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ABSTRACT

We study 51 jellyfish galaxy candidates in the Fornax, Antlia, and Hydra clusters. These candidates are identified using the JClass
scheme based on the visual classification of wide-field, twelve-band optical images obtained from the Southern Photometric
Local Universe Survey. A comprehensive astrophysical analysis of the jellyfish (JClass > 0), non-jellyfish (JClass = 0), and
independently organized control samples is undertaken. We develop a semi-automated pipeline using self-supervised learning
and similarity search to detect jellyfish galaxies. The proposed framework is designed to assist visual classifiers by providing
more reliable JClasses for galaxies. We find that jellyfish candidates exhibit a lower Gini coefficient, higher entropy, and a lower
2D Sérsic index as the jellyfish features in these galaxies become more pronounced. Jellyfish candidates show elevated star
formation rates (including contributions from the main body and tails) by ~1.75 dex, suggesting a significant increase in the
SFR caused by the ram-pressure stripping phenomenon. Galaxies in the Antlia and Fornax clusters preferentially fall towards
the cluster’s centre, whereas only a mild preference is observed for Hydra galaxies. Our self-supervised pipeline, applied in
visually challenging cases, offers two main advantages: it reduces human visual biases and scales effectively for large data sets.

This versatile framework promises substantial enhancements in morphology studies for future galaxy image surveys.
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1 INTRODUCTION

The distribution of galaxies of different morphological types is not
uniform through space. Most galaxies are in groups and clusters,
while a smaller fraction are isolated in the field and voids. The density
of the environment influences immensely the morphological types
that are dominant in that region of the Universe. The morphology—
density relation shows that the fractions of ellipticals and lenticular
galaxies increase with environmental density, while the fractions
of spirals and irregular decrease (Dressler 1980; Goto et al. 2003;
Houghton 2015; Pfeffer et al. 2023).

Galaxies in dense environments are more subjected to environ-
mental interaction, both gravitational (with neighbouring galaxies
or the cluster gravitational potential) and hydrodynamical (with
the intracluster gas). Such interactions may end up suppressing the
star formation of late-type galaxies and changing their morphology,
turning spirals, and irregulars into ellipticals and SOs. The primary
hydrodynamical process that takes place in clusters and groups is the
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ram pressure stripping (RPS; Gunn & Gott 1972), which strips out
the interstellar gas from the galaxies’ discs and may form a unique
type of galaxy called jellyfish.

Jellyfish galaxies, distinguished by their tentacle-like features
composed of ionized gas and star-forming regions, represent a
distinctive category of galaxies undergoing transformation (see
Boselli, Fossati & Sun 2022, and references therein). These galaxies
are subject to RPS, which significantly affects their morphology
and may enhance their star formation (Vulcani et al. 2018; Roman-
Oliveira et al. 2019; Azevedo et al. 2023). RPS involves the removal
of the galaxy’s cold interstellar gas by the hot intracluster medium,
generally opposing the galaxy’s movement (e.g. Abadi, Moore &
Bower 1999). Although RPS is more prevalent in spiral galaxies
(Kenney & Koopmann 1999; Poggianti et al. 2016b; Fossati et al.
2018; Roman-Oliveira et al. 2019; Roberts et al. 2021a, b), it can also
occur in elliptical (Sheen et al. 2017), dwarf (Kenney et al. 2014), and
ring galaxies (Moretti et al. 2018). Consequently, studying jellyfish
galaxies and their formation provides essential insights into galaxy
interactions, their environmental effects, and overall evolution.

RPS galaxies were first observed several decades ago (Haynes,
Giovanelli & Chincarini 1984). However, recent advances in ob-
servational surveys and cosmological simulations have enabled
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more comprehensive and detailed investigations into these objects.
Using the high-resolution TNG100 (i.e. box size of 1004~! Mpc)
simulations, Yun et al. (2019) identified satellite galaxies in massive
groups and clusters exhibiting asymmetric gas distributions and
tails, characteristics indicative of ram pressure stripping. Their
findings suggest that approximately 13 per cent of cluster satellites
at redshifts z < 0.6 bear the signatures of ram pressure stripping and
associated gaseous tails. When the analysis was confined to gas-rich
galaxies, this proportion escalated to 31 per cent. Additionally, Yun
et al. (2019) pointed out that these estimates could be considered
conservative lower limits, as potential jellyfish candidates could
be overlooked due to their random orientation, possibly missing
approximately 30 per cent of them. Recently, Zinger et al. (2023)
extended Yun et al. (2019)’s study to incorporate TNGS50 with
TNG100 simulations to present aricher sample of jellyfish candidates
residing in hosts at the lower mass end, outskirts of groups or clusters,
and at the higher redshift regime. Goller et al. (2023) and Rohr
et al. (2023) further investigated their evolution and loss of cold
gas. They find that while jellyfish candidates undergo dominating
star formation in their main bodies (i.e. discs), no significant overall
enhancement was observed in their star formation rates compared
to the control sample consisting of satellite and field galaxies with
similar properties known to affect star formation (redshift, stellar
mass, host mass, gas content).

From an observational perspective, galaxies undergoing ram pres-
sure stripping have been scrutinized using photometry and integral
field spectroscopy (IFS) over a wide spectral range, extending from
the ultraviolet to radio frequencies (Jafté et al. 2015; Poggianti et al.
2017; Fossati et al. 2018; George et al. 2018; Roman-Oliveira et al.
2019; Roberts et al. 2021a). These studies have led to the detection
of significant amounts of ionized, atomic, and molecular gas in
the tails and discs of these galaxies (Jaffé et al. 2015; Poggianti
et al. 2017; Fossati et al. 2018; Ramatsoku et al. 2019; Roman-
Oliveira et al. 2019; Poggianti et al. 2019a; Deb et al. 2020; Moretti
et al. 2020; Ramatsoku et al. 2020). Many dedicated works have
been performed in the past decade, focusing specifically on these
galaxies and probing them in diverse environments at different
redshifts. Such efforts have resulted in the discovery of dozens to
hundreds of jellyfish galaxy candidates in both low-redshift (z < 0.1)
and medium-redshift (0.2 < z < 0.9) clusters and groups (Poggianti
etal. 2016a, 2017; Durret et al. 2021; Roberts et al. 2021a, b; Durret
et al. 2022). Notably, over 70 jellyfish candidates have been found
within the A901/2 multicluster system alone (Roman-Oliveira et al.
2019, 2021; Ruggiero et al. 2019).

A defining feature of jellyfish galaxies is their enhanced star for-
mation activity. These galaxies have been observed to possess higher
star formation rates (SFRs) compared to other star-forming galaxies
within clusters, with SFRs often exceeding even those of starburst
galaxies (Merluzzi et al. 2013; Vulcani et al. 2018; Roman-Oliveira
etal. 2019; Roberts et al. 2021a), with a notable enhancement within
their ‘tentacle’ structures (Gullieuszik et al. 2020). This intensified
activity is believed to result from compression and shock waves
generated as the galaxy traverses through the surrounding intracluster
medium (Vulcani et al. 2020). However, the enhancement of SFRs
for jellyfish candidates belonging to galaxy groups is yet to be fully
understood since some studies find an enhancement (e.g. Kolcu
et al. 2022) while some do not (e.g. Oman et al. 2021; Roberts
et al. 2021b). This elevated star formation rate in cluster jellyfish
candidates points to a phase of active evolution in these galaxies,
shedding light on the potential mechanisms driving galaxy evolution.
However, the ultimate fate of these dynamically evolving galaxies
remains uncertain. One possibility is that RPS could transform
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spiral and irregular galaxies into lenticular and elliptical galaxies,
as removing gas could eventually lead to quenching (Larson, Tinsley
& Caldwell 1980). Additionally, spirals may undergo a process
termed ‘diffusion’, culminating in their transformation into dwarf
galaxies (Roman-Oliveira et al. 2021). Another intriguing possibility
is that the observed ultracompact dwarfs (UCDs) and intracluster
globular clusters (GCs) in low-redshift clusters may originate from
H1 regions formed in the tails of jellyfish candidates, given the
observed similarities in their mass (Poggianti et al. 2019a; Giunchi
et al. 2023).

Traditionally, jellyfish candidates have been identified through
visual inspection in optical wavelengths, which has resulted in a
classification scheme based on observed stripping signatures in the
optical bands, known as JClass (Poggianti et al. 2016b). This scheme
encompasses a spectrum of cases ranging from the most extreme
(JClass 5) to progressively milder (JClass 1) instances. For example,
fig. 1 of Roman-Oliveira et al. (2019) and figs 1-3 of Poggianti et al.
(2016b) show visual examples of different JClass candidates. IFS
data can be used to categorize jellyfish candidates into various stages
of stripping to complement this idea by contrasting Ho emission
images with those of continuum emission (Poggianti et al. 2017;
Jaffé et al. 2018; Azevedo et al. 2023). None the less, this approach
is also reliant on visual criteria.

Despite its popularity, human visual inspection possesses a few
drawbacks. It is time-consuming and can be susceptible to errors
due to biases introduced by disturbed morphology, bright knots of
star formation, and debris tails. Given the importance of jellyfish
classification in understanding their astrophysical properties and
evolution, it is important to inspect alternative approaches to visual
classification. Machine learning techniques present a complementary
strategy to identify these objects and mitigate these challenges.
The application of machine learning has gained prominence in
recent years as a powerful tool to automate image classification in
astronomy (e.g. Moore, Pimbblet & Drinkwater 2006; Selim & Abd
El Aziz 2017; Goddard & Shamir 2020; Teimoorinia et al. 2020;
Vega-Ferrero et al. 2021; Xu et al. 2023).

In the realm of machine learning methods, self-supervised learning
(SSL) representation has recently gained significant attention due
to its ability to learn generalizable and semantically meaningful
data representations without manual labelling (e.g. Liu et al. 2021;
Albelwi 2022; Ericsson et al. 2022). SSL does not necessarily
require large data sets to perform well, which makes it beneficial for
scenarios where only a small sample of objects is known (El-Nouby
et al. 2021). Various SSL approaches have been proposed, including
Momentum Contrast (MoCo; He et al. 2020), Bootstrap Your Own
Latent (BYOL; Grill et al. 2020), and Augmented Multiscale Deep
InfoMax (AMDIM; Bachman, Hjelm & Buchwalter 2019).

Hayat et al. (2021) applied SSL to multiband galaxy images from
the Sloan Digital Sky Survey (SDSS), demonstrating that it could
achieve performance comparable to or better than supervised learning
with half or fewer labels for galaxy morphology classification and
redshift estimation tasks. Sarmiento et al. (2021) found that SSL
representations were more resilient to non-physical properties, such
as instrumental effects, and more closely tied to physical properties
than Principal Component Analysis (PCA) representations. Detailed
astrophysical studies revealed that SSL representations closely relate
to galaxies’ physical properties, such as velocity dispersion, stellar
mass, and metallicity. Public-access tools developed by Stein et al.
(2021), as well as work by Stein et al. (2022), have further illustrated
how SSL can be employed for large-scale similarity searches to
identify rare astronomical objects, explicitly showcasing its utility in
detecting strong gravitationally lensed galaxies.
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In this study, we use the S-PLUS multiband survey data (Mendes
de Oliveira et al. 2019) to identify instances of RPS. Specifically, we
employ the narrow-band filter J0660 to detect Ho emitters within
three nearby galaxy clusters: Fornax, Antlia, and Hydra. Logrofio-
Garcia et al. (2019) has shown that He will fall within the J0660
filter for sources up to z < 0.015 for the J-PLUS survey (Cenarro
et al. 2019), which has an identical filter set to S-PLUS. The S-
PLUS survey offers a suitable data set because of its extensive
coverage of these three nearby clusters. This work uses broad-band
optical combined with the J0660 classifications, which can better
view RPS than just optical images (e.g. McPartland et al. 2016;
Poggianti et al. 2016b). We visually classify these RPS candidates
based on their stripping strength (JClass) and subsequently develop
a semi-automated detection pipeline using SSL, demonstrating it as
a concept validation. For the pipeline, we learn representations of
the galaxy images using SSL and perform a similarity search on
these representations to yield the most similar galaxies to a given
‘query’ galaxy to assist visual inspection. We use two downstream
tasks, query by example and supervised classification using the
SSL representations, to evaluate the SSL representation quality.
This work primarily focuses on applying SSL methods in computer
vision, particularly for galaxy images that are widely accessible yet
often require further labelling. Distinguishing this work from prior
studies, we apply these techniques to a relatively small data set of
approximately 200 images. This approach holds significant interest
due to the frequent underperformance of supervised learning methods
in the context of limited data.

