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ABSTRACT

The ability to automatically and robustly self-verify periodicity present in time-series astronomical data is becoming more
important as data sets rapidly increase in size. The age of large astronomical surveys has rendered manual inspection of time-
series data less practical. Previous efforts in generating a false alarm probability to verify the periodicity of stars have been aimed
towards the analysis of a constructed periodogram. However, these methods feature correlations with features that do not pertain
to periodicity, such as light-curve shape, slow trends, and stochastic variability. The common assumption that photometric errors
are Gaussian and well determined is also a limitation of analytic methods. We present a novel machine learning based technique
which directly analyses the phase-folded light curve for its false alarm probability. We show that the results of this method
are largely insensitive to the shape of the light curve, and we establish minimum values for the number of data points and the

amplitude to noise ratio.
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1. INTRODUCTION

The identification of periodic variable stars is not a trivial task; well-
understood statistical measures can be used to identify variability
in time-series but not so easily periodic variability. The Stetson
variability index ‘I’ (Stetson 1996) compares the variability of each
observation with its neighbour and their errors. The Von Neumann
eta index ‘n’ (Neumann 1941) represents the ratio of the mean of
the successive differences squared, to the variance of the light curve.
Both of these methods are reasonably robust in detecting variability in
time-series. More simplistic methods, such as a comparison between
some measure of scatter (inter quartile range, standard deviation
o, or median absolute deviation) and the uncertainty, have also
been shown to be useful (Sokolovsky et al. 2017). Using tools
such as the Lomb-Scargle method (Lomb 1976; Scargle 1982)
and Phase Dispersion Minimization (PDM, Stellingwerf 1978),
we can construct a periodogram to probe for periodic variability.
Nevertheless, extrema in the periodogram are likely to be present
regardless of whether or not the source is truly periodic. These
extrema can scale with the amplitude of the periodic signal such
that periodograms of periodic sources become distinct from truly
random variability. However, in cases where a light curve features
aperiodic or secular variability, ambiguities can arise (Park et al.
2021). This is of particular issue when dealing with stars which
can feature multiple sources of variability, such as asymptotic giant
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branch stars (Templeton, Mattei & Willson 2005), whose long-term
periodicity could be undifferentiable to that of secular variability by
periodogram analysis alone. Furthermore, their values do not scale
universally (i.e. the peak value for an aperiodic source may be the
same as that for a periodic source).

In cases where extrema are not present, this could be interpreted
as an indication of insufficient periodogram coverage or the lack of
periodic variability.

Thus, we do not automatically obtain a universal measure of
periodicity from a periodogram. If a periodogram shows candidate
periods, then for smaller selections of sources, it is feasible to man-
ually verify the periodicity of each. This is typically performed by
visual inspection of the phase-folded light curve. Looking forward, in
the current and future age of survey astronomy with surveys such as
LSST (Ivezi¢ et al. 2019), ZTF (Bellm et al. 2019), Kepler (Borucki
et al. 2003), and TESS (Ricker et al. 2015), we anticipate time-
series catalogues of sizes that render sufficient manual inspection
increasingly non-viable. Hence, a reliable and robust metric for
identifying periodicity is required.

It is not a guarantee that a large survey will feature high cadence
sampling. Surveys such as VISTA Variables in the Via Lactea (VVV,
Minniti et al. 2010; Saito et al. 2012), the NEOWISE mission
of the Wide Field Infrared Survey Explorer (Wright et al. 2010;
Mainzer et al. 2014), and Gaia (Gaia Collaboration 2021) have
catalogues which can also feature large sample sizes for which
rigorous human inspection is impractical. These surveys contain
relatively few observations for each source, an issue that is also
very common in small, targeted observing projects. The sparse
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sampling makes it harder to confirm periodicity with classical
methods.

The metric for determining periodicity in a time-series is com-
monly referred to as a false alarm probability (FAP). Previous work
on determining an accurate FAP has largely been directed towards
the analysis of the constructed periodogram. These methods, such
as the method proposed by Baluev (2008), employ extreme value
statistics to determine an upper bound for the FAP of a Lomb-—
Scargle periodogram. This has the clear limitation that the method
is designed to distinguish sinusoidal variations from Gaussian white
noise, not accounting for stochastic variability, non-Gaussian errors,
imprecise error estimates, and non-sinusoidal periodic variations.
Baluev (2009) extended their earlier work to the case of multi-
harmonic light curves but this is only a partial solution to the above
issues. Bootstrapping is another commonly used technique where
the periodogram of a light curve that has been randomly shuffled N
times to create N aperiodic periodograms is compared with that of
the unshuffled light curve. The FAP in this case is the percentage of
times the peak of an aperiodic periodogram is larger than that of the
peak from the suspect periodic periodogram.

