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Abstract—Memristors are often used to emulate neural synapses
or to describe electromagnetic induction effects in neural networks.
However, when these two things occur in one neuron concurrently,
what dynamical behaviors could be generated in the neural
network? Up to now, it has not been comprehensively studied in
the literature. To this end, this paper constructs a new memristive
Hopfield neural network (HNN) by simultaneously introducing
two memristors into one Hopfield-type neuron, in which one
memristor is employed to mimic an autapse of the neuron and
the other memristor is utilized to describe the electromagnetic
induction effect. Dynamical behaviors related to the two mem-
ristive systems are investigated. Research results show that the
constructed memristive HNN can generate Lorenz-like double-wing
and four-wing butterfly attractors by changing the parameters of
the first memristive system. Under the simultaneous influence of
the two memristive systems, the memristive HNN can generate
complex multi-butterfly chaotic attractors including multi-double-
wing-butterfly attractors and multi-four-wing-butterfly attractors,
and the number of butterflies contained in an attractor can
be freely controlled by adjusting the control parameter of the
second memristive system. Moreover, by switching the initial state
of the second memristive system, the multi-butterfly memristive
HNN exhibits initial-boosted coexisting double-wing and four-
wing butterfly attractors. Undoubtedly, such diversified butterfly
attractors make the proposed memristive HNN more suitable for
chaos-based engineering applications. Finally, based on the multi-
butterfly memristive HNN, a novel privacy protection scheme in
the IoMT is designed. Its effectiveness is demonstrated through
encryption tests and hardware experiments.

Index Terms—Multi-butterfly attractor, Hopfield neural net-
work, memristive system, initial-boosted behavior, privacy protec-
tion.

I. INTRODUCTION

THE human brain which is a highly complex nonlinear
system has abundant dynamical behaviors associated with

unique memory, thinking, and learning abilities [1]. In order
to explore the neural dynamics, various neural network models
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have been constructed by emulating the biological structure and
working mechanism of the brain’s nervous system [2, 3]. Among
them, the Hopfield neural network [4], as a special nonlinear
system, has been proven to be an excellent artificial neural
network model for emulating the brain’s dynamic behaviors.
Over the past decades, a variety of dynamical behaviors, such
as bursting oscillation [5], chaos [6], hyperchaos [7], coexisting
chaos [8], and Chimera states [9] have been generated by dif-
ferent HNN models, and these models are of great significance
in biology and engineering applications.

Sixteen years ago, in 2008, a novel nonlinear electronic
device named memristor was found by Hewlett-Packard labs
[10]. The memristor has greatly raised the development of
nonlinear science due to its specific nonlinearity [11-13]. More
significantly, it can store its memductance or memristance by
adjusting its internal flux or charge, which makes it particu-
larly useful for emulating biological neural synapses [14] or
describing the electromagnetic induction effects [15]. Therefore,
a memristor is considered one of the most propitious candidates
for designing artificial neural networks as it naturally performs
like a synapse and owns the features of memory, nonlinearity,
and multistability [16]. For these reasons, memristive HNNs
have many advantages in various applications. For instance, its
memory function can improve the ability of associative memory
in biomimetic neural network circuits [17]. Memristive HNNs
can also be applied to various artificial intelligence systems
including machine learning [18], image restoration [19], and
information security [20]. Furthermore, employing memristors
as synapses or describing electromagnetic induction effects in
HNN can make memristive HNNs produce complex dynamical
behaviors closer to the brain than the traditional HNNs [21-
23], which is of great significance for understanding the brain’s
unique functions.

Hence, numerous research activities are focused on the design
of memristive HNNs with complex dynamical behaviors. Due to
the inherent multistability and strong nonlinearity of the mem-
ristors, memristive HNNs can generate the feature of coexisting
behaviors and multi-attractors. On one hand, the memristors are
used as synapses to design memristive HNNs. For example,
by using two sinusoidal memristors to simulate autapses, a
memristive HNN with plane coexisting behaviors was presented
in [24]. Based on three non-ideal memristor synapses, a mem-
ristive HNN with a space multi-structure attractor was designed
[25]. Furthermore, coexisting infinitely many hidden attractors
[26], multi-double-scroll attractors [27], and grid multi-scroll
attractors [28] have been found in memristive HNNs based on
a similar modeling approach. On the other hand, the memristors
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are used to describe the electromagnetic induction effect in the
memristive HNNs. For instance, by employing a memristor to
describe external electromagnetic radiation, the authors in [29]
designed a memristive HNN with symmetric multi-scroll chaotic
attractors. Adopting the same methods, multistyle chaotic attrac-
tors [30], scroll-growth and scroll-control attractors [31] have
been generated in memristive HNNs. Additionally, in [32], a
memristive HNN with extreme multistability was constructed by
introducing two memristors to emulate the autapse and describe
the electromagnetic induction effect respectively. However, the
two memristors work on different neurons. If two different
memristors act on one neuron in a neural network at the same
time, what dynamical behaviors could be generated in the
memristive HNN?

Chaotic signals with the characteristics of unpredictability,
ergodicity, and sensitivity to initial values can be applied to
generate security keys in information encryption [33-35]. The
application of chaotic signals generated by HNNs to information
encryption has important practical significance for data security
in network communications [36], which has attracted increasing
attention from many researchers. For example, in [37], a simple
image encryption scheme was developed based on the HNN,
which has good encryption performance. A parallel compressive
sensing algorithm based on a ring HNN has been applied to
data security in wireless body area networks [38]. Moreover,
a medical image encryption algorithm was designed, where an
encryption scheme with a permutation-diffusion structure was
proposed based on a hyperchaotic memristive HNN [39]. In
particular, because multi-scroll attractors have more complex
dynamical behaviors and greater randomness [40], the multi-
scroll memristive HNNs have been widely applied in informa-
tion protection. For example, a privacy protection scheme in
IoT was constructed, in which the key is generated by multi-
scroll memristive HNN [41]. Furthermore, in [42], a hyper-
chaotic multi-scroll memristive HNN is successfully applied to
commercial data encryption communication, which undoubtedly
shows the great potential of memristive HNNs in information
protection.

