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A B S T R A C T 

The ability to automatically and robustly self-verify periodicity present in time-series astronomical data is becoming more 
important as data sets rapidly increase in size. The age of large astronomical surv e ys has rendered manual inspection of time- 
series data less practical. Previous efforts in generating a false alarm probability to verify the periodicity of stars have been aimed 

towards the analysis of a constructed periodogram. However, these methods feature correlations with features that do not pertain 

to periodicity, such as light-curve shape, slow trends, and stochastic variability. The common assumption that photometric errors 
are Gaussian and well determined is also a limitation of analytic methods. We present a no v el machine learning based technique 
which directly analyses the phase-folded light curve for its false alarm probability. We show that the results of this method 

are largely insensitive to the shape of the light curve, and we establish minimum values for the number of data points and the 
amplitude to noise ratio. 

Key words: Machine Learning – Numerical Methods – Data Methods – Algorithms – Light curves – Variable Stars. 
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.  I N T RO D U C T I O N  

he identification of periodic variable stars is not a trivial task; well-
nderstood statistical measures can be used to identify variability
n time-series but not so easily periodic variability. The Stetson
ariability index ‘ I ’ (Stetson 1996 ) compares the variability of each
bservation with its neighbour and their errors. The Von Neumann
ta index ‘ η’ (Neumann 1941 ) represents the ratio of the mean of
he successi ve dif ferences squared, to the v ariance of the light curve.
oth of these methods are reasonably robust in detecting variability in

ime-series. More simplistic methods, such as a comparison between
ome measure of scatter (inter quartile range, standard deviation
, or median absolute deviation) and the uncertainty, have also
een shown to be useful (Sokolo vsk y et al. 2017 ). Using tools
uch as the Lomb–Scargle method (Lomb 1976 ; Scargle 1982 )
nd Phase Dispersion Minimization (PDM, Stellingwerf 1978 ),
e can construct a periodogram to probe for periodic variability.
ev ertheless, e xtrema in the periodogram are likely to be present

egardless of whether or not the source is truly periodic. These
xtrema can scale with the amplitude of the periodic signal such
hat periodograms of periodic sources become distinct from truly
andom v ariability. Ho we ver, in cases where a light curve features
periodic or secular variability, ambiguities can arise (Park et al.
021 ). This is of particular issue when dealing with stars which
an feature multiple sources of variability, such as asymptotic giant
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ranch stars (Templeton, Mattei & Willson 2005 ), whose long-term
eriodicity could be undifferentiable to that of secular variability by
eriodogram analysis alone. Furthermore, their values do not scale
niversally (i.e. the peak value for an aperiodic source may be the
ame as that for a periodic source). 

In cases where extrema are not present, this could be interpreted
s an indication of insufficient periodogram co v erage or the lack of
eriodic variability. 
Thus, we do not automatically obtain a universal measure of

eriodicity from a periodogram. If a periodogram shows candidate
eriods, then for smaller selections of sources, it is feasible to man-
ally verify the periodicity of each. This is typically performed by
isual inspection of the phase-folded light curve. Looking forward, in
he current and future age of surv e y astronomy with surv e ys such as
SST (Ivezi ́c et al. 2019 ), ZTF (Bellm et al. 2019 ), Kepler (Borucki
t al. 2003 ), and TESS (Ricker et al. 2015 ), we anticipate time-
eries catalogues of sizes that render sufficient manual inspection
ncreasingly non-viable. Hence, a reliable and robust metric for
dentifying periodicity is required. 

It is not a guarantee that a large surv e y will feature high cadence
ampling. Surv e ys such as VISTA Variables in the Via Lactea (VVV,

inniti et al. 2010 ; Saito et al. 2012 ), the NEOWISE mission
f the Wide Field Infrared Surv e y Explorer (Wright et al. 2010 ;
ainzer et al. 2014 ), and Gaia (Gaia Collaboration 2021 ) have

atalogues which can also feature large sample sizes for which
igorous human inspection is impractical. These surv e ys contain
elati vely fe w observ ations for each source, an issue that is also
ery common in small, targeted observing projects. The sparse
© 2024 The Author(s). 
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ampling makes it harder to confirm periodicity with classical 
ethods. 
The metric for determining periodicity in a time-series is com- 
only referred to as a false alarm probability (FAP). Previous work 

n determining an accurate FAP has largely been directed towards 
he analysis of the constructed periodogram. These methods, such 
s the method proposed by Baluev ( 2008 ), employ extreme value
tatistics to determine an upper bound for the FAP of a Lomb–
cargle periodogram. This has the clear limitation that the method 

s designed to distinguish sinusoidal variations from Gaussian white 
oise, not accounting for stochastic variability, non-Gaussian errors, 
mprecise error estimates, and non-sinusoidal periodic variations. 
aluev ( 2009 ) extended their earlier work to the case of multi-
armonic light curves but this is only a partial solution to the abo v e
ssues. Bootstrapping is another commonly used technique where 
he periodogram of a light curve that has been randomly shuffled N
imes to create N aperiodic periodograms is compared with that of
he unshuffled light curve. The FAP in this case is the percentage of
imes the peak of an aperiodic periodogram is larger than that of the
eak from the suspect periodic periodogram. 

