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Abstract: As modern industrial and physical systems evolve to enhance their reliability, sensor faults 

emerge as a critical challenge, posing a potential weak link in integrated health management. Redundancies 

in hardware sensors have become a common approach to mitigate these issues and bolster overall system 

reliability. However, this solution brings about higher system costs, augmented hardware, and increased 

complexity in system control. Consequently, there is a growing focus on research aimed at comprehending 

various sensor faults to enhance the effectiveness of sensor fault detection and diagnosis (FDD). This paper 

delves into the advancements in sensor fault diagnosis methodologies, outlines prevalent challenges, and 

identifies promising avenues for further research in the implementation of sensor FDD systems. 
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1. INTRODUCTION 

Human beings perceive and interact with the world through 

senses of sound, vision, smell, touch, and taste. Similarly, for 

industrial machinery to emulate this ability – providing 

insights into its current health status or detecting early signs of 

potential failures – sensors play a pivotal role. Sensors serve 

as input devices that translate specific physical quantities, such 

as vibration, temperature, pressure, and acoustics, etc., into 

output signals, enabling machines to “sense” and respond 

accordingly. 

While sensors are engineered to withstand various conditions, 

prolonged use and environmental factors often contribute to 

sensor faults stemming from aging, wear and tear, physical 

damage, or issues related to electromagnetic interference 

(EMI) and electrical disruptions. These faults can significantly 

impact a machine's control system, leading to reduced 

performance, erroneous warnings, or even emergency 

shutdowns. High-profile incidents like the aborted space 

shuttle launches, e.g., Challenger, Discovery, Columbia, etc., 

attributed to sensor failures (Balaban et al., 2009), serve as 

stark examples.  

Moreover, in the realm of autonomous vehicles, sensors play 

a crucial role in monitoring internal operations and external 

environmental factors. Inaccurate sensor data can compromise 

the safety of autonomous driving tasks. Hence, the timely 

detection and diagnosis of sensor faults are paramount to 

prevent machine performance degradation and potential 

failures. 

The objective of this paper is to present a comprehensive 

overview of methods employed in sensor fault detection and 

diagnosis (FDD), addressing predominant challenges and 

exploring avenues for further research in the implementation 

of sensor FDD systems. 

2. SENSOR FAULTS 

Sensor fault occurs as shown in Figure 1 when a sensor 

malfunctions or deviates from its typical functioning, leading 

to imprecise or unreliable measurements of the  machine’s 

operational parameters. There are several categories into 

which sensor faults can be divided, including (Jan et al., 2017; 

Jombo et al., 2018): bias/offset fault, stuck fault, drift/incipient 

fault, erratic/noise fault, crosstalk fault, hysteresis fault, 

saturation fault, spike fault, and hard-over/abrupt fault. 

2.1 Bias (or Offset) Fault 

Bias fault occurs when there is a persistent offset in sensor 

output from expected values. 

2.2 Stuck Fault 

Stuck fault occurs when a sensor becomes unresponsive and 

gets fixed at a particular value. 

2.3 Drift (or Incipient) Fault 

Drift fault occurs when a sensor progressively deviates over 

time from its initial calibration. 

2.4 Erratic (or Noise) Fault 

Random fluctuations or changes in sensor output that might 

distort the genuine signal measurement are referred to as 

sensor noise. These sensor noise sources can be because of 

inadequate grounding, external electromagnetic interference, 

amongst others. This can also refer to when the variance of the 

sensor output significantly increases above the usual value 

overtime. 
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2.5 Crosstalk Fault 

Crosstalk fault occurs when a sensor responds to several inputs 

or external interference that is not intended to measure. 

2.6 Hysteresis Fault 

Hysteresis fault occurs when sensor output is dependent on 

both its past and present input. It may result in inconsistent 

measurements for ascending and descending sensor input and 

a lag or delay in sensor output. 

2.7 Saturation Fault 

When a sensor hits its upper or lower bound and can no longer 

measure correctly, it is said to be saturated. It may occur 

because of selecting the wrong sensor range for a particular 

application or high-intensity input signals. 

2.8 Spike Fault 

At regular intervals, spikes are seen in the sensor's output. 

