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ABSTRACT
The graphical user interface (GUI) in mobile applications plays a crucial role in
connecting users with mobile applications. GUIs often receive many UI design
smells, bugs, or feature enhancement requests. The design smells include text overlap,
component occlusion, blur screens, null values, and missing images. It also provides
for the behavior of mobile applications during their usage. Manual testing of mobile
applications (app as short in the rest of the document) is essential to ensuring app
quality, especially for identifying usability and accessibility that may be missed during
automated testing. However, it is time-consuming and inefficient due to the need for
testers to perform actions repeatedly and the possibility of missing some functionalities.
Although several approaches have been proposed, they require significant performance
improvement. In addition, the key challenges of these approaches are incorporating the
design guidelines and rules necessary to follow during app development and combine
the syntactical and semantic information available on the development forums. In this
study, we proposed aUI bug identification and localization approach calledMobile-UI-
Repair (M-UI-R). M-UI-R is capable of recognizing graphical user interfaces (GUIs)
display issues and accurately identifying the specific location of the bug within the GUI.
M-UI-R is trained and tested on the history data and also validated on real-time data.
The evaluation shows that the average precision is 87.7% and the average recall is 86.5%
achieved in the detection ofUI display issues.M-UI-R also achieved an average precision
of 71.5% and an average recall of 70.7% in the localization ofUI design smell.Moreover,
a survey involving eight developers demonstrates that the proposed approach provides
valuable support for enhancing the user interface of mobile applications. This aids
developers in their efforts to fix bugs.

Subjects Human-Computer Interaction, Data Mining and Machine Learning, Mobile and
Ubiquitous Computing, Operating Systems, Software Engineering
Keywords Mobile app reviews, UI bugs, User feedback, Mobile application, Deep learning,
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INTRODUCTION
User interface (UI) is crucial to modern software applications and mobile devices. It
acts as a visual bridge between the application and its users, allowing them to interact
with the software. A well-designed UI incorporates effective user interaction, clear
information architecture, and engaging visual effects. Therefore, a good GUI design
can greatly enhance an application’s usability, efficiency, and overall success which also
fosters user loyalty (Haering, Stanik & Maalej, 2021; Izadi, Akbari & Heydarnoori, 2022).
As mobile devices become more powerful and users demand more visually appealing user
interfaces, developers face difficulties during the development of complex visual effects,
i.e., animations, media embedding, and lighting. These challenges often lead to display
issues, i.e., text overlapping, missing images, and component occlusion, particularly on
different types of mobile devices called device fragmentation (Su et al., 2021; Wei, Liu &
Cheung, 2016a). The researchers have identified that most UI issues are caused by various
system settings onmobile operating systems, particularly onAndroid, e.g., different versions
of mobile operating systems are running with varying screen resolutions called Android
fragmentation (Wei, Liu & Cheung, 2016a; Gomes, da Silva Torres & Côrtes, 2023). These
issues can impact the smooth operation of the application and reduce its accessibility and
usability, resulting in a negative user experience and also loss of users as well (Liu et al.,
2020). The main motivation of this research is to provide automated solutions for such
problems. Consequently, the main aim of this research is to detect and fix UI smells to
enhance the operation of mobile applications and improve user satisfaction.

All modern applications regardless of desktop or mobile employ a graphic user interface
(GUI), also referred as a user interface (UI). This interface provides a visual platform that
facilitates communication between software applications and users.When designing a GUI,
it is essential to take into account various aspects, such as user interaction, information
architecture, and visual design elements (Miao, 2023). A well-structured GUI can make an
application easy to use, efficient, and reliable, which can have a significant impact on the
success of the application (Coppola, Morisio & Torchiano, 2017).

One could argue that the principles of design have played a significant role in the
development of modern mobile platforms that are highly popular today. For instance, the
introduction of the iPhone by Apple in 2007 brought about a revolution in the mobile
phonemarket and had a significant impact on platforms like Android. The iPhone’s success
was largely attributed to its well-designed user interface, which prioritized natural graphical
user interface and multi-touch expressions. Nowadays, the most popular mobile apps on
highly competitive app stores like Google Play and App Store focus on simplicity and
combine user-friendly designs with engaging user experiences. In fact, given the plethora
of apps that offer similar services online today, a platform design and user experience are
the distinguishing factors that determine its success or failure (Yu et al., 2023; Abi Kanaan
et al., 2023; Gomes, da Silva Torres & Côrtes, 2023).

Smartphone app development usually starts with UI/UX designers creating detailed
mock-ups of application displays using various prototyping techniques because an
efficient user interface and overall user experience are crucial for the success of the app
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Figure 1 Examples of UI display smell. Image credit: http://interactionmining.org/rico#quickdownloads
and Starzplay software house (https://starzplay.com/).

Full-size DOI: 10.7717/peerjcs.2028/fig-1

(Su et al., 2021; Su et al., 2017). Programmers face a significant challenge in implementing
more intricate UI and UX effects in mobile GUI design, such as advanced media encoding,
animations, lighting, and shadow effects. This often results in various display issues,
especially on smartphones, such as text overlapping, missing graphics, and blurry screens,
during the UI display process (Wei, Liu & Cheung, 2016a) as explained in Fig. 1.

There are over ten different versions of the Android operating system (Android
fragmentation) installed on more than 24,000 different mobile devices (device
fragmentation) that have distinct screen resolutions. Due to device and Android
fragmentation, many display issues arise in the user interface of mobile applications,
especially on Android (Wei, Liu & Cheung, 2016b; Ji et al., 2018). While these graphical
user interface (GUI) bugs in mobile apps can not directly cause functionality problems
for example app crashing and becoming completely unusable, but impact the app’s
performance, affect the user experience, and decrease the App users (White, Fraser &
Brown, 2019; Degott, Borges Jr & Zeller, 2019; Ki et al., 2019). Therefore, this research aims
to pinpoint these UI display problems.