In Stellingwerf ( 1978 ), a statistical analysis of the constructed 
DM periodogram is used to obtain a metric of FAP ( p -value).
his method assumes that photometric errors are perfectly estimated 
aussians. The absence of any other aperiodic variability is also 

ssumed. There is also no treatment of spurious artificial periodic 
ignals, which can occur with unevenly and sparsely sampled light 
urv es. Man y surv e ys feature these periods at varying rates of
ncidence. It is of particular note for ground-based surv e ys with
emi-regular observing patterns, such as the VVV survey. Methods 
uch as PDM that bin the phase-folded light curve to construct 
heir periodogram are also limited by imperfections in the model. 
his can become increasingly significant as sampling decreases. 
his issue exists even with the binless approach to PDM presented 
y Plavchan et al. ( 2008 ). Separately, heuristic methods based on
educed χ2 statistics have been employed to distinguish true and 
alse periodic variable star candidates (e.g. Irwin et al. 2009 ). This
xplicitly acknowledges the effects of an imperfect light-curve model 
nd imprecise photometric uncertainties. In this work, we show how 

e can utilize neural networks to differentiate between true and false 
eriodic variable star candidates without the need for a prior light-
urve model. 

.  M E T H O D  

n our approach, the analysis of the light curve is achieved via a
ecurrent neural network (RNN, Hochreiter & Schmidhuber 1997 ). 
n RNN was chosen because they are designed and used for serially

orrelated data, such as astronomical light curves. Previous efforts in 
heir use with light curves have shown their applicability and ability to 
arse astronomical time-series data (Zhang & Zou 2018 ; Burhanudin 
t al. 2021 ). This network is trained on pre-labelled periodic and
periodic phase-folded light curves of variable stars. The network 
as trained for 96 epochs 1 with an Adam optimizer (Kingma & Ba
014 ) and with 20 per cent of the training data used as a validation set.
arly stopping was used to halt training as soon as the incremental
hange in the validation loss function, � L < 10 −5 . 

The model is constructed with 13 gated recurrent unit (GRU, 
ho et al. 2014 ) layers, 1024 nodes per layer, and a binary cross
ntropy loss model. The choice of GRUs o v er long-short term
 An ‘epoch’ here is an iteration o v er the whole training set. 

n  

a  

a

emory (Hochreiter & Schmidhuber 1997 ) was moti v ated by the
alculated loss, which was lower for GRUs. The RNN was written
n KERAS (Chollet et al. 2015 ). 

Ablative testing has shown that the specifics of the architecture of
he network are not crucial and having ‘enough’ GRUs is sufficient
or operability. 

.1 Data preparation 

he input training data consist of the magnitude ( m i ), phase ( φi ),
nd change in phase (i.e. �φi = φi − φi − 1 ). Magnitude errors were 
ot used for this method as they commonly do not fully represent
he true photometric uncertainty. We tested various combinations of 
eatures and removing the magnitude error consistently improved 
erformance with lower loss and higher accuracy. Instead, we reject 
ny points with a large magnitude error ( m i, err ≥ 0 . 1 in this case).
e also reject points with a high DoPHO T (Schechter , Mateo & Saha

993 ) ‘Chi’ parameter, which indicates a poor fit to a stellar profile. 
The input also includes a feature that is derived from an in-

erpolated fit of the time-series with 200 evenly spaced points, 
erformed by an inverse distance-weighted K -nearest neighbours 
KNN) regressor (Fix & Hodges 1951 ) which was taken from SCIKIT-
EARN (Pedregosa et al. 2011 ). This was performed as a form of
moothing in an attempt to more clearly display variability with 
venly spaced data. 

A randomly variable light curve will have an interpolated fit that
ends towards a straight line. Each of these features were added after
blative testing (i.e. features were added and removed iteratively and 
he combination of features that produced the highest accuracy and 
owest loss was used). Each light curve was either cut to 200 data
oints in size or padded with zeroes to a length of 200. 
The same light curve is phase-shifted randomly 10 times by an

mount between 0 and 2 π and each version is shown to the neural
etwork. This is done in an attempt to remo v e a dependenc y on the
tarting position of the light curve. This is similar to the methodology
or contrastive learning (Chen et al. 2020a ). We do not want the
etwork to care about the absolute phase value. 
Alternatively, we could ensure the light curve is al w ays ordered

rom a set point in the light curve, such as the turning points. Ho we ver,
e found this step to be unreliable with noisy data. A single unfiltered
utlier or otherwise erroneously extreme point would cause such an 
pproach to fail as the light curve’s minima could be incorrectly
dentified. 