In Stellingwerf (1978), a statistical analysis of the constructed
PDM periodogram is used to obtain a metric of FAP (p-value).
This method assumes that photometric errors are perfectly estimated
Gaussians. The absence of any other aperiodic variability is also
assumed. There is also no treatment of spurious artificial periodic
signals, which can occur with unevenly and sparsely sampled light
curves. Many surveys feature these periods at varying rates of
incidence. It is of particular note for ground-based surveys with
semi-regular observing patterns, such as the VVV survey. Methods
such as PDM that bin the phase-folded light curve to construct
their periodogram are also limited by imperfections in the model.
This can become increasingly significant as sampling decreases.
This issue exists even with the binless approach to PDM presented
by Plavchan et al. (2008). Separately, heuristic methods based on
reduced x? statistics have been employed to distinguish true and
false periodic variable star candidates (e.g. Irwin et al. 2009). This
explicitly acknowledges the effects of an imperfect light-curve model
and imprecise photometric uncertainties. In this work, we show how
we can utilize neural networks to differentiate between true and false
periodic variable star candidates without the need for a prior light-
curve model.

2. METHOD

In our approach, the analysis of the light curve is achieved via a
recurrent neural network (RNN, Hochreiter & Schmidhuber 1997).
An RNN was chosen because they are designed and used for serially
correlated data, such as astronomical light curves. Previous efforts in
their use with light curves have shown their applicability and ability to
parse astronomical time-series data (Zhang & Zou 2018; Burhanudin
et al. 2021). This network is trained on pre-labelled periodic and
aperiodic phase-folded light curves of variable stars. The network
was trained for 96 epochs' with an Adam optimizer (Kingma & Ba
2014) and with 20 per cent of the training data used as a validation set.
Early stopping was used to halt training as soon as the incremental
change in the validation loss function, AL < 1077,

The model is constructed with 13 gated recurrent unit (GRU,
Cho et al. 2014) layers, 1024 nodes per layer, and a binary cross
entropy loss model. The choice of GRUs over long-short term

'An ‘epoch’ here is an iteration over the whole training set.
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memory (Hochreiter & Schmidhuber 1997) was motivated by the
calculated loss, which was lower for GRUs. The RNN was written
in KERAS (Chollet et al. 2015).

Ablative testing has shown that the specifics of the architecture of
the network are not crucial and having ‘enough’ GRUs is sufficient
for operability.

2.1 Data preparation

The input training data consist of the magnitude (m;), phase (¢;),
and change in phase (i.e. Ap; = ¢; — ¢; _ ;). Magnitude errors were
not used for this method as they commonly do not fully represent
the true photometric uncertainty. We tested various combinations of
features and removing the magnitude error consistently improved
performance with lower loss and higher accuracy. Instead, we reject
any points with a large magnitude error (m; ¢ > 0.1 in this case).
We also reject points with a high DoPHOT (Schechter, Mateo & Saha
1993) ‘Chi’ parameter, which indicates a poor fit to a stellar profile.

The input also includes a feature that is derived from an in-
terpolated fit of the time-series with 200 evenly spaced points,
performed by an inverse distance-weighted K-nearest neighbours
(KNN) regressor (Fix & Hodges 1951) which was taken from SCIKIT-
LEARN (Pedregosa et al. 2011). This was performed as a form of
smoothing in an attempt to more clearly display variability with
evenly spaced data.

A randomly variable light curve will have an interpolated fit that
tends towards a straight line. Each of these features were added after
ablative testing (i.e. features were added and removed iteratively and
the combination of features that produced the highest accuracy and
lowest loss was used). Each light curve was either cut to 200 data
points in size or padded with zeroes to a length of 200.

The same light curve is phase-shifted randomly 10 times by an
amount between 0 and 27 and each version is shown to the neural
network. This is done in an attempt to remove a dependency on the
starting position of the light curve. This is similar to the methodology
for contrastive learning (Chen et al. 2020a). We do not want the
network to care about the absolute phase value.

Alternatively, we could ensure the light curve is always ordered
from a set point in the light curve, such as the turning points. However,
we found this step to be unreliable with noisy data. A single unfiltered
outlier or otherwise erroneously extreme point would cause such an
approach to fail as the light curve’s minima could be incorrectly
identified.

