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Abstract—Non-intrusive load monitoring (NILM) is an 

important measure to improve the intelligence level of the power 

demand side. Existing NILM methods have poor performance in 

identifying low-power devices with similar power, with the 

increasing diversity of household loads and the wide range of 

load fluctuations. This paper proposes a fusion-based load 

identification method for residential loads, considering the 

electrical characteristics of different load types. In the first stage, 

the adaptive threshold Cumulative Sum (CUSUM) algorithm is 
innovatively adopted to reduce the misjudgment of local high-

power device switching fluctuations and the missed events of 

local low-power load operation in the global threshold. In the 

second stage, the minimum Bayesian decision fusion loss function 

is used to calculate the cost function of Voltage Current (UI) 

trajectory, power, and total harmonic distortion, which are input 

into the Softmax multi-classification regression model in parallel. 

The category corresponding to the prediction made by the 

minimum loss function is considered as the final output. Finally, 

the effectiveness of the proposed method in identifying multiple 

types of household loads was verified through experiments on the 

Plug-Level Appliance Identification Dataset (PLAID) dataset. 

 
Index Terms—Non-intrusive load monitoring, event detection, 

load identification, decision fusion. 

I. INTRODUCTION 

ITH the development of smart grid, there is an 

increasingly urgent need to promote efficient 

electricity utilization and optimize electricity usage 

patterns to strengthen the management of electricity 

consumption in the whole society, which necessitates an 

accurate understanding of energy consumption on the load 

side. Non-intrusive load monitoring (NILM) can be based on 

the electricity consumption information of the total load table, 

and obtain the specific load status mode and electricity 

consumption level of a single device through appropriate 

software analysis methods to help users and energy suppliers 
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allocate power resources more reasonably, particularly in the 

context of demand response [1]. It is an important measure to 

improve the intelligence level of the power demand side [2]. 

For energy suppliers, gaining access to refined data regarding 

the load side enables accurate estimation of total electricity 

consumption on a macro scale. This information is 

instrumental in implementing sophisticated electricity policies, 

including time-of-use pricing, which can help balance supply 

and demand dynamics more effectively. 

Currently, NILM encompasses two main methodologies: 

event-based and non-event-based methods. Non-event-based 

methods often treat the state of appliances as variables, 

utilizing pattern recognition techniques to match various 

appliance states and powers with the total power sequence. 

This includes direct decomposition of load power using 

various deep learning algorithms, among other 

approaches[3][4]. However, non-event-based methods tend to 

be slower and may not be suitable for scenarios with a large 

number of appliances[5]. Event-based methods consist of 

three steps: event detection, feature extraction, and load 

identification[6]. This method incorporates feature extraction 

into the event detection process, initially determining the time 

point of the transient and steady-state division where load 

switching occurs, and then extracting features, which can 

better capture transient features and enrich the diversity of 

recognition features. 

Existing event detection methods can be categorized into 

three classes: heuristic event detection, matched filtering, and 

probability model-based detection[7]. The heuristic method 

relies on prior knowledge to establish event detection rules. 

For example, the earliest type of heuristic event detection 

method was proposed by Hart[8], which compares power 

difference changes with a predefined threshold to determine 

event occurrence points. However, the effectiveness of this 

approach is often limited in scenarios with diverse types of 

household loads and significant amplitude fluctuations[9].The 

matched filtering method involves comparing the signal to be 

detected with pre-established library signals using correlation 

methods to locate load switching events. However, 

experiments have shown that this type of method can be 

cumbersome when applied to the detection of multiple load 

categories[10][11]. Moreover, it is susceptible to interference 

from noise and other factors. Therefore, in the scenario of 

household loads, the accuracy of matched filtering method 

does not have a significant advantage. The probability model-

based method is currently the most widely used[12][13], 
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which focuses on the changes in statistics in the total load data 

to locate the time of load changes. Representative methods in 

this category include the goodness-of-fit method, cumulative 

sum (CUSUM) algorithm, likelihood ratio test, etc. Among 

them, the CUSUM algorithm is the most widely used[13][14]. 

The bilateral CUSUM algorithm based on sliding window was 

proposed and applied to event detection [13]. The CUSUM 

algorithm was applied based on statistical features such as 

variance and absolute deviation in the sampled total signal, 

using a sliding window method to determine the moments of 

load switching [12]. Currently, there have been no 

improvements to the CUSUM algorithm specifically 

addressing the problem of misjudgment caused by fluctuations 

in local high-power devices and the issue of missing events in 

the operation of local low-power loads in household loads. 

Therefore, an adaptive threshold CUSUM algorithm is 

proposed to solve this problem.  

Initially, active power was widely used for feature 

extraction due to its accessibility, but its sole reliance proved 

inadequate for identifying increasingly diverse load types [15]. 

The Voltage Current (UI) trajectory features, with their rich 

representation forms and graph structure transformation 

advantages, have been widely applied, yielding satisfactory 

results [16]. However, relying solely on UI trajectories often 

leads to suboptimal load identification within the same class, 

as trajectory shapes of the same electrical type are similar. 