.  DATA  

he training data used for training the neural network FAP (NN FAP)
s a combination of both real and synthetic light curves. 

In the trained model used for this paper, there were 20 000 real
nd 60 000 synthetic light curves with half of each corresponding to
eriodic or aperiodic. This means that an FAP of 0 was given to the
0 000 real and 30 000 synthetic periodic light curves and an FAP of
 was given to the other 10 000 real and 30 000 synthetic aperiodic
ight curves. The synthetic light curves were split evenly across each
f the five listed equations ( 1 –4 ). 
Through the development of this method, it was found that a small

umber of mislabelled light curves can have a large impact on the
bilities of this method (i.e. an aperiodic light curve being labelled
s periodic or vice versa). 
RASTAI 3, 224–233 (2024) 
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R

Figure 1. Some example real aperiodic (red, left) and periodic (green, right) 
light curves used for training. The black points represent the evenly spaced 
fit provided by the KNN regressor. 

Figure 2. Showing the distribution of the number of data points ( N ), signal- 
to-noise ratio, and cycles (light curve length/period) for the training set used. 
Top panel: Cycles versus the number of data points with colour axis as 
signal-to-noise ratio for periodic variables in the training data. Bottom panel: 
Histograms for each of these values. 
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Figure 3. Examples of each of the forms of the light curves used for testing 
and training the NN FAP. 
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.1 Real training data 

he training data are VVV light curves whose periodic nature was
upported by classification from two optical surv e ys. A set of 10 000
nown real periodic light curves were identified by eye (by co-authors
M, CM, and WC) after cross-matching data from the VVV surv e y

and a pre-release version of its time-series catalogue (VIRAC 2
Smith et al. 2018 ; VIRAC 2- β – Smith et al., in preparation)]
ith other known periodic variable star catalogues, namely the ZTF

atalogue of periodic variable stars and the ASAS-SN catalogue of
ariable stars (P a wlak et al. 2019 ; Chen et al. 2020b ). The cross-
atching was performed to generate a list of suspect periodic and

periodic variable stars. 
All of the 10 000 aperiodic light curves were identified by eye as

ejected periodic variables. 
Fig. 1 shows a random selection of real training light curves and

heir interpolated fit. Both the interpolated fit and the raw magnitude
easurements are given to the RNN. 
Fig. 2 shows the distributions of number of data points, signal-to-

oise ratio, and number of cycles in the time-series for the training
ata. The real data are drawn directly from this distribution. We show
ASTAI 3, 224–233 (2024) 
he number of cycles as opposed to period because the neural network
s trained e xclusiv ely with phase-folded light curves. As VVV light
urves can vary in length, it is the product of the light-curve length
ith the stars frequency that affects the structure of the phase-folded

ight curve. 

.2 Synthetic training data: periodic light cur v es 

ynthetic light curves were created via the use of a real light curve
ith a periodic signal injected, similar to the work by Graham et al.

 2013 ). An o v erview of the steps taken is as follows: 

(i) Remo v e all photometric information from a real light curve,
etaining only the time stamps. 

(ii) Inject periodic signal into ‘blank’ light curve (see equations 1 –
 ). 
(iii) Generate the errors by sampling from those associated with

he real photometry, using a look-up table. 
(iv) Scatter light curve based on the injected error. 

Training the neural network on e xclusiv ely sinusoidal light curves
ould bias our FAP against Eclipsing Binaries and other more
omplex light curves. 

Fig. 3 shows an example of each of the forms of light curves
enerated with 1000 measurements with an amplitude of 1 mag.
hese equations aim to roughly (but not exactly or comprehensively)
odel the common types of pulsators and binary light curves that are

een (Molnar et al. 2022 ). Type 1 is a distorted sinusoid which is a
airly standard form for synthetic light curves (Cincotta, Mendez &
unez 1995 ; Huijse et al. 2012 ). Types 2 and 5 are eclipsing binary-

ike light curves (i.e. more than one turning point per period). Type
 is used to mimic the common identifying feature of a contact
inary system (Kirk et al. 2016 ) and Type 4 is a simple sinusoid.
n important reason for using multiple shapes to train the network

s to remo v e as much of a dependenc y on light-curv e shape as
ossible. This is similar to the methodology for contrastive learning.
y showing the network multiple different shapes of a periodic signal
e aim to remo v e an y biases related to its shape. 
The method by which the synthetic data are created also means

hat the light-curve parameters are drawn from the distributions
hown in Fig. 2 . The periods used are randomly selected from a
niform distribution between 0.1 and half the length of the light curve
period ∼U (0 . 1 , ∼1500)]. We note that the period (or number of
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Figure 4. Examples of a synthetic sinusoidal light curve varying through the 
number of data points in the light curve on the x -axis and the amplitude of 
the light curve in the y -axis. The median magnitude error for each point was 
0.1. 
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ycles) used for the synthetic light curves is largely inconsequential 
o how it is perceived by the RNN. The RNN is only shown the
hase fold of the light curve and so there is little difference between
therwise identical light curves with different periods. This is also the 
ase for the total time range of the light curv e. Pro vided at least one
ycle is captured, the number of measurements and signal-to-noise 
re the limiting factors. This is a potential caveat for this method as
 low FAP could be assigned for a light curve with only one cycle,
hich is not sufficient for the actual identification of periodicity. We 

ecommend only trusting the FAP from this method if the period is
ess than half of the length of the light curve (i.e. at least two cycles
re captured). 

