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Abstract: Processing in Memory based on memristors is considered the most effective solution to
overcome the Von Neumann bottleneck issue and has become a hot research topic. The execution
efficiency of logical computation and in-memory data transmission is crucial for Processing in
Memory. This paper presents a design scheme for data transmission and multi-bit multipliers within
MAT (a data storage set in MPU) based on the memristive alternating crossbar array structure. Firstly,
to improve the data transfer efficiency, we reserve the edge row and column of the array as assistant
cells for OR AND (OA) and AND data transmission logic operations to reduce the data transfer
steps. Furthermore, we convert the multipliers into multi-bit addition operations via Multiple Input
Multiple Output (MIMO) logical operations, which effectively improves the execution efficiency of
multipliers. PSpice simulation shows that the proposed data transmission and multi-bit multiplier
solution has lower latency and power consumption and higher efficiency and flexibility.

Keywords: memristor; multiplier; adder; crossbar array; MPU; PiM

1. Introduction

Processing-in-memory (PiM) architecture based on new devices has become a critical
solution to address the Von Neumann bottleneck and Moore’s law limit problems [1].
Among them, memristor has become the most promising technology for solving this
problem due to its non-volatile nature, small size, low power consumption, and easy
integration with CMOS technology [2].

Chua proposed the memristor concept in 1971 [3]. In 2008, HP manufactured the first
memristor device [4], which has since attracted extensive interest from researchers. Re-
search on memristors involves the study of devices [5], mathematical models [6], and circuit
designs [7,8]. These works form the basis for the practical implementation of memristors.
Currently, memristors have been utilized in a variety of fields [9,10]. For example, memris-
tors are particularly well-suited for the design of synaptic circuits in neural morphological
networks because of their nonlinear and resistance variability characteristics [11–13]. Yuan
et al. proposed a highly efficient neuromorphic physiological signal processing system
based on memristors [14]. Lin et al. used three-dimensional memristor circuits to create
complex neural networks [15]. The nonlinear characteristics of memristors bring more
possibilities to the design of chaotic circuits [16]. Bao et al. proposed a memristor-based
neuron model [17], Zhang et al. generated a multitude of diverse hidden attractors through
the coupling of memristors [18], and Ma et al. analyzed the synchronization in scale-free
neural networks under electromagnetic radiation by memristor [19].

Memristors are a preferred choice for studying new types of non-volatile memory due
to their non-volatile characteristics [20]. In 2014, Zangeneh et al. proposed a memristor
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memory with a crossbar array called 1T1M, based on which memristor-based multival-
ued memories are designed [21,22]. Additionally, Sun et al. proposed a 3D memristive
multivalue memory [23]. Currently, the crossbar array is the main structure of memristive
memory, and different memory cells, including 1T1M (one transistor, one memristor) [24],
1T2M [25], 2M1M [26], 2M2M [23], and so on, are proposed to increase the storage density.

Research on PiM based on memristors has gained significant attention [27]. Among
the various approaches explored, the 1T1M crossbar array stands out due to its simple
structure, high stability, and ease of implementation for logic operations [28]. This approach
has provided a reliable foundation for developing PiM logic operation research. In 2016, the
neural network accelerator prime based on memristor random access memory (ReRAM)
was designed and implemented, and the memory computing integrated architecture based
on memristor was determined [29]. Subsequently, Wu et al. proposed a 128× 128 memristor-
based analog synapse crossbar array to realize face classification [30]. Furthermore, Hur et
al. proposed the concept of a memory processing cell (MPU) with memristor [31]. In 2018,
Talati et al. further discussed data transfer and parallelism based on a memristor MPU [32],
as shown in Figure 1. However, this work uses memristor-aided logic (MAGIC) NOT as
the basic logical operation, and data transmission to the destination position requires at
least two steps of NOT operation, which seriously affects the operational efficiency of PiM.
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Figure 1. MAT Structure and data transfer: (a) Op1 shares data lines with Op2, (b) Op1 shares part
data lines with Op2, (c) vOp1 shares data lines with vOp2, (d) vOp1 share part data lines with vOp2.

The logic operation based on the memristor is the basis of realizing memristor PiM
technology. Regarding the effective memristor logic design, the design of Sun et al. [33] has
realized the most efficient design of all logic gates, with the least number of devices and
the least operation steps. The memristor logic operation can be divided into two categories.
One is the logic operation structure based on a hybrid memristor–CMOS, such as the
memristor adder circuit [34] and the memristor multiplier circuit [35]. These circuits use
the nonvolatile nature of memristors to achieve faster particular logic operations but lack
versatility. The second type is the logic operation based on memristor crossbar array, which
has become the prominent architecture of PiM due to its good versatility. Realizing efficient
logic operation in an array structure is the core problem of PiM design.

Material implication (IMPLY) [36] is built based on a crossbar array structure. It is
simple, reliable, and can implement complete Boolean logic operations, but its efficiency
is relatively low. Kvatinsky et al. proposed MAGIC logic [37], which separates operand
and result and can implement logic gates such as IMP, XNOR, NAND, and OR. Jiang et al.
proposed an MIMO logic gate based on IMPLY [38], which can derive multiple new efficient
logic operation methods and complete complex logic with fewer steps and memristors.

