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Abstract: Smart shoes have ushered in a new era of personalised health monitoring and assistive
technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless
transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking.
As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor
technology enhancements and smartphones’ ubiquity. Shoes have begun incorporating accelerome-
ters, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and
enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of
smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track
rehabilitation progress, and detect falls among older people, thus expanding their application beyond
fitness into medical monitoring. This article provides an overview of the current state of smart
shoe technology, highlighting the integration of advanced sensors for health monitoring, energy
harvesting, assistive features for the visually impaired, and deep learning for data analysis. This
study discusses the potential of smart footwear in medical applications, particularly for patients
with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed,
including complex construction, poor fit, comfort, and high cost.

Keywords: assistive technology; deep learning; diabetes management; energy harvesting; health
monitoring; smart footwear; technological advancements in footwear; IoT

1. Introduction

In recent years, technological advances in the Internet of Things (IoT) and wearable
devices have penetrated the shoe industry, driving smart shoe design. Integrating electronic
and mechanical components has enabled the evolution of the shoe into a smart shoe.
Smart footwear (SF) uses personalised cell phone applications, enabling custom user
experience and self-monitoring [1]. Namely, SF can capture, monitor, and record activities
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of daily living, tracking a range of vital characteristics such as (foot) pressure points,
posture correctness, body fatigue level, temperature (within the footwear), number of
steps completed, weight of a person, and real-time location. The data can be automatically
analysed to aid in diagnosis and/or as personalised feedback to users, measuring real
athletic performance, tracking fitness, and evaluating health metrics. The efforts in this
area aim to integrate technology to improve comfort, convenience, and good health [2].

This survey highlights how continuous research and technological progress spark
the creation and advancement of SF for diverse applications. Driven by this capability,
businesses are actively innovating in the SF sector to address the rising demand from
consumers. By providing fundamental technological elements of SF and exploring how
current technologies can be harnessed to streamline application processes, as well as
an outline of future perspectives concerning SF technology, this survey offers a concise
overview of the roadmap for integrating modern technologies into footwear for improved
lifestyles.

In this study, we searched the Scopus database, PubMed, and IEEE Xplore using the
following keywords: “smart footwear”, “IoT footwear”, “intelligent footwear”, “tracking
footwear”, “machine learning”, “deep learning”, “real-time monitoring”, and “diabetic
footwear.” Aiming to provide recent trends and developments in smart footwear tech-
nology, we limited our search to papers published between 2017 and 2023, and only the
papers applicable to healthcare were reviewed. The number of published articles included
in the review is shown in Figure 1. The number of recent publications on SF reflects in-
creased research and innovation activity in this domain, perhaps motivated by increased
consumer/business need for innovative SF.
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The present study explores the potential of SF within the healthcare domain. Initially,
we emphasise the critical role of sensors in SF functionality. This is followed by a concise
overview of current SF implementations and their principal healthcare applications. Subse-
quently, this paper performs a more in-depth examination of three key functionalities of SF
for healthcare purposes: (1) performance tracking, (2) patient monitoring, and (3) detection
and recognition. We then provide a brief survey of commercially available smart footwear
options. To conclude, the paper synthesises key observations gleaned from the reviewed
literature and explores potential future directions for SF research.

2. Overview of Smart Footwear—Sensors and Design

SF integrates sensors and innovative designs to enhance functionalities. The present
section describes the various design strategies, different types of sensors, and various SF
available in the market.

2.1. SF Sensors and Design

SF can be broadly categorised into (a) passive, harvesting the energy required from
mechanical (limb) movements, and (b) active, working based on sensors. Notably, the
development of modern SF often involves a fusion of both these categories, resulting in
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hybrid models that uses elements from both passive and active technologies to enhance
their overall functionality and performance. Such smart footwear can be used for various
applications. The design and development of smart footwear involve multiple aspects, as
depicted in Figure 2.
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The listed applications are related to human health monitoring. However, SF’s appli-
cations are not only limited to human health monitoring but are also used as a tracking
and support device. Sensors are electronic devices that, in the SF context, record relevant
physical and analogue parameters (such as pressure, temperature, and movement) and
convert them into digital form, which can be processed to draw insights into the activities
of daily living (e.g., a number of steps, foot pressure points/gait etc.). There are sensors
available, and the choice of the sensor depends on the SF requirements. Table 1 lists sensors
that are commonly used in SF.

Table 1. Suitable sensors for SF design.

Sl. No Sensor Type, Its Operation Principle, and Possible Applications in Smart Footwear

1

Ultrasonic sensors [3]: These sensors utilise ultrasonic waves to measure distance and detect objects. They are one of
the most commonly used sensors in footwear, specifically for aiding people with visual disability. They can detect
the presence or absence of objects within a specific range. Further, these sensors can measure insole thickness and
footwear wear and tear and suggest replacement schedules.

2

LiDAR sensors [4]: Light detection and ranging (LiDAR) based Time of Flight (ToF) sensors are currently the
preferred technology for automotive and drone applications. ToF sensors have the emitter, receiver, and processor
system on the same PCB/package for easy, cost-effective, and small-footprint integration. They offer high-speed,
precise distance measurement independent of target size, colour, and reflectance. A LiDAR sensor can be integrated
into footwear to replace the traditional ultrasonic sensor or added as an additional sensor to support features such
as pothole detection, obstacle warning, etc.

3

Pressure sensors [5]: Pressure sensors measure pressure by converting the applied pressure into an electrical signal
that can be measured and utilised for various applications.

• Strain Gauge Pressure Sensors measure the strain or deformation caused by pressure.
• Capacitive Pressure Sensors use changes in capacitance. Changes in capacitance are used to measure pressure.
• Piezoelectric Pressure Sensors utilise the piezoelectric effect, where pressure generates an electric charge in

certain materials.
• Resonant Pressure Sensors use change in the resonant frequency of a vibrating element under pressure to

determine the applied force. They measure pressure at different points on the foot (placed in soles).

Additionally, strain gauge sensors installed in the footwear can detect sudden bends and movements in the
footwear. Pressure sensors can also be used to measure weight.
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Table 1. Cont.