3. DATA

The training data used for training the neural network FAP (NN FAP)
is a combination of both real and synthetic light curves.

In the trained model used for this paper, there were 20000 real
and 60 000 synthetic light curves with half of each corresponding to
periodic or aperiodic. This means that an FAP of 0 was given to the
10000 real and 30 000 synthetic periodic light curves and an FAP of
1 was given to the other 10000 real and 30 000 synthetic aperiodic
light curves. The synthetic light curves were split evenly across each
of the five listed equations (1-4).

Through the development of this method, it was found that a small
number of mislabelled light curves can have a large impact on the
abilities of this method (i.e. an aperiodic light curve being labelled
as periodic or vice versa).
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Figure 1. Some example real aperiodic (red, left) and periodic (green, right)
light curves used for training. The black points represent the evenly spaced
fit provided by the KNN regressor.
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Figure 2. Showing the distribution of the number of data points (N), signal-
to-noise ratio, and cycles (light curve length/period) for the training set used.
Top panel: Cycles versus the number of data points with colour axis as
signal-to-noise ratio for periodic variables in the training data. Bottom panel:
Histograms for each of these values.

3.1 Real training data

The training data are VVV light curves whose periodic nature was
supported by classification from two optical surveys. A set of 10 000
known real periodic light curves were identified by eye (by co-authors
NM, CM, and WC) after cross-matching data from the VVV survey
[and a pre-release version of its time-series catalogue (VIRAC 2
— Smith et al. 2018; VIRAC 2-8 — Smith et al., in preparation)]
with other known periodic variable star catalogues, namely the ZTF
catalogue of periodic variable stars and the ASAS-SN catalogue of
variable stars (Pawlak et al. 2019; Chen et al. 2020b). The cross-
matching was performed to generate a list of suspect periodic and
aperiodic variable stars.

All of the 10000 aperiodic light curves were identified by eye as
rejected periodic variables.

Fig. 1 shows a random selection of real training light curves and
their interpolated fit. Both the interpolated fit and the raw magnitude
measurements are given to the RNN.

Fig. 2 shows the distributions of number of data points, signal-to-
noise ratio, and number of cycles in the time-series for the training
data. The real data are drawn directly from this distribution. We show
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Figure 3. Examples of each of the forms of the light curves used for testing
and training the NN FAP.

the number of cycles as opposed to period because the neural network
is trained exclusively with phase-folded light curves. As VVV light
curves can vary in length, it is the product of the light-curve length
with the stars frequency that affects the structure of the phase-folded
light curve.

3.2 Synthetic training data: periodic light curves

Synthetic light curves were created via the use of a real light curve
with a periodic signal injected, similar to the work by Graham et al.
(2013). An overview of the steps taken is as follows:

(1) Remove all photometric information from a real light curve,
retaining only the time stamps.

(ii) Inject periodic signal into ‘blank’ light curve (see equations 1—
4).

(iii) Generate the errors by sampling from those associated with
the real photometry, using a look-up table.

(iv) Scatter light curve based on the injected error.

Training the neural network on exclusively sinusoidal light curves
could bias our FAP against Eclipsing Binaries and other more
complex light curves.

Fig. 3 shows an example of each of the forms of light curves
generated with 1000 measurements with an amplitude of 1 mag.
These equations aim to roughly (but not exactly or comprehensively)
model the common types of pulsators and binary light curves that are
seen (Molnar et al. 2022). Type 1 is a distorted sinusoid which is a
fairly standard form for synthetic light curves (Cincotta, Mendez &
Nunez 1995; Huijse et al. 2012). Types 2 and 5 are eclipsing binary-
like light curves (i.e. more than one turning point per period). Type
3 is used to mimic the common identifying feature of a contact
binary system (Kirk et al. 2016) and Type 4 is a simple sinusoid.
An important reason for using multiple shapes to train the network
is to remove as much of a dependency on light-curve shape as
possible. This is similar to the methodology for contrastive learning.
By showing the network multiple different shapes of a periodic signal
we aim to remove any biases related to its shape.