Harmonics, capturing the characteristics of power electronic 

devices, are now incorporated as non-intrusive load 

identification features, offering auxiliary characteristics for 

enhancing accuracy. Harmonic features are peculiarities that 

electronic devices have in terms of the distribution and 

magnitude/amplitude of the current harmonic spectrum, even 

in the absence of voltage harmonics. Amplitude of odd 

harmonics and harmonic ratio are adopted as load features to 

improve identification precision [17][18]. Researchers have 

started investigating feature fusion methods to address load 

feature selection, mainly focusing on feature layer fusion 

[19][20]. For instance, UI trajectories and power features are 

fused to form composite features, and spectral envelopes serve 

as harmonic supplementary features [21]. However, there's 

currently no method effectively combining load types and 

characteristic features to optimize identification performance. 

Therefore, in diverse household load scenarios, UI trajectory, 

power, and Total Harmonic Distortion (THD) are selected as 

distinctive load features based on their distinguishing 

attributes. 

For load identification, three main methods are prominent. 

The first involves establishing relevant load models and using 

model matching techniques. Hidden Markov models are 

favored by some researchers for their ability to learn and 

match optimal state sequences based on observed load 

parameters [22]. The second method is seeking optimal 

solutions by constructing a graph signal model from the 

overall sampled load signal. Power constraints are derived 

from the graph signal model, with alternating optimization and 

automatic adjustment of regularization coefficients aiding load 

category discrimination [23]. The third method harnesses 

neural networks and deep learning approaches such as 

convolutional neural networks [24], deep belief networks [25], 

Recurrent Neural Network (RNN) models [26], Long Short-

Term Memory (LSTM) [27] and Gated Recurrent Unit (GRU) 

[28]. Selecting the most suitable load identification algorithm 

with the right balance of complexity and accuracy is a key 

focus in practical applications, leading to the proposal of a 

decision fusion method based on Softmax-Bayesian. 

This paper proposes a non-intrusive load identification 

method that innovatively combines an adaptive threshold 

CUSUM algorithm with Softmax-Bayesian decision fusion. 

This pioneering approach fills the blank in previous studies. 

Also, identifiable load features are selected according to the 

characteristics of load types in scenarios with a wide variety of 

household loads, based on the diversity of load characteristics 

and the local similarity of electrical features exhibited by 

different types of loads. The primary contributions of this 

study are as follows: 

1) An adaptive threshold CUSUM event detection method 

is proposed to address the problem of misjudgment for high-

power events and missed detections for low-power events 

caused by the large range of power spans in existing change-

point detection theory. 

2) A non-intrusive load identification method based on 

decision fusion Softmax Bayesian is proposed, which solves 

the limitation of inaccurate identification of some components 

when using a single load feature. 

3) The combination of an adaptive threshold CUSUM 

algorithm with Softmax-Bayesian decision fusion is employed 

to achieve higher performance. Experimental results 

demonstrate that using this approach for load identification of 

seven common household appliances yields an average F1-

score of 0.97. This significantly improves the accuracy of 

identifying loads. 

II. METHODS 

A. CUSUM Event Detection Method Based on Adaptive 

Threshold 

In non-intrusive load identification algorithms, event 

detection is a crucial step in obtaining the time of event 

occurrences and extracting load features. The time list of load 

event occurrences can facilitate the extraction of subsequent 

transient steady-state load features, forming a rich load feature 

library. 

In order to address the issue of large fluctuations in load 

events, a challenge arises when using power as the feature for  

event detection. The identification performance of high-power 

and low-power events is often hindered due to the setting of 

the threshold. To overcome this challenge, a binary search 

method is proposed, with relatively low identification 

accuracy but simple algorithm principle for preliminary and 

rapid partitioning of the load power range to determine sub-

interval thresholds. Then, the CUSUM algorithm is combined  
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Fig. 1. Flow chart of adaptive threshold CUSUM event 

detection. 

 

with higher complexity but higher identification accuracy to 

perform the final load event detection, using locally 

partitioned thresholds for detection[29]. This approach follows 

the Pauta Criterion to form sub-interval thresholds, reducing 

the risk of false alarms caused by fluctuation of high-power 

devices in the global threshold and preventing the missed 

detections of events related to low-power load operations.  

The flowchart of the event detection method is shown in 

Fig. 1. Firstly, input the power sampling signals. Then divide 

the intervals by binary search, calculate the means and 

variances of the intervals and obtain a list of sub-interval 

means and variances. Subsequently, calculate the threshold of 

each sub-interval using the Pauta Criterion. Next, use the 

mean and standard deviation of the (i-1)th interval as the 

threshold for the ith interval. Apply the CUSUM algorithm to 

detect event occurrence points. Determine if there was an 

event occurrence point within the interval or if the location of 

the point had not exceeded the end of the ith interval. If Yes, 

apply peak finding and derivative to optimize the event list. 