Sl. No Sensor Type, Its Operation Principle, and Possible Applications in Smart Footwear

4

Accelerometers and Gyroscopes [6]: An accelerometer measures linear acceleration and can detect the movement of
an object in terms of acceleration, deceleration, or changes in direction. On the other hand, a gyroscope measures
angular velocity around a particular axis. It detects changes in orientation or rotational movements, such as tilting,
rotating, or twisting. Inertial measurement units (IMUs) incorporate accelerometers and gyroscopes into a single
sensor package, providing a more compact and integrated solution for motion-sensing applications. IMUs are
integrated into wearable devices to monitor and analyse physical activities. They can measure steps, distance, speed,
and calories burned and provide feedback on movement patterns and exercise techniques.

5
Sweat Sensors [3]: Skin-worn biosensors can analyse the wearer’s sweat to monitor various physiological conditions.
Biomarkers in the sweat can be used to detect certain genetic conditions. Also, using the glucose-level correlation
between sweat and blood leads to potential applications in the continuous monitoring of diabetes.

6

Temperature Sensors: Temperature sensors detect and measure the heat and coolness of air, liquids, or solid surfaces
and convert them into electrical signals. Types of temperature sensor include:

• Resistance Temperature Detector (RTD) sensors, which measure temperature by changing resistance
proportional to the temperature. These are available as individual sensors or fully packaged assemblies
consisting of a sensor element, a covering, an epoxy or filler, extension leads, and sometimes connectors, thus
allowing for flexibility in design [7].

• Negative Temperature Coefficient (NTC) thermistors, which use the properties of ceramic/metal composites
that have an inverse relation between resistance and temperature to measure temperature. NTC sensors have a
small size, excellent long-term stability, high accuracy, and precision [8].

• A thermocouple sensor is formed by joining two individually insulated dissimilar metals at one end. The
temperature is measured at this joint. When the joint is placed in a high-temperature environment, a small
voltage is produced at the open ends of the two metals, which can be measured and interpreted [9].

• Thermopile infrared (IR) temperature sensors, which generally provide non-contact temperature
measurements. These are composed of small thermocouples on a silicon chip that absorb the incident IR
energy and produce an equivalent output signal. Modern sensors also have an integrated reference sensor for
calibration and compensation. The output can be an analogue voltage or a digital value [10].

• Digital Temperature Sensors, which are IC temperature measurement systems. The miniature packages are
designed specifically for tight spaces. The integrated microcircuit design allows quick response to changes in
process temperature, fast conversion times, and very low power consumption [11]. Temperature sensors can be
used in smart footwear to keep track of foot temperature and act as surrogate activity markers.

Temperature changes in specific foot areas can indicate inflammation, injury, or conditions like diabetic foot ulcers.
Elevated temperatures in localised regions might signify inflammation or infection. They can also assist in
monitoring blood circulation in the feet. Changes in foot temperature might indicate poor circulation.

7

Gas sensors can be used to detect foot odour, and they can detect Bromodosis, possibly caused by fungal infection
[12]. Bromodosis is smelly feet, and it is often caused by the interaction of sweat with bacteria on the skin’s surface.
Fungal infections like athlete’s foot or other dermatophyte infections can also contribute to foot odour. Gas sensors
can detect the specific gases emitted by these fungi, aiding in the early identification of such infections.

2.2. Various Types of SF Available in the Market

Generally, younger generations are more inclined towards technology-incorporated
products. Smart footwear is one such product that provides personalised feedback. Perhaps
this is one of the reasons that smart footwear expanded at a robust compound annual
growth rate (CAGR) of 22.7% during the forecast period 2023–2033. The market is expected
to hold a share of USD 269 million in 2023, while it is anticipated to surpass USD 2.1 billion
by 2033 [13].

The current section attempts to provide details on the available smart footwear in the
market. Figure 3 depicts the smart footwear companies in the global market. The figure
offers popular manufacturers of smart footwear and their functions. The key feature for
market growth is increasingly high expenditure on footwear by consumers. Companies are
competing to meet the growing demands of consumers. However, the design complexity
and cost appear to be proportional to the features of the SF, as shown in Figure 4.
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It is evident from the figure that the computational complexity increases with an
increase in the functions. This leads to hardware and software complexity, resulting in
increased cost. However, the trend towards SF is growing yearly, so manufacturers are
continuously upgrading the technology to meet the growing demand. The details of the SF
available in the market are provided in Table 2.

Table 2. Details of smart footwear available in the market [14].

Smart Footwear
(Name of the

Company)
Applications

Type of
Sensor

(No. of Sensors
Used)

Pressure
(kPa) IE MDAR

(Hz) DTT BA
(Hrs.) Cost

WIISEL
Continuous gait
monitoring, analysis
& fall risk assessment

Piezoresistive (14) 350 Yes 33.3 BLE 16 —

Pedar
(Novel)

Footwear design
and injury
prevention

Pressure (99) 600 No 100 BT 1 15,540 €
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Table 2. Cont.

Smart Footwear
(Name of the

Company)
Applications

Type of
Sensor

(No. of Sensors
Used)

Pressure
(kPa) IE MDAR

(Hz) DTT BA
(Hrs.) Cost

F-Scan
(Tekscan)

Gait analysis &
biomechanics,
diabetic offloading,
sports medicine

Pressure (960) 862 No 165 USB,
Wi-fi 0.2 16,000 $

BioFoot (IBV) Sports gait analysis,
footwear design Pressure (64) 1200 No 500 Wi-Fi 1 12,995 €

paroLogg
/parotec (paromed)

Foot pressure
analysis

Pressure (32),
Inertial 625 No 300 Wi-fi 1.5 —

Foot Pres-
sure MS
(Medilogic)

Gait, sports, health
prevention,
prosthesis and
orthotics, diabetics

Solid State Relay
(SSR) sensors (240) 640 No 300 Wireless — —

Smart Step Rehabilitation
process — — No — Card — 6000 $

Smart Insoles
(24 eight, LLC)

Medical, sports, and
gaming

Pressure (4),
Inertial 241 Yes — Wireless 100 —

OpenGo science
(Moticon)

Medical & sports
science,
Rehabilitation &
training analysis

Pressure (13),
Inertial 400 Yes 100 Wireless — 2000 $

Footswitches
Insole (B & L
Engineering)

Gait analysis Pressure
sensors (4) — No — Wireless — 9000 $

IE—Integrated Electronics, MDAR—Maximum Data Acquisition Rate, DTT—Data Transfer Type, BA—Battery
Autonomy.

