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Network Intrusion Detection Systems (NIDSes) are essential for safeguarding critical information systems.
However, the lack of adaptability of Machine Learning (ML) based NIDSes to different environments could
cause slow adoption. In this paper, we propose a multimodal NIDS that combines flow and payload features
to detect cyber-attacks. The focus of the paper is to evaluate the use of multimodal traffic features in detecting
attacks, but not on a practical online implementation. In the multimodal NIDS, two random forest models
are trained to classify network traffic using selected flow-based features and the first few bytes of protocol
payload, respectively. Predictions from the two models are combined using a soft voting approach to get
the final traffic classification results. We evaluate the multimodal NIDS using flow-based features and the
corresponding payloads extracted from Packet Capture (PCAP) files of a publicly available UNSW-NB15 dataset.
The experimental results show that the proposed multimodal NIDS can detect most attacks with average
Accuracy, Recall, Precision and F, scores ranging from 98% to 99% using only six flow-based traffic features,
and the first 32 bytes of protocol payload. The proposed multimodal NIDS provides a reliable approach to

detecting cyber-attacks in different environments.

1. Introduction

Network Intrusion Detection Systems (NIDSes) are used to detect
security threats to information systems [1,2]. To detect attacks effec-
tively, state-of-the-art NIDSes have used Machine Learning (ML) [3—
9]. Broadly, NIDSes are either signature-based or anomaly-based sys-
tems [10]. Signature-based NIDSes detect intrusions by comparing
network traffic with known attack patterns using a set of rules pre-
determined by security experts. In contrast, anomaly-based NIDSes use
ML algorithms to model normal traffic behavior and deviations thereof
are considered as attacks. While ML has been applied in both signature-
based and anomaly-based intrusion detection, most ML-based NIDSes
nowadays use anomaly-based approach. With respect to what aspect of
a network packet is analyzed for intrusion detection, ML-based NIDSes
can be further classified into flow-based and payload-based.

Flow-based NIDSes use statistical features and packet metadata,
collectively referred to as flow-based features, to identify unexpected
changes in network traffic and detect attacks. As they use summarized
information, flow-based NIDSes are more scalable and require less com-
puting resources than payload-based methods. However, flow-based
NIDSes have limitations that could hamper their adoption in practice.
Firstly, since they do not analyze user data in network packets, flow-
based NIDSes lack capability to detect threats concealed within packet
payloads. Secondly, flow-based NIDSes are not usually domain-adaptive
because the features based on which they detect attacks can change
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across networks. Thirdly, there is no consensus among researchers on
which flow-based features to use in ML-based NIDSes, resulting in
lack of standardization, compatibility, repeatability, and adaptability
to different domains and environments [11,12]. These problems have
led to flow-based NIDSes that can detect attacks accurately in one net-
work environment, while giving unacceptably low levels of detection
in others [13,14]. Furthermore, extracting and pre-processing flow-
based features require human expertise and tend to be costly and
time-consuming.

Unlike their flow-based counterparts, payload-based NIDSes detect
attacks using the actual user data exchanged between hosts. While
payload-based NIDSes inspect payloads of network packets, they do not
use flow-based features for intrusion detection. Instead, packet contents
are analyzed including any application data. Payload-based methods
are particularly useful for detecting attacks that are embedded as user
contents. Therefore, payload-based NIDSes are effective in detecting
various threats such as application-layer attacks. However, payload-
based NIDSes require large computational resources and have limited
scalability.

In this paper we focus on an NIDS for offline attack detection,
i.e., we focus on after-the-fact detection of attacks. This decision is
noteworthy, as it allows us to access information that would not be
available to an online NIDS for intrusion prevention. For example, this
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Fig. 1. Multimodal ML-based NIDS.

allows us to access statistical features that are computed after the end
of the traffic flow.

Our NIDS approach is based on machine learning and uses a mul-
timodal detection using flow-based and payload-based information,
which is shown in Fig. 1. We use a soft-voting approach to merge the
predictions of the two detection models.

This paper provides the following scientific contributions:

1. Proposing a multimodal NIDS using flow-based and payload-
based information (see Fig. 1). To the best of our knowledge, this
is the first ML-based NIDS approach that combines flow-based
and payload-based information as a multimodal approach. To
merge the results of the two models, we have used a soft-voting
method.

2. Focus on first 32 bytes of protocol payload to minimize payload
processing overhead of the NIDS. Previous works focused on
larger packet payload sizes.

3. An experimental evaluation of the multimodal NIDS.

4. An algorithm to extract and label the protocol payload from the
traffic data. This algorithm is needed, as publicly available open
source datasets provide labeled flow-based traffic features, but
not the extracted protocol payload information.

The paper is structured as follows: Section 2 reviews related work
on flow-based and payload-based intrusion detection. The proposed
multimodal NIDS is presented in Section 3. Section 4 presents eval-
uation of the proposed method. In Section 5, the obtained results
are presented and comparisons with alternative approaches are made.
Section 6 concludes the paper.

2. Related work

In this section, previous studies are classified and discussed. With
respect to data used to detect attacks, the broad categories of ap-
proaches are flow-based and payload-based methods. While packet
metadata from protocol headers and traffic statistics are used in flow-
based techniques, payload-based methods use either the actual user
data of application-layer protocols or features extracted thereof as a
foundation for detecting intrusions [15,16].

2.1. Flow-based intrusion detection

In flow-based methods, cyber-attacks are identified by tracking
changes in the statistical properties of network traffic and packet meta-
data, collectively referred to as flow-based features. Several ML-based
NIDSes monitor flow-based features to detect cyber-attacks [17-22].
Therefore, a significant body of previous work in ML-based NIDSes
focused on determining a subset of flow-based features that result in
high detection rates [2,23-26]. However, NIDSes that are based on flow
features usually consume high dimensional data as input. As a result,
they tend to require high computational resources due to the curse of
dimensionality [27,28].