Inspired by the above analyses, we are motivated to de-
sign a novel memristive HNN model that can be used to
study the dynamical behaviors of the neural system with one
neuron simultaneously influenced by two different memristors
and in the future can be used to generate security keys of
the information protection. Toward this goal, we first design
two different memristor models. Then, by introducing the two
memristors into one neuron to imitate its autapse and describe
its electromagnetic induction effect, a memristive HNN with
two memristive systems is constructed. What’s amazing is that
the constructed memristive HNN can generate various com-
plex butterfly attractors, including the Lorenz-like double-wing
and four-wing butterfly chaotic attractors, multi-double-wing-
butterfly and multi-four-wing-butterfly chaotic attractors, and
initial-boosted coexisting double-wing and four-wing butterfly
attractors. To the best of our knowledge, this is the first time the
butterfly and multi-butterfly chaotic attractors are found in the
HNNs. Compared with the aforementioned attractors, the multi-
butterfly chaotic attractors integrate the attractor features of
multi-wing attractors and multi-scroll attractors [43, 44], which
have a more complex dynamical trajectory, higher randomness,
and more secret key parameters. Therefore, generating security
keys through the multi-butterfly memristive HNN is worthy

of in-depth investigation. Finally, based on the multi-butterfly
memristive HNN, we design a novel privacy protection scheme
in IoMT. Good encryption results show the superiority of the
scheme.

The main contributions of this article are summarized as
follows. 1) Two new memristor models are designed that are
used to simulate autapse and describe the electromagnetic
induction effect. 2) A multi-butterfly memristive HNN model
is constructed, which can be applied in information security.
3) Diversified butterfly attractors including butterfly attractors,
multi-butterfly attractors, and initial-boosted butterfly attractors
are discovered for the first time in HNNs. 4) A privacy pro-
tection scheme in IoMT is designed and hardware implemented
based on the multi-butterfly memristive HNN, which has good
encryption results.

The rest of the paper is organized as follows. Sect.II designs
two memristor models and constructs a new memristive HNN
with two memristive systems. Various butterfly attractors in the
memristive HNN are revealed in Sect. III. In Sect.IV, a privacy
protection scheme in IoMT is designed based on the multi-
butterfly memristive HNN and its security performances are
analyzed and experimentally demonstrated. Sect.V summarizes
the paper.

II. MEMRISTIVE HOPFIELD NEURAL NETWORK

This section first designs two memristor models. Then a mem-
ristive Hopfield neural network with two memristive systems is
constructed. Finally, the characteristics of equilibrium points are
studied.
A. Design of the memristor models

According to the memristor theory [10], a generalized
voltage-controlled memristor model can be expressed as{

i =W (ϕ)v
dϕ/dt = f (ϕ,v) (1)

where v, i, ϕ are voltage, current, and memristor state variables,
respectively. W (ϕ) and f (ϕ ,v) denote memductance function
and state equation of the memristor, respectively. It is noted that
the state equation for the memristor is associated not only with
the applied voltage but also with its state variable. Therefore,
the generalized memristor has more complex dynamics than the
ideal memristor.

Based on equation (1), a novel generalized voltage-controlled
memristor model is designed as follows{

i =W1(ϕ1)v = α(ϕ1
2−ϕ1−β )v

dϕ1/dt = f1 (ϕ1,v) = (v2−1)ϕ1− v
(2)

where W1(ϕ1) is the memductance function, and α and β

are two memristive parameters. To show its voltage-current
(v-i) loci, a sinusoidal voltage v=Asin(2πFt) is added to the
input of the presented memristor. Setting α=-0.5, β=35, ϕ10=0,
signal amplitude A and signal frequency F are set as two
adjustable parameters. Firstly let F=0.2, for A=0.8, 0.9, and 1,
the amplitude-relied v-i loci are plotted in Fig.1(a). Secondly,
for F=0.2, 0.4, and 0.8, with fixed A=1, the frequency-relied v-i
loci are plotted in Fig.1(b). As can be seen, the v-i loci in Fig.1
perfectly illustrate the three fingerprints of the memristor [10].
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Fig. 1: The fingerprints of the two memristors. (a) Amplitude-relied
v-i loci of the memristor M1 with F=0.2. (b) Frequency-relied v-i
loci of the memristor M1 with A=1. (c) Amplitude-relied v-i loci of
the memristor M2 with F=0.2. (d) Frequency-relied v-i loci of the
memristor M2 with A=1.

As a result, the proposed equation (2) is a memristor model,
named M1.

Based on the equation (1), another generalized voltage-
controlled memristor model is designed as follows{

i =W2(ϕ2)v = bϕ2v
dϕ2/dt = cv−dh (3)

where

h = ϕ2−

(
sgn(ϕ2)+

N

∑
i=1

sgn(ϕ2 +2i)−N

)
,N ∈ N∗ (4)

where W2(ϕ2) is the memductance function, b, c and d are
three constant parameters, and N is a control parameter. The
memristive characteristics are analyzed as follows. Setting b=1,
and c=1.2, d=1, taking N=2 as an example, when the same si-
nusoidal voltage with frequency F=0.2 and different amplitudes
A=(0.5, 0.8, 1.0) is applied in the memristor, the amplitude-
relied v-i loci are plotted in Fig.1(c). When the amplitude A=1
and different frequencies F=(0.2, 0.5, 2), the frequency-relied
v-i loci are plotted in Fig.1(d). Obviously, with the increase
in frequency, the area of the pinched hysteresis loops of the
memristor decreases gradually, which implies that the proposed
equation is a memristor model, named M2.
B. Construction of the memristive HNN

Hopfield Neural network similar to the brain nervous system
can produce complex brain-like chaotic behaviors. The original
HNN with n neruons is defined as [4]

