 71.62 ± 23.48 76.63 ± 14.97 70.47 ± 24.35
Sadri et al. (2020) 𝐒𝐛 ✗ 81.61 ± 11.95 79.20 ± 12.76 77.35 ± 13.80 82.50 ± 11.85 76.16 ± 14.59
Schlegl et al. (2019) 𝐒𝐬 ✓ 90.16 ± 15.24 88.08 ± 26.54 87.30 ± 26.59 89.43 ± 14.49 86.78 ± 26.56
Sadri et al. (2020) 𝐒𝐬 ✓ 94.67 ± 4.01 94.58 ± 4.13 94.43 ± 4.67 94.82 ± 3.26 94.34 ± 5.03
Szegedy et al. (2016) Szegedy et al. (2016) ✓ 94.23 ± 3.92 94.76 ± 4.08 94.41 ± 4.38 95.35 ± 3.03 94.18 ± 4.78
Proposed Proposed ✓ 97.91 ± 2.08 96.90 ± 3.08 96.96 ± 3.04 96.80 ± 3.16 97.00 ± 3.00
Table 7
Quantitative comparison study: Accuracy, F1, F2, Precision and Recall expressed in percentage and obtained by comparing our approach against state-of-the-art methods on the
test set from the clinical trial. 𝐹 refers to the use of the proposed feature extraction method, 𝐒𝐛 indicates the use of a one-class SVM, while 𝐒𝐬 indicates the use of a two-class
SVM trained using our corrupted images. The column named ‘Augm.’ indicates whether simulated artefacts were used during training or not.

Approach Accuracy (%) F1 (%) F2 (%) Precision (%) Recall (%)

Features Classifier Augm.

F PCA-based ✗ 83.44 ± 29.29 90.08 ± 35.34 86.35 ± 35.63 97.06 ± 3.03 84.03 ± 35.84
F Autoencoder ✗ 83.33 ± 13.65 90.35 ± 10.84 87.31 ± 13.59 95.92 ± 5.55 85.39 ± 15.21
F An and Cho (2015) ✗ 84.28 ± 16.25 90.61 ± 14.83 87.65 ± 17.37 96.01 ± 5.07 85.78 ± 18.60
F Zenati et al. (2018) ✗ 86.36 ± 17.98 91.84 ± 14.86 88.90 ± 18.77 97.18 ± 2.47 87.05 ± 20.72
Schlegl et al. (2019) 𝐒𝐛 ✗ 87.17 ± 11.30 93.00 ± 6.73 91.22 ± 8.80 96.13 ± 4.19 90.07 ± 10.14
Sadri et al. (2020) 𝐒𝐛 ✗ 83.62 ± 22.70 86.00 ± 25.87 84.76 ± 26.11 88.14 ± 25.96 83.96 ± 26.35
Schlegl et al. (2019) 𝐒𝐬 ✓ 87.57 ± 12.94 93.61 ± 8.45 92.47 ± 12.14 95.58 ± 5.15 91.72 ± 14.33
Sadri et al. (2020) 𝐒𝐬 ✓ 92.20 ± 5.29 96.00 ± 2.91 96.30 ± 3.31 95.51 ± 5.35 96.49 ± 4.33
Szegedy et al. (2016) Szegedy et al. (2016) ✓ 92.43 ± 5.19 94.89 ± 4.22 94.94 ± 4.52 94.79 ± 3.56 94.98 ± 4.09
Proposed Proposed ✓ 94.76 ± 5.36 96.37 ± 2.89 96.99 ± 1.81 95.34 ± 5.49 97.42 ± 2.02
Table 8
Computation time required to process a single scan and obtained by our approach against existing real-time solutions. We
record the computation time obtained for both feature extraction and final classification. 𝐹 refers to the use of the proposed
feature extraction method, 𝐒𝐛 indicates the use of a one-class SVM, while 𝐒𝐬 indicates the use of a two-class SVM trained
using our corrupted images.

Approach Features extraction (s) Classification (10−5 s) Total time (s)

Features Classifier

F PCA-based 0.8134 7.033 0.8135
F Autoencoder 0.8134 11.176 0.8136
F An and Cho (2015) 0.8134 5.489 0.8135
F Zenati et al. (2018) 0.8134 2.613 0.8135
Schlegl et al. (2019) 𝐒𝐬 0.2731 0.127 0.2732
Sadri et al. (2020) 𝐒𝐬 0.4489 0.127 0.4490
Proposed Proposed 0.8134 1.524 0.8136
involving simulated artefacts (S component) and the use of multi-
ple slices (2.5D) when S is used demonstrated statistically significant
improvements.

From this experiment, we also notice that all the different perfor-
mances obtained on this dataset using our approach are still very high
(in the range of [94%-98%]), confirming the capability of our approach
to generalize well on the real-world dataset. This strong performance
gives us two indications: the first is that our artificially corrupted
images look sufficiently realistic and cover the variation in artefacts
that may be expected in the real world, despite the fact that we test
on an MS dataset and we based our training on artefacts added to data
from Alzheimer’s disease datasets (ADNI1 and ADNI2). The second is
that our way to generate artefacts in 2D is a good approximation for
generating artefacts in the entire 3D volume.

