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A B S T R A C T 

We study 51 jellyfish galaxy candidates in the Fornax, Antlia, and Hydra clusters. These candidates are identified using the JClass 
scheme based on the visual classification of wide-field, twelve-band optical images obtained from the Southern Photometric 
Local Univ erse Surv e y. A comprehensiv e astrophysical analysis of the jellyfish (JClass > 0), non-jellyfish (JClass = 0), and 

independently organized control samples is undertaken. We develop a semi-automated pipeline using self-supervised learning 

and similarity search to detect jellyfish galaxies. The proposed framework is designed to assist visual classifiers by providing 

more reliable JClasses for galaxies. We find that jellyfish candidates exhibit a lower Gini coefficient, higher entropy, and a lower 
2D S ́ersic index as the jellyfish features in these galaxies become more pronounced. Jellyfish candidates sho w ele v ated star 
formation rates (including contributions from the main body and tails) by ∼1.75 dex, suggesting a significant increase in the 
SFR caused by the ram-pressure stripping phenomenon. Galaxies in the Antlia and Fornax clusters preferentially f all tow ards 
the cluster’s centre, whereas only a mild preference is observed for Hydra galaxies. Our self-supervised pipeline, applied in 

visually challenging cases, offers two main advantages: it reduces human visual biases and scales ef fecti vely for large data sets. 
This versatile framework promises substantial enhancements in morphology studies for future galaxy image surveys. 

Key words: methods: statistical – techniques: photometric – surv e ys – galaxies: clusters: general – galaxies: evolution. 
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 I N T RO D U C T I O N  

he distribution of galaxies of different morphological types is not
niform through space. Most galaxies are in groups and clusters,
hile a smaller fraction are isolated in the field and voids. The density
f the environment influences immensely the morphological types
hat are dominant in that region of the Universe. The morphology–
ensity relation shows that the fractions of ellipticals and lenticular
alaxies increase with environmental density, while the fractions
f spirals and irregular decrease (Dressler 1980 ; Goto et al. 2003 ;
oughton 2015 ; Pfeffer et al. 2023 ). 
Galaxies in dense environments are more subjected to environ-
ental interaction, both gravitational (with neighbouring galaxies

r the cluster gravitational potential) and hydrodynamical (with
he intracluster gas). Such interactions may end up suppressing the
tar formation of late-type galaxies and changing their morphology,
urning spirals, and irregulars into ellipticals and S0s. The primary
ydrodynamical process that takes place in clusters and groups is the
 E-mail: yashgondhalekar567@gmail.com (YG); ana.chies@ufrgs.br 
ALCS); r.da-silva-de-souza@herts.ac.uk (RSdS) 
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am pressure stripping (RPS; Gunn & Gott 1972 ), which strips out
he interstellar gas from the galaxies’ discs and may form a unique
ype of galaxy called jellyfish. 

Jellyfish galaxies, distinguished by their tentacle-like features
omposed of ionized gas and star-forming regions, represent a
istinctiv e cate gory of galaxies undergoing transformation (see
oselli, Fossati & Sun 2022 , and references therein). These galaxies
re subject to RPS, which significantly affects their morphology
nd may enhance their star formation (Vulcani et al. 2018 ; Roman-
li veira et al. 2019 ; Aze vedo et al. 2023 ). RPS involves the removal
f the galaxy’s cold interstellar gas by the hot intracluster medium,
enerally opposing the galaxy’s mo v ement (e.g. Abadi, Moore &
ower 1999 ). Although RPS is more prevalent in spiral galaxies

Kenney & Koopmann 1999 ; Poggianti et al. 2016b ; Fossati et al.
018 ; Roman-Oliveira et al. 2019 ; Roberts et al. 2021a , b ), it can also
ccur in elliptical (Sheen et al. 2017 ), dwarf (Kenney et al. 2014 ), and
ing galaxies (Moretti et al. 2018 ). Consequently, studying jellyfish
alaxies and their formation provides essential insights into galaxy
nteractions, their environmental effects, and o v erall evolution. 

RPS galaxies were first observed several decades ago (Haynes,
iovanelli & Chincarini 1984 ). However, recent advances in ob-

ervational surv e ys and cosmological simulations have enabled
© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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ore comprehensive and detailed investigations into these objects. 
sing the high-resolution TNG100 (i.e. box size of 100 h 

−1 Mpc)
imulations, Yun et al. ( 2019 ) identified satellite galaxies in massive
roups and clusters exhibiting asymmetric gas distributions and 
ails, characteristics indicative of ram pressure stripping. Their 
ndings suggest that approximately 13 per cent of cluster satellites 
t redshifts z < 0 . 6 bear the signatures of ram pressure stripping and
ssociated gaseous tails. When the analysis was confined to gas-rich 
alaxies, this proportion escalated to 31 per cent. Additionally, Yun 
t al. ( 2019 ) pointed out that these estimates could be considered
onserv ati ve lo wer limits, as potential jellyfish candidates could 
e o v erlooked due to their random orientation, possibly missing
pproximately 30 per cent of them. Recently, Zinger et al. ( 2023 )
xtended Yun et al. ( 2019 )’s study to incorporate TNG50 with
NG100 simulations to present a richer sample of jellyfish candidates 

esiding in hosts at the lower mass end, outskirts of groups or clusters,
nd at the higher redshift regime. G ̈oller et al. ( 2023 ) and Rohr
t al. ( 2023 ) further investigated their evolution and loss of cold
as. They find that while jellyfish candidates undergo dominating 
tar formation in their main bodies (i.e. discs), no significant o v erall
nhancement was observed in their star formation rates compared 
o the control sample consisting of satellite and field galaxies with 
imilar properties known to affect star formation (redshift, stellar 
ass, host mass, gas content). 
From an observ ational perspecti ve, galaxies undergoing ram pres- 

ure stripping have been scrutinized using photometry and integral 
eld spectroscopy (IFS) o v er a wide spectral range, extending from

he ultraviolet to radio frequencies (Jaff ́e et al. 2015 ; Poggianti et al.
017 ; Fossati et al. 2018 ; George et al. 2018 ; Roman-Oliveira et al.
019 ; Roberts et al. 2021a ). These studies have led to the detection
f significant amounts of ionized, atomic, and molecular gas in 
he tails and discs of these galaxies (Jaff ́e et al. 2015 ; Poggianti
t al. 2017 ; Fossati et al. 2018 ; Ramatsoku et al. 2019 ; Roman-
liveira et al. 2019 ; Poggianti et al. 2019a ; Deb et al. 2020 ; Moretti

t al. 2020 ; Ramatsoku et al. 2020 ). Many dedicated works have
een performed in the past decade, focusing specifically on these 
alaxies and probing them in diverse environments at different 
edshifts. Such efforts have resulted in the discovery of dozens to 
undreds of jellyfish galaxy candidates in both low-redshift ( z � 0 . 1)
nd medium-redshift (0 . 2 < z < 0 . 9) clusters and groups (Poggianti
t al. 2016a , 2017 ; Durret et al. 2021 ; Roberts et al. 2021a , b ; Durret
t al. 2022 ). Notably, o v er 70 jellyfish candidates hav e been found
ithin the A901/2 multicluster system alone (Roman-Oliveira et al. 
019 , 2021 ; Ruggiero et al. 2019 ). 
A defining feature of jellyfish galaxies is their enhanced star for-
ation activity. These galaxies have been observed to possess higher 

tar formation rates (SFRs) compared to other star-forming galaxies 
ithin clusters, with SFRs often e xceeding ev en those of starburst
alaxies (Merluzzi et al. 2013 ; Vulcani et al. 2018 ; Roman-Oliveira
t al. 2019 ; Roberts et al. 2021a ), with a notable enhancement within
heir ‘tentacle’ structures (Gullieuszik et al. 2020 ). This intensified 
cti vity is belie ved to result from compression and shock waves
enerated as the galaxy traverses through the surrounding intracluster 
edium (Vulcani et al. 2020 ). Ho we ver, the enhancement of SFRs

or jellyfish candidates belonging to galaxy groups is yet to be fully
nderstood since some studies find an enhancement (e.g. Kolcu 
t al. 2022 ) while some do not (e.g. Oman et al. 2021 ; Roberts
t al. 2021b ). This ele v ated star formation rate in cluster jellyfish
andidates points to a phase of active evolution in these galaxies, 
hedding light on the potential mechanisms driving galaxy evolution. 
o we ver, the ultimate fate of these dynamically evolving galaxies 

emains uncertain. One possibility is that RPS could transform 
piral and irregular galaxies into lenticular and elliptical galaxies, 
s removing gas could eventually lead to quenching (Larson, Tinsley 
 Caldwell 1980 ). Additionally, spirals may undergo a process 

ermed ‘diffusion’, culminating in their transformation into dwarf 
alaxies (Roman-Oliveira et al. 2021 ). Another intriguing possibility 
s that the observed ultracompact dwarfs (UCDs) and intracluster 
lobular clusters (GCs) in low-redshift clusters may originate from 

 II regions formed in the tails of jellyfish candidates, given the
bserved similarities in their mass (Poggianti et al. 2019a ; Giunchi
t al. 2023 ). 

Traditionally, jellyfish candidates have been identified through 
isual inspection in optical wavelengths, which has resulted in a 
lassification scheme based on observed stripping signatures in the 
ptical bands, known as JClass (Poggianti et al. 2016b ). This scheme
ncompasses a spectrum of cases ranging from the most extreme 
JClass 5) to progressively milder (JClass 1) instances. For example, 
g. 1 of Roman-Oliveira et al. ( 2019 ) and figs 1–3 of Poggianti et al.
 2016b ) show visual examples of different JClass candidates. IFS
ata can be used to categorize jellyfish candidates into various stages
f stripping to complement this idea by contrasting H α emission 
mages with those of continuum emission (Poggianti et al. 2017 ;
aff ́e et al. 2018 ; Azevedo et al. 2023 ). None the less, this approach
s also reliant on visual criteria. 

Despite its popularity, human visual inspection possesses a few 

rawbacks. It is time-consuming and can be susceptible to errors 
ue to biases introduced by disturbed morphology, bright knots of 
tar formation, and debris tails. Given the importance of jellyfish 
lassification in understanding their astrophysical properties and 
volution, it is important to inspect alternative approaches to visual 
lassification. Machine learning techniques present a complementary 
trategy to identify these objects and mitigate these challenges. 
he application of machine learning has gained prominence in 

ecent years as a powerful tool to automate image classification in
stronomy (e.g. Moore, Pimbblet & Drinkwater 2006 ; Selim & Abd
l Aziz 2017 ; Goddard & Shamir 2020 ; Teimoorinia et al. 2020 ;
ega-Ferrero et al. 2021 ; Xu et al. 2023 ). 
In the realm of machine learning methods, self-supervised learning 

SSL) representation has recently gained significant attention due 
o its ability to learn generalizable and semantically meaningful 
ata representations without manual labelling (e.g. Liu et al. 2021 ;
lbelwi 2022 ; Ericsson et al. 2022 ). SSL does not necessarily

equire large data sets to perform well, which makes it beneficial for
cenarios where only a small sample of objects is known (El-Nouby
t al. 2021 ). Various SSL approaches have been proposed, including
omentum Contrast (MoCo; He et al. 2020 ), Bootstrap Your Own

atent (BYOL; Grill et al. 2020 ), and Augmented Multiscale Deep
nfoMax (AMDIM; Bachman, Hjelm & Buchwalter 2019 ). 