To ensure that the UI of an app is displayed correctly, software companies have two
main options: the first one is automated testing and the second one is manual testing.
Recently researchers developed many automated testing techniques and tools, all the
developed approaches are probability-based, model-based, and learning based (Li et al.,
2019b; Pan et al., 2020) and the second option is to hire many quality assurance engineers
(QA) for app testing who can generate test cases that check major functionality of the
mobile application. However, it is very difficult to check GUI bugs by automated and
manual testing techniques. Human testers can identify only UI display issues that are
prominent and can be detected easily (Yang et al., 2021; Chen et al., 2021b). There are two
main drawbacks to these methods. Firstly, it requires a significant amount of manual effort
as testers must go through numerous pages in various interactive ways and examine how
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the UI appears on distinct operating system versions and different devices with varying
screen resolutions and screen sizes. Secondly, it can be challenging to detect minor GUI
display issues like text overlap and component occlusion manually. For the resolution of
these issues, some software development companies adopt a rapid application development
(RAD) approach (Johan et al., 2023), which involves creating software and mobile apps
very quickly through iterative methods and ongoing customer and user feedback. However,
this reactive approach to bug resolution may have already affected users and caused the
company to lose market share (Wetzlmaier & Ramler, 2017; Seaman, 1999; Jansen, 1998;
Khan et al., 2019).

We require a more proactive method to ensure the quality of the UI just before
releasing the app. This method should automatically detect potential faults in the GUI
and inform developers to address any issues. It would also be beneficial to obtain user
feedback for responsive UI assurance. Several studies on automated GUI testing have been
conducted (Ma et al., 2019; Wetzlmaier, Ramler & Putschögl, 2016; Wetzlmaier & Ramler,
2017; Machiry, Tahiliani & Naik, 2013) by periodically navigating through various sites
and performing arbitrary operations (such as clicking, scrolling, and text entry) until crash
bugs or explicit exceptions are triggered. Liu et al. (2020) presented OwlEye that can detect
user interface bugs and localize them. OwlEye adopts a convolutional neural network to
detect UI bugs from buggy screenshots of apps. The possibility of extensively deploying
the OwlEye technique is severely impacted by two main limitations. The first limitation of
OwlEye is that when it is applied for bug localization, the area that is identified by OwlEys
is usually too large, making it very difficult to properly guide the developers to fix that UI
bug. Secondly, having data collection procedure takes a long time, and it heavily depends
on GUI that have display problems. The industry also extensively uses useful automated
testing technologies such as Monkey (Liu et al., 2020; Wang et al., 2019) and Dynodroid
(Wang et al., 2020). These automated techniques, however, can only identify major crash
defects, not UI display problems that escape the system’s detection.

To address the limitations of existing studies (Liu et al., 2022;Wang et al., 2022; Liu et al.,
2020) this research introduces a novel approach called M-UI-R. This study aims to utilize
deep learning models that exploit visual information for the automatic identification and
localization of UI display bugs. This approach frames the identification of UI display bugs
as an object detection task. To achieve this research objective we utilized the region-based
convolutional neural network (Faster-RCNN) model (Ren et al., 2015). Faster-RCNN is
a deep learning model that is used for object detection which is employed to not just
recognize the screenshots with UI display bugs but also precisely locate these visual design
bugs within the screenshot. In this way, the proposed research will benefit the developers
and testers who can precisely test the graphical user interface of their mobile applications.

The contributions of this study can be highlighted as:

• We present a Mobile-UI-Repair (M-UI-R) an innovative approach utilizing a region-
based convolutional neural network (Faster-RCNN) for the detection and localization
of mobile UI design smell. As far as our measurements, this is the best approach for
smell detection.
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• M-UI-R achieves a remarkable average improvement of 26% in precision, 19% in recall,
and 21% in f-measure with respect to baseline (Zhu et al., 2021). These results indicate
that M-UI-R outperforms in the accurate detection and localization of mobile user
interface bugs for the maintenance of mobile applications. Additionally, we validate the
efficacy of our approach by conducting a survey from eight developers. The feedback
from developers indicates that the information acquired through our approach is
valuable for enhancing the UI of mobile applications.

The remaining sections of this study are organized as follows: Section ‘Literature
review’ explores related work in the field. Section ‘Motivational study’ and Section ‘UI
issues identification and localization’ approach provide a detailed explanation of M-UI-R
methodology. Section ‘Experiment design’ and Section ‘Results and analysis’ describe
the experimental design and evaluation process and also present the results. Section
‘Discussion’ presents a potential discussion of the study. Finally, Section ‘Conclusion’
concludes the article and outlines potential avenues for future research.

LITERATURE REVIEW
The mobile GUI serves as a visual connection between users and mobile applications. The
quality of the user design interface for mobile apps holds significant importance, especially
as technology becomes more pervasive in various aspects of life. Whether in domestic,
commercial, or industrial settings, humans rely on numerous software applications to
accomplish specific tasks. Therefore, it is crucial for the GUI to be responsive, easily
comprehensible, and navigable. Software industries and application developers use many
methods and tools to check UI design problems. Therefore many researchers worldwide
working to assist designers and mobile application developers on Graphical user interface
designing image features and graphical user interface auto code generation by using
computer vision based technology (Zein, Salleh & Grundy, 2016; Chen et al., 2019a; Zhao et
al., 2019; Yang et al., 2021; Chen et al., 2021a;Nguyen & Csallner, 2015). Chen et al. (2020a)
propose a novel method utilizing a deep neural network to encode visual and textual data.
Their approach aims to generate missing tags for current UI examples, enhancing their
discoverability through text-based searches. Chen et al. (2020c) investigated the constraints
and effective architecture of object detectionmethods using deep learning for identifyingUI
components. They introduced a novel top-down approach, progressing from coarse to fine
detail, which they integrated with a well-established GUI text deep learning model.Moran
et al. (2018b) assessed the adherence of implemented GUIs to the original design by
employing computer vision techniques to compare image similarities. Subsequently, their
follow-up research aimed to identify and summarize GUI alterations in evolving mobile
applications (Moran et al., 2018c). In contrast to these studies, our focus lies in identifying
GUI display anomalies to enhance overall app quality.