This paper is organized as follows. Section 2 outlines the S-
PLUS data employed in this work, providing details on the selection
criteria and data pre-processing. Our methodology, discussing the
visual inspection of Ho emitters and the SSL training details for
classification, is detailed in Section 3. In Sections 4 and 5, we validate
our semi-automated detection approach, present the astrophysical
properties of the jellyfish candidates, and discuss the implications
of our findings, respectively. We then summarize our main findings
in Section 6, leading to our concluding remarks and potential future
work in Section 7. All magnitudes presented in this paper are in the
AB system.

2 DATA

The Southern-Photometric Local Universe Survey (S-PLUS; Mendes
de Oliveira et al. 2019) has already observed approximately
3200 deg? of the Southern hemisphere. Its goal is to map an extensive
area exceeding 9000 deg” using an optimized photometric system
(Cenarro et al. 2019). This system incorporates five broad-band (BB)
filters (g, r, i, z being SDSS-like and u being Javalambre) and seven
narrow-band (NB) filters, covering a wide spectral range from 3700
to 9000 A. The NB filters offer unparalleled insights into nearby
galaxies because of their ability to detect prominent stellar features
such as [O11], Ca H4+K, H§, H, Mgb, and Ca triplets. Furthermore,
S-PLUS reaches about one magnitude deeper than the SDSS (Alam
et al. 2015), providing strong constraints on the star formation
histories and photometric redshifts of galaxies. Observations for the
project are made using a 2 deg? field of view camera fitted with a 9k
x 9k CCD at a 0.55 arcsec pixel ™! scale. This equipment is mounted
on a fully robotic 0.8-m diameter telescope (T80-South) located at
Cerro Tololo, Chile.

The photometric data from S-PLUS are calibrated according to
the methodology described by Almeida-Fernandes et al. (2022).
The calibrated magnitudes for all 12 bands are measured in six
distinct apertures in addition to the astrometry and other photometric
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Figure 1. Comparison of ispss-band magnitudes between the main and
control samples used for visual inspection. The solid blue filled histogram
represents the main sample, while the black open curve represents the control
sample.

parameters. The entire catalogue of images and data is available
through the S-PLUS web portal,! which provides various tools
for querying and visualizing the data. For this study, we have
chosen to focus our analysis on the photometric data obtained using
SEXTRACTOR (Bertin & Arnouts 1996), employing the so-called
‘dual-mode’ and selecting AUTO magnitudes.

2.1 Data selection

To ensure that the Ho emission from our candidates falls within the
J0660 filter, a visual inspection was performed of all galaxies from
three nearby clusters (at redshift z < 0.015) included in the S-PLUS
Data Release 1 (DR1; Mendes de Oliveira et al. 2019). Galaxies
that exhibited an excess in Ha emission were explicitly sought. Six
S-PLUS fields were analysed in Antlia, 23 in Fornax from DR1
and iDR3, and four in Hydra. An additional twenty fields on the
outskirts of Fornax were also inspected as they became available at
the time of the start of the visual inspection. We obtained a sample
of candidate H a-excess objects by subtracting the rspss band image
from the narrow H « filter. Before subtraction, the rgpss band was
scaled to match the global count rates between the objects in common
on the two images. Following this selection process, we identified
158 H « emitting candidate galaxies, with 38, 47, and 73 originating
from Antlia, Fornax, and Hydra, respectively. This set constitutes our
primary sample.

We assembled a control sample of 75 additional galaxies from
the Fornax cluster for visual inspection. These galaxies were not
previously identified as exhibiting H & emission excess and exhibited
a magnitude distribution in the rspss band similar to that of our
selected candidates. In Fig. 1, we present the magnitude distributions
in the ispgs band, which does not contain H o emission excess, for
both the primary and control samples.

3 METHODOLOGY

Having discussed the potential of SSL, we now discuss the imple-
mentation details. Our approach consists of two key stages: first,
we pre-select jellyfish candidates based on a visual inspection of
S-PLUS multiband images. Subsequently, we benchmark SSL as a
means to assist visual classification in future applications.

Thttps://splus.cloud
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Figure 2. Workflow of visual inspection consisting of n human classifiers
for assigning a JClass to a galaxy.

3.1 Visual inspection

Stripping galaxy candidates are typically classified through visual
inspection based on the evidence of stripping signatures in optical
bands, ranging from the most extreme (JClass 5) to the weakest
(JClass 1) cases (Poggianti et al. 2016b; Roman-Oliveira et al. 2019).
These classifications are determined by the formation of tentacles
of ripped gas, which occur because of the interaction between the
galaxy’s interstellar medium and the intracluster medium (ICM).

In this study, we performed the visual classification of the main and
control samples internally in a private project using the Zooniverse
platform.” This task was accomplished by six classifiers,® who
categorized galaxies with no visual stripping evidence as JClass O
and flagged galaxies with merger evidence. The assignment of the
final JClass to galaxies disregards JClasses from visual classifiers
who flagged the galaxy as a merger. To aid the classification process,
we provided a composite image consisting of three panels: an image
displaying only Ha emission (JO660 narrow-band), an RGI image
generated using Trilogy (Coe et al. 2012) with rgpss, gspss, and
ispss, and a colour image (RGI) combined with Ha emission to
accentuate the star-forming regions, depicted in pink.

These star-forming regions, typically bright in Ha, resemble
irregularly distributed star-formation clumps, often called debris.
Occasionally, no image was available for one or more broad bands. In
such cases, neighbouring bands were selected to compose the images
(e.g. ujava or zspss). However, this did not rectify the problem for a
few galaxies, in which case we either obtained a dark or no image.
We then replaced the RGI + H « image with the full 12-band image
or omitted this frame.

If more than one galaxy was present in the field, the classifiers
were instructed to classify only the galaxy positioned at the centre of
the frames. The final JClass designation corresponds to the median of
all classifications. The visual inspection and classification workflow
is described in Fig. 2. In Fig. 3, we present an example of a composite
image for the galaxy NGC1437A (Serra et al. 2023) from the Fornax
cluster, as inspected in Zooniverse. Note the pink clumps of star
formation in the right panel; this galaxy was classified as JClass 3.

Following the visual inspection, we identified 51 jellyfish candi-
dates with JClass ranging from 1 to 4 (no example with JClass 5
was found in the data set). These include 13 galaxies from Antlia, 25
from Fornax, and 13 from Hydra. Notably, four of the 25 galaxies
from Fornax belong to the control sample. Four jellyfish candidates
are included in the control sample because the data selection,
which relied only on Ha emission as discussed in Section 2.1, is
independent of visual inspection that identified jellyfish candidates.
The distribution of JClass across each cluster is presented in Fig. 4.

Zhttps://www.zooniverse.org/
3Carolina Queiroz, AnaL. Chies Santos, Yash Gondhalekar, Yara Jaffé, Rahna
P.T., and Mu Zihao.
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Figure 3. Example of composite image inspected in Zooniverse. Upper left
panel: J0660 narrow-band image. Bottom left panel: RGI coloured image.
Right panel: RG] + Ho image. The central galaxy is NGC1437A from the
Fornax cluster, classified as JClass 3. The zoomed inset highlights the pink
clumps denoting star-forming regions for visual clarity.

10
mm |Class 4 mmm |Class 3 JClass 2 JClass 1
a 8
w
-]
_19\: 6 6 6
- 5
o
:‘ A ) 4 4
£
S 3 3
- 2 2 2
2
1 1
L oMo
Antlia Fornax Hydra Control

Figure 4. Frequency of jellyfish candidates based on their respective JClass
rankings for each galaxy cluster and the control group, arranged in descending
order from the strongest to the weakest.

Thus, ~30 per cent of the Ho emitters are jellyfish candidates
(excluding the four jellyfish candidates from the control sample).
Yun et al. (2019) analysed 2600 satellites in the IllustrisTNG
simulation, selecting galaxies with some gas, stellar masses higher
than 10°> M, and in clusters, and massive groups with halo masses
10" < Mypo./Mg < 10'*°. They found that ~31 per cent of the
galaxies were jellyfish at z < 0.6. Observationally, Roman-Oliveira
etal. (2019) finds ~ 16 per cent of the star-forming galaxies in A901/2
at z = 0.0165 to be jellyfish candidates. Vulcani et al. (2022) studied
a sample of late-type, blue, and bright (B < 18.2) galaxies in clusters
from the WINGS and OmegaWINGS surveys (0.04 < z < 0.07)
within two virial radii. Their study found ~15 per cent of the sample
as stripping candidates and ~20 per cent of galaxies with ‘unwinding
arms,” which could be attributed to jellyfish seen face-on. Although
the sample selection criteria and type of data are different from
previous works, our fraction of stripping candidates falls in a similar
range of values compared to recent literature values.

3.2 Image pre-processing for machine learning

Although convolutional neural networks (CNNs) possess the ability
to pinpoint objects within an image, deliberately steering their
attention towards the foreground object can significantly enhance
their performance (Cao & Wu 2021). Observational data sets
comprise several point sources and extended sources with sizes
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Original Galmasked

Figure 5. An example application of GALMASK on the jellyfish candidate
IC1885 having JClass = 2. GALMASK is used during pre-processing to remove
unwanted background sources.

akin to galaxies, which could potentially confuse the network. In
Appendix D, we use the Grad-CAM visualization method to illustrate
that SSL representations may dominantly encode information about
the background sources instead of the galaxy, which is undesirable.
Thus, we pre-processed the S-PLUS images in our study to mitigate
any prospective bias during the learning procedure by removing
background sources from our galaxy image data set.

For this purpose, we employ the GALMASK (v0.2.0) Python
package (Gondhalekar, de Souza & Chies-Santos 2022), designed
to eliminate background sources from our images. GALMASK is
applied independently to each band. Before its utilization for
background source removal, we first generate a segmentation map
using NOISECHISEL (Akhlaghi 2019), followed by the Segment
program from Gnuastro (Akhlaghi & Ichikawa 2015). We found
NOISECHISEL to be particularly well suited to detect the dim, dis-
persed tails characteristically seen in jellyfish signatures, which has
proved challenging for traditional signal-based threshold methods.
To avoid inadvertently eliminating the peripheries of galaxies, such
as the extended tails, we opted for a slightly conservative set of
parameters within GALMASK. Segmentation is followed by optional
deblending and connected-component labelling, which selects the
connected component closest to the centre to isolate the central
galaxy region from background sources. An example visualization
of the galaxy image before and after the application of GALMASK is
shown in Fig. 5, which demonstrates that background sources present
in the original image are masked.