Hayat et al. ( 2021 ) applied SSL to multiband galaxy images from
he Sloan Digital Sky Survey (SDSS), demonstrating that it could 
chieve performance comparable to or better than supervised learning 
ith half or fewer labels for galaxy morphology classification and 

edshift estimation tasks. Sarmiento et al. ( 2021 ) found that SSL
epresentations were more resilient to non-physical properties, such 
s instrumental effects, and more closely tied to physical properties 
han Principal Component Analysis (PCA) representations. Detailed 
strophysical studies revealed that SSL representations closely relate 
o galaxies’ physical properties, such as velocity dispersion, stellar 

ass, and metallicity. Public-access tools developed by Stein et al. 
 2021 ), as well as work by Stein et al. ( 2022 ), have further illustrated
ow SSL can be employed for large-scale similarity searches to 
dentify rare astronomical objects, explicitly showcasing its utility in 
etecting strong gravitationally lensed galaxies. 
MNRAS 532, 270–294 (2024) 
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Figure 1. Comparison of i SDSS -band magnitudes between the main and 
control samples used for visual inspection. The solid blue filled histogram 

represents the main sample, while the black open curve represents the control 
sample. 
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In this study, we use the S-PLUS multiband surv e y data (Mendes
e Oliveira et al. 2019 ) to identify instances of RPS. Specifically, we
mploy the narrow-band filter J 0660 to detect H α emitters within
hree nearby galaxy clusters: Fornax, Antlia, and Hydra. Logro ̃ no-
arc ́ıa et al. ( 2019 ) has shown that H α will fall within the J 0660
lter for sources up to z ≤ 0 . 015 for the J-PLUS surv e y (Cenarro
t al. 2019 ), which has an identical filter set to S-PLUS. The S-
LUS surv e y offers a suitable data set because of its e xtensiv e
o v erage of these three nearby clusters. This work uses broad-band
ptical combined with the J 0660 classifications, which can better
iew RPS than just optical images (e.g. McPartland et al. 2016 ;
oggianti et al. 2016b ). We visually classify these RPS candidates
ased on their stripping strength (JClass) and subsequently develop
 semi-automated detection pipeline using SSL, demonstrating it as
 concept validation. For the pipeline, we learn representations of
he galaxy images using SSL and perform a similarity search on
hese representations to yield the most similar galaxies to a given
query’ galaxy to assist visual inspection. We use two downstream
asks, query by example and supervised classification using the
SL representations, to e v aluate the SSL representation quality.
his work primarily focuses on applying SSL methods in computer
ision, particularly for galaxy images that are widely accessible yet
ften require further labelling. Distinguishing this work from prior
tudies, we apply these techniques to a relatively small data set of
pproximately 200 images. This approach holds significant interest
ue to the frequent underperformance of supervised learning methods
n the context of limited data. 

This paper is organized as follows. Section 2 outlines the S-
LUS data employed in this work, providing details on the selection
riteria and data pre-processing. Our methodology, discussing the
isual inspection of H α emitters and the SSL training details for
lassification, is detailed in Section 3 . In Sections 4 and 5 , we validate
ur semi-automated detection approach, present the astrophysical
roperties of the jellyfish candidates, and discuss the implications
f our findings, respectively. We then summarize our main findings
n Section 6 , leading to our concluding remarks and potential future
ork in Section 7 . All magnitudes presented in this paper are in the
B system. 

 DATA  

he Southern-Photometric Local Universe Survey (S-PLUS; Mendes
e Oliveira et al. 2019 ) has already observed approximately
200 deg 2 of the Southern hemisphere. Its goal is to map an e xtensiv e
rea exceeding 9000 deg 2 using an optimized photometric system
Cenarro et al. 2019 ). This system incorporates five broad-band (BB)
lters ( g, r, i, z being SDSS-like and u being Jav alambre) and se ven
arrow-band (NB) filters, co v ering a wide spectral range from 3700
o 9000 Å. The NB filters offer unparalleled insights into nearby
alaxies because of their ability to detect prominent stellar features
uch as [O II ], Ca H + K, H δ, H α, Mgb, and Ca triplets. Furthermore,
-PLUS reaches about one magnitude deeper than the SDSS (Alam
t al. 2015 ), providing strong constraints on the star formation
istories and photometric redshifts of galaxies. Observations for the
roject are made using a 2 deg 2 field of view camera fitted with a 9k
9k CCD at a 0.55 arcsec pixel −1 scale. This equipment is mounted

n a fully robotic 0.8-m diameter telescope (T80-South) located at
erro Tololo, Chile. 
The photometric data from S-PLUS are calibrated according to

he methodology described by Almeida-Fernandes et al. ( 2022 ).
he calibrated magnitudes for all 12 bands are measured in six
istinct apertures in addition to the astrometry and other photometric
NRAS 532, 270–294 (2024) 
arameters. The entire catalogue of images and data is available
hrough the S-PLUS web portal, 1 which provides various tools
or querying and visualizing the data. For this study, we have
hosen to focus our analysis on the photometric data obtained using
EXTRACTOR (Bertin & Arnouts 1996 ), employing the so-called

dual-mode’ and selecting AUTO magnitudes. 

.1 Data selection 

o ensure that the H α emission from our candidates falls within the
 0660 filter, a visual inspection was performed of all galaxies from
hree nearby clusters (at redshift z ≤ 0 . 015) included in the S-PLUS
ata Release 1 (DR1; Mendes de Oliveira et al. 2019 ). Galaxies

hat exhibited an excess in H α emission were explicitly sought. Six
-PLUS fields were analysed in Antlia, 23 in Fornax from DR1
nd iDR3, and four in Hydra. An additional twenty fields on the
utskirts of Fornax were also inspected as they became available at
he time of the start of the visual inspection. We obtained a sample
f candidate H α-excess objects by subtracting the r SDSS band image
rom the narrow H α filter. Before subtraction, the r SDSS band was
caled to match the global count rates between the objects in common
n the two images. Following this selection process, we identified
58 H α emitting candidate galaxies, with 38, 47, and 73 originating
rom Antlia, Fornax, and Hydra, respectively. This set constitutes our
rimary sample. 
We assembled a control sample of 75 additional galaxies from

he Fornax cluster for visual inspection. These galaxies were not
reviously identified as exhibiting H α emission excess and exhibited
 magnitude distribution in the r SDSS band similar to that of our
elected candidates. In Fig. 1 , we present the magnitude distributions
n the i SDSS band, which does not contain H α emission excess, for
oth the primary and control samples. 

 M E T H O D O L O G Y  

aving discussed the potential of SSL, we now discuss the imple-
entation details. Our approach consists of two key stages: first,
e pre-select jellyfish candidates based on a visual inspection of
-PLUS multiband images. Subsequently, we benchmark SSL as a
eans to assist visual classification in future applications. 

https://splus.cloud
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Figure 2. Workflow of visual inspection consisting of n human classifiers 
for assigning a JClass to a galaxy. 
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Figure 3. Example of composite image inspected in Zooniverse. Upper left 
panel: J 0660 narrow-band image. Bottom left panel: RGI coloured image. 
Right panel: RGI + H α image. The central galaxy is NGC1437A from the 
Fornax cluster, classified as JClass 3. The zoomed inset highlights the pink 
clumps denoting star-forming regions for visual clarity. 

Figure 4. Frequency of jellyfish candidates based on their respective JClass 
rankings for each galaxy cluster and the control group, arranged in descending 
order from the strongest to the weakest. 
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.1 Visual inspection 

tripping galaxy candidates are typically classified through visual 
nspection based on the evidence of stripping signatures in optical 
ands, ranging from the most extreme (JClass 5) to the weakest 
JClass 1) cases (Poggianti et al. 2016b ; Roman-Oliveira et al. 2019 ).
hese classifications are determined by the formation of tentacles 
f ripped gas, which occur because of the interaction between the 
alaxy’s interstellar medium and the intracluster medium (ICM). 

In this study, we performed the visual classification of the main and
ontrol samples internally in a pri v ate project using the Zooniverse
latform. 2 This task was accomplished by six classifiers, 3 who 
ategorized galaxies with no visual stripping evidence as JClass 0 
nd flagged galaxies with merger evidence. The assignment of the 
nal JClass to galaxies disregards JClasses from visual classifiers 
ho flagged the galaxy as a merger. To aid the classification process,
e provided a composite image consisting of three panels: an image 
isplaying only H α emission (J0660 narrow-band), an RGI image 
enerated using Trilogy (Coe et al. 2012 ) with r SDSS , g SDSS , and
 SDSS , and a colour image (RGI) combined with H α emission to
ccentuate the star-forming regions, depicted in pink. 

These star-forming regions, typically bright in H α, resemble 
rregularly distributed star-formation clumps, often called debris. 
ccasionally, no image was available for one or more broad bands. In

uch cases, neighbouring bands were selected to compose the images 
e.g. u JA V A or z SDSS ). Ho we ver, this did not rectify the problem for a
ew galaxies, in which case we either obtained a dark or no image.

e then replaced the RGI + H α image with the full 12-band image
r omitted this frame. 
If more than one galaxy was present in the field, the classifiers

ere instructed to classify only the galaxy positioned at the centre of
he frames. The final JClass designation corresponds to the median of
ll classifications. The visual inspection and classification workflow 

s described in Fig. 2 . In Fig. 3 , we present an example of a composite
mage for the galaxy NGC1437A (Serra et al. 2023 ) from the Fornax
luster, as inspected in Zooniverse. Note the pink clumps of star
ormation in the right panel; this galaxy was classified as JClass 3. 

Following the visual inspection, we identified 51 jellyfish candi- 
ates with JClass ranging from 1 to 4 (no example with JClass 5
as found in the data set). These include 13 galaxies from Antlia, 25

rom Fornax, and 13 from Hydra. Notably, four of the 25 galaxies
rom Fornax belong to the control sample. Four jellyfish candidates 
re included in the control sample because the data selection, 
hich relied only on H α emission as discussed in Section 2.1 , is

ndependent of visual inspection that identified jellyfish candidates. 
he distribution of JClass across each cluster is presented in Fig. 4 . 
 https:// www.zooniverse.org/ 
 Carolina Queiroz, Ana L. Chies Santos, Yash Gondhalekar, Yara Jaff ́e, Rahna 
.T., and Mu Zihao. 
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Thus, ∼30 per cent of the H α emitters are jellyfish candidates
excluding the four jellyfish candidates from the control sample). 
un et al. ( 2019 ) analysed 2600 satellites in the IllustrisTNG
imulation, selecting galaxies with some gas, stellar masses higher 
han 10 9 . 5 M � and in clusters, and massive groups with halo masses
0 13 < M 200 c / M � < 10 14 . 6 . They found that ∼31 per cent of the
alaxies were jellyfish at z < 0 . 6. Observ ationally, Roman-Oli veira
t al. ( 2019 ) finds ∼ 16 per cent of the star-forming galaxies in A901/2
t z = 0 . 0165 to be jellyfish candidates. Vulcani et al. ( 2022 ) studied
 sample of late-type, blue, and bright ( B < 18 . 2) galaxies in clusters
rom the WINGS and Ome gaWINGS surv e ys (0 . 04 < z < 0 . 07)
ithin two virial radii. Their study found ∼15 per cent of the sample

s stripping candidates and ∼20 per cent of galaxies with ‘unwinding
rms,’ which could be attributed to jellyfish seen face-on. Although 
he sample selection criteria and type of data are different from
revious works, our fraction of stripping candidates falls in a similar
ange of values compared to recent literature values. 

.2 Image pr e-pr ocessing for machine learning 

lthough convolutional neural networks (CNNs) possess the ability 
o pinpoint objects within an image, deliberately steering their 
ttention towards the foreground object can significantly enhance 
heir performance (Cao & Wu 2021 ). Observational data sets 
omprise several point sources and extended sources with sizes 
MNRAS 532, 270–294 (2024) 
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M

Figure 5. An example application of GALMASK on the jellyfish candidate 
IC1885 having JClass = 2. GALMASK is used during pre-processing to remo v e 
unwanted background sources. 
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kin to galaxies, which could potentially confuse the network. In
ppendix D , we use the Grad-CAM visualization method to illustrate

hat SSL representations may dominantly encode information about
he background sources instead of the galaxy, which is undesirable.
hus, we pre-processed the S-PLUS images in our study to mitigate
n y prospectiv e bias during the learning procedure by removing
ackground sources from our galaxy image data set. 
For this purpose, we employ the GALMASK (v0.2.0) Python

ackage (Gondhalekar, de Souza & Chies-Santos 2022 ), designed
o eliminate background sources from our images. GALMASK is
pplied independently to each band. Before its utilization for
ackground source removal, we first generate a segmentation map
sing NOISECHISEL (Akhlaghi 2019 ), followed by the Segment
rogram from Gnuastro (Akhlaghi & Ichikawa 2015 ). We found
OISECHISEL to be particularly well suited to detect the dim, dis-
ersed tails characteristically seen in jellyfish signatures, which has
ro v ed challenging for traditional signal-based threshold methods.
o a v oid inadvertently eliminating the peripheries of galaxies, such
s the extended tails, we opted for a slightly conserv ati ve set of
arameters within GALMASK . Segmentation is followed by optional
eblending and connected-component labelling, which selects the
onnected component closest to the centre to isolate the central
alaxy region from background sources. An example visualization
f the galaxy image before and after the application of GALMASK is
hown in Fig. 5 , which demonstrates that background sources present
n the original image are masked. 