Consequently, ML-based NIDSes that depend on flow-based features
have limitations that hamper their adoption in practice. Firstly, many
of the statistical traffic attributes are not domain-adaptive because

features using which an ML classifier can detect attacks in one network
may not enable the detection of the same attacks in another network
due to inherent unpredictability of network traffic [29,30]. Secondly,
there is no consensus among researchers on which set of traffic features
to use in ML-based NIDSes [31]. As a result, current ML-based NIDSes
use non-standard set of traffic features, creating compatibility and
adaptability problems across networks [32,33].

Overall, most ML-based NIDSes tend to use flow-based traffic fea-
tures for attack detection, thereby focusing more on statistical at-
tributes of network traffic rather than packet payloads. Flow-based
NIDSes have minimum data processing costs because they use sum-
marized traffic information. However, they can detect only a limited
range of cyber-attacks since they rely solely on information extracted
from packet headers. Flow-based methods do not scan packet pay-
loads, and therefore, their capacity to detect network attacks embedded
within application-layer data is relatively lower than payload-based
methods [34].

2.2. Payload-based intrusion detection

Some ML-based NIDSes detect cyber-attacks based on the actual
user data exchanged during network traffic transactions [35]. In
payload-based intrusion detection, data from a network application is
analyzed for signs of maliciousness. Previously, some payload-based
NIDSes have been proposed. In general, most of these NIDSes are
designed to classify traffic using either N-gram analysis of the payload
or deep learning methods.

2.2.1. N-gram analysis

N-grams are used to model the payload distributions of normal and
attack traffic. Although N-gram methods were originally developed for
text categorization [36], they have been applied in network traffic
classification and intrusion detection [37-39]. To analyze traffic using
N-grams, packet payloads are treated as strings of bytes. From each
packet, sets of payload sub-strings of a fixed length are extracted and
analyzed to identify attacks. Accordingly, by taking the user content
as the basis of attack detection, a number of payload-based NIDSes
extracted features using N-grams [40-42].

2.2.2. Deep learning approaches

Deep neural networks, commonly known as Deep Learning (DL), are
used to extract representation features from raw data through layered
processing [43]. DL-based NIDSes usually convert packet payloads to
sequences of bytes, characters or images. Recently, DL methods like
Convolutional Neural Networks (CNNs) have been used to detect cyber-
attacks [44]. CNNs can extract spatial and temporal traffic features
from packet payloads without manual expert involvement.

Classical ML and one dimensional (1D) CNN were used to detect net-
work attacks in [45]. While CNN was used for feature learning, attacks
were detected using classical ML. In [46], images were generated from
network traffic to detect malware using 2D CNNs. The images were
created from raw traffic and passed to CNN which learned the traffic
features. In [47], Marin et al. proposed DeepMAL to detect network
traffic flows that contain malware. The authors used a DL model to
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classify traffic using only raw byte streams without any handcrafted
flow-based features. In a packet-based version of DeepMAL, the first
1024 bytes of payload were used to detect malware traffic. The authors
suggested that payload-based DL approaches can outperform ML-based
techniques in malware traffic detection. In contrast, Millar et al. [48]
demonstrated that DL can detect malicious traffic with the first 50 bytes
of payload. Furthermore, the authors suggested that classical ML can be
more effective in classifying network traffic in certain situations.

2.3. Feature-fusion based intrusion detection

More recently, various combinations of traffic features for flow-
based and payload-based detection approaches have been proposed [49,
50]. Unlike methods that are purely flow-based or payload-based,
feature-fusion based NIDSes use multiple types of network traffic to
detect anomalies from different data sources. For example, MFFAN de-
tected malicious traffic better than those that used flow-based features
alone because it incorporated byte-level, packet-level and flow-level
aspects of network traffic [11].

Similarly, an intrusion detection technique that used both statistical
and payload-based features was proposed in TR-IDS [51]. Word em-
bedding was used to map bytes of a packet payload to a word vector
and Text-CNN was used for feature extraction [52]. Additionally, statis-
tical features were extracted from network flows and packet headers.
Both Text-CNN derived payload features and statistical features were
concatenated and inputted to random forest for classification. In TR-
IDS, payload features extracted from the first bytes of payload were
used in conjunction with statistical traffic features. Generally, while
CNNs and other DL methods can extract patterns from raw network
data that might be challenging for classical ML algorithms, training DL
models is computationally intensive and requires specialized hardware.
Furthermore, DL models can be challenging to interpret and explain,
raising concerns about transparency and trust.

In this paper, a multimodal ML-based NIDS is presented and eval-
uated. The proposed NIDS uses random forest [53], which is one of
the well-known classical ML algorithms. TR-IDS [51] is the closest
related work to the intrusion detection approach proposed in this
paper. However, unlike TR-IDS [51], which concatenates payload and
statistical features before classification, the combination of output in
our NIDS occurs at the decision level. In the proposed multimodal NIDS,
two separate random forest classification probabilities obtained using
flow-based features and protocol payloads are combined using a soft
voting scheme to make final class predictions.

Another important difference is that bigger size of packet payloads
and larger number of flow-based features have been used in previous
ML-based NIDSes including TR-IDS [51]. In contrast, only the first 32
bytes of protocol payload along with six flow-based traffic features are
used in the proposed NIDS. Random forest is used as an ML classifier
because it requires less computational resources as opposed to DL
methods. The obtained results show that it is possible to detect most
attacks using classical ML when both flow-based features and protocol
payloads are used in a complementary manner.