In our data set of 51 jellyfish and 183 non-jellyfish images,
GALMASK yielded successful outputs for 46 and 171 images, re-
spectively. The failure of GALMASK to process a handful of images
is attributed to the extreme faintness of the galaxies (some of which
were undetectable by NOISECHISEL) or difficulties encountered
during the extraction of the galaxy cutouts. As GALMASK operates
separately on each band, we discarded any galaxy images that did
not yield a successful output across all 12 bands. After this, we
manually inspected all GALMASK outputs to identify any failures in
the masking process. Any images showing portions of the galaxy
that were erroneously removed during the masking stage within
GALMASK were also discarded. This results in 43 jellyfish and
140 non-jellyfish images to carry forward in our analysis. We also
estimate the background level in the central galaxy and subtract it
from the outputs of GALMASK. In addition, we apply an arcsinh
transformation to all images to enhance contrast. Although this
procedure results in a reduced data set size in our already small data
set, SSL is data-rich in that it can learn meaningful representations
even with less data. Thus, we opt for a ‘stricter’ selection of galaxies
to include in our final data set. Additionally, our data set has a high
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imbalance, with jellyfish examples constituting only approximately
22 per cent of the total (this fraction of jellyfish candidates is similar
to the values found in the literature; see Section 3.1).

3.3 Self-supervised learning using SimCLR

Our self-supervised approach is based on the SimCLR framework
(e.g. Chen et al. 2020a), which is a contrastive method and offers an
elegant, end-to-end solution for learning generalized feature repre-
sentations from unlabelled data. We have modified certain aspects of
SimCLR, such as the base encoder network and data augmentation,
to suit our requirements better (details of our modification in the
architecture and hyperparameters are described in Appendix Al).
A batch of N images from the training data set is sampled at
each training iteration. For each sampled image x, two independent
augmentation functions are applied to produce %; and %;. This
doubles the batch size to 2N images.

Both X; and X; are passed through the base encoder network,
denoted as f(-) (often a convolutional network for image data),
which extracts a 1D representation vector, h; = f(¥;). Subsequently,
a projection head network, usually a single hidden layer multilayer
perceptron (MLP), denoted as g(-), projects the representation vector
onto a space where a contrastive loss function is applied, i.e. z; =
g(h;). Instead of directly applying the contrastive loss function to
the representations, using a projection head during training promotes
learning more potent representations (Chen et al. 2020a).

A ‘positive’ pair, denoted as (¥;, X;), consists of two distinct
augmented views derived from the same original image x. Con-
versely, a ‘negative’ pair comprises two images not derived from the
same original image. In contrastive learning, these negative pairs
are essential to learning differentiable feature representations by
enforcing the model to learn distinct representations for different
images. The contrastive loss function, or NT-Xent loss, is formulated
as follows:

exp(sim(z;, 2;)/7)

l; = —log - ) (D
" I%Zl Liki) €xp (sim(z;, 2)/7T)
where sim(p, q) = ”II:”.““; i is the similarity function, 7 is a temper-

ature hyperparameter controlling the sensitivity of the loss function
(Zhang et al. 2021), and L € 0, 1 is the indicator function that
equals one only if k # i. The loss is averaged over all positive pairs
in the sampled mini-batch, and the weights of networks f and g are
adjusted to minimize it.

One defining feature of SImCLR is its use of large batch sizes (as
high as 8192) to keep track of negative examples, bypassing the need
for more complex structures like memory banks (Wu et al. 2018;
He et al. 2020). It harnesses the robustness of data augmentations
and allows multiple negative examples for each positive pair instead
of the traditional single negative example per positive pair (see e.g.
Liu et al. 2021). Such an approach enhances the effectiveness of
the contrastive loss function and improves the quality of the learnt
representations.

Data augmentation is vital for learning valuable representations.
A good data augmentation pipeline is particularly important, given
the small size of our data set. They must maintain the semantic
meaning of the images (Hayat et al. 2021), compelling the model to
learn features that persist through transformations. Ultimately, this
results in learnt representations invariant to these transformations
(Tian et al. 2020; Xiao et al. 2020; Wang & Qi 2021), enhancing
the generalizability of these representations. Our data augmentation
pipeline encompasses the following procedures:
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(i) Centre crop: Each image is centre-cropped to a size of 200 x
200 pixels (~ 9 x 1073 pc). As the galaxies often reside near the
centre of the image, centre-cropping can be beneficial.

(ii) Random-crop-and-resize: After centre-cropping, we ran-
domly crop a section from the image and resize it to 72 x 72 pixels.
This is done for a few reasons. First, in contrastive learning, we only
need to determine if two image patches are from the same image,
not necessarily requiring the whole image. Secondly, smaller images
not only expedite training but have also been shown to improve
performance in SSL scenarios (Cao & Wu 2021).

(iii) Random horizontal and vertical flip: We apply each flip
with a 0.5 probability. Horizontal flips help the model to be invariant
to the galaxy’s horizontal mirror-image transformation. Although
less common, vertical flips are also useful, as we want the learnt
representation to be unaffected even if the galaxy appears inverted.

(iv) Custom colour jitter: As this study does not deal with
RGB images, the conventional colour jitter technique (randomly
adjusting the brightness, contrast, saturation, and hue of an image)
cannot be used. To introduce colour jitter into our multichannel
images, we multiply pixel values by a uniformly sampled value
in the [0.8, 1.2] range, keeping it fixed for a particular channel
(Illarionova et al. 2021). This effect scales the channel-wise mean
and standard deviation by the sampled value, introducing an element
of randomness. This transformation is randomly applied with a
probability of 0.8.

(v) Random rotation: Each image is rotated by a random angle
sampled from [0°, 360°] to ensure invariance with the spatial ori-
entation of the galaxy in the image, as done in Hayat et al. (2021).
Although this rotation includes horizontal and vertical flips as a
special case, random rotation provides more flexibility.

(vi) Gaussian blur: With a probability of 0.5, we blur an image
with a Gaussian kernel of size 9 x 9 pixels, selecting the standard
deviation, o, uniformly at random in the [0.1, 2.0] range, akin to
Chen et al. (2020a). This step enables the representations to remain
largely unaffected by varied levels of image smoothing. To some
degree, this also serves as a way to achieve invariance with the point
spread function (PSF), even though the standard deviation of the
Gaussian blurring kernel is not explicitly scaled using the PSF full
width at half-maximum (Hayat et al. 2021; Stein et al. 2021).

The augmentation techniques we employ enhance those used in the
initial SimCLR model, tailored to offset the limitations posed by our
small training data set. Introducing variety into the training images
can induce the model to learn more robust and invariant features. We
argue that applying a centre-cropping operation before a random-
resize-and-crop, instead of a standalone random-resize-and-crop, is
more advantageous for our data set. This assertion stems from the
pre-processing step, which substantially reduces background objects.
By prioritizing a centre-cropping operation, we are tilting the odds
in our favour to extract random crops from the central galaxy instead
of from the background areas. An ablation study that examines the
significance of these augmentations is presented in Appendix C.

3.4 Model implementation

First, the encoder is pre-trained. Following the pre-training phase,
the projection head is discarded as the representations of the encoder
are considered more meaningful than the projection head since the
latter is found to lose critical information necessary for downstream
tasks (Chen et al. 2020a). As a result, the pre-trained encoder is
used as a fixed-feature extractor to obtain image representations.
Since the augmentations described in Section 3.3 were explicitly
designed only for contrastive learning, these augmentations were
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discarded for deriving representations from the fixed feature extractor
(Chen et al. 2020a). The images are standardized before feeding
into the model using the channel-wise mean and standard deviation
calculated across the training data set. Instead of pre-training the
encoder on a large data set and then fine-tuning it on our small data
set, the pre-training is performed directly on the target data set, a
strategy that has also recently shown promise in the low-data regime
(Cao & Wu 2021; El-Nouby et al. 2021). The extremely small size
of our data set is used to test whether (a) SSL can learn meaningful
representations of galaxies and (b) SSL representations can encode
important features for downstream tasks such as classification, which
was previously unexplored in an astronomical context for small data.
Contrastive learning approaches often benefit from a longer
training duration and larger batch sizes, as they expose the model to
more negative examples (Chen et al. 2020a). Given RAM limitations,
we select a batch size of 128, the maximum feasible size for our
application. Furthermore, smaller resolution images pave the way
for larger batch sizes, as noted in Cao & Wu (2021). The model
undergoes training with the contrastive loss function for 1000 epochs,
with optimization using the Adam with decoupled weight decay
method (AdamW; Loshchilov & Hutter 2019), featuring a weight
decay of 107 and a learning rate, /r = 10~*. A large number of
epochs ensures better convergence on our small data set. We adopt
a cosine annealing schedule to regulate the learning rate, with the
minimum learning rate set to /r /50 and without restarts (Loshchilov
& Hutter 2016). The maximum number of epochs for the scheduler
is set to the number of epochs in our training run, i.e. 1000. The
temperature parameter, 7, is set to 0.05. Hyperparameter tuning was
performed using K -Fold cross-validation, with more details provided
in Appendix A2.1. Weights & Biases (Biewald 2020; version 0.12.21)
was used for tracking mode training and validation experiments.

4 SELF-SUPERVISED LEARNING RESULTS

In this section, we discuss the results of the SSL for similarity search
and provide an example application to assist and improve subjective
visual classification. Due to limited examples in our data set, we
combine the training and testing sets for the analysis in this section.

4.1 Query by example

We conduct a query by example (or similarity search), similar to
the works of Hayat et al. (2021) and Stein et al. (2021) to inspect
what types of galaxies are clustered closely in the self-supervised
representation space. To conduct this experiment, cosine similarities
are calculated between the representation vectors of a chosen query
galaxy image and all other galaxy images in the data set, and
the similarities are ordered in decreasing order to select the four
closest representation vectors (and the corresponding images) to
the representation of the query galaxy. The query galaxy image is
then visually compared for any morphological similarities with the
selected closest images to gain insights into the clustering in the
self-supervised representation space.

Fig. 6 showsthe results of our similarity search. It can be observed
that the similarity search returns semantically similar images to the
query image. In particular, the query search returns galaxies with
similar colours and visual morphological characteristics. The query
search is unaffected by the rotation of galaxies by any arbitrary
angle and robust to the number and shape of background sources
within the images. The former is likely because of the random
rotation data augmentation used during self-supervised pre-training.
‘We hypothesize the latter is mainly due to the use of GALMASK in our
internal pre-processing pipeline, which conveniently removes many
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Figure 6. Illustration of the query by example returning the four closest images to the query image (left column, outlined in red) as obtained by the similarity
search. The JClass obtained from visual classification, and the cosine similarity values are marked on the images. The galaxy’s name is shown on top of
each image. Various cases are shown, such as non-jellyfish (JClass 0) query images or jellyfish (JClass 1, 3) query images. While we use GALMASK during
pre-processing, the images shown here are without the use of GALMASK.
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Figure 6. — continued

unwanted sources from the background. Slight correspondence is
observed between the JClass of the query galaxy and the JClass
of the most similar images to the query galaxy. Jellyfish (non-
jellyfish) query galaxies tend to have jellyfish (non-jellyfish) galaxies
as the most similar galaxies to the query (jellyfish: JClass > 0; non-
jellyfish: JClass = 0). However, since these JClasses are based on
visual classification rather than SSL, it is challenging to interpret
these correlations. Overall, we conclude that the self-supervised
representations encode important information about the galaxies,
which allows the clustering of the galaxies in a morphologically
meaningful manner.

4.2 Re-calibrating visual classification

During visual inspection, each visual classifier individually assigns
labels to an image, with no measurable boundaries between different
JClasses. Such a methodology largely hinges on the classifier’s prior
domain knowledge and the guidelines provided before the image
assessment. Fig. 7 demonstrates this behaviour. Even though taking
the median of visual classifications of different classifiers attempts
to minimize individual human biases, it would be affected if there
is a large disagreement among the visual classifiers. Therefore,

strategies that counteract human biases can improve this subjective
classification procedure. As discussed in Section 4.1, self-supervised
representations present a morphologically significant structure, with
analogous galaxies closely clustered. This finding serves as the basis
for our proof-of-concept application, which shows how SSL can
increase the quality of visual classification in a data-efficient way.
This section thus examines the potential of using self-supervised
representations to refine visually labelled JClasses.