3. Smart Footwear Applications

In recent years, the utility of SF has been commonly found in performance tracking,
health monitoring, and the detection of specific disorders, as summarised in Figure 5. This
section provides an overview of the state-of-the-art methods used in these applications.
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Once the SF is designed to respond to a specific user need, a specific sensor is selected
and integrated into the SF. The data acquired are used to perform decision-making and
provide feedback to users. Figure 6 visually illustrates this process. For example, common
in SF is an inbuilt observing circuit that gives footstep count, weight distribution, walking
speed, travel mapping/distance, and pro-health tips [15]. Once the sensor collects the data,
these data are sent to the processing system for data analysis. This requires controller boards
typically employing low-power microcontrollers such as the ones powering Arduino,
Raspberry Pi, etc. Wireless communication is commonly used over wired communications
to transfer data. Automated data analysis and results can be displayed in SF, connected to
a dedicated app [15].
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Finally, a decision is made based on the analysis reports, which can be generated
automatically. Analysis reports can enable remote assistance. Considering the implications
for a person’s health and SF’s input in aiding medical decision-making, SF needs to be
clinically validated, robust, safe, and in line with the latest patient (personal) data privacy
recommendations.

3.1. Application 1: Performance Tracking

This section focuses on the state-of-the-art methods reported for tracking the visu-
ally impaired, measuring athlete performance, and monitoring older adults and soldiers.
Globally, at least 2.2 billion people have some form of vision impairment, including blind-
ness [16]. Visually impaired individuals find it difficult to navigate independently from
one place to another. SF can assist the visually impaired in safely navigating. The use of
ultrasonic sensors with an Arduino UNO [17–20], Node MCU [21], Raspberry Pi [22], and
microcontroller [23,24] can be found in the SF literature. This footwear can detect obstacles
and guide the user to avoid them. Integrating GPS tracking with wireless charging systems,
as proposed by Thanuja et al. [22], can provide real-time location information about the
user, allowing their friends or family members to be informed when needed.

An extensive study conducted by Hersh et al. [25] discussed various types of wearable
devices designed for the travelling aid of the visually impaired. They [25] described SF
with ultrasonic obstacle detection and additional functions such as a water detection sensor
to detect wet floors, a 3-axis accelerometer, and a 3-axis gyroscope for falls. However, this
review focused mainly on design issues. Another study observed secure movement with
low faulty errors when the visually impaired were tested with smart footwear with obstacle
detection, wet sensing, and fall detection functions [26]. In addition, smart footwear was
designed to help blind people find their way back to their destination in case they miss
their route [27].
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In addition to tracking, physical parameters such as speed, pressure, and acceleration
can be measured with sensors integrated into footwear. Also, physiological parameters
such as oxygen saturation level, body temperature, and blood pressure can be measured.
This would help in understanding the training level and performance of athletes. An
investigation by Knopp et al. [28] revealed that the running economy could be improved by
runners using smart footwear. A recent study by Gulas and Imre [29] mentioned that along
with improving the technological aspects, it is necessary to look into the textile quality and
material used for developing smart footwear. Another study reported the importance of
smart socks and in-shoe systems for sports and medical applications [30]. Sports injury is
an unavoidable circumstance, and this requires rehabilitation for a speedy recovery. Also,
gait analysis may be able to detect any severe injury. A study by Lianzhen and Hua [31]
evaluated athletes’ performance rehabilitation by providing Internet of Health Things
(IoHT) guidance.

Furthermore, a porous polymer dielectric was used for capacitive sensors to improve
the pressure sensing of capacitive sensors for measuring heel pressure while running
and walking for athletes [32], yielding considerably greater signal changes than the other
dielectric materials. Barratt et al. [33] tested the reliability of plantar pressure measurement.
They validated it by comparing the performance of the smart insole with PedarX and
concluded that a wireless insole might be more practical than a wired system. An article
by Beckham [34] described next-generation athlete shoes that allow users to customize the
look, fit, and responsiveness of kicks. Also, such shoes can transmit data to the cloud and
will receive feedback to fine-tune the workout by connecting to Facebook or X (formerly
Twitter). Though there is a need for automated continuous monitoring and assistance for
athletes, another major requirement is monitoring for older adults. Worldwide, the elderly
population is growing; according to the WHO, it is likely to reach 2.1 billion by 2050 [35].

With ageing comes the risk of age-related health problems. For example, the WHO
reports approximately 684,000 fall-related deaths every year worldwide, which are likely
to increase with the ageing population [36]. Smart footwear can help minimise falls by
monitoring older adults. An article by Schiltz [37] indicated that smart footwear with GPS
devices benefits older adults, especially those with Alzheimer’s or cognitive disorders.
Li [36] identified the core risk factors to be addressed while designing footwear for fall
detection, and proposed an optimised design. A possible smart footwear design for location
tracking and health monitoring of older adults with sensors, GPS, and RFID technology
was demonstrated by Cheng et al. [38]. SF can be particularly useful when the user cannot
access or support a career. In this direction, smart footwear designs and proposals can be
found in the literature [39–42]. The state-of-the-art methods addressed tracking the elderly
and monitoring walking speed [39]. Older adults can be safeguarded either by carers or
by using technology-driven systems. Defence systems, including the army, navy, and air
force, face the issue of tracking soldiers. Smart footwear is a feasible solution for tracking
soldiers. Smart footwear-based remote monitoring and location tracking of soldiers can
be found in the literature using LoRa [43] for longer-distance communication and mobile
applications [44]. The reported articles addressed location tracking and lack of monitoring
of physical or physiological parameters. An extensive 2018 study by Friedl [45] focused on
all possible wearable devices, including smart footwear, for monitoring soldiers remotely.
This study brought out the challenges and future directions. Both health monitoring and
position tracking of soldiers were addressed using various sensors, PIC microcontrollers,
and GPS [46]. An additional panic button was provided at the soldiers’ end to ask for help
from the base camp.

The above section provided an overview of studies addressing performance tracking
used in four applications: (a) vision impairment, (b) athletics, (c) the elderly, and (d) defence.
Figure 7 depicts the proportion of articles published about each application category.