Ciẋi =−xi/Ri +
n

∑
j=1

wi j tanh(x j)+ Ii (i, j ∈ N∗) (5)

where Ci, Ri, and vi are respectively membrane capacitor, mem-
brane resistor, and membrane voltage of the neuron i. wi j is the
synaptic weight coefficient describing the connection strength
from neuron j to neuron i. Besides, tanh(.) represents the neuron
activation function, and Ii denotes an external input current.
Based on equation (5), assuming Ci=1, Ri=1, Ii=0 (i=1,2) and
selecting the appropriate synaptic weight coefficients, a bi-
neuron HNN is proposed as follows.{

ẋ1 =−x1 + tanh(x2)
ẋ2 =−x2−1.5tanh(x1)+w22 tanh(x2)

(6)

Neuron1

Neuron2

1

-1.5

M1

M2

EMRAutapse

Fig. 2: Structure of the memristive HNN with two memristive systems

Memristors usually are used to mimic biological neural
synapses or to describe electromagnetic induction effects. Now
as shown in Fig.2, we simultaneously introduce two designed
memristor models into the proposed bi-neuron HNN to construct
a memristive HNN model. Among them, the memristor M1 is
used to simulate the autapse of neuron 2, while the memristor
M2 is used to describe the electromagnetic induction effect
of neuron 2 under external electromagnetic radiation. Because
the two memristors play different roles in the bi-neuron HNN,
the constructed memristive HNN has two memristive systems.
Consequently, the mathematical model of the memristive HNN
can be described by

ẋ1 =−x1 + tanh(x2)
ẋ2 =−x2−1.5tanh(x1)+ k1W1 tanh(x2)+ k2W2x2
ϕ̇1 = (x2

2−1)ϕ1− x2
ϕ̇2 = cx2−dh

(7)

where W1 stands for the synaptic weight w22, and k1 is a
constant representing the coupling strength of the memristor
M1. W2x2 represents the induction current induced by external
electromagnetic radiation, and k2 is a constant representing the
feedback gain of the induction current.
C. Analysis of equilibrium points and stability

The characteristics of equilibrium points of the memristive
HNN in equation (7) are analyzed by theoretical and numerical
methods. Define E=(x1*, x2*, ϕ1*,ϕ2*) as an equilibrium point
of the memristive HNN. Letting the left side of equation (7)
be 0, the equilibrium points can be solved from the following
equation

0 =−x1 + tanh(x2)
0 =−x2−1.5tanh(x1)+ k1W1 tanh(x2)+ k2W2x2
0 = (x2

2−1)ϕ1− x2
0 = cx2−dh

(8)

The Jacobian matrix at the equilibrium point is generated as

J =
−1 sech2(x2

∗) 0 0

−1.5sech2(x1
∗) k1W1sech2(x2

∗)
+k2W2−1

k1α(2ϕ1
∗−1)

tanh(x2
∗) k2bx2

∗

0 2x2
∗ϕ1
∗−1 (x2

∗)2−1 0
0 c 0 −d


(9)

Obviously, since the values of system parameters are uncertain,
the stability of the nonzero equilibrium points cannot be de-
termined. So here we discuss the stability of zero equilibrium
point. When E=(0, 0, 0, 0), the Jacobian matrix is modified as
follows

J =

 −1 1 0 0
−1.5 −1− k1αβ 0 0
0 −1 −1 0
0 c 0 −d

 (10)
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Accordingly, the eigenvalue polynomial can be written by

P(λ ) = det(Iλ − J)
= (λ +d)(λ +1)(λ 2 +(2+ k1αβ )λ + k1αβ +1.5) (11)

Thus, the Jacobian matrix has four non-zero roots as follows
λ1 =−d
λ2 =−1

λ3 =− 2+k1αβ

2 +

√
− 1+k1αβ

2

λ4 =− 2+k1αβ

2 −
√
− 1+k1αβ

2

(12)

According to the systems parameters d > 0, α < 0, β > 0, the
stability of the zero equilibrium point can be roughly evaluated
and summarized as follows.

Case 1: k1αβ=-2, λ3,4=±
√
− 1+k1αβ

2 . E is an unstable node
point. The system is unstable.
Case 2: −1 > k1αβ >−2, λ3,4 < 0. E is a stable node point.
The system is stable.
Case 3: k1αβ <−2, λ3,4 > 0. E is an unstable node point. The
system is unstable.
Case 4: k1αβ >−1, 1+k1αβ > 0, 2+k1αβ > 0, λ3,4 are two
imaginary roots. E is a stable node focus. The system is stable.
Case 5: k1αβ=-1, λ3,4 < 0. E is a stable node point. The system
is stable.

To analyze the non-zero equilibrum points of the system,
equation (8) is further simplified by

x1 = tanh(x2)
ϕ1 = x2/(x2

2−1)
f1 (ϕ2,x2) =−x2−1.5tanh(x1)+ k1W1 tanh(x2)+ k2W2x2
f2 (ϕ2,x2) = cx2−dh

(13)
Next, the distribution of the equilibrium points is analyzed by
the Matlab graph description method. In equation (13), the
solution of x2 is determined by the function h. Namely, the
number and position of the equilibrium points are controlled
by the control parameter N. Taking N=2 as an example, when
k1=1, k2=1.5, α=-0.9, β=16, b=0.01, c=2, d=5, and initial states
(x10, x20, ϕ10, ϕ20)=(0.1, 0.1, 0.1, 0.1), the distribution of the
equilibrium points on the ϕ2-x2 plane can be given by plotting
the function curves f1 and f2, as shown in Fig.3. Numerical
analyses show that all equilibrium points are divided into three
types E1, E2, and E3. E1 is a kind of unstable saddle-focus point,
which produces a chaotic trajectory in the shape of butterfly
wings. Both E2 and E3 are unstable saddle points. Among
them, the function of E2 is to connect the two wings of the
butterfly’s attractor, and E3’s job is to connect two butterfly
attractors. From Fig.3, the equilibrium points are synchronously
extended along the ϕ2-axis. That is to say, with the increase of
control parameter N, the number of equilibrium points will be
extended along the ϕ2 direction. Numerical simulation shows
that the memristive HNN can generate a self-excited four-
butterfly attractor, as shown in Fig.3. Obviously, the increase
of the control parameter N in the system leads to the extension
of the equilibrium points, which can generate the phenomenon
of chaotic attractor reconstruction. Further analysis shows that
the number of equilibrium points E1, E2, and E3 are equal to
2(N+2), N+2, and N+1, respectively. And the number of the
reconstructed butterfly attractors is equal to N+2. That is to say,
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Fig. 3: Distribution of the equilibrium points of the memristive HNN
with N=2 and the generated four-butterfly attractor.

the total number of the equilibrium points is 4m−1, where m
is the number of the multi-butterfly attractors.