The computing system includes many fundamental logic blocks. The full adder (FA)
is one of the most frequently used blocks. FA implementations include serial and parallel
full adders. The serial FA requires fewer memristors but has multiple operating steps and
low efficiency [39]. On the other hand, the parallel FA requires fewer execution steps but
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involves more memristors in the calculation [40]. A semiparallel FA has been proposed as
a solution to achieve balance [41]. In 2023, Jiang et al. proposed alternating crossbar array
parallel FA based on MIMO logic, and alternating crossbar array achieves faster execution
speed and fewer memristors [38].

Multiplier is another complex logic operation module used in convolution, digital
filtering, and fast Fourier transform (FFT) applications [42]. It has significant complex logi-
cal operations and generates long-chain combination blocks with cascaded carry addition.
Improving basic computing efficiency and reducing the carry step are the keys to achieving
a high-efficiency multiplier.

Multipliers based on memristor crossbar array structures can be divided into matrix
and exact multi-bit multipliers. Matrix operation is designed for matrix computing needs,
such as convolution and image processing. This type of multiplier has high execution effi-
ciency and good universality, but the calculation results are not accurate enough due to the
analog signal operation mode [43]. Unlike matrix multiplication, multi-bit multiplication is
mainly aimed at computer logic operations and must provide accurate calculation results.
Therefore, research on multi-bit multipliers starts with cell logic gates such as IMPLY and
MAGIC and gradually completes the entire operation. For instance, Saeed et al. developed
a binary multiplier that utilized the resistive characteristic of a memristor [44]. Guckert et
al. proposed a Dadda memristor multiplier; each cell contains two memristors and can
achieve IMPLY operation in one cell [45]. Furthermore, Mehri et al. proposed a special
memristor–CMOS multiplier [46]. However, the structure requires more CMOS switches
and increased chip area. Yu et al. proposed a current-mode multi-memristor crossbar cell
multiplier that effectively reduces power consumption. However, the calculation process is
intricate [47]. Radakovits et al. proposed a multiplier using semi-serial FA [48], which has
the least memristors and switches, but the execute steps are still high. Constructing a highly
efficient multiplier with fewer devices and lower power consumption remains challenging.

This paper focuses on PiM MAT data transfer and logic operation efficiency and
proposes a high-efficiency data transfer method and multiplier logic operation structure
based on a memristor alternating crossbar array. The main works are as follows:

• Improved data transfer efficiency in PiM MPU by reserving a row and column at the
edge of the array for logic assistant based on AND and OA logic.

• A multi-bit multiplier with fewer execution steps and devices and lower latency and
power consumption is designed based on alternating crossbar array architecture and
MIMO logic operations.

The paper is structured as follows: In Section 2, we introduce the memristor model,
MIMO memristive logic, PiM structure, and the multiplier’s working mechanism. Section 3
describes the proposed data transfer within the MAT and the multiplier design method.
In Section 4, we showcase the correctness of our design through PSpice simulation. In
addition, Section 5 presents a comparison between different multipliers. Finally, in Section 6,
we conclude the paper.

2. Materials and Methods
2.1. Data Transfer in MPU

The PiM architecture shown in Figure 2(a) includes a processor and a memristive
memory processing cell (mMPU) [31,32]. The mMPU contains an mMPU controller and
memristive memory. The mMPU controller is responsible for receiving instructions from
the processor and generating the control signals for the mMPU to perform reads, writes,
and logical operations. Memristive memory does not physically separate processing and
memory spaces and directly employs the memory cells for computation; it does not need
to transfer data from the memory array.

However, one constraint of processing operands in the mMPU is that their physical
addresses should share the same word lines/bit lines (WLs/BLs) since they serve as circuit
connections among the inputs and outputs. If two operands that need to be processed are
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present in different WLs/BLs, they first need to be copied to addresses that share WLs/BLs
with other operands.
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Arithmetic/
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(a) Memristive memory
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Figure 2. PiM Structure.

Data in the mMPU is organized hierarchically. A two-dimensional array of memristive
memory cells forms an mMPU-MAT. Collections of several such MATs form a Bank, as
shown in Figure 2b, and multiple Banks are gathered to form a chip with a common internal
bus shared among Banks. In the mMPU, data must be moved within and across different
MATs, especially in MAT, depending on the operand locality and their alignment inside
a MAT.

Based on the physical addresses of input and output operands, data transfer is catego-
rized as follows:

• Intra-MAT refers to a situation where the operands must be transferred within a MAT.
• Intra-Bank refers to a situation where operands are transferred between MATs where

the operands must be transferred from one MAT to another within the same Bank.
• Inter-Bank refers to the operands between Banks that must be transferred from one

Bank to another within the same chip.