Sensors 2024, 24, 4301 9 of 23

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24 
 

 

proposals can be found in the literature [39–42]. The state-of-the-art methods addressed 
tracking the elderly and monitoring walking speed [39]. Older adults can be safeguarded 
either by carers or by using technology-driven systems. Defence systems, including the 
army, navy, and air force, face the issue of tracking soldiers. Smart footwear is a feasible 
solution for tracking soldiers. Smart footwear-based remote monitoring and location 
tracking of soldiers can be found in the literature using LoRa [43] for longer-distance 
communication and mobile applications [44]. The reported articles addressed location 
tracking and lack of monitoring of physical or physiological parameters. An extensive 
2018 study by Friedl [45] focused on all possible wearable devices, including smart 
footwear, for monitoring soldiers remotely. This study brought out the challenges and 
future directions. Both health monitoring and position tracking of soldiers were addressed 
using various sensors, PIC microcontrollers, and GPS [46]. An additional panic button 
was provided at the soldiers’ end to ask for help from the base camp.  

The above section provided an overview of studies addressing performance tracking 
used in four applications: (a) vision impairment, (b) athletics, (c) the elderly, and (d) 
defence. Figure 7 depicts the proportion of articles published about each application 
category. 

 
Figure 7. Number of articles addressing performance tracking. 

3.2. Application 2: Patient Monitoring 
In recent years, wearable technology developments have enabled remote patient 

monitoring in healthcare centres and homes. Monitoring may include daily activity 
recognition, monitoring patients with walking issues, or monitoring patients with specific 
conditions such as diabetes, cardiac issues, gait disorder, etc. Human activity recognition 
(HAR) is extensively used in various applications such as day-to-day activities, health 
monitoring, fitness tracking, and monitoring of the physically impaired. Wearable devices 
available for HAR smart footwear have been gaining popularity in recent years. An 
investigation by Truong et al. [47] revealed that the wrists or feet are suitable for remote 
HAR. Hence, footwear is a feasible solution for recording human activity and analysing it 
remotely. Pressure, inertial, or both sensors can be used for HAR application. A study 
found that inertial sensors are reliable for recognising dynamic activities, while pressure 
sensors are reliable for stationary activities [48]. However, the utilization of pressure 
sensors can also be seen in the literature for recognizing dynamic activities [49,50]. Hence, 
using both inertial and pressure sensors is suggested for efficient outcomes. Recognition 
is a task that requires decision-making by processing sensor data. Machine Learning (ML) 
is identified as most suitable for recognition tasks. The use of Deep Learning (DL) for HAR 

Figure 7. Number of articles addressing performance tracking.

3.2. Application 2: Patient Monitoring

In recent years, wearable technology developments have enabled remote patient mon-
itoring in healthcare centres and homes. Monitoring may include daily activity recognition,
monitoring patients with walking issues, or monitoring patients with specific conditions
such as diabetes, cardiac issues, gait disorder, etc. Human activity recognition (HAR) is
extensively used in various applications such as day-to-day activities, health monitoring,
fitness tracking, and monitoring of the physically impaired. Wearable devices available
for HAR smart footwear have been gaining popularity in recent years. An investigation
by Truong et al. [47] revealed that the wrists or feet are suitable for remote HAR. Hence,
footwear is a feasible solution for recording human activity and analysing it remotely.
Pressure, inertial, or both sensors can be used for HAR application. A study found that
inertial sensors are reliable for recognising dynamic activities, while pressure sensors are
reliable for stationary activities [48]. However, the utilization of pressure sensors can also
be seen in the literature for recognizing dynamic activities [49,50]. Hence, using both
inertial and pressure sensors is suggested for efficient outcomes. Recognition is a task that
requires decision-making by processing sensor data. Machine Learning (ML) is identified
as most suitable for recognition tasks. The use of Deep Learning (DL) for HAR can be found
in the literature [51,52]. Plantar pressure measurement is an important aspect of clinical
studies, so it is essential to calibrate the plantar pressure value given by the sensor before
integrating it with the footwear. An experimental evaluation by Kakarla [53] disclosed that
ML can model smart footwear with the required pressure measurement.

Further, a random forest (RF) algorithm was employed by Ren [50] for daily activity
recognition by measuring plantar pressure. Capacitive sensors showed promising results
for measuring plantar pressure [54,55], allowing HAR. Another study by Pham et al. trained
a DL algorithm using accelerometer data obtained from smart footwear and reported an
accuracy of 93% [56]. Image-based 3D analysis was conducted to test the effectiveness
of such smart footwear on healthy volunteers [57]. Modern smartphones already come
with an array of inbuilt sensors, and a study by Dogan et al. [58] demonstrated the use of
smartphone sensors for HAR by employing DL. A daily activity recognition system can be
used to monitor healthy people. Disease-specific monitoring, however, requires several
parameters specific to the disorder. Hence, SF specific to particular conditions may involve
additional hardware and software tools.

One such widespread condition that requires regular monitoring is diabetes. Diabetes
is a chronic disease that damages the heart, blood vessels, eyes, kidneys, and nerves. About
422 million people worldwide have diabetes, the majority living in low- and middle-income
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countries, and 1.5 million deaths are directly attributed to diabetes each year [59]. Within
the diabetic population, the diabetic foot ulcer (DFU) is a life-threatening complication. A
recent study reported that the mortality rate due to DFUs was high and was approximately
50% in five years [60]. Hence therapeutic footwear is commonly recommended for early
detection and diagnosis. However, this requires continuous monitoring of such patients.
Various precursors and risk factors of DFUs include joint contractures, Arthritis, and callus
formation. A pronged approach that includes patient education, appropriate footwear
selection, telehealth, and proactive surgical interventions is essential to prevent new and
recurrent DFUs [61], as depicted in Figure 8. Smart footwear is a feasible solution to monitor
patients remotely, helping to manage DFUs more effectively.
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DFUs are a common complication of diabetes, often resulting from nerve damage or
poor blood circulation. Hence, managing DFUs is crucial due to their potential to lead to
severe infections. Smart footwear, integrated with advanced technologies, has emerged
as a promising tool in the early detection, monitoring, and managing of diabetic foot
complications. Hence, several innovative approaches are emerging to monitor DFUs by
integrating sensors in footwear. Moulaei et al. [62] and Altaf et al. [63] showed accurate
measurements of pressure, humidity, and temperature of patients’ feet, and sent these data
to their smartphones by Bluetooth modules. A similar study by Sousa et al. [64] developed
a need-based SF to monitor plantar pressure. A mobile-based plug-and-play device (“Dia
Shoe”) developed by Kularathne et al. [65] efficiently measured the temperature, humidity,
weight, and step count of the patient through a mobile application. A prototype SF model
integrated with foot pressure and blood flow monitoring systems with wireless data
transmission [66] showed promising results for plantar pressure measurement [66]. A
proof-of-concept study [67] paired a smartwatch and SF consisting of eight pressure sensors
for monitoring plantar pressure and alerting the individual through the watch. A flexible
printed circuit board (PCB)-based insole design [68] incorporated eight capacitive sensors
sending data to a personal computer (PC) using a Bluetooth module, enabling continuous
monitoring of plantar pressure for real-time data analysis and evaluation. A study [69]
recorded data associated with patients’ preference for footwear, insole design, and quality-
of-life-related information for further analysis and declared that patient-centric SF design
is the key point for therapeutic outcomes. A feasibility study [70] for measuring plantar
pressure revealed that insole optimisation holds promise for evaluating the effectiveness of
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SF in monitoring diabetic neuropathy. The temperature of the skin surface varies in the
presence of an ulcer or wound on the surface. This fact was utilized [71,72] to design SF
integrating footwear and temperature sensors for early detection of foot ulcers in diabetic
patients. Additionally, Zhang et al. studied deformation in the foot due to diabetes,
specifically in women, by measuring plantar pressure [73].