III. CHAOTIC DYNAMIC ANALYSIS

In this section, memristor-induced chaotic dynamics are in-
vestigated using several numerical measures such as bifurcation
diagrams, Lyapunov exponents (LEs), phase plots, basin of
attraction, and time series. Matlab ode45 algorithm with a
time-step of 0.01 and end time of 10000 and Wolf’s Jacobian
matrix method are used for solving the differential equations
and calculating the LEs, respectively.
A. Double-wing and four-wing butterfly attractors

The chaotic dynamics induced by the memristor M1 are stud-
ied by taking α and β as variable parameters. For k1=1, k2=1.5,
b=0.01, c=1.2, d=5, N=0, and x10=x20=ϕ10=ϕ20=0.1, the 2D
bifurcation diagram depicted within α=[-10, 0] and β=[0, 60]
is plotted in Fig.4. Fig.4 shows two important results: First, the
memristive HNN generates infinite wide chaotic behavior (the
area marked by color c); Second, the memristive HNN exhibits
abundant intermittent chaos and period states with different
periods (the areas marked by colors c1-c7, namely period 1 to
period 7). It is noted that the area marked by the color c0 denotes
the unbounded behavior or stable points. To better reveal these
dynamical behaviors, setting β=16, the 1D bifurcation diagram
of the parameter α , as well as the first three LEs, are given
in Fig.5(a) and (b), respectively. It can be seen from Fig.5(a)
that the dynamical behaviors of the memristive HNN can be
divided into four areas in α∈[-2, 0]. In the area α1∈[-2, -0.78],
the memristive HNN exhibits a wide range of chaotic behavior
except for several periodic windows. Interestingly, this chaotic
behavior has complex dynamical trajectories exhibiting Lorenz-
like butterfly-shaped attractors, which have never been observed
in previous neural network models. As shown in Fig.6(a), when
α=-0.9 is chosen, a double-wing butterfly chaotic attractor can
be obtained from the memristive HNN. Then through a forward
period doubling bifurcation route, the memristive HNN enters
into a novel chaotic area α2∈[-0.7, -0.22]. More interestingly,
the novel chaotic area exhibits complex four-wing butterfly
attractors, which is also the first observed in the existing neural
networks. When α=-0.25 is selected from the memristve HNN,
a four-wing butterfly chaotic attractor is obtained as shown in
Fig.6(b). Finally, the memristive HNN enters into a periodic area
α3 and a stable point area α4. Therefore, under the influence
of the first memristive system, the proposed memristive HNN
generates complex double-wing and four-wing butterfly chaotic
attractors.
B. Multi-butterfly chaotic attractors



5

-6-7-8 0-1
α

0

β

10

-4-5-9-10 -2-3

c

c0

20

30

40

50

60

c1

c2

c3

c4

c5

c6

c7

Fig. 4: Dynamics distributed in the α-β parameter plane under k1=1,
k2=1.5, b=0.01, c=1.2, d=5, N=0, and x10=x20=ϕ10=ϕ20=0.1.

0.5

(a)

0

-1

-0.5

-1.2-1.6-2

φ
1
m

a
x

1 0.4

-0.8

-1.2
0

L
y
ap

u
n
o
v
 e

x
p
o
n
en

ts

L1

L2

L3

-0.8 -0.4
a

(b)

-1.2-1.6-2 0-0.8 -0.4a

-0.4

0

a1 a2 a4a3

Double-wing 

butterfly

Four-wing 

butterfly

Fig. 5: The α-relied dynamical behaviors of the memristive HNN
under β=16. (a) bifurcation diagram. (b) Lyapunov exponents.

The chaotic dynamics induced by the memristor M2 are
studied by taking N as a variable parameter. When α=-0.9,
β=16, and c=2, the parameter N is increased from 1 to 7, and the
bifurcation diagram of the state variable ϕ2 as well as the first
three LEs are depicted in Fig.7(a) and Fig.7(b), respectively.
Fig.7 directly illustrates two important results: (i) With the
increase of parameter N, the double-wing butterfly attractor is
reconstructed to generate a multi-double-wing-butterfly chaotic
attractor; (ii) The number of the multi-butterfly chaotic attractors
can be controlled by single parameter N. As shown in Fig.8,
different numbers of multi-double-wing-butterfly chaotic attrac-
tors can be obtained from the memristive HNN under different
control parameter N. Amazingly, when α=-0.25, by selecting
different control parameter N, arbitrary number of multi-four-
wing-butterfly chaotic attractors can also be detected in the
memristive HNN, as shown in Fig.9. Similarly, the number of
the multi-four-wing-butterfly attractors can also be controlled
by the control parameter N. Furthermore, both the numbers of
butterflies contained in a multi-double-wing-butterfly attractor
and a multi-four-wing-butterfly attractor are equal to N+2.
Such interesting dynamics means that the memristive HNN
can not only generate multi-double-wing-butterfly attractors but
also multi-four-wing-butterfly attractors, which means that the
proposed memristive HNN generates complex multi-butterfly
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chaotic attractors.
C. Initial-boosted coexisting butterfly attractors