In our data set of 51 jellyfish and 183 non-jellyfish images,
ALMASK yielded successful outputs for 46 and 171 images, re-
pectively. The failure of GALMASK to process a handful of images
s attributed to the extreme faintness of the galaxies (some of which
ere undetectable by NOISECHISEL ) or difficulties encountered
uring the extraction of the galaxy cutouts. As GALMASK operates
eparately on each band, we discarded any galaxy images that did
ot yield a successful output across all 12 bands. After this, we
anually inspected all GALMASK outputs to identify any failures in

he masking process. Any images showing portions of the galaxy
hat were erroneously remo v ed during the masking stage within
ALMASK were also discarded. This results in 43 jellyfish and
40 non-jellyfish images to carry forward in our analysis. We also
stimate the background level in the central galaxy and subtract it
rom the outputs of GALMASK . In addition, we apply an arcsinh
ransformation to all images to enhance contrast. Although this
rocedure results in a reduced data set size in our already small data
et, SSL is data-rich in that it can learn meaningful representations
ven with less data. Thus, we opt for a ‘stricter’ selection of galaxies
o include in our final data set. Additionally, our data set has a high
NRAS 532, 270–294 (2024) 
mbalance, with jellyfish examples constituting only approximately
2 per cent of the total (this fraction of jellyfish candidates is similar
o the values found in the literature; see Section 3.1 ). 

.3 Self-supervised learning using SimCLR 

ur self-supervised approach is based on the SimCLR framework
e.g. Chen et al. 2020a ), which is a contrasti ve method and of fers an
legant, end-to-end solution for learning generalized feature repre-
entations from unlabelled data. We have modified certain aspects of
imCLR, such as the base encoder network and data augmentation,

o suit our requirements better (details of our modification in the
rchitecture and hyperparameters are described in Appendix A1 ).
 batch of N images from the training data set is sampled at

ach training iteration. For each sampled image x , two independent
ugmentation functions are applied to produce ˜ x i and ˜ x j . This
oubles the batch size to 2 N images. 
Both ˜ x i and ˜ x j are passed through the base encoder network,

enoted as f ( ·) (often a convolutional network for image data),
hich extracts a 1D representation vector, h i = f ( ̃  x i ). Subsequently,
 projection head network, usually a single hidden layer multilayer
erceptron (MLP), denoted as g( ·), projects the representation vector
nto a space where a contrastive loss function is applied, i.e. z i =
( h i ). Instead of directly applying the contrastive loss function to

he representations, using a projection head during training promotes
earning more potent representations (Chen et al. 2020a ). 

A ‘positive’ pair, denoted as ( ̃  x i , ̃  x j ), consists of two distinct
ugmented views derived from the same original image x . Con-
 ersely, a ‘ne gativ e’ pair comprises two images not deriv ed from the
ame original image. In contrastive learning, these negative pairs
re essential to learning differentiable feature representations by
nforcing the model to learn distinct representations for different
mages. The contrastive loss function, or NT-Xent loss, is formulated
s follows: 

 i,j = − log 
exp ( sim ( z i , z j ) /τ ) 

∑ 2 N 
k= 1 1 [ k �= i] exp ( sim ( z i , z k ) /τ ) 

, (1) 

here sim ( p , q ) = 

p · q 
‖ p ‖‖ q ‖ is the similarity function, τ is a temper-

ture hyperparameter controlling the sensitivity of the loss function
Zhang et al. 2021 ), and 1 [ k �= i] ∈ 0 , 1 is the indicator function that
quals one only if k �= i. The loss is averaged over all positive pairs
n the sampled mini-batch, and the weights of networks f and g are
djusted to minimize it. 

One defining feature of SimCLR is its use of large batch sizes (as
igh as 8192) to keep track of ne gativ e e xamples, bypassing the need
or more complex structures like memory banks (Wu et al. 2018 ;
e et al. 2020 ). It harnesses the robustness of data augmentations

nd allows multiple ne gativ e e xamples for each positiv e pair instead
f the traditional single ne gativ e e xample per positiv e pair (see e.g.
iu et al. 2021 ). Such an approach enhances the ef fecti veness of

he contrastive loss function and improves the quality of the learnt
epresentations. 

Data augmentation is vital for learning valuable representations.
 good data augmentation pipeline is particularly important, given

he small size of our data set. They must maintain the semantic
eaning of the images (Hayat et al. 2021 ), compelling the model to

earn features that persist through transformations. Ultimately, this
esults in learnt representations invariant to these transformations
Tian et al. 2020 ; Xiao et al. 2020 ; Wang & Qi 2021 ), enhancing
he generalizability of these representations. Our data augmentation
ipeline encompasses the following procedures: 



S-PLUS jellyfish candidates 275 

2  

c

d  

T  

n  

n
n  

p

w  

t
l  

r

R
a
c
i
i  

(
a
o
p

s  

e  

A
s

 

w  

d  

C  

l
d  

s
G  

w

i
s
c  

a
r
m
p
B
i  

o
s

3

F
t
a
l
t  

u
S
d

d
(  

i
c
e  

s  

s  

(  

o  

r
i
w

t  

m  

w  

a
f  

u
w
m
d  

e  

a  

m  

&  

i  

t
p
i  

w

4

I  

a
v  

c

4

W  

t  

w
r
a
g  

t  

c
t  

t
s  

s
 

t
q
s
s  

a  

w  

r
W  

i

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/1/270/7689212 by :: user on 23 July 2024
(i) Centr e cr op : Each image is centre-cropped to a size of 200 ×
00 pixels ( ∼ 9 × 10 −3 pc). As the galaxies often reside near the
entre of the image, centre-cropping can be beneficial. 

(ii) Random-cr op-and-r esize : After centre-cropping, we ran- 
omly crop a section from the image and resize it to 72 × 72 pixels.
his is done for a few reasons. First, in contrastive learning, we only
eed to determine if two image patches are from the same image,
ot necessarily requiring the whole image. Secondly, smaller images 
ot only expedite training but have also been shown to impro v e
erformance in SSL scenarios (Cao & Wu 2021 ). 
(iii) Random horizontal and vertical flip : We apply each flip 

ith a 0.5 probability. Horizontal flips help the model to be invariant
o the galaxy’s horizontal mirror-image transformation. Although 
ess common, vertical flips are also useful, as we want the learnt
epresentation to be unaffected even if the galaxy appears inverted. 

(iv) Custom colour jitter : As this study does not deal with 
GB images, the conventional colour jitter technique (randomly 
djusting the brightness, contrast, saturation, and hue of an image) 
annot be used. To introduce colour jitter into our multichannel 
mages, we multiply pixel values by a uniformly sampled value 
n the [0 . 8 , 1 . 2] range, keeping it fixed for a particular channel
Illarionova et al. 2021 ). This effect scales the channel-wise mean 
nd standard deviation by the sampled value, introducing an element 
f randomness. This transformation is randomly applied with a 
robability of 0.8. 
(v) Random rotation : Each image is rotated by a random angle 

ampled from [0 ◦, 360 ◦] to ensure invariance with the spatial ori-
ntation of the galaxy in the image, as done in Hayat et al. ( 2021 ).
lthough this rotation includes horizontal and vertical flips as a 

pecial case, random rotation provides more flexibility. 
(vi) Gaussian blur : With a probability of 0.5, we blur an image

ith a Gaussian kernel of size 9 × 9 pixels, selecting the standard
eviation, σ , uniformly at random in the [0 . 1 , 2 . 0] range, akin to
hen et al. ( 2020a ). This step enables the representations to remain

argely unaffected by varied levels of image smoothing. To some 
e gree, this also serv es as a way to achiev e invariance with the point
pread function (PSF), even though the standard deviation of the 
aussian blurring kernel is not explicitly scaled using the PSF full
idth at half-maximum (Hayat et al. 2021 ; Stein et al. 2021 ). 

The augmentation techniques we employ enhance those used in the 
nitial SimCLR model, tailored to offset the limitations posed by our 
mall training data set. Introducing variety into the training images 
an induce the model to learn more robust and invariant features. We
rgue that applying a centre-cropping operation before a random- 
esize-and-crop, instead of a standalone random-resize-and-crop, is 
ore advantageous for our data set. This assertion stems from the 

re-processing step, which substantially reduces background objects. 
y prioritizing a centre-cropping operation, we are tilting the odds 

n our fa v our to extract random crops from the central galaxy instead
f from the background areas. An ablation study that examines the 
ignificance of these augmentations is presented in Appendix C . 

.4 Model implementation 

irst, the encoder is pre-trained. Following the pre-training phase, 
he projection head is discarded as the representations of the encoder 
re considered more meaningful than the projection head since the 
atter is found to lose critical information necessary for downstream 

asks (Chen et al. 2020a ). As a result, the pre-trained encoder is
sed as a fixed-feature extractor to obtain image representations. 
ince the augmentations described in Section 3.3 were explicitly 
esigned only for contrastive learning, these augmentations were 
iscarded for deriving representations from the fixed feature extractor 
Chen et al. 2020a ). The images are standardized before feeding
nto the model using the channel-wise mean and standard deviation 
alculated across the training data set. Instead of pre-training the 
ncoder on a large data set and then fine-tuning it on our small data
et, the pre-training is performed directly on the target data set, a
trategy that has also recently shown promise in the low-data regime
Cao & Wu 2021 ; El-Nouby et al. 2021 ). The extremely small size
f our data set is used to test whether (a) SSL can learn meaningful
epresentations of galaxies and (b) SSL representations can encode 
mportant features for downstream tasks such as classification, which 
as previously unexplored in an astronomical context for small data. 
Contrastive learning approaches often benefit from a longer 

raining duration and larger batch sizes, as the y e xpose the model to
ore ne gativ e e xamples (Chen et al. 2020a ). Given RAM limitations,
e select a batch size of 128, the maximum feasible size for our

pplication. Furthermore, smaller resolution images pave the way 
or larger batch sizes, as noted in Cao & Wu ( 2021 ). The model
ndergoes training with the contrastive loss function for 1000 epochs, 
ith optimization using the Adam with decoupled weight decay 
ethod (AdamW; Loshchilov & Hutter 2019 ), featuring a weight 

ecay of 10 −4 and a learning rate, lr = 10 −4 . A large number of
pochs ensures better convergence on our small data set. We adopt
 cosine annealing schedule to regulate the learning rate, with the
inimum learning rate set to lr/ 50 and without restarts (Loshchilov
 Hutter 2016 ). The maximum number of epochs for the scheduler

s set to the number of epochs in our training run, i.e. 1000. The
emperature parameter, τ , is set to 0.05. Hyperparameter tuning was 
erformed using K-Fold cross-validation, with more details provided 
n Appendix A2.1 . Weights & Biases (Biewald 2020 ; version 0.12.21)
as used for tracking mode training and validation experiments. 

 SELF-SUPERVISED  L E A R N I N G  RESULTS  

n this section, we discuss the results of the SSL for similarity search
nd provide an example application to assist and improve subjective 
isual classification. Due to limited examples in our data set, we
ombine the training and testing sets for the analysis in this section. 

.1 Query by example 

e conduct a query by example (or similarity search), similar to
he works of Hayat et al. ( 2021 ) and Stein et al. ( 2021 ) to inspect
hat types of galaxies are clustered closely in the self-supervised 

epresentation space. To conduct this experiment, cosine similarities 
re calculated between the representation vectors of a chosen query 
alaxy image and all other galaxy images in the data set, and
he similarities are ordered in decreasing order to select the four
losest representation vectors (and the corresponding images) to 
he representation of the query galaxy. The query galaxy image is
hen visually compared for any morphological similarities with the 
elected closest images to gain insights into the clustering in the
elf-supervised representation space. 

Fig. 6 showsthe results of our similarity search. It can be observed
hat the similarity search returns semantically similar images to the 
uery image. In particular, the query search returns galaxies with 
imilar colours and visual morphological characteristics. The query 
earch is unaffected by the rotation of galaxies by any arbitrary
ngle and robust to the number and shape of background sources
ithin the images. The former is likely because of the random

otation data augmentation used during self-supervised pre-training. 
e hypothesize the latter is mainly due to the use of GALMASK in our

nternal pre-processing pipeline, which conveniently removes many 
MNRAS 532, 270–294 (2024) 
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Figure 6. Illustration of the query by example returning the four closest images to the query image (left column, outlined in red) as obtained by the similarity 
search. The JClass obtained from visual classification, and the cosine similarity values are marked on the images. The galaxy’s name is shown on top of 
each image. Various cases are shown, such as non-jellyfish (JClass 0) query images or jellyfish (JClass 1, 3) query images. While we use GALMASK during 
pre-processing, the images shown here are without the use of GALMASK . 
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Figure 6. – continued 
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nwanted sources from the background. Slight correspondence is 
bserved between the JClass of the query galaxy and the JClass
f the most similar images to the query galaxy. Jellyfish (non-
ellyfish) query galaxies tend to have jellyfish (non-jellyfish) galaxies 
s the most similar galaxies to the query (jellyfish: JClass > 0; non-
ellyfish: JClass = 0). Ho we ver, since these JClasses are based on
isual classification rather than SSL, it is challenging to interpret 
hese correlations. Overall, we conclude that the self-supervised 
epresentations encode important information about the galaxies, 
hich allows the clustering of the galaxies in a morphologically 
eaningful manner. 

