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Abstract—Nowadays, the Internet of Things (IoT) technology
has been widely applied in the police security system. However,
with more and more image data that concerns crime scenes being
transmitted through the police 10T, there are some new security
and privacy issues. Therefore, how to design a safe and efficient
secret image sharing solution suitable for police IoT has become a
very urgent task. In this work, a grid multi-butterfly memristive
Hopfield neural network (HNN) with three memristive systems is
constructed and its complex dynamics are deeply analyzed. Among
them, the first memristive system is modeled by emulating a self-
connection synapse, the second memristive system is modeled by
coupling two neurons, and the third memristive system is modeled
by describing external electromagnetic radiation. Dynamic analyses
show that the proposed memristive HNN can not only generate two
kinds of 1-directional (1D) multi-butterfly chaotic attractors but
also produce complex grid (2D) multi-butterfly chaotic attractors.
More importantly, by switching the initial states of the second and
third memristive systems, the grid multi-butterfly memristive HNN
exhibits initial-boosted plane coexisting multi-butterfly attractors.
Moreover, the number of butterflies contained in a multi-butterfly
attractor and coexisting attractors can be easily adjusted by chang-
ing memristive parameters. Based on these complex dynamics, an
image security solution is designed to show the application of the
newly constructed grid multi-butterfly memristive HNN to police
IoT security. Security performances indicate the designed scheme
can resist various attacks and has high robustness. Finally, the
test results are further demonstrated through RPI-based hardware
experiments.

Index Terms—Grid multi-butterfly attractor, memristive neural
network, initial-boosted behavior, chaos-based application, IoT.

ITH the rise of global terrorism and crime rates, the

application of the Internet of Things (IoT) technology in
the police security system is getting more and more important
[1]. There is no doubt that it not only improves operational
efficiency for policemen and police stations, but also provides
service convenience for plaintiffs and lawyers. In recent years,
the police IoT has rapidly developed and continuously improved.
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However, there are still security problems in the process of IoT
data transmission and storage, which deserve serious consider-
ation and attention. Currently, many researchers have currently
proposed valuable solutions for the secure transmission of data
in the police IoT environment [2, 3]. Nevertheless, they do not
propose a specific secure transmission scheme for image data.
Image data has the characteristics of a large amount of infor-
mation and high visibility, so it is more vulnerable to secu-
rity threats during transmission. Undoubtedly, a large number of
crime scene images should be safely protected both in storage
and transmission. If the data is leaked, it will seriously affect
prisoners’ privacy, social stability, and even national security.
Thus, to ensure the security of image transmission, developing
an image security solution applied in the police IoT is very
significant. As we all know, for protecting image information,
the commonest and simplest way is encryption, and its secu-
rity level often depends on the secret key [4]. In general, the
randomness of the secret key is higher, and the security of the
encryption system is higher. Therefore, this issue can be tackled
using memristive HNN-based image encryption among various
encryption methods, and this is due to the complex chaos prop-
erties of memristive HNNs.

Artificial neural networks have been widely applied in various
intelligent systems, such as robots, self-driving, and so on [5].
Over the past century, a variety of neural network models have
been developed by simulating the network structure and working
mechanism of the biological nervous systems [6]. Among them,
the Hopfield neural network (HNN) is considered an ideal
artificial neural network model for imitating brain’s dynamic
behaviors [7]. Since the HNN was proposed in 1982, it has
rapidly developed and continuously improved. Various HNNs
with different dynamical behaviors including chaos, hyperchaos,
and coexisting behaviors have been designed and realized [8, 9],
which has important implications for the development of artifi-
cial intelligence.

In 2008, Hewlett-Packard lab reported a novel electronic
device, named memristor [10]. The memristor has many unique
features like nanoscale, adjustability, strong nonlinearity, and
memory function, which has been employed in various fields
[11, 12]. In particular, it can be used to construct memristive
neural networks due to its memory function and magnetic flux
characteristics [13, 14]. Due to the introduction of memristors,
memristive neural networks become closer to practical biolog-
ical nervous systems and have many advantages in various
applications. For example, the memristor’s memory function
makes the memristive neural network largely improve the ability
to learn [15]. A memristive neural network circuit has high
integration and low power because of the memristor’s nanoscale
size. Moreover, the memristive neural networks can also be
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applied to various artificial intelligence systems such as online
learning, medical diagnosis, and information security [16, 17].
Especially, the memristive HNNs can produce complex dynam-
ical behaviors closer to the brain than the traditional HNNs
[18, 19], which is of great significance for understanding brain
function and developing intelligent systems.

In recent years, many memristive HNNs with complex
dynamical behaviors have been designed by three modeling
methods. The first modeling method is that using memris-
tors to emulate neural synapses [20]. For instance, employing
two memristors to emulate two self-connection synapses, a
bi-neuron memristive HNN with initial coexisting behaviors
was proposed in [21]. Adopting the same modeling method,
grid multi-scroll attractors have been revealed in a memristive
HNN [22]. The second modeling approach uses memristors to
represent magnetic coupling. For example, applying a memristor
to coupling two neural networks, a memristive HNN with zero-
Hopf bifurcation dynamics was constructed [23]. The third
modeling method is that employing memristors to describe the
electromagnetic induction effect. In [24], a scroll-growth and
scroll-control memristive HNN with two neurons was modeled
by using a memristor to describe the effect of electromagnetic
radiation. Based on a similar modeling approach, coexisting
multi-scroll attractors [25] and symmetric multi-scroll attractors
[26] have been found in memristive HNNs. Recently, the study
of the memristive HNNs by considering different modeling
methods has attracted much attention [27]. Especially, a novel
memristive HNN with extreme multistability was proposed
by synchronously considering the first and third modeling
methods [28]. Similarly, in [29], synthesizing the second and
third methods, a memristive HNN with complex dynamics was
constructed. However, the case of simultaneously considering
the three modeling mechanisms in a neural network has not
been investigated until now.

Chaotic systems have extensive applications in cryptogra-
phy because of their ability to generate psudo-random signal
[30, 31]. Chaotic signal is a natural random signal with ergod-
icity, unpredictability, and sensitivity to initial states, which can
be employed to produce pseudo-random numbers in information
encryption [32]. Over the past decades, various chaotic systems
have been designed to implement cryptosystems [33, 34]. The
research results show that the cryptosystem based on chaos has
the advantages of simple structure, fast encryption speed and
high security [35, 36]. Chaotic memristive HNNs have important
applications for data encryption in information transmission
[37, 38], which has attracted increasing attention from many
scholars and engineers. For example, in [39], a hyperchaotic
memristive HNN was used to encrypt medical image data.
Similarly, a ring memristive HNN with complex chaos was
applied to WBAN [40]. Recently, because multi-scroll chaotic
signals have more complex dynamical behaviors and greater ran-
domness [41], the multi-scroll memristive HNNs are considered
to have more advantages in information protection. In particular,
in [42], a privacy protection scheme applied in medical IoT
was designed and implemented, in which the key is generated
by a grid multi-scroll memristive HNN. Furthermore, based
on a hyperchaotic multi-scroll memristive HNN, an encryption
communication solution is successfully designed to protect
commercial data [43]. Undoubtedly, these applications show the
great potential of memristive HNNs in information security.