ype 1. m ( t) = 0 . 5 sin 

(
2 πt 

P 

)
− B 1 sin 

(
4 πt 

P 

)

− B 2 sin 

(
6 πt 

P 

)
(1) 

Types 2 & 5. m ( t) 

= 1 ±
( 

A 1 sin 

(
2 πt 

P 

)2 

+ A 2 sin 

(
πt 

P 

)2 
) 

(2) 

ype 3. m ( t) = 

∣∣∣∣sin 

(
2 πt 

P 

)∣∣∣∣ (3) 

ype 4. m ( t) = sin 

(
2 πt 

P 

)
. (4) 

A periodic signal is added to the source light curve, and the
hotometric error is derived using a KNN search of a data set con-
aining information about the photometric uncertainty of 1000 000 
ata points from the VIRAC data base. This data set is utilized
o identify the 100 nearest neighbours, from which the mean and 
tandard deviation are computed. 

Each data point in the light curve has its photometry ( m ) and
hotometric error ( m err ) drawn from a Gaussian constructed of these
00 nearest neighbours. 

.3 Synthetic training data: aperiodic light cur v es 

e emplo y tw o methods to generate aperiodic light curves: a real
r synthetic periodic variable has its photometric order randomly 
huffled. The time data are left unmodified to conserve the observing 
adence of the original surv e y. We ef fecti vely create a light curve
f random noise with the surv e y’s observing pattern conserved. 
his method also remo v es an y other correlated effects, such as
hotometric uncertainty, that may be present in real aperiodic 
ight curves. One caveat present is that by destroying correlated 
ffects, the neural network could differentiate between the aperiodic 
nd periodic synthetic light curves with greater ease. The second 
ethod of aperiodic synthetic light curve generation involves taking 
 kno wn non-v ariable star (identified with a Stetson index < 0.1)
nd re-sampling the photometric points with a larger scatter. For 
ach measurement a Gaussian is constructed with μ = m i and 
≥ 3 × m i, err , where m i , err is the measurement error. The light 

urve is then re-scaled to ensure a realistic amplitude. 
This method retains as much temporally correlated, but non- 

eriodic, information as possible compared with the random shuffle 
ethod. An example of this is with astronomical seeing, which can 

ary on long time-scales, affecting multiple measurements. With 
VV (and subsequent catalogue VIRAC 2- β) data we have instances 
here bad seeing causes DoPHOT to systematically underestimate 
ux in crowded fields. Such a case could appear as a non-periodic
ignal in the light curve. In less crowded fields, poor weather will
ncrease the uncertainty at times, creating correlated uncertainty 
hich may occasionally lead to a spurious aperiodic signal. This is of
articular note as the neural network is ne ver sho wn the photometric
ncertainty. This method of inflating measurement error will weaken 
ut not fully destroy these correlated effects. 

The random shuffle method enables training with non-Gaussian 
periodic signals. Due to the limitations of these methods, it is
eneficial to also have real training data. The synthetic data has the
dvantage of volume with the certainty of aperiodicity. This allows 
s to construct a training data set large enough to train an RNN. 

.4 Test data 

e generate three data sets to test our classifier. A real data set
as constructed by manually classifying 8000 previously unseen 

eal light curves taken from the same VVV surv e y. These 8000
ources were identified from the same ZTF and ASAS-SN periodic 
atalogues that were used in training. Each light curve has a
/ ̄σ > 2, where ‘ A ’ is the amplitude calculated as the difference
etween the 1 per cent and 99 per cent percentile after sigma clipping
nd ‘ ̄σ ’ is calculated as the median value of the magnitude error.
he manual classification of the real light curv es involv ed selecting
hase-folded periodic variables by eye. This was independently 
epeated multiple times by three astronomers to ensure reliability. 
ll of the astronomers agreed on classification. Any ambiguous light 

urves were removed from the set. Two synthetic data sets were
lso constructed via the method described in Section 3 . The data
et ‘Variable N ’ was generated as 80 000 identical synthetic light
urves with only the number of data points per light curve varied
10 < N < 600). A median signal-to-noise ratio (SNR) ( A/ ̄σ ) of
0 was generated for each of these. The data set ‘Variable SNR’ was
enerated as 80 000 identical synthetic light curves with only the
ignal-to-noise ratio varied. For each light curve in the Variable SNR
ata set, there were 200 data points used. Fig. 4 e x emplifies both
Variable N ’ and ‘Variable SNR’ on the x - and y -ax es, respectiv ely.
he four types of synthetic variables used were evenly split for both
f the synthetic data sets. 
RASTAI 3, 224–233 (2024) 
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R

Figure 5. Showing the ROC curve for the neural network and Baluev 
methods as a binary classifier. Solid line shows real data set classified by eye. 
Dashed line shows synthetic data set where the number of measurements was 
varied (Fig. 8 ). Dotted line shows a synthetic data set where the SNR was 
varied (Fig. 9 ). 

