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> Introduction

¢ Urban flooding

In recent 50 years, floods caused:
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“Multi-Step Flood Prediction in Drainage Systems Using Time-series Data Mining Techniques”, Piadeh F., Behzadian K. Alani A.M., Water Efficiency Conference, West Indies, Trinidad and Tobago, 2022.
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+* Solutions

Flood Event |

Realtime flood forecasting

/4 =
Mitigation Response ST Recovery

addressing to “plan and design” of]
proper strategies or actions, including
predictions, and determining suitable
constructions.

focusing on maintaining designed

plans by “implementation” of proper
actions, particularly public awareness
or running green-blue infrastructures.

planning.

[

_“évaluating” designed plans and
|related responses, to correct future

Structural approach

for water balance and flood
control.

Designing suitable construction facilities
source

Non-structural approach

occurring,

Excluding policy and strategy creation,
this part predicts event’s spreads before

T—

Rainfall fo‘recasting

Flood forecasting

- When 1s it coming?
- Where is it coming?

.........

areas?

Missing data
Connection errors
Sensor malfunctions
Sensor displacement
Maintenance
Blunders
Environment

of instruments and devices

Detection instruments || :

Better prediction methods

temporal prediction

Physically-based models
Conceptual models
Data-driven models

Data imputation
Linear regression
Kriging
K-Nearest neighbourhood
Copula-based
Inverse distance
Similar calendar

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476

“Development of an Artificial Intelligence-Based Framework for Biogas Generation from a Micro Anaerobic Digestion Plant”, Ikechukwu O., Piadeh F., Behzadian K., Campus L., Rokiah Y., Waste Management, 2023; 158, pp. 66-75.
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s Gaps & Aims

Research gaps

» Inability to deal with sudden shift from negative to positive data gradient (flood events)
¢ Inaccuracy for multistep and long period missing data
¢ Lack of performance in database with huge missing data

¢ Lack of understanding about earlier stages of rainfall or flood events

Aim
Event-based and external based data imputation method for infilling rainfall and water level

missing data appearing in real-time operation of flood early warning systems
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Method and materlal

«» Event Identification Method
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Rainfall intensity ~ Water depth
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(S2): Sudden rising flow, non-flood event (Ry): - (Wo): +
(S3): Ineffective precipitation, non-flood event (Ry): + (Wy): -
(S4): Flood event (Ry): + (Wy): +

-: No rainfall, no change for water depth
+: Rainfall, net change (increase or decrease) for water depth

“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 150 UWL Doctorial Conference, London, UK, 2021
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s Data Imputation Decision Framework
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Email: farzad.piadeh@student.uwl.ac.uk
https://doi.org/10.5194/egusphere-egu23-4524 7 - 7127
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+» Different Applied Strategies in Proposed Methodology
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Key
O Missing data
™ Available data
> Available Benchmark data
AD = Temporal distance of missing data from nearest identified flood event
P = Desired maximum time step-ahead of prediction
nnz= non-zero value of cross-covariance determination for P lags
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+»» Case study description
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' Results and discussion

s KPI Assessment

Performance indicator (RMSE in mm) of data imputation methods

Selected infilling Rainfall Water level
method NEL L /EER o Rank  NF FE L Uik
FE FE
The proposed method <0.01 0.08 =8 A 1.16 3.95 5 1
Linear regression <0.01 8.77 =877 5 1.16 63.67 55 6
Kriging <0.01 1.39 =139 3 1.19 13.54 11 2
Nearest neighbourhood <0.01 3.29 =329 4 1.33 35.50 30 4
Copula-based <0.01 0.83 =83 2 1.17 14.35 11 3
Inverse distance <0.01 23.50 =2350 6 1.34 47.59 36 5
Similar calendar 0.3 25.07 84 7 4.35 206.09 47 o
“NF: non-flood event ““FE: flood event




¢ Performance of Data Imputation Methods in Showcase

@ Proposed O Missing data @ Observation

M Nearest neighborhood MKriging M Linear regression
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¢ Performance of Data Imputation Methods in Flood Events
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Conclusion

(01 Flexibility

Using range of data imputation methods based on temporal location of missing data in flood events

()2 External benchmark

Huge advantages in real-time operation, especially at earlier stages of water level
uprising and middle stages of flooding

()3 Accuracy

Significant advantages when both rainfall and water level contain missing data
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