Based on the previous work, it is clear that chaotic memristive
neural networks can solve many image encryption problems.
Although these efforts yielded interesting results, the security

of the encryption methods still needs to be further improved,
especially the dynamic complexity of neural networks. In this
article, a new memristive HNN with three memristive systems is
proposed by synthetically considering three modeling methods.
Analysis results show that different from previously reported
memristive HNNs, the presented memristive HNN has expand-
able plane equilibrium points dependent on control parameters.
Such an unique property enables the memristive HNN to ex-
hibit control parameters-related dynamical behaviors including
controllable 1D multi-butterfly chaotic attractors and grid multi-
butterfly chaotic attractors. To our knowledge, this is the first
time that the grid multi-butterfly chaotic attractors have been
found in HNNs. Furthermore, the proposed memristive HNN
can generate plane coexisting infinitely many multi-butterfly
chaotic attractors. This is an initial-boosted plane coexisting
behavior, which is very important for many chaos-based en-
gineering applications, and the existing HNNs do not have this
property. Compared with the multi-scroll attractors, the multi-
butterfly attractors have more complex dynamical trajectories,
higher randomness, and more secret key parameters [44, 45].
Therefore, based on the constructed grid multi-butterfly mem-
ristive HNN, we design an image security solution in police IoT.
Encryption performance analysis shows the designed security
solution has high security. Finally, we develop a hardware test
platform to demonstrate the security solution.

The main novelty and contributions of this article are
summarized as follows. 1) Present a novel memristive HNN
model based on three modeling methods with the possibility
of chaotic butterfly attractors in its dynamics. 2) Grid multi-
butterfly attractors and initial-boosted plane coexisting multi-
butterfly attractors are revealed first in the HNNs. 3) Based
on the proposed grid multi-butterfly memristive HNN model,
design a permutation-diffusion encryption scheme for image
data encryption. 4) The design scheme is exploited for secure
crime scene images for potential application in the field of police
IoT. 5) Experimentally analyze and validate the security of the
designed image security solution to ensure that it is suitable for
the specified application.

The rest of this paper is organized as follows. Sect.Il con-
structs a new grid multi-butterfly memristive HNN with three
memristive systems. Sect.IIl studies the dynamical behaviors
of the grid multi-butterfly memristive HNN. Sect.IV designes
an image security solution applied in police IoT based on the
grid multi-butterfly memristive HNN and its security perfor-
mances are experimentally analyzed and demonstrated. Sect.V
concludes this paper.

In this section, two novel flux-controlled memristor mod-
els are designed first. Then a memristive HNN with three
memristive systems is proposed. Finally, its equilibrium point
characteristics are analyzed.

A. Memristor Model Design

According to the modeling method of the memristor [11], two
new flux-controlled memristor models are designed as follows

{ i=Wyv=oa(g;>+e —B)v )
de; /dr = ((atanh(v))% — 1) @; +atanh(v)

i=Wv=puxv
{ dx/dtZ: ev—of @)
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N
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Fig. 1: Characteristics of the two memristors. (a) The curve of the
function f under different control parameter values. (b) Frequency-
relied pinched hysteresis loops of the memristor in (1). (c) Frequency-
relied pinched hysteresis loops of the memristor in (2).

where v and i are voltage and current, respectively, ¢; and x are
internal state variables of the two memristors, W; and W, are
the memductance functions, as well as o, B, U, €, and o are
memristor parameters. The function f is described by Eq.(3),
which can be adjusted by changing the control parameter N, as
shown in Fig.1(a). Unlike previous piecewise-linear memristors
in [20, 22], the designed memristor in Eq.(2) has only one
control parameter.

The frequency-relied voltage-current (v-i) feature of the two
memristors is analyzed under sinusoidal voltage v=Asin(Ft) with
A € (0,10). For the equation (1), setting memristor parameters
a=-1, B=1, and initial state @;0=0, signal amplitude A=1.2,
when F=(5, 10, 40), the frequency-relied v-i loci are plotted
in Fig.1(b). As can be seen, the v-i loci exhibit three pinched
hysteresis loops. Furthermore, as the frequency increases, the
area of the pinched hysteresis loop decreases gradually, which
means that Eq.(1) is a memristor model. For Eq.(2), setting
u=1, and €=2.2, 6=2, N=2, and initial state xp=0, A=1.2, when
F=(2, 6, 12), the frequency-relied v-i loci are plotted in Fig.1(c).
Similarly, the v-i loci exhibit three pinched hysteresis loops,
which shows that Eq.(2) is a memristor model.

B. Memristive HNN Description

HNN is kind of excellent artificial neural network model
which can simulate complex chaotic behaviors of the human
brain. Generally, the mathematical model of the original HNN
with n neurons can be expressed by [7]

n
Cixi:—xi/Ri+Zwijtanh(xj)+Ii (i,jEN*) 4)

j=1
where x;, C;, R;, and I; are respectively membrane potential,
membrane capacitor, membrane resistor, and external stimulate
current of neuron i. w;; is the synaptic weight coefficient from
neuron j to neuron i. Additionally, tanh(.) represents the neuron
activation function. Based on the original HNN in Eq.(4), by
setting C1=Cr=1, R1=Ry=1, }=h=0, w11=0, wip=1, wy1=-1.5,

and wy>=2, a novel bi-neuron HNN is constructed as follows

%1 = —x; +tanh(x;) 3)
Xy = —xp — 1.5tanh(x; ) + 2 tanh(x,)

A memristor is an ideal bionic electronic element due to
its special nonlinearity, memory function, and flux feature. In
neural network modeling, the memristor is often used to mimic
neural synapses, to represent magnetic coupling, or to describe
the electromagnetic induction effect. Based on these modeling
theories, a new memristive HNN is proposed by simultaneously
introducing three memristors into the constructed bi-neuron
HNN. As shown in Fig.2, in the proposed memristive HNN
model, the memristor M; is used to emulate the self-connection
synapse of neuron 2, the memristor M, is used to represent
the magnetic coupling between neuron 1 and neuron 2, and
the memristor M3 is used to describe external electromagnetic
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Fig. 2: Structure of the memristive HNN with three memristive systems

induction effect of neuron 2. Because the three memristors play
different roles in the bi-neuron HNN, which means that the
proposed memristive HNN has three memristive systems. Here,
the memristor M is realized by using the model in Eq.(1), and
the memristors M, and M3 are implemented using the model in
Eq.(2). As a result, the memristive HNN with three memristive
systems can be expressed by

X1 = —X]| +tanh(x2) +k2(x| 7X2)W2

Xp = —xp — 1.5tanh(x1) + k; W) tanh(xp) — ko (x] — x2)Wa + kzxo Wa

¢1=(0n?—1)p+x,

P =¢1(x1 —x2) —01f1

P =&x,—02f2

(6)

where ki, kp, and k3 are three memristive coupling coefficients
that denote coupling strength between the neural network and
the three memristors. 67 and 0, are memristor parameters.
C. Equilibrium Point Characteristic

The distribution and stability of the equilibrium points of the
memristive HNN in Eq.(6) are analyzed by using theoretical and
numerical analysis methods. Assuming the equilibrium point set
of the memristive HNN is described by E=(x;*, x2%, @1*, ¢*,
@3*), it can be solved by Eq.(7).