2.9 Hard-Over (or Abrupt) Fault 

The sensor outputs rise above the maximum threshold. Also 

refers to a sudden step change in the sensor output above the 

maximum threshold. 

 

Figure 1. Example representations of typical sensor faults (Jan et 

al., 2017) 

3. METHODS FOR SENSOR FDD 

Sensor FDD techniques can be broadly classified into: 

3.1 Model-Based Techniques 

Model-based methodologies involve the utilization of 

mathematical models – constructed based on physical 

principles or system identification – representing the system 

and sensors. These models serve as a reference for comparing 

measured (actual) values against predicted (expected) values, 

generating residuals (signals or indicators). These residuals 

facilitate the detection of faults (Gao et al., 2015). Depending 

on the system's complexity and sensor characteristics, the 

model can take various forms such as continuous or discrete, 

deterministic or stochastic, linear or nonlinear, among others. 

Within model-based sensor fault diagnostics, diverse 

approaches have been employed for mathematical modeling 

and residual generation, encompassing: 

3.1.1 Observer-Based Method 

Observer-based techniques for FDD involve comparing actual 

measurements with model predicted ones, generating residuals 

that are then evaluated against a predefined threshold or 

confidence interval. In the absence of faults, residuals should 

ideally around zero, but the presence of a fault causes a 

noticeable deviation from this baseline. However, it is 

essential to note that the residual may contain non-zero values 

due to disturbances, noise, and modeling errors. To enhance 

fault detection and minimize sensitivity to noise and 

disturbances, a bank of state estimators is commonly 

employed. Each estimator is designed to be sensitive to 

specific faults while being insensitive to others. This can be 

used to isolate and identify faults 

The implementation of the observer-based method for sensor 

FDD has been extensively explored in the literature, as 

demonstrated by studies conducted by (Bernardi & Adam, 

2020; Torres & Avilés, 2021). 

3.1.2 Parity Space Method 

The Parity Space Method relies on independent or redundant 

sensor measurements to verify the consistency and 

compatibility of sensor outputs. This method’s fundamental 

principles align with those of the observer-based method in 

terms of residual generation and model parameter congruency. 

The mathematical representation of parity equations is derived 

from the system model or state space transformations, as 

detailed in studies such as (Hagenblad et al., 2003). 

The implementation of the Parity Space Method for sensor 

FDD has been extensively explored in scholarly work, 

including research conducted by (Omana & Taylor, 2005; Shui 

et al., 2018). 

3.1.3 Parameter Estimation Method 

Parameter Estimation Methods operate by predicting sensor 

model parameters and identifying anomalies or changes in 

their values compared to their fault-free reference models. This 

approach utilizes system identification techniques such as least 

squares, extended least squares, recursive least squares, 

hypothesis testing, minimum mean square error, among others.  

Several authors have explored the application of parameter 

estimation techniques in literature, as exemplified by the work 

of (Kullaa, 2013). 

3.2 Signal Processing-Based Techniques 

Signal processing-based methods employ transformations of 

measured sensor signals for fault diagnostics by extracting 

features and utilizing prior knowledge of how sensor faults 

correlate with these extracted features. Transformations are 

typically executed in the time-domain, frequency-domain, or 

time-frequency domain. 

3.2.1 Time-Domain Method 

The time-domain analysis of sensor signals involves statistical 

processing of the time-series data to extract relevant 

parameters. Parameters such as root mean square, kurtosis, 

skewness, mean, standard deviation, peak value, slope, etc., 

are calculated and correlated with various sensor faults based 

on their distinctive patterns in the time domain. 
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3.2.2 Frequency-Domain Method 

Frequency-domain analysis employs techniques like fast 

Fourier transform (FFT) to convert sensor signals into the 

frequency domain. This method extracts frequency-related 

parameters from the signal spectrum, enabling correlation with 

specific sensor fault modes characterized by frequency-based 

patterns. 

3.2.3 Time-Frequency Domain Method 

Time-frequency domain analysis enables the characterization 

of transient signal characteristics and time-variant features 

within the frequency components of sensor signals. 

Techniques such as wavelet transform, short-time Fourier 

transform (STFT), Wigner-Ville distribution (WVD), and 

Hilbert-Huang transform (HHT) are commonly used for this 

purpose. These methods provide insights into how different 

sensor fault characteristics manifest across both time and 

frequency domains. 