Since the JClass assigned by visual inspection is based on a
subjective assessment of jellyfish-ness, a linear evaluation protocol
(see Appendix B) in which a supervised logistic regression classifier
is employed on the self-supervised representations using the JClasses
as ground-truth labels will be affected by the quality of these labels.
The linear evaluation will not yield a precise disturbance strength
estimate, either, since it is only a binary classification (jellyfish
versus non-jellyfish). A multilabel classification (with ground-truth
categories JClass = 0, 1, 2, 3, 4) will degrade due to the increased
severity of the class imbalance. Thus, a supervised regressor trained
on self-supervised representations is not ideal for improving JClass.
To mitigate these issues, we develop a new downstream task to assign
JClass to galaxies leveraging self-supervised representations to assist
visual classifiers in their classification.
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ESO501-39
_VisuaIJCIasses: 2,1,:2, 3,0, NA 7

-

Figure 7. Illustration of the subjectiveness of visual classification. As
denoted in the image, five of the six visual classifiers assigned a JClass to
this galaxy, while one classifier did not assign any JClass (denoted by ‘NA”).
Out of the five classifiers, one assigned a JClass 3, two assigned a JClass 2,
one assigned a JClass 1, and the other classifier assigned a JClass 0. Thus,
considerable uncertainty prevails in the visual analysis since different visual
classifiers assigned various JClasses. As described in Section 3.1, the final
visual JClass is the median across all the JClasses, i.e. JClass 2, which might
not be reliable due to the significant uncertainty across visual classifiers.

Since we propose not to rely solely on visual inspection and
aim to improve estimates of visual JClasses, this section focuses
only on galaxies with high uncertainty in the JClass among the
visual classifiers. Hence, our initial step involves identifying galaxies
that present a visual classification challenge. If a galaxy receives
more than [N /2] unique visually assigned JClasses from N visual
classifiers (where [] denotes the ceiling function), it signifies a
considerable classification uncertainty, which renders the galaxy
visually complex. We refer to this set of galaxies as our ‘target’
sample. Here, N = 6 (see Section 3.1). Notably, around 85 per cent of
the galaxies in our target sample are jellyfish candidates, suggesting
a more considerable disparity among visual classifiers in assigning
JClass to jellyfish than non-jellyfish galaxies. Since our goal is
to yield precise JClass estimates for identifying novel instances
of galaxies exhibiting jellyfish characteristics, we limit our self-
supervised application to the target sample.

We predict JClass using the self-supervised representations as
follows: given a target galaxy, K-nearest neighbours to it are found
in the representation space, and the mean of JClasses of the nearby
galaxies, weighted by their cosine similarities, is assigned as the
JClass of the target galaxy. The nearby galaxies are chosen such
that they are not already in the target sample. We have chosen to
use K = 4. The JClass assigned using SSL is determined by the
following relationship:

S°K , si IClass,,
ZiK:I Si .
Here, JClass, and JClass,, represent the visually assigned and the
self-supervised predicted JClass, respectively. s; denotes the cosine
similarity between the query image and the i"" image similar to the

query. Such a weighted scheme enables assigning more weightage
to more similar galaxies. We emphasize that we do not train a k-

JClassg, = )
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nearest neighbour classifier on the representations to predict the
JClass since the self-supervised model is already trained to encode
relevant information about the galaxies.

A similarity search is then conducted using the target galaxy as
the query, similar to Section 4.1. Fig. 8 illustrates our framework to
assign JClass to galaxies based on the similarity search on the repre-
sentations of galaxies. Although our proposed approach uses visual
JClasses for the final prediction after the SSL is performed, these
visual JClasses are not used as ground-truth labels in training our
self-supervised model. This means that our self-supervised approach
learns patterns in the galaxy images based on the observed data alone
and does not use the visual JClasses to learn to distinguish between
jellyfish and non-jellyfish galaxies. This characteristic feature of our
self-supervised approach alleviates human biases and thus provides
benefits over approaches such as training a supervised CNN on
the galaxy images or training a supervised classifier on the self-
supervised representations.

An example application of our framework is provided in Fig. 9.
The top two rows show two weak jellyfish query images (JClass 2 and
1, respectively), whereas the self-supervised approach predicted it to
be a non-jellyfish galaxy. This occurs because galaxies most similar
to the query had a JClass 0. The third and fourth rows show two
cases where the self-supervised approach predicted a milder jellyfish
signature, i.e. a lower JClass, than visual classification (JClass 2
instead of JClass 4 and JClass 1 instead of JClass 2). We assume
that the visual JClasses of all non-query images (not outlined in
red) are fairly accurate since we have only selected cases where the
majority of the visual classifiers agreed on a common JClass. Hence,
for the third and fourth rows, the fact that similar galaxies to the
query image contain a mix of jellyfish and non-jellyfish galaxies
suggests that the corresponding query image likely contained some
features similar to non-jellyfish galaxies and some features similar
to jellyfish candidates. As a result, cases where similar images to
the query contain both jellyfish and non-jellyfish galaxies might be
the most complex to classify visually. JClasses predicted using SSL
could be the most beneficial for visual inspection for such cases.

In the second-last row, visual and self-supervised approaches
match their JClass predictions —such cases are relatively less complex
for visual classification. In the last row, the self-supervised approach
predicted the query galaxy to be a stronger jellyfish candidate,
resulting from all similar galaxies also being jellyfish. In this case,
the visual similarity of morphological signatures between the query
and the similar images is not entirely apparent. Despite jellyfish
candidates being rare in the data set, all four similar galaxies are
jellyfish, which could strongly indicate jellyfish signatures in the
query. However, we note that the query was identified as a merger by
visual classification.* Hence, it is possible that the self-supervised
model could not distinguish well between jellyfish and merger
galaxies; instead, it predicted a higher JClass.

As part of a complementary validation test, we assessed the
agreement between the self-supervised and visual JClasses for cases
with confident visual classification (i.e. those with a maximum of two
distinct visual JClasses across all visual classifiers). This criterion
identified 34 non-jellyfish (JClass 0) galaxies.” Among these, 33
galaxies identified visually as JClass 0 were also predicted as JClass

4A galaxy is classified as a merger if more than half of the classifiers visually
classified it as a merger.

3 Applying this criterion yielded only one JClass = 1 example. Although not
utilized here, this example further underscores the uncertainty in visually
classifying jellyfish candidates.
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Figure 8. Workflow demonstrating the use of SSL to assign JClass to a galaxy solely based on the similarity search on the extracted representations of galaxies.
Before training the self-supervised encoder, we find it crucial to account for background sources to prevent affecting the similarity search, as discussed in Section

3.2 and demonstrated in Appendix D.

0 using the self-supervised approach, while the remaining galaxy was
classified as JClass 1 by the self-supervised method. Consequently,
a high level of agreement is observed between the visual and self-
supervised JClasses for these cases. This experiment suggests that
the self-supervised model effectively captures abstract features that
align with human inspection in classifying a galaxy as a non-jellyfish.
However, the limited number of jellyfish examples in this test restricts
our ability to fully assess the model’s accuracy in identifying jellyfish
galaxies, indicating a need for further investigation with a more
balanced data set.

The experiments in this section show that SSL can help visual
inspectors classify visually complex cases to improve the JClass
prediction. We call this an ‘improvement’ since the JClasses pre-
dicted based on the nearest neighbour search in the self-supervised
representation space alleviates human-level uncertainties associated
with visual-only inspection, primarily because learning to distinguish
jellyfish from non-jellyfish galaxies does not use labels but is majorly
learnt from the data itself. A practical application of our method is to
train a self-supervised model on a larger galaxy data set containing
secure jellyfish candidates based on visual inspection and use it
for fast JClass assignment on any new galaxy. Unlike pure visual
inspection, such an approach may scale to large astronomical data
sets better. See Section 6 for more discussion.

5 ASTROPHYSICAL ANALYSIS

This section explores the astrophysical properties of the jellyfish
candidates as labelled by the visual inspection. We present the
morphological features of the jellyfish candidates and their spatial
distribution around the three cluster systems. We also estimate
their star formation rates and stellar masses and analyse their
distributions on the phase-space diagrams. It is important to note
that although candidates in JClass 1 and 2 are considered jellyfish
galaxy candidates in the study, they are weak examples of jellyfish
galaxies. Therefore, they may represent ‘disturbed’ morphologies
rather than exhibiting true jellyfish signatures.

5.1 Morphological properties via MORFOMETRYKA

We perform a morphometrical analysis of the galaxies to look
for possible correlations in the JClass—morphology space, using
the MORFOMETRYKA code (Ferrari, de Carvalho & Trevisan 2015).
We select two non-parametric and one parametric morphological
indicator: (i) The normalized information entropy H, which sum-
marizes the distribution of pixel values in the galaxy region in the
images — smooth (clumpy) galaxies have low (high) H; (ii) the Gini
coefficient G as used by Lotz, Primack & Madau (2004), which
is another measure of the flux distribution across pixels; (iii) the
best-fitting Sérsic index from the 2D Sérsic fit to the galaxy images,
nFit2D, which quantifies the curvature of the radially centred light
distribution (which would be the brightness profile in 1D case). We
rely solely on r-band statistics due to their comparatively high signal-
to-noise ratio (S/N). All measurements are performed considering
pixels inside the Petrosian region (see Ferrari et al. 2015, for details)

Fig. 10 shows the joint distributions of H — G and H — nFit2D,
along with the marginal distributions of each morphological parame-
ter, coloured by the JClass. The most extreme jellyfish candidates in
our data set (with JClass = 4) were not considered due to insufficient
examples for their kernel density estimate (KDE) calculation. We
note that JClass 1 candidates are the weakest examples of RPS, so
they nearly overlap with JClass O in the distribution of the three
morphological parameters considered. The H — G plot shows a
non-trivial correlation between the position in the H — G space
and the JClass of the increasingly stronger JClasses (JClass = 2,
3). In particular, JClass 2 and 3 galaxies have higher entropy than
other galaxies, suggesting that galaxies with strong RPS evidence
are clumpier than galaxies with weak or no evidence of RPS. A
similar pattern is observed with G, where JClass 2 and 3 candidates
have lower G, suggesting that the flux in such galaxies is spread
across more pixels than in galaxies with weak or no RPS evidence,
which is in contrast to Bellhouse et al. (2022) who found G alone
to be an insufficient indicator to separate ram-pressure stripping
galaxies from the general population of galaxies. The H — nFit2D
plot additionally shows that JClass 3 candidates have lower Sérsic
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Figure 9. An example application of our framework to assign a JClass to galaxies that are visually confusing to classify. The images on the left column (outlined
in red) are the query images and have significant deviations in their visual JClass (see the text for details). The four images closest to each query image are
shown as obtained by SSL. The JClass predicted by SSL (see the text for details) is also shown for each query image. The JClasses mentioned in the images
in the second-to-last columns are obtained from visual classification. Cosine similarity values are indicated. Visual classification also predicts whether a given
galaxy shows merger signatures, shown in each image’s bottom-right. A galaxy is considered a merger only when more than half of the visual classifiers voted

in favour of a merger.
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Figure 10. Distribution of the morphological parameters considered in this
study (G, H, and nFit2D), coloured by the JClass. The data points and the
bivariate KDE curves are shown in the main plot, whereas the univariate KDE
curves are shown on the top and right of the figures. The univariate KDEs are
normalized independently of each other. Cases with unusual conditions during
the morphometry calculations were excluded, as indicated by the quality flag
[see table 3 of Ferrari et al. (2015) for more details].

indices than lower JClass candidates in the plot, which indicates
the former are more disc-like than galaxies with weaker or no RPS
evidence (JClass 0, 1, and 2). From an astrophysical perspective, this
observation is expected as jellyfish galaxies generally possess a disc
component (e.g. Poggianti et al. 2016b).