The chaotic dynamics induced by the memristor’s initial
states are studied. Initial-boosted coexisting behaviors play an
important role in dynamical systems and have valuable appli-
cations [27]. It is wonderful that the presented multi-butterfly
memristive HNN can generate initial-boosted coexisting double-
wing and four-wing butterfly chaotic attractors. For instance,
when setting k1=1, k2=1.5, α=-0.9, β=16, b=0.01, c=1.2, d=5,
N=6, x10=x20=0.1, we plot the local basin of attraction in the
ϕ20-ϕ10 plane, as shown in Fig.10(a). As can be seen, the
local basin of attraction has complicated manifold structures
and clear basin boundaries, and the color-painted marked by
s1-s8 indicates 8 attracting regions of dynamical behaviors.
When ϕ10=0.1, by selecting different memristor initial state
ϕ20=1, -1, -3, -5, -7, -9, -11, and -13, coexisting 8 double-
wing butterfly chaotic attractors with the same topologies but
different positions can be obtained as shown in Fig.10(b). That is
to say, the memristive HNN enjoys complex dynamics of initial-
boosted coexisting behaviors, which means that it has excellent
robustness. Additionally, keeping the above parameter values
unchanged except for α=-0.25, the bifurcation dynamics related
to ϕ20 and corresponding LEs are depicted in Fig.11(a) and (b),
respectively. Obviously, under different initial states ϕ20, the
memristive HNN can generate infinitely many chaotic attractors
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with the same topology at different positions. When selecting
initial state ϕ20 as 1, -1, -3, -5, -7, and -9, the memristive
HNN exhibits initial-boosted coexisting six four-wing butter-
fly attractors, as shown in Fig.11(c). Meanwhile, six chaotic
sequences with different positions can be obtained as shown
in Fig.11(d). Further simulation shows that when continuing to
increase the value of parameter N, the number of the initial-
boosted coexisting four-wing butterfly attractors finally tends
to infinity. Namely, the memristive HNN can provide sustained
and robust chaotic sequences and their oscillating amplitudes
can be non-destructively adjusted by switching the memristor
initial states.
D. Electronic Circuit Validation

In this subsection, the electronic circuit of the proposed mem-
ristive HNN is implemented by using the analog circuit de-
sign method, and various butterfly attractors are further ver-
ified through MULTISIM circuit simulation. Fig.12 gives the
designed memristive HNN circuit which mainly contains three
parts, namely the memristor circuit 1, the memristor circuit 2,
and the neural network circuit. From Fig.12, the memristor cir-
cuit 1 consists of six analog multipliers (M), six resistors, one
amplifier, and one capacitor. The memristor 2 is composed of
a nonlinear function generator module, where S1, S2, ..., and
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diagram. (b) Lyapunov exponents. (c) Initial-boosted coexisting six
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Fig. 12: Memristive HNN circuit structure.

Si are selection switches. By selecting suitable switches, the
control parameter N can be realized in the memristor circuit.
The neural network circuit contains two neuron circuits and the
neuronal active function is introduced from reference [36]. The
circuit equation of the memristive MNN circuit can be written
as

C dx1
dt =− x1

R +
tanh(x2)

R8

C dx2
dt =− x2

R −
tanh(x1)

R9
− ( g2z1

2

R1
− gz1

R2
− 1

R3
) tanh(x2)+

gz2x2
R7

C dz1
dt = g2x2

2z1
R4
− z1

R5
− x2

R6

C dz2
dt = x2

Rc
− h(z2)

Rd

(14)

where x1 and x2 represent the membrane potentials x1,
x2, z1, and z2 represent the memristor states ϕ1 and
ϕ2, respectively. According to the memristive HNN mode
(7), part adjustable circuit parameters can be obtained
as R1 = Rg2/αk1, R2 = Rg/αk1, R3 = R/αβk1, R4 = Rg2,
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Fig. 13: Experimental results. (a1) Double-wing butterfly attractor.
(a2) Four-wing butterfly attractor. (b1) 3-double-wing-butterfly attrac-
tor. (b2) 4-double-wing-butterfly attractor. (c1) 4-four-wing-butterfly at-
tractor. (c2) 5-four-wing-butterfly attractor. (d1) Coexisting five dou-
ble-wing-butterfly attractors. (d2) Coexisting five four-wing-butterfly
attractors.

R5 = R6 = R, R7 = Rg/k2b, R8 = R, R9 = R/1.5, Rc = R/c,
Rd = R/d, R = 10 k, C = 1nF , and g = 0.1.

To confirm the effectiveness of the designed memristive HNN
circuit, the circuit is simulated in the MULTISIM platform.
Experiment results show that the designed circuit can generate
results consistent with the numerical simulation results. For
example, for α=-0.9, considering k1=1, k2=1.5, b=0.01, c=1.2,
d=5, N=0, β=16, part resistors can be calculated as R1=0.11 k,
R2=1.1 k, R3=0.7 k, R4=0.1 k, R7=66.66 k, R9=6.66 k, Rc=8.33
k, Rd=2 k. When only closing S1, the double-wing butterfly
attractor is captured as shown in Fig.13(a1); When changing
Rc=5 k (c=2) and closing S1 and S2, 3-double-wing-butterfly
attractor can be obtained as shown in Fig.13(b1); When closing
S1, S2, and S3, 4-double-wing-butterfly attractor can be obtained
as shown in Fig.13(b2); When changing R9=6.66k(c=1.2) and
selecting different initial capacitor voltages (1V, -1V, -3V, -
5V, -7V), coexisting five double-wing butterfly attractors can
be obtained as shown in Fig.13(d1). Furthermore, for α=-0.25,
part resistors can be calculated as R1=0.4 k, R2=4 k, R3=2.5
k, R4=0.1 k, R7=66.66 k, R9=6.66 k, Rc=8.33 k, Rd=2 k.
By repeating the above experimental steps, various four-wing
butterfly attractors can be obtained as shown in Fig.13(a2),
(c1), (c2), and (d2). Obviously, the circuit simulation results
are consistent well with the numerical simulation results.