—x1* +tanh(x*) + ky (x1* — 2" )Wo=0
—xp" — 1.5tanh(x*) 4+ k; W tanh(x, )
—ko (X1 —x2")Wa + k3 x2*W3=0

(022 = 1)@ +22"=0

e (x1* —x") — 01/1=0

&x" — 0y fo=0

@)

Further simplification leads to

0= (02/&)f
x*=x"+(0o1/€1)fi
(Pl*:)Cz*/(l—Xz*z) (8)
Fi (03", ¢2") = —x1™ +tanh(x2") + ko (x1 " — 22" )W
B (03", 0") = —xp* — 1.5tanh(x;*) 4+ k; W tanh(x *)
— ko (X1 —x2*)Wa + k3" W3

Clearly, the solutions of @3* and @,* are determined by the
functions f; and f;, respectively. That is to say, the number and
position of the equilibrium points are dependent on the control
parameters N7 and N,. Taking Ni=N,=1 as an example, when
k1=0.34, k»=0.1, k3=0.15, a=-0.25, =60, pu=0.1, £==2.2,
01=4.3, 0»=5, the distribution of the equilibrium points on
the @3-, plane can be given by plotting the function curves
Fi and F>, as shown in Fig.3. Noted that we used the ezplot
function in the above calculation process. As we can see from
Fig.3, under this condition, the memristive HNN has plane
equilibrium points which can be divided into four types Ej-Ej.
Numerical analyses show that E; and E; are unstable saddle
points and stable focus points, respectively. The two kinds of
equilibrium points can generate a self-excited chaotic attractor
labeled by the dotted coil on the left in Fig.3. Furthermore,
both E3 and E4 are unstable saddle points that plays a role
in connecting two chaotic attractors. Namely, the equilibrium
points are synchronously extended along @3 and ¢, directions
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Fig. 3: Distribution of the equilibrium points of the memristive HNN
with Nj=N,=1 and the generated 3x3 grid chaotic attractor.

labeled by the dotted line in Fig.3. Consequently, with the
increase of control parameters N and N,, the equilibrium points
will be extended on the ¢3-¢, plane. Obviously, the increase
of the control parameters N; and N, in the system leads to
the extension of the equilibrium points, which can generate the
phenomenon of grid chaotic attractor reconstruction, as shown in
the right of Fig.3 with the initial values (0.1, 0.1, 0.1, 0.1, 0.1).
Further analysis shows that the number of equilibrium points E;
is equal to (N;+2)x(N2+2), which means that the memristive
HNN can generate a (N1+2)x(N,+2) grid attractors.

This section analyzes the chaotic dynamical behaviors of
the proposed memristive HNN by using numerical simulation
methods such as bifurcation diagrams, Lyapunov exponents
(LEs), phase plots, basin of attraction, and time series. Note that
Matlab ode45 algorithm with a time-step of 0.02 is adopted in
numerical simulation. Some parameter values are fixed as a=-
0.25, ﬁ=60, u=0.1, 61=4.3, O'2=5, )C]()=X2()=(p1()=0.1.

A. Periodic and Chaotic Butterfly Attractors

Firstly, the dynamical behaivors of the memristive HNN under
£1=6=1.2, N\=N,=0, and @y0=30=0.1 are analyzed by taking
the three memristive coupling coefficents k;, k> and k3 as vari-
able parameters. Setting k1=0.34, k»=0.1, and k3=0.15, when any
two parameters are fixed, the dynamical behavior related to the
third parameter can be investigated. Based on this method, the
bifurcation diagrams related to ki, k» and k3, and corresponding
LEs are plotted in Fig.4. From Fig.4, the memristive HNN
exhibits different dynamical behaviors highly dependent on the
three memristive coupling coefficients. Interestingly, in Fig.4(a),
with the increase of k; from O to 1, the memristive HNN begins
unbounded behavior, then enters into stable chaotic behavior
through a forward period-doubling bifurcation route. On the
contrary, in Fig.4(b) and (c), with the increase of k, and ks,
the proposed memristive HNN model begins chaotic behavior,
then degenerates to a periodic state by multiple reverse period-
doubling bifurcation routes. More interestingly, these dynamical
behaviors have complex dynamical trajectories exhibiting the
Lorenz-type butterfly-shaped attractors. As shown in Fig.5,
various chaotic and periodic butterfly attractors are obtained
from the memristive HNN by selecting different memristive
coupling coefficients. Among them, chaotic double-butterfly
attractor, forward chaotic butterfly attractor, reversed chaotic
butterfly attractor, periodic butterfly attractor, transient chaotic
double-butterfly attractor, and periodic butterfly attractor are
obtained as shown in Fig.5(a)-(f), respectively. Therefore, under
the influence of the three memristive systems, the proposed
memristive HNN generates complex periodic, transient chaotic,
and chaotic butterfly and double-butterfly attractors.

B. 1D and Grid Multi-butterfly Attractors
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Fig. 4: The memristive coupling parameters-relied dynamical behav-
iors depicted by bifurcation diagrams and Lyapunov exponents. (a)
kp=0.1, k3=0.15. (b) k;=0.34, k3=0.15. (c) k1=0.34, k»=0.1.
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Fig. 5: Complex dynamical behaviors depicted by 3D phase plot in
@3-@2-¢; space. (a) Chaotic double-butterfly attractor with k;=0.34,
k>=0.1, and k3=0.15. (b) Forward chaotic butterfly attractor with
k1=0.7, k=0.1, and k3=0.15 (c) Reversed chaotic butterfly attractor
with k1=0.34, k,=2.8, and k3=0.15. (d) Periodic butterfly attractor with
k1=0.34, k»=2.9, and k3=0.15. (e) Transient chaotic double-butterfly
attractor with k1=0.34, k;=0.1, and k3=4.8. (f) Peoridic butterfly
attractor with k;=0.34, k»=0.1, and k3=9.

Next, the dynamical behaivors of the memristive HNN under
k1=0.34, k=0.1, k3=0.15, and @y0=¢30=0.1 are analyzed by
taking the system parameters €, & and control parameters
Ni, N, as variable parameters. When setting £,=2.2, &=1.2,
and N,=0, the control parameter N; is increased from O to
7, the bifurcation diagram of the state variable ¢, and the
corresponding LEs are plotted in Fig.6(a). Fig.6(a) shows that
with the increase of parameter Ny, the double-butterfly attractor
is reconstructed along ¢, direction to generate a multi-butterfly
chaotic attractor. Also, the number of butterflies contained in
multi-butterfly chaotic attractors can be freely controlled by ad-
justing 2(N1+2). It should be noted that the number of butterflies
seen in Fig.6 is (N;+2) or (N+2) because this multi-butterfly
attractor is double-layered. As shown in Fig.7, different numbers
of multi-butterfly attractors are generated from the memristive
HNN under different control parameters N;. On the contrary,
when setting £=1.2, &=2.2, and N;=0, the control parameter
N, is increased from O to 7, the bifurcation diagram of the state
variable ¢3 and the corresponding LEs are plotted in Fig.6(b).
Under this condition, the memristive HNN can generate any
number of multi-butterfly attractors along ¢3 direction, as shown
in Fig.8. Amazingly, when setting € =&=2.2, by selecting
different control parameters N; and N, the arbitrary number
of grid multi-butterfly chaotic attractors can be observed in the
memristive HNN, as shown in Fig.9. Such complex dynamical
behavior has not been found in previous neural network models.
Moreover, the number of the grid multi-butterfly attractors can
be computed by (N;+2)x(N,+2). Consequently, the proposed
memristive HNN can not only produce 1D multi-butterfly at-
tractors but also grid multi-butterfly attractors.