Intra-MAT is the foundation of logical operations and storage, and its transmission ef-
ficiency is crucial to the execution efficiency of mMPU. When performing logical operations
in a MAT, two operands must be aligned in the same row. Regarding two operands, sup-
pose Op2 either does not share data lines with Op1 (Figure 1a) or only partially shares BLs
with Op1 (Figure 1b); Op2 must be moved to align with Op1 within the MAT at a desired
location. In the first case, two parallel MAGIC NOT operations can align Op2 with Op1. In
contrast, in the latter case, Op2 first needs to be moved to a temporary memory location
using a serial sequence of MAGIC NOT operations because of the inherent limitation of
gates not being able to perform multiple operations in the same WL simultaneously. For
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vector operations with vectors vOp1 and vOp2, having N-elements each and assuming that
all the elements are present in a vector form, the cost of intra-MAT data transfer is even
higher since MAGIC NOT operations have to be performed element-wise (Figure 1d). In
total, the latency cost of intra-MAT data alignment for vector operations is

Cintra-MAT =

{
min{2k, k + N} · Tlogic, no overlap
(k + N) · Tlogic, partial overlap

. (1)

N is the number of elements in each vector operation, and K is the vector number.
Tlogic is the latency of MAGIC operation.

2.2. Memristor Model

This paper uses the VTEAM memristor model, which is generic, simple, flexible,
and adaptable to different memristor devices and has been widely used in the design of
memristor circuits. The VTEAM model is represented as follows:

dw(t)
dt

=


ko f f ∗ (

v(t)
vo f f

− 1)αo f f ∗ f (w), v < vo f f < 0

0

kon ∗ ( v(t)
von

− 1)αon ∗ f (w), 0 < von < v

, (2)

i(t) = [RON +
ROFF − RON
wo f f − won

∗ (w − won)]
−1 ∗ v(t), (3)

where w denotes the internal state variable, w ∈ [won, wo f f ], v(t) and i(t) denote the
voltage and current flowing through the memristor, respectively, and f (w) is expressed
as a speed-adaptive function. Ron and Roff denote the resistance of the memristor in the
low-resistance state (LRS) and high-resistance state (HRS), respectively. Typically, LRS is
considered as logic 1 (off) and HRS is considered as logic 0 (on).

The I–V characteristic curve of the ideal memristor model is shown in Figure 3, where
VCLEAR <V′

COND <VCOND <VSET . These voltages have a certain range of values. According
to Formulas (5)–(7) and (9)–(11). The voltage range of VSET is between [1.05, 1.38] and that
of VCOND is between [0.74, 0.96]. Similarly, the voltage range of V′

COND is [−0.96, −0.74],
and the voltage range of VCLEAR is [−1.38, −1.05]. The value range of Rg is [328, 2000] and
[277, 1518]. These ranges make the logic operation in our later experiments normal, and all
kinds of devices are in a safe range.

Figure 3. Memristor I–V characteristic curve under ideal model, red color arrows are the LRS state,
green arrows are the HRS state, blue arrows are the changing state.

When the applied voltage is greater than the positive threshold voltage, VCLOSE, of
the memristor, the memristor switches from state 0 to state 1; when the applied voltage is
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less than the negative threshold voltage, VON , of the memristor, the memristor switches
from state 1 to state 0. This model is used for the memristors in the full adder as well as the
multiplier in the rest of this paper.

2.3. Basic Logic Operation

The execution efficiency of basic logic operations plays a decisive role in the logic
calculation speed of storage and computing integrated cells. This section studies the multi-
input–multi-output universal basic logic design scheme with higher execution efficiency.

2.3.1. Multi-Input Implicative Logic Circuit Design

IMPLY logic is inefficient, mainly because it only has two operands in the operation
process. It needs more than two operands and more step operations when performing
complex operations. We notice that IMPLY logic determines the input and output by
applying different voltages to the input and output memristor. Moreover, IMPLY and AND
logic have the same circuit structure, and different logic operations are realized by applying
different voltages to the two input memristors.

Based on IMPLY, Jiang [22] and Huang et al. [49] then proposed a multi-input model.
As shown in Figures 4 and 5, a memristor P2 is added to the implication logic. Three inputs
can be obtained according to the different input voltages, and various logic operations are
derived. Here, we take two logics, OR NOT OR (ONO) logic and OR AND (OA) logic,
as examples.

Figure 4. ONO logic circuit.

Figure 5. OA logic circuit.

As shown in Figure 4, when VCOND is applied to memristors P1 and P2, VSET is applied
to memristor Q, P1 and P2 are input memristors, and Q is an output memristor. Logic
q = p1 + p2 + q can be realized, which we call ONO (or nor or) logic operation, and its
truth table is shown in Table 1.

Table 1. ONO logical truth table.

P1 P2 Q Result

case 1 0 0 q 1
case 2 0 1 q q
case 3 1 0 q q
case 4 1 1 q q
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The total parallel resistance of all input memristors is defined as resistance Ri, with
high impedance state ROFF corresponding to logic 0 and low-resistance state RON cor-
responding to logic 1, ROFF ≫ RG. According to different situations, the analysis is as
follows:

• Case 1: When memristors P1 and P2 are both in high impedance state (p1 = p2 = 0), Ri

is equal to ROFF
2 . Because ROFF ≫ RG, the voltage on RG is almost zero. Therefore, the

voltage drop across the memristor Q is VQ, wherein VQ ≈ VSET > VCLOSE. Therefore,
the memristor Q is switched to a low-resistance state.

• Cases 2, 3, and 4: When one or two input memristors are in a low-resistance state, the
resistance Ri is less than the resistance RON . Because ROFF ≫ RG, the voltage on RG
is VQ. The voltage drop across memristor Q is VQ ≈ VSET − VCOND < VCLOSE. The Q
resistance state of memristor remains unchanged.