Table 1. Showing the AUC for each data set and method. 

Source NN FAP Baluev 

Real 0.99 193 0.95 245 
Variable SNR 0.99 808 0.97 843 
Variable N 0.99 703 0.97 393 
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Figure 6. Showing the FAP calculated for synthetic light curves as a function 
of the number of data points ‘ N ’ in the x -axis and A/ ̄σ in the y -axis. 
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.  EX P ERIM ENTAL  RESULTS  F RO M  R N N  

o quantify the performance of the NN FAP we can test its ability as
 binary classifier and compare it with the commonly used Baluev
ethod. We use the generalized Lomb–Scargle periodogram along
ith its associated FAP as described by Zechmeister & K ̈urster

 2009 ) for our calculations of the Baluev FAP. The Baluev FAP
ypically lies in a range between unity and 10 −200 and so the y -
xis of the Baluev FAP plots have been shown as both linear and
ogarithmic scaling. 

.1 Performance measurements 

he receiver operator characteristic (ROC) curve is used to measure
he capability of a binary classifier as the threshold for classification
s varied. An idealized binary classifier will have a threshold at which
he sensitivity and specificity are equal to 1. 

Fig. 5 shows the true positive rate (otherwise known as the sensi-
ivity) versus the false positive rate (otherwise known as specificity).
quation ( 5 ) shows more clearly how sensitivity and specificity are
efined: 

ensitivity = 

T P 

T P + F N 

Specificity = 

T N 

T N + F P 

(5) 

where TP and TN are true positive and true ne gativ e, respectiv ely,
nd FP and FN are false positive and false ne gativ e, respectiv ely. 

The area under the ROC curve (AUC) can be calculated as an
 v aluation metric for a binary classifier. Table 1 shows the AUC for
ach tested data set. This shows that the NN FAP method has a larger
UC for each data set than the Baluev method. This indicates that

he NN FAP method performs better in each test. Ho we ver, the AUC
etric does not tell the whole story, as discussed below. 
ASTAI 3, 224–233 (2024) 
Fig. 6 shows the median NN FAP as a function of N and A/ ̄σ . This
as calculated for 80 000 synthetic sinusoidal periodic light curves

i.e. generated with equation 4 ). The calculations were performed
ith a range of 3 < N < 100 and 0 . 1 < A/ ̄σ < 2 . 1. We can see

hat this method appears reliable provided A/ ̄σ > 1 . 5 and N > 40.
e note that a median value does not reveal occasional failures and
e suggest a limit of N > 50 for greater reliability, based on the

esults in Section 4.2 and Fig. 8 . A small amplitude with respect
o the uncertainty is likely to give false negatives whereas a small
umber of measurements is likely to give false positives. 
We also randomly selected 1000 eclipsing binary stars from

he VIVACE catalogue (Molnar et al. 2022 ). This catalogue was
enerated from the same VVV data that this model was trained on.
ll light curves were independently verified as eclipsing binary for
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Figure 7. Both FAPs versus the number of measurements in the synthetic 
periodic light curve described in Section 3.4 . The colours and markers corre- 
late to those shown in Fig. 3 . Top panel: Baluev FAP versus N . Bottom panel: 
NN FAP versus N . 

t
P
W  

F  

f  

s
T  

l
p  

e
t  

u
m

4

T
v  

a
n  

t  

m  

v  

s  

n  

o  

a  

v  

t  

Figure 8. Both FAPs versus the number of measurements in the synthetic 
light curves described in Section 3.4 . The red points show the FAP assigned 
to aperiodic light curves and the blue shows periodic light curves. It can be 
seen that the Baluev FAP is more likely to assign false ne gativ es whereas 
the NN FAP is more likely to assign false positives. The Baluev FAP rarely 
exceeds 0.1 and never approaches unity. Top panel: Baluev FAP versus N . 
Bottom panel: NN FAP versus N . Each light curve here featured A/ ̄σ = 10. 
The marker shapes correspond to those shown in Fig. 3 (i.e. a cross represents 
‘Type 1’ and a plus ‘Type 2’...). 
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his test. We construct a periodogram with both Lomb–Scargle and 
DM and choose whichever period produced the lowest NN FAP. 
e find that 997 of the 1000 were identified as periodic with a

AP < 0.1. The three light curves which failed to be identified each
eatured an FAP > 0.6. In each of these three light curves there was a
ignificantly shorter transit time paired with N < 60 measurements. 
he identification of the correct periodicity can be an issue when a

ight curve can look periodic when phase folded at multiple different 
eriods. If an eclipsing binary features a similar size and shape for
ach eclipse then the NN FAP can erroneously be assigned half 
he true period as the two dips in the light curve are likely to be
ndifferentiable in the phase fold. This can be problematic for equal 
ass eclipsing binary systems. 