Additionally, TABLE I gives the summary of the comparison
between different memristive HNN modes proposed in recent
years. As can be seen from TABLE I, the previous memristive
HNN models can only exhibit multi-scroll attractors. The pro-
posed memristive HNN in this work not only can generate more
complex multi-butterfly attractors but also requires a minimum
of neurons and control parameters. Moreover, the previous mem-
ristive HNNs only consider one type of memristive system. The
presented memristive HNN in this paper considers two differ-
ent memristive systems and has more complicated dynamical
behavior. Thus, it can be applied in the practical engineering

field.

IV. APPLICATION TO PRIVACY PROTECTION IN IOMT
Nowadays, the requirements for telemedicine based on the

Internet of Medical Things (IoMT) are constantly emerging
[45]. The transmission of a vast amount of medical image data
that may contain critical or private information through IoMT
can easily cause the disclosure of personal privacy information
[46, 47]. Hence, it is necessary to take some measures to
encrypt and protect medical image data in IoMT. Because
the medical image data has special features including high
redundancy, large capacity, and high correlation between pixels,
the traditional encryption methods cannot fulfill the demands for
medical image encryption [39]. Here, to protect the privacy of
the medical image data in IoMT, a feasible privacy protection
scheme is proposed, where the security key is generated by the
constructed multi-butterfly memristive HNN.
A. Design of the Privacy Protection Scheme

Based on the multi-butterfly memristive HNN, the designed
privacy protection scheme in IoMT is shown in Fig.14. The
scheme consists of five parts: medical data acquisition, encryp-
tion terminal, key generator, mobile edge computing (MEC)
server, and decryption terminal. When a patient obtains original
medical images through various medical devices in a hospital,
the original medical images are encypted by smart devices at
IoMT device layer. Then the encrypted images in encryption
terminal are sent online to MEC severs at edge layer. Clearly,
the wireless network and MEC servers can only receive the
cipher images, which means the attackers (Hacker) can not
directly obtain the original medical images. Meanwhile, the
cipher images are downloaded using smart IoMT devices by the
doctors in other hospitals at different areas. Finally, the doctors
use the key generated by the key generator to perform chaotic
decryption to obtain the original medical images in decryption
terminal, so as to realize the confidential transmission of the
medical images. In this process, the key step is the imple-
mentation of encryption and decryption algorithms. A secure
and efficient encryption algorithm is designed as follows: (i)
Suppose that the original image P has M×N pixes. Set the
system parameters and initial values (α , β , b, c, d, N, k1,
k2, x10, x20, ϕ10, ϕ20) as security keys, then iterate the multi-
butterfly memristive HNN (7) with the fourth-order Runge-Kutta
algorithm. The previous 1000 numbers iterated by the system
will be abandoned because of the transient state. Whereafter, the
system is continuously iterated to generate four values, x1(i, j),
x2(i, j), ϕ1(i, j), ϕ2(i, j). During iteration, the four values are
used to generate two pseudo-random sequence matrixes K1(i, j)
and K2(i, j), as follows{

K1(i, j) = Abs(S(i, j))
K2(i, j) = mod( f loor(Abs(S(i, j))))×1015,256)
S(i, j) = (x1(i, j)+ x2(i, j)+ϕ1(i, j)+ϕ2(i, j))/4

(15)

where the floor(x) gives as output the greatest integer less than
or equal to x. (ii) Then, a processed image P1 is obtained by
using K1 to perform a permutation to P, where the permutation
algorithm is described as P1=P(index(K1)). (iii) Next, Employ
the matrix K2 to perform the XOR operation to P1 as

C(i, j) = P1(i, j)⊕K2(i, j) (16)

By performing the above encryption processes for two rounds,
where the signal generated by the 8-double-wing-butterfly at-
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TABLE I: PERFORMANCE COMPARISON BETWEEN DIFFERENT MEMRISTIVE HNNS.

Refs Attractor Type Neurons Memristive Systems Control Parameters Initial-Boosting Electronic Circuit
[29] Multi-Scroll 3 1 3 No Yes
[36] Multi-Scroll 4 1 2 Yes Yes
[28] Grid Multi-Scroll 4 1 4 Yes No
[41] Grid Multi-Scroll 3 1 4 Yes No
[42] Hyperchaotic Multi-Scroll 7 1 2 Yes Yes

This Paper Multi-Butterfly 2 2 1 Yes Yes

Encryption 
Terminal

Decryption 
Terminal

Medical Data Acquisition Original Images

Doctor-1

MEC 
Server

Doctor-2 Doctor-3 Doctor-n

Cipher Images

Key Generator (Chaos)

Hacker
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Edge Layer

Keys

Wireless Connection

Fig. 14: Framework of the privacy protection in IoMT.

tractor in Fig.8(f) is used in the first round of encryption and the
signal generated by 7-four-wing-butterfly attractor in Fig.9(f) is
employed in the second round. All the parameters are the same
as those given in Sec.III-B. As a result, the encrypted image C
is yielded. Decryption is the reverse process of the encryption
operation.
B. Analysis of the encryption performance

To verify the effectiveness of the designed privacy protection
scheme, four (P1-P4) color medical images (512×512) from
the publicly available DRIVE database [48] are used for the
experimentation based on Matlab R2017a. Note that before
performing the encryption process, the color images are divided
into red, green, and blue components. To check the encryption
performance, histogram, correlation coefficient, information en-
tropy, differential attack, key sensitivity, and noise and data loss
attack are analyzed as follows.

(1) Histogram: The histograms of the original images and
encrypted images are given in Fig.15(b1-b4) and Fig.15(d1-d4),
respectively. As can be seen, the histograms of the encrypted
images are very uniform and are significantly different from
those of the original images, which means that the designed
privacy protection scheme has a strong ability to resist statis-
tical analysis. Therefore, the multi-butterfly memristive HNN
provides the encrypted images with a strong ability to resist
statistical attacks.