3. The proposed multimodal ML-based NIDS

In this section, a multimodal Machine Learning (ML) based Network
Intrusion Detection System (NIDS) that leverages both traffic flow
features and payload data is presented. Decisions made by two ML
classifiers trained using flow-based features and a small part of payload
data, respectively, are used in a complementary manner to detect
attacks. The proposed NIDS has flow-based and payload-based subsys-
tems that take different aspects of network traffic as data objects for
intrusion detection. The two types of network traffic enable the flow-
based and payload-based subsystems to gather cyber threat intelligence
from traffic flow features, and packet payloads, respectively. In both
subsystems, random forest [53] is used as ML classifier. Finally, the
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Table 1

Random forest parameters.
Number of estimators 100
Split function Gini
Maximum features for best split 2
Maximum tree depth 3
Minimum samples to split 2
Minimum leaf samples 0.1

classification results from the two random forest models are aggregated
using a voting scheme.

Fig. 2 shows the traffic classification process of the proposed mul-
timodal NIDS. Flow-based features and packet payload contents are
extracted from raw traffic and two random forest classifiers are used
to detect attacks. By considering distinct aspects of network traffic
(flow-based features and payload contents), the proposed NIDS detects
intrusions robustly. Firstly, flow-based features, which are handcrafted
based on the domain knowledge of security professionals, are passed to
random forest classifier as depicted in Fig. 2(a).

Secondly, the corresponding protocol payloads within a traffic flow
are analyzed to scan for potential attack in user data. As shown in
Fig. 2(b), protocol payloads from raw traffic are converted to fixed
size numeric arrays at a byte-level. Note that packet switched networks
fragment user data before transmission. Furthermore, some packets are
used only to control the connection between hosts, and therefore, not
all packets in a network flow contain user data or protocol payload. In
addition, the size of protocol payload varies from one packet to the
other. In the proposed NIDS, while packets with empty payload are
discarded, non-empty payloads are zero-padded or trimmed to a fixed-
size payload depending on the original size. Moreover, the hexadecimal
strings of the fixed-size payloads are converted to numeric array before
classification by the proposed NIDS.

As depicted in Fig. 2(a) and Fig. 2(c), a random forest model is
trained on each type of network traffic. In both cases the data values
are normalized before training the ML models. Whereas one random
forest classifier is trained on flow-based features, decoded byte arrays
of protocol payloads are used to train a second random forest classifier.
Finally, the classification probabilities of the two ML models are used
to obtain traffic class predictions using a soft voting scheme as depicted
in Fig. 2(d).

3.1. Flow-based subsystem

The proposed multimodal NIDS detects intrusions in two ways. In
the first part, flow-based features which are extracted from network
traffic within a time window of interest are used to make one level of
intrusion detection using a random forest classifier. In place of random
forest, other supervised tree-based ML algorithms such as Gradient
Boosting Decision Trees (GBDT) [54] and Extreme Gradient Boosting
(XGBoost) [55] can be used as traffic classifiers to make the flow-based
detection.

Randomized grid search was used to identify optimal hyperparam-
eter values for the random forest classifier. This has been done by
evaluating different parameter value combinations and cross validation
to select best performing parameters. Table 1 shows the parameters of
the classifier used in the flow-based subsystem.

Flow-based traffic features and protocol payloads are extracted from
the same network flow. In other words, for a given traffic sample,
the link between its protocol payloads and flow-based features is that
both of them refer to the same network flow. A flow contains a group
of packets having common traffic attributes and traversing through
a network observation point within a designated time frame. Gener-
ally, packets in a flow are commonly aggregated based on five-tuple
traffic features, namely source and destination Internet Protocol (IP)
addresses, source and destination ports, and transport layer protocol.
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Fig. 2. Intrusion detection in the proposed multimodal ML-based NIDS.

1 TWl
| |

Packet;

i Tw: Time window

Flow: E

Packet,

Packet;

Packets; .

Packet,
Time

Flow: l

Packet; Packet,

v

Fig. 3. Illustration of packets within flows and time windows (7). While blocks
marked by “+” represent packets included in a current T, those with “-” marks show
packets included in a previous 7T, and “-+” blocks represent packets waiting to be

w
included in a future T,, of the respective flows.

In the proposed multimodal NIDS, flow-based traffic features and
protocol payloads are extracted based on the concept of network flow.
Assume Flow represents a set that contains all active network flows
at an observation point within a time range of interest. Flow is a set
defined by the notation in (1).

Flow = {Flow, Flow,, Flows, ... Flowy } (€8}

where N denotes the network flow count in a given time window.

In computer networks, exchange of control information and data
occurs using packets. Here, Flow,, Flow,, ..., Flowy denote a set of
flows at an observation point where a total of N flows are processed.
Within each flow, there are a number of packets. Fig. 3 shows indi-
vidual network packets that form a Flow as Packet,, Packet,, Packets,
..., Packet ,, where M represents the number of packets in the flow. A
packet included in a flow may have user data in the form of protocol
payload. While the objective of the flow-based subsystem is to identify
elements of Flow that are suspected attack traffic by analyzing their sta-
tistical features, the payload-based subsystem analyzes actual contents
of the packet payload for malicious data patterns.

In real world network scenarios, the elements of Flow change dy-
namically as the individual flows contained within it vary with time.
Therefore, to account for the time-based variation in Flow’s contents,
starting time and ending time associated with each element of Flow are
defined. To illustrate with an example, consider the two Flow elements
shown in Fig. 3. Each flow consists of IP packets where each one of
them stays in the flow between specific starting and ending times.

Accordingly, without a loss of generality, a time window variable
T, is defined to represent a time range within which a set of packets
in Flow are considered for intrusion detection. Depending on the time
duration an intrusion detection is intended to cover, values of T,
can range from seconds to hours. As illustrated in Fig. 3, different
T,’s cover a number of packets within Flow during the course of an
intrusion detection. In this paper, T,, values ranging from 0 to 60
seconds were considered. The minimum and maximum values of T,

Table 2
Flow-based features used in the multimodal NIDS.