If the number of input memristors is extended to n, the logic becomes as follows.
When the resistance state of all input memristors is 0, the parallel resistance is defined as
logic 0, and the rest is defined as logic 1. We can obtain the resistance corresponding to the
logic value.

Ri =

{ ROFF
n , logic 0[
RON

n , ROFF RON
ROFF+RON(n−1)

]
, operandnamelogic1

. (4)

Similar to the calculation method of implication logic, RG meets the following condi-
tions:

RG <
ROFF(VSET − VCLOSE)

(n + 1)VCLOSE − n(VSET − VCOND)
, (5)

RG ≥ ROFFRON(VSET − VCLOSE)

(ROFF + nRON)VCLOSE − [ROFF + (n − 1)RON ](VSET − VCOND)
. (6)

Input voltage meets the following conditions:

VSET − VCOND < (ROFF + nRON)VCLOSE. (7)

Figure 5 represents the OA (or AND) logic. By applying V′
COND to input memristors

P1 and P2, and VCLEAR to output memristor Q, the logic q = (p1 + p2) · q can be obtained.
If there are n inputs, the logic becomes q = (p1 + p2 · · · + pn) · q. ONO and OA logic
operations use the same circuit but different excitation voltages. The OA truth table can be
found in Table 2.

Table 2. OA logical truth table.

P1 P2 Q Result

case 1 0 0 q 0
case 2 0 1 q q
case 3 1 0 q q
case 4 1 1 q q

Multi-input logic is a process of completing logical calculations for multiple input
signals in one step by expanding the input memristor. Different logical operations can be
flexibly realized by controlling the voltage applied to different memristors. The original
input data can be retained by specifying the output Q memristor. Multi-input general
logic models reduce the execution steps and have high computational efficiency and data
reusability. They can be used to design complex logic operations that will effectively
shorten computational time and reduce the number of memristors.

2.3.2. Multi-Output Implicative Logic Circuit Design

The memristor Q is regarded as the output memristor in the basic logic operation
circuit mentioned in the previous section. Expanding the output memristor in the design
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idea from the previous section can create a multi-output that can be used for various
logical operations.

As shown in Figure 6, The output memristor with the logic circuit is extended to N,
and the applied voltage of the output memristor is VSET . When the circuit works, the initial
logic values of Q1,Q2. . . ,Qn should be guaranteed to be the same. IMPLY logic results are
stored in n memristors, which means that q1 = q2 = · · · = qn = p + q. The extended
output of AND logic is q1 = q2 = · · · = qn = p · q.

Figure 6. Multi-output logic circuit.

The parallel resistance of the output memristor is defined as

Ri =

{
ROFF

n , logic 0
RON

n , operandnamelogic1
. (8)

Similar to the calculation method of implication logic, we can obtain the constraint
conditions of the extended output of implication logic.

RG <
ROFF(VSET − VCLOSE)

(n + 1)VCLOSE − (VSET − VCOND)
, (9)

RG ≥ RON(VSET − VCLOSE)

VCLOSE(1 + nRON/ROFF)− (VSET − VCOND)
. (10)

Input voltage meets the following conditions:

VSET − VCOND < (1 + nRON/ROFF)VCLOSE. (11)

By satisfying inequalities (9)–(11), the extended output of implication logic can be
realized. The extended output of AND logic is similar to implication logic.

Multi-output AND logic has multiple outputs, which means the operation results are
stored in multiple memristors. When the output data is involved in multiple operations,
data loss and data transmission time can be reduced. In addition, multi-input and multi-
output logic operations can be realized in the same structure if the specific conditions of Ri
are met.

2.4. Alternating Crossbar Array

Figure 7 shows the structure of a traditional crossbar array. In this structure, when the
logical operation involves different rows of memristors, it usually needs multiple steps. For
example, it needs two steps to calculate X2 IMPLY Y3. First, copy X2 to Y2 by horizontal
AND operation, and then IMPLY Y2 to Y3 by vertical IMPLY operation.

An alternating crossbar array structure is proposed to realize the rapid data interaction
between different rows. As shown in Figure 8, two main differences exist between the
alternating crossbar array and the traditional structure. First, the memristors in each
column are placed alternately to avoid interference from memristors in adjacent rows in
the same column. Second, a column of switches, H, is added to isolate the interference of
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memristors in the back part of the same row. Controlling the switches H and S allows us to
realize fast logic operations in different rows and columns.

... ... ...

S3

S2

V4 V3 V2 V1

S1

X1

X2

X3

Y1

Y2

Y3

...
Figure 7. IMPLY operation between different rows in traditional crossbar array.
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... ... ... ...

......
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H1S1
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X2

X3

Y1

Y2

Y3

...

......

...

...

V2

...

...

... ... ...

... ... ...

Figure 8. IMPLY operation between different rows in alternating crossbar array.

In Figure 8, an IMPLY operation is performed on X2 and Y3. X2 is in row 2, column V3,
and Y3 is in row 3, column V6. We can perform the following operations at the same time:

(1) Turn on switch H2 and turn off all other H switches. Select the second and third
lines.

(2) Turn off switches S2 and S3. The second line is connected to the third line and will
not affect other lines.

(3) Apply voltage VSET to column V6 and voltage VCOND to column V3, then perform
the IMPLY operation involving only X2 and Y3.