Designing smart footwear involves several features, such as the selection of sen-
sors, number of sensors, placement of sensors, communication mode, selection of con-
trollers and processors, etc. One study [72] provides a detailed description of the design
aspects of smart footwear. However, the choice of textile materials used in footwear
can alter its efficiency [74,75]. Smart footwear must satisfy user needs and meet aes-
thetic/perception thresholds [76]. Sometimes, older adults may be hesitant to appreciate
and accept smart/modern technology. This might cause mental disturbance during the
usage of such systems. However, a study by McDonald has shown that ML models can be
used to monitor psychosocial factors and indicate a preference for using smart footwear and
adapting to the technology [77]. Designing customised yet satisfactory and effective smart
footwear for monitoring diabetic neuropathy is complex. A statistical framework approach
for evaluating smart insoles has been used [78], and it was found that computer-aided
design and manufacturing (CAD-CAM) of SF achieves better offloading performance than
the traditional shape-only-based approach. Hence, developing innovative tools to support
the design and manufacturing of customised footwear for people with diabetes is a crucial
step, and a CAD-based platform can help achieve this goal. Future research is needed
to develop and optimize hardware tools and implement further design modules, namely
insole–outsole, material selector, and valuator. However, the requirements of SF design
may change according to a specific application or user group it is designed for, for example,
Parkinson’s disease (PD), stroke, any injury, etc.

Aging can contribute to increased foot pain after prolonged daily activities. This may
lead to foot supination (body weight falling on the outer edge of the feet) or overpronation
(weight falling inwards). To avoid further complications caused by foot supination or
overpronation, maintaining an appropriate posture while walking, standing, or carrying
out any daily activities is important. Unaddressed, these foot overcorrections can otherwise
worsen and may develop into foot disorders called gait disorders. Rehabilitation can effec-
tively treat posture disorders, and biomechanics plays an important role in understanding
posture [79]. In recent years, smart footwear has enabled the assessment of gait and mobil-
ity disorders using biomechanical parameters [79]. A study reported that a person’s gait
pattern is strongly influenced by age, personality, and mood [80]. Foot impairments may
affect daily activities and hence affect the quality of life. Several methods were proposed for
developing smart footwear as an assistive device in cases of gait disorder [81–86]. Further,
the material used in footwear directly affects users’ comfort, and a soft material-based
smart insole could also provide equally good results [87]. Wu et al. [88] demonstrated that
analysis of gait disorders can be successfully achieved in real time.

Gait analysis involves the evaluation of several parameters such as muscle strength
related to limb activities, spatiotemporal joint kinematics, joint force, pressure distribution,
plantar pressure, etc. Evidence exists for using an inertial sensor to detect events by
measuring spatiotemporal parameters [89]. A similar approach can be found using multi-
cell piezoresistive sensors, inertial measurement, and logic units for measuring stride
length, velocity, and foot clearance employing the ML technique [90]. Various methods
are reported for measuring CoP trajectories and Kinematic parameters [91], estimating the
progression angle while walking [92], monitoring alcohol-impaired gait [93], measuring
kinematic and kinetic parameters [94], and determining plantar pressure [95]. A smart
insole PODOSmart system [96] measures spatiotemporal and kinematic gait parameters
using wireless sensor technology and microprocessors.

Further, a pilot study was conducted to evaluate the performance of smart footwear
with the Tread Port virtual reality system for providing gait training [97]. The study
concluded that there is a requirement to boost the efficiency of smart footwear. Nowadays,
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custom-made capacitive sensors such as lightweight textile-based [98], Flexible Porous
Graphene [99], and Polydimethylsiloxane composite material-based [100] can be found in
smart footwear for monitoring posture by measuring foot pressure. Another study [101]
tested the efficiency of textured and prefabricated insoles by inserting them in medical
and sports shoes, obtaining a significant change in reach distance compared to going
barefoot. In recent decades, the shift to more sedentary lifestyles is exacerbating muscle
weakness and joint stiffness issues, increasing the risk of arthritis and osteoporosis due to
lack of weight-bearing activities that strengthen bones. These are collectively referred to as
musculoskeletal problems. Several researchers experimentally showed that SF can help
mitigate musculoskeletal issues by providing support [100,102–107]. A detailed technology
evolution addressing gait disorders can be found in a review article [108], covering various
types of smart wearables and their benefits.

This section outlines the work of several research groups that addressed different
patient monitoring applications by designing SF for specific applications. Technical insights
and an overview of these approaches are provided in Table 3 for quick reference.

Table 3. Technical insights and overview of SF design for patient monitoring.

Ref.
No.

Target
Application Technical Details Main Findings

[47] Inertial and plan-
tar pressure measurement

Insole, wrist band,
accelerometer, gyroscope, pressure sensor,
BLE, smartphone, sampling rate 50 Hz.

The best body part for HAR: Feet or wrists.

[48] Six ambulation
activities detection

Smart insoles: accelerometer, gyroscope,
magnetometer, ECU, BLE, ML algorithms,
smartphone, 200 Hz, 120 min, 25–55 years.