Feature Description

Flow starting time
Flow duration
Source bytes
Destination bytes
Source packets
Destination packets

Starting time of network flow
Time duration of network flow
Byte count from source

Byte count from destination
Packet count from source
Packet count from destination

were determined by analyzing the training data. In the process of
detecting attacks, it is operationally sensible to set a time range within
which suspected intrusions are analyzed. Accordingly, the values of
T,, were manually set in accordance with the minimum and maximum
traffic flow duration of packets in the evaluation dataset.

For a traffic flow between source and destination, an ML classifier
is trained using flow-based features. The objective of the flow-based
subsystem is to detect attacks using limited flow information that can
be obtained directly from packet headers with limited expert involve-
ment. To this end, six flow-based features that are defined in the
Internet Protocol Flow Information Export (IPFIX) standard have been
identified [56]. These are byte counts and packet counts from source
to destination and vice versa, flow starting time and duration. Since
most network vendors have provisions for gathering and disseminating
traffic flow data to support network management and security objec-
tives, these statistical features are straightforward to collect with little
expert involvement. To minimize bias in the flow-based random forest
classifier, certain traffic attributes including source and destination
IP addresses, source and destination ports, and protocol type were
discarded, while the six standard traffic features were used for model
training and testing. To extract the flow-based features from the UNSW-
NB15 PCAP files, Argus [57] and Bro-IDS [58], also known as Zeek IDS,
were used as network flow analyzers. From the flow-based features,
some of those that are compliant to the IPFIX standard were used as
flow-based features to train the propose multimodal NIDS. Table 2
shows a description of the flow-based features used in the proposed
multimodal NIDS.

3.2. Payload-based subsystem

To complement results of the flow-based subsystem with a different
source of cyber-threat intelligence, actual data contents of packets
are used for intrusion detection in the payload-based subsystem. As
shown in Fig. 2(c), pre-processed protocol payloads are passed to
random forest for traffic classification. A motivation to use a mixed-
data based intrusion detection comes from an observation about the
diversity of network attacks. While some attacks (e.g. reconnaissance,
port scanning) do not usually contain payload, other types of at-
tacks (e.g. viruses, worms) come embedded within packet payloads.
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Therefore, a complementary approach of attack detection, which is
applicable in scenarios where at least some of the packets in a traffic
flow contain payload, is proposed in this paper. By learning from flow-
based traffic features on the one hand, and examining the first few bytes
of protocol payload on the other, the proposed NIDS robustly detects
diverse types network attacks.

Since the proposed NIDS depends on both flow-based traffic features
and protocol payloads, it is critical to ensure that both types of data
are from the same network flow. Therefore, in the payload-based
subsystem, protocol payloads are taken from corresponding flows used
in the flow-based subsystem. Accordingly, flow-specific payload data
are extracted and labeled, which are in turn used in the payload-
based subsystem to classify traffic. To this end, a new method shown
in Algorithm 1 was developed and used to extract and label protocol
payloads. Samples of flow-based features and protocol payloads are
considered to belong to the same network flow if both have the same
values for traffic features that are used as flow identifiers.

Algorithm 1 Protocol payload extractor in the multimodal NIDS.

Input:

1: Flow: Labeled dataset of network traffic flows
2: Raw: Unlabeled raw PCAP files

3: Proto: Transport layer protocol

Output: Payload and Label

4: function Extract_PAyLoAD(Flow, Raw, Proto)

5: Payload < §

6: Label < ¢

7: while Raw # @ do

8: Py, < Extract Proto’s payload from Raw file
9: P, < EXtract [t,1,, iy d;ps Spors Apor] fOT Py,
10: Fy < Extract [t,,1,,5;,, dips S yores Ay fOT Flow
11: if P;;,, # @ then

12: if P, = F,; then

13: Py < Fy’s label

14: Payload < Py, U Payload

15: Label < Py, U Label

16: else

17: Continue

18: end if

19: end if

20: return Payload, Label

21: end while
22: end function

According to the definitions of Flow and T,,, seven traffic attributes
are used as flow identifiers. Namely, flow starting time (¢,), time
duration of the flow (z;), source IP (s,-p), destination IP (d,-p), source
port (s,,,), destination port (d,,,), and the transport layer protocol.
Algorithm 1 is used to extract and label protocol payloads from raw
packet capture (PCAP) files using labeled network flow dataset as
a reference. Note that labeled flow-based traffic features are widely
available as open source datasets. In contrast, labeled protocol payloads
are not publicly available as far as we know. Therefore, the newly
proposed procedure in Algorithm 1 is used to extract and label protocol
payloads, which are in turn used by the payload-based subsystem to
classify network traffic.

Algorithm 1 works as follows. Given a set of labeled network traffic
flows and the corresponding unlabeled raw PCAP files, Algorithm 1
extracts and labels protocol payloads. The algorithm takes three input
parameters, which are Flow, Raw, and Proto. Flow is a dataset that
contains labeled network traffic flows while Raw consists of the original
PCAP files of the dataset. Proto is the type of transport layer protocol
whose payload is to be extracted and labeled. The output of Algorithm
1 is a list of protocol payloads and their corresponding labels.

The payload extraction and labeling procedure starts with empty
lists, Payload and Label, which store the extracted payloads and their
corresponding labels, respectively. As long as there are PCAP files to
process, the algorithm extracts the payload of the specified transport
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layer protocol from Raw, and stores it in Pj,,. To extract protocol
payloads from Raw, Tshark [59], which is a well-known and open-
source protocol analyzer, is used in Algorithm 1. From payloads in
Py, @ unique identifier (P,,) composed of timing parameters (¢, and
14)s Sips dips Spor> and d,,,, is extracted from the raw packet data. A
similar flow identifier (F;;) is extracted from the labeled IDS dataset.