The memory resistance IMPLY operation between different rows can be completed
in one step by alternately crossing the array through the above method. Upon analysis,
it has been observed that the alternating crossbar array performs faster while calculating
memristors involving different rows compared to the traditional crossbar array. The use of
an alternating crossbar array enables the completion of simple multiplication in a single
step, thereby greatly enhancing the calculation efficiency.

3. Data Transfer within MAT

The data movement method in the MAT is realized by logical operation, and the data
in the basic crossbar array structure can only be executed in the same row or column, so the
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data movement must be carried out, and the two operands must be moved to the same row
or column. The existing methods are implemented by a MAGIC NOT operation, and a data
movement needs to execute NOT logic at least twice, which has low execution efficiency
and wastes space for the requirements of temporary storage cells. By analyzing the above
problems, this paper proposes an efficient data transfer method, which reserves an auxiliary
row and line at the edge of the crossbar array and transfers data with AND and OA logic.
The details are as follows:

3.1. Structure of mMPU

We adopt the method of adding data transfer auxiliary cells in the array, as shown in
Figure 9. To enable both row and column logic operations in the crossbar array, we allocate
additional rows and columns at the bottom and right of the array. These cells are set to
logical 0 and serve as operands for AND and OR; the destination positions are set to 1. All
other cells in the array maintain their original state.

PN Pkor
Parallel k- 

or- 
N-Bitwise

Takes 1
AND/OA
operations

SN Skor
Serial k- 

or- 
N-Bitwise

Takes sevreal
AND/OA
operations
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~Op2[1:N]

vOp1
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(a) (b)
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(d)
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Figure 9. Proposed array structure and data transfer. (a) Op1 shares data lines with Op2, (b) Op1
shares part data lines with Op2, (c) vOp1 shares data lines with vOp2, and (d) vOp1 shares part data
lines with vOp2.

When two vector operands do not overlap, the element in vector Op2 can be moved
with AND or OA logic to the destination position parallel with one step. When two
operands overlap, the elements in the Op2 vector need to be serially moved to a temporary
cell that does not overlap with Op1 and then moved to the destination position.

3.2. Design of Data Movement Method

This paper uses AND or OA logic based on IMPLY to realize data transmission.
Assuming that the calculation needs to be performed between two operands, Op1 and Op2,
in the same MAT, there are two possible situations: the first is that Op2 and Op1 do not
share bit lines, as shown in Figure 9a,c, and the other is that the bit lines of Op2 and Op1
partially overlap, as shown in Figure 9b,d.

For the first case, set the destination position data to 1, set the transmission auxiliary
cell value (Aux) to 0, and perform OA logic; the input is Op2 and Aux, and the output is
destination position. For example, if the data in the I-th row and the j-th column in the array
is moved to the K-th row and J-th column cell, then the voltage V′

COND is applied to the
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I-th row word line. The voltage V′
COND is applied to the transmission auxiliary cells. The

voltage VCLEAR is applied to the J-th row word line, and the data transfer can be completed
according to the basic principle of OA logic. Among them, as shown in Figure 9a, the
four data in Op2 are on the same line and can be moved to the destination synchronously.
When the operand has multiple vectors, then the vectors can be moved serially, as shown
in Figure 9c.

In the second case, because there are some overlapping data between Op1 and Op2, it
is necessary to move the data to the location where there is no shared bus by AND or OA
logic, as shown in Figure 9b,d. Then, as in the first case, the data transfer can be completed
by applying corresponding voltages to the destination location, the transmission data,
and the transmission auxiliary cell, respectively, by using OA logic. If there are multiple
data groups, it is necessary to transfer the data separately. In the vertical direction, first
sequentially move the column data in units to a temporary position, and then horizontally
move it in units of row data to the destination position, as shown in Figure 9d. This
situation is similar to the MAGIC method, but we use OA logic operation to transfer data,
which has more latency and power consumption advantages.

As seen from Figure 10, when our memristor executes OA and AND logic, it has lower
time delay and power consumption than the MAGIC operation. The reason for this result
is that RON , ROFF, VON , and ROFF of our memristor have smaller values to meet MIMO
logic; on the other hand, it also reflects the efficiency of our designed transfer mode.
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Figure 10. Comparison between our proposed design and MAGIC design in terms of time delay and
power consumption.

4. Mul-Bit Multiplier Design
4.1. Multiplier Principle

The multiplication formula consists of two parts, as shown in Figure 11, starting with
the multiplication operation of multiplying two one-digit numbers, also known as AND
logic, followed by the summation of the corresponding position value, also known as an
addition. Together, the two constitute the multiplication operation. Therefore, a multiplier
can be realized by converting multiplication to addition with multiple digits.
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An         An-1     . . . . . .      A2      A1

×       Bn         Bn-2     . . . . . .      B2      B1

AnB1     An-1B1   . . . . . .      A2B1   A1B1

A1Bn-1     An-1B2       . . . . . .     A2B2   A1B2. . . . . .

AnBn      An-1Bn . . . . . .  A2Bn      A1Bn

. . . . . .
. . . . . .. . . . . .. . . . . .