.2 FAP versus N 

he number of measurements used to constitute a light curve can 
ary by orders of magnitude dependent on the surv e y. Surv e ys such
s Kepler and TESS feature highly sampled light curves which should 
ot pose an issue to any FAP technique. Ho we ver, this is not al w ays
he case and many surveys feature light curves with fewer than 100

easurements. Fig. 7 shows how the Baluev FAP and the NN FAP
ary as a function of the number of measurements ‘ N ’ for the
ynthetic light curve described in Section 3.4 . The NN FAP does
ot produce any significant number of false ne gativ es as the number
f measurements decreases to 10. The Baluev FAP has a clear trend
s a function of N and starts to increase to a problematic range of
alues as N approaches ∼50 measurements. It can also be seen that
he Baluev FAP has a dependency on the shape of the light curve with
ore sinusoidal light curves assigned a lower FAP compared with 
ore complex light curves such as eclipsing binary shapes. This is

n issue as it can lead to incorrect conclusions on the demographics
f variable stars. 
Again using the synthetic light curves described in Section 3.4 , in

ig. 8 (bottom panel) we show that the NN FAP sometimes falls to
o w v alues for aperiodic light curves as N < 50, potentially leading
RASTAI 3, 224–233 (2024) 
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Figure 9. Both FAPs versus the amplitude of a synthetic periodic light curve 
divided by the median average of the photometric uncertainty. The colours 
and markers are the same as that shown in Fig. 3 . Top panel: Baluev FAP 
versus A/ ̄σ . Bottom panel: NN FAP versus A/ ̄σ . 
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o false positive classifications. These false positives arise as any
ariable light curve with a small number of points will more easily
epresent a periodic light curve at a given phase fold. Caution should
e taken with this method when searching for periodic variables with
ewer than 50 measurements. By contrast, the Baluev FAP does not
uffer from this problem but Fig. 8 (top panel) shows that it is more
ikely to assign false ne gativ es to periodic light curves within the
ame range. 

It is not possible to define a threshold for either method which we
an use to perfectly separate the periodic and aperiodic light curves.
uch a threshold must be set by the user depending on preference
egarding completeness and purity. The periodic light curves shown
n Fig. 8 have a maximum NN FAP of 0.791 but the minimum
N FAP for aperiodic light curves is 0.01. The Baluev FAP has a
aximum value of 0.015 for periodic light curves but a minimum

alue of 1.197 × 10 −15 for the aperiodic light curves. The Baluev
AP values for periodic and aperiodic light curv es o v erlap despite
ever approaching 1. The median Baluev FAP for the aperiodic light
urves when N ≤ 100 is 0.0012 and when N ≤ 50 it is 0.0005. Using
he widely adopted criterion for the Baluev FAP of log 10 ( FAP ) <

2 (Herbst et al. 2000 ; Koeltzsch et al. 2009 ; Chen et al. 2020a ; Botan
t al. 2021 ) yields misidentification of only four of the synthetic
periodic light curves plotted in Fig. 8 as periodic, while incorrectly
ategorising 13 849 (46 . 4 per cent ) aperiodic stars as periodic. This
ndicates that a lower threshold is more suitable for our synthetic light
urves. In Molnar et al. ( 2022 ), a Baluev FAP selection of log 10 ( FAP )
 −10 was used to define a reliable but incomplete set of VVV light

urves for training. If we were to use that cut for these data we would
isidentify 1152 (3 . 86 per cent ) periodic light curves as aperiodic

nd 502 (1 . 68 per cent ) aperiodic light curves as periodic. If we use
n NN FAP of 0.15 we misidentify 1 periodic light curve as aperiodic
nd 400 (1 . 34 per cent ) aperiodic light curves as periodic. 

F alse positiv es will arise, or not, depending on the FAP threshold
alue that is adopted. The NN FAP method performs very well in the
UC test for Variable N (see Table 1 ) because, even where aperiodic

ight curves have a low FAP, the periodic light curves have even
o wer FAP v alues. This allo ws the binary classifier to be successful,
n principle, if the threshold FAP could be ideally selected. Ho we ver,
n practice, this will rarely be possible. 

.3 FAP versus amplitude 

he signal-to-noise of a light curve is a common source of erroneous
eriodicity classification. Periodic variable stars can host a range of
mplitudes depending on the source of variability. As such, it is not
ncommon to investigate variable stars whose variability is similar
o, or below, the photometric uncertainty. 