Although the small sample size limits the conclusions from our
analysis here, we find hints that the clumpiness of galaxies increases,
and their ‘disc-ness’ increases as the JClass increases, as suggested by
the marginal distribution of the morphological parameters. Repeating
this study on larger data sets would allow deducing more meaningful
conclusions. We also note that mergers may share a morphology
parameter space similar to jellyfish candidates, which is observed in
several studies (e.g. McPartland et al. 2016; Bellhouse et al. 2022;
Krabbe et al. 2024), but this is not discussed here.
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5.2 SFR versus mass

The star formation rates (SFR) of the jellyfish candidates are derived
from the Ha fluxes. Such flux measurements are obtained using
the Three Filter Method (3FM; Pascual, Gallego & Zamorano 2007;
Vilella-Rojo et al. 2015) applied to r, J660, and i-band images.
This approach creates emission line maps by assuming that the two
broad-band filters can trace the continuum of the galaxy within the
narrow-band filter, where the emission line is located. The 3FM is
based on colour relations, so the images must be calibrated and PSF-
corrected. Moreover, a low pass (Butterworth) filter is applied to all
images to decrease noise. A Voronoi binning is performed to reach
an S/N of 20 in the J0660 image. The S/N limit was chosen after
several tests to ascertain artefacts or bad pixels are excluded.®

We integrated the resulting H o« map to estimate the H o flux within
a radius encompassing 90 per cent of the flux (rgp) in the r-band for
each galaxy. The choice of rgy aims to maximize the inclusion of
the emission structure in the analysis. From the H o flux, we derived
the H « luminosity, which is converted to SFR following the relation
given by Kennicutt (1998). The SFRs are corrected for dust and [NII]
following the relation proposed by Kouroumpatzakis et al. (2021).
This procedure computes the total integrated star formation rates
for the entire galaxy region. SFR errors are derived by a simple
propagation of errors.

The stellar masses (M,) are obtained by fitting the galaxy spectral
energy distributions (SEDs) with the CIGALE code (Boquien et al.
2019; version 2020.0). SED modelling was performed for only 84
galaxies from the main and control samples (15, 46, and 23 from
Antlia, Fornax, and Hydra, respectively), which had their photometry
measured in the S-PLUS filters (Haack et al. 2024; Smith Castelli
et al. 2024) using SEXTRACTOR. The spectroscopic redshifts
and distances were obtained from the NASA/IPAC Extragalactic
Database (NED).’

In Fig. 11, we compare the star formation rate (SFR) as a function
of M, of all jellyfish candidates (JClass > 0) versus normal (i.e.
non-jellyfish; JClass 0) or star-forming galaxies, combined from the
three clusters. Comparison between each JClass is not performed due
to the low number of examples for each JClass. It can be observed
that no significant trends are observed in the SFR versus M, relation
for the jellyfish candidates. The SFRs of the jellyfish candidates
generally tend to possess elevated star formation compared to non-
jellyfish candidates; however, this elevation is not apparent at the
high stellar mass end. The jellyfish candidates are skewed towards
lower stellar masses, as seen in the lower panel. Thus, one possible
reason for the non-elevation could be the rarity of jellyfish candidates
at higher stellar masses. Possible implications of these observations
are discussed in Section 6.

We perform a two-sample Kolmogorov—Smirnov (KS) test to
statistically quantify the SFR comparison, similar to Roman-Oliveira
etal. (2019). The p-values for the SFR comparison of jellyfish versus
non-jellyfish galaxies and the main versus control sample galaxies are
lower than 10~*. For any reasonable confidence level (e.g. 95 per cent,
99 per cent), we thus reject the null hypothesis that the SFRs of the
two samples are drawn from the same distribution for the jellyfish
versus non-jellyfish and the main versus control comparison. These
findings are qualitatively in line with the results of other studies (e.g.

®Examples of Ho maps and the main code used to derive the SFR can be
found at https://github.com/amanda-lopes/Halpha-SPLUS-Jelly

"The NASA/IPAC Extragalactic Database (NED) is operated by the Jet
Propulsion Laboratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.
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errors in the SFR calculation ( > 50 per cent) are excluded. Typical

errors in the SFR are < 30 per cent.

Poggianti et al. 2016b; Vulcani et al. 2018; Roman-Oliveira et al.
2019), which found increased star formation in jellyfish candidates
compared to other normal or star-forming galaxies.

5.3 Direction of infalling

Jellyfish galaxies leave a trail of RPS gas in the opposite direction of
motion (Fumagalli et al. 2014; Poggianti et al. 2017; Roberts et al.
2021b). Thus, the trail direction provides information about the most
probable direction of the galaxy’s motion in the cluster system (e.g.
Smith et al. 2010, 2022; McPartland et al. 2016). We discuss the
projected motion of the jellyfish candidates in each cluster: Antlia,
Hydra, and Fornax, shown by trail vectors (e.g. Roman-Oliveira et al.
2019, 2021).

Roman-Oliveira et al. (2021) found that the shift between the peak
and the centre of light of galaxies (calculated using MORFOMETRYKA)
is a better proxy for the motion direction than visual inspection,
especially for disturbed morphologies. The motivation for using
such an approach lies in the fact that while the centre of light of
the galaxy is sensitive, the peak of light is resilient to perturbations
in the galaxy morphology due to ram pressure stripping so that the
difference between them can be used as a tracer of the galaxy’s
motion. As a result, we derive the trail vectors using MORFOME-
TRYKA measurements, where the direction is based on the following
relation: (x, y)peak — (X, ¥)col. Similar to Section 5.1, calculations are
performed only on r-band images.

Fig. 12 shows the spatial distribution of the jellyfish candidates
from each galaxy cluster, with the trail vectors shown by the arrows.
Similar to Roman-Oliveira et al. (2019), we calculate the angle
between the trailing vector and the line joining the galaxy to the
cluster’s centre to identify whether the galaxy moves towards or away
from the cluster centre. The galaxy is considered infalling towards
the centre if the angle is less than 90 degrees and outfalling if the
angle is greater than 90 degrees. Table 1 shows the distribution of the
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number of galaxies falling inwards or outwards from the respective
cluster system. We consider galaxies in a cluster to preferentially fall
towards the cluster when more than half of the galaxies are found
to be infalling. Thus, galaxies from Antlia and Fornax preferentially
fall towards the cluster, whereas there seems to be mild or no specific
preference for galaxies from Hydra to infall. However, we note that
our analysis is affected by the limited sample size.

5.4 Phase-space analysis

The environment where a galaxy resides within a group or cluster
may pose noteworthy morphological and physical transformations.
In addition, the position and velocity of the galaxy with respect to the
cluster centre are determinants for our understanding of the different
dynamical effects at play. In particular, the phase-space diagram
(Jafté et al. 2015) relates the peculiar line-of-sight (LOS) velocity
AV, of each galaxy and their projected radial position R, from the
cluster centre. The line-of-sight velocity can be determined by
AVlos C(Z - ch)

Oy - (1 + ch)gv ' (3)

where o is the velocity dispersion of the cluster, ¢ the speed of light,
z the spectroscopic redshift of a given galaxy, and z. the redshift
of the cluster. For the projected distance, we converted each angular
distance in arcsec to a kpc scale based on the distance to the cluster
(e.g. 1 arcsec = 0.247 kpc in Hydra, as discussed in Arnaboldi et al.
2012).

The spectroscopic properties of the jellyfish candidates were
obtained from NED. However, for three candidates from Hydra, we
did not find their spectroscopic properties in NED, for which we made
use of the catalogue of ram pressure targets from Hydra published by
the WALLABY survey (Wang et al. 2021). The coordinates (RA, DEC)
of these galaxies are: (159.854°, -27.9125°), (159.192°, -28.1672°),
and (159.337°, -28.2372°). The properties of the three clusters are
shown in Table 2. In the case of Fornax, we consider the cluster
centre at NGC1399.

In Fig. 13, we show the distributions of the most secure jel-
lyfish candidates from each cluster in the projected phase-space
diagram. The x-axis shows the projected distance normalized by the
virial radius Rjg. Following Roman-Oliveira et al. (2019), we de-
fine two boundaries: (B1)|AViy/0,| < 1.5 —(1.5/1.2) x R;/Rag
(Jaffé et al. 2015) and (B2)|AVies/0y] < 2.0 —(2.0/0.5) x Ry/Rapo
(Weinzirl et al. 2017) (see also Rhee et al. 2017; Pasquali et al.
2019). The areas within the defined boundaries represent virialized
galaxies. The purpose of segmenting the phase space into regions is
to determine the most likely stage of the galaxy’s orbit, such as recent
infalling, backsplashing, or having already undergone virialization.

In the case of Antlia, some of the JClass 1 and 2 candidates are
under the influence of the cluster, and have peculiar velocities of the
order of the velocity dispersion of the cluster. Two candidates are
close to boundary B2 (one of them being a JClass 3). However, the
remaining candidates (including a JClass 4) are outside the influence
of the cluster and exhibit relatively high LOS velocities. For Hydra,
most of the candidates are found within the influence of the cluster.
On the other hand, most of the Fornax candidates are located in
the outskirts (R, > 2 x Rygg), which is also confirmed by the spatial
distribution of Fornax galaxies in Fig. 12. This is not unexpected since
Fornax’s outskirts up to large radii are covered in this study. These
candidates also exhibit high velocities with respect to the cluster
velocity dispersion. Two JClass 4 candidates are located at R, >
3Ry00. Further inspection of these candidates can reveal whether
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Figure 12. Spatial distribution of jellyfish candidates in each galaxy cluster: Antlia, Fornax, and Hydra, along with their trail vectors shown by arrows. Since
only the direction is considered in this study, all trail vectors are shown with the same length. Galaxies with a failed trail vector calculation were excluded. The
black cross marks the centre of the cluster. The red dashed circle indicates the virial radius.

Table 1. No. of infalling and outfalling galaxies, categorized by the JClass,
in each galaxy cluster, as indicated by the trail vector directions. See Fig. 12
for the trail directions.

Cluster Direction JClass1 JClass2 JClass3 JClass4 Total
Antlia Infalling 2 2 1 1 6
Outfalling 1 1 0 0 2
Hydra Infalling 3 3 0 1 7
Outfalling 2 1 2 1 6
Fornax Infalling 5 5 2 2 14
Outfalling 3 1 3 0 7

Table 2. Cluster properties: distance to the cluster, D¢ (Mpc), virial radius,
Rapo (Mpc), virial mass, Mooy (M), velocity dispersion, o, (km s~1), and
spectroscopic redshift (z¢1). References: (a) Wong et al. (2016); (b) Sarkar
etal. (2022); (c) Ragusa et al. (2023); (d) Hopp & Materne (1985); (e)Sarkar
et al. (2022); (f) Tonry et al. (2001); (g) Iodice et al. (2019); (h) Drinkwater,
Gregg & Colless (2001); (i) Reiprich & Bohringer (2002); (j) Arnaboldi et al.
(2012); (k) Wang et al. 2021; (1) Lima-Dias et al. (2021).

Cluster D¢ Rogo Moo Oy Zcl

Antlia 39.8@ 0.887®) 1014 591 0.009@
Fornax 19.9@ 075 7x1083® 3708 0.0046"
Hydra 50 149 3x104® 6900 0.012¥

ram-pressure stripping is acting out to these large outskirts, which is
a possible phenomenon (Bahé et al. 2013).