If a non-empty payload is found, the algorithm checks whether
the identifier of the extracted payload (P,;) matches the identifier of
any flow in the labeled dataset (F;;). If there is a match (i.e., the
extracted payload corresponds to a labeled flow in the dataset), the
label of the matching flow in the labeled dataset is assigned to the
extracted protocol payload (P, < F;;’s label). While the extracted
payload (Py,,,,) is added to the list of payloads, the corresponding label
(Pygper) is included in the list of labels. If there is no match between the
extracted payload and the flows in the labeled dataset, the algorithm
continues to the next iteration until there are no more PCAP files. When
there are no more PCAP files to process, the algorithm returns the lists
of extracted payloads and their corresponding labels as the final output.
In summary, Algorithm 1 iterates through the raw packet capture files,
extracts protocol payloads of a specified transport layer protocol, and
matches them with corresponding labeled flows in the dataset. The
result is a list of extracted protocol payloads and their respective labels.

While the flow-based subsystem uses labeled traffic samples con-
taining the six flow-based features as input, a list of protocol pay-
loads extracted and labeled according to Algorithm 1 are used by the
payload-based subsystem. As depicted in Fig. 2(c), a random forest
classifier is trained to classify traffic based on these labeled protocol
payloads. Flow-specific payloads are converted into numeric represen-
tations. Each byte in the payload’s hexadecimal string is converted into
its numeric representation.

Since the size of payload is variable across IP packets in a flow,
a pre-processing procedure is applied to convert payload samples to
fixed-size data. Algorithm 2 is used to transform the protocol payloads
to byte-level traffic features that can be used for attack detection.

Algorithm 2 Payload pre-processor.

Input:
1: P: A list of protocol payloads in network flow
2: K: The first K number of bytes of payload
Output:
3: X: Numeric array representation of payloads
4: function DECODE_PAYLOAD(P, K)
5: X <0
6 for i in P do
7 B « Get the first K bytes of payload
8: M < Numeric representation of B
9 N « Normalized values of M
0 X< XUN
11: end for
12: return X
13: end function

For a protocol payload in a network flow, Algorithm 2 extracts the
first set of bytes of the payload, converts them to numeric format and
normalizes the values. The payload-based classification model then uses
the normalized byte-level payload samples as training and testing data.

In effect, every byte of the payload is taken as a feature in the
payload-based subsystem. While using the first few bytes of proto-
col payload for classification minimizes processing overhead, we also
show in Section 4 that analyzing payload data beyond the first 64
bytes does not increase detection accuracy. Overall, a list of protocol
payloads are taken, each payload’s first few bytes are converted into
numeric representation and the values are normalized. In this way, raw
protocol payloads are converted into a numerical format suitable for
random forest and other ML classifiers. Finally, a soft voting scheme
is used to combine traffic class predictions from the flow-based and
payload-based subsystems.
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3.3. Classification using soft voting

In a voting based classification, predictions from individual ML
classifiers are combined to obtain the final class prediction. Assume
there are two ML classifiers denoted by h, and h,. Each classifier
predicts the probability that a given input sample, x, belongs to a
class. In the proposed multimodal NIDS, #, and A, are the flow-based
and payload-based subsystems. For a traffic sample x, let P;(x, h;) and
P;(x, h,) denote the probability that x belongs to class j as determined
by h, and h,, respectively. In soft voting, the predicted probability for
class j, denoted as P;(x), is the average of the predicted probabilities
from the two subsystems as shown in Eq. (2).

Px) = 3 (PG ) + P ) @

P;(x, hy) and P;(x, h,) represent the predicted probabilities of class ;j for
sample x according to classifiers 4, and h,, respectively.

For the given input sample x, the final class label is the class with
the maximum average probability as shown in Eq. (3).

C
Ypred(x) = arg max P;(x) 3)

where y,eq(x) is class label predicted for the input sample x, and C de-
notes the number of classes. By combining predicted traffic class proba-
bilities of two independent random forest classifiers, the proposed mul-
timodal ML-based NIDS leverages threat intelligence gathered from sep-
arate flow-based and payload-based subsystems and provides a robust
intrusion detection.

4. Evaluation

In a learning phase, two random forest classifiers are trained on two
distinct types of network traffic. While one classifier is trained on flow-
based features, the second classifier uses protocol payloads as shown
in Fig. 2. To detect intrusions during a testing phase, the flow-based
and payload-based models are used to classify new samples of flow-
based data and payload data, respectively. Subsequently, classification
probabilities from each Machine Learning (ML) model are combined
using a soft voting scheme to make the final traffic classification.

Since the proposed multimodal Network Intrusion Detection System
(NIDS) uses both flow-based features and protocol payloads, two types
of network traffic data are required for its evaluation. Accordingly, the
proposed NIDS was evaluated using flow-based features and protocol
payloads extracted from open source intrusion detection dataset known
as UNSW-NB15 [60]. The proposed method has been implemented
using Scikit-learn and the Python programming language on Ubuntu
operating system.

4.1. Evaluation dataset

The proposed multimodal NIDS was trained and tested using the
UNSW-NB15 dataset [60]. While old datasets such KDDCup99 and NSL-
KDD [61] were used in the past, neither of them forms a realistic
representation of modern network traffic [62]. As the types of attacks
have been increasing over time, it is crucial to include emerging
attacks in an NIDS evaluation. Consequently, new datasets such as
CDX [63], CICIDS2017 [64] and UNSW-NB15 [60] have been devel-
oped by researchers. After an evaluation of more than thirty different
NIDS datasets, UNSW-NB15 is one of two datasets recommended by the
authors in [65] due to its broad range of attack scenarios.