In the literature, signal processing-based techniques for sensor 

FDD have been extensively applied. For instance, (Jombo et 

al., 2018) presents an automated sensor fault detection scheme 

based on the time-frequency analysis technique wavelet 

transform. Additionally, (Chen et al., 2020) demonstrates a 

sensor FDD algorithm combining time-domain and frequency-

domain feature extraction with a Bayesian network, 

specifically applied in high-speed train traction converter 

systems. These studies showcase the effectiveness of signal 

processing-based approaches in sensor FDD by leveraging 

different signal analysis methods and algorithms tailored to 

specific applications. 

3.3 Data-Driven Techniques 

Data-driven methodologies aim to discern normal and faulty 

sensor behavior patterns by leveraging historical machine and 

sensor operating data to train models capable of approximating 

system and sensor dynamics. These techniques utilize artificial 

intelligence methods involving dimensionality reduction, 

classification, and clustering approaches. 

3.3.1 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a supervised learning 

technique employed for dimension reduction and classification 

tasks. It identifies linear feature combinations that best 

separate and maximize the distinction between different 

classes within a dataset. By projecting data onto a lower-

dimensional space, LDA aims to maximize class separation by 

determining linear discriminants that optimize the ratio of 

variance between classes to variance within classes. LDA 

assumes equal covariance matrices among classes, a Gaussian 

distribution of data, and the potential for linear separation. It 

has been successfully applied in sensor FDD, as demonstrated 

by (Jin et al., 2022). 

3.3.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning 

method used for classification and regression tasks. It 

identifies the optimal hyperplane in an N-dimensional space to 

classify data points into different classes within the feature 

space. SVM has proven effective in sensor FDD, as evidenced 

by studies such as (Jan et al., 2017; Ji et al., 2017). 

3.3.3 Random Forest (RF) 

Random Forest (RF) is a supervised learning technique 

utilized for both classification and regression purposes. It 

amalgamates outputs from multiple decision trees, where each 

tree partitions the data based on various characteristics (e.g., 

information gain, Gini index) on different subsets of the 

dataset. RF aggregates predictions from individual trees via 

majority voting, enhancing predictive accuracy. This approach 

has found application in sensor FDD, as seen in studies like 

(Kou et al., 2021). 

3.3.4 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) serve as versatile tools for 

sensor FDD. ANNs, inspired by the human brain, employ 

interconnected nodes organized in layered structures to model 

complex relationships within data. ANNs have demonstrated 

its efficacy in sensor FDD, as illustrated by research conducted 

in (Balaban et al., 2009; Zhang, et al., 2013; Jin et al., 2022).  

ANNs, especially when coupled with advanced deep learning 

techniques, offer diverse architectures and methods to capture 

intricate patterns in sensor data. 

3.3.4.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are well-suited for 

processing structured data, particularly in image-based sensor 

systems. CNNs use convolutional layers to automatically learn 

features from input data, enabling the detection of complex 

patterns within images or multi-dimensional sensor data. 

These networks excel in capturing spatial hierarchies, making 

them effective for sensor fault detection in visual sensor 

systems or multi-channel data. Studies (Liu & Hu, 2019) have 

demonstrated the effectiveness of CNNs in sensor fault 

detection for an aero engine. 

3.3.4.2 Recurrent Neural Networks (RNNs)  

Recurrent Neural Networks (RNNs), particularly Long Short-

Term Memory (LSTM) networks, are proficient in processing 

sequential and time-series sensor data. LSTMs excel in 

retaining and utilizing information over extended sequences, 

making them suitable for sensor data streams with temporal 

dependencies. They are capable of capturing temporal patterns 

in sensor data, making them useful for fault detection where 

temporal relationships are crucial. Research (Qin et al., 2018) 

showcases the application of LSTM-based methods for sensor 

fault diagnosis in time-series data for autonomous underwater 

vehicles. 