To better investigate the distribution of candidates in Fornax,
we plotted the phase space diagram by considering the centre at
NGC1316, a lenticular galaxy from an in-falling subgroup. However,
as shown in Fig. 14, the jellyfish candidates are even further
away from the influence of this subgroup. Finally, since Fornax
is surrounded by three other groups (NGC1225, Eridanus, and
NGC1532), another hypothesis is that they may influence these can-
didates. However, this conjecture is refuted by the spatial distribution
map shown in Fig. 15. Therefore, more investigation is needed to
determine whether this gravitational influence of Fornax is causing
RPS in these candidates. We note that, another significant influence
of the cluster environment on a galaxy, which reaches beyond the
virialized region, is the extent of the virial shock surrounding the
cluster. This shock boundary can extend several times beyond the
virial radius (e.g. Bahé et al. 2013; Zinger et al. 2018) and once a
galaxy crosses the virial shock, the surrounding gas density increases
and consequently there is a rise in ram pressure.

6 DISCUSSION

This paper analyses 51 jellyfish galaxy candidates from three nearby
galaxy clusters: Fornax, Antlia, and Hydra, observed in the S-PLUS
survey. These candidates were derived using the traditional visual
inspection approach, which produced a categorical RPS measure,
the JClass, ranging from 1 to 4, representing the weakest to strongest
RPS evidence. We have not recovered any JClass = 5 cases in our
hunt for jellyfish candidates in these three clusters. It is possible
that these clusters do not harbour extreme ram-pressure stripping
galaxies, or that such stripped structures may be revealed by other
observational methods that are beyond the parameters probed by this
study; see Serra et al. (2023) for an example of a prominent tail in H1
gas observed by MeerKAT in NGC1437A, which received a JClass
= 3 in our study.

Following the identification of jellyfish candidates, we analysed
their astrophysical properties. A morphological study revealed that
moderate to extreme jellyfish candidates (JClass 2 and 3; JClass 4 was
not studied for morphology due to scarcity of JClass 4 examples) are
clumpier (higher entropy, H) and have more scattered flux (smaller
Gini coefficient, G) than galaxies with weak or no evidence of RPS
(JClass 0 and 1). The JClass 2 and 3 galaxies are more disc-like than
JClass 0 and 1 galaxies, quantified by the lower Sérsic indices of the
former. The increasing ‘disc-ness’ as the jellyfish signatures become
more prominent is expected since jellyfish galaxies are known to have
a prominent galactic disc. The majority of the jellyfish candidates
with JClass 2 and 3 are low stellar mass galaxies (M, < 10'° My),
with most of them having 107 Mg < M, < 10° Mg, (see Fig. 11).
Low-mass star-forming galaxies are usually pure-disc systems with
surface brightness profiles well described by an exponential law
(n ~ 1; Hunter & Elmegreen 2006; Lange et al. 2015; Salo et al.
2015). These galaxies are the ones that are more easily perturbed in
a dense environment (Boselli & Gavazzi 2006; Boselli, Fossati &
Sun 2022; Kleiner et al. 2023). Thus the jellyfish candidates with a
higher JClass might be associated with lower mass cluster members
that are more sensitive to the surrounding environment compared to
JClass 0 galaxies, characterized by a larger range of stellar masses
that extends above 10'® M, (Fig. 11). An essential finding through
this analysis is that high JClass galaxies (JClass > 2, are not entirely
distinct from the others (JClass 0, 1). Instead, they prefer a specific
sub-region of the morphological parameter space of the JClass 0 and
1 galaxies, as aptly demonstrated by Fig. 10. This overlap in space oc-
cupation could be because the employed morphological parameters
produce degeneracies between extreme RPS galaxies and a specific
type of non-jellyfish galaxies. These observations demonstrate that
jellyfish candidates have complicated morphological characteristics
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Figure 13. Projected phase-space diagram for the jellyfish candidates from Antlia, Fornax, and Hydra. The cluster centre for Fornax considered is NGC1399.
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Figure 14. Projected phase-space diagram similar to the one for Fornax in
Fig. 13, but considering the centre at NGC1316.
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Figure 15. Spatial distribution of galaxies from Fornax. The dots (squares)
indicate candidates from the main (control) samples. The colour bar indicates
the JClass. The pink dashed circle indicates the virial radius. The black cross
(star) shows the location of NGC1399 (NGC1316). The black diamonds
indicate the locations of three nearby groups (NGC1225, Eridanus, and
NGC1532).

that likely cannot be sufficiently described by a single morphological
indicator. Thus, a combination of these morphological characteristics
can be used to perform morphological cuts for candidate jellyfish
sample selection in the future. Simulations studying the evolution of
jellyfish galaxies (its different stages such as cluster infall, stripping
of gas from its disc, and late-stage evolution) can allow tracking its
position in the morphology space (e.g. the 2D space of Fig. 10) to
get direct insights into morphological evolution of jellyfish galaxies.
Also, interpreting weak jellyfish candidates (JClass 1 and 2) as
examples of ‘disturbed’ morphologies rather than jellyfish could
also help explain why these candidates largely overlap with the non-
jellyfish population.

The star formation activity analysis suggested that galaxies with
JClass > 1 have a higher SFR than normal, star-forming galaxies
(with JClass 0). This observation is expected since RPS is known
to cause a temporary starburst in jellyfish galaxies before eventually
quenching its cold gas (e.g. Gullieuszik et al. 2017; Vulcani et al.
2018; Poggianti et al. 2019b; Roman-Oliveira et al. 2019; Gullieuszik
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et al. 2020). The SFR versus stellar mass plot trends suggest that
this effect can become less pronounced for high-mass galaxies
(M, > 10° Mg). However, it is not possible to make definitive
conclusions since selection effects can be at play: our sample consists
of few examples of low-mass normal, star-forming galaxies, and
many jellyfish candidates have a low stellar mass, as seen in Fig. 11.
Such a disproportionate distribution of stellar mass of the galaxy
candidates poses difficulties in comparing SFRs at any given mass
in this study.

By analysing the tail direction of galaxies with JClass > 1 in their
respective cluster systems, we find that galaxies from the Antlia
and Fornax clusters have tails preferentially pointing away from the
cluster centre, which suggests they are falling towards it probably
for the first time. However, only a mild preference is observed for
galaxies in the Hydra cluster since around half of the galaxies in
Hydra indicate infall, whereas the other half indicate outfall. We find
insufficient evidence that nearby groups could affect the ram pressure
stripping in galaxies from Fornax.

Further insights might require more extensive analyses due to
potential selection effects influenced by the galaxies’ projected radii
from the cluster centre. For instance, comparing our calculated trail
vector directions with H tail directions from studies such as Wang
et al. (2021) and Kleiner et al. (2023) could be insightful but lies
beyond the scope of this paper.

The properties of jellyfish candidates are generally compared
with non-jellyfish galaxies to gain insights into the differing physics
between the two types of galaxies. Naturally, the astrophysics and
the subsequent scientific implications depend on how the JClasses
are assigned. The traditional visual classification used to separate
jellyfish from non-jellyfish galaxies is highly dependent on human
visual biases, which makes the classification subjective. In our visual
classification, we often observed disagreement between different
classifiers. It is also impractical to manually vet large data sets
(comprising > 10977 galaxies) to identify rare jellyfish galaxies.

To mitigate these challenges, we proposed a semi-automated
pipeline using SSL and demonstrated a proof-of-concept application
of our pipeline. We pre-trained an encoder network aimed at
extracting generalized feature representations of galaxies without
relying on human-based JClass for learning. Thus, SSL pre-training
is ideal for learning morphologies from large, unlabelled galaxy data
sets, a common theme in astronomy. The encoder is then used as a
feature extractor on galaxies unseen during the pre-training. Noting
the limitations of fully supervised learning or supervised learning
on self-supervised representations in providing JClass estimates, we
developed a novel downstream task based on the self-supervised
representations. We assign a self-supervised-based JClass to refine
the visually assigned JClass using a weighted nearest neighbour
search on the self-supervised representations. For any given galaxy,
we assign the refined JClass as the weighted mean of visual JClasses
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of the k nearest neighbours in the self-supervised representation
space. We demonstrated the application of this framework to a few
galaxies having uncertain visual JClass classification, which in this
study refers to the case where more than half of the visual classifiers
predict different JClasses. Care was taken to ensure that the nearby
galaxies used to assign the JClass to the concerned galaxy were
not themselves uncertain for visual classification. The astrophysical
analysis presented in Section 5 studied possible patterns in the chang-
ing astrophysics as the JClass increases; however, the JClass was
obtained only by visual inspection. Our self-supervised pipeline can
be integrated with visual classification to improve JClass estimates
of uncertain visual classifications, which could reveal new patterns
or improve the reliability of observed patterns.

Due to our limited data set, it is difficult to reliably quantitatively
assess how much disagreement exists between the visual and self-
supervised JClasses. However, we have found many cases where
SSL predicted weak and intermediate jellyfish candidates based on
visual classification (JClass 1, 2) as non-jellyfish (JClass 0). This may
help mitigate false-positive cases. We have also found cases where
both approaches agree in their JClass estimate, particularly for visual
non-jellyfish galaxies. Cases where the self-supervised predicted a
stronger jellyfish signature were also present. Such cases could pave
the way for detecting new jellyfish galaxies. We have validated our
framework by finding that the self-supervised and visual JClasses
agree well for visually confident JClass predictions, which was the
expectation.

A current limitation of our self-supervised pipeline is based on
the fact that jellyfish galaxies and non-jellyfish galaxies, even the
most pronounced ones, have overlapping morphological features,
such as extended emission or diffuse regions at their edges. Since
the self-supervised representations are of high dimensionality (512
in this study), such similarity searches may highlight similarities
based on features that do not help distinguish jellyfish from non-
jellyfish galaxies. In other words, although the learned features are
useful for classification, we cannot guarantee that they directly corre-
spond to fundamental astrophysical properties that are immediately
interpretable. As a result, we speculate that differentiating between
merger and jellyfish galaxies will be difficult based on the current
approach.

As seen in Section 4.2, cases where the self-supervised JClass
is greater than the visual JClass can be studied in more detail,
such as their astrophysical and morphological characteristics, which
is another potential application of SSL. Such studies can also
differentiate true ram pressure stripping candidates from merger
galaxies. Another research direction is identifying and disentangling
features or learning a similarity metric (instead of fixing it to cosine
similarity) that helps distinguish jellyfish from non-jellyfish galaxies,
which could alleviate these issues. A larger pre-training data set can
also prove beneficial.

Although this study aimed to improve the JClass obtained from
visual classification, there are several possible extensions of our
study. The strongest jellyfish candidates based on visual classification
can be used as queries for similarity search so that the resulting
similar images output by the SSL pipeline can be further inspected
for jellyfish identification. An advantage is that only the strongest
jellyfish signatures need to be classified visually (which generally
happens quickly and reliably), and our pipeline may automatically
identify other strong, intermediate, or weak jellyfish signatures.
Once identified by our pipeline, these jellyfish candidates can be
inspected in more detail. Such an approach is helpful for swiftly
identifying new jellyfish candidates from future galaxy surveys.
Another research direction is to pre-train the self-supervised encoder
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on a large, unlabelled galaxy data set and then perform fine-tuning
of the model for the specific task of JClass assignment. The fine-
tuning approach can significantly improve the generalizability of
the learnt representations and has been shown to surpass fully
supervised methods (e.g. Liu et al. 2019; Abul Hayat et al. 2021;
Hayat et al. 2021). The loss function for fine-tuning could be based
on a representation similarity metric.