The method by which the synthetic data are created also means
that the light-curve parameters are drawn from the distributions
shown in Fig. 2. The periods used are randomly selected from a
uniform distribution between 0.1 and half the length of the light curve
[period ~U(0.1, ~1500)]. We note that the period (or number of
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cycles) used for the synthetic light curves is largely inconsequential
to how it is perceived by the RNN. The RNN is only shown the
phase fold of the light curve and so there is little difference between
otherwise identical light curves with different periods. This is also the
case for the total time range of the light curve. Provided at least one
cycle is captured, the number of measurements and signal-to-noise
are the limiting factors. This is a potential caveat for this method as
a low FAP could be assigned for a light curve with only one cycle,
which is not sufficient for the actual identification of periodicity. We
recommend only trusting the FAP from this method if the period is
less than half of the length of the light curve (i.e. at least two cycles
are captured).
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A periodic signal is added to the source light curve, and the
photometric error is derived using a KNN search of a data set con-
taining information about the photometric uncertainty of 1000000
data points from the VIRAC data base. This data set is utilized
to identify the 100 nearest neighbours, from which the mean and
standard deviation are computed.

Each data point in the light curve has its photometry () and
photometric error (m1.,;) drawn from a Gaussian constructed of these
100 nearest neighbours.

3.3 Synthetic training data: aperiodic light curves

We employ two methods to generate aperiodic light curves: a real
or synthetic periodic variable has its photometric order randomly
shuffled. The time data are left unmodified to conserve the observing
cadence of the original survey. We effectively create a light curve
of random noise with the survey’s observing pattern conserved.
This method also removes any other correlated effects, such as
photometric uncertainty, that may be present in real aperiodic
light curves. One caveat present is that by destroying correlated
effects, the neural network could differentiate between the aperiodic
and periodic synthetic light curves with greater ease. The second
method of aperiodic synthetic light curve generation involves taking
a known non-variable star (identified with a Stetson index <0.1)
and re-sampling the photometric points with a larger scatter. For
each measurement a Gaussian is constructed with u = m; and
0 >3 X Mjen, Where m; o is the measurement error. The light
curve is then re-scaled to ensure a realistic amplitude.

This method retains as much temporally correlated, but non-
periodic, information as possible compared with the random shuffle
method. An example of this is with astronomical seeing, which can
vary on long time-scales, affecting multiple measurements. With
VVV (and subsequent catalogue VIRAC 2- ) data we have instances
where bad seeing causes DoPHOT to systematically underestimate
flux in crowded fields. Such a case could appear as a non-periodic
signal in the light curve. In less crowded fields, poor weather will
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Figure 4. Examples of a synthetic sinusoidal light curve varying through the
number of data points in the light curve on the x-axis and the amplitude of
the light curve in the y-axis. The median magnitude error for each point was
0.1.

increase the uncertainty at times, creating correlated uncertainty
which may occasionally lead to a spurious aperiodic signal. This is of
particular note as the neural network is never shown the photometric
uncertainty. This method of inflating measurement error will weaken
but not fully destroy these correlated effects.

The random shuffle method enables training with non-Gaussian
aperiodic signals. Due to the limitations of these methods, it is
beneficial to also have real training data. The synthetic data has the
advantage of volume with the certainty of aperiodicity. This allows
us to construct a training data set large enough to train an RNN.

3.4 Test data

We generate three data sets to test our classifier. A real data set
was constructed by manually classifying 8000 previously unseen
real light curves taken from the same VVV survey. These 8000
sources were identified from the same ZTF and ASAS-SN periodic
catalogues that were used in training. Each light curve has a
A/& > 2, where ‘A’ is the amplitude calculated as the difference
between the 1 per cent and 99 per cent percentile after sigma clipping
and ‘6’ is calculated as the median value of the magnitude error.
The manual classification of the real light curves involved selecting
phase-folded periodic variables by eye. This was independently
repeated multiple times by three astronomers to ensure reliability.
All of the astronomers agreed on classification. Any ambiguous light
curves were removed from the set. Two synthetic data sets were
also constructed via the method described in Section 3. The data
set ‘Variable N was generated as 80000 identical synthetic light
curves with only the number of data points per light curve varied
(10 < N < 600). A median signal-to-noise ratio (SNR) (A/&) of
10 was generated for each of these. The data set ‘Variable SNR’ was
generated as 80000 identical synthetic light curves with only the
signal-to-noise ratio varied. For each light curve in the Variable SNR
data set, there were 200 data points used. Fig. 4 exemplifies both
‘Variable N’ and ‘Variable SNR’ on the x- and y-axes, respectively.
The four types of synthetic variables used were evenly split for both
of the synthetic data sets.

RASTALI 3, 224-233 (2024)
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Figure 5. Showing the ROC curve for the neural network and Baluev
methods as a binary classifier. Solid line shows real data set classified by eye.
Dashed line shows synthetic data set where the number of measurements was
varied (Fig. 8). Dotted line shows a synthetic data set where the SNR was
varied (Fig. 9).