3.3.4.3 Autoencoders and Variational Autoencoders (VAEs) 

Autoencoders and Variational Autoencoders (VAEs) are 

unsupervised learning models used for dimensionality 

reduction and feature extraction. Autoencoders compress the 

input data into a lower-dimensional latent space and then 

reconstruct the original data. VAEs, a variant of autoencoders, 

enable sampling and generate new data points within the 

learned distribution. These techniques aid in extracting 

informative features from sensor data, enhancing fault 

detection capabilities. Studies (Jana et al., 2022) have 

employed convolutional autoencoders for the reconstruction of 

faulty sensor data. (Wang et al., 2020) used the reconstruction 

error of a deep convolutional VAE to detect anomalies in 

sensor data. 
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3.3.4.4 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) consist of two 

competing networks – a generator and a discriminator – 

engaged in a game-like setting. GANs learn to generate 

synthetic data that closely resembles real sensor data by 

competing against each other. GANs have been explored in 

sensor fault detection scenarios to generate synthetic faulty 

sensor data for training purposes, augmenting limited real-

world faulty data. Research (Lu et al., 2022) has shown GANs’ 

potential in generating synthetic data for industrial robot 

sensor anomaly detection. 

These advanced techniques offer a rich array of tools to 

effectively model and detect sensor faults across various 

domains. Their ability to handle complex relationships, 

capture temporal dependencies, and extract meaningful 

features from sensor data has made them valuable assets in 

sensor FDD. Their application continues to evolve, 

demonstrating promising advancements in improving fault 

detection accuracy and reliability. 

4. CHALLENGES AND FUTURE WORK 

Advancing sensor FDD encounters several challenges that 

necessitate state-of-the-art solutions and further exploration 

for comprehensive development: 

4.1 Distinguishing Sensor Faults from Machine Faults 

The most significant challenge in sensor FDD lies in 

accurately discerning between anomalies detected in sensor 

data – indicative of sensor faults – from genuine faults in 

machine components. This distinction is crucial for ensuring 

the reliability of fault detection and diagnosis systems in 

complex machinery. 

Addressing this challenge involves employing diverse 

strategies, such as implementing redundant sensor systems for 

cross-validation, analyzing unique fault signatures, and 

integrating contextual information, which aid in distinguishing 

abnormal sensor readings from real mechanical issues. Using 

machine learning algorithms for pattern recognition, engaging 

domain experts for interpretation, and adopting hierarchical 

analysis approaches enhance fault discrimination. Dynamic 

threshold setting based on adaptive learning further refines 

fault identification.  

4.2 Scalability and Generalizability 

Scaling sensor FDD systems to accommodate various sensor 

types, models, and operating conditions poses a significant 

challenge. Creating systems that are not only effective across 

diverse sensors but also adaptable to different industrial or 

operational environments requires robust and generalizable 

methodologies. 

To address this, implementing standardized interfaces and 

modular architectures allows seamless integration of diverse 

sensors, while transfer learning and feature extraction 

techniques leverage shared knowledge across sensor types. 

Robust algorithm design, integrating domain-specific 

knowledge, and enabling continuous learning mechanisms 

ensure adaptability across varied operational environments. 

4.3 Data Quality and Preprocessing 

The quality of sensor data significantly influences the accuracy 

and reliability of fault detection systems. Challenges arise 

from dealing with noisy, incomplete, or inconsistent data. 

Effective preprocessing techniques and data cleansing 

methodologies are necessary to handle these issues and ensure 

the reliability of fault detection algorithms. 

Employing effective preprocessing techniques such as filtering 

for noise reduction, imputation for missing data, and outlier 

detection enhances data reliability. Additionally, feature 

engineering, normalization, and scaling methods aid in 

extracting pertinent information and ensuring uniformity 

across diverse sensor datasets. Rigorous validation and quality 

control measures are essential to verify the accuracy and 

consistency of preprocessed sensor data, preventing biases and 

maintaining data integrity. Developing adaptive preprocessing 

techniques that dynamically adjust to varying data patterns 

further enhances fault detection accuracy in real-time 

scenarios. By integrating these strategies, sensor fault 

detection systems can effectively manage data quality 

challenges, ensuring high-quality sensor data for accurate fault 

detection algorithms. 