The study of Geel (2019) is based on the technique developed by the students at the
University of Twente enrolled in the Creative Technology (CreaTE) program. Under the
curriculum, students of CreaTE need to build a creative and innovative real-life application
in their first year. Students can write simple codes but cannot be able to deal with sizeable
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programming segments to build interactive GUIs. Processing is a subset language of Java
that CreaTE students use to achieve their target. Moreover, many researchers focus on the
design smell for processing language code and evaluate its working (Yu et al., 2023; Oliaee
et al., 2023; Xu, Zhang & Hong, 2022; Gomes, Côrtes & Torres, 2022; Chen et al., 2021b;
Li et al., 2019a; Mahajan et al., 2018). A comparison of processing novices and publicly
available code was also performed. This comparison leads to the introduction of a constant
evaluation tool that automatically detects the design smells from code. It clearly describes
how the proposed tool detects the design smells from GUI code and gives suggestions
to improve the working of GUI. Recent studies (Moran et al., 2017; Mariani, Pezzè &
Zuddas, 2018; Denaro et al., 2019; Gu et al., 2019; Chen et al., 2018; Moran et al., 2018a)
noticed the claim of other researchers about the subjectiveness of code smell detection
methods that are also very difficult to compile applications code. That studies revolves
around three key research questions. The initial inquiry explores the various techniques
accessible for detecting code smells. The second question delves into the identification
of the most effective strategies from the available resources. Lastly, the third question
focuses on visualizing the chosen techniques. The researchers conducted extensive research
focusing on code smells detected by different techniques, encompassing search-based,
metric-based, symptom-based, visualization-based, probabilistic, cooperative, and manual
approaches (Mirzaei et al., 2016; Saga et al., 2022; Chen et al., 2019b; Moran et al., 2018c;
Chen et al., 2020b). The research findings reveal that a substantial proportion of code smell
detection algorithms, primarily following search and metrics-based methodologies, lean
towards machine learning, as deduced from the comprehensive investigation performed
by the authors (Nayebi, Desharnais & Abran, 2012; White, Fraser & Brown, 2019; Chen et
al., 2019c; Feng et al., 2021). It is shown in the survey results that only 80% of selected
89 techniques can detect code smells (Ki et al., 2019; Di Nucci et al., 2018; Pecorelli et al.,
2019). Most of the techniques do not use visualization methods for the detection of UI
display issues.

The researchers deny the claim and state that it is not a problematic or trivial task to
detect code smells (Staley, 2015; Khan et al., 2023). However, there are opportunities to
improve the detection process and techniques. There should be a way to reduce subjectivity,
increase diversity, and create Oracle databases for code smell techniques for data evaluation
and visualization. The final line of defense for app quality is manual testing, supplemented
by automated GUI testing, especially in identifying usability and accessibility concerns.
However, manual testing is labor-intensive, time-consuming, and ineffective due to
repetitive tasks and the easy omission of some functionalities. Liu et al. (2022) created a
tool called NaviDroid to help guide human testers through sequential procedures that
are highlighted for more effective and efficient testing. The technique drew inspiration
from the video game Candy Crush, where players utilize colorful candies for their moves.
For NaviDroid, the two relevant states feature trigger actions situated at the edges of an
augmented state transition graph (STG). Leveraging the STG as its foundation, NaviDroid
employs dynamic programming to chart the exploration path, enhancing the runtime
GUI with visually depicted recommendation movements. This empowers testers to swiftly
navigate untested states and reduce redundancy. Automated testing substantiates that
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NaviDroid delivers exceptional coverage and efficient route planning but it only cover
navigation’s bugs of UI. NaviDroid did not include UI aesthetic problems.

Various static bug detection tools serve to ensure the proper functioning of the graphical
user interface by identifying code errors, UI bugs, and style inconsistencies (Zhao et al.,
2020; Chen et al., 2020b;Mahmud, Che & Yang, 2021). For instance, Android compatibility
issue detection is capable of flagging more than 260 types of bugs specific to Android,
covering areas such as correctness, performance, security and usability (Chen et al., 2021b).
Recent studies assist developers in adhering to style conventions and avoiding errors
in styling. Multiple surveys (Zein, Salleh & Grundy, 2016; Lämsä, 2017) have compared
various GUI testing tools for Android applications. Some testing approaches concentrate
on specific UI concerns such as rendering delays and image loading. They examined
potential issues in UI rendering and devised automated methods for their detection.
They highlighted challenges in Android app design and implementation arising from the
diverse resolutions of mobile devices. Recently, there has been a rise in the use of deep
learning-based techniques for automatic GUI testing. Unlike traditional methods that
employ dynamic program analysis to explore GUIs, these techniques (White, Fraser &
Brown, 2019; Degott, Borges Jr & Zeller, 2019) utilize computer vision methods to detect
GUI components on the screen and determine subsequent actions.

While the GUI testing methods mentioned earlier primarily focus on functional testing,
our work centers on non-functional testing specifically, GUI visual bugs that may not lead
to app crashes but can significantly impact app usability. The UI display bugs identified by
our approach often occur due to compatibility issues (White, Fraser & Brown, 2019; Ki et
al., 2019). The different variations in devices andAndroid versions havemany compatibility
issues. Covering all popular contexts manual testing is very costly and also challenging for
developers. Furthermore, unlike approaches that rely on static or dynamic code analysis, our
method solely necessitates screenshots as input. This characteristic enables our lightweight,
computer vision-based approach, which can be applied across various platforms such as
Android, iOS, and IoT devices. Web apps are also accessed on devices that have diverse
screen widths and present UI bugs. We are also considering these web UI display bugs in
our research. In contrast to web apps, Android apps present a wider array of UI display
challenges, such as text overlap, missing images, component occlusion and null values
often occurring in smaller areas. Consequently, our approach employs computer vision
for detecting and localization of user interface display bugs and also test the performance
of M-UI-R on different platforms.

MOTIVATIONAL STUDY
We carried out a thorough study to better understand user-interface display problems or
visual smell in real-world situations. In order to improve our method for identifying these
flaws in UIs, the study set out to ascertain the prevalence and particular types of UI display
difficulties that exist.
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Data collection
We obtained a dataset for our study from three different platforms. The first and
main dataset which publicly available for research and development called Rico dataset
(http://interactionmining.org/rico#quick-downloads) (Deka et al., 2017) which is used
for training and testing purposes. The second one is the crowd-sourcing platform
Baidu (https://baidu.com). It is also the largest platform where users test various mobile
applications. The platform’s employees are given jobs to test the applications, and then
submit reports outlining their testing and observations made during testing. Between
January 2021 and August 2023, we collected 1,443 of these testing tasks for Android mobile
applications that were documented in our dataset. The testing assignment required the
employees to provide several reports explaining the testing procedure as well as images
of the user interface for the program. This dataset was chosen because it contains both
screenshots of the user interface and explanations of UI bugs or problems that were
discovered during testing. This makes it easier for us to search and examine any issues in
the UI having display issues. The third platform is software houses which inminor in count.
We consider mobile applications that have more than 5,000 downloads and at least have
more than 4.3 star ratings from several areas, including news, entertainment, health, media
and finance for example StarzPlay, Perfect Piano, Secure VPN, MediaFire and CEToolbox.
We collected 217 UI screenshots from software houses having different UI display issues.
In total, we collected 1660 UI screenshots having different UI bugs. These all UI shots were
a part of the validation and real-time testing of the M-UI-R approach.