C. Initial-Boosted Plane Coexisting Multi-butterfly attractors

Finally, the dynamical behaivors of the memristive HNN
under k1=0.34, k»=0.1, k3=0.15, and N1=N,=2 are analyzed by
taking the initial states @9 and @39 as variable parameters.
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Fig. 7: ¢- dlrecuon multl butterﬂy attractors under £,=2.2, &=1.2,
N,=0. (a) 2-double-butterfly attractor with N;=0. (b) 3-double-butterfly
attractor with Ny=1. (c) 4-double-butterfly attractor with N1=2. (d) 5-
double-butterfly attractor with N;=3. (e) 6-double-butterfly attractor
with Nj=4. (f) 7-double-butterfly attractor with N;=5.
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with N»=5. (f) 8-double-butterfly attractor with N,=6.
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Fig. 10: Initial state-relied chaotic dynamics. (al) Basin of attraction
on the @30-¢y0 plane under £=1.2, &=2.2. (bl) Coexisting four 4-
butterfly attractors on ¢, direction. (c1) Coexisting four chaotic se-
quences on ¢3 direction. (al) Basin of attraction on the @30-¢y plane
under €1=2.2, &=1.2. (b1) Coexisting four 4-butterfly attractors on ¢3
direction. (c1) Coexisting four chaotic sequences on ¢3 direction.

When setting €1=1.2, £,=2.2, we plot the local basin of attraction
on the @30-¢29 plane, as shown in Fig.10(al). As can be
seen, the local basin of attraction has complicated manifold
structures and clear basin boundaries, and the color-painted
indicates different attracting regions of dynamical behaviors.
When setting ¢39=1, by selecting different ¢y as -1, 1, 3, and 5,
coexisting four 4-double-butterfly attractors can be found from
the memristive HNN, as shown in Fig.10(b1). That is to say, the
memristive HNN generates coexisting multi-butterfly attractors.
Meanwhile, four chaotic sequences with different positions
can be obtained as shown in Fig.10(c1), which means that
their oscillating amplitudes can be non-destructively adjusted
by switching the initial state ¢»9. Adopting the same analysis
method, setting £;=2.2, &=1.2, the local basin of attraction on
the @30-¢20 plane is plotted as shown in Fig.10(a2). By setting
¢0=1, by selecting different @3g as -1, 1, 3, and 5, coexisting
four 4-double-butterfly attractors generated by the memristive
HNN and corresponding four chaotic sequences are given in
Fig.10(b2) and (c2), respectively. Obviously, the memristive
HNN model exhibits initial-boosted coexisting multi-butterfly
attractors.

In addition, as shown in Fig.11(a), when keeping the above
parameters unchanged except for k;=0.7, £,=£=2.2, the basin
of attraction shows wonderful grid structures including squares
of the same size. Each square indicates an attracting region of a
kind of dynamical behavior. By selecting different initial states
¢0=(-1, 1, 3, 5) and ¢@30=(-1, 1, 3, 5), plane coexisting 16
butterfly attractors can be observed from the memristive HNN,
as shown in Fig.11(b). Further simulation shows that when
continuing to increase the values of N and N,, the number of the
plane coexisting attractors finally tends to infinity under different
initial states. That is to say, the memristive HNN can provide
sustained and robust chaotic sequences and their oscillating
amplitudes can be non-destructively adjusted in two directions
by switching the initial states. Additionally, keeping the above
parameter value unchanged, when changing k;=0.34 or k3=9, the
memristive HNN can generate plane coexisting double-butterfly
attractors and plane coexisting periodic attractors, as shown in
Fig.11(c) and (d), respectively. Thus, the proposed memristive
HNN exhibits complex initial-boosted plane coexisting multi-
butterfly attractors.

To sum up, under the influence of the three memristive
systems, the proposed memristive HNN can generate abundant
multi-butterfly chaotic attractors including ¢,-direction multi-
butterfly attractors, ¢z-direction multi-butterfly attractors, grid
multi-butterfly attractors, and plane coexisting multi-butterfly
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Fig. 11: Initial-boosted plane coexisting behaviors under &=g=1.2.
(a) Basin of attraction on the @3p-¢2 plane. (b) Plane coexisting 16
butterfly attractors under k;=0.7. (c) Plane coexisting 9 double-butterfly
attractors under k;=0.34. (d) Plane coexisting 12 periodic attractors and
4 stable points under k;=0.34 and k3=9.

TABLE I: RELATIONSHIP BETWEEN SYSTEM PARAMETERS,
CONTROL PARAMETERS, AND DYNAMICAL BEHAVIORS.

£ & Dynamical behaviors Number of butterflies
22 12 @y-direction multi-butterfly attractors 2(N1+2)

1.2 22 @3-direction multi-butterfly attractors 2(N2+2)

22 22 Grid multi-butterfly attractors 2(N1+2)(N2+2)
1.2 1.2 Plane coexisting multi-butterfly attractors 2(N1+2)(N2+2)

attractors. More importantly, the number of butterflies of the
mult-butterfly attractors can be easily controlled by adjusting
control parameters N; or N,, as shown in Table L.

With the rapid development of wireless communication tech-
nology, the Internet of Things (IoT) has been widely applied
in the police system [1, 2]. Although the use of the police
IoT makes the work of policemen and judges more efficient
and convenient, it also brings the risk of information leakage
to the handling of cases. Especially, a large number of crime
scene images are easily leaked during network processing and
transmission, which undoubtedly increases the difficulty of case
detection and criminal tracking, and may even lead to public
security incidents. Therefore, the security of crime scene image
data is extremely important. Because the data of the crime
scene images have special features, such as large capacity, high
redundancy, and high correlation between pixels, the traditional
encryption methods cannot fulfill the demands for image encryp-
tion [46]. Here we propose an image security solution based
on a grid multi-butterfly memristive HNN to protect the privacy
information of the crime scene images in police [oT.

A. Security Solution for The Police loT

The security solution of the police 10T is designed as shown in
Fig.12 which mainly contains four parts: Encryption terminal,
MEC (Mobile edge computing) servers, Decryption terminal,
and Pseudo-random number generator. When the police station
PS-n obtains crime scene image data (Original images), the
image data is encrypted through a chaos-based encryption algo-
rithm at the encryption terminal. Usually, the chaotic encryption
algorithm is preinstalled on the local server of both the encryp-
tion and decryption ends. That is to say, when the encryption
terminal receives both the original images and the secret keys,
its local server will perform the encryption operation. Then the
encrypted data (Cipher images) is sent online to the nearest
MEC server, and the encrypted data is further sent to other

MEC servers or the PSs. Once other police stations receive both
the cipher image data and the secret keys, the corresponding
local server will perform the decryption operation. As we can
see in Fig.12, the original crime scene images can be obtained
through chaotic decryption in the PS-m (decryption terminal),
so as to realize the confidential transmission of the crime scene
images. In these processes, the key step is the implementation
of chaos-based encryption and decryption algorithms. Here, as
shown in Fig.13, an encryption algorithm with a permutation-
diffusion structure is designed based on the proposed grid multi-
butterfly memristive HNN. In the encryption application, the
grid multi-butterfly memirstive HNN is used to generate chaotic
sequences with grid multi-butterfly attractors or initial-boosting
dynamics. Then the generated chaotic sequences are used to
produce pseudo-random numbers which are applied to encrypt
image data.The specific implementation steps are as follows:

Step 1: Assume that the size of the original image P is M X
N pixels. Considering the parameters and initial values (a, f3,
K, &, &, A, Ao, ki, ka, k3, N1, N2, x10, X20, @10, P20, and
(@30) as secret keys, iterate the grid multi-butterfly memristive
HNN in Eq.(6) with the fourth-order Runge-Kutta algorithm
with sampling interval 0.02. Each iteration will produce five
chaotic values xi(i), x2(i), @1(i), @2(i) and @3(i). Discard the
data of the first 500 iterations of the system.