It can be seen in Fig. 9 that both the NN and Baluev FAP feature
 dependency on A/ ̄σ . Both the NN FAP and the Baluev FAP suffer
rom false ne gativ e rates as A/ ̄σ → 1 . 5. Again, it can be seen that
he NN FAP does not suffer from a structure-dependent FAP, unlike
he Baluev FAP. This is not surprising as the Lomb–Scargle method,
o which the Baluev FAP is applied, is effectively a sinusoidal fitting
ethod and hence will feature such structure-based dependencies. In
ig. 10 it is shown that neither of the methods appear to suffer from
alse positives as A/ ̄σ → 1 . 5. 

The median Baluev FAP for the periodic light curves when A/ ̄σ ≤
 . 25 is 0.011 and 0.020 for aperiodic sources. The NN FAP at the
ame A/ ̄σ has a median value of 0.959 for periodic sources and
.998 for aperiodic sources. Both methods feature a significant level
f confusion at such a low A/ ̄σ but they do so at different absolute
 alues, the Balue v FAP rarely features values larger than 0.1. If we
ASTAI 3, 224–233 (2024) 
se the same value of log 10 ( FAP ) < −10 from Molnar et al. ( 2022 ) for
he Baluev FAP we misidentify 2028 (3 . 86 per cent ) periodic light
urves as aperiodic. If we use a NN FAP of 0.15 we misidentify 1996
3 . 79 per cent ) periodic light curve as aperiodic. Neither method
isidentifies any aperiodic sources as periodic sources with this

election. 

.  TESTING  WI TH  OTH E R  SURV EYS  

ur proposed method of calculating an FAP is universal and
ndependent of the method of period detection. We can also show that
he NN FAP method can be applied to data that are not drawn from
he same distribution as the training data. Fig. 11 shows periodic and
periodic variable stars in the CRTS (Drake et al. 2009 ). Fig. 12 shows
hem for ZTF. Fig. 13 shows them for Kepler . Fig. 14 shows periodic
ariables in OGLE (Udalski, Szyma ́nski & Szyma ́nski 2015 ) data.
ach of the subplots in these figures show the assigned NN FAP. 
The top-left panel of Fig. 14 shows the light curves in two filters

or the source ‘OGLE-BLG-ECL-124368’ which appears much more
learly periodic in ‘I’ than ‘V’. The NN FAP reflects this, showing a
igher FAP for the ‘V’ band data. The ‘V’ band data does still show a
oorly sampled transit at the phase-folded period, hence the NN FAP
s abo v e 0.5 but below 0.9. The model used to identify these variables
as trained as described in Section 3 with VVV light curves. The
eriodicity of each of these stars was identified by choosing the
eriod which produced the lowest NN FAP extracted from a PDM
eriodogram. For both the CRTS and ZTF light curves the Baluev
AP was sufficient for differentiating between aperiodic and periodic
ariable stars. For three of the Kepler light curves the Lomb–Scargle
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Figure 10. Both FAPs versus the amplitude of synthetic periodic and 
aperiodic light curves divided by their median average of the photometric 
uncertainty. Both methods show how their reliability begins to fail at 
A/ ̄σ ≈ 1 . 5. Top panel: Baluev FAP versus A/ ̄σ . Bottom panel: NN FAP 
versus A/ ̄σ . 200 data points were used for these light curves. The marker 
shapes correspond to those shown in Fig. 3 . 
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Figure 11. Randomly selected examples of identified aperiodic (red, left) and 
periodic (green, right) variable stars found in the CRTS surv e y. Each subplot 
displays the assigned NN FAP as its title. The green and red points represent 
the raw magnitude as a function of phase for the periodic and aperiodic light 
curv es, respectiv ely. The black points represent the KNN interpolated fit to 
the raw light curve. The Baluev FAP for each of the aperiodic sources was 
abo v e 2 × 10 −5 and the periodic sources were all below 1 × 10 −60 . 

Figure 12. A random sample of identified aperiodic (red, left) and periodic 
(green, right) variable stars found in the ZTF surv e y. With each subplot 
showing the assigned NN FAP as its title. The Baluev FAP for each of the 
aperiodic sources was abo v e 2 × 10 −14 and the periodic sources were all 
below 1 × 10 −51 . 
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eriodogram incorrectly assigned half of the period with a low Baluev 
AP. One of the Kepler light curves was not identified as periodic by
he Baluev FAP (bottom-left panel of periodic variables in Fig. 13 ).
nly one of the OGLE light curves was correctly identified as
eriodic in both ‘V’ and ‘I’ by the Baluev FAP (top-right panel
n Fig. 14 ) although with a notably different FAP of 9 × 10 −60 in
V’ and 1 × 10 −235 in ‘I’. Each of the other OGLE light curves were
ither incorrectly given half of the true period or given a Baluev FAP
ndicative of aperiodic variability. The Lomb–Scargle periodogram 
lso correctly identified the ‘I’ band period of the bottom-left panel
ith a Baluev FAP of 9.51 × 10 −141 but failed to extract the correct
eriod for ‘V’ band. The Lomb–Scargle periodogram and Baluev 
AP predominantly struggled with more complex eclipsing binary- 
haped light curves. 