The UNSW-NB15 intrusion detection dataset was created by cap-
turing nearly 100 gigabyte of Packet Capture (PCAP) files from an
experimental computer network. It is one of the latest datasets and
it contains traces of benign traffic and nine types of cyber-attacks.
Network monitoring tools were used to extract 47 traffic features and to
label network flows from the PCAP files. The labeled part of the dataset
contains a total of 2540043 records in four files as Comma Separated
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Table 3

Feature importance.
Feature Importance Feature Importance
swin 0.20379 sbytes 0.180505
spkts 0.170338 dwin 0.103253
isftplogin 0.076508 dpkts 0.07425
dbytes 0.070062 dmeansz 0.040409
dur 0.030362 synack 0.011084

Table 4

Flow-based TCP and UDP traffic samples in the dataset.

Protocol Training Testing Total Sample ratio
samples (80%) samples (20%) samples by protocol

TCP 1196057 299014 1495071 58.86%

UDP 792347 198087 990434 39%

Others - - 54538 2.14%

Total 2540043 100%

Values (CSV). To evaluate the proposed multimodal NIDS, both the
feature-ready CSV and the raw PCAP files were used.

As discussed in Section 3, six standard traffic features were extracted
from data records in the original CSV files of the dataset. These flow-
based features were selected due their availability in the IPFIX standard
and ease of extraction from packet and byte counts of network trans-
actions. The six features are among the statistical traffic information
commonly collected by IPFIX compliant network devices. Furthermore,
to assess the relative importance of the selected features, an ML model
was trained on all flow-based features and then used to rank all features
of the dataset including those used in the multimodal NIDS. Table 3
shows top contributing feature on a purely flow-based model trained
using all traffic features. It can be observed that spkts, sbytes, dbytes,
dpkts and dur are among the most important features in the flow-based
model. Although there are other high ranking features in terms of the
output of a standalone flow-based model, these have not been used
in the proposed multimodal NIDS. Priority was given to the relative
ease of feature extraction and IPFIX compliance of the selected features
due to the use of both flow-based and payload-based features in a
complementary manner in the proposed method.

In the flow-based part of the multimodal NIDS, traffic classification
is made by random forest using the flow-based traffic features as shown
in Fig. 2(a). Table 4 shows the network traffic samples of the dataset
by protocol type. These flow-based traffic samples were obtained from
the feature-ready CSV records of the dataset. As depicted in Table 4,
the majority of the flows, 97.86%, are either TCP or UDP traffic.
Accordingly, we evaluate the proposed multimodal NIDS using TCP and
UDP traffic samples.

Similarly, protocol payloads were extracted from the original PCAP
files using Algorithm 1 as discussed in Section 3. In the process of
labeling protocol payloads, the CSV records were used as a reference
to identify matching network flows. Following payload extraction and
labeling, hexadecimal strings of the protocol payloads were converted
to numeric values and normalized according to Algorithm 2. A second
random forest classifier is then trained and tested using the labeled and
normalized payload traffic samples.

TShark [59], which is a well known protocol analyzer, was used
to extract network flows and protocol payloads from PCAP files. Par-
ticularly, starting timestamp, source and destination IPs, source and
destination ports, and the respective TCP and UDP packet payloads
were extracted from every PCAP file of the dataset. For both TCP
and UDP, network flows without packet payloads were discarded. The
same traffic features, except payload, were also extracted from the CSV
files of the dataset. Redundant network flows were removed from the
traffic features extracted using the PCAPs and CSV files. Subsequently,
corresponding traffic samples from the CSV records and PCAPs were
matched and selected according to the flow identifiers discussed in
Section 3.
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Fig. 4. Model F, score versus payload size.

Overall, more than ten million (10727720) TCP flows with payloads
and more than seven hundred thousand (786118) UDP flows with
payloads were extracted and labeled using Algorithm 1. Whereas all
of the UDP flows were included, 10% of the TCP flows were randomly
selected and used for evaluation. The resulting data was divided into
80% and 20% for training and testing, respectively.

4.2. Payload size

When protocol payloads are transformed to fixed-size samples ac-
cording to Algorithm 2, the payload size was determined experimen-
tally. While aiming for minimized resource consumption and processing
time, it is also important to identify the size of protocol payload
that gives better detection accuracy. To this end, the payload-based
subsystem was trained and its detection performance evaluated across
a range of payload sizes. Fig. 4 shows F; score of the payload-based
model versus the number of bytes across different payload sizes. It
can be seen that the model’s F, score reaches 97% at a payload size
of 32 bytes. Furthermore, while processing the payload data beyond
the first 64 bytes incurs additional computational costs, no significant
performance improvement is obtained by doing so.

Similarly, different fixed-size payloads starting from the leading
end of the payload have been used in other payload-based detection
approaches [46-48]. Although the exact payload size varies from one
method to the other, it is common to take traffic samples from the first
few bytes of the payload. Cognizant of resources and time required
to handle protocol payloads of 64 bytes and 32 bytes vis-a-vis the
detection accuracy achieved by using each, the first 32 bytes of payload
were considered in the proposed method. Accordingly, the payload-
based model was trained and tested using the first 32 bytes of protocol
payload.

With the aforementioned configurations of the flow-based and
payload-based models, the multimodal NIDS combines classifications
outputs of the two models using the soft voting scheme discussed in
Section 3.3. When the models were trained on their respective data
samples, they could learn parameters of the data too well and result in
overfitting, in which case the models would not perform well on new
data. Therefore, to tackle overfitting, the models were trained using
a k-fold cross-validation method [66,67]. Each model was trained and
validated on the available data at different rounds of training by using
ten-fold cross validation (k = 10), where one out of ten traffic samples
were used for validation and the rest for training. Accordingly, the

proposed model was evaluated by taking average scores of evaluation
metrics discussed in Section 4.3.