.2 Re-calibrating visual classification 

uring visual inspection, each visual classifier individually assigns 
abels to an image, with no measurable boundaries between different 
Classes. Such a methodology largely hinges on the classifier’s prior 
omain knowledge and the guidelines provided before the image 
ssessment. Fig. 7 demonstrates this behaviour. Even though taking 
he median of visual classifications of different classifiers attempts 
o minimize individual human biases, it would be affected if there 
s a large disagreement among the visual classifiers. Therefore, 
trategies that counteract human biases can improve this subjective 
lassification procedure. As discussed in Section 4.1 , self-supervised 
epresentations present a morphologically significant structure, with 
nalogous galaxies closely clustered. This finding serves as the basis 
or our proof-of-concept application, which shows how SSL can 
ncrease the quality of visual classification in a data-efficient way. 
his section thus examines the potential of using self-supervised 

epresentations to refine visually labelled JClasses. 
Since the JClass assigned by visual inspection is based on a

ubjective assessment of jellyfish-ness, a linear e v aluation protocol 
see Appendix B ) in which a supervised logistic regression classifier
s employed on the self-supervised representations using the JClasses 
s ground-truth labels will be affected by the quality of these labels.
he linear e v aluation will not yield a precise disturbance strength
stimate, either, since it is only a binary classification (jellyfish 
ersus non-jellyfish). A multilabel classification (with ground-truth 
ategories JClass = 0 , 1 , 2 , 3 , 4) will degrade due to the increased
everity of the class imbalance. Thus, a supervised regressor trained 
n self-supervised representations is not ideal for improving JClass. 
o mitigate these issues, we develop a new downstream task to assign
Class to galaxies leveraging self-supervised representations to assist 
MNRAS 532, 270–294 (2024) 
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Figure 7. Illustration of the subjectiveness of visual classification. As 
denoted in the image, five of the six visual classifiers assigned a JClass to 
this galaxy, while one classifier did not assign any JClass (denoted by ‘NA’). 
Out of the five classifiers, one assigned a JClass 3, two assigned a JClass 2, 
one assigned a JClass 1, and the other classifier assigned a JClass 0. Thus, 
considerable uncertainty pre v ails in the visual analysis since different visual 
classifiers assigned various JClasses. As described in Section 3.1 , the final 
visual JClass is the median across all the JClasses, i.e. JClass 2, which might 
not be reliable due to the significant uncertainty across visual classifiers. 
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4 A galaxy is classified as a merger if more than half of the classifiers visually 
classified it as a merger. 
5 Applying this criterion yielded only one JClass = 1 example. Although not 
utilized here, this example further underscores the uncertainty in visually 
classifying jellyfish candidates. 
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Since we propose not to rely solely on visual inspection and
im to impro v e estimates of visual JClasses, this section focuses
nly on galaxies with high uncertainty in the JClass among the
isual classifiers. Hence, our initial step involves identifying galaxies
hat present a visual classification challenge. If a galaxy receives

ore than 	 N/ 2 
 unique visually assigned JClasses from N visual
lassifiers (where 	
 denotes the ceiling function), it signifies a
onsiderable classification uncertainty, which renders the galaxy
isually complex. We refer to this set of galaxies as our ‘target’
ample. Here, N = 6 (see Section 3.1 ). Notably, around 85 per cent of
he galaxies in our target sample are jellyfish candidates, suggesting
 more considerable disparity among visual classifiers in assigning
Class to jellyfish than non-jellyfish galaxies. Since our goal is
o yield precise JClass estimates for identifying no v el instances
f galaxies exhibiting jellyfish characteristics, we limit our self-
upervised application to the target sample. 

We predict JClass using the self-supervised representations as
ollo ws: gi ven a target galaxy, K-nearest neighbours to it are found
n the representation space, and the mean of JClasses of the nearby
alaxies, weighted by their cosine similarities, is assigned as the
Class of the target galaxy. The nearby galaxies are chosen such
hat they are not already in the target sample. We have chosen to
se K = 4. The JClass assigned using SSL is determined by the
ollowing relationship: 

Class ss = 

∑ K 

i= 1 s i JClass v i 
∑ K 

i= 1 s i 
. (2) 

ere, JClass v and JClass ss represent the visually assigned and the
elf-supervised predicted JClass, respectively. s i denotes the cosine
imilarity between the query image and the i th image similar to the
uery. Such a weighted scheme enables assigning more weightage
o more similar galaxies. We emphasize that we do not train a k-
NRAS 532, 270–294 (2024) 
earest neighbour classifier on the representations to predict the
Class since the self-supervised model is already trained to encode
ele v ant information about the galaxies. 

A similarity search is then conducted using the target galaxy as
he query, similar to Section 4.1 . Fig. 8 illustrates our framework to
ssign JClass to galaxies based on the similarity search on the repre-
entations of galaxies. Although our proposed approach uses visual
Classes for the final prediction after the SSL is performed, these
isual JClasses are not used as ground-truth labels in training our
elf-supervised model. This means that our self-supervised approach
earns patterns in the galaxy images based on the observed data alone
nd does not use the visual JClasses to learn to distinguish between
ellyfish and non-jellyfish galaxies. This characteristic feature of our
elf-supervised approach alleviates human biases and thus provides
enefits o v er approaches such as training a supervised CNN on
he galaxy images or training a supervised classifier on the self-
upervised representations. 

An example application of our framework is provided in Fig. 9 .
he top two rows show two weak jellyfish query images (JClass 2 and
, respectively), whereas the self-supervised approach predicted it to
e a non-jellyfish galaxy. This occurs because galaxies most similar
o the query had a JClass 0. The third and fourth rows show two
ases where the self-supervised approach predicted a milder jellyfish
ignature, i.e. a lower JClass, than visual classification (JClass 2
nstead of JClass 4 and JClass 1 instead of JClass 2). We assume
hat the visual JClasses of all non-query images (not outlined in
ed) are fairly accurate since we have only selected cases where the
ajority of the visual classifiers agreed on a common JClass. Hence,

or the third and fourth rows, the fact that similar galaxies to the
uery image contain a mix of jellyfish and non-jellyfish galaxies
uggests that the corresponding query image likely contained some
eatures similar to non-jellyfish galaxies and some features similar
o jellyfish candidates. As a result, cases where similar images to
he query contain both jellyfish and non-jellyfish galaxies might be
he most complex to classify visually. JClasses predicted using SSL
ould be the most beneficial for visual inspection for such cases. 

In the second-last row, visual and self-supervised approaches
atch their JClass predictions – such cases are relatively less complex

or visual classification. In the last row, the self-supervised approach
redicted the query galaxy to be a stronger jellyfish candidate,
esulting from all similar galaxies also being jellyfish. In this case,
he visual similarity of morphological signatures between the query
nd the similar images is not entirely apparent. Despite jellyfish
andidates being rare in the data set, all four similar galaxies are
ellyfish, which could strongly indicate jellyfish signatures in the
uery. Ho we ver, we note that the query was identified as a merger by
isual classification. 4 Hence, it is possible that the self-supervised
odel could not distinguish well between jellyfish and merger

alaxies; instead, it predicted a higher JClass. 
As part of a complementary validation test, we assessed the

greement between the self-supervised and visual JClasses for cases
ith confident visual classification (i.e. those with a maximum of two
istinct visual JClasses across all visual classifiers). This criterion
dentified 34 non-jellyfish (JClass 0) galaxies. 5 Among these, 33
alaxies identified visually as JClass 0 were also predicted as JClass
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Figure 8. Workflow demonstrating the use of SSL to assign JClass to a galaxy solely based on the similarity search on the extracted representations of galaxies. 
Before training the self-supervised encoder, we find it crucial to account for background sources to prevent affecting the similarity search, as discussed in Section 
3.2 and demonstrated in Appendix D . 
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 using the self-supervised approach, while the remaining galaxy was 
lassified as JClass 1 by the self-supervised method. Consequently, 
 high level of agreement is observed between the visual and self-
upervised JClasses for these cases. This experiment suggests that 
he self-supervised model ef fecti vely captures abstract features that 
lign with human inspection in classifying a galaxy as a non-jellyfish. 
o we ver, the limited number of jellyfish examples in this test restricts
ur ability to fully assess the model’s accuracy in identifying jellyfish 
alaxies, indicating a need for further investigation with a more 
alanced data set. 

The experiments in this section show that SSL can help visual 
nspectors classify visually complex cases to impro v e the JClass
rediction. We call this an ‘impro v ement’ since the JClasses pre-
icted based on the nearest neighbour search in the self-supervised 
epresentation space alleviates human-level uncertainties associated 
ith visual-only inspection, primarily because learning to distinguish 

ellyfish from non-jellyfish galaxies does not use labels but is majorly 
earnt from the data itself. A practical application of our method is to
rain a self-supervised model on a larger galaxy data set containing 
ecure jellyfish candidates based on visual inspection and use it 
or fast JClass assignment on any new galaxy. Unlike pure visual 
nspection, such an approach may scale to large astronomical data 
ets better. See Section 6 for more discussion. 

 ASTROPHYSICAL  ANALYSIS  

his section explores the astrophysical properties of the jellyfish 
andidates as labelled by the visual inspection. We present the 
orphological features of the jellyfish candidates and their spatial 

istribution around the three cluster systems. We also estimate 
heir star formation rates and stellar masses and analyse their 
istributions on the phase-space diagrams. It is important to note 
hat although candidates in JClass 1 and 2 are considered jellyfish 
alaxy candidates in the study, they are weak examples of jellyfish 
alaxies. Therefore, they may represent ‘disturbed’ morphologies 
ather than exhibiting true jellyfish signatures. 
.1 Morphological properties via MORFOMETRYKA 

e perform a morphometrical analysis of the galaxies to look 
or possible correlations in the JClass–morphology space, using 
he MORFOMETRYKA code (Ferrari, de Carvalho & Trevisan 2015 ). 

e select two non-parametric and one parametric morphological 
ndicator: (i) The normalized information entropy H , which sum- 
arizes the distribution of pixel values in the galaxy region in the

mages – smooth (clumpy) galaxies have low (high) H ; (ii) the Gini
oefficient G as used by Lotz, Primack & Madau ( 2004 ), which
s another measure of the flux distribution across pixels; (iii) the
est-fitting S ́ersic index from the 2D S ́ersic fit to the galaxy images,
Fit2D , which quantifies the curvature of the radially centred light
istribution (which would be the brightness profile in 1D case). We
ely solely on r-band statistics due to their comparatively high signal-
o-noise ratio (S/N). All measurements are performed considering 
ixels inside the Petrosian region (see Ferrari et al. 2015 , for details)
Fig. 10 shows the joint distributions of H − G and H − nFit2D ,

long with the marginal distributions of each morphological parame- 
er, coloured by the JClass. The most extreme jellyfish candidates in
ur data set (with JClass = 4) were not considered due to insufficient
xamples for their kernel density estimate (KDE) calculation. We 
ote that JClass 1 candidates are the weakest examples of RPS, so
hey nearly overlap with JClass 0 in the distribution of the three

orphological parameters considered. The H − G plot shows a 
on-trivial correlation between the position in the H − G space 
nd the JClass of the increasingly stronger JClasses (JClass = 2,
). In particular, JClass 2 and 3 galaxies have higher entropy than
ther galaxies, suggesting that galaxies with strong RPS evidence 
re clumpier than galaxies with weak or no evidence of RPS. A
imilar pattern is observed with G , where JClass 2 and 3 candidates
ave lower G , suggesting that the flux in such galaxies is spread
cross more pixels than in galaxies with weak or no RPS evidence,
hich is in contrast to Bellhouse et al. ( 2022 ) who found G alone

o be an insufficient indicator to separate ram-pressure stripping 
alaxies from the general population of galaxies. The H − nFit2D 

lot additionally shows that JClass 3 candidates have lower S ́ersic
MNRAS 532, 270–294 (2024) 
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Figure 9. An example application of our framework to assign a JClass to galaxies that are visually confusing to classify. The images on the left column (outlined 
in red) are the query images and have significant deviations in their visual JClass (see the text for details). The four images closest to each query image are 
shown as obtained by SSL. The JClass predicted by SSL (see the text for details) is also shown for each query image. The JClasses mentioned in the images 
in the second-to-last columns are obtained from visual classification. Cosine similarity values are indicated. Visual classification also predicts whether a given 
galaxy shows merger signatures, shown in each image’s bottom-right. A galaxy is considered a merger only when more than half of the visual classifiers voted 
in fa v our of a merger. 
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Figure 10. Distribution of the morphological parameters considered in this 
study ( G , H , and nFit2D ), coloured by the JClass. The data points and the 
bi v ariate KDE curves are shown in the main plot, whereas the uni v ariate KDE 

curves are shown on the top and right of the figures. The uni v ariate KDEs are 
normalized independently of each other. Cases with unusual conditions during 
the morphometry calculations were excluded, as indicated by the quality flag 
[see table 3 of Ferrari et al. ( 2015 ) for more details]. 
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6 Examples of H α maps and the main code used to derive the SFR can be 
found at https:// github.com/ amanda-lopes/ Halpha-SPLUS-Jelly 
7 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet 
Propulsion Laboratory, California Institute of Technology, under contract 
with the National Aeronautics and Space Administration. 
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ndices than lower JClass candidates in the plot, which indicates 
he former are more disc-like than galaxies with weaker or no RPS
vidence (JClass 0, 1, and 2). From an astrophysical perspective, this
bservation is expected as jellyfish galaxies generally possess a disc 
omponent (e.g. Poggianti et al. 2016b ). 