AnBn     An-1Bn+AnBn-2   . . . . . . . . .      A2B1+A1B2   A1B1

Multiplication operations
(AND logic)

Additive operations
(MIMO logic)

Result

Figure 11. Multiplication formula.

The multiplier consists of multiple full adders and uses a crossbar array structure
to convert the multiplication operation into a parallel operation of multiple full adders,
which simplifies the operation while optimizing the number of MOS tubes in the circuit,
improving the integration of the integrated circuit and making the circuit denser.

The whole multiplier circuit is divided into three parts: one for arithmetic, one for
storage, and one for data transfer auxiliary cells. The structure of the Operational Part
adopts the alternating crossbar array structure mentioned previously. In each row, there
are several memristors, Ai, Bi,...,Xi, and Mi, responsible for performing the arithmetic. The
memristor Ci is responsible for holding the rounding function; the two types of memristors
are separated by switches, Si. Between the rows, there are cross-arranged switches, Hi, for
the control of the steps of the operations. The Operational Part is required to perform both
multiplication and addition calculations. The read/write section (R/W Part) is responsible
for writing and reading data, and this section can write and save the data from being
calculated or the data output from the Operational Part, or it can read the data from this
section and input it to the Operational Part for calculation. The data transmission auxiliary
unit is a series of memristors located at the right and bottom of the array and is used to
assist the transfer of data, which is usually set to logic 0 to facilitate the execution of OA
logic. All these three sections form the multiplier’s arithmetic circuit, as shown in Figure 12.

     Additive 
        Area
           & Read-write 

     Areawrite

Original Data Input
Operational Part R/W Part

Multiplication 
        Area

Transfer auxiliary unit

Transfer auxiliary unit

digital controldigital control

digital control

Figure 12. Multiplier structure.

4.2. Multiplier Operations

Take a 2 × 2 multiplier as an example; the multipliers are A1, A2 and B1, B2. The
operation steps of this multiplier are as follows:

Step 1: Read and input the data from the read/write area into the multiplication
area of the operational part through the designed transmission method. The layout of the
multiplication area is shown in the yellow part in Figure 13. For a 2× 2 multiplier, B1 stores
in memristor Ai+3, B2 stores in memristor Bi+3, A1 stores in memristor Ai+2 and Bi+2, and
A2 stores in memristor Ai+1 and Bi+1, as shown in Figure 14.
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Step 2: Perform the multiplication operation. The logic of the operation is AND logic,
and the truth table of the logic is shown in Table 3; the multiplication obtains four results:
A1B1, A1B2, A2B1, and A2B2. The result data will be directly input into the additive area.
As shown in the green part in Figure 13, A1B1 stores in memristor Ai, A1B2 stores in
memristor Bi−1, A2B1 stores in memristor Ai−1, and A2B2 stores in memristor Ai−2. For a
2 × 2 multiplier, the addition area will be performed on three rows in the next few steps.
A1B1 and 0 are added together, A1B2 and A2B1 are added together, and A2B2 and 0 are
added together.

Table 3. AND logical truth table.

P Q Result

case 1 0 0 0
case 2 0 1 0
case 3 1 0 0
case 4 1 1 1

Multiplication operations
         (AND logic)

... ... ...B1

... ... ...

............
..................

A2Bn ......... An-1Bn AnBn

A1B1

B2

B3

...

Bn

A1 A2 ... An

A1

A1

A1

A2

A2

A2

An

An

An

...

...
... ...

...

... ...

A2B1 A3B1

A1B2 A2B2

A
dditive operations
(M

IM
O

 logic)

A1B3

...

...

...

AnB1

AnB2

AnB3

A1Bn

Figure 13. Multiplier circuit data layout.

Steps 3 and 4: Turn on the switches Si−2, Si−1, and Si. Disconnect the switches on all
columns. The full adder module can calculate step 3 and step 4 simultaneously. At this
stage, the multiplier only needs two steps through parallel calculation.

Steps 5 and 6: Turn on the switches Hi−2 and Hi−1, Hi. Disconnect the switch Si−2,
Si−1, Si, and all other switches. In this way, the memristor Ci can be connected to Li, the
memristor Ci−1 can be connected to Li−1, and the memristor Ci−2 can be connected to Li−2
without affecting other bits, so data transmission can be realized between the carrier and
the standard. As in steps 3 and 4, the multiplier can also complete steps 5 and 6 in parallel.
At this stage, parallel computing requires two steps.

Step 7: Turn on the switches Si−2, Si−1, Si and Hi−2, Hi−1, Hi. Disconnect all other
switches. By preparing steps 3 to 6 and applying an alternating crossbar array, we can
complete the current bit’s carry calculation in one step.

Step 8 to Step 12: Turn on the switch Si−2, Si−1, Si. Disconnect the switches on all
columns. After completing step 7, Li+1, Li, Li−1 receive the carry from the adjacent lower
bits, and each bit can independently complete all the remaining steps. Therefore, the full
adder module can complete the next steps in parallel. At this stage, the parallel calculation
of the multiplier takes five steps. All the operation steps are shown in Table 4. There are a
total of 12 steps in a 2 × 2 multiplication operation.