Step 2: The system is continuously iterated M x N+500 times.
Meanwhile, the produced chaotic values are used to generate
two pseudo-random sequences S;(i) and S>(i), as follows

S1(i) = Abs((x1 (i) +x2(i))/2)
S2(i) = mod( floor((Abs(@; (i) )
+Abs(¢a(i)) +Abs(3(i)))/3) x 101%),256)

where the floor(x) denotes the nearest integers less than or equal
to x.

Step 3: A processed image Pj is obtained by using the pseudo-
random sequence S; to perform a permutation to the original
image P, where the permutation algorithm is described by

PL(i) = Plindex(8: (i))) (10)

Step 4: Employ the pseudo-random sequence S to perform
the XOR operation to P; as follows

C(i) = P (i) ©52(7) (11)

Step 5: Performe the above encryption processes for n rounds.
Consequently, the cipher image C is yielded. Decryption is the
reverse process of the encryption operation.

B. Security Performance Analysis

The security performance of the designed encryption al-
gorithm is verified by using four grayscale 256x256 crime
scene images (Trail, Bullet hole, Shoeprint, and Fingerprint)
in Fig.14(al)-(a4) as encryption objects. Here, the number of
encryption rund is set as 2, where the signal generated by
the 5x4-double-butterfly attractor in Fig.9(a3) is used in the
first round of encryption and the signal generated by the plane
coexisting double-butterfly attractors in Fig.11(c) is employed
in the second round. All the parameters are the same as those
given in Sec. III.

(1) Keyspace: The presented encryption algorithm uses 12
parameters and 5 initial values as its secret keys, which makes
unauthorized decryption very difficult. Suppose that all bites
adopt double-precision data, so the keyspace of the cryptosys-
tem is (10'0)17=10%72 ~ 2316 Therefore, the keyspace of the
designed encryption algorithm is much larger than 2!%° which
shows that it has a strong ability to resist violent attacks.
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Fig. 13: Flow chart of the proposed image encryption algorithm.

(2) Histogram: The original images and corresponding ci-
pher images are given in Fig.14(al)-(a4) and Fig.14(c1)-(c4),
respectively. It is evident that the cipher images become very
chaotic after encryption. Meanwhile, their histograms are given
in Fig.14(b1)-(b4) and Fig.14(d1)-(d4), respectively. Clearly,
the histograms of the cipher images are very uniform and are
completely different from those of the original images. Thus,
the designed encryption algorithm provides a strong ability to
resist statistical attacks.

(3) Correlation: The robustness of the encryption algorithm
can be tested by computing correlation coefficients. Here, by
randomly selecting 10000 pairs of adjacent pixels in the four
original images and cipher images, the correlation coefficients
in three directions are given in Fig.15. We can clearly see that
the correlation coefficients of the original images are close to
1, but those of the cipher images are very close to 0. In other
words, the designed encryption algorithm can largely reduce
the correlation of the original images. Hence, the grid multi-
butterfly memristive HNN provides strong robustness for the

TABLE II: TEST RESULTS OF THE ENTROPY. NPCR, UACL, AND TIME.
Images Entropy | NPCR UACI Time
Trail gi%iy“;le o Tasol | 996068 | 334656 | 0.156
Bullet hole g;icgriy“;le . ;:gggg 99.6039 | 33.4652 | 0.163
Shoeprint g;icgriy“;tle 0| Sogrs | 996108 | 333678 | 0.162
Fingerprint gi%i}f‘;le o Taoas | 996082 | 334647 | 0.159
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Fig. 14: Test results of the histograms. (al-a4) Original images. (bl-
b4) Histograms of the original images. (c1-c4) encrypted images. (d1-
d4) Histograms of the cipher images.
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Fig. 15: Test results of the correlation. (al-a4) Correlation of the orig-
inal images. (b1-b4) Correlation of the corresponding cipher images.

encryption algorithm.

(4) Entropy: The statistical characteristics of image infor-
mation can be reflected by entropy. According to Shannon’s
theorem, the entropy of an image should be as close to 8 as
possible. Generally, the entropy can be calculated by

N1 1

H(P) = i;) P(xz)logzm
where N is the bit depth of the image P and P(x;) is the
probability of the presence of a pixel x;. According to equation
(12), the entropy of the four original images and cipher images
are given in Table II. It is obvious that the entropy values of
the original images are largely improved after encryption. The
entropy values of the cipher images are very close to the ideal
value 8. Therefore, the designed encryption algorithm has a
strong ability to resist statistical attacks.

(5) NPCR and UACI: The ability of differential attacks can
be evaluated by using the number of pixels change rate (NPCR)
and the unified average change intensity (UACI). Assuming that
there are two M X N cipher images C; and C,, whose corre-
sponding original images only have a single-pixel difference.
The NPCR and UACI can be described by

(12

M N . .
NPCR(C1,C2) = ¥ ¥ 2D 5 100%
i=1j=1 (13)

N .. L
UACI(C1,Cy) = 4y ¥ ¥ QDG 1009
s =1

where ) i)
N _ 0, ifCi(i, j) = Ca(i j

D@, = { LG ) #Colin))
According to the above mathematical expressions, the average
values of NPCR and UACI in four images are listed in Table

(14)
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Fig. 16: Test results of key sensitivity. (al-d1) Decrypted images with
the accurate keys. (a2-d2) Decrypted images with inaccurate keys.

II. Evidently, the NPCR and UACI values are very close to the
expected values of 99.6094% and 33.4635%, respectively. In
other words, it is very sensitive to small changes in original
images. Therefore, the designed encryption algorithm has a
strong ability to oppose various differential attacks.

(6) Key Sensitivity: Usually, the more sensitive the secret
keys, the more secure the encryption algorithm. Here, the se-
cret keys xj9, X190, k1, and ky are selected as test objects. First,
the right secret keys are used to decrypt the cipher images.
The decryption images are given in Fig.16(al)-(d1), and the
corresponding encryption time of the scheme is listed in Table.
II. Then, the wrong secret keys with a tiny change are used
for decryptioning the same cipher images, and the decryption
results are given in Fig.16(a2)-(d2). As can be seen, even if the
secret key is changed a little (107'¢), the decrypted image is
absolutely different from the original image. As a consequence,
the proposed encryption algorithm has a very high sensitivity to
the secret key.

(7) Robustness: The robustness of the encryption scheme can
also be evaluated by testing the opposing ability of data loss and
noise attacks. To test the algorithm’s ability to resist data loss,
some parts of the cipher images are cut and then decrypted. The
cipher images with different sizes of data loss and corresponding
decrypted images are shown in Fig.17(al)-(a4) and Fig.17(b1)-
(b4), respectively. Obviously, even if 50 percent of the data
in a cipher image is lost, it can basically recover the original
information. Furthermore, to test the algorithm’s ability to resist
noise attacks, different strengths of salt and pepper noise and
Gaussian noise are added to cipher images. The corresponding
decrypted images are shown in Fig.17(c1)-(c4) and Fig.17(d1)-
(d4), respectively. It can be seen that some pixel values have
changed in the decrypted images, but the general information
of the original images can still be displayed. This means that
the designed encryption algorithm can effectively resist data loss
and noise attacks, and has good robustness.