Shift the point forward by 0.2*f1 transient intervals and restart 

the CUSUM algorithm. If no, calculate and update the mean 

and standard deviation of the ith interval, increase the value of 

i by 1. Finally, output the list of detected event occurrence 

points. 

The essence of the binary search method is to calculate the 

sum of the loss functions on both sides of any given point and 

identify the point that minimizes this sum as the first change 

point[30]. Subsequently, the time series signal is divided into 

two segments at the first change point, and the first step is  

 
Fig. 2. Results of binary search coarse detection division. 

 

repeated for each segment until the termination condition is 

satisfied, after which the detection stops and outputs the 

change points. The expression for the binary search method is 

shown in (1), where t1 denotes the first change point, c(y
0.....t1

) 

denotes the value of the loss function from time point 0 to t1, 

and c(y
t1.....T

) denotes the value of the loss function from t1 to 

the end of the time series signal T. 

 t1= argmin
0<t<T

{c(y
0.....t1

)+c(y
t1.....T

)} (1) 

In (1), the value of c  can be calculated by selecting an 

appropriate loss function. The loss function Clinear , based on 

the least squares criterion, represents the residual sum of 

squares between the actual signal and the fitted model signal. 

The expression for Clinear is shown in (2), where y
a...b

 refers to 

a subsequence of the sequence y, which starts from index a 

and extends to index b, y
t
 denotes the observed value of the 

signal at time point t, u and v denote the unknown regression 

parameters, xt
'  and zt

'  denote the observed covariate 

subsegments, R  denotes the set of real numbers. Clinear  is 

primarily used to measure errors. The optimal loss function 

Clinear is ultimately chosen as the loss function for the binary 

search method to determine the initial interval threshold 

during coarse detection. 

Clinear(ya...b
)= min

u∈R,v∈R
∑ (y

t
b
t-a+1 -xt

'u-zt
'v)

2
 (2) 

Since the number of load events within a sampling time 

period cannot be determined in advance, the termination 

condition for the loop is selected to utilize a penalty constraint 

mechanism Pen  as shown in (3), where p  denotes the 

dimension of the signal, representing the number of distinct 

features or parameters being measured or analyzed within the 

signal, T denotes the length of the signal sequence, indicating 

the total number of data points or observations captured over a 

specific time span, and τ denotes the number of the change 

points. 

  Pen=
p

2
* log (T )|τ| (3) 

Based on the aforementioned application of binary search to 

the sampled load power time series, an initial detection of time 

change point coordinates is outputted, dividing the sampled 

load power signal into several sub-intervals of transient steady 

states. By selecting the appropriate loss function and penalty 

constraint mechanism, this method can effectively converge 

and complete the division of interval. The graphical 

representation is shown in Fig. 2, where the light blue and red 
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boundary regions represent the intervals divided by the binary 

search method, and the deep blue region represents the 

original load power sequence to be detected. 

According to the Pauta Criterion in statistics, assuming that 

the load data follows a normal distribution or an 

approximately normal distribution, it indicates that there is a 

probability of 0.9974 that the data falls within the range of 

(μ-3σ, μ+3σ), where μ represents the mean, and σ represents 

the standard deviation. 

After partitioning the intervals, each interval will have a 

constant mean and variance. Based on this, we can calculate 

the mean and variance of each sub-interval. Therefore, by 

selecting an upper threshold value, denoted as 3σ, and a lower 

threshold value, denoted as -3σ , results obtained from the 

binary search method can be stored. These stored values will 

be used for determining the thresholds in the current stage and 

passed into the next stage, which is the adaptive threshold 

detection part of the fine detection CUSUM algorithm. 

The decision formula for the bilateral CUSUM detection 

algorithm is shown in (4) and (5), where xk  denotes the 

observed value of the kth point, g
k
+ and g

k
-  denote the forward 

cumulative sum and the backward cumulative sum of the kth 

point, μ
0
 denotes the mean value of the monitoring signal and 

β denotes the allowable noise fluctuation error. Based on (4) 

and (5), the value of μ
0
 is updated with the previous sub-

interval obtained through the binary search method. Assuming 

that the mean value sequence of k sub-intervals detected by 

the binary search method in the signal sequence is 

μ={μ
0
,μ

1
...μ

k
} , and the standard deviation of the k  sub-

intervals is σ={σ0,σ1...σk}.If μ
0
≠μ

1
, it indicates that a change 

point exists in the first interval, and the CUSUM algorithm 

needs to be invoked within the first sub-interval. The mean 

value  μ
0
 of the zeroth interval is used as the mean value in the 

first sub-interval, and according to the Pauta Criterion, the 

mean value σ0 of the zeroth interval is constructed as 3*σ0 to 

form the detection threshold for the first sub-interval. 

 g
k
+=(g

k-1
+ +xk-μ0

-β) (4) 

 g
k
- =(g

k-1
- -xk+μ0

-β) (5) 

After the change point is detected in the first sub-interval, 

firstly the mean and standard deviation of the first sub-interval 

should be updated. Starting from the steady-state moment 

when the event time change point is detected, the normalized 

transient interval is set as 0.2s, assuming the sampling 

frequency of the dataset is  f
1
. Converting it to coordinate 

representation, it becomes 0.2*f
1

. Therefore, the CUSUM 

algorithm should move the steady-state interval coordinates 

forward after detecting the first change point in this sub-

interval. Calculate the mean and standard deviation from the 

steady-state interval to the end of the first sub-interval, and 

update μ
1
 and σ1 accordingly. Then, repeat the same operation 

for all subsequent sub-intervals to complete the threshold 

update and event detection using the CUSUM algorithm. 