(2) Correlation coefficient: Usually, the correlation coefficient
ranges from 0 to 1. The larger the value, the lower the degree of
correlation between the values of adjacent pixels in the image.
It can be computed by [36]

ρxy =

N
∑

i=1
(xi−E(x))(yi−E(y))√

N
∑

i=1
(xi−E(x))2

√
N
∑

i=1
(yi−E(y))2

(17)
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Fig. 15: Test results of the designed privacy protection scheme. (a)
Original images. (b) Histograms of the original images. (c) Encrypted
images. (d) Histograms of the encrypted images.

where x and y are the intensity values of two adjacent pixels, and
N is the total number of pixels. E(x) and E(y) are the averages
of xi and yi, respectively. For 10000 pairs of adjacent pixels
in the four medical images, the correlation coefficients in three
directions are listed in Table II. We can clearly see that the
correlation coefficients of the original images are close to 1,
but those of the encrypted images are very close to 0. That is
to say, the multi-butterfly memristive HNN can largely reduce
the correlation of the adjacent pixels in the images.

(3) Information Entropy: Information entropy reflects the
statistical characteristics of image information. According to
Shannon’s theory, the information entropy can be calculated by
[37]

H(P) =
2N−1

∑
i=0

P(xi)log2
1

P(xi)
(18)

where N represents the bit depth of the image P and P(xi)
represents the probability of the presence of a pixel xi. Table
I gives the information entropy of the four original medical
images and their corresponding encrypted images. We can
clearly find that there is a large improvement in information
entropy after the original image is encrypted. And they are all
very close to the ideal entropy value of 8. Hence, the multi-
butterfly memristive HNN plays an important role in improving
the information entropy of the original images.

(4) Differential attack: Attackers commonly use a slight
change in the image to find the relationship between the original
image and its encrypted image, namely differential attacks. The
number of pixels change rate (NPCR) and the unified average
change intensity (UACI) are usually used to evaluate the ability
of differential attacks in encryption algorithms. They can be
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TABLE II: TEST RESULTS OF THE CORRELATION COEFFICIENT, INFORMATION ENTROPY, AND DIFFERENTIAL ATTACK

Indexes Correlation coefficient Information entropy Differential attack
Medical Images Horizontal/Vertica/Diagonal RGB Red/Green/Blue NPCR/UACI

Original 0.99324/0.98773/0.98204 7.0266 6.7115/6.5272/7.0266P1 Encrypted 0.00146/0.00065/-0.00224 7.9998 7.9994/7.9994/7.9994 99.6087/33.4624

Original 0.998346/0.98117/0.96882 6.1061 6.0642/6.0797/6.1087P2 Encrypted -0.00736/0.00161/0.00113 7.9998 7.9994/7.9996/7.9995 99.6095/33.4641

Original 0.97348/0.96969/0.94784 7.3480 6.8697/7.5988/6.4757P3 Encrypted 0.00435/-0.00242/0.00107 7.9998 7.9997/7.9994/7.9994 99.6105/33.4628

Original 0.99892/0.99843/0.92868 6.1142 5.6857/5.5025/4.2734P4 Encrypted 0.00274/0.00466/-0.00644 7.9998 7.9998/7.9998/7.9998 99.6092/33.4634

(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2)

Fig. 16: Decryption results with different keys. (a1-d1) Decrypted
images with the accurate keys; (a2) Decrypted image with the in-
accurate key x10=0.1+10−16. (b2) Decrypted image with the inaccu-
rate key x20=0.1+10−16. (c2) Decrypted image with the inaccurate
key ϕ10=0.1+10−16. (d2) Decrypted image with the inaccurate key
ϕ20=0.1+10−16.

computed as follows [38]
NPCR(C1,C2) =

M
∑

i=1

N
∑

j=1

D(i, j)
M.N ×100%

UACI(C1,C2) =
1

M.N

M
∑

i=1

N
∑

j=1

|C1(i, j)−C2(i, j)|
255 ×100%

(19)

where
D(i, j) =

{
0, i fC1(i, j) =C2(i, j)
1, i fC1(i, j) 6=C2(i, j) (20)

where C1 and C2 denote two cipher images, whose correspond-
ing original images only have a single-pixel difference. Through
calculation, the average NPCR and UACI values of R, G, and B
components in four color images are listed in Table I. Obviously,
the NPCR and UACI values are extremely close to the expected
values of 99.6094% and 33.4635%, respectively. That is to say,
it is very sensitive to small changes in the original images.
Therefore, the designed privacey protection scheme has a strong
ability to oppose differential attacks.

(5) Sensitivity analysis: The key sensitivity is an important
index in the security of encryption algorithms. In general,
the more sensitive the key, the more secure the encryption
algorithm. Here, the keys x10, x20, ϕ10, and ϕ20 are selected
as test keys. When the four keys and their tiny change are used
for decryption respectively, the decryption results are given in
Fig.16. As can be seen, even if the key is changed a little
(10−16), the decrypted image is absolutely different from the
original image. Consequently, the proposed privacy protection
scheme has a very high sensitivity to the key.