Categories and visual understandings of UI design smell
There are several categories of UI display issues for example navigation problems,
component occlusion, text overlap, missing image, null values, blur screen, background
image size that make foreground button text invisible, inappropriate button and icon size.
The bugs other than component occlusion, text overlap, null values and missing images
can be solved by following the design guidelines of application UI development (Yang
et al., 2021). However, the targeted UI bugs (component occlusion, missing images, null
values and text overlap) can not be identified by following the design rules. The respective
UI bugs as explained in Fig. 2 and Table 1. There are multiple reasons for the selection of
these bugs for example impact on user experience, frequency of occurrence and also these
bugs have negative effects on the usability and functionality of mobile applications. Recent
studies (Wang et al., 2022; Ali et al., 2024) explored UI bugs but they performed analysis on
user reviews and feedback available on relevant forums such as Google Play and App Store
(https://play.google.com/console/about/reviews/). They used textual features and reported
these bugs. These are the factors that motivated us to select these visual design bugs for this
research.

The above factors illustrate the severity of GUI bugs and also motivate us to design
an automatic approach to successfully identify and locate these UI bugs. A commonly
utilized technique for bug detection in mobile applications is to perform program analysis,
building of new rules, code rewriting for different platforms such as Android and iOS and
customization of code to ensure compatibility on different mobile devices (for example
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Figure 2 Four different types of UI display smell. Image credit: http://interactionmining.org/rico#
quickdownloads and Starzplay software house (https://starzplay.com/).

Full-size DOI: 10.7717/peerjcs.2028/fig-2

Table 1 Dataset statistics. The bold indicates the significance of proposed approach.

Smell category Train Test Validation

Text overlap 6,400 800 800
Component occlusion 6,400 800 800
Missing images 6,400 800 800
Null values 6,400 800 800
Total 25,600 3,200 3,200

OPPO, Samsung, etc.). This process is time-consuming and labor expensive. Especially the
task of analyzing all possible display problems and designing their detection rules is not
easy.

We examined the screenshots and corresponding JSON files for these four categories
of UI bugs. We discovered that text overlap, component occlusion and null value bugs
can be identified by analyzing the component information extracted from JSON files
(such as component text and coordinates of relevant components). We performed static
analysis of JSON file data to identify these three types of bugs using static analysis of
XML files. For text overlap analysis we perform analysis of all text views if the coordinates
of any two text views overlap then there is a bug same as for component occlusion the
coordinates of the component are analyzed if there is an intersection between any two
components coordinates then component occlusion bug existed between them. Null value
bug identification is very easy, we just examine text of the component if there is ‘‘null’’ text
then it is a bug.

Furthermore, the static analysis approaches have many limitations. In certain scenarios,
it becomes very challenging to detect these UI bugs just by performing the simple analysis
of JSON files. For instance, in the case of component occlusion (as illustrated in Fig. 3),
the font size information is not available in the JSON file, making it impossible to detect
this bug where the font size is incompletely displayed in an EditText. Additionally, as
depicted in Fig. 3 again, elements such as dialog box, toolbar and spinner may overlay the
component, creating interference in the detection process. Similarly, for text overlap issues,
there is potential interference from component occlusion. Regarding null value problems,
the text extraction process may yield numerous null values, many of which stem from
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Figure 3 Examples of undetectable UI display smell. Image credit: http://interactionmining.org/rico#
quickdownloads and Starzplay software house (https://starzplay.com/).

Full-size DOI: 10.7717/peerjcs.2028/fig-3

issues during JSON file retrieval rather than actual UI display problems. This introduces
considerable noise into the bug detection process.

Considering this perspective, it is valuable to implement efficient, fast and versatile
method for detecting UI display bugs. Drawing inspiration from the fact that humans can
recognize these display issues visually, we suggest identifying these problematic screenshots
using a visual understanding technique that mimics the human visual system. Since UI
screenshots can be obtained easily (either manually or automatically) and generally do not
exhibit significant variations across apps from various platforms or devices, our computer
vision-based approach offers greater flexibility and ease of implementation.

UI ISSUES IDENTIFICATION AND LOCALIZATION APPROACH
This article introduces the concept of Mobile-UI-Repair (M-UI-R) which is designed
to identify and pinpoint UI display problems by using screenshots of the tested mobile
applications. M-UI-R’s function is to automatically detect and identify these issues and
determine their location on the user interface of the application. When the user presents a
UI screenshot to M-UI-R seamlessly combines detection and localization capabilities. By
employing visual comprehension, it identifies screenshots linked to UI display problems
and marks the specific problem areas using bounding boxes. This aids developers in
efficiently addressing and resolving these bugs.

Since visual cues often reveal UI display problems, we have chosen to utilize the region-
based convolutional neural network (Faster-RCNN) framework introduced in 2015 (Ren
et al., 2015). This is a deep learning-based object detection framework. That framework
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Figure 4 UI smell detection and localization approach.
Full-size DOI: 10.7717/peerjcs.2028/fig-4

particularly demonstrated its efficiency in detecting objects within the realm of computer
vision. The architecture of our proposed M-UI-R object detection model is presented in
Fig. 4. It has three key components: the first one is feature extraction by using a network
(ResNet50) which is a deep learning model used for image classification (Koonce, 2021),
the second component is regional proposal network (RPN) module that is used to generate
region proposals or candidate bounding boxes for objects in an image, and the third and
final module is Region of Interest (ROI) pooling module. Faster-RCNN utilizes this ROI
pooling module to extract fixed-size features from feature maps that are already extracted
by convolutional layers. These components resize the given screenshot into a specific size
and dimension represented as ‘‘width(w) x height(h)’’ and then standardize the image. After
that, these screenshots are input into the convolutional neural network ResNet50 (Jian et
al., 2016). The convolutional layer comprises learnable filters that function as parameters.
The major objective of these convolutional operations is to extract the distinct features
from the input (a process known as feature extraction). Following the convolutional layer,
the UI screenshots are transformed into a feature set called a feature graph. As the network’s
depth increases, the accuracy increases in the beginning and then rapidly declines. This
phenomenon often leads to issues of exploding gradients and degradation.