(8) Chosen plaintext and ciphertext attacks: In cryptanalysis,
chosen plaintext attack and chosen ciphertext attack are two
important attack methods. Generally, if an encryption algorithm
can resist the chosen plaintext attack, it indicates that the al-
gorithm has sufficient security level to resist other attacks in-
cluding ciphertext-only attack and known-plaintext attack. To
test the ability to defend the chosen plaintext attack, it is evalu-
ated by using some special images including all-white and all-
black images as input images. The size of the tested images is
256x256. Fig.18 gives the experimental results including the
all-white and all-black plain images, their encrypted images,
and corresponding histograms. As we can see, the histograms of

() 0001 (d) 0,005 (ds) 0.01 (ds) 0.05

Fig. 17: Test results of data loss and noise attacks. (al-a4) Cipher im-
ages under partial data loss. (b1-b4) Corresponding decrypted images.
(cl-c4) Decrypted images of the cipher images under salt and pepper
noise. (d1-d4) Decrypted images of the cipher images under Gaussian
noise.
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Fig. 18: Experiment results of special images. (al-a3) All-white image,
its encrypted image, and corresponding histogram, respectively. (b1-b3)
All-black image, its encrypted image, and corresponding histogram,
respectively.

the cipher images are evenly distributed, so the attacker cannot
obtain useful information by encrypting some special images.
Furthermore, the presented encryption algorithm can resist the
chosen ciphertext attack because its keystream depends on the
private key. From the above analysis, the proposed encryption
algorithm has a strong ability to resist the chosen plaintext and
ciphertext attacks.

Next, the advantages and disadvantages of the proposed
encryption algorithm are discussed. The existing data security
and privacy solutions present in the police IoT usually use
traditional encryption algorithms, such as DES, IDEA, and
RSA. Because the image data owns features of large sizes
and high correlation among pixels, the traditional encryption
algorithms are generally not suitable for a mass of image
data encryption. Compared with these traditional encryption
algorithms, the proposed chaos-based encryption algorithm is
a kind of symmetric encryption algorithm, which has more
simpler encryption structure and faster speed. Additionally, a
performance comparison of encryption algorithms based on



TABLE III: PERFORMANCE COMPARISON OF THE ENCRYPTION ALGORITHMS BASED ON DIFFERENT MEMRISTIVE HNNS.

Key NPCR High

Refs Image type Dynamical behavior Keyspace | Entropy sensitivity | UACI obustness Application

2020 [20] 8r5d61r>1<;r5y6;mages Multi-scroll attractors | — — 7.9977 108 - - No Matlab simulation
Medical images Initial-boosted 480 12 99.6101 .

2022 [39] (256x256) hyperchaos 2 7.9981 10 33.4672 Yes FPGA experiment

2023 [22] 8?5‘;;?5“365 iggcz‘rlsm'scr"” - 7.9978 | - - - Yes Matlab simulation
Medical images Grid multi-scroll 99.6078 "

2023 1421 | 556x256) attractors - 79971 | - 334875 | N° Medical IoT
Commercial images | Hyperchaotic 480 99.5953

2023 1431 | (256x256) multi-scroll attractors | 2 BEID | == 335107 | Yo Sz Lt

. Crime scene images | Grid multi-butterfly 316 _16 99.6082 .
This work (256x256) attractors 2 7.9977 10 33.4647 Yes Police IoT

different memristive HNNs is given in Table III. It is clear
that because the presented memristive HNN has complex grid
multi-butterfly attractors, the designed encryption algorithm has
a larger keyspace, more sensitive secret keys, and more ideal
NPCR/UACI. Meanwhile, it also enjoys high robustness in terms
of data loss and noise attacks. Although the proposed encryption
algorithm has many advantages, it also has a weakness, that is,
its key management is a complicated process because the key
management directly determines its security.

C. Experimental Demonstration

In this sub-section, the effectiveness of the proposed image
security solution is confirmed by simulating the police IoT
environment in reality. We use the fingerprint image as an
example, and hardware experiment is implemented on RPI
(Raspberry Pi). Hardware devices mainly contain a Dell Intel
CoreTM i7 CPU 2.5GHz desktop computer, a router, and three
4b RPI, and the chaotic signal is realized in Python language
under the EMQX 4.3.10 MQTT protocol. As shown in Fig.19,
the three RPIs act as a publisher (encryption terminal), an
intermediate server (EMC server), and a subscriber (decryption
terminal), respectively, and are connected to the same WiFi.
The IP addresses of the publisher, server, and subscriber are set
as 192.168.123.188, 192.168.123.29, and 192.168.123.151, re-
spectively. Taking the fingerprint image as the encrypted object,
which is sent and received under EMQX(the open-source MQTT
agent for IoT). The detailed experiment steps can be referred
to in the literature [42]. In this experiment, there are three key
steps. First, the original fingerprint image and secret keys are
read and stored in the publisher, as shown in Fig.19(a). Then,
the publisher further performs the preprocessing operations S
and Sy to generate a cipher image, as shown in Fig.19(b).
Meanwhile, the cipher image data is sent to the subscriber.
Finally, the received cipher image is decrypted in the subscriber,
and a decrypted image is directly displayed and saved, as shown
in Fig.19(c). Therefore, the experiment has achieved the purpose
of encrypting the crime scene image in the police IoT. there is
no doubt that it is expected to be applied in the practical police
IoT to reinforce information security.

To protect the transmitted crime scene image data in the
police IoT, a grid multi-butterfly memristive neural network
model is presented in this work. First, the grid multi-butterfly
memristive neural network model is constructed by compre-
hensively considering three bionic modeling methods. Then, its
dynamical properties are analyzed by using various nonlinear
analysis methods including the bifurcation diagram, Lyapunov
exponents, phase portrait, and basin of attraction. Dynamic
analysis results show that the presented memristive HNN can

Publisher
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Broker

Router

Fig. 19: Experimental demonstration based on RPI. (a) Original image.
(b) Cipher image. (c) Decrypted image.

generate various complex dynamical behaviors including pe-
riodic and chaotic butterfly attractors, transient chaotic and
chaotic double-butterfly attractors, 1D and grid multi-butterfly
attractors, and initial-boosted plane coexisting multi-butterfly
attractors. Meanwhile, the number and position of butterflies
contained in the multi-butterfly attractors can be freely con-
trolled by changing control parameters and initial states. Finally,
the grid multi-butterfly memristive HNN is used to design the
pseudo-random number generator to encrypt crime scene image
data useful in the police IoT. Security performance evaluation
shows that the encryption algorithm can effectively protect
the information of the crime scene images and is superior to
some existing encryption algorithms. Besides, we developed a
hardware platform based on RPI under the MQTT protocol
to verify the designed image security solution. Experimental
results showed that our security solution can successfully re-
alize security transmission of crime scene image data, which
provides a significant reference for policing departments.One
major limitation of this proposed security solution is that Key
management is not easy, which can increase the chance of
the brute force attack. In the future, we will consider more
security enhancement mechanisms like the use of asymmetric
key generation, integrating DNA encryption technology, and
adding a deep neural network.

REFERENCES

[1] C. Huang, T. Chou, S. Wu, “Towards convergence of Al and IoT for smart
policing: a case of a mobile edge computing-based context-aware system,”
J. Glob. Inf. Manag., vol. 29, no. 6, pp. 1-21, 2021.

[2] A. Tundis, H. Kaleem, M. Miihlhduser, “Detecting and tracking criminals
in the real world through an IoT-based system,” Sensors., vol.20, no. 13,
art. no. 3795, 2020.