(6) Data loss and noise attacks: The data loss and noise
attacks are usually used to evaluate the robustness of an image
encryption algorithm. On one hand, the images are easy to suffer
from partial data loss in the process of image transmission. To
test the algorithm’s ability to resist data loss, we cut off some
parts of the cipher image and then decrypt it. Fig.17(a1-a4)

(a1) (a2) (a3) (a4)

0.5%

1/4

30%

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

0.0005

1/8

0.01

1/16

(d1) (d2) (d3) (d4)

1/2

10%1%

0.005 0.03

Fig. 17: Test results of data loss and noise attacks. (a1-a4) Encrypted
images under partial data loss. (b1-b4) Decrypted images. (c1-c4)
Decrypted images of the encrypted images under salt and pepper noise.
(d1-d4) Decrypted images of the encrypted images under Gaussian
noise.

and (b1-b4) gives results of data loss attacks for the different
lost areas, where the original images are recovered successfully
via the decryption process. On the other hand, the encryption
system has various noises including salt and pepper noise and
Gaussian noise in the operation process. To test the algorithm’s
ability to resist noise attacks, we added the two kinds of noise to
the encrypted image with different proportions. The outcomes
of the noise attacks are shown in Fig.17(c1-c4) and (d1-d4). As
can be seen, some pixel values in decrypted images are changed,
but the approximate information of the original image could still
be displayed. This means that the encrypted image still has a
good decryption effect after being attacked by noise. Hence, the
proposed privacy protection scheme can effectively resist data
loss and noise attacks and has very high robustness.
C. Validation by Hardware experiments

To further verify the effectiveness of the proposed privacy
protection scheme, we simulate the IoMT environment in reality,
take medical image P4 as an example, and carry out hardware
experiments on RPI (Raspberry PI). Hardware equipment in-
cludes a computer, a router, and three RPI, and the software
is programmed in Python language under the MQTT protocol.
As shown in Fig.18, the three RPIs act as publishers, inter-
mediate servers, and subscribers, and are connected to WiFi.
The publisher runs under IP 192.168.123.188, the subscriber
runs under IP 192.168.123.29, and the publisher RPI and the
subscriber RPI are connected to the intermediate server RPI
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(a) (b) (c)

Router Publisher Broker
Subscriber

Fig. 18: Experimental demonstration based on IoMT. (a) Original
image. (b) Encrypted image. (c) Decrypted image.

under IP 192.168.123.151 at the same time. The development
environment mainly includes Dell Intel CoreTM i7 CPU 2.5GHz
desktop computer, router, 4b RPI, Python 3.7, EMQX 4.3.10
MQTT protocol, and Rk-4 algorithm. As shown in Fig.18(a),
we use the image P4 as the encrypted object, which is sent and
received under EMQX(the open-source MQTT agent for IoMT).
The key steps of this experiment are as follows:

Step 1: Run subscribers, intermediate servers, and publishers,
connect to the router’s WiFi, and get the IP address of each RPI.

Step 2: The subscriber specifies the theme and subscribes both
the key and the image to the publisher.

Step 3: The publisher selects the file name of
the image image to be sent, begins to read the
original image data ”512×512-P4”, and performs the
preprocessing operations K1(i, j) = Abs(S(i, j)) and
K2(i, j) = mod( f loor(K1)×1015),256).

Step 4: Set the key to (0.1, 0.1, 0.1, 0.1) which is the ini-
tial value of system (7). The publisher sends the key to the
subscriber, who reads and stores the key.

Step 5: The publisher performs an XOR encryption operation
C(i, j) = P(i, j)⊕K2(i, j)to get the encrypted image as shown in
Fig.16, and sends the ciphertext to the subscriber. Because the
proposed memristive HNN is extremely sensitive to the initial
values, and the generated chaotic sequence is pseudorandom,
the encrypted image is difficult to be leaked, destroyed and tam-
pered with, so realizing the privacy protection of medical data.

Step 6: The subscriber receives the message from the pub-
lisher, then decrypts the received key and ciphertext, gets the
decrypted image ”512×512-P4”, and directly displays and saves
the decrypted image, as shown in Fig.18(c).

So far, the scheme has achieved the purpose of protecting the
privacy of medical data.

Finally, a performance comparison of encryption results be-
tween encryption schemes based on different memristive HNNs
is given in Table III. Apparently, this is the first time that
the memristive HNN has been applied to color medical image
encryption. Compared with similar works, since the proposed
memristive HNN has complex multi-butterfly chaotic behavior,
the designed privacy protection scheme has higher information
entropy, more sensitive secret keys, and more ideal NPCR/UACI
values. Meanwhile, it not only has very low correlation co-
efficients in every direction but also owns high robustness in
terms of data loss and noise attacks. Moreover, the designed
privacy protection scheme is experimentally verified in IoMT.

Consequently, it can be applied to reinforce information security
in real-world medical internet networks.

V. CONCLUSION

This paper designs two new voltage-controlled memristor
models. Based on the two memristors, a novel memristive
HNN with two memristive systems is constructed. Theoretical
analysis and numerical simulation show the complex dynami-
cal behaviors of the memristive HNN, including double-wing
and four-wing butterfly chaotic attractors, multi-double-wing-
butterfly and multi-four-wing-butterfly chaotic attractors, as well
as initial-boosted coexisting infinitely many double-wing and
four-wing butterfly chaotic attractors. Both the number of but-
terflies contained in the multi-butterfly attractors and the number
of coexisting butterfly attractors can be controlled by only
one control parameter of the memristor. Furthermore, chaotic
sequences generated by the multi-butterfly memristive HNN are
applied to privacy protection in IoMT, using medical images as
an example. The privacy protection scheme is designed using
the simplest permutation-diffusion structure based on the multi-
butterfly memristive HNN. Test results demonstrate that the
designed privacy protection scheme can effectively encrypt the
information of the color medical images and is superior to some
existing encryption schemes. Finally, a hardware platform based
on RPI under the MQTT protocol is built to verify the effective-
ness of the designed privacy protection scheme by simulating a
practical IoMT environment. Experimental results show that the
proposed privacy protection scheme can successfully realize the
privacy protection of medical data, which provides a reference
for the data security governance of the medical industry.

It is worth mentioning that the Lorenz-like butterfly and
multi-butterfly chaotic attractors are found for the first time
in the neural networks. How to use the proposed method to
generate grid or space multi-butterfly chaotic attractors in the
neural networks is worthy of being studied deeply. Another
issue worthy of further investigation is that the multi-butterfly
memristive HNN designed in this article successfully applies
in IoMT, but whether this network applies to other information
transmission fields such as vehicle networking, electronic pay-
ment, and smart home remains to be studied. In the future, we
will be devoted to address these issues.
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