Inertial sensors are reliable for dynamic and
pressure sensors for stationary activities.

[53] Foot pressure
distribution Capacitive sensor, ML. ML provides the required pressure

measurement.

[50] Plantar pressure
and activity recognition

Seven pressure sensors, FFT,
ML, 100 Hz, 12-bit, 26 ± 9 years.

Generalization is needed for larger
populations.

[54] Foot pressure
and motion activities

280 capacitive pressure sensors,
56 temperature sensors, FT, wired.

Smart insole alternative for activity
recognition.

[55] Plantar pressure
– daily activity

MWCNTs/PDMS piezoresistive
nanocomposites, LAB View. Useful for disease detection and diagnosis.

[56] Daily activities recognition Accelerometer, DL, wireless. SF is user-friendly for all ages.

[58] Locomotor activities Accelerometer, gyroscope, magnetometer, FFT,
CNN. User-independent system for HAR possible.

[62] Diabetic feet
monitoring

Temperature, humidity sensors, eight pressure
sensors, BLE, Arduino 328, 25–55 years.

Improves self-management and health
outcomes.

[64] DFU prevention Flexible insoles, 99 capacitance-based sensors,
50 Hz, 2 sensors/cm2, 919 patient’s databases. Pre-clinical studies met user needs.

[67] DFU monitoring: plantar pressure Eight pressure sensors, a smartwatch, 8 Hz,
and an age group greater than 18 years.

Continuous monitoring reduces DFU
recurrence.

[68] DFU: Plantar pressure
measurement

Eight capacitive sensors, flexible PCB, BLE,
microcontroller, 100 Hz, 28 bits.

Enhances efficiency in studying diabetic foot
conditions.

[70] DFU monitoring: Plantar pressure Pressure sensor, PC, 50 Hz, 76 participants. Optimization is needed for real-time use.

[71] Diabetic foot
monitoring Four temperature sensors, 35 participants. Continuous monitoring provides preventative

foot ulcer information.

[73] DFU: pressure measurement Nineteen female participants, 57–75 years, 4D
scanner.

Custom insoles and heel pads help
redistribute pressure.

[74] DFU monitoring:
Temperature, humidity

Textile insole, silicon tubes, leather, five
sensors, and 21–30 years of age females. Textile insoles enhance thermal comfort.

[81] Balance and gait
analysis in older women

Thirty women, 65–83 years,
lab tests, ethyl vinyl acetate insoles. Significant reduction in step width observed.
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Table 3. Cont.

Ref.
No.

Target
Application Technical Details Main Findings

[82] Gait analysis and PD study Pressure sensors, accelerometer,
29 participants, 100 Hz, 20–59 years. Dataset valuable for detailed gait analysis.

[83] Fall detection in elderly Arduino Nano, sensors array, buzzer, vibration
motor.

Smart shoes with devices detect and prevent
falls.

[84] Mobility and
gait assessment

Force sensing resistors, IMU, ultrasound
sensor, Arduino, BLE. Detects abnormalities in walking patterns.

[86] Flat feet detection Three force sensors, accelerometer, BLE,
Arduino Nano.

Cost-effective alternative to motion capture
systems.

[87] Real-time gait
monitoring

Soft insole, capacitance-based pressure sensor,
conductive textile, microcontroller, 100 Hz,
15 participants.

Textile-based insole alternative to smart shoes.

[90] Portable gait
analysis

Piezoresistive sensor, IMU, logic unit, 500 Hz,
6 min recording, ML, 14 participants.

Learning-based methods improve gait
parameters.

[91] Gait parameters
measurement

Piezoresistive sensors, microcontroller, WIFI,
IMU, 500 Hz, 9 participants, MAT- LAB. Useful for out-of-lab gait analysis.

[92] Foot progression angle estimation
Inertial, magnetometer units, accelerometer,
gyroscope, 100 Hz, 14 participants,
22–29 years.

Useful for knee osteoarthritis monitoring in
daily life.

[93]
Detecting
changes in gait by alcohol
intoxication

Twenty participants, wireless mode, ML
algorithm.

SF can be used for detecting alcohol-impaired
gait.

[94] Locomotion monitoring:
real-time kinetic measurement

Pressure sensors, IMUs, WIFI, Smartphone,
PC, sampling rate: 100 Hz, 9 participants,
MATLAB 2019b software.

Acceptable matches were achieved for the
measured CoPx and the calculated knee joint
torques out of 13 movements.

[95] Plantar pressure
measurement

Capacitive sensor: silver and cotton,
microchip, USB, laptop, BLE.

Gait phases and different patterns can be
detected, and the system is bacterial-resistant.

[96] Gait analysis tool: PODOS-mart® IMUs: Sensors, 11 participants, age group:
20–49 years, BLE, sampling rate: 208 Hz. Ease of use without technical education.

[97]
Evaluating haptic terrain for older
adults and PD patients
(TreadPort)

Five bladders, PC, VR terrain, WIFI,
microcontroller, CAVE display, camera:
60 frames/sec.

Applicable for gait training for walking
impediments caused by PD.

[98]
Locomotion
monitoring: centre of pressure
detection

Five textile capacitive sensors, WIFI, sampling
rate: 100 Hz, MATLAB R2021a software.

Smart wearable sensors can improve quality of
life.

[99]
Designing and fabricating
biomimetic porous graphene
flexible sensor: gait analysis

Graphene nanoplates, SBR foam, silver
electrodes, microcontroller, BLE.

The system can monitor older and can help
with gait training.

[100] Plantar pressure measurement:
gait analysis

Twelve capacitive sensors: copper and
poly-dimethyl siloxane, PIC microcontroller,
BLE, PC.

The design offers correct performance
behaviour under footfall.