4.3. Evaluation metrics

The correctness of the predictions made by the proposed multimodal
NIDS was measured using a confusion matrix. Confusion matrix was
used to compare traffic classes predicted by the proposed NIDS against
the actual traffic classes (ground truth). An ideal NIDS would have non-
zero values for True Positive (TP) and True Negative (TN), and zero
values for False Positive (FP) and False Negative (FN) which represent
errors.

The objective of the proposed NIDS is to classify network traffic into
attack or normal, and into multiple attack categories in the case of mul-
ticlass classification. The confusion matrix was used in the evaluation
of binary as well as multiclass traffic classification. In the case of the
multiclass classification, where the NIDS predicted not only normal and
attack traffic classes but also the types of attack, the confusion matrix
was used to provide a detailed breakdown of the predictions for more
than two traffic types. Accordingly, the classification performance of
the proposed multimodal NIDS in predicting normal traffic and cate-
gories of attack traffic was evaluated using average Accuracy, Precision,
Recall, F, score, and False Positive Rate (FPR). These standard metrics
are calculated from TP, TN, FP, and FN entries of the confusion matrix
for the respective traffic class [68].

Furthermore, Receiver Operating Characteristic (ROC) curve, which
shows True Positive Rate (TPR) and FPR, was used for evaluation. The
target of the NIDS is maximizing TPR while minimizing FPR. In the
case of multiclass classification, ROC curves with One-vs-Rest (OvR) ap-
proach were used to measure the correctness of predictions. Using OvR
approach, the classification performance of the NIDS was evaluated
for each traffic class. In OvVR, the traffic class under consideration is
treated as the positive class while considering all other traffic classes
as the negative class. In addition, Area Under the Curve (AUC) measures
the classification performance by calculating the area under the ROC
curve. A nearly perfect NIDS would classify almost all network traffic
correctly, and the AUC in that case would be very close to 1.

Flow-based features and protocol payloads from TCP and UDP of
the UNSW-NB15 dataset were used for training and testing. The reason
that the proposed NIDS was evaluated using only these types of traffic
is because TCP and UDP are the most commonly used transport layer
protocols. In addition, 97.86% of all data samples in the UNSW-NB15
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Fig. 5. Binary confusion matrix of the proposed multimodal NIDS.

dataset come from either TCP or UDP traffic flows. Therefore, the
proposed NIDS was evaluated using these traffic samples. The proposed
NIDS was tested for binary and multiclass classification.

5. Results

In this section, the evaluation results of the proposed method are
presented. Fig. 5 shows the binary confusion matrix of the proposed
multimodal NIDS using traffic samples in the test data. While True
Traffic Class shows the number of samples of attack and normal traffic
in reality (ground truth), values of Predicted Traffic Class are the respec-
tive numbers of attack and normal traffic as classified by the proposed
NIDS. As shown in Fig. 5, out of a total of 371,778 testing samples,
369,583 were correctly classified by the model. The remaining 2195
traffic samples were misclassified where 1955 were false positives and
240 were false negatives. For binary classification, the proposed model
was evaluated using average values of Accuracy, Precision, Recall and
F, metrics using k-fold cross validation scores. The model achieved
more than 98% on most of the evaluation metrics. The obtained high
scores on the evaluation metrics indicate that the proposed NIDS can
classify normal and attack traffic accurately. Fig. 6 shows the ROC
curves of evaluating the proposed NIDS for multiclass classification. As
stated earlier in this section, a good classifier has a ROC curve that
is close to the upper left corner of the plot, which indicates high true
positive rates and low false positive rates. As can be seen in Fig. 6,
the ROC curves of the attack traffic except two are close to the upper
left corner of the plot. Backdoor and Worms are the two attack traffic
classes for which the proposed NIDS scored relatively low.

Another way to assess the effectiveness of the proposed NIDS for
multiclass classification is to look at the AUC of the ROC curve. Values
of AUC close to 1 indicate a good classification performance. As shown
in Fig. 6, the ROC curves of most traffic classes have high AUCs except
Backdoor and Worms, which have AUCs of 0.85 and 0.94, respectively.
Furthermore, very low FPRs were obtained for the nine attack classes.

In practice, excessive false alerts tend to cause threat-alert fatigue and
take the attention of a security expert from responding to real attacks.
Therefore, the fact that the proposed multimodal NIDS has low FPR has
useful practical significance for network security operations.

Overall, the model classified most traffic classes correctly with
AUCs of more than 0.95 in most cases. Exceptions to this are Worms
and Backdoor attack types with AUCs of 0.85 and 0.94, respectively.
The obtained results confirm that the proposed multimodal NIDS can
classify most normal and attack traffic correctly. However, the classifi-
cation results for attacks such as Backdoor and Worms were not as good
as the others. In these cases, the low scores could be due to the fact that
the attacks are a minority in the dataset with relatively few samples in
the training and testing sets. The number of samples of each type of
attack used for evaluation are shown in multiclass confusion matrix in
Fig. 7.

Fig. 7 shows multiclass confusion matrix for the proposed model.
While values to the right of a True Traffic Class label are the real
number of samples of that class, values shown vertical to Predicted
Traffic Class label are the number of samples predicted by the model
as the respective class. It can be seen that the cells along the diagonal
of the confusion matrix from top left to bottom right, contain most of
the non-zero values, indicating the proposed NIDS detects most attacks
correctly. In comparison to the actual attack categories, it can be seen
that the model has predicted most traffic samples correctly. However,
classes such as Normal, Exploits, Generic and Fuzzers had a few of their
samples misclassified as other types of traffic.