B. Feature Extraction and Database Construction based on 

Event Time List 

The types of loads include resistive loads, power electronic 

loads, and motor-driven loads. UI trajectory features can be 

used to identify and effectively differentiate most devices. 

However, for the above three types of loads, power features 

provide a simple and rapid way to distinguish most devices. 

Nevertheless, in the case of similar low-power consumption 

power electronic loads within the same category, harmonic 

characteristics serve as a robust supplementary feature for load 

identification. Therefore, to achieve effective recognition of 

the aforementioned household load types, UI trajectory, 

power, and THD are selected as three features for load 

identification. 

Based on the load event occurrence point  tk, a steady-state 

current I1 is sampled for one cycle before tk, and a steady-state 

current I2 is sampled for one cycle after tk . The steady-state 

current Ievent  corresponding to each individual occurrence 

point is obtained by subtracting I1 from I2, and the steady-state 

current Ievent is subjected to Fourier Transform to obtain each 

harmonic current Ik . The Fourier Transform operation is 

shown in (6), which converts the current periodic signal into a 

set of DC components and sine waves with different 

frequencies, amplitudes, and phases, thus obtaining 

information about the harmonic currents[31]. Based on the 

harmonic information, the order of harmonics and total 

harmonic distortion of the current are obtained. The 

calculation of the THD for each event occurrence time is as 

defined by (7), and the THD dataset is constructed based on 

the event labels[32]. 

 Ik=a1 sin (ωt+θ1)+…+ak sin ( kωt+θk) (6) 

  THD =
√∑ In

2n
2

I1
 (7) 

By subtracting the steady-state current I1 sampled for one 

cycle before the load event occurrence point tk  from the 

steady-state current I2  sampled for one cycle after tk , the 

current value Ievent for a single event operating for one cycle in 

a stable manner is obtained. Multiplying the current value 

Ievent by the voltage value U gives the power value for the load 

event's operation, as expressed by (8). 

 Δp=Ievent*U (8) 

The UI trajectory curve is a typical feature proposed in 

recent years for electrical load classification [18]. It represents 

a two-dimensional load feature. The construction of UI 

trajectory features is derived from the steady-state voltage and 

current characteristics of the load within one cycle. 

Based on the principle of UI trajectory features, the 

establishment of the UI trajectory feature library mainly 

involves three steps: extracting the steady-state current of the 

load within one cycle, extracting the steady-state voltage of 

the load, and normalizing the data. 

C. Load Identification Based on Softmax-Bayesian  

The time list of load event occurrences facilitates the 

extraction of transient load features, leading to a rich load 

feature library. Building upon this foundation, this paper 
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Fig. 3. Flowchart of load identification based on Softmax-Bayesian fusion model. 

proposes a load identification framework based on the 

Softmax-Bayesian fusion model. This framework aims to 

enhance the accuracy of identifying different household load 

categories by leveraging the complementary advantages of 

various load features. The flowchart of the identification 

process is illustrated in Fig. 3. 

In the output layer of the Softmax multiclass regression 

model, there are seven neurons corresponding to seven 

probability outputs, representing the probabilities of predicting 

each category. The probabilities of all categories in the output 

layer sum up to 1. y
1
,y

2
,y

3
,y

4
,y

5
,y

6
 represent the specific 

output probabilities for each category. The operations between 

each layer in the model still follow the pattern of linear 

regression, which essentially involves matrix-vector 

multiplication to linearly transform the feature space from one 

to another. The mathematical expression for this operation is 

shown in (9), where x1 ,x2  denote the input features, ω1 ,ω2 

denote the weights to be learned, and b denotes the biases. 

 Out=ω1*x1+ω2*x2+b (9) 

In the Softmax regression model, after the linear operations 

between layers mentioned above, a Softmax operation is 

applied to the output layer. This operation transforms the 

model's outputs into corresponding probability values within 

the range of (0,1). The model structure diagram is shown in 

Table I, each layer within the model processes input data 

through various operations and passes the result to the next 

layer, output shape describes the shape of the result outputted 

by each layer after data processing, and param refers to the 

weights and biases learned by the model during the training 

process. The output layer contains six neurons represented as 

O1. The final output is denoted as y
1
. With this operation, the 

Softmax multiclass regression model becomes more suitable 

for predicting and operating with discrete values. 

