

UNIVERSITY OF WEST LONDON The Career University

Event-based Flood Data Imputation for Infilling

Missing Data in Real-time Flood Warning Systems

Farzad Piadeh*, Kourosh Behzadian, Joseph P. Rizzuto

¹ School of Computing and Engineering, University of West London, UK
*: Researcher at University of west London - Farzad.piadeh@uwl.ac.uk

April 2023

Outline

01 Introduction

Concepts, necessity and gap finding

02 Methodology

Defining proposed approaches

03 Applied method for real case study

Verifying proposed approach by real case study

Points and further researches

Introduction

Urban flooding

Number of flood occurrences

In recent 50 years, floods caused:

***1,750 £ billion** economy damages

***3.7 billion people** are affected

329,000 people are killed

EGU General 2023

Cumulative social and economic loss

"Multi-Step Flood Prediction in Drainage Systems Using Time-series Data Mining Techniques", Piadeh F., Behzadian K. Alani A.M., Water Efficiency Conference, West Indies, Trinidad and Tobago, 2022.

* Solutions

Data imputation

Linear regression Kriging K-Nearest neighbourhood Copula-based Inverse distance Similar calendar

"A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems", Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476 "Development of an Artificial Intelligence-Based Framework for Biogas Generation from a Micro Anaerobic Digestion Plant", Ikechukwu O., Piadeh F., Behzadian K., Campus L., Rokiah Y., Waste Management, 2023; 158, pp. 66-75.

✤ Gaps & Aims

Research gaps

- Inability to deal with sudden shift from negative to positive data gradient (flood events)
- Inaccuracy for multistep and long period missing data
- Lack of performance in database with huge missing data
- Lack of understanding about earlier stages of rainfall or flood events

<u>Aim</u>

Event-based and external based data imputation method for infilling rainfall and water level missing data appearing in real-time operation of flood early warning systems

Method and material

Event Identification Method

+: Rainfall, net change (increase or decrease) for water depth

"The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting", Piadeh F., Behzadian K. Alani A.M., 15th UWL Doctorial Conference, London, UK, 2021

EGUGeneraly 2023

* Data Imputation Decision Framework

Email: farzad.piadeh@student.uwl.ac.uk https://doi.org/10.5194/egusphere-egu23-4524 WEST LONDON

EGUGeneraly 2023 WESST LONDON WESST LONDON WESST LONDON

Different Applied Strategies in Proposed Methodology

(A-D): at the start of database(E-H) at the end of database(I-L): at the middle of database

Key	<u>Z</u>
0	Missing data
1	Available data
-	Available Benchmark data
ΔD =	= Temporal distance of missing data from nearest identified flood even
P =	Desired maximum time step-ahead of prediction
nnz	= non-zero value of cross-covariance determination for P lags

Case study description

Benchmark methods Linear regression Kriging K Nearest neighbourhood Copula-based Inverse distance Similar calendar

EGUGeneraly 2025 WEST LONDO. WEST LONDO.

Geographical map and hydrological data of the pilot study: (a) location of stations and layout of catchment, (b) Characteristics of recorded rainfalls and (c) layout of Ruislip UDS and catchment

Results and discussion

r criterinance mateuter (ration mini) er auta impatation methods										
Selected infilling	Rainfall				Water level					
method	NF*	FE **	NF FE	Rank	NF	FE	NF FE	Rank		
The proposed method	<0.01	0.08	≅8	1	1.16	3.95	3	1		
Linear regression	< 0.01	8.77	≅877	5	1.16	63.67	55	6		
Kriging	< 0.01	1.39	≅139	3	1.19	13.54	11	2		
Nearest neighbourhood	< 0.01	3.29	≅329	4	1.33	35.50	30	4		
Copula-based	< 0.01	0.83	≅83	2	1.17	14.35	11	3		
Inverse distance	< 0.01	23.50	≅2350	6	1.34	47.59	36	5		
Similar calendar	0.3	25.07	84	7	4.35	206.09	47	7		

Performance indicator (RMSE in mm) of data imputation methods

^{*}NF: non-flood event

**FE: flood event

Performance of Data Imputation Methods in Showcase

* Performance of Data Imputation Methods in Flood Events

Conclusion

01 Flexibility

Using range of data imputation methods based on temporal location of missing data in flood events

02 External benchmark

Huge advantages in real-time operation, especially at earlier stages of water level uprising and middle stages of flooding

03 Accuracy

Significant advantages when both rainfall and water level contain missing data

uestions?

Thank You For Your Attention