Table 1. Showing the AUC for each data set and method.

Source NN FAP Baluev
Real 0.99 193 0.95245
Variable SNR 0.99 808 0.97 843
Variable N 0.99703 0.97393

4. EXPERIMENTAL RESULTS FROM RNN

To quantify the performance of the NN FAP we can test its ability as
a binary classifier and compare it with the commonly used Baluev
method. We use the generalized Lomb-Scargle periodogram along
with its associated FAP as described by Zechmeister & Kiirster
(2009) for our calculations of the Baluev FAP. The Baluev FAP
typically lies in a range between unity and 1072 and so the y-
axis of the Baluev FAP plots have been shown as both linear and
logarithmic scaling.

4.1 Performance measurements

The receiver operator characteristic (ROC) curve is used to measure
the capability of a binary classifier as the threshold for classification
is varied. An idealized binary classifier will have a threshold at which
the sensitivity and specificity are equal to 1.

Fig. 5 shows the true positive rate (otherwise known as the sensi-
tivity) versus the false positive rate (otherwise known as specificity).
Equation (5) shows more clearly how sensitivity and specificity are
defined:

P e TN

—— Specificity = ————— 5)
TP+ FN TN+ FP

where TP and TN are true positive and true negative, respectively,
and FP and FN are false positive and false negative, respectively.

The area under the ROC curve (AUC) can be calculated as an
evaluation metric for a binary classifier. Table 1 shows the AUC for
each tested data set. This shows that the NN FAP method has a larger
AUC for each data set than the Baluev method. This indicates that
the NN FAP method performs better in each test. However, the AUC
metric does not tell the whole story, as discussed below.

Sensitivity =
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Figure 6. Showing the FAP calculated for synthetic light curves as a function
of the number of data points ‘N’ in the x-axis and A/& in the y-axis.

Fig. 6 shows the median NN FAP as a function of N and A/&. This
was calculated for 80 000 synthetic sinusoidal periodic light curves
(i.e. generated with equation 4). The calculations were performed
witharangeof 3 < N < 100and 0.1 < A/& < 2.1. We can see
that this method appears reliable provided A/& > 1.5and N > 40.
We note that a median value does not reveal occasional failures and
we suggest a limit of N > 50 for greater reliability, based on the
results in Section4.2 and Fig. 8. A small amplitude with respect
to the uncertainty is likely to give false negatives whereas a small
number of measurements is likely to give false positives.

We also randomly selected 1000 eclipsing binary stars from
the VIVACE catalogue (Molnar et al. 2022). This catalogue was
generated from the same VVV data that this model was trained on.
All light curves were independently verified as eclipsing binary for
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Figure 7. Both FAPs versus the number of measurements in the synthetic
periodic light curve described in Section 3.4. The colours and markers corre-
late to those shown in Fig. 3. Top panel: Baluev FAP versus N. Bottom panel:
NN FAP versus N.

this test. We construct a periodogram with both Lomb-Scargle and
PDM and choose whichever period produced the lowest NN FAP.
We find that 997 of the 1000 were identified as periodic with a
FAP < 0.1. The three light curves which failed to be identified each
featured an FAP > 0.6. In each of these three light curves there was a
significantly shorter transit time paired with N < 60 measurements.
The identification of the correct periodicity can be an issue when a
light curve can look periodic when phase folded at multiple different
periods. If an eclipsing binary features a similar size and shape for
each eclipse then the NN FAP can erroneously be assigned half
the true period as the two dips in the light curve are likely to be
undifferentiable in the phase fold. This can be problematic for equal
mass eclipsing binary systems.

4.2 FAP versus N

The number of measurements used to constitute a light curve can
vary by orders of magnitude dependent on the survey. Surveys such
as Kepler and TESS feature highly sampled light curves which should
not pose an issue to any FAP technique. However, this is not always
the case and many surveys feature light curves with fewer than 100
measurements. Fig. 7 shows how the Baluev FAP and the NN FAP
vary as a function of the number of measurements ‘N’ for the
synthetic light curve described in Section 3.4. The NN FAP does
not produce any significant number of false negatives as the number
of measurements decreases to 10. The Baluev FAP has a clear trend
as a function of N and starts to increase to a problematic range of
values as N approaches ~50 measurements. It can also be seen that
the Baluev FAP has a dependency on the shape of the light curve with
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Figure 8. Both FAPs versus the number of measurements in the synthetic
light curves described in Section 3.4. The red points show the FAP assigned
to aperiodic light curves and the blue shows periodic light curves. It can be
seen that the Baluev FAP is more likely to assign false negatives whereas
the NN FAP is more likely to assign false positives. The Baluev FAP rarely
exceeds 0.1 and never approaches unity. Top panel: Baluev FAP versus N.
Bottom panel: NN FAP versus N. Each light curve here featured A/6 = 10.
The marker shapes correspond to those shown in Fig. 3 (i.e. a cross represents
“Type 1’ and a plus ‘Type 2°...).

