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In recent 50 years, floods caused:

❖1,750 £ billion economy damages

❖3.7 billion people are affected

❖329,000 people are killed

“Multi-Step Flood Prediction in Drainage Systems Using Time-series Data Mining Techniques”, Piadeh F., Behzadian K. Alani A.M., Water Efficiency Conference, West Indies, Trinidad and Tobago, 2022.
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❖ Urban flooding

Introduction
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Realtime flood forecasting
Physically-based models

Conceptual models

Data-driven models

Data imputation

Linear regression

Kriging

K-Nearest neighbourhood

Copula-based

Inverse distance

Similar calendar

❖ Solutions

“A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems”, Piadeh F., Behzadian K. Alani A.M., Journal of Hydrology, 2022; 607: 127476

Missing data

Connection errors 

Sensor malfunctions

Sensor displacement

Maintenance

Blunders

Environment

“Development of an Artificial Intelligence-Based Framework for Biogas Generation from a Micro Anaerobic Digestion Plant”, Ikechukwu O., Piadeh F., Behzadian K., Campus L., Rokiah Y., Waste Management, 2023; 158, pp. 66-75.
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❖ Gaps & Aims

Research gaps

❖Inability to deal with sudden shift from negative to positive data gradient (flood events)

❖Inaccuracy for multistep and long period missing data

❖Lack of performance in database with huge missing data

❖Lack of understanding about earlier stages of rainfall or flood events

Aim

Event-based and external based data imputation method for infilling rainfall and water level 

missing data appearing in real-time operation of flood early warning systems
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Base flow

Time span
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Falling limb

Measured data

Predicted data

Rainfall intensity

Inflection point

 Key:  

State 
 Captured data 

 Rainfall intensity  Water depth  

(S1): Dry weather, non-flood event  (R1): -   (W1): - 

(S2): Sudden rising flow, non-flood event  (R1): -  (W2): + 

(S3): Ineffective precipitation, non-flood event   (R2): +  (W1): - 

(S4): Flood event  (R2): +  (W2): + 

-: No rainfall, no change for water depth       

+: Rainfall, net change (increase or decrease) for water depth  

 

❖ Event Identification Method

“The Role of Event Identification in Translating Performance Assessment of Time-Series Real-Time Urban Flood Forecasting”, Piadeh F., Behzadian K. Alani A.M., 15th UWL Doctorial Conference, London, UK, 2021 
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마스터 제목 스타일 편집
❖ Data Imputation Decision Framework

7https://doi.org/10.5194/egusphere-egu23-4524

Email: farzad.piadeh@student.uwl.ac.uk
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(A-D): at the start of database

(E-H) at the end of database

(I-L): at the middle of database

❖ Different Applied Strategies in Proposed Methodology
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❖ Case study description

9

 

  

(b)  

 

(a) (c) 

Geographical map and hydrological data of the pilot study: (a) location of stations and layout of 

catchment, (b) Characteristics of recorded rainfalls and (c) layout of Ruislip UDS and catchment 

  Key 
 

         Ruislip UDS 

         Ruislip catchment 

area 

Benchmark methods

Linear regression

Kriging

K Nearest neighbourhood

Copula-based

Inverse distance

Similar calendar
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❖ KPI Assessment

10

Performance indicator (RMSE in mm) of data imputation methods  1 

Selected infilling 

method 

 Rainfall   Water level 

 NF*  FE** 
 𝐍𝐅

𝐅𝐄
   

Rank  NF  FE 
 𝐍𝐅

𝐅𝐄
  Rank 

The proposed method  <0.01  0.08  ≅8  1  1.16  3.95  3  1 

Linear regression  <0.01  8.77  ≅877  5  1.16  63.67  55  6 

Kriging  <0.01  1.39  ≅139  3  1.19  13.54  11  2 

Nearest neighbourhood  <0.01  3.29  ≅329  4  1.33  35.50  30  4 

Copula-based  <0.01  0.83  ≅83  2  1.17  14.35  11  3 

Inverse distance  <0.01  23.50  ≅2350  6  1.34  47.59  36  5 

Similar calendar  0.3  25.07  84  7  4.35  206.09  47  7 
*NF: non-flood event         **FE: flood event 

 2 

Results and discussion
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❖ Performance of Data Imputation Methods in Showcase
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❖ Performance of Data Imputation Methods in Flood Events
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Conclusion

Flexibility
Using range of data imputation methods based on temporal location of missing data in flood events

01

External benchmark
Huge advantages in real-time operation, especially at earlier stages of water level 
uprising and middle stages of flooding

02

Accuracy
Significant advantages when both rainfall and water level contain missing data

03
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