Next, we can extend the 2 × 2 multiplier to an n × n multiplier with the same steps
as the 2 × 2 multiplier; the first four steps are the same as those of the 2 × 2 multiplier,
while in the steps of the addition algorithm, for multi-bit addition, we need to add every
two values of the additive number and store the intermediate value into the read–write
region. Thus, the steps of the addition algorithm are (n − 1)(n + 9). The n × n bit multiplier
requires total steps 1 + (n − 1)(n + 9) = n2 + 8n − 8 steps.
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Table 4. Implementation of the 2 × 2 multiplier.

Step Operation Voltage The Logical Value after Operation in:
Mi,1 Mi,2 Ci

1 Read and Input the Data
(R/W Part to Multiplier area of Operational Part) Digital Control 0 0 0

2 The multiplication area performs AND logic operation. Digital Control 0 0 0
3 The addition region performs addition operation/CLEAR (Mi,1, Mi,2, Ci) VC1 = Va = Vb = VC2 = VCLEAR 0 0 0
4 (Ai, Bi) ONO Mi,1 VB = VA = VCOND; Va = VSET Ai + Bi 0 0
5 Bi IMPLY (Mi,2, Ci) VA = VCOND; VC1 = Vb = VC2 = VSET Ai + Bi Bi Bi
6 Ai IMPLY (Mi,2, Ci) VB = VCOND; VC1 = Vb = VC2 = VSET Ai + Bi Ai + Bi Ai + Bi

7 (Ci−1, Mi,1) OA Ci

{
VC1 = Va = V′

COND; VC2 = VCLEAR i ∈ odd
Va = VC2 = V′

COND; VC1 = VCLEAR i ∈ even Ai + Bi Ai + Bi Ci (carry-out)

8 CLEAR Mi,1 Va = VCLEAR 0 Ai + Bi -
9 (Ai, Bi) OA Mi,2 VB = VA = V′

COND; Vb = VCLEAR 0 Ai ⊕ Bi -
10 Mi,2 IMPLY Mi,1 Vb = VCOND; Va = VSET Ai ⊕ Bi Ai ⊕ Bi -
11 Ci−1 IMPLY Mi,2 VC1 = VC2 = VCOND; Vb = VSET Ai ⊕ Bi Ci−1 + Ai ⊕ Bi -
12 (Ci−1, Mi,1) OA Mi,2 VC1 = Va = VC2 = V′

COND; Vb = VCLEAR Ai ⊕ Bi Si (sum) -

The first step and the second step are only carried out once in the whole operation process, and the remaining
steps are carried out simultaneously in the order of each line in the table.

......

......

......

......

... ......

...

... ... ... ... ... ... ... ... ...

...

...

...

DIGITAL CONTROL MODULE

Read-Write Module

RG

RG

RG

RG

Mi+1,2Mi+1,1 Hi+1

Hi

Hi-1

Hi-2

...
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... ... ... ... ... ... ... ... ... ... ......

Mi,1 Mi,2

Mi-1,1 Mi-1,2

Mi-2,1 Mi-2,2

Si+1

Si

Si-1

Si-2

Ai+1

Ai

Ai-1

Ai-2

Bi+1

Bi

Bi-1

Bi-2

Xi+1

Xi

Xi-1

Xi-2

Ci

Ci-1

Ci-2

Ci-3

VC1 VX VB VA Va Vb VC2 V1 V2 V3 V4

Operation Module

Figure 14. Multiplier simulation circuit (Take a 2 × 2 multiplier as an example).

5. Simulation and Analysis
5.1. Simulation

The proposed data transfer and multiplier are simulated with PSpice(v17.2) simulation
tools to verify their correctness. The VTEAM model is selected as the memristor model. The
simulated circuit is shown in Figure 14, and the memristor model parameters are shown
in Table 5. The power consumption and time delay of some logic operations used in the
operation under the given memristor parameters are shown in Table 6.

Taking the 2 × 2 multiplier operation as an example, all data transmission modes of
this circuit are the transfer-line method mentioned above. In the circuit, firstly, the values
to be calculated, A1, A2, B1, and B2, are deposited into the read–write area on the right side.
After that, the data are transferred to the multiplication module through the digital control
module to carry out the AND operation, A1 × B1, A1 × B2, A2 × B1, A2 × B2, and the results,
A1B1, A1B2, A2B1, and A2B2 are returned to the read–write after the operation is finished,
clearing the multiplication region to participate in the next addition operation. Then, the
four data are input into the corresponding memristors according to Figure 13; memristor Bi
stores A2B2, memristor Bi−1 stores A2B1, memristor Ai−1 stores A1 × B2, memristor Ai−2
stores A1 × B1, and memristor Ci stores the rounding data. The final multiplication result is
obtained by performing a full adder operation.
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Table 5. Memristors and circuit parameters considered in the simulations.

a p kon kof f VCLOSE VOPEN RON ROFF VSET VCOND VCLEAR V ′
COND RG

200 200 1250 1250 1 V −1 V 1 kΩ 100 kΩ 1.2 V 0.8 V −1.2 V −0.8 V 500 Ω

Regarding power consumption, the logic operation power consumption required for
each step of the multiplier is shown in Table 6. The advantage of a staggered cross array is
that it can convert two rows into one row and complete the carry in one step. Take a 32-bit
multiplier as an example; it needs a total of 992 carries at most, and each carry is completed
in one step, with a power consumption of 0.227 pJ and a total power consumption of
225.184 pJ. If we use the same device to calculate in the traditional cross array, we can see
from Figure 7 that it takes at least two steps to complete a carry. The power consumption
of peer movement is 0.235 pJ, and the power consumption of the carry is 0.227 pJ, so the
power consumption of one step bit operation is the sum of the above two, and the total
power consumption required for the carry is 458.304 pJ. With the increase of computing
bits, the power consumption of the staggered array decreases more significantly.