more sinusoidal light curves assigned a lower FAP compared with
more complex light curves such as eclipsing binary shapes. This is
an issue as it can lead to incorrect conclusions on the demographics
of variable stars.

Again using the synthetic light curves described in Section 3.4, in
Fig. 8 (bottom panel) we show that the NN FAP sometimes falls to
low values for aperiodic light curves as N < 50, potentially leading
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to false positive classifications. These false positives arise as any
variable light curve with a small number of points will more easily
represent a periodic light curve at a given phase fold. Caution should
be taken with this method when searching for periodic variables with
fewer than 50 measurements. By contrast, the Baluev FAP does not
suffer from this problem but Fig. 8 (top panel) shows that it is more
likely to assign false negatives to periodic light curves within the
same range.

It is not possible to define a threshold for either method which we
can use to perfectly separate the periodic and aperiodic light curves.
Such a threshold must be set by the user depending on preference
regarding completeness and purity. The periodic light curves shown
in Fig. 8 have a maximum NN FAP of 0.791 but the minimum
NN FAP for aperiodic light curves is 0.01. The Baluev FAP has a
maximum value of 0.015 for periodic light curves but a minimum
value of 1.197 x 107" for the aperiodic light curves. The Baluev
FAP values for periodic and aperiodic light curves overlap despite
never approaching 1. The median Baluev FAP for the aperiodic light
curves when N < 100 is 0.0012 and when N < 50 it is 0.0005. Using
the widely adopted criterion for the Baluev FAP of log,o(FAP) <
—2 (Herbst et al. 2000; Koeltzsch et al. 2009; Chen et al. 2020a; Botan
et al. 2021) yields misidentification of only four of the synthetic
aperiodic light curves plotted in Fig. 8 as periodic, while incorrectly
categorising 13 849 (46.4 per cent) aperiodic stars as periodic. This
indicates that a lower threshold is more suitable for our synthetic light
curves. In Molnar et al. (2022), a Baluev FAP selection of logo(FAP)
< —10 was used to define a reliable but incomplete set of VVV light
curves for training. If we were to use that cut for these data we would
misidentify 1152 (3.86 per cent) periodic light curves as aperiodic
and 502 (1.68 per cent) aperiodic light curves as periodic. If we use
an NN FAP of 0.15 we misidentify 1 periodic light curve as aperiodic
and 400 (1.34 per cent) aperiodic light curves as periodic.

False positives will arise, or not, depending on the FAP threshold
value that is adopted. The NN FAP method performs very well in the
AUC test for Variable N (see Table 1) because, even where aperiodic
light curves have a low FAP, the periodic light curves have even
lower FAP values. This allows the binary classifier to be successful,
in principle, if the threshold FAP could be ideally selected. However,
in practice, this will rarely be possible.

4.3 FAP versus amplitude

The signal-to-noise of a light curve is a common source of erroneous
periodicity classification. Periodic variable stars can host a range of
amplitudes depending on the source of variability. As such, it is not
uncommon to investigate variable stars whose variability is similar
to, or below, the photometric uncertainty.

It can be seen in Fig. 9 that both the NN and Baluev FAP feature
a dependency on A/&. Both the NN FAP and the Baluev FAP suffer
from false negative rates as A/& — 1.5. Again, it can be seen that
the NN FAP does not suffer from a structure-dependent FAP, unlike
the Baluev FAP. This is not surprising as the Lomb-Scargle method,
to which the Baluev FAP is applied, is effectively a sinusoidal fitting
method and hence will feature such structure-based dependencies. In
Fig. 10 it is shown that neither of the methods appear to suffer from
false positives as A/& — 1.5.