7 CONCLUSIONS

This study catalogues and analyses the astrophysical properties of
51 jellyfish candidates (possessing visual evidence of ram pressure
stripping) within the Fornax, Antlia, and Hydra clusters from the
S-PLUS survey data. Based on the Gini coefficient (G), entropy
(H), and best-fitting 2D Sérsic index (nFit2D) morphological
parameters, we find that galaxies possessing extreme ram pressure
stripping prefer the following regions in the morphology space: low
G, high H, and low nFit2D. However, the region where such galaxies
are located overlaps with the overall span of normal, star-forming
galaxies in the morphology space. We have found that galaxies
with JClass > 1 possess an overall higher SFR compared to the
sample of normal, star-forming galaxies. While we observe a strong
preference for galaxies in the Antlia and Fornax clusters to infall
towards the cluster centre, galaxies from Hydra possess a relatively
weaker preference for infall. According to our study, the order of
virialization of the clusters is Hydra, Antlia, and Fornax, with Hydra
being the most likely virialized system.

Another crucial contribution of our study is to present a semi-
automated pipeline based on a branch of machine learning called
SSL to assist in visually classifying galaxies. The primary motivation
to use our designed pipeline for identifying jellyfish galaxies is
because, traditionally, their identification in optical wavelengths
has predominantly depended on visual inspection, which is a time-
consuming endeavour.

Our study analyses the capabilities of SSL to assist visual mor-
phological classification of galaxies in the low-data regime (~200
galaxies only), which has been previously largely unexplored in
an astronomical context. Despite the paucity of data, a similarity
search using SSL revealed that the learnt representations of our
galaxies are robust to orientation and noise. Our study thus shows that
SSL can learn meaningful feature representations of galaxies even
with limited data, likely due to its non-dependence on any labels
during training. There are two immediate advantages of our self-
supervised pipeline used to refine the visual JClasses. First, unlike
laborious visual inspection, it is scalable to large data sets. Once
the self-supervised encoder network is pre-trained, it can be used
for swift JClass assignment for new galaxies based on a simple,
weighted nearest neighbour search. Secondly, although our pipeline
uses the visually assigned JClasses for the final JClass prediction,
the self-supervised encoder is trained agnostic to the visual JClass
labels. Thus, the training is unaffected by the quality of visual JClass
predictions. Furthermore, our pipeline relies only on confident visual
classifications, significantly reducing misclassifications arising from
human biases. Traditional approaches of supervised learning or train-
ing a supervised classifier on the extracted feature representations
(i.e. the linear evaluation protocol) rely entirely on the quality of
the visual JClass since these labels are used as ground truths in the
learning process.

Our pipeline can also be used as a guide to train human classifiers
to assist in their visual classification. Another application of our
pipeline is identifying false positives and negatives during follow-up
analysis after human classification. Our self-supervised strategy is
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designed to lay the groundwork for a more comprehensive search
in the future. For example, with large astronomical data sets, more
powerful semantic embeddings can be obtained, further improving
the performance. It will then be possible to leverage our self-
supervised pipeline to produce more reliable JClass estimates and
thus pave the way for better constraining the properties of these
rare jellyfish galaxies. Finally, the idea of a task-agnostic nearest
neighbour search in the self-supervised representation space makes
our pipeline highly adaptable for the seamless identification of any
rare astronomical signatures within astronomical data sets of future
astronomical surveys.
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APPENDIX A: MODEL TRAINING DETAILS

A1l Implementation details

All experiments are conducted using the PYTORCH-LIGHTNING
library (Falcon et al. 2019; version 1.6.0), and our SimCLR imple-
mentation is motivated by the SimCLR tutorial® in Lippe (2022).
We use ResNet-34 as our base encoder instead of the Resnet-50
used in the original SimCLR approach (He et al. 2016) since larger
models tend to overfit on small data sets (Cao & Wu 2021). The
ResNet-34 architecture is modified to accept our 12-channel input. To
handle the relatively low-resolution images in our case as compared
to typical images used for ResNet, such as those from ImageNet
(Deng et al. 2009), we also change the stride from 2 to 1 in the first
convolutional layer and reduce the amount of pooling by removing
the first max pooling layer (Newell & Deng 2020; Hayat et al.
2021). We use the default weight initialization in PYTORCH for all the
models considered in our study. This choice of architecture yields
a 512-dimensional representation vector for each image. Although
increasing the dimensionality of the representations enhances their
quality, higher dimensional representations may degrade the quality
of the representations for smaller data sets (Kolesnikov, Zhai &
Beyer 2019). Hence, we refrain from experimenting with different
representation sizes. Further studies can investigate the potential
benefits of increasing representation dimensions for smaller data
sets.

The projection head in our self-supervised model is a two-layer
MLP with a ReLU activation function, mapping the representation
vector onto a 128-dimensional space. Taking a cue from the obser-
vation by Chen et al. (2020b) that increasing the projection head’s
width improves performance, we opt for a four-fold wider hidden
layer. We do not, however, increase the depth of the MLP, given
that the benefits of deeper MLPs tend to saturate for already-wide
projection heads.

8https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial _notebooks/tutor
ial17/SimCLR.html
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A2 Hyperparameter tuning

A2.1 For self-supervised pre-training

For pre-training, the following hyperparameters are tuned: learning
rate, weight decay, temperature, and number of epochs. As mentioned
in the main text, the batch size is fixed to 128. K-fold cross-
validation is used to optimize the hyperparameters by dividing the
training data set into K folds. We note that such an approach is less
commonly used in the SSL context since pre-training data sets are
generally sufficiently large, unlike the case here. The study by Suzuki,
Kambayashi & Matsuzawa (e.g. 2022), for example, utilized K -fold
cross-validation in SSL. We adopt such a validation procedure for
two main reasons. First, our data set size is too small to assume that
a simple train-validation-test split would estimate the model perfor-
mance reliably. Secondly, it would mean a part of the training data
is set aside for validation, thus reducing the amount of training data.

The hyperparameters are tuned using a combination of contrastive
loss (defined in Section 3.3) and top-5 accuracy (the number of
times the desired patch is within the top five most similar examples
to the original image in the sampled batch) on the validation split.
For computational reasons, K = 3 is used instead of the common
choices (K = 5 or 10), which means the scores are averaged across
three folds. We remind the reader that the top-5 accuracy is not
the accuracy in the downstream classification task. The similarity
is computed using the cosine similarity metric. The top-5 accuracy
is used instead of top-1 since the former is less noisy. Even though
there are two classes, jellyfish and non-jellyfish, here, the use of top-
5 accuracy is valid, unlike traditional supervised classification, since
the similarity is compared across all images from a given batch.
The hyperparameters could be selected based on the downstream
classification performance. However, such an approach is not used
here since we are more concerned with image similarity than the
final classification performance.

A progressive grid-search approach is used to select the optimal
set of hyperparameters. First, a coarse search is performed on a wide
range of hyperparameter values: three learning rate values uniformly
selected from logarithmically spaced values in the range 107> to
1072, weight decay uniformly selected from three logarithmically
spaced values in the range 107® to 1073, and temperature selected
from 0.1, 0.5, 1.0. Such a wide search informs of each hyperparam-
eter’s approximate optimal hyperparameter intervals. The optimal
region found was around 3 x 10~* for learning rate, 3 x 10~ for
weight decay, and 0.1 for temperature. A finer search is then
performed around these values. In all cases till now, training was
performed for 100 epochs to keep the computational costs low. We
separately list the top five approaches based on top-5 accuracy and
contrastive loss and only select the hyperparameter sets that appeared
in both lists. This makes the hyperparameter selection less noisy. Six
sets of hyperparameters appeared on both lists. Each case was then
trained for longer, i.e. 300 and 500 epochs, to yield the optimal
hyperparameter set: learning rate = 10~*, weight decay = 107%,
and temperature = 0.05, again decided based on the combination of
top-5 accuracy and contrastive loss. As mentioned in the main text,
training the model longer often helps contrastive learning. To test
this, we trained the model using the optimal learning rate, weight
decay, and temperature defined above for longer epochs, i.e. 700
and 1000 epochs. We found the performance to improve by training
longer, which corroborates the fact. Hence, we use 1000 epochs for
pre-training.

Fig. A1 compares the top-5 accuracy and contrastive loss, averaged
across three folds, corresponding to the optimal hyperparameters
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Figure Al. Averaged top-5 accuracy and contrastive loss, across the three
folds, for the optimal hyperparameters (learning rate = 10~*, weight decay
= 10~*, and temperature = 0.05), obtained during hyperparameter tuning of
the self-supervised pre-training, as a function of the number of epochs.

obtained using the above procedure. The figure shows that training
for 1000 epochs yields the highest accuracy and lowest contrastive
loss. We have observed the standard deviation across the folds to be
< 2.5 per cent. This difference is non-trivial, which may be due to
our extremely small data set that makes the individual folds not fully
representative of the entire data set.

A2.2 For supervised learning

The following hyperparameters are tuned: learning rate, weight
decay, and number of epochs. As in Section A2.1, K = 3 is used for
the K -fold cross-validation. The learning rate is selected from {10*5,
1074, 1073}, weight decay from {107, 10~*, 1073}, and number
of epochs from {50, 70, 90}. The macro-averaged precision and
recall scores are used for selecting the optimal hyperparameter set.
A similar grid search approach is used as in Section A2.1. This results
in 27 different sets of hyperparameters. K-fold cross-validation
is performed on each hyperparameter set, and the corresponding
precision, recall, and accuracy scores are averaged across the three
folds. The optimal hyperparameter set is chosen by selecting those
that appear in the top three positions for all three metrics. In our
case, two hyperparameter sets appeared in the top three positions.
The tie was broken by selecting the set that ranked better across all
three metrics. This procedure yielded the optimal hyperparameter
set: learning rate = 107>, weight decay = 107>, and number of
epochs = 90.

Fig. A2 shows the classification metrics averaged across the three
folds as a function of the number of epochs. Overall, 90 epochs
training performs better than 50 or 70 epochs training. Hence, we
choose 90 epochs for comparison with the self-supervised approach.

A2.3 For linear evaluation

Linear evaluation results are discussed in Appendix B. Here, the
tuning is performed on the following hyperparameters: learning rate,
batch size, and number of epochs. The representations from the
training set (obtained during the train-test split during the linear
evaluation) were divided into K folds. Since the 512-dimensional
representations are dealt with here rather than images, the hyperpa-
rameter tuning poses relatively less computational burden than the
experiments in Section A2.1 and A2.2. Hence, K = 10 is used here.

Similar to the hyperparameter tuning procedure of Section A2.2,
the macro-averaged precision and recall over the folds are compared.
However, several ties were observed in this case while ranking
different hyperparameter sets based on precision and recall scores.
Hence, the logistic loss (also called the cross-entropy loss) was used
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Figure A2. Averaged precision, recall, and top-1 accuracy, across the three
folds, for the supervised classification using the optimal hyperparameters
(learning rate = 10—, weight decay = 10~3), obtained during hyperparameter
tuning, as a function of the number of epochs.
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Figure A3. Averaged precision, recall, and logistic loss, across ten folds,
for the linear evaluation using the optimal hyperparameters (learning rate =
5 x 1073 and batch size = 16) as a function of the number of epochs.
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to break the ties. The set that yielded the least loss was then selected.
The optimal hyperparameter set we obtained is: batch size = 16,
learning rate = 5 x 1073, and number of epochs = 350. As seen
from Fig. A3, the number of epochs = 350 is optimal.

APPENDIX B: SELF-SUPERVISED VERSUS
SUPERVISED LEARNING

We use the Resnet-34 architecture for the supervised CNN to
match the encoder architecture of SSL. Since supervised approaches
benefit from having the entire object within the image, we use all
augmentations as in the self-supervised case except random-resize-
and-crop. Moreover, to ensure the learning is not affected by class
imbalance, we use weighted random sampling wherein images from
the minority class (i.e. jellyfish) are oversampled in each sampled
batch. We also reduce the learning rate by a factor of 0.1 after
70 per cent and 90 per cent of the total epochs during training
for both approaches. For linear evaluation, we train the logistic
regression classifier using the SGD optimizer with initial learning

rate = 5 x 1073, batch size = 16, and the number of epochs = 350
but do not use weight decay.