Although the small sample size limits the conclusions from our 
nalysis here, we find hints that the clumpiness of galaxies increases, 
nd their ‘disc-ness’ increases as the JClass increases, as suggested by
he marginal distribution of the morphological parameters. Repeating 
his study on larger data sets would allow deducing more meaningful 
onclusions. We also note that mergers may share a morphology 
arameter space similar to jellyfish candidates, which is observed in 
ev eral studies (e.g. McP artland et al. 2016 ; Bellhouse et al. 2022 ;
rabbe et al. 2024 ), but this is not discussed here. 
.2 SFR versus mass 

he star formation rates (SFR) of the jellyfish candidates are derived
rom the H α fluxes. Such flux measurements are obtained using 
he Three Filter Method (3FM; P ascual, Galle go & Zamorano 2007 ;
ilella-Rojo et al. 2015 ) applied to r , J 660, and i-band images.
his approach creates emission line maps by assuming that the two
road-band filters can trace the continuum of the galaxy within the
arrow-band filter, where the emission line is located. The 3FM is
ased on colour relations, so the images must be calibrated and PSF-
orrected. Moreo v er, a low pass (Butterworth) filter is applied to all
mages to decrease noise. A Voronoi binning is performed to reach
n S/N of 20 in the J 0660 image. The S/N limit was chosen after
everal tests to ascertain artefacts or bad pixels are excluded. 6 

We integrated the resulting H α map to estimate the H α flux within
 radius encompassing 90 per cent of the flux ( r 90 ) in the r-band for
ach galaxy. The choice of r 90 aims to maximize the inclusion of
he emission structure in the analysis. From the H α flux, we derived
he H α luminosity, which is converted to SFR following the relation
iven by Kennicutt ( 1998 ). The SFRs are corrected for dust and [NII]
ollowing the relation proposed by Kouroumpatzakis et al. ( 2021 ).
his procedure computes the total integrated star formation rates 

or the entire galaxy region. SFR errors are derived by a simple
ropagation of errors. 
The stellar masses ( M � ) are obtained by fitting the galaxy spectral

nergy distributions (SEDs) with the CIGALE code (Boquien et al. 
019 ; version 2020.0). SED modelling was performed for only 84
alaxies from the main and control samples (15, 46, and 23 from
ntlia, Fornax, and Hydra, respectively), which had their photometry 
easured in the S-PLUS filters (Haack et al. 2024 ; Smith Castelli

t al. 2024 ) using SEXTRACTOR . The spectroscopic redshifts 
nd distances were obtained from the NASA/IPAC Extragalactic 
atabase (NED). 7 

In Fig. 11 , we compare the star formation rate (SFR) as a function
f M � of all jellyfish candidates (JClass > 0) versus normal (i.e.
on-jellyfish; JClass 0) or star-forming galaxies, combined from the 
hree clusters. Comparison between each JClass is not performed due 
o the low number of examples for each JClass. It can be observed
hat no significant trends are observed in the SFR versus M � relation
or the jellyfish candidates. The SFRs of the jellyfish candidates 
enerally tend to possess ele v ated star formation compared to non-
ellyfish candidates; ho we ver, this ele v ation is not apparent at the
igh stellar mass end. The jellyfish candidates are skewed towards 
ower stellar masses, as seen in the lower panel. Thus, one possible
eason for the non-ele v ation could be the rarity of jellyfish candidates
t higher stellar masses. Possible implications of these observations 
re discussed in Section 6 . 

We perform a two-sample Kolmogoro v–Smirno v (KS) test to 
tatistically quantify the SFR comparison, similar to Roman-Oliveira 
t al. ( 2019 ). The p -values for the SFR comparison of jellyfish versus
on-jellyfish galaxies and the main versus control sample galaxies are 
ower than 10 −4 . For any reasonable confidence level (e.g. 95 per cent, 
9 per cent), we thus reject the null hypothesis that the SFRs of the
wo samples are drawn from the same distribution for the jellyfish
ersus non-jellyfish and the main versus control comparison. These 
ndings are qualitatively in line with the results of other studies (e.g.
MNRAS 532, 270–294 (2024) 
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Figure 11. Star formation rate versus stellar mass for varying JClass 
candidates. Dots (squares) indicate galaxies from the main (control) sample. 
The lower panel shows the distribution of the stellar masses for non-jellyfish 
(JClass = 0) and jellyfish (JClass > 0) candidates. Examples with significant 

errors in the SFR calculation 
(SFR error 

SFR 

> 50 per cent 
)

are excluded. Typical 

errors in the SFR are � 30 per cent . 
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oggianti et al. 2016b ; Vulcani et al. 2018 ; Roman-Oliveira et al.
019 ), which found increased star formation in jellyfish candidates
ompared to other normal or star-forming galaxies. 

.3 Direction of infalling 

ellyfish galaxies leave a trail of RPS gas in the opposite direction of
otion (Fumagalli et al. 2014 ; Poggianti et al. 2017 ; Roberts et al.

021b ). Thus, the trail direction provides information about the most
robable direction of the galaxy’s motion in the cluster system (e.g.
mith et al. 2010 , 2022 ; McPartland et al. 2016 ). We discuss the
rojected motion of the jellyfish candidates in each cluster: Antlia,
ydra, and Fornax, shown by trail vectors (e.g. Roman-Oliveira et al.
019 , 2021 ). 
Roman-Oliveira et al. ( 2021 ) found that the shift between the peak

nd the centre of light of galaxies (calculated using MORFOMETRYKA )
s a better proxy for the motion direction than visual inspection,
specially for disturbed morphologies. The moti v ation for using
uch an approach lies in the fact that while the centre of light of
he galaxy is sensitive, the peak of light is resilient to perturbations
n the galaxy morphology due to ram pressure stripping so that the
ifference between them can be used as a tracer of the galaxy’s
otion. As a result, we deriv e the trail v ectors using MORFOME-

RYKA measurements, where the direction is based on the following
elation: ( x , y ) peak − ( x , y ) col . Similar to Section 5.1 , calculations are
erformed only on r-band images. 
Fig. 12 shows the spatial distribution of the jellyfish candidates

rom each galaxy cluster, with the trail vectors shown by the arrows.
imilar to Roman-Oliveira et al. ( 2019 ), we calculate the angle
etween the trailing vector and the line joining the galaxy to the
luster’s centre to identify whether the galaxy mo v es towards or away
rom the cluster centre. The galaxy is considered infalling towards
he centre if the angle is less than 90 degrees and outfalling if the
ngle is greater than 90 degrees. Table 1 shows the distribution of the
NRAS 532, 270–294 (2024) 
umber of galaxies falling inwards or outwards from the respective
luster system. We consider galaxies in a cluster to preferentially fall
owards the cluster when more than half of the galaxies are found
o be infalling. Thus, galaxies from Antlia and Fornax preferentially
 all tow ards the cluster, whereas there seems to be mild or no specific
reference for galaxies from Hydra to infall. Ho we ver, we note that
ur analysis is affected by the limited sample size. 

.4 Phase-space analysis 

he environment where a galaxy resides within a group or cluster
ay pose noteworthy morphological and physical transformations.

n addition, the position and velocity of the galaxy with respect to the
luster centre are determinants for our understanding of the different
ynamical effects at play. In particular, the phase-space diagram
Jaff ́e et al. 2015 ) relates the peculiar line-of-sight (LOS) velocity
 V los of each galaxy and their projected radial position R p from the

luster centre. The line-of-sight velocity can be determined by 

� V los 

σv 
= 

c( z − z cl ) 

(1 + z cl ) σv 
, (3) 

here σv is the velocity dispersion of the cluster, c the speed of light,
 the spectroscopic redshift of a given galaxy, and z cl the redshift
f the cluster. For the projected distance, we converted each angular
istance in arcsec to a kpc scale based on the distance to the cluster
e.g. 1 arcsec = 0.247 kpc in Hydra, as discussed in Arnaboldi et al.
012 ). 
The spectroscopic properties of the jellyfish candidates were

btained from NED. Ho we ver, for three candidates from Hydra, we
id not find their spectroscopic properties in NED, for which we made
se of the catalogue of ram pressure targets from Hydra published by
he WALLABY surv e y (Wang et al. 2021 ). The coordinates (RA, DEC)
f these galaxies are: (159.854 ◦, -27.9125 ◦), (159.192 ◦, -28.1672 ◦),
nd (159.337 ◦, -28.2372 ◦). The properties of the three clusters are
hown in Table 2 . In the case of Fornax, we consider the cluster
entre at NGC1399. 

In Fig. 13 , we show the distributions of the most secure jel-
yfish candidates from each cluster in the projected phase-space
iagram. The x-axis shows the projected distance normalized by the
irial radius R 200 . Following Roman-Oliveira et al. ( 2019 ), we de-
ne two boundaries: ( B1) | �V los /σv | ≤ 1 . 5 − (1 . 5 / 1 . 2) × R p / R 200 

Jaff ́e et al. 2015 ) and ( B2) | �V los /σv | ≤ 2 . 0 − (2 . 0 / 0 . 5) × R p / R 200

Weinzirl et al. 2017 ) (see also Rhee et al. 2017 ; Pasquali et al.
019 ). The areas within the defined boundaries represent virialized
alaxies. The purpose of segmenting the phase space into regions is
o determine the most likely stage of the galaxy’s orbit, such as recent
nfalling, backsplashing, or having already undergone virialization. 

In the case of Antlia, some of the JClass 1 and 2 candidates are
nder the influence of the cluster, and have peculiar velocities of the
rder of the velocity dispersion of the cluster. Two candidates are
lose to boundary B2 (one of them being a JClass 3). Ho we ver, the
emaining candidates (including a JClass 4) are outside the influence
f the cluster and exhibit relatively high LOS velocities. For Hydra,
ost of the candidates are found within the influence of the cluster.
n the other hand, most of the Fornax candidates are located in

he outskirts ( R p > 2 × R 200 ), which is also confirmed by the spatial
istribution of Fornax galaxies in Fig. 12 . This is not unexpected since
ornax’s outskirts up to large radii are covered in this study. These
andidates also exhibit high velocities with respect to the cluster
elocity dispersion. Two JClass 4 candidates are located at R p >

 R 200 . Further inspection of these candidates can reveal whether
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Figure 12. Spatial distribution of jellyfish candidates in each galaxy cluster: Antlia, Fornax, and Hydra, along with their trail vectors shown by arrows. Since 
only the direction is considered in this study, all trail vectors are shown with the same length. Galaxies with a failed trail vector calculation were excluded. The 
black cross marks the centre of the cluster. The red dashed circle indicates the virial radius. 

Table 1. No. of infalling and outfalling galaxies, categorized by the JClass, 
in each galaxy cluster, as indicated by the trail vector directions. See Fig. 12 
for the trail directions. 

Cluster Direction JClass 1 JClass 2 JClass 3 JClass 4 Total 

Antlia Infalling 2 2 1 1 6 
Outfalling 1 1 0 0 2 

Hydra Infalling 3 3 0 1 7 
Outfalling 2 1 2 1 6 

Fornax Infalling 5 5 2 2 14 
Outfalling 3 1 3 0 7 

Table 2. Cluster properties: distance to the cluster, D cl (Mpc), virial radius, 
R 200 (Mpc), virial mass, M 200 ( M �), velocity dispersion, σv (km s −1 ), and 
spectroscopic redshift ( z cl ). References: (a) Wong et al. ( 2016 ); (b) Sarkar 
et al. ( 2022 ); (c) Ragusa et al. ( 2023 ); (d) Hopp & Materne ( 1985 ); (e)Sarkar 
et al. ( 2022 ); (f) Tonry et al. ( 2001 ); (g) Iodice et al. ( 2019 ); (h) Drinkwater, 
Gregg & Colless ( 2001 ); (i) Reiprich & B ̈ohringer ( 2002 ); (j) Arnaboldi et al. 
( 2012 ); (k) Wang et al. 2021 ; (l) Lima-Dias et al. ( 2021 ). 