Table 6. The power consumption and time delay of some logic operations.

Time Delay (ns) Power Consumption (pJ)

Single Memristor 0.25 0.075
OA 0.31 0.227

AND 0.271 0.161
MIMO IMPLY 0.263 0.235

ONO 0.28 0.229

We input the multiplier for 11 and 11; the multiplication result should be 1001. This
simulation mainly verifies steps 3 to 12, and the first few steps are relatively simple, so the
simulation is not carried out. The simulation results as shown in Figure 15; 0 state stands
for the state of Ro f f , the resistance of 100 kΩ, and 1 state stands for Ron, the resistance
of 1 kΩ. The four resistors in the figure, Ci, Mi,2, Mi−1,2, Mi−2,2, respectively, correspond
to the result of the four bits. The resistance values of the four memristors finally reach
stability after 1ns, and the result is 1001, which is in line with the multiplication logic, and
the simulation is successful.
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Figure 15. 2 × 2 Multiplication result 11 × 11 = 1001 (Ci, Mi,2, Mi−1,2, Mi−2,2).
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In addition, we also simulated the reliability of data transmission. We simulated
the data transmission of data 1001 and another group of multiplication results, 0110, and
the results are shown in Figure 16. By applying voltage V′

COND to the pre-transfer data
and voltage VCLEAR to the transferred data, we can see that the data in the register area
has changed from logic 1 to corresponding data to be saved. These prove the success of
data transfer.
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Figure 16. Data transfer simulation.

5.2. Analysis and Comparison

From the simulated circuit and the multiplier operation steps, we can conclude that
the number of memristors used in our n-bit multiplier is n2 + 2n + n2 + n = 2n2 + 3n, and
the number of switches used is 2n + 2n = 4n. As can be seen from Table 7, comparing our
multiplier with other multipliers, our design has a significant advantage in multiplication
steps and the number of switches over Shift & Add type multipliers. Compared to the
crossbar array multiplier, our design performs better regarding the number of memristors
and switches. Compared to the SEMI-SERIAL multiplier, our design performs better
regarding the number of steps and switches, and there is little difference in the number
of memristors.

From the point of view of a single operation cell, our proposed multiplier is superior
to other multipliers in terms of latency and power consumption under the condition of
ignoring the latency of data transmission, and the maximum performance improvement
of latency and power consumption reaches 80% and 99%, respectively, as can be seen in
Figure 17. From the analysis of the whole multiplier module, our memristor is ahead of
the three types of multipliers in power consumption. In terms of latency, the latency of
our multiplier is close to that of the 1TxM multiplier [50], but it is obviously improved
compared with the shift-and-add multiplier [51], as can be seen in Figure 18. Our work has
obvious advantages when compared with other work results, which is due to the parameter
selection of our memristor and the efficiency of our designed multiplier.

Table 7. Comparison of multipliers for n = 32.

Design
Number of Memristors Number of Steps Number of Switches

Total n = 32 Imp. Total n = 32 Imp. Total n = 32 Imp.

Shift & Add [51] 7n + 1 225 −89% 2n2+21n 2720 53% 8n−1 255 50%
Array [47] 7n2 − 8n + 9 6921 69% 24n − 35 733 −73% 8n2 − 8n + 9 7945 98%

SEMI-SERIAL [48] 2n2 + n + 2 2082 −3% [log2n](10n + 2) + 4n + 2 1740 26% 12[n/2] + [(n − 1)/2] 207 38%
Proposed 2n2+3n 2144 - n2 + 8n − 8 1272 - 4n 128 -
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Figure 17. Delay and energy comparison of a single cell.
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Figure 18. Delay and energy comparisons between multiplication approaches.

6. Conclusions

This paper proposes an efficient PiM MAT data transmission method based on the
alternating crossbar array and further proposes a multi-bit multiplier design scheme. The
proposed data transmission method reserves the row and column edges as temporary as-
sistant cells, employs OA logic as the moving logic, significantly reduces data transmission
steps, and improves efficiency. The proposed multi-bit multiplier converts multiplication
operations to multi-bit addition operations, greatly improving multiplier execution ef-
ficiency. Compared to existing memristive multipliers, it has lower latency and power
consumption, higher reliability, and greater flexibility. This work is of great significance for
promoting research on high-performance PiM.

Our model is based on the ideal memristor, and the control voltage needs to be adjusted
according to the actual memristor characteristics when it is implemented. In addition, the
problem of leakage current is not discussed in this paper. In the following research, it is
necessary to comprehensively evaluate the characteristics of power consumption, delay,
storage density, and so on, according to the specific implementation process to provide
guidance for circuit design.

As the number of calculation bits increases, the proposed multiplier’s latency gradually
increases, which is not conducive to its fast and efficient operation. In the future, we will
simplify the multiplier’s operation steps to gradually improve the problem of excessive
time extension.
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