In Fig. 5 we report some examples of images, from the real-world
MS clinical dataset, correctly classified by our system (best configura-
tion). In particular, we can see that our system is able to pick images
demonstrating motion artefacts (a and e) (ghosting is clearly visible),
scans demonstrating folding issues (b) (the nose is wrapped around),
scans with noise (a and c), scans demonstrating signal bias (d), and
finally, blurring (b and f) (the detail of the brain structures are here
limited).
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On the other hand, in Fig. 6 we also report some examples of
misclassification obtained on the real-world MS clinical dataset. All
these images were labelled by our experts as artefact-free but wrongly
classified by our system (best configuration) as showing artefacts. In
these cases, the images appear to have small artefacts or artefacts
outside the brain that the experts have not considered relevant. This
includes small bias imperfection (a), minimal smoothing (b), minimal
folding and reduced noise (c), and limited Gibb’s artefacts (d).

5.4. Computational time and memory requirement

Table 8 presents the computation time required to process a single
scan using each of the approaches considered in our comparison for
both feature extraction and classification. Feature extraction incurs the
highest computational cost, taking between 0.27 and 0.81 s. On the
other hand, final classification runs in the order of milliseconds with a
relatively negligible computational cost. Although Schlegl et al. (2019)
employs only a small subset of features compared to our approach
and provides the most efficient solution, our system yields superior
performance, justifying a slightly higher computational cost (0.81 s
instead of 0.27 s) that still achieves real-time processing.
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Fig. 5. Examples of scans from the real-world dataset having artefacts detected by our system (true positive). Our approach detects scans with: noise (c), motion ghosting (a and
e), blurring (b and f), folding (b) and bias (d).
Finally, the memory footprint for each component of our pipeline is
as follows: 𝐸, 𝐺 and 𝐷 require altogether 9 GB, the RES-NET requires
367 MB, the block to extract imaging features 𝜉(.) and the k-space
features 𝜓(.) require 20 MB each and the final classifier 𝑆𝑏/𝑆𝑠 100 MB
each.

6. Discussion and conclusion

In this work, we developed a semi-supervised approach to identify
artefacts in brain MRI. Current state-of-the-art artefact classifiers in
medical imaging have three key limitations: (i) supervised approaches
require a large set of data having labels at the pixel/voxel level that is
time-consuming to be obtained, (ii) unsupervised approaches trained to
learn the distribution of artefacts-free images requires a large dataset
13
of high-quality images that is hard to collect (images often have a
small level of artefact), and (iii) both supervised and unsupervised
approaches often require high computation resources (i.e. voxel-level
classification).

To overcome these limitations we developed a new pipeline, which
consists of (i) a set of new physics-based artefact generators that
are modelled and trained to learn to create artefacts, (ii) a set of
features from different domains extracted in real-time, (iii) a feature
selection block dependent on each class of artefact, and (iv) a set
of SVM classifiers. In particular, we used the artefact generators to
augment our training set. Crucially, our artefact generation can be used
to model artefacts that rarely occur. The experimental results show
that augmenting the training set with corrupted scans substantially
improves the classification performance.
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Fig. 6. Examples of misclassification obtained from our system on the real-world dataset. All these images were labelled as artefacts-free but detected by our model as having
artefacts (false positive).
We believe that in comparison with the state-of-the-art, our solution
provides the best trade-off in terms of accuracy and processing time.
Although we are only the second-best in time performance due to the
large number of features used, our accuracy in detecting the images is
higher while we still achieve real-time processing.

Finally, although we train our final classifiers in a supervised fash-
ion, our solution has the advantage of using only artefact-free images
with the benefit of requiring limited training labels (i.e. no pixel-based
artefact delineation, no labels for each class of artefact).

Our pipeline can be used to monitor the quality of MRI scans for
research applications and in future may be used in clinical applications.
Currently, quality assessment is carried out by human experts that
verify when images yield good quality. However, with the increase
in the amount of medical imaging data, manually identifying these
artefacts is onerous and expensive. Automatic solutions are likely to
replace human raters for large-scale repetitive tasks such as this one.

We see multiple further directions for future work. Firstly, our
framework can be extended to model more artefacts (e.g. magnetic sus-
ceptibility, chemical shift, incomplete fat saturation, etc.). Additionally,
we believe that our pipeline can be adapted beyond 𝑇1-weighted MRI
to other medical imaging contrasts, other organs and other imaging
modalities, allowing us to have a comprehensive system with potential
for future applications in research centres and hospitals.

To conclude, detecting artefacts in medical images presents a sig-
nificant challenge due to the ambiguity of the artefact definition,
which can be unclear even to experts and may vary depending on the
specific clinical context. Similarly, our pipeline’s training may have
led to an overly sensitive model that detects good images as possible
controversial artefacts, creating false positives. While false positives can
be inconvenient and time-consuming to review, it is still preferable to
have a system that is overly sensitive to anomalies and produces some
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false positives that can be screened out later by human experts than
to have a system that misses actual anomalies or artefacts. Missing
anomalies or artefacts can have serious consequences, particularly in
medical settings where the accurate detection of abnormalities can
impact patient diagnosis, treatment, and outcome, potentially leading
to unnecessary procedures, delayed diagnoses, or even misdiagnosis,
which can severely impact patient health.

Another limitation of our current solution is the lack of diversity in
our dataset. Since all images used for training and creating artefacts
come from ADNI, the generalization ability of our model may be
limited. To address the issue of false positives and improve the general-
ization ability of our model, we plan to explore additional techniques
such as domain adaptation in future work. By incorporating domain-
specific knowledge and adapting our model to the target domain, we
hope to improve its ability to detect artefacts accurately and reduce the
number of false positives.
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