Based on the electrical features of different load types, three 

representative load features, namely UI trajectory, power, and 

THD, are simultaneously inputted into the Softmax multiclass 

regression model and the Lenet model for load type 

identification. This process generates three local decisions 

based on the three types of features. These three local 

decisions are then passed to the load identification fusion 

decision layer, where the minimum Bayesian loss decision 

function is employed for decision fusion. 

The minimum Bayesian loss function decision fusion 

method [33] is introduced, which is grounded in Bayesian 

decision theory. This method primarily emphasizes the 

multiplication rule during the process of classifier fusion, 

integrating decision probability values from each classifier 

with local decision loss functions. The decision loss functions 

for each classifier are formulated based on the probabilities of 

sample classes in the training dataset and the associated loss 

for correct and incorrect decisions. For binary classification, 

the fusion rule's loss function is depicted in (10), where P0 and 

P1  denote the probabilities of the first and second class 

samples respectively.  P(d=H0 H0)⁄  represents the probability 

that a sample belongs to the first class and is correctly 

predicted by the classifier, while  P(d=H1 H0)⁄  denotes the 

probability that an actual first-class sample is erroneously 

predicted as belonging to the second class. Additionally, c01 

signifies the loss associated with the erroneous prediction of a 

first-class sample as belonging to the second class, and c10 

represents the loss associated with the erroneous prediction of 

a second-class sample as belonging to the first class. The total 

loss function incorporates these probabilities and losses to 

provide a comprehensive measure of the fusion method's 

performance.  

 C(d,H)=P0c00P(d=H0 H0)⁄ + P0c10P(d=H1 H0)⁄  

  +P1c01P(d=H0 H1)⁄ + P1c11P(d=H1 H1)⁄  (10) 

Before being passed to the fusion decision layer, the value 

of PiP(d=Hj Hi)⁄  can be already determined based on the 

confusion matrices from the local decision process and the 

distribution of the sample set. Then PiP(d=Hj Hi)⁄  is 

uniformly denoted as Kij. Kij represents the probability that a 

sample actually belongs to class j, but is predicted to belong to 

class i. Therefore, (10) can be transformed into (11). 

  C(d,H)= ∑ ∑ Kijcij
n
j=0

n
i=0  (11) 

Finally, the designed experimental process for the minimum 

Bayesian loss function decision fusion method is as follows: 

Step 1: Since three distinct and representative load features 

are utilized, the classifier models are trained by incorporating 

these features based on their characteristics. This training 

process yields three confusion matrices, denoted as CM1 , 

CM2 , and CM3 . The sample class probability distribution 

matrix Pi of the confusion matrices is multiplied to obtain the 

corresponding model recognition performance matrices PM1, 

PM2, and PM3, as shown in (12). 

 PMk=Pi×CMk (12) 

Step 2: For each sample i , after the three features are 

extracted and identified by the models, three corresponding 

load identification results, denoted as d1,d2,d3 , are obtained. 

Thus, based on cij= ∑ |dj-dHi
|n

j=1 , the distance losses of each 

model for each sample are calculated, resulting in 

cij(1),cij(2),cij(3). The target value of the sample, denoted as dHi
, 

is represented as 1 for the probability value corresponding to  
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TABLE I  

STRUCTURE OF SOFTMAX MODEL  

Softmax_model architecture 

Layers Output Shape Parameters 

flatten_1(Flatten) (None, 1) 0 

dense_4 (Dense) (None, 48) 96 

dense_5 (Dense) (None, 24) 1176 

dense_6 (Dense) (None, 12) 300 

dense_7 (Dense) (None, 7) 78 

Total Parameters: 

1650 

Trainable 

Parameters: 1,650 

Non- 

Trainable 

Parameters: 0 

TABLE II   

COMPARISON OF EXPERIMENTS  

 F1- 

Score 
        False 

Hausdorff 

distance 

Fixed threshold(25W) 0.178 19937.9 79679.9 

Fixed threshold(150W) 0.287 21.4 90822.4 

Adaptive threshold 0.866 2.1 10605 

 

the target category, and 0 for the probability values 

corresponding to all other categories. 

Step 3: Based on the model recognition performance 

matrices, Kij is calculated. By multiplying according to (11), 

the loss functions C1(d,Hi) , C2(d,Hi) , and C3(d,Hi)  for each 

model regarding sample i are obtained. 

Step 4: The final decision fusion result is determined by 

selecting the minimum value among the cost loss functions of 

the three classifier models. In this step, the process of decision 

fusion is completed. 

III. EXPERIMENTAL  RESULTS AND ANALYSIS 

A. Experimental Verification of Adaptive Threshold CUSUM 

Event Detection 

The total sampling dataset from the PLAID dataset consists 

of 500 turn-on time files, each containing 4 event occurrences. 