In summary, the proposed multimodal NIDS, which uses flow-based
features and the first 32 bytes of protocol payload in a complementary
manner was able to classify network traffic successfully, with high
average Accuracy, Precision, Recall, F; score and low FPR values. While
the proposed NIDS identified most attack categories in the evaluation
dataset accurately, it has a limitation in terms of detecting unknown
attacks. Since random forest, which is a supervised ML, is used in both
the flow-based and payload-based models of the proposed multimodal
NIDS, it does not detect unknown or zero-day cyber-attacks.
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5.1. Model explainability

With the widespread use of artificial intelligence (AI) in many
domains, explainable AI (XAI) [69,70] has been used to interpret

Fig. 7. Multiclass confusion matrix.

results of intrusion detection models [71]. Beyond detecting attacks
accurately, it is important that the decisions made by an ML-based NIDS
are transparent and explainable. Once malicious network flows have
been identified by the NIDS, model explainability helps to determine
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why the attacks occurred and to inform actions that can be taken to
deal with the attacks. Model explainability provides insights about the
traffic attributes that the model relies on to detect attacks.

To gain insights about the explainability of classification outputs of
the proposed multimodal NIDS, Shapley Additive Explanations (SHAP)
values were used [72]. Model explainability was analyzed using traffic
features used in the payload-based and flow-based models that form
the proposed multimodal NIDS. Fig. 8 shows summary SHAP plot of
the payload-based model for multiclass classification. Fig. 8 depicts the
impact of different payload byte features on the prediction of normal
traffic and nine types of attacks. The results indicate that the 10th byte
of the payload is the highest contributing feature to the model’s output.
In addition, while the individual contributions to the model output vary
on different payload byte positions, most top contributor features have
been found to be up to the 327 byte of the payload. A similar trend was
observed in the case of binary classification of the model. The results
indicate that the treatment of the protocol payload at the byte-level
leads to the identification of the most common payload byte position
that can be used for attack detection.

Similarly, the contribution of flow-based features to the multimodal
output was evaluated using SHAP values of the flow-based model. The
SHAP values of the flow-based features were smaller than that of the
payload-based model, thus indicating flow-based features have smaller
contribution to the overall multimodal model output. Although the
SHAP values of the flow-based features were small, their presence in
the multimodal NIDS was necessary for the detection of attacks that
have limited payload.

5.2. Comparisons

In this subsection, the proposed multimodal NIDS is compared with
three types of intrusion detection approaches. Firstly, the proposed
multimodal NIDS is compared with standalone flow-based and payload-
based detection methods. Secondly, the decision-level combination of
results from the two models is compared against a method that uses
aggregated flow-based and payload-based features at the data level.
The fusion of classification results in the proposed method occurs at
the decision level using a soft voting scheme. However, in multimodal
ML approaches, the fusion can also be made at an intermediate step or
early at a feature level.
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Due to the use of random forest as a classifier, intermediate fusion is
not applicable in the proposed method. Therefore, thirdly, the proposed
decision-level multimodal NIDS is compared with a detection approach
that combines flow-based data and the corresponding protocol pay-
loads as features before classification. Accordingly, a random forest
classifier was trained on a combined data obtained by joining the flow-
based and payload-based traffic samples. The flow-based features were
zero-padded to match the byte-level features of the payload data.

In all three cases, random forest was used as the classifier to make
a fair comparison with the proposed method. The results show that the
proposed multimodal NIDS is more effective in detecting attacks than
both standalone flow-based and payload-based approaches. While the
payload-based model scored better than the flow-based model in almost
all evaluation metrics, the proposed multimodal model scored better
than both of them.

To assess the effectiveness of the decision-level fusion of results in
the proposed method, it was compared with an early fusion approach.
Fig. 9 shows ROC curves of the model that was trained using traffic
samples combined at a feature-level. In contrast, as shown in Fig. 6,
the ROC curves of the proposed method have higher AUC scores. The
results indicate that early fusion of flow-based features and protocol
payloads has lower attack detection performance than the proposed
multimodal model which uses decision-level fusion of results.

To compare the different fusion approaches in terms of explainabil-
ity, Shapley Additive Explanations (SHAP) values were used to evaluate
the contributions of the features on the output of the models. While it
was possible to measure the impact of payload and flow-features using
SHAP values as shown in Section 5.1, the early fusion based model
showed limitations in terms of explainability. For the model based on
the fusion of flow and payload features at data-level, model output
was not directly attributable to specific flow or payload features. The
early fusion of flow and payload data before classification introduces
complexity in the explainability of model output.

6. Conclusions

In this paper, a new multimodal Machine Learning (ML) based Net-
work Intrusion Detection System (NIDS) is presented. The multimodal
NIDS uses distinct aspects of traffic in a complementary approach to
reliably detect network intrusions. It has flow-based and payload-based
subsystems, where six standard traffic flow features and the first 32
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Fig. 9. ROC curves using early fusion.

bytes of protocol payload are processed, respectively. In both subsys-
tems, a random forest ML model is trained to classify network traffic.
Predicted probabilities of the two subsystems are then aggregated using
a soft voting scheme to obtain the final classification results. The pro-
posed NIDS was evaluated for binary and multiclass classification using
flow-based features and protocol payloads extracted from a publicly
available UNSW-NB15 dataset.

The results show that the multimodal NIDS can detect network
attacks with high average Precision, Recall, F|, and Accuracy scores
reaching 98% in many cases, and up to 99% in some cases. The FPR
scores of the proposed NIDS were low for most of the attack categories
in the evaluation dataset. While the proposed NIDS uses six standard-
ized flow-based features and the first 32 bytes of protocol payload,
most previous ML-based NIDS used large number of traffic features and
big payload sizes. Therefore, the results in this paper confirm that a
multimodal ML-based NIDS that learns from few standard traffic flow
features on the one hand, and checks the first few bytes of protocol
payload on the other, has a good potential to detect most network
attacks. For future work, the applicability and effectiveness of the
proposed NIDS for online intrusion detection will be evaluated. The
implementation of the multimodal ML-based NIDS is publicly available
on GitHub.!
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