4.4 Explainability and Interpretability 

Interpreting and explaining the decisions made by sensor fault 

detection and diagnosis algorithms is critical for acceptance 

and trust in industrial settings. Complex machine learning or 

deep learning models may lack interpretability, making it 

challenging to comprehend why certain decisions or diagnoses 

are made. 

Addressing this challenge requires adopting strategies to make 

the decision-making process transparent, particularly when 

using black-box ANN models. Techniques involving model-

agnostic explanations like SHAP and LIME, alongside 

simplified or rule-based models, offer insights into how input 

features impact predictions. Extracting decision rules from 

complex models aids in creating more understandable 

structures, while visualization methods such as heatmaps and 

involvement of domain experts facilitate comprehension of 

model reasoning. Comprehensive documentation, adherence 

to ethical guidelines, and regulatory compliance contribute to 

transparent reporting and trustworthy decision-making 

processes, fostering acceptance and confidence in industrial 

settings. 

4.5 Handling Latency and Unknown Faults in Realtime 

Sensor FDD 

Real-time sensor FDD plays a pivotal role in ensuring fault 

tolerance, especially in autonomous vehicles, drones, and 

safety-critical systems. Mitigating the impacts of sensor 

failures on safety and stability requires swift and precise 

responses to faults. The foremost challenge lies in managing 

latency effectively, reducing the delay between event detection 

and decision-making, while also addressing unknown sensor 

faults. Existing fault diagnostic techniques often cater to 

specific known faults in non-linear systems, posing challenges 

in promptly identifying and responding to unforeseen faults 

with agility and accuracy. 
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To address this, leveraging edge computing for real-time data 

analysis, predictive analytics for proactive maintenance, and 

fault-tolerant architectures for system stability aids in reducing 

latency and ensuring continuous operation during sensor 

failures. Developing adaptive algorithms, employing anomaly 

detection, and continuous learning mechanisms enable the 

system to identify unforeseen faults and dynamically adjust, 

while extensive testing and simulations validate FDD systems 

against diverse fault scenarios, ensuring responsiveness to 

known and unknown fault conditions in dynamic 

environments. These strategies collectively enhance the 

agility, accuracy, and adaptability of fault detection systems in 

addressing real-time challenges in safety-critical settings. 

4.6 Adapting for Resource-Constrained Edge Devices 

As discussed, using edge devices for deploying data-driven or 

machine learning models offers a promising avenue to address 

latency concerns by processing data closer to the source. 

Nevertheless, the limitations posed by edge devices – such as 

restricted memory, processing power, and energy usage – 

remain a significant challenge. Developing adaptive sensor 

FDD techniques that intelligently account for resource 

constraints while maintaining overall accuracy and reliability 

is paramount. This necessitates innovative solutions that strike 

a balance between computational efficiency and precision, 

ensuring seamless operation in resource-constrained 

environments. 

Addressing this challenge involves developing strategies that 

optimize computational efficiency while maintaining 

accuracy. This includes employing lightweight algorithms or 

compressed models, utilizing collaborative edge-cloud 

architectures for offloading intensive computations, and 

implementing energy-efficient computing methods to reduce 

power consumption. On-device data reduction and adaptive 

learning techniques ensure efficient use of limited resources, 

while leveraging edge-specific hardware and accelerators 

enhances performance. Dynamic resource allocation and task 

prioritization enable the allocation of resources to critical FDD 

tasks.  

5. CONCLUSION 

Sensor FDD continues to evolve, characterized by a number of 

methodologies outlined in this paper, encompassing model-

based, signal processing-based, and data-driven approaches. 

This paper summaries pivotal challenges and future 

trajectories, emphasizing the need to improve data quality, 

scalability, and generalizability, enhance explainability and 

interpretability, tackle latency and unknown faults in real-time 

settings, and customize data-driven models for resource-

constrained edge devices. Moreover, an area for future 

exploration involves leveraging sensor FDD to reconstruct 

expected measurements from a faulty sensor, utilizing data 

from the non-faulty sensors. This avenue could potentially 

enhance unit availability by enabling improved sensor data 

reconstruction and utilization in operational settings.  

The insights gathered from this brief review, spanning 

methodologies, challenges, and future directions, aim to 

invigorate advancements and innovative strides within the 

sensor FDD domain, fostering sustained growth and 

refinement in this critical area of research. 
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