Cluster D cl R 200 M 200 σv z cl 

Antlia 39.8 ( a) 0.887 ( b) 10 14 ( c) 591 ( c) 0.009 ( a) 

Fornax 19.9 ( e) 0.7 ( f ) 7 × 10 13 ( g) 370 ( g) 0.0046 ( h ) 

Hydra 50 ( i) 1.4 ( j ) 3 × 10 14 ( k) 690 ( l) 0.012 ( l) 
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am-pressure stripping is acting out to these large outskirts, which is
 possible phenomenon (Bah ́e et al. 2013 ). 

To better investigate the distribution of candidates in Fornax, 
e plotted the phase space diagram by considering the centre at 
GC1316, a lenticular galaxy from an in-falling subgroup. Ho we ver, 

s shown in Fig. 14 , the jellyfish candidates are even further
way from the influence of this subgroup. Finally, since Fornax 
s surrounded by three other groups (NGC1225, Eridanus, and 
GC1532), another hypothesis is that they may influence these can- 
idates. Ho we ver, this conjecture is refuted by the spatial distribution
ap shown in Fig. 15 . Therefore, more investigation is needed to

etermine whether this gravitational influence of Fornax is causing 
PS in these candidates. We note that, another significant influence 
f the cluster environment on a galaxy, which reaches beyond the 
irialized region, is the extent of the virial shock surrounding the 
luster. This shock boundary can extend several times beyond the 
irial radius (e.g. Bah ́e et al. 2013 ; Zinger et al. 2018 ) and once a
alaxy crosses the virial shock, the surrounding gas density increases 
nd consequently there is a rise in ram pressure. 
 DI SCUSSI ON  

his paper analyses 51 jellyfish galaxy candidates from three nearby 
alaxy clusters: Fornax, Antlia, and Hydra, observed in the S-PLUS 

urv e y. These candidates were derived using the traditional visual
nspection approach, which produced a categorical RPS measure, 
he JClass, ranging from 1 to 4, representing the weakest to strongest
PS evidence. We have not recovered any JClass = 5 cases in our
unt for jellyfish candidates in these three clusters. It is possible
hat these clusters do not harbour extreme ram-pressure stripping 
alaxies, or that such stripped structures may be revealed by other
bservational methods that are beyond the parameters probed by this 
tudy; see Serra et al. ( 2023 ) for an example of a prominent tail in H I

as observed by MeerKAT in NGC1437A, which received a JClass
 3 in our study. 
Following the identification of jellyfish candidates, we analysed 

heir astrophysical properties. A morphological study revealed that 
oderate to extreme jellyfish candidates (JClass 2 and 3; JClass 4 was 

ot studied for morphology due to scarcity of JClass 4 examples) are
lumpier (higher entropy, H ) and have more scattered flux (smaller
ini coefficient, G ) than galaxies with weak or no evidence of RPS

JClass 0 and 1). The JClass 2 and 3 galaxies are more disc-like than
Class 0 and 1 galaxies, quantified by the lower S ́ersic indices of the
ormer. The increasing ‘disc-ness’ as the jellyfish signatures become 
ore prominent is expected since jellyfish galaxies are known to have 
 prominent galactic disc. The majority of the jellyfish candidates 
ith JClass 2 and 3 are low stellar mass galaxies ( M ∗ < 10 10 M �),
ith most of them having 10 7 M � < M ∗ < 10 9 M � (see Fig. 11 ).
ow-mass star-forming galaxies are usually pure-disc systems with 
urface brightness profiles well described by an exponential law 

 n ∼ 1; Hunter & Elmegreen 2006 ; Lange et al. 2015 ; Salo et al.
015 ). These galaxies are the ones that are more easily perturbed in
 dense environment (Boselli & Gavazzi 2006 ; Boselli, Fossati &
un 2022 ; Kleiner et al. 2023 ). Thus the jellyfish candidates with a
igher JClass might be associated with lower mass cluster members 
hat are more sensitive to the surrounding environment compared to 
Class 0 galaxies, characterized by a larger range of stellar masses
hat extends above 10 10 M � (Fig. 11 ). An essential finding through
his analysis is that high JClass galaxies ( JClass ≥ 2, are not entirely
istinct from the others (JClass 0, 1). Instead, they prefer a specific
ub-region of the morphological parameter space of the JClass 0 and
 galaxies, as aptly demonstrated by Fig. 10 . This o v erlap in space oc-
upation could be because the employed morphological parameters 
roduce degeneracies between extreme RPS galaxies and a specific 
ype of non-jellyfish galaxies. These observations demonstrate that 
ellyfish candidates have complicated morphological characteristics 
MNRAS 532, 270–294 (2024) 
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Figure 13. Projected phase-space diagram for the jellyfish candidates from Antlia, Fornax, and Hydra. The cluster centre for Fornax considered is NGC1399. 
The colour bar shows the JClass. In the case of Fornax, dots (squares) indicate candidates from the main (control) samples. The dotted and dashed lines indicate 
boundaries B1 and B2, respectively. 

Figure 14. Projected phase-space diagram similar to the one for Fornax in 
Fig. 13 , but considering the centre at NGC1316. 

Figure 15. Spatial distribution of galaxies from Fornax. The dots (squares) 
indicate candidates from the main (control) samples. The colour bar indicates 
the JClass. The pink dashed circle indicates the virial radius. The black cross 
(star) shows the location of NGC1399 (NGC1316). The black diamonds 
indicate the locations of three nearby groups (NGC1225, Eridanus, and 
NGC1532). 
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hat likely cannot be sufficiently described by a single morphological
ndicator. Thus, a combination of these morphological characteristics
an be used to perform morphological cuts for candidate jellyfish
ample selection in the future. Simulations studying the evolution of
ellyfish galaxies (its different stages such as cluster infall, stripping
f gas from its disc, and late-stage evolution) can allow tracking its
osition in the morphology space (e.g. the 2D space of Fig. 10 ) to
et direct insights into morphological evolution of jellyfish galaxies.
lso, interpreting weak jellyfish candidates (JClass 1 and 2) as

xamples of ‘disturbed’ morphologies rather than jellyfish could
lso help explain why these candidates largely o v erlap with the non-
ellyfish population. 

The star formation activity analysis suggested that galaxies with
Class ≥ 1 have a higher SFR than normal, star-forming galaxies
with JClass 0). This observation is expected since RPS is known
o cause a temporary starburst in jellyfish galaxies before eventually
uenching its cold gas (e.g. Gullieuszik et al. 2017 ; Vulcani et al.
018 ; Poggianti et al. 2019b ; Roman-Oliveira et al. 2019 ; Gullieuszik
NRAS 532, 270–294 (2024) 
t al. 2020 ). The SFR versus stellar mass plot trends suggest that
his effect can become less pronounced for high-mass galaxies
 M � � 10 9 M �). Ho we ver, it is not possible to make definitive
onclusions since selection effects can be at play: our sample consists
f few examples of low-mass normal, star-forming galaxies, and
any jellyfish candidates have a low stellar mass, as seen in Fig. 11 .
uch a disproportionate distribution of stellar mass of the galaxy
andidates poses difficulties in comparing SFRs at an y giv en mass
n this study. 

By analysing the tail direction of galaxies with JClass > 1 in their
espective cluster systems, we find that galaxies from the Antlia
nd Fornax clusters have tails preferentially pointing away from the
luster centre, which suggests they are falling towards it probably
or the first time. Ho we ver, only a mild preference is observed for
alaxies in the Hydra cluster since around half of the galaxies in
ydra indicate infall, whereas the other half indicate outfall. We find

nsuf ficient e vidence that nearby groups could af fect the ram pressure
tripping in galaxies from Fornax. 

Further insights might require more e xtensiv e analyses due to
otential selection effects influenced by the galaxies’ projected radii
rom the cluster centre. For instance, comparing our calculated trail
ector directions with H I tail directions from studies such as Wang
t al. ( 2021 ) and Kleiner et al. ( 2023 ) could be insightful but lies
eyond the scope of this paper. 
The properties of jellyfish candidates are generally compared

ith non-jellyfish galaxies to gain insights into the differing physics
etween the two types of galaxies. Naturally, the astrophysics and
he subsequent scientific implications depend on how the JClasses
re assigned. The traditional visual classification used to separate
ellyfish from non-jellyfish galaxies is highly dependent on human
isual biases, which makes the classification subjective. In our visual
lassification, we often observed disagreement between different
lassifiers. It is also impractical to manually vet large data sets
comprising � 10 6 −7 galaxies) to identify rare jellyfish galaxies. 

To mitigate these challenges, we proposed a semi-automated
ipeline using SSL and demonstrated a proof-of-concept application
f our pipeline. We pre-trained an encoder network aimed at
xtracting generalized feature representations of galaxies without
elying on human-based JClass for learning. Thus, SSL pre-training
s ideal for learning morphologies from large, unlabelled galaxy data
ets, a common theme in astronomy. The encoder is then used as a
eature extractor on galaxies unseen during the pre-training. Noting
he limitations of fully supervised learning or supervised learning
n self-supervised representations in providing JClass estimates, we
eveloped a novel downstream task based on the self-supervised
epresentations. We assign a self-supervised-based JClass to refine
he visually assigned JClass using a weighted nearest neighbour
earch on the self-supervised representations. For any given galaxy,
e assign the refined JClass as the weighted mean of visual JClasses
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f the k nearest neighbours in the self-supervised representation 
pace. We demonstrated the application of this framework to a few 

alaxies having uncertain visual JClass classification, which in this 
tudy refers to the case where more than half of the visual classifiers
redict different JClasses. Care w as tak en to ensure that the nearby
alaxies used to assign the JClass to the concerned galaxy were 
ot themselves uncertain for visual classification. The astrophysical 
nalysis presented in Section 5 studied possible patterns in the chang- 
ng astrophysics as the JClass increases; ho we ver, the JClass was
btained only by visual inspection. Our self-supervised pipeline can 
e integrated with visual classification to improve JClass estimates 
f uncertain visual classifications, which could re veal ne w patterns 
r impro v e the reliability of observ ed patterns. 
Due to our limited data set, it is difficult to reliably quantitatively

ssess how much disagreement exists between the visual and self- 
upervised JClasses. Ho we v er, we hav e found man y cases where
SL predicted weak and intermediate jellyfish candidates based on 
isual classification (JClass 1, 2) as non-jellyfish (JClass 0). This may
elp mitigate false-positive cases. We have also found cases where 
oth approaches agree in their JClass estimate, particularly for visual 
on-jellyfish galaxies. Cases where the self-supervised predicted a 
tronger jellyfish signature were also present. Such cases could pave 
he way for detecting new jellyfish galaxies. We have validated our 
ramework by finding that the self-supervised and visual JClasses 
gree well for visually confident JClass predictions, which was the 
xpectation. 

A current limitation of our self-supervised pipeline is based on 
he fact that jellyfish galaxies and non-jellyfish galaxies, even the 

ost pronounced ones, have overlapping morphological features, 
uch as extended emission or diffuse regions at their edges. Since 
he self-supervised representations are of high dimensionality (512 
n this study), such similarity searches may highlight similarities 
ased on features that do not help distinguish jellyfish from non- 
ellyfish galaxies. In other words, although the learned features are 
seful for classification, we cannot guarantee that they directly corre- 
pond to fundamental astrophysical properties that are immediately 
nterpretable. As a result, we speculate that differentiating between 
erger and jellyfish galaxies will be difficult based on the current 

pproach. 
As seen in Section 4.2 , cases where the self-supervised JClass

s greater than the visual JClass can be studied in more detail,
uch as their astrophysical and morphological characteristics, which 
s another potential application of SSL. Such studies can also 
ifferentiate true ram pressure stripping candidates from merger 
alaxies. Another research direction is identifying and disentangling 
eatures or learning a similarity metric (instead of fixing it to cosine
imilarity) that helps distinguish jellyfish from non-jellyfish galaxies, 
hich could alleviate these issues. A larger pre-training data set can 

lso pro v e beneficial. 
Although this study aimed to impro v e the JClass obtained from

isual classification, there are several possible extensions of our 
tudy. The strongest jellyfish candidates based on visual classification 
an be used as queries for similarity search so that the resulting
imilar images output by the SSL pipeline can be further inspected 
or jellyfish identification. An advantage is that only the strongest 
ellyfish signatures need to be classified visually (which generally 
appens quickly and reliably), and our pipeline may automatically 
dentify other strong, intermediate, or weak jellyfish signatures. 
nce identified by our pipeline, these jellyfish candidates can be 

nspected in more detail. Such an approach is helpful for swiftly
dentifying new jellyfish candidates from future galaxy surv e ys. 
nother research direction is to pre-train the self-supervised encoder 
n a large, unlabelled galaxy data set and then perform fine-tuning
f the model for the specific task of JClass assignment. The fine-
uning approach can significantly impro v e the generalizability of 
he learnt representations and has been shown to surpass fully 
upervised methods (e.g. Liu et al. 2019 ; Abul Hayat et al. 2021 ;
ayat et al. 2021 ). The loss function for fine-tuning could be based
n a representation similarity metric. 