For a total of 2000 true event points, the fixed threshold 

CUSUM algorithm and the proposed adaptive threshold 

detection method combining binary search and CUSUM 

algorithm are compared in terms of evaluation metrics, as 

shown in Table II. The false positive rate metric is calculated 

as the mean error from each file. The Hausdorff distance 

quantifies the maximum distance from any point in one set to 

its nearest point in the other set, and it is utilized to assess the 

similarity or dissimilarity between two images or objects. 

Due to the combination of binary search and CUSUM 

algorithm in the adaptive threshold event detection method 

based on intervals, most change points are detected earlier 

compared to the actual change points. While they are close to  

TABLE III 

 COORDINATE COMPARISON OF EVENT DETECTION  

File 10 real  

switching points 

File 10 detected 

switching points 

File 2 real  

switching points 

File 2 detected  

switching points 

35353 31615 47764 44261 

91346 91748 107632 107587 

175750 174663 224097 224830 

233571 232425 281983 281963 

TABLE IV  

SUMMARY OF 7 ELECTRICAL APPLIANCES  
Load 

identifiers 
Load types Power Harmonics UI trajectory 

0 CFL 15W-30W 

Substantial 

Odd 

Harmonics  

1 hairdryer 
250W-

1200W 

Minor Third 

Harmonics  

2 electric kettle 
800W-

1500W 
None 

 

3 laptop 15W-50W 

Substantial 

Odd 

Harmonics  

4 electric fan 
20W-

100W 

Minor Third 

Harmonics  

5 
microwave 

oven 

300W-

600W 

Substantial 

Odd 

Harmonics  

6 
vacuum 
cleaner 

400W-
1100W 

Minor Third 
Harmonics  

 

the change point intervals and the difference is not significant, 

factors such as transient intervals and the initial partitioning of 

the binary search contribute to a slight distance between the 

detected change point positions and the actual coordinates. 

These nuances are further elucidated through the comparison 

of event detection coordinates as depicted in Table III. 

Based on the aforementioned metrics, the proposed adaptive 

threshold CUSUM algorithm achieves an improvement in the 

F1 score, which reflects the accuracy of event detection, to 

0.866. This statistical result is based on 2000 true event points. 

It demonstrates that this method exhibits better robustness for 

detecting opening events with different magnitudes. 

B. Experimental Verification of Decision Fusion Load 

Identification Method 

To verify the effectiveness of the proposed algorithm in 

load identification, the publicly available PLAID dataset is 

used for experimentation. The PLAID dataset is obtained from 

real sampling among household users and covers common 

resistive loads, motor-driven loads, and power electronics 

loads. The PLAID public dataset comprises voltage and 

current data samples, obtained at a frequency of 30 kHz during 

the summer of 2013 from 56 households in Pittsburgh, 

Pennsylvania, USA[34]. It encompasses recordings from 8 

different appliance types, with each type consisting of 3-6 sets 

of load data from various models and brands. Records with 

significant noise in the PLAID dataset are eliminated, 

resulting in a final dataset of 1094 sampled instances. The 

PLAID dataset includes aggregated and disaggregated data.  
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Fig.4. Current waveform of refrigerator when operating.  

Fig.5. Training accuracy_loss iteration of the Lenet model. 

 

 

The aggregated data consist of high-frequency samples 

collected when two or more appliance loads operate 

simultaneously. These records are labeled with event 

occurrence timestamps and specific load category operation 

labels, facilitating model learning and training. An illustrative 

example is the current waveform graph sampled from the 

disaggregated refrigerator-end data, as depicted in Fig.4. In 

(a), the graph represents the current signal, with the green line 

in (a) denoting an extracted steady-state period shape. In (b) it 

illustrates the current waveform when the appliance operates 

independently. 

In the context of household use, the diversity of household 

electrical appliances is steadily increasing, with an ordinary 

household often comprising a dozen of appliance types. 

However, loads with similar operational principles and 

physical structures tend to exhibit comparable electrical 

characteristics. Table IV has been compiled summarizing 

seven common household appliances, including Compact 

fluorescent lamp (CFL), hairdryer, electric kettle, laptop, 

electric fan, microwave oven, and vacuum cleaner, detailing 

the features of each, and assigning them identifiers ranging 

from 0 to 6. 

The experimental verification consists of two parts. The 

first part is the load category discrimination experiment 

completed by fusing local decisions through the minimum 

Bayesian loss function. The second part is to compare the 

experimental results with other methods that use the PLAID 

dataset in existing references, further verifying the 

effectiveness of the proposed multi-decision fusion load 

identification method.  

The features were extracted from seven different types of 

appliances mentioned before. For each type of appliance, 200 

samples of different brands and models were collected, 

totaling 1400 samples. During the feature extraction process, 

voltage and current signals during appliance operation were 

first recorded for each sample. Subsequently, signal 

processing techniques such as harmonic analysis and power 

calculation were employed to extract THD, power, and UI 

trajectory features from these signals. These features reflect 

the performance and characteristics of appliances under 

various operating conditions, providing crucial data 

foundation for training the load identification model. Finally, 

three input datasets were utilized, each containing 1400 

feature samples, serving as the training dataset. The Lenet 

model was used for training the UI trajectory features. The 

cross-entropy loss function was selected as the loss function, 

and the Adam optimizer was used[35]. The number of 

iterations was set to 100. Pre-training was conducted using the 

MINIST publicly available dataset. After training, a fully 

connected layer with the activation function Softmax was 

concatenated as the final output model for prediction. 