10

[3] J. Jung, B. Kim, J. Cho, et al, “A secure platform model based on ARM
platform security architecture for IoT devices,” IEEE Internet Things J.,
vol. 9, no. 7, pp. 5548-5560, 2022.

L. Li, Y. Chen, H. Peng, et al, “Chaotic deep network for mobile D2D

communication,” IEEE Internet Things J., vol. 8, no. 10, pp. 8078-8096,

2020.

B. Yan, G. Wang, J. Yu, et al, “Spatial-temporal chebyshev graph neural

network for traffic flow prediction in I0T-based ITS,” IEEE Internet Things

J, vol. 9, no. 12, pp. 9266-9279, 2022.

[6] K.Li, H. Bao, H. Li, et al, “Memristive Rulkov neuron model with magnetic

induction effects,” IEEE Trans. Ind. Informat., vol. 18, no. 3, pp. 1726-1736,

2021.

J. J. Hopfield, “Neural network and physical system with emergent col-

lective computational abilities, ” Proc. Nat. Acad. Sci. USA., vol. 79, pp.

2554-2558, Apr. 1982.

Q. Deng,C. Wang, H. Lin, “Memristive Hopfield neural network dynam-

ics with heterogeneous activation functions and its application,” Chaos,

Solitons Fractals., vol. 178, art. no. 114387, 2024.

[9] C. Chen, F. Min, J. Cai, et al, “Memristor synapse-driven sim-
plified Hopfield neural network: hidden dynamics, attractor control,
and circuit implementation,” I[EEE Trans. Circuits Syst. 1., DOIL:
10.1109/TCS1.2024.3349451, 2024.

[10] D. B. Strukov, G. S. Snider, D. R. Stewart, et al, “The missing memristor
found,” Nature., vol. 453, no. 7191, pp. 80-83, 2008.

[11] J. Sun, Y. Wang, P. Liu et al, “Memristor-based circuit design of PAD
emotional space and its application in mood congruity,” IEEE Internet
Things J., vol. 10, no. 18, pp. 16332-16342, 2023.

[12] Q. Deng, C. Wang, J. Sun, et al, “Nonvolatile CMOS memristor, recon-
figurable array, and its application in power load forecasting,” IEEE Trans.
Ind. Informat., DOL: 10.1109/T11.2023.3341256, 2023.

[13] D. Tang, C. Wang, H. Liu, et al, “Dynamics analysis and hardware
implementation of multi-scroll hyperchaotic hidden attractors based on
locally active memristive Hopfield neural network,” Nonlinear Dyn., vol.
112, no. 2, pp. 1511-1527, 2024.

[14] Q. Hong, L. Yang, S. Du, et al, “Memristive recurrent neural network
circuit for fast solving equality-constrained quadratic programming with
parallel operation,” I[EEE Internet Things J., vol. 9, no. 23, pp. 24560-
24571, 2022.

[15] O. Krestinskaya, K. N. Salama, A.P. James, “Learning in memristive neural
network architectures using analog backpropagation circuits,” IEEE Trans.
Circuits Syst. II., vol. 66, no. 2, pp. 719-732, 2019.

[16] J. Sun, C. Li, Z. Wang, et al, “A memristive fully connect neural network
and application of medical image encryption based on central diffusion
algorithm,” IEEE Trans. Ind. Informat., vol. 20, no. 3, pp. 3778-3788, 2024.

[17] D. Ding, H. Xiao, Z. Yang, et al, “Coexisting multi-stability of Hopfield
neural network based on coupled fractional-order locally active memristor
and its application in image encryption,” Nonlinear Dyn., vol. 108, no. 4,
pp. 4433-4458, 2022.

[18] D. Vignesh, J. Ma, S. Banerjee, “Multi-scroll and coexisting attractors in
a Hopfield neural network under electromagnetic induction and external
stimuli,” Neurocomputing., vol. 564, Art. no. 126961, 2024.

[19] R. Li, E. Dong, J. Tong, et al, “A novel multiscroll memristive Hop-
field neural network,” Int. J. Bifurcation Chaos., vol. 32, no. 09, Art. no.
2250130, 2022.

[20] S. Zhang, J. Zheng, X. Wang, et al, “Initial offset boosting coexisting
attractors in memristive multi-double-scroll Hopfield neural network,” Non-
linear Dyn., vol. 102, pp. 2821-2841, 2020.

[21] H. Bao, M. Hua, J. Ma, et al, “Offset-control plane coexisting behaviors in
two-memristor-based Hopfield neural network,” IEEE Trans. Ind. Electron.,
vol. 70, no. 10, pp. 10526-10535, 2023.

[22] Q. Lai, Z. Wan, P. D. K. Kuate, “Generating grid multi-scroll attractors
in memristive neural networks,” IEEE Trans. Circuits Syst. I., vol. 70, no.
3, pp. 1324-1336, 2023.

[23] T. Dong, X. Gong, T. Huang, “Zero-Hopf Bifurcation of a memristive
synaptic Hopfield neural network with time delay,” Neural Netw., vol. 149,
pp. 146-156, 2022.

[24] F. Li, L. Bai, Z. Chen, et al, “Scroll-growth and scroll-control attractors in
memristive bi-neuron Hopfield neural network,” I[EEE Trans. Circuits Syst.
II., vol. 71, no. 4, pp. 2354-2358, 2024.

[25] D. Vignesh, J. Ma, S. Banerjee, “Multi-scroll and coexisting attractors in
a Hopfield neural network under electromagnetic induction and external
stimuli,” Neurocomputing., vol. 564, Art. no. 126961, 2024.

[26] Q. Wan, F. Li, S. Chen, et al, “Symmetric multi-scroll attractors in
magnetized Hopfield neural network under pulse controlled memristor and
pulse current stimulation,” Chaos, Solitons, Fractals., vol. 169, Art. no.
113259, 2023.

[27]1 J. Sun, Y. Zhai, P. Liu, et al, “Memristor-based neural network circuit of as-
sociative memory with overshadowing and emotion congruent effect,” IEEE
Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2023.3348553,
2024.

[28] L. Huang, Y. Zhang, J. Xiang, et al, “Extreme multistability in a Hopfield
neural network based on two biological neuronal systems,” IEEE Trans.
Circuits Syst. II., vol. 69, no. 11, pp. 4568-4572, 2022.

4

finar

[5

—_

[7

—

[8

—

[29] Q. Wan, Z. Yan, F. Li, et al, “Complex dynamics in a Hopfield neural
network under electromagnetic induction and electromagnetic radiation,”
Chaos., vol. 32, Art. no. 073107, 2022.

[30] A. K. Singh, K. Chatterje, A. Sing, “An image security model based on
chaos and DNA cryptography for IIoT images,” IEEE Trans. Ind. Informat.,
vol. 19, no. 2, pp. 1957-1964, 2023.

[31] F. Toktas, U. Erkan, Z. Yetgin, “Cross-channel color image encryption
through 2D hyperchaotic hybrid map of optimization test functions,” Expert
Syst. Appl., vol. 249, Art. no. 123583, 2024.

[32] O. Kocak, U. Erkan, A. Toktas, et al, “PSO-based image encryption
scheme using modular integrated logistic exponential map,” Expert Syst.
Appl., vol. 237, Art. no. 121452, 2024.

[33] W. Feng, Q. Wang, H. Liu, et al, “Exploiting newly designed fractional-
order 3D Lorenz chaotic system and 2D discrete polynomial hyper-
chaotic map for high-performance multi-image encryption,” Fractal and
Fractional., vol. 7, no. 12, Art. no. 887, 2023.