The median Baluev FAP for the periodic light curves when A/6 <
1.25 is 0.011 and 0.020 for aperiodic sources. The NN FAP at the
same A/& has a median value of 0.959 for periodic sources and
0.998 for aperiodic sources. Both methods feature a significant level
of confusion at such a low A/& but they do so at different absolute
values, the Baluev FAP rarely features values larger than 0.1. If we
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Figure 9. Both FAPs versus the amplitude of a synthetic periodic light curve
divided by the median average of the photometric uncertainty. The colours
and markers are the same as that shown in Fig. 3. Top panel: Baluev FAP
versus A/6. Bottom panel: NN FAP versus A/G.

use the same value of logo(FAP) < —10 from Molnar et al. (2022) for
the Baluev FAP we misidentify 2028 (3.86 per cent) periodic light
curves as aperiodic. If we use a NN FAP of 0.15 we misidentify 1996
(3.79 per cent) periodic light curve as aperiodic. Neither method
misidentifies any aperiodic sources as periodic sources with this
selection.

5. TESTING WITH OTHER SURVEYS

Our proposed method of calculating an FAP is universal and
independent of the method of period detection. We can also show that
the NN FAP method can be applied to data that are not drawn from
the same distribution as the training data. Fig. 11 shows periodic and
aperiodic variable stars in the CRTS (Drake et al. 2009). Fig. 12 shows
them for ZTF. Fig. 13 shows them for Kepler. Fig. 14 shows periodic
variables in OGLE (Udalski, Szymariski & Szymanski 2015) data.
Each of the subplots in these figures show the assigned NN FAP.
The top-left panel of Fig. 14 shows the light curves in two filters
for the source ‘OGLE-BLG-ECL-124368’ which appears much more
clearly periodic in ‘I’ than ‘V’. The NN FAP reflects this, showing a
higher FAP for the ‘V’ band data. The ‘V’ band data does still show a
poorly sampled transit at the phase-folded period, hence the NN FAP
is above 0.5 but below 0.9. The model used to identify these variables
was trained as described in Section 3 with VVV light curves. The
periodicity of each of these stars was identified by choosing the
period which produced the lowest NN FAP extracted from a PDM
periodogram. For both the CRTS and ZTF light curves the Baluev
FAP was sufficient for differentiating between aperiodic and periodic
variable stars. For three of the Kepler light curves the Lomb—Scargle


art/rzae015_f9.eps

10725

10—50

10-7®
[l
é 10—100 B L L ] i
q>,) 1.0 ] Aperiodic [
% ] Periodic [
m 0.8 1 L
0.6 -
0.4 L
0.2 L
L B L L L L
1.0 1.5 2.0 2.5 3.0
Afa
1 1 1 1 1
1.0 4 -
0.8 1 -
A~ 0.6 -
g Periodic
[ Aperiodic
% 0.4 1 # 3
0.2 & B
0.0 1 o
T T T T T
1.0 1.5 2.0 2.5 3.0
Ala

Figure 10. Both FAPs versus the amplitude of synthetic periodic and
aperiodic light curves divided by their median average of the photometric
uncertainty. Both methods show how their reliability begins to fail at
A/& ~ 1.5. Toppanel: Baluev FAP versus A/&. Bottom panel: NN FAP
versus A/&. 200 data points were used for these light curves. The marker
shapes correspond to those shown in Fig. 3.

periodogram incorrectly assigned half of the period with a low Baluev
FAP. One of the Kepler light curves was not identified as periodic by
the Baluev FAP (bottom-left panel of periodic variables in Fig. 13).
Only one of the OGLE light curves was correctly identified as
periodic in both ‘V’ and ‘I’ by the Baluev FAP (top-right panel
in Fig. 14) although with a notably different FAP of 9 x 107 in
‘V*and 1 x 1072% in ‘I'. Each of the other OGLE light curves were
either incorrectly given half of the true period or given a Baluev FAP
indicative of aperiodic variability. The Lomb—Scargle periodogram
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Figure 11. Randomly selected examples of identified aperiodic (red, left) and
periodic (green, right) variable stars found in the CRTS survey. Each subplot
displays the assigned NN FAP as its title. The green and red points represent
the raw magnitude as a function of phase for the periodic and aperiodic light
curves, respectively. The black points represent the KNN interpolated fit to
the raw light curve. The Baluev FAP for each of the aperiodic sources was
above 2 x 107> and the periodic sources were all below 1 x 10~
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Figure 12. A random sample of identified aperiodic (red, left) and periodic
(green, right) variable stars found in the ZTF survey. With each subplot
showing the assigned NN FAP as its title. The Baluev FAP for each of the
aperiodic sources was above 2 x 10~!* and the periodic sources were all
below 1 x 10751,

also correctly identified the ‘I’ band period of the bottom-left panel
with a Baluev FAP of 9.51 x 10~'*! but failed to extract the correct
period for ‘V’ band. The Lomb-Scargle periodogram and Baluev
FAP predominantly struggled with more complex eclipsing binary-
shaped light curves.