It is widely acknowledged that supervised learning methods tend
to exhibit subpar performance as the size of the data set decreases.
This is mainly due to their vulnerability to overfitting (Ying 2019),
unless certain regularization techniques, such as dropout (Srivastava
et al. 2014), are employed. On the contrary, SSL demonstrates
relative resilience to fluctuations in the training data size, as it
does not rely on labels during the learning process but instead self-
generates supervision from the data itself. We assess these claims by
contrasting (a) the classification performance of a supervised logistic
regression classifier, trained on self-supervised representations, with
(b) vanilla supervised CNN. The former strategy is often called
the ‘linear evaluation protocol’ and is one of the common ways
to evaluate self-supervised representation quality. Both methods
use the ground-truth labels derived from visual classification re-
sults, with the only difference being that the former only uses
labels during the supervised logistic regression classifier training
but not for pre-training the encoder. The hyperparameter tuning
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Figure B1. Classification performance comparison between the supervised and self-supervised approaches. Panels (a) and (b) show the confusion matrices,
(c) compares the macro-averaged precision, recall, and area under the receiver operating characteristic (ROC) curve (AUC), and (d) and (e) show the prediction
probabilities output by the supervised ResNet and the logistic regression classifier on the self-supervised representations. By definition, AUC lies in the [0, 1]

range, but here we show it as a percentage only for visualization purposes.
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details are described in Appendix A2. For comparison purposes,
we framed the problem as a binary classification. As stated in
the main text, such a binary classification task greatly simplifies
the comparison since a multilabel classification scheme (JClass 0,
1, 2, 3, and 4) exacerbates the class-imbalance issue due to the
rareness of extreme jellyfish candidates. Moreover, to ascertain the
robustness of the self-supervised representations to variations in
seeing conditions, celestial locations, and other systematic factors,
training is performed on galaxies from the Antlia and Hydra
clusters, whereas the testing set includes images only from the
Fornax cluster. For completeness, we discuss the other two cases
(testing the model on the Hydra and Antlia cluster galaxies) in
Appendix E

Fig. B1 illustrates the comparison between the two approaches.
Figs B1(a) and (b) suggest that the supervised approach leans more
towards classifying galaxies as jellyfish than the self-supervised
approach, as evidenced by the misclassification of eight non-
jellyfish galaxies as jellyfish. This bias occurs despite adjustments
made for class imbalance during the supervised learning process
(Appendix Al). Conversely, when trained on self-supervised repre-
sentations, a logistic regression classifier demonstrates enhanced ro-
bustness to imbalance, as it does not depend on labels for learning the
representations. This finding indicates that self-supervised represen-
tations have successfully captured meaningful information regarding
the galaxies’ jellyfish-ness. This, in turn, enables the downstream
classifier to differentiate more accurately between jellyfish and non-
jellyfish galaxies. Overall, SSL demonstrates an improvement in
classification performance over supervised learning.

In the context of this study, an effective classification scheme

TP
should generate arobust recall rate (————; TP: True positive, FN:
TP +FN

False negative; positive denotes the jellyfish category) for jellyfish

candidates while maintaining high precision ( ) for non-

jellyfish galaxies. Considering the rarity of jellyfish candidates, a
certain level of false positives can be tolerated. Provided these
inaccuracies are infrequent, manual re-inspection and refinement
of these galaxies by human classifiers is feasible. In contrast,
overlooking jellyfish candidates can compromise the utility of such a
model. Figs Bl(a) and (b) indicate that both self-supervised and
supervised methodologies achieve identical recall scores for the
jellyfish category (83 per cent). The precision scores for the non-
jellyfish category are also identical (94 per cent and 93 per cent for
self-supervised and supervised learning, respectively). Thus, self-
supervised and supervised learning provide similar performances in
such a context.

We note that in our study, a threshold probability of 0.5 is
used for classification in both the self-supervised and supervised
methods. Alternative threshold choices were not experimented with.
Figs B1(d) and (e), which display the predicted probabilities, can
serve as a general guide for hypothesizing how results might shift
with the application of different thresholds. Given the rarity of jel-
lyfish candidates, one might consider a higher probability threshold
(analogous to the 0.8 threshold used for the visually classified raw
score in Zinger et al. 2023). If a higher threshold is used, even more
significant improvements can be obtained using the self-supervised
approach, as suggested by the probabilities observed in Figs B1(d)
and (e).
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APPENDIX C: DATA AUGMENTATION
ABLATION STUDY

Data augmentation is critical in learning good-quality representations
for the contrastive learning framework used here (Chen et al. 2020a).
Ablation studies are an indirect way to understand which augmen-
tations (or combinations of augmentations) are critical or relatively
unhelpful for learning good representations. Such ablation studies
are commonplace in SSL approaches and have been studied by many
works (see e.g. Hayat et al. 2021; Kinakh, Taran & Voloshynovskiy
2021).

The procedure is as follows: certain augmentation(s) from the
pipeline are turned off, pre-training is performed by learning rep-
resentations of images using images from the training data set,
and the linear evaluation protocol from Appendix B is employed
on the test data set. The ‘baseline’ denotes the case where all
augmentations described in the main text are used. An augmentation
or a set of augmentations is considered important for the downstream
classification task if the test performance decreases compared to the
baseline after removing that augmentation or set of augmentations.
Similar to the main text, training is performed on galaxy images from
the Antlia and Hydra galaxy clusters, and testing is done on images
from the Fornax cluster.

Fig. C1 shows the F1 scores of the classification under different
sets of augmentations. Accuracy is not used due to the class
imbalance. It can be observed that the F1 score decreases from
the baseline score, 81.7, to 50.7 when random resized crop and
colour jitter are omitted. Thus, this combination of augmentations is
vital for classification performance. Since the F1 score is the least
among all F1 scores in the plot, we conclude that random resized
crop and colour jitter is the most important set of augmentations.
This also confirms the observation in Chen et al. (2020a). Even
though our colour jitter implementation differs from theirs, it is
noteworthy that the result still holds. The figure also shows that
random resized crop is the most important augmentation in our
case, followed by colour jitter, following a similar logic. All other
augmentations are also important for the classification task, except
when horizontal flip, vertical flip, and random rotation augmentations
are removed (Approach 10 in the figure), since the performance

10  no_horizontal_and_vertical_flip_and_rotation 83.9
9 baseline 81.7
8 no_gaussian_blur 79.6
= 7 no_random_rotation 78.5
é 6 no_color_jitter_and_gaussian_blur 78.5
2 5 no_harizontal and_vertical flip 76.4
< 4 [0 center crop 76.0
3 no_color_jitter 1.7
2 no_random_resized_crop 53.3
1 no_random_resized_crop_and_color_jitter 50.7
0 10 20 30 40 50 60 70 80

F1 score

Figure C1. Classification F1 scores under various omission com-
binations of data augmentations. The labels on each bar describe
which augmentations were removed from the pipeline. For example,
no_horizontal _and_vertical _flip_and_rotation means that horizontal flip, verti-
cal flip, and random rotation augmentations were removed. The "baseline"
approach is the second bar from the top.
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improves when these three augmentations are removed from the
augmentation pipeline. A possible reason for this is that, since flips
are a special case of rotation augmentation, incorporating both kinds
of augmentations leads to redundancy, which could reduce the quality
of the learnt representations. For approaches 1 and 2 in Fig. C1, we
used a smaller batch size of 16 instead of 128 for self-supervised
training due to memory constraints when not using cropping.

APPENDIX D: IMPORTANCE OF ACCOUNTING
FOR BACKGROUND/NEARBY SOURCES FOR
EFFECTIVE SIMILARITY SEARCH

We use the Grad-CAM pixel attribution method on the self-
supervised representations extracted by the trained model to visualize
how background or nearby astronomical sources can affect the
similarity search. Implementation is taken from the GRAD-CAM
Python library (Gildenblat & contributors 2021; version 1.4.8).

To demonstrate the effects due to background sources, we select
a few cases in which GALMASK could not effectively remove
sources near the galaxy of interest. We seek to find whether the
similarity search can inadvertently find similar images based on
nearby sources instead of the central galaxy. A query-by-example
is run as described in Section 4.1. The embedding of the query
image is the concept embedding. Grad-CAM is then used to highlight
regions in the images closest to the query image. This test is valid
since our self-supervised approach does not account for background
sources during training, such as using data augmentations. Thus,
if background sources are indeed dominating similarity decisions,
it can be attributed to the model’s incapability to be robust to
background sources rather than inappropriate training.

We now discuss Fig. D1. The LEDA662179 query image in the
first example shows bright green-coloured sources surrounding the

9The tutorial can be found here: https://jacobgil.github.io/pytorch- gradcam
-book/Pixel %20Attribution%20for%20embeddings.html
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central galaxy. The closest image (LEDA83102), using the similarity
search, also contains similar background sources. The Grad-CAM
heatmap for LEDA83102 highlights the bright green-coloured source
instead of the central galaxy, which suggests that the similarity search
was affected by the neighbouring sources.

A similar phenomenon is observed in the second example
(ESO358-49 query image). For example, the heatmap for the second-
closestimage (ESO357-29) highlights the two closely spaced sources
in its bottom right more prominently than the central galaxy.
This can be attributed to the fact that the query image (ESO358-
49) also contained two similar sources, so the similarity search
focused on the surrounding sources instead of the central galaxy.
However, the subsequent similar images were not severely affected
by surrounding sources. This could be because the surrounding
sources in these similar images did not dominate the image in spatial
size or brightness. The third example also shows that the nearby
sources in the top two similar images to ESO35867 (ESO359-16
and ESO418-13) significantly contributed to the high similarity to
ES0O35867. However, ESO359-16 and ESO418-13 were considered
visual mergers (not labelled in the figure). Thus, interacting galaxies
could pose difficulties in similarity search, especially if there is
a considerable difference in the spatial size or brightness of the
interacting galaxies.

These examples suggest the importance of removing background
sources, as deep learning models are not inherently robust to
background sources. Thus, we have used the GALMASK package
to explicitly remove background sources for the machine learning
application in the main text. Cases where GALMASK could not
effectively remove background sources were not considered part of
our machine learning data set. An alternative possibility to solve this
issue is to account for background sources in the data augmentation
pipeline, but this was not experimented in our study.
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Figure D1. Demonstration using the Grad-CAM method of how background sources in the galaxy images can affect similarity search. Three examples are
shown. The similarity search results are shown for each example, and the corresponding Grad-CAM heatmaps overlayed on the galaxy images are shown in
the bottom row. This figure motivates handling background sources before or during model training, especially when the background sources have a size or
brightness comparable to the central galaxy under consideration.

APPENDIX E: CLASSIFICATION
PERFORMANCE ON TRAINING AND TESTING
ON DIFFERENT GALAXY CLUSTERS

Appendix B discussed the case where testing was performed on
galaxies from the Fornax galaxy cluster. For completeness, we extend
the comparison of supervised and self-supervised classification

results, where testing is performed on the Antlia and Hydra galaxy
clusters.

Fig. E1 shows the macro-averaged precision and recall of the
supervised and self-supervised classifications. In the case of the
Antlia galaxy cluster, self-supervised classification outperforms the
supervised case due to higher precision and recall scores. However, in
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Figure E1. Macro-averaged precision and recall scores for supervised and
self-supervised approaches when testing on galaxy images from the Antlia
and Hydra clusters.

the Hydra cluster case, the supervised approach has a higher precision
(91 per cent) than the self-supervised approach (82 per cent). On
the other hand, the recall scores are similar for the self-supervised
approach (86 per cent) and the supervised approach (85 per cent).
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These two experiments reinforce the fact that SSL provides results
competitive to supervised learning and can even improve classifica-
tion results compared to supervised classification.
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