This issue arises due to the gradients moving backward through the layers, and through
repeatedmultiplicative operations, the gradient can become extremely small. Consequently,
as the network’s depth increases, its performance tends to reach a saturation point or even
decline precipitously. To address this challenge, ResNet50 introduces the notion of residual
errors. It uses a deep residual learning approach to overcome the degradation issue.
ResNet50 explicitly aligns these layers using a residual mapping technique rather than each
layer to directly match a desired mapping. We use ResNet50 to derive the feature map,
which is then input into the Region Proposal Network (RPN) module. The RPN receives
a feature map as input, which may be of any size, and outputs three rectangular object
recommendations, each of which is accompanied by a score indicating how likely it is to
contain an object. A sliding 3x3 size window is used to navigate the feature map in order
to do this.

A series of nine anchors are created for the center of each window during the traversal
process. This takes into consideration various ratios and scales, specifically 1:2, 1:1, and 2:1.
Subsequently, each anchor undergoes classification as foreground or background through
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a fully connected technique, and initial estimates for bounding boxes are also generated.
These anchors are then refined using these bounding box estimations, resulting in more
precise and accurate suggestions.

Next, we direct these refined anchors to the ROI pooling layer for the computation
of proposal feature maps. This is achieved by utilizing the feature map obtained during
the feature extraction phase along with the proposals generated by the RPN module.
Subsequently, these proposal feature maps are directed to the categorization module.
Employing fully connected neural networks (FC) in conjunction with a softmax layer, this
module allocates each recommendation to a specific category. These categories encompass
component occlusion, missing images, text overlap, and missing values. The outcome is a
probability vector that illustrates the probability of each category occurrence.

Simultaneously, employing the bounding box expression once more, we determine the
positional offset of each proposal. This offset information proves valuable in refining the
accuracy of target detection frames, allowing for more precise localization of the identified
issues.

EXPERIMENT DESIGN
Research questions
• Research question 1: How effective is our M-UI-R approach in the detection of UI
display bugs?
• Research question 2: How effective is our M-UI-R approach in the localization of UI
display bugs?
• Research question 3: Is the information extracted by using our M-UI-R approach useful
for improving mobile applications?

Experimental setup
Since our Proposed approach ‘‘M-UI-R’’ is fully automated and we used an already
published dataset called Rico dataset (Deka et al., 2017). We also collected data from
crowd-sourcing platforms and software houses for real-time analysis of the proposed
approach. To create a balanced dataset we used an equal number of images (screenshots)
from each category. To make our approach effective we chose 8,000 screens from every
category and in total we used 32,000 screens for analysis, as shown in Table 1. Among these
32,000 half are positive and half are negative, positive means without bugs and negative
means with bugs. we used 80% data as a training dataset and 20% for testing and validation.

In addition to checking the real-time performance of our approach, we employed on
real-time dataset obtained from crowd-testing apps. This dataset includes 800 screenshots
including 400 buggy and 400 without bugs for testing.We exploited 5-fold cross-validation.

Baselines
We conducted a comparison between our M-UI-R approach and five baseline methods
that combine machine learning and deep learning techniques. This was done to emphasize
the advantages of our proposed approach. Among the baselines, three employ machine
learning techniques to extract visual effects from the screenshots and subsequently apply
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learning methods for categorization. The remaining two baseline approaches directly
employ deep learning concepts, using artificial neural networks for classification tasks.
Our primary focus is to elucidate the feature extraction procedure utilized in machine
learning-based techniques.

The scale invariant feature transform (SIFT) (Lowe, 2004): represents a widely used
method for extracting features. It identifies and characterizes local features within an image.
This technique isolates intriguing points on an object to generate a feature description that
remains unaffected by uniform scaling, orientation variations, and changes in illumination.

Speeded-up robust features (SURF) (Bay, Tuytelaars & Van Gool, 2006): represents
an enhancement of the SIFT technique. Within SURF, the Hessian blob detector
is approximated using integer values. This approximation can be achieved with the
assistance of a precomputed integral image, requiring only three integer operations for its
computation.

The oriented fast and rotated brief (ORB) (Rublee et al., 2011): this technique
characterized by its speed in both feature point extraction and description, is detailed
in the ORB article. ORB builds upon the foundation of BRIEF, a swift binary descriptor.
Notably, ORB incorporates rotation invariance and robustness against noise interference.
Following this, we apply four widely used machine learning methods utilizing these
extracted features: support vector machine (SVM) (Kotsiantis, Zaharakis & Pintelas, 2007),
k-nearest neighbor (KNN) (Sumiran, 2018), naive Bayes (NB) (Kotsiantis, Zaharakis &
Pintelas, 2007), and random forests (RF) (Breiman, 2001). These methods are employed to
classify screenshots depicting UI display issues.

MLP (Zhu et al., 2021; Driss et al., 2017): the multilayer perceptron (MLP) forms a
feedforward artificial neural network. This network architecture comprises an input layer,
hidden layers, and an output layer. Neurons within this structure operate with a non-
linear activation function similar to the rectified linear unit (ReLU). During the training
process, the connection weights are adjusted while considering the output’s deviation from
the ground truth. In our approach, we employ an eight-layer neural network with the
following neuron counts in each layer: 190, 190, 128, 128, 64, 64, 32, and 2.

OwlEye (Liu et al., 2020): OwlEye utilizes a convolutional neural network (CNN) as
its foundation to recognize the screenshots containing UI display bugs. Additionally, it
employs Gradient weighted Class Activation Mapping function (Grad-CAM) to pinpoint
the areas where UI design issues occur.

Evaluation metrics
We employ three commonly used evaluation metrics: precision, recall, and F1-score, to
assess the effectiveness of our proposed research in addressing the challenges outlined in
RQ1. These metrics find widespread application in the domains of pattern recognition
and image classification (Zein, Salleh & Grundy, 2016; Chen et al., 2019a). A higher value
always indicates good performance.

Precision and recall are typically calculated by aggregating the counts of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). Within the context
of issue identification, TP corresponds to correctly labeled as buggy during prediction, FN
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to inadvertently mislabeled non-bug images as buggy, TN to correctly identified normal
screenshots, and FP to incorrectly labeled as non-buggy screenshots.

Precision signifies the ratio of correctly predictedUI display issue-containing screenshots
to all the screenshots predicted as buggy:

Precision=
TP

TP+FP
. (1)

Recall denotes the ratio of accurately predicted buggy screenshots fromall the screenshots
that genuinely exhibit UI display issues.