 C O N C L U S I O N S  

his study catalogues and analyses the astrophysical properties of 
1 jellyfish candidates (possessing visual evidence of ram pressure 
tripping) within the Fornax, Antlia, and Hydra clusters from the 
-PLUS surv e y data. Based on the Gini coefficient ( G ), entropy
 H ), and best-fitting 2D S ́ersic index ( nFit2D ) morphological
arameters, we find that galaxies possessing extreme ram pressure 
tripping prefer the following regions in the morphology space: low 

 , high H , and lo w nFit2D. Ho we v er, the re gion where such galaxies
re located o v erlaps with the o v erall span of normal, star-forming
alaxies in the morphology space. We have found that galaxies 
ith JClass ≥ 1 possess an o v erall higher SFR compared to the

ample of normal, star-forming galaxies. While we observe a strong 
reference for galaxies in the Antlia and Fornax clusters to infall
owards the cluster centre, galaxies from Hydra possess a relatively 
eaker preference for infall. According to our study, the order of
irialization of the clusters is Hydra, Antlia, and Fornax, with Hydra
eing the most likely virialized system. 
Another crucial contribution of our study is to present a semi-

utomated pipeline based on a branch of machine learning called 
SL to assist in visually classifying galaxies. The primary moti v ation

o use our designed pipeline for identifying jellyfish galaxies is 
ecause, traditionally, their identification in optical wavelengths 
as predominantly depended on visual inspection, which is a time- 
onsuming endea v our. 

Our study analyses the capabilities of SSL to assist visual mor-
hological classification of galaxies in the low-data regime ( ∼200 
alaxies only), which has been previously largely unexplored in 
n astronomical context. Despite the paucity of data, a similarity 
earch using SSL revealed that the learnt representations of our 
alaxies are robust to orientation and noise. Our study thus shows that
SL can learn meaningful feature representations of galaxies even 
ith limited data, likely due to its non-dependence on any labels
uring training. There are two immediate advantages of our self- 
upervised pipeline used to refine the visual JClasses. First, unlike 
aborious visual inspection, it is scalable to large data sets. Once
he self-supervised encoder network is pre-trained, it can be used 
or swift JClass assignment for new galaxies based on a simple,
eighted nearest neighbour search. Secondly, although our pipeline 
ses the visually assigned JClasses for the final JClass prediction, 
he self-supervised encoder is trained agnostic to the visual JClass
abels. Thus, the training is unaffected by the quality of visual JClass
redictions. Furthermore, our pipeline relies only on confident visual 
lassifications, significantly reducing misclassifications arising from 

uman biases. Traditional approaches of supervised learning or train- 
ng a supervised classifier on the extracted feature representations 
i.e. the linear e v aluation protocol) rely entirely on the quality of
he visual JClass since these labels are used as ground truths in the
earning process. 

Our pipeline can also be used as a guide to train human classifiers
o assist in their visual classification. Another application of our 
ipeline is identifying false positives and negatives during follow-up 
nalysis after human classification. Our self-supervised strategy is 
MNRAS 532, 270–294 (2024) 
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esigned to lay the groundwork for a more comprehensive search
n the future. For example, with large astronomical data sets, more
owerful semantic embeddings can be obtained, further improving
he performance. It will then be possible to leverage our self-
upervised pipeline to produce more reliable JClass estimates and
hus pave the way for better constraining the properties of these
are jellyfish galaxies. Finally, the idea of a task-agnostic nearest
eighbour search in the self-supervised representation space makes
ur pipeline highly adaptable for the seamless identification of any
are astronomical signatures within astronomical data sets of future
stronomical surv e ys. 
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PPENDIX  A :  M O D E L  T R A I N I N G  DETA ILS  

1 Implementation details 

ll experiments are conducted using the PYTORCH-LIGHTNING
ibrary (Falcon et al. 2019 ; version 1.6.0), and our SimCLR imple-
entation is moti v ated by the SimCLR tutorial 8 in Lippe ( 2022 ).
e use ResNet-34 as our base encoder instead of the Resnet-50

sed in the original SimCLR approach (He et al. 2016 ) since larger
odels tend to o v erfit on small data sets (Cao & Wu 2021 ). The
esNet-34 architecture is modified to accept our 12-channel input. To
andle the relati vely lo w-resolution images in our case as compared
o typical images used for ResNet, such as those from ImageNet
Deng et al. 2009 ), we also change the stride from 2 to 1 in the first
onvolutional layer and reduce the amount of pooling by removing
he first max pooling layer (Newell & Deng 2020 ; Hayat et al.
021 ). We use the default weight initialization in PYTORCH for all the
odels considered in our study. This choice of architecture yields
 512-dimensional representation vector for each image. Although
ncreasing the dimensionality of the representations enhances their
uality, higher dimensional representations may degrade the quality
f the representations for smaller data sets (Kolesnikov, Zhai &
eyer 2019 ). Hence, we refrain from experimenting with different

epresentation sizes. Further studies can investigate the potential
enefits of increasing representation dimensions for smaller data
ets. 

The projection head in our self-supervised model is a two-layer
LP with a ReLU acti v ation function, mapping the representation

ector onto a 128-dimensional space. Taking a cue from the obser-
ation by Chen et al. ( 2020b ) that increasing the projection head’s
idth impro v es performance, we opt for a four-fold wider hidden

ayer. We do not, ho we ver, increase the depth of the MLP, given
hat the benefits of deeper MLPs tend to saturate for already-wide
rojection heads. 
NRAS 532, 270–294 (2024) 
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2 Hyperparameter tuning 

2.1 For self-supervised pre-training 

or pre-training, the following hyperparameters are tuned: learning
ate, weight decay, temperature, and number of epochs. As mentioned
n the main text, the batch size is fixed to 128. K-fold cross-
alidation is used to optimize the hyperparameters by dividing the
raining data set into K folds. We note that such an approach is less
ommonly used in the SSL context since pre-training data sets are
enerally sufficiently large, unlike the case here. The study by Suzuki,
ambayashi & Matsuzawa (e.g. 2022 ), for example, utilized K-fold

ross-validation in SSL. We adopt such a validation procedure for
wo main reasons. First, our data set size is too small to assume that
 simple train-validation-test split would estimate the model perfor-
ance reliably . Secondly , it would mean a part of the training data

s set aside for validation, thus reducing the amount of training data.
The hyperparameters are tuned using a combination of contrastive

oss (defined in Section 3.3 ) and top-5 accuracy (the number of
imes the desired patch is within the top five most similar examples
o the original image in the sampled batch) on the validation split.
or computational reasons, K = 3 is used instead of the common
hoices ( K = 5 or 10), which means the scores are averaged across
hree folds. We remind the reader that the top-5 accuracy is not
he accuracy in the downstream classification task. The similarity
s computed using the cosine similarity metric. The top-5 accuracy
s used instead of top-1 since the former is less noisy. Even though
here are two classes, jellyfish and non-jellyfish, here, the use of top-
 accuracy is valid, unlike traditional supervised classification, since
he similarity is compared across all images from a given batch.
he hyperparameters could be selected based on the downstream
lassification performance. Ho we ver, such an approach is not used
ere since we are more concerned with image similarity than the
nal classification performance. 
A progressive grid-search approach is used to select the optimal

et of hyperparameters. First, a coarse search is performed on a wide
ange of hyperparameter values: three learning rate values uniformly
elected from logarithmically spaced values in the range 10 −5 to
0 −2 , weight decay uniformly selected from three logarithmically
paced values in the range 10 −6 to 10 −3 , and temperature selected
rom 0.1, 0.5, 1.0. Such a wide search informs of each hyperparam-
ter’s approximate optimal hyperparameter intervals. The optimal
egion found was around 3 × 10 −4 for learning rate, 3 × 10 −5 for
eight decay, and 0.1 for temperature. A finer search is then
erformed around these values. In all cases till now, training was
erformed for 100 epochs to keep the computational costs low. We
eparately list the top five approaches based on top-5 accuracy and
ontrastive loss and only select the hyperparameter sets that appeared
n both lists. This makes the hyperparameter selection less noisy. Six
ets of hyperparameters appeared on both lists. Each case was then
rained for longer, i.e. 300 and 500 epochs, to yield the optimal
yperparameter set: learning rate = 10 −4 , weight decay = 10 −4 ,
nd temperature = 0.05, again decided based on the combination of
op-5 accuracy and contrastive loss. As mentioned in the main text,
raining the model longer often helps contrastive learning. To test
his, we trained the model using the optimal learning rate, weight
ecay, and temperature defined abo v e for longer epochs, i.e. 700
nd 1000 epochs. We found the performance to impro v e by training
onger, which corroborates the fact. Hence, we use 1000 epochs for
re-training. 
Fig. A1 compares the top-5 accuracy and contrastive loss, averaged

cross three folds, corresponding to the optimal hyperparameters
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Figure A1. Averaged top-5 accuracy and contrastive loss, across the three 
folds, for the optimal hyperparameters (learning rate = 10 −4 , weight decay 
= 10 −4 , and temperature = 0.05), obtained during hyperparameter tuning of 
the self-supervised pre-training, as a function of the number of epochs. 
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Figure A2. Averaged precision, recall, and top-1 accuracy, across the three 
folds, for the supervised classification using the optimal hyperparameters 
(learning rate = 10 −5 , weight decay = 10 −3 ), obtained during hyperparameter 
tuning, as a function of the number of epochs. 

Figure A3. Averaged precision, recall, and logistic loss, across ten folds, 
for the linear e v aluation using the optimal hyperparameters (learning rate = 

5 × 10 −3 and batch size = 16) as a function of the number of epochs. 
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btained using the abo v e procedure. The figure shows that training
or 1000 epochs yields the highest accuracy and lowest contrastive 
oss. We hav e observ ed the standard deviation across the folds to be
 2 . 5 per cent . This difference is non-trivial, which may be due to

ur extremely small data set that makes the individual folds not fully
epresentative of the entire data set. 

2.2 For supervised learning 

he following hyperparameters are tuned: learning rate, weight 
ecay, and number of epochs. As in Section A2.1 , K = 3 is used for
he K-fold cross-validation. The learning rate is selected from { 10 −5 ,
0 −4 , 10 −3 } , weight decay from { 10 −5 , 10 −4 , 10 −3 } , and number
f epochs from { 50, 70, 90 } . The macro-averaged precision and
ecall scores are used for selecting the optimal hyperparameter set. 
 similar grid search approach is used as in Section A2.1 . This results

n 27 different sets of hyperparameters. K-fold cross-validation 
s performed on each hyperparameter set, and the corresponding 
recision, recall, and accuracy scores are averaged across the three 
olds. The optimal hyperparameter set is chosen by selecting those 
hat appear in the top three positions for all three metrics. In our
ase, two hyperparameter sets appeared in the top three positions. 
he tie was broken by selecting the set that ranked better across all

hree metrics. This procedure yielded the optimal hyperparameter 
et: learning rate = 10 −5 , weight decay = 10 −3 , and number of
pochs = 90. 

Fig. A2 shows the classification metrics averaged across the three 
olds as a function of the number of epochs. Overall, 90 epochs
raining performs better than 50 or 70 epochs training. Hence, we 
hoose 90 epochs for comparison with the self-supervised approach. 

2.3 For linear evaluation 

inear e v aluation results are discussed in Appendix B . Here, the
uning is performed on the following hyperparameters: learning rate, 
atch size, and number of epochs. The representations from the 
raining set (obtained during the train-test split during the linear 
 v aluation) were divided into K folds. Since the 512-dimensional 
epresentations are dealt with here rather than images, the hyperpa- 
ameter tuning poses relatively less computational burden than the 
xperiments in Section A2.1 and A2.2 . Hence, K = 10 is used here.