6. FAP PERIODOGRAM

The NN FAP method presented above can be seen as something
analogous to a neural network version of the PDM method so we
can try to use it as such, i.e. for the construction of a periodogram
rather than FAP calculation. We can calculate an FAP for a set of
trial periods and the period which returns the lowest FAP should
be the correct period. This has the added benefit of generating
a periodogram on a universal scale and thus the FAP is given
along with the periodogram. Currently, this approach is limited
by its computationally demanding nature. Future developments in
computing paired with this method being modified for periodogram
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Figure 13. A random sample of identified aperiodic (red, left) and periodic
(green, right) variable stars found in the Kepler survey. Each subplot shows
the assigned NN FAP as its title. The Baluev FAP for each of the aperiodic
sources was above 2 x 10~*. The bottom left periodic variable has a Baluev
FAP of 2.746 x 1079, The other periodic sources were all below 1 x 10~43
but each had an incorrect period of half the true period.
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Figure 14. Periodic variables from the OGLE selection of variable stars.
The green points represent the light curve of the star in the “V’ filter and the
purple represent the ‘I’ filter. Three of the stars are identified as periodic in
both V and I filters. The top-left panel (OGLE-BLG-ECL-124368) was not
identified as clearly periodic at any period in “V’ and a higher NN FAP was
given (although below that found for the aperiodics in Figs 11-13). From
top-left to bottom-right panel, the Baluev FAPS are 0.967 for ‘V’ and 0.9 for
the incorrect period in ‘I’, 9 x 10790 in Vv’ and 1 x 10723 in ‘I’, 0.016 for
the incorrect period in ‘V’ and 9.51 x 10~ in “I", 0.160 in “V’, and 6.9 x
10793 for the incorrect period in ‘I’

construction purposes will make this work more practical. Fig. 15
shows the periodogram constructed for a synthetic light curve (of
Type 5, equation 2) with 200 points, an SNR of 2 and a period of
296.4 d. This periodogram took 23 min to construct and correctly
extracted the correct period (inference was run on 64 CPU cores).
This compares with the 0.2 s it took for the PDM method to construct
the same periodogram and achieve the same results (without an FAP).
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Figure 15. A periodogram constructed from the NN FAP method. The
periodogram took 23 min on 64 cores to compute. The correct minima is
identified despite the binary-like construction of the periodogram.

Both the NN periodogram and the PDM periodogram suffered from
aliasing at multiples of the true period but both also correctly assigned
the true period the largest peak value.

7. CONCLUSIONS

We have shown that utilizing the flexibility afforded by neural
networks allows a more robust analysis of light curves. Using
synthetic and real data, RNNs can be trained to produce a reliable
and universal measure of periodicity. A study of the parameter space
(namely the signal-to-noise ratio and temporal density) demonstrated
how and when this method fails in comparison with the commonly
used Baluev method. This method remains reliable where N > 50
with A/ > 10 or A/6 > 1.5 with N > 200. As we analyse
the phase-folded light curve and not the periodogram, the NN FAP
is independent of the tools used to construct the periodogram. This
method is more analogous to a universally scaled PDM and so the
network is effectively analysing the structure of the phase-folded
light curve. This has further implications for a possible method of
period detection that were explored in Section 6.

Fig. 5 and Table 1 have shown how this method outperforms
the Baluev method for both synthetic and real data. Given a data
set for candidate periodic variable stars, this method will provide a
more complete search for periodicity, at the expense of occasionally
generating more false positives for small V.

We highlight that the most challenging aspect of this method is
the data preparation which is outlined in Section 3. Care must be
given to how the training data are constructed and prepared. This
method is provided both with the ability to retrain on different data
sets as well as pre-trained with the data described above. We expect
the method to be fully functional in its pre-trained state within the
parameters outlined in this paper. Conversely, this is not the case for
the network’s architecture which was shown by ablative testing to be
relatively inconsequential to the performance.

DATA AVAILABILITY

The code used in this project is available at github.com/nialljmiller/
NN_FAP. The model and weights are hosted at www.kaggle.com/
datasets/niallmiller/nn-fap. The model, weights, and code can also be
found at https://www.nialljmiller.com/projects/FAP/FAP.html. The
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training data used will be available upon any reasonable request to
the first author.
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