.  FA P  P E R I O D O G R A M  

he NN FAP method presented abo v e can be seen as something
nalogous to a neural network version of the PDM method so we
an try to use it as such, i.e. for the construction of a periodogram
ather than FAP calculation. We can calculate an FAP for a set of
rial periods and the period which returns the lowest FAP should
e the correct period. This has the added benefit of generating
 periodogram on a universal scale and thus the FAP is given
long with the periodogram. Currently, this approach is limited 
y its computationally demanding nature. Future developments in 
omputing paired with this method being modified for periodogram 
RASTAI 3, 224–233 (2024) 
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R

Figure 13. A random sample of identified aperiodic (red, left) and periodic 
(green, right) variable stars found in the Kepler surv e y. Each subplot shows 
the assigned NN FAP as its title. The Baluev FAP for each of the aperiodic 
sources was abo v e 2 × 10 −4 . The bottom left periodic variable has a Baluev 
FAP of 2.746 × 10 −6 . The other periodic sources were all below 1 × 10 −43 

but each had an incorrect period of half the true period. 

FAP = 0.134 & 0.766 FAP = 0.003 & 0.003

FAP = 0.003 & 0.002 FAP = 0.019 & 0.018

Figure 14. Periodic variables from the OGLE selection of variable stars. 
The green points represent the light curve of the star in the ‘V’ filter and the 
purple represent the ‘I’ filter. Three of the stars are identified as periodic in 
both V and I filters. The top-left panel (OGLE-BLG-ECL-124368) was not 
identified as clearly periodic at any period in ‘V’ and a higher NN FAP was 
gi ven (although belo w that found for the aperiodics in Figs 11 –13 ). From 

top-left to bottom-right panel, the Baluev FAPS are 0.967 for ‘V’ and 0.9 for 
the incorrect period in ‘I’, 9 × 10 −60 in ‘V’, and 1 × 10 −235 in ‘I’, 0.016 for 
the incorrect period in ‘V’ and 9.51 × 10 −141 in ‘I’, 0.160 in ‘V’, and 6.9 ×
10 −65 for the incorrect period in ‘I’. 
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Figure 15. A periodogram constructed from the NN FAP method. The 
periodogram took 23 min on 64 cores to compute. The correct minima is 
identified despite the binary-like construction of the periodogram. 
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onstruction purposes will make this work more practical. Fig. 15
hows the periodogram constructed for a synthetic light curve (of
ype 5, equation 2 ) with 200 points, an SNR of 2 and a period of
96.4 d. This periodogram took 23 min to construct and correctly
xtracted the correct period (inference was run on 64 CPU cores).
his compares with the 0.2 s it took for the PDM method to construct

he same periodogram and achieve the same results (without an FAP).
ASTAI 3, 224–233 (2024) 
oth the NN periodogram and the PDM periodogram suffered from
liasing at multiples of the true period but both also correctly assigned
he true period the largest peak value. 

.  C O N C L U S I O N S  

e have shown that utilizing the flexibility afforded by neural
etworks allows a more robust analysis of light curves. Using
ynthetic and real data, RNNs can be trained to produce a reliable
nd universal measure of periodicity. A study of the parameter space
namely the signal-to-noise ratio and temporal density) demonstrated
ow and when this method fails in comparison with the commonly
sed Baluev method. This method remains reliable where N > 50
ith A/ ̄σ > 10 or A/ ̄σ > 1 . 5 with N ≥ 200. As we analyse

he phase-folded light curve and not the periodogram, the NN FAP
s independent of the tools used to construct the periodogram. This
ethod is more analogous to a universally scaled PDM and so the

etwork is ef fecti vely analysing the structure of the phase-folded
ight curve. This has further implications for a possible method of
eriod detection that were explored in Section 6 . 
Fig. 5 and Table 1 have shown how this method outperforms

he Baluev method for both synthetic and real data. Given a data
et for candidate periodic variable stars, this method will provide a
ore complete search for periodicity, at the expense of occasionally

enerating more false positives for small N . 
We highlight that the most challenging aspect of this method is

he data preparation which is outlined in Section 3 . Care must be
iven to how the training data are constructed and prepared. This
ethod is provided both with the ability to retrain on different data

ets as well as pre-trained with the data described abo v e. We e xpect
he method to be fully functional in its pre-trained state within the
arameters outlined in this paper. Conversely, this is not the case for
he network’s architecture which was shown by ablative testing to be
elatively inconsequential to the performance. 
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