Additionally, the UI trajectory images were normalized to a 

size of 128*128 to further improve the convergence speed of 

the model[36][37].The training effect of the Lenet model is 

shown in Fig.5. After pretraining with the Lenet model on the 

MINIST dataset, training convergence and achieved 

satisfactory performance have been observed, indicating that 

the model has acquired the capacity of a universal classifier. 

The THD and power difference features were trained using 

a Softmax multi-classification model. The Adam optimizer 

was employed, and the cross-entropy loss function was 

utilized. During the training of power difference features, the 

model was iterated for 100 epochs, with the loss function 

calculated throughout the iteration process[35]. The model 

with the lowest loss function was selected for the prediction of 

THD and power difference features. 

To validate the effectiveness of the Softmax-Bayesian 

decision fusion load identification method, a more diverse 

range of load types was adopted to closely resemble the load 

identification scenario in actual household settings. For each 

type of load devices, two to three representative household 

appliances were selected. The data used for sampling was  

 

obtained from actual samples collected from residential users. 
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The experimental model structures and training parameters 

remained consistent with the previous section. Firstly, each 

individual feature was inputted into the model in parallel for 

training to obtain local decision results. Subsequently, the 

Bayesian decision fusion was applied by minimizing the loss 

function to obtain the corresponding final decision fusion 

results. 

The confusion matrix for the recognition of the seven types  

of devices under the THD feature input model is shown in Fig. 

6. In the figure, the categories 0, 1, 2, 3, 4, 5, 6 represent 

incandescent lamp, CFL, electric fan, hair dryer, laptop, 

microwave oven, and vacuum cleaner, respectively. According 

to the results displayed in the confusion matrix, the THD 

feature exhibits good recognition performance for 

incandescent lamps and laptops, with the majority of instances 

being correctly identified. The THD feature shows the worst 

recognition effect on fans, possibly due to the special motor 

contained in its structure, which generates complex harmonic 

components. As mentioned earlier, incandescent lamps belong 

to resistive devices, while laptops belong to power electronic 

devices, representing two different types. During operation, 

incandescent lamps do not generate harmonics, while laptops 

generate a large number of odd harmonics. In this case, the 

harmonic feature proves to be effective in distinguishing 

between these two categories. 

The confusion matrix for the recognition under the power 

feature input model is shown in Fig. 7. According to the 

statistical analysis of the confusion matrix, the model exhibits 

good recognition performance for incandescent lamps with 

lower power levels and vacuum cleaners with higher power 

levels. The power features of incandescent lamps and vacuum 

cleaners are completely different from those of other loads, 

which can be clearly reflected in the power signal. However, 

for other load types, the accuracy is relatively low due to 

variations in power consumption among different types and 

brands, with an average accuracy of around 0.4. Moreover, 

within the same category, the model struggles to distinguish 

between microwave ovens and laptops, which have similar 

power levels, resulting in poor recognition performance. 

The confusion matrix for the recognition under the UI 

trajectory feature input model is shown in Fig. 8. The 

experimental setup was consistent with the previous ones. 

Overall, the UI trajectory model exhibits better recognition 

performance than the previous two models due to its rich 

image representation characteristics. In particular, it performs 

well in distinguishing between devices within the same 

category that have similar physical structures and power 

features, such as laptops and microwave ovens. However, 

there are still some misclassifications. According to the 

confusion matrix, a large number of laptops are mistakenly 

classified as CFLs, mainly due to the similarity in UI 

trajectories between individual models of these two types of 

devices. The same problem also arises between the two 

categories of fans and hair dryers. The F1 score for the 

recognition of CFLs and laptops is also only 0.62 and 0.55, 

respectively. 

Finally, the local decision results obtained by inputting 

three parallel features into the models were fused by using the 

minimum Bayesian loss function, and the corresponding 

output confusion matrix results are shown in Fig. 9. From the 

confusion matrix, it can be observed that after decision fusion, 

the load recognition performance between different categories 

has reached an ideal state. The recognition accuracy for each 

category is above 0.95. 

In conclusion, it can be observed that the model after 

undergoing decision fusion using the minimum Bayesian loss 

function, achieves the complementary advantages of the three 

representative features. For each type, the F1 scores for 

individual feature input recognition and recognition after 

decision fusion are shown in Table V. It is evident that the F1 

scores for load identification of each device category have 

 
Fig. 6. Confusion matrices for samples under the THD feature. 

 
Fig. 7. Confusion matrices for samples under the power 

feature. 
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Fig.8. Confusion matrices for samples under the UI trajectory 

feature. 