Recall =
TP

TP+FN
. (2)

The F1-score (also known as F-measure or F1) represents the harmonic average of
precision and recall, effectively combining both of the aforementioned metrics.

F−measure=
2×Precision×Reccall
Precision+Recall

. (3)

For issue localization, we utilize two frequently employed evaluation metrics such as
average precision (AP) and average recall (AR) which are commonly used in the context
of object detection (Ren et al., 2015). These metrics are applied to assess the efficacy of our
proposed approach in addressing the localization challenges described in RQ2. AP and AR
offer a more precise and comprehensive evaluation of M-UI-R localization capabilities.
Larger values consistently denote improved performance. While precision and recall are
analogous in image categorization, AP and AR serve distinct evaluation purposes.

We start by selecting prediction boxes with confidence values exceeding 0.55 (Ren et al.,
2015). Subsequently, we assess the overlap between the predicted UI visual smelly region
and the actual smelly region by using the intersection over union (IoU) ratio. This ratio
is calculated using the following formula: IoU equals the intersection of the predicted
UI smelly region and the actual UI smelly region divided by the union of these two. IoU
effectively addresses coverage issues. The TP refer to the count of identification boxes with
an IoU of 0.55 or higher. The same false positives encompass detection boxes, including
redundant ones identified within the same ground truth box, that have an IoU less than
0.55. The term FN represents the number of ground truth boxes that are not detected.

RESULTS AND ANALYSIS
UI smell detection performance (research question 1)
Table 2 presents the initial assessment of our proposed Mobile-UI-Repair (M-UI-R)
approach, both in terms of fault detection and its performance across four distinct types
of display issues of mobile UI within the training dataset and the real-world dataset
(collected from crowd-sourcing and software houses). Figure 5 represents the precision
and recall performance of UI bug detection on different size of training data. M-UI-R
attains an average precision (AP) of 0.877 in the training dataset, denoting that 87.7%
(702 out of 800) of the predicted problematic screenshots genuinely exhibit UI display
faults. Furthermore, the average recall (AR) stands at 0.865, signifying that M-UI-R adeptly
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Table 2 UI smell detection performance (In %). The bold indicates the significance of proposed ap-
proach.

Smell category Precision Recall F-measure

Text overlap 91.9 83.7 87.6
Component occlusion 82.5 77.8 80.1
Missing images 89.2 90.7 89.9
Null values 87.3 93.8 90.4
Average 87.7 86.5 87.1

Figure 5 Precision and recall result on different training dataset.
Full-size DOI: 10.7717/peerjcs.2028/fig-5

identifies 86.5% (692 out of 800) defective screenshots. In the real-world dataset, M-UI-R
yields an average precision of 0.856. This signifies that, on average, 85.6% percent (186 out
of 217) of the identified screenshots with UI display faults do indeed exhibit such issues.
The average recall for the real-world dataset stands at 0.843, highlighting that M-UI-R
effectively detects 84.3% (183 out of 217) of the problematic screenshots.

Even though M-UI-R underwent training due to a very small dataset that’s why its
average precision and recall on the real dataset were slightly lower, measured at 0.021 and
0.022, respectively, compared to those in the training dataset. This observation serves to
validate the effectiveness of our M-UI-R system.

We shift our attention to the upper section of Table 2, where we delve into the
performance metrics for each distinct category of UI display difficulties. It is worth
highlighting that the precision and recall measurements for all four categories are quite
commendable. While the lowest recorded precision is 82.5% and the recall value is 77.8%,
respectively, the highest precision value is 91.9% and the recall value is 93.8%. Same like
the ‘‘null value’’ category of UI smell stands out with the highest F-measure, showcasing a
remarkable balance between precision (0.87) and recall (0.93). This observation could be
attributed to the recurring nature of null value issues in screenshots, which often makes
identifying the problematic areas relatively straightforward. In contrast, the ‘‘component
occlusion’’ category of UI smell attained the lowest value of precision and F-measure
respectively. This distinction is due to the diversified pattern of each category of bug, as
well as the relatively smaller size of the buggy area for example in the case of component
occlusion the buggy area is only 8.5%. While in case of missing images, it is visible and can
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be identified easily. In future work, we will try to improve the identification and localization
performance with image magnification.

Furthermore, a detailed analysis of screenshots that were erroneously labeled as bug-free
has been carried out, and illustrative instances are explained in motivational study section.
These images often consist of very few problematic regions that are challenging to discern,
even for human observers. Our upcoming efforts will concentrate on incorporating
attention mechanisms and image magnification techniques to enhance the detection
performance for such types of screenshots.

Issue localization performance (research question 2)
Illustrations showcasing our problem localization are displayed in Fig. 6, concentrating on
the precise positions of the identified bugs. OwlEye (Liu et al., 2020) localization outcomes
are visualized as heat maps, prompting us to employ image binarization for delineating the
bounding box encompassing the highlighted region within the heat map. This facilitates
a direct comparison of its efficacy with the novel approach proposed by M-UI-R. The
efficiency of M-UI-R problem localization is outlined in Table 3. The average values for
issues localization for real and testing datasets are AP (average precision) and AR (average
recall) achieved by M-UI-R are 71.5% and 69.7%, respectively.

Let us now thoroughly examine the performance of problem localization for each
grouping ofUI display problems. Across all four types, bothAP andARdemonstrate notably
high values.Within the real dataset, the lowest recorded average precision and average recall
stand at 67.3% and 65.5%, respectively. Notably, the ‘‘missing image’’ category showcases
the most outstanding performance, displaying statistically significant AP (75.7%) and
AR (74.5%) values. This could be attributed to the substantial and conspicuous buggy
regions present in screenshots with missing image problems. Conversely, the ‘‘component
occlusion’’ category displays comparatively lower performance, with AP and AR values of
71.5% and 69.5%, respectively. This discrepancy could be attributed to the significantly
smaller buggy regions found within this category.

As depicted in Fig. 6, the red bounding box represents the ground truth data, whereas
the same bounding box represents the prediction. While the projected bounding box
size might be slightly larger than the actual one, leading to an IoU value below 0.55, the
indicated buggy area is mostly accurate. This offers valuable insights to developers.