3.3. Application 3: Detection and Recognition (Classification of Disorders)

Human data, such as physical and physiological parameters, can be captured using
sensors for further analysis to aid decisions during diagnosis or treatment. Sensor data
recorded via SF are typically time series, and extracting the required information using man-
ual timestamping and analysis can be time consuming, resource intensive, and challenging.
Hence, detection and analysis of sensor data recorded via SF for identifying underlying
patterns to accurately categorise the type of disease is mainly performed automatically.
ML and DL have recently been employed to automate sensor data analysis and detection.
Different types of ML and DL algorithms used for healthcare applications are illustrated in
Figure 9.
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The commonly used algorithms in reported articles are highlighted in different colours
for clarity. Using statistical methods, Jain et al. [109] classified accelerometer data for
three walking activities. Another approach by Aqueveque et al. yielded promising gait
analysis results by segmenting and analysing pressure data acquired from custom-made
capacitive sensors made of two superimposed flexible copper films [110]. Classification of
gait patterns was addressed using the traditional supervised ML approach [111–116] and
the DL approaches [41,117–120]. Further, smart footwear data were used to train the NN to
recognise foot pronation and supination [121]. A study by Moore et al. [122] compared the
performances of several ML algorithms to predict the strike angle and classify the strike
pattern, classifying the strike pattern and getting misclassification only in the case of the
mid-foot strike pattern. A fall is an unintentional event leading to injury, and it can happen
to normal people or people with gait disorders or during rehabilitation. Hence, many smart
footwear designs can detect falls [123–125], reporting promising results for practical sce-
narios. Many researchers have concentrated on designing and developing smart footwear
for gait analysis. However, the analysis result depends on the type of sensors used, data
acquisition bandwidth, sampling, and visualisation. An experimental study can be found
on the selection of bandwidth and sampling frequency for accurate classification of gait
patterns [88]. An investigation by Codina et al. [126] demonstrated that wireless technology
and mobile application integration into smart footwear could be used for gait analysis and
recovery speed monitoring after hip surgery and can also be used for fall detection. Another
method developed by Sudharshan et al. [127] employed a smartphone-based application
using a decision tree algorithm to classify walking patterns, obtaining a classification accu-
racy of approximately 92%. The design included five pressure sensors, four vibrators, and
a Bluetooth transmission. Walking pattern analysis and assistance are required for patients
with Parkinson’s Disease (PD). A special footwear design employing closed-loop sensing
to assist in the rehabilitation process of PD patients by analysing walking patterns was
presented by Cai et al. [128]. In addition to the aforementioned smart footwear designs, a
study showed the possibilities of smart socks to measure plantar pressure and analyse gait
patterns [129]. The suitability of smart footwear for the recognition of many disorders and
the identification of body parameters such as heart rate estimation [130,131], neuromuscu-
lar disease [132], postoperative outcome predictors [133], human behaviour classification
using pneumatic actuators [134], and knee abduction moment prediction [135] have been
investigated by researchers.

The present section provides details of SF data analysis for recognizing and classifying
specific disorders. This was achieved either using statistical tools or by employing ML
algorithms. Table 4 provides an overview of the methods that have reported disease or
pattern classification. The table also highlights the outcomes of the approaches, enabling
researchers to identify the gaps. A major issue that can be identified from the table is the
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smaller number of participants involved in the experiments, which limited the confidence
and extrapolation of the results.

Table 4. Overview of SF data analysis for disease recognition and classification.

Ref.
No.

Study
Objectives Techniques Target Group Outcomes

[109]

Stride segmentation of
accelerometer data,
classification of three
walking patterns.

TinyML, edge
computing. - Mean stride duration is around 1.1 with a 95%

confidence interval.

[110]
Gait segmentation method
based on plantar pressure
only.

Thresholding:
moving average, statistical
analysis.

Six participants:
19–29 years.

The calculated distribution between
stance-phase and swing-phase time is almost
60%/40%—aligned with literature studies.

[111] Gait classification using
feature analysis.

ML algorithms:
RF, k-NN, LR, SVM.

Eighteen
participants: 22–31 years.

A combination of accelerometer and gyroscope
sensor features with SVM achieved the best
performance with 89.36% accuracy.

[112] Gait pattern classification. ML algorithm:
NN.

Eleven participants:
22–33 years.

A built-in accelerometer and gyro sensor
gait-pattern classification system can be used
without the constraints of a controlled
environment.

[113] Detecting 13 commonly
used human movements.

ML algorithms:
PCA, k-NN, ANN, SVM.

Thirty-four
participants: average age
22.6 years.

The model proved to be effective, with an
accuracy of 86%.

[114] Gait pattern classification. ML algorithm:
NN. Six participants. The architecture with three nodes provided

effectiveness metrics above 99.6%.

[115] Gait pattern classification. ML algorithms:
k-NN, SVM, ELM, MLP. - ELM performed better, with an overall

accuracy of 93.54%.

[41] Detecting walking
behaviour.

ML algorithms:
NN, DL (CNN).

Three participants:
26–27 years.

The best performance was achieved with
convolutional layered ANN with an average
accuracy of 84%.

[117] Gait type classification. DL (CNN) Fourteen
participants: 20–30 years.

Experimental results for seven types of gait
showed a high classification rate of more than
90%.

[118] Gait abnormality
detection. DL (CNN) Twenty-one participants:

24–37 years.

Deployment of CNN-LSTM in Nordic
nRF52840 can be revisited with model- pruning
and post-training quantization.

[119] Walking pattern analysis. DL Video frames. SF can detect any injury the shoe user is
suffering from.

[120] Abnormal gait
pattern recognition.

DL (LSTM-
CNN)

Twenty-five participants:
avg. age 22 years.

A personalised gait classification approach,
which is accurate and reliable.

[121]
Recognition of
foot pronation and
supination.

DL (NN) Six participants.
The system can adequately detect the three
footprints’ types with a global error of less than
0.86.

[122] Foot strike
pattern classification.

ML algorithms:
LR, conditional inference
tree, RF.

Thirty participants:
27–41 years.

The system aided in the research and coaching
of running movements & obtained the highest
classification accuracy of 94% using RF.

[124] Fall detection. Statistical tool
and algorithm.

Seventeen
participants: 21–55 years.

The method demonstrated satisfactory
performances providing a maximum accuracy
of 97.1%.

[125] Fall detection. Advanced
Fall detection algorithm. Six participants.

The insole can measure walking speed, the
distance covered, and the measurement of
balance or weight.

[88] Gait analysis and
monitoring.

PCA, event
detection
algorithm.

Four participants.
The new gait metric (eigen analysis) has great
potential to be used as a powerful analytical
tool for gait disorder diagnostics.

[127]

Identification
and correction for people
with abnormal walking
patterns.

ML algorithm:
DT.

One thousand two
hundred fifty data
points—five classes with
250 data points.