[34] W. Feng, X. Zhao, J. Zhang, et al, “Image encryption algorithm based on
plane-level image filtering and discrete logarithmic transform,” Mathemat-
ics., vol. 10, no. 15, Art. 2751, 2022.

[35] H. Wen, Y. Lin, “Cryptanalysis of an image encryption algorithm using
quantum chaotic map and DNA coding,” Expert Syst. Appl., vol. 237, Art.
no. 121514, 2024.

[36] W. Feng, Z. Qin, J. Zhang, et al, “Cryptanalysis and improvement of
the image encryption scheme based on Feistel network and dynamic DNA
encoding,” IEEE Access., vol. 9, pp. 145459-145470, 2021.

[37] Q. Deng, C. Wang, H. Lin, “Chaotic dynamical system of Hopfield
neural network influenced by neuron activation threshold and its image
encryption,” Nonlinear Dyn, vol. 112, pp. 6629-6646, 2024.

[38] Q. Lai, Z. Wan, H. Zhang, et al, “Design and analysis of multiscroll
memristive hopfield neural network with adjustable memductance and
application to image encryption,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 10, pp. 7824-7837, 2023.

[39] H. Lin, C. Wang, L. Cui, et al, “Brain-like initial-boosted hyperchaos and
application in biomedical image encryption,” IEEE Trans. Ind. Informat.,
vol. 18, no. 12, pp. 8839-8850, 2022.

[40] D. Jiang, Z. T. Njitacke, J. D. D. Nkapkop, et al, “A new cross ring neural
network: dynamic investigations and application to WBAN,” IEEE Internet
Things J., vol. 10, no. 8, pp. 7143-7152, 2023.

[41] S. Zhang, C. Li, J. Zheng, et al, “Generating any number of initial offset-
boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear
memristor,” IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 7202-7212, 2022.

[42] F. Yu, H. Shen, Q. Yu, et al, “Privacy protection of medical data based on
multi-scroll memristive Hopfield neural network,” IEEE Trans. Netw. Sci.
Eng., vol. 10, no. 2, pp. 845-858, 2023.

[43] C. Wang, D. Tang, H. Lin, et al, “High-dimensional memristive neural
network and its application in commercial data encryption communication,”
Expert Syst. Appl., vol. 242, Art. no. 122513, 2024.

[44] Q. Hong, Y. Li, X. Wang, et al, “A versatile pulse control method to
generate arbitrary multidirection multibutterfly chaotic attractors,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 8, pp. 1480-
1492, 2019.

[45] Y. Yang, L. Huang, N. V. Kuznetsov, et al, “Generating multiwing hidden
chaotic attractors with only stable node-foci: analysis, implementation and
application,” IEEE Trans. Ind. Electron., vol. 71, no. 4, pp. 3986-3995,
2024.

[46] R. Wu, S. Gao, H. H. C, Iu, et al, “Securing Dual-Channel Audio
Communication With a Two-Dimensional Infinite Collapse and Logistic
Map,” IEEE Internet Things J., vol. 11, no. 6, pp. 10214-10223, 2024.

Hairong Lin (Member, IEEE) received M.S. and
Ph.D. degrees in information and communication en-
gineering and computer science and technology from
Hunan University, Changsha, China, in 2015 and 2021,
respectively. From 2022 to 2023, he was a Postdoc-
toral Fellow with the School of Computer Science
and Electronic Engineering, Hunan University, China.
He is currently an Associate Professor at the School
of Electronic Information, Central South University,
Changsha, China. He is a member of the Chaos and
Nonlinear Circuit Professional Committee of Circuit
and System Branch of China Electronic Society. He has presided over four
national and provincial projects, and published more than 50 papers in related
international journals, such as IEEE-TIE, IEEE-TII, IEEE-TCAD, etc. His re-
search interests include chaotic cryptography, information and network security,
complex networks, and Internet of Things.




Xiaoheng Deng (Senior Member, IEEE) received the
Ph.D. degree in computer science from Central South
University, Changsha, Hunan, P.R. China, in 2005.
Since 2006, he has been an Associate Professor and
then a Full Professor with the department of Commu-
nication Engineering, Central South University.He is
Joint professor of Shenzhen Research Institue, Central
South University and the director of data sensing and
switching equipment provincial engineering center. He
is a senior member of CCF, a member of CCF Per-
vasive Computing Council, a senior member of IEEE
and a member of ACM. He has been a chair of CCF YOCSEF CHANGSHA
from 2009 to 2010. His research interests include edge computing, Internet
of Things, wireless networking and communication, data mining, and pattern
recognization.

Fei Yu received the M.E. and Ph.D. degree from
College of Information Science and Engineering, Hu-
nan University, Changsha, China, in 2010 and 2013,
respectively. He is currently a distinguished Associate
Professor at School of Computer and Communication
Engineering in Changsha University of Science and
Technology, Changsha, China. He focuses on nonlin-
ear system and circuit, complex network and their
applications.

Yichuang Sun (M’90-SM’99) received the B.Sc.
and M.Sc. degrees from Dalian Maritime University,
Dalian, China, in 1982 and 1985, respectively, and
the Ph.D. degree from the University of York, York,
U.K., in 1996, all in communications and electronics
engineering. Dr. Sun is currently Professor of Commu-
nications and Electronics, Head of Communications
and Intelligent Systems Research Group, and Head of
Electronic, Communication and Electrical Engineering
Division in the School of Engineering and Computer
Science of the University of Hertfordshire, UK. His
research interests are in the areas of wireless and mobile communications,
RF and analogue circuits, microelectronic devices and systems, and machine
learning and deep learning.

Professor Sun was a Series Editor of IEE Circuits, Devices and Systems
Book Series (2003-2008). He has been Associate Editor of IEEE Transactions
on Circuits and Systems I: Regular Papers (2010-2011, 2016-2017, 2018-2019).
He is also Editor of ETRI Journal, Journal of Semiconductors, and Journal of
Sensor and Actuator Networks. He was Guest Editor of eight IEEE and IEE/IET
journal special issues: High-frequency Integrated Analogue Filters in IEE Proc.
Circuits, Devices and Systems (2000), RF Circuits and Systems for Wireless
Communications in IEE Proc. Circuits, Devices and Systems (2002), Analogue
and Mixed-Signal Test for Systems on Chip in IEE Proc. Circuits, Devices
and Systems (2004), MIMO Wireless and Mobile Communications in IEE
Proc. Communications (2006), Advanced Signal Processing for Wireless and
Mobile Communications in IET Signal Processing (2009), Cooperative Wireless
and Mobile Communications in IET Communications (2013), Software-Defined
Radio Transceivers and Circuits for 5G Wireless Communications in IEEE
Transactions on Circuits and Systems-II (2016), and the 2016 IEEE International
Symposium on Circuits and Systems in IEEE Transactions on Circuits and
Systems-1 (2016). He has also been widely involved in various IEEE technical
committee and international conference activities.




	Introduction
	Memristive Hopfield neural network
	Memristor Model Design
	Memristive HNN Description
	Equilibrium Point Characteristic

	Dynamic analysis 
	Periodic and Chaotic Butterfly Attractors
	1D and Grid Multi-butterfly Attractors
	Initial-Boosted Plane Coexisting Multi-butterfly attractors

	Application in the police IoT
	Security Solution for The Police IoT
	Security Performance Analysis
	Experimental Demonstration

	Conclusion
	References
	Biographies
	Hairong Lin
	Xiaoheng Deng
	Fei Yu
	Yichuang Sun