It is important to note that the differing assessment criteria significantly contribute to
baseline considerably poorerAP andARoutcomes. In prior studies, participantswere tasked
with evaluating whether the localized region by OwlEye (Liu et al., 2020) coincided with
the actual issue area, serving as a measure of UI display issue localization. The highlighted
problematic area was required to share at least 45% of its similarities with the real issue
region, whereas AP and AR metrics necessitate an IoU area exceeding 0.55. Notably, we
observe three instances where AP/AR metrics suggest lower localization precision, yet
human evaluation indicates strong performance. In the initial case, OwlEye highlights only
one out of three potential issue sites, while M-UI-R accurately identifies all three, yielding
superior AP/AR metrics compared to OwlEye. In the second scenario, there is localization
noise, and OwlEye incorrectly designates a different location, leading to decreased AP/AR
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Figure 6 Localization of UI display smell. Image credit: http://interactionmining.org/rico#
quickdownloads and Starzplay software house (https://starzplay.com/).

Full-size DOI: 10.7717/peerjcs.2028/fig-6

Table 3 Performance of issues localization (In %). The bold indicates the significance of proposed ap-
proach.

Smell category OwlEye M-UI-R

Avg. Precision Avg. Recall Avg. Precision Avg. Recall

Text overlap 41.5 49.5 72.5 67.6
Component occlusion 32.5 37.3 67.3 65.5
Missing images 41.7 47.7 75.7 74.5
Null values 39.3 45.5 70.5 67.2
Average 38.7 45.0 71.5 69.7

values compared to M-UI-R. The third situation involves localization drift, where OwlEye
highlighted area is not perfectly aligned with the target, while M-UI-R adeptly identifies
the entire problem area.

Performance comparison with baselines
The comparison of performance of our proposed approach with baselines is presented in
Table 4. The initial focus is on opposing M-UI-R against the five baselines explained in the
experimental setup section. The results indicate the superiority of our proposed approach
M-UI-R over the five baselines. Specifically, M-UI-R boasts a precision 28.8% higher and
a recall 21.7% higher than the baseline article multilayer perceptron (Zhu et al., 2021) and
also outperform 10.8% in precision and 11.7% in recall then OwlEye (Liu et al., 2020).
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Table 4 UI smell identification performance comparison with baseline (In %). The bold indicates the
significance of proposed approach.

Method Training data Real data

Precision Recall F-measure Precision Recall F-measure

SIFT-SVM 53 51 52 50 49 50
SIFT-NB 56 57 56 52 51 51
SIFT-RF 56 57 56 51 52 51
SURF-KNN 56 56 57 53 52 53
SURF-NB 59 59 58 54 53 54
SURF-RF 58 59 58 53 54 53
ORB-SVM 56 54 55 51 52 52
ORB-KNN 57 56 56 52 53 53
ORB-NB 59 58 58 55 54 54
ORB-RF 58 59 58 53 54 54
MLP 61 67 64 55 54 54
OwlEye 79 77 78 76 74 75
M-UI-R 89.8 88.7 89.2 85.6 84.3 85.4

The other three machine learning baselines demonstrate their performance in terms of
precision and recall and f-measure as shown in Table 4. M-UI-R stand superior at least
30% in precision and more than 30% in recall among all three machine learning based
baselines (SIFT, SURF and ORF). We reaffirm the effectiveness of M-UI-R, underscoring
its adeptness in identifying problematic screenshots from a pool of candidates. Notably,
multilayer perceptron (MLP) achieves the highest precision, F-measures, and recall from
all the baselines, suggesting the superior performance of this deep learning approach in
recognizing faulty screenshots.

Furthermore, a comparison between the performance of the freshly designed model
withinM-UI-R and the priormodel used inOwlEye, utilizing the same data for training and
testing, is conducted. The findings demonstrate that the M-UI-R model attains enhanced
performance, achieving a precision of 87.7% versus 79.0% and a recall of 86.5% versus
77.0%. The evident improvement in precision and recall within M-UI-R can potentially be
attributed to the detection of object assignment, which offers more precise bounding boxes
for UI display problems during model training. This refined data provision facilitates the
model in learning relevant features more effectively. In contrast, other baseline methods
rely solely on category labels for their training data. M-UI-R robust performance in issue
detection, coupled with its capacity to adapt without requiring manual data labeling, makes
it particularly adept at accommodating the varied styles of Android UI.

Usefulness evaluation (research question 3)
To comprehensively assess the effectiveness of our M-UI-R solution, we carried out a
random sampling of 3,200 Android applications, 1,600 from FDroid6 and 1,600 from the
Google Play store. These applications included newer releases of mobile applications for
2019-2023. Notably, none of these apps were included in our training dataset.
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We examined these mobile applications and captured screenshots of their UI pages using
DroidBot, a well-known and lightweight Android test input generator (Li et al., 2017). Out
of the 3,200 applications, only 40% (1,280 out of 3,200) generated multiple screenshots,
while 60% (1,920 out of 3,200) were successfully evaluated using DroidBot. The remaining
portion of applications, for which DroidBot could not proceed further, typically required
user registration or authentication steps. On average, eighteen screenshots were gathered
for each of the 1,280 applications. Subsequently, we fed these screenshots into M-UI-R to
identify potential UI display issues. Upon detecting an issue, we created a comprehensive
bug report outlining the problem and included the relevant problematic UI screenshot.
The development teams of these applications were then notified of these bug reports via
email or issue tracking systems. M-UI-R identifies and provides a comprehensive listing
of all the detected issues, and this approach offers supplementary detailed information
regarding the identified defects. A total of 97 UI display bugs were detected in F-Droid
applications, with 27 of them already fixed and 18 having received acknowledgments
from developers. Similarly, in the case of the Google Play store, 76 UI display issues were
uncovered, resulting in 37 fixes and nine developer acknowledgments. The rectification of
these reported imperfections stands as tangible evidence of the practicality and effectiveness
of our proposed approach for detecting UI display problems.

The findings reveal that M-UI-RT not only identifies 79 additional issues that OwlEye
misses but also encompasses all the issues detected by OwlEye. The precision of M-UI-R
stands at 87% (171 out of 197), marking a 16% improvement over OwlEye precision (87%
compared to 71%). M-UI-R demonstrates superior performance in detecting problems
with relatively smaller problematic regions. The significance of UI display issues on user
experience is further highlighted by developers validation of the issue reports provided by
M-UI-R, underscoring the crucial role of M-UI-R in identifying issues.