The machine learning approach has a 91.68%
accuracy and shows promise for assisting
people with arthritis.
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Table 4. Cont.

Ref.
No.

Study
Objectives Techniques Target Group Outcomes

[129] Gait analysis. Sum of Manhattan
distances (SMD).

Three
participants.

Smart socks can be an alternative to smart
shoes.

[130] Heart rate
estimation.

DL (LSTM-
CNN)

Fifteen
participants.

Significant levels of heart rate estimation could
be made using SF with a correlation of 0.91.

[131]
Heart rate and
Energy expenditure
estimation.

DL (CNN) Ten participants:
20–24 years.

Estimations can be accurate by effectively
selecting the optimal sensors.

[133] Gait analysis. Multivariate
analysis, statistical tool.

Twenty-nine participants:
43–75 years.

SF is ideally suited for preoperative evaluation
in the clinical setting.

[134] Human be-
haviour classification.

ML algorithm:
RF.

Six participants:
20–22 years.

Four types of behaviour were classified with an
F-measure of 78.6%.

[135]
Knee abduction
movement
detection.

ML algorithm:
MLP regressor. One participant: 24 years.

The system performed well in predicting KAM
with an accuracy of 87%. However, more
experimentation is required.

4. Observations and Future Perspectives

Smart footwear has been revolutionising the future of footwear with the introduction
of technology in product design and development. From monitoring physical health
attributes to evaluating health benefits, smart footwear can enable wearers to receive
personalised feedback. Customised smart footwear equipped with sensors, controllers,
and processors can assist and classify patterns. Based on the current survey, a few key
observations have been made. The integration of sensors in smart footwear is continuously
evolving, providing detailed health and fitness data for analysis. This includes tracking
diverse health metrics, such as blood oxygen levels, heart rate, and energy expenditure.
ML and especially DL algorithms enhance the accuracy and predictive capabilities of SFs,
allowing for early detection of health issues based on changes in walking patterns or
other metrics. Essentially, the ability of SF to become an efficient assistive device has been
designed for individuals with disabilities, such as those who are visually impaired. Features
like obstacle detection, GPS tracking, and machine learning-based object identification were
used to help individuals navigate their environment more independently. The integration
of wireless communication technologies also allows real-time alerts and updates to be
sent to a user’s smartphone or other devices. The expansion of SF applications is also
observed in healthcare applications, particularly for patients with diabetes and walking
disorders. It has been demonstrated that footwear monitoring pressure, temperature, and
humidity could help prevent and manage conditions like DFU. Further, optimising the
sampling rate for data analysis has been reported to improve accuracy. The development of
adaptive sampling algorithms was reported. This allows smart footwear to adjust its data
collection based on the user’s activity level. Also, the use of smartphone apps to collect and
analyse data from SF has been proposed in many studies. This will allow users to easily
track their health and fitness progress, receive alerts and recommendations, and share data
with their healthcare providers. Improved and user-friendly designs for long-term usage
were also reported. However, battery life was the major concern in many intelligent SF
designs. This was also addressed by employing energy harvesting and storing techniques
based on walking, to power the footwear’s sensors and other electronic components. As
shown in Figure 4, incorporating all these features increases the cost of the SF. However,
cost-effectiveness is needed to make it accessible to a wide range of consumers. Although
a lot of SF is available on the market, many studies in the literature highlight that the
design and development of SF require further research attention. Important avenues for
future SF research can be summarised as follows. As sensor technology continues to
evolve, opportunities to develop new types of sensors that can monitor a broader range of
health and fitness metrics increase. This could include sensors that can detect changes in
blood flow, muscle activity, or other physiological parameters. Another aspect is energy
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harvesting and storage. There is significant potential for research into more efficient
energy harvesting and storage methods. This could involve developing new materials
or designs that capture more energy from walking and/or creating more efficient energy
storage systems to power the footwear’s electronics for longer periods. More research is
required on low-cost, energy-efficient, multi-parameter integrated sensor measurement
units that can be used in SF. Clinically usable SF needs to include a decision support
system for disease diagnosis. Hence, there is a need for ML and artificial intelligence
(AI) methods to convert footwear to intelligent footwear. The use of these algorithms
in SF is still relatively new, and there is much potential for further research in this area.
This could involve developing algorithms that can more accurately predict health issues
based on sensor data or creating AI systems that provide personalised advice. Also, there
is a need for more research into how smart footwear can be used to assist individuals
with disabilities. This could involve developing new features or technologies to help
these individuals navigate their environment or studying how smart footwear can be
integrated into existing assistive devices or systems. Further, designing SF that can prevent
or manage specific medical conditions or developing new types of therapeutic footwear
that can deliver targeted treatments is in demand. As SF becomes more common, research
is needed to improve the user experience. This could involve studying how to make smart
footwear more comfortable, user-friendly, and stylish and/or researching how to make
the data collected by smart footwear more accessible and valuable to users. With the
increasing amount of personal health data being collected by smart footwear, a question is
how to protect this data. Hence, attention should be paid to developing new encryption
methods and privacy protocols and studying how to educate users about the importance
of data security. As devices become increasingly smart and interconnected, researchers can
explore how smart footwear can be integrated with other devices, such as smartphones,
smartwatches, or home automation systems. Ultimately, sustainability is an essential
consideration in product design, and there would be research and innovation opportunities
in developing smart footwear using sustainable materials and/or manufacturing processes.
Consumers or end-users care about the cost of any such devices. Hence, this opens a new
avenue for manufacturing cost-effective SF by understanding manufacturing techniques
and production processes while maintaining quality and performance.

5. Conclusions

In conclusion, smart footwear represents a significant advancement in wearable tech-
nology, offering promising applications in health monitoring, assistive technology, and
medical treatments. Integrating advanced sensors, energy harvesting systems, and ma-
chine learning algorithms can revolutionise personal health management and improve
the quality of life for individuals with disabilities. However, further research is needed
to overcome current challenges, including improving the comfort and design of smart
footwear, reducing costs, and ensuring data privacy and security. Future research should
also explore the integration of smart footwear with other smart devices, using sustainable
materials and manufacturing processes, and the development of more efficient energy
harvesting and storage systems. As the field of smart footwear continues to evolve, it holds
a promise of transforming our understanding of personal health and fitness, and opening
up new possibilities for assistive and therapeutic interventions.
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