 

improved to above 0.95, with an average recognition accuracy 

of 0.98. This confirms the effectiveness of the proposed 

Softmax Bayesian decision fusion method for load 

identification. 

Finally, the proposed method in this paper is compared with  

 
Fig.9. Confusion matrices for samples using Minimum 

Bayesian loss function decision fusion. 

TABLE V 

F1-SCORE COMPARED BETWEEN INDIVIDUAL FEATURE 

INPUT AND SOFTMAX BAYESIAN DECISION FUSION 

 CFL Hair-

dryer 

Elec-

tric 

fan 

Incande

-scent 

lamp 

Lap

-top 

Micro

-wave 

oven 

vacuum 

cleaner 

UI 

trajectory 1 0.62 0.75 0.75 0.55 0.93 0.99 

THD 0.88 0.58 0.36 0.73 0.71 0.77 0.78 

Power 0.71 0.35 0.47 0.28 0.36 0 0.61 

Decision 

Fusion 0.96 0.97 0.96 0.95 0.96 0.99 1 

TABLE VI 

 F1-SCORE COMPARED WITH OTHER ALGORITHMS 

 This study [9] [18] 

CFL 0.96 1 0.92 

Hairdryer 0.97 1 0.77 

Electric fan 0.96 0.75 0.68 

Incandescent 

lamp 
0.95 1 0.89 

Laptop 0.96 1 0.98 

Microwave oven 0.99 1 0.98 

Vacuum cleaner 1 1 0.00 

 

existing models, and the comparative results are shown in 

Table VI. To ensure the effectiveness of the comparison, the 

selected comparative methods were validated using the 

publicly available PLAID dataset. Reference [21] utilizes the 

fusion of UI trajectory features and power features to form 

composite features, which are then inputted into a BP neural 

network for load identification. Reference [38] adopts a 

multilayer perceptron classifier based on the good additivity 

principle of UI trajectory and harmonic currents for load 

identification. 

It can be inferred from Table VI that reference [21] exhibits 

poor performance in identifying fans, while reference [38] 

achieves good results in recognizing power electronic loads. 

However, reference [38] also struggles to accurately identify 

motor-driven loads such as fans, hair dryers, and vacuum 

cleaners. This indicates that the proposed algorithm in this 

study comprehensively considers the three major typical 

electrical features of the device categories in household loads. 

As a result, it demonstrates better robustness and achieves 

good recognition performance for diverse load types. 

IV. CONCLUSION 

To address the issue of diverse electrical characteristics and 

distinct load features among different types of electrical 

devices, this paper proposed a decision fusion identification 

method that incorporates three major representative features. 

Leveraging the innovative combination of an adaptive 

threshold CUSUM algorithm with Softmax-Bayesian decision 

fusion, this approach fills a gap in previous studies by 

providing a comprehensive solution for the accuracy of load 

identification in complex scenarios involving household 

appliances. 

Firstly, an adaptive threshold CUSUM event detection 

method is proposed, which significantly addresses the issue of 

high-power event misjudgment and low-power event missed 

detection in existing change-point detection theory due to 

large power spans, and improves the F1 score to 0.866. 

Following this, a non-intrusive load identification method 

based on decision fusion Softmax-Bayesian is introduced, 

which simultaneously leverages the complementary 

advantages of THD (Total Harmonic Distortion), power, and 

UI trajectory features, overcoming the limitation of inaccurate 

identification of some components using a single load feature. 

Moreover, the integration of the adaptive threshold CUSUM 

algorithm with Softmax-Bayesian decision fusion achieves 

enhanced performance. Finally, the proposed method is 
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evaluated by using the publicly available PLAID dataset for 

household load sampling. By comparing the recognition 

performance of individual feature input models with that of 

decision fusion, and comparing the recognition performance 

of the proposed method with existing reference methods, the 

effectiveness of the proposed method is confirmed. 

Experimental results conclusively demonstrate the efficacy 

of applying the proposed method to load identification across 

seven common household appliances, yielding an impressive 

average F1 score of 0.97. And for these seven types of 

appliances, the values of their F1 score were not less than 

0.95. It underscores that the method demonstrates a high level 

of accuracy and reliability in practical applications. This can 

not only enhance the intelligence level of the power demand 

side but also offer a dependable solution for load identification 

in smart home systems or power management systems. 

However, due to time and equipment constraints, there are 

still many shortcomings in this study that warrant further 

research and improvement. They are summarized as follows: 

1)Expansion of the application scenarios for load 

identification: This study primarily focused on the types of 

household appliances and the analysis of their electrical 

features. The features of industrial and commercial loads were 

not considered. Further research is needed to explore the 

unique characteristics of industrial and commercial loads and 

develop identification features and methods suitable for them. 

2)Model limitations in handling unknown load types: The 

method proposed in this study was designed for known 

common household load types, as it requires model training 

and the Softmax-Bayesian decision fusion method requires 

prior probability for decision-making. When encountering new 

load types that were not included in the model training, further 

research is needed to ensure the effectiveness of identifying 

unknown load types. 
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