We also conducted the survey from eight app developers to analyze whether the
information extracted by our method can provide help for improving the UI of apps.
Initially, we selected 10 buggy screenshots from each category of bugs randomly and applied
M-UI-R to identify and localize UI display issues. Subsequently, we presented the buggy
screenshots along with the acquired information to developers and pose them questions
outlined in Table 5. Specifically, the research question (RQ1) assesses the identification of
UI display issues, while the research question (RQ2) evaluates the localization of UI display
issues. Each question was accompanied by five options (1 strongly disagree, 2 disagree, 3
neither, 4 agree, and 5 strongly agree).

The developer’s feedback is also explained in Table 5. Examining the response to RQ1,
it is evident that seven out of eight developers agreed that M-UI-R is beneficial for the
identification of UI display issues, with six of them expressing strong agreement regarding
the usefulness of the information. Only one developer expressed a conservative response.
Similarly, for RQ2, positive feedback was received from six developers out of eight who
agreed with the usability of M-UI-R for issue localization. When developers watch the bugs
that are detected by M-UI-R they said that these UI bugs have a lot of impact on usability
of mobile apps and need to be fixed immediately. These suggestions from developers also
validate the usability of M-UI-R.
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Table 5 Survey questions and results.

Questions Strongly disagree Disagree Neither Agree Strongly agree Total

RQ1: Do you think that M-UI-R is more effective in the
detection of UI display issues?

0 0 1 1 6 8

RQ2: Do you think that M-UI-R is more effective in the
localization of UI display issues?

0 0 2 1 5 8

DISCUSSION
The generality of M-UI-R approach: The predominant portion of existing research on
GUI bug detection (Li et al., 2017; Zein, Salleh & Grundy, 2016; Zhao et al., 2019) tends to
be confined to a singular platform, such as Android, thereby constraining its real-world
applicability. In contrast, our M-UI-R approach primarily focuses on pinpointing UI
display faults. Considering the relatively minimal divergence between screenshots obtained
from various systems (such as Android, iOS,Mac OS, andWindows), ourmethodology can
be extended to encompass the identification of UI display issues across diverse platforms.

A limited-scale experiment was conducted on three other prominent platforms such as
Windows, Mac operating system and on iOS as shown in Fig. 7. In this experiment, 81
screenshots depicting UI display issues were captured from widely utilized applications
and subjected to analysis. The outcomes reveal that our M-UI-R technique accurately
identifies 71 out of 81 problematic screenshots, accounting for 87.5% of them. This
outcome demonstrates the versatility of the M-UI-R approach and we have a plan for more
comprehensive future experiments. Another benefit of M-UI-R is its capability to detect
UI display issues across various display languages used in applications. The testing data
for the experiment involves screenshots in English and Chinese. The proposed approach
successfully identifies UI bugs in different languages as shown in Fig. 7. This illustrates the
generalizability and applicability of our approach across different languages.

Enhancements in automated testing tools hold promise for improvement: Findings
from RQ3 highlighted the effectiveness of M-UI-R in combination with automated testing
utilities such as DroidBot (Li et al., 2017). However, multiple Android applications did not
permit screenshots due to their security policy. These applications can not be executed
with the help of DroidBot and some of them can be accessed with a single screenshot
due to limitations. These are the factors that restrict the comprehensive exploration of UI
screenshots. The potential of M-UI-R to detect UI display issues in real-world scenarios
could undoubtedly be amplified through its integration with a more proficient automated
testing tool.

Threats to validity
We acknowledge potential threats to the construct validity of our proposed approach,
particularly concerning the choice of evaluation metrics. The metrics we employ are
precision, recall, and F-measure which are widely used in the research community.
However, it is important to recognize that the extensive reliance on these metrics may
introduce limitations in terms of construct validity.
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Figure 7 Examples of UI display bugs on different platforms. Image credit: Baidu (https://www.baidu.
com).

Full-size DOI: 10.7717/peerjcs.2028/fig-7

Furthermore, we are aware of the susceptibility of classification algorithms to validity
threats stemming from parameter values. To address this concern, we conducted
experiments to determine variations in hyperparameter settings such as batch size or
learning rate rather than relying on default values. Nevertheless, it should be noted that
adjustments to these parameters could potentially impact the results.

The use of the Faster-RCNN model for the identification and localization of UI bugs
introduces a potential threat to construct validity. While there are alternative tools
available, we opted for Faster-RCNN due to its superior performance compared to other
models available at the time. Nonetheless, it is crucial to acknowledge that the absence
of comprehensive object detection tools for UI bug detection could affect the overall
performance of our proposed approach.

Internal validity concerns arise from the implementation of our approach. To mitigate
this, we perform cross-checks to ensure the accuracy of our methodology. However, there
remains a possibility that some errors may have been overlooked.

In terms of external validity, there are considerations regarding the generalization of
our proposed approach. Although our analysis is confined to mobile application UI bugs,
our approach could be applicable to all platforms for the detection of UI bugs.

Lastly, the limited number of projects in our study poses an external validity threat. Deep
learning algorithms often require fine-tuning parameters and substantial training data to
achieve optimal performance. The restricted number of projects may therefore limit the
generalizability of our results and our ability to fully explore. We would also discuss the
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different categories of applications, like testing a streaming application might be different
with respect to an accountability, utility, social or chat application.

A limitation of our proposed study is that it can not identify the design smell related
to the style of UI, layout bugs of UI, button size, typography, iconography and navigation
design flaws. These style bugs also have a great impact on the user experience of mobile
applications. We will consider these bugs in our future research.

CONCLUSION
Enhancing the quality of mobile applications, particularly proactively, holds significant
value. The core aim of this study is to automatically detect UI display issues in screenshots
generated during automated testing. Through the successful identification and validation of
79 previously unnoticed UI display bugs in renowned Android apps, the newly introduced
M-UI-R technique has demonstrated its effectiveness in real-world scenarios. Furthermore,
M-UI-R outperforms the leading deep learning-based baseline (MLP), showcasing a
remarkable enhancement of more than 19% in recall and over 26% in precision. Our
pioneering contribution encompasses an exhaustive examination of UI display challenges
in genuine mobile applications, along with the assembly of a substantial assortment of app
UIs featuring display issues, intended to facilitate further research.

Moving forward, our efforts will continue to focus on enhancing our model to achieve
improved classification performance. In addition to detecting display issues, our upcoming
work will delve into pinpointing the underlying causes of these problems. Subsequently,
we intend to develop a suite of tools designed to recommend patches to developers, aiding
in the resolution of display-related bugs.
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