Similar to the hyperparameter tuning procedure of Section A2.2 , 
he macro-averaged precision and recall over the folds are compared. 
o we ver, se veral ties were observed in this case while ranking
ifferent hyperparameter sets based on precision and recall scores. 
ence, the logistic loss (also called the cross-entropy loss) was used 
MNRAS 532, 270–294 (2024) 
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o break the ties. The set that yielded the least loss was then selected.
he optimal hyperparameter set we obtained is: batch size = 16,

earning rate = 5 × 10 −3 , and number of epochs = 350. As seen
rom Fig. A3 , the number of epochs = 350 is optimal. 

PPENDIX  B:  SELF-SUPERVISED  VERSUS  

UPERV ISED  L E A R N I N G  

e use the Resnet-34 architecture for the supervised CNN to
atch the encoder architecture of SSL. Since supervised approaches

enefit from having the entire object within the image, we use all
ugmentations as in the self-supervised case except random-resize-
nd-crop. Moreo v er, to ensure the learning is not affected by class
mbalance, we use weighted random sampling wherein images from
he minority class (i.e. jellyfish) are o v ersampled in each sampled
atch. We also reduce the learning rate by a factor of 0.1 after
0 per cent and 90 per cent of the total epochs during training
or both approaches. For linear e v aluation, we train the logistic
egression classifier using the SGD optimizer with initial learning
NRAS 532, 270–294 (2024) 

igure B1. Classification performance comparison between the supervised and s
c) compares the macro-averaged precision, recall, and area under the receiver oper
robabilities output by the supervised ResNet and the logistic regression classifier 
ange, but here we show it as a percentage only for visualization purposes. 
ate = 5 × 10 −3 , batch size = 16, and the number of epochs = 350
ut do not use weight decay. 

It is widely acknowledged that supervised learning methods tend
o exhibit subpar performance as the size of the data set decreases.
his is mainly due to their vulnerability to o v erfitting (Ying 2019 ),
nless certain regularization techniques, such as dropout (Sri v astav a
t al. 2014 ), are employed. On the contrary, SSL demonstrates
elative resilience to fluctuations in the training data size, as it
oes not rely on labels during the learning process but instead self-
enerates supervision from the data itself. We assess these claims by
ontrasting (a) the classification performance of a supervised logistic
egression classifier, trained on self-supervised representations, with
b) vanilla supervised CNN. The former strategy is often called
he ‘linear e v aluation protocol’ and is one of the common ways
o e v aluate self-supervised representation quality. Both methods
se the ground-truth labels derived from visual classification re-
ults, with the only difference being that the former only uses
abels during the supervised logistic regression classifier training
ut not for pre-training the encoder. The hyperparameter tuning
elf-supervised approaches. Panels (a) and (b) show the confusion matrices, 
ating characteristic (ROC) curve (AUC), and (d) and (e) show the prediction 
on the self-supervised representations. By definition, AUC lies in the [0 , 1] 
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Figure C1. Classification F1 scores under various omission com- 
binations of data augmentations. The labels on each bar describe 
which augmentations were remo v ed from the pipeline. F or e xample, 
no horizontal and vertical flip and rotation means that horizontal flip, verti- 
cal flip, and random rotation augmentations were remo v ed. The "baseline" 
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etails are described in Appendix A2 . For comparison purposes, 
e framed the problem as a binary classification. As stated in 

he main text, such a binary classification task greatly simplifies 
he comparison since a multilabel classification scheme (JClass 0, 
, 2, 3, and 4) exacerbates the class-imbalance issue due to the
areness of extreme jellyfish candidates. Moreover, to ascertain the 
obustness of the self-supervised representations to variations in 
eeing conditions, celestial locations, and other systematic factors, 
raining is performed on galaxies from the Antlia and Hydra 
lusters, whereas the testing set includes images only from the 
 ornax cluster. F or completeness, we discuss the other two cases
testing the model on the Hydra and Antlia cluster galaxies) in 
ppendix E 

Fig. B1 illustrates the comparison between the two approaches. 
igs B1 (a) and (b) suggest that the supervised approach leans more

owards classifying galaxies as jellyfish than the self-supervised 
pproach, as evidenced by the misclassification of eight non- 
ellyfish galaxies as jellyfish. This bias occurs despite adjustments 
ade for class imbalance during the supervised learning process 

Appendix A1 ). Conversely, when trained on self-supervised repre- 
entations, a logistic regression classifier demonstrates enhanced ro- 
ustness to imbalance, as it does not depend on labels for learning the
epresentations. This finding indicates that self-supervised represen- 
ations have successfully captured meaningful information regarding 
he galaxies’ jellyfish-ness. This, in turn, enables the downstream 

lassifier to differentiate more accurately between jellyfish and non- 
ellyfish galaxies. Overall, SSL demonstrates an improvement in 
lassification performance o v er supervised learning. 

In the context of this study, an ef fecti ve classification scheme

hould generate a robust recall rate ( 
TP 

TP + FN 

; TP: True positive, FN:

 alse ne gativ e; positiv e denotes the jellyfish category) for jellyfish

andidates while maintaining high precision ( 
TP 

TP + FP 

) for non- 

ellyfish galaxies. Considering the rarity of jellyfish candidates, a 
ertain level of false positives can be tolerated. Provided these 
naccuracies are infrequent, manual re-inspection and refinement 
f these galaxies by human classifiers is feasible. In contrast, 
 v erlooking jellyfish candidates can compromise the utility of such a
odel. Figs B1 (a) and (b) indicate that both self-supervised and 

upervised methodologies achieve identical recall scores for the 
ellyfish category (83 per cent). The precision scores for the non- 
ellyfish category are also identical (94 per cent and 93 per cent for
elf-supervised and supervised learning, respectively). Thus, self- 
upervised and supervised learning provide similar performances in 
uch a context. 

We note that in our study, a threshold probability of 0.5 is
sed for classification in both the self-supervised and supervised 
ethods. Alternative threshold choices were not experimented with. 
igs B1 (d) and (e), which display the predicted probabilities, can 
erve as a general guide for hypothesizing how results might shift
ith the application of different thresholds. Given the rarity of jel- 

yfish candidates, one might consider a higher probability threshold 
analogous to the 0.8 threshold used for the visually classified raw 

core in Zinger et al. 2023 ). If a higher threshold is used, even more
ignificant impro v ements can be obtained using the self-supervised 
pproach, as suggested by the probabilities observed in Figs B1 (d)
nd (e). 
a

PPENDI X  C :  DATA  AU G M E N TAT I O N  

BLATI ON  STUDY  

ata augmentation is critical in learning good-quality representations 
or the contrastive learning framework used here (Chen et al. 2020a ).
blation studies are an indirect way to understand which augmen- 

ations (or combinations of augmentations) are critical or relatively 
nhelpful for learning good representations. Such ablation studies 
re commonplace in SSL approaches and have been studied by many
orks (see e.g. Hayat et al. 2021 ; Kinakh, Taran & Voloshynovskiy
021 ). 
The procedure is as follows: certain augmentation(s) from the 

ipeline are turned off, pre-training is performed by learning rep- 
esentations of images using images from the training data set, 
nd the linear e v aluation protocol from Appendix B is employed
n the test data set. The ‘baseline’ denotes the case where all
ugmentations described in the main text are used. An augmentation 
r a set of augmentations is considered important for the downstream
lassification task if the test performance decreases compared to the 
aseline after removing that augmentation or set of augmentations. 
imilar to the main text, training is performed on galaxy images from

he Antlia and Hydra galaxy clusters, and testing is done on images
rom the Fornax cluster. 

Fig. C1 shows the F1 scores of the classification under different
ets of augmentations. Accuracy is not used due to the class
mbalance. It can be observed that the F1 score decreases from
he baseline score, 81.7, to 50.7 when random resized crop and
olour jitter are omitted. Thus, this combination of augmentations is 
ital for classification performance. Since the F1 score is the least
mong all F1 scores in the plot, we conclude that random resized
rop and colour jitter is the most important set of augmentations.
his also confirms the observation in Chen et al. ( 2020a ). Even

hough our colour jitter implementation differs from theirs, it is 
oteworthy that the result still holds. The figure also shows that
andom resized crop is the most important augmentation in our 
ase, followed by colour jitter, following a similar logic. All other
ugmentations are also important for the classification task, except 
hen horizontal flip, vertical flip, and random rotation augmentations 

re remo v ed (Approach 10 in the figure), since the performance
MNRAS 532, 270–294 (2024) 

pproach is the second bar from the top. 
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mpro v es when these three augmentations are remo v ed from the
ugmentation pipeline. A possible reason for this is that, since flips
re a special case of rotation augmentation, incorporating both kinds
f augmentations leads to redundancy, which could reduce the quality
f the learnt representations. For approaches 1 and 2 in Fig. C1 , we
sed a smaller batch size of 16 instead of 128 for self-supervised
raining due to memory constraints when not using cropping. 

PPENDIX  D :  I M P O RTA N C E  O F  AC C O U N T I N G  

O R  B  AC K G R  O U N D / N E A R B Y  S O U R C E S  F O R  

FFECTIVE  SIMILARITY  SEARCH  

e use the Grad-CAM pixel attribution method on the self-
upervised representations extracted by the trained model to visualize
ow background or nearby astronomical sources can affect the
imilarity search. Implementation is taken from the GRAD-CAM
ython library (Gildenblat & contributors 2021 ; version 1.4.8). 9 

To demonstrate the effects due to background sources, we select
 few cases in which GALMASK could not ef fecti v ely remo v e
ources near the galaxy of interest. We seek to find whether the
imilarity search can inadvertently find similar images based on
earby sources instead of the central galaxy. A query-by-example
s run as described in Section 4.1 . The embedding of the query
mage is the concept embedding. Grad-CAM is then used to highlight
egions in the images closest to the query image. This test is valid
ince our self-supervised approach does not account for background
ources during training, such as using data augmentations. Thus,
f background sources are indeed dominating similarity decisions,
t can be attributed to the model’s incapability to be robust to
ackground sources rather than inappropriate training. 
We now discuss Fig. D1 . The LEDA662179 query image in the

rst example shows bright green-coloured sources surrounding the
NRAS 532, 270–294 (2024) 

 The tutorial can be found here: ht tps://jacobgil.git hub.io/pyt orch-gradcam 

book/Pixel%20At tribut ion%20for%20embeddings.html 
entral galaxy. The closest image (LEDA83102), using the similarity
earch, also contains similar background sources. The Grad-CAM
eatmap for LEDA83102 highlights the bright green-coloured source
nstead of the central galaxy, which suggests that the similarity search
as affected by the neighbouring sources. 
A similar phenomenon is observed in the second example

ESO358-49 query image). For example, the heatmap for the second-
losest image (ESO357-29) highlights the two closely spaced sources
n its bottom right more prominently than the central galaxy.
his can be attributed to the fact that the query image (ESO358-
9) also contained two similar sources, so the similarity search
ocused on the surrounding sources instead of the central galaxy.
o we ver, the subsequent similar images were not severely affected
y surrounding sources. This could be because the surrounding
ources in these similar images did not dominate the image in spatial
ize or brightness. The third example also shows that the nearby
ources in the top two similar images to ESO35867 (ESO359-16
nd ESO418-13) significantly contributed to the high similarity to
SO35867. Ho we ver, ESO359-16 and ESO418-13 were considered
isual mergers (not labelled in the figure). Thus, interacting galaxies
ould pose difficulties in similarity search, especially if there is
 considerable difference in the spatial size or brightness of the
nteracting galaxies. 

These examples suggest the importance of removing background
ources, as deep learning models are not inherently robust to
ackground sources. Thus, we have used the GALMASK package
o e xplicitly remo v e background sources for the machine learning
pplication in the main text. Cases where GALMASK could not
f fecti v ely remo v e background sources were not considered part of
ur machine learning data set. An alternative possibility to solve this
ssue is to account for background sources in the data augmentation
ipeline, but this was not experimented in our study. 

https://jacobgil.github.io/pytorch-gradcam-book/Pixel%20Attribution%20for%20embeddings.html
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Figure D1. Demonstration using the Grad-CAM method of how background sources in the galaxy images can affect similarity search. Three examples are 
shown. The similarity search results are shown for each example, and the corresponding Grad-CAM heatmaps o v erlayed on the galaxy images are shown in 
the bottom row. This figure motivates handling background sources before or during model training, especially when the background sources have a size or 
brightness comparable to the central galaxy under consideration. 
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PPENDIX  E:  CLASSIFICATION  

E R F O R M A N C E  O N  T R A I N I N G  A N D  TESTING  

N  DIFFERENT  G A L A X Y  CLUSTERS  

ppendix B discussed the case where testing was performed on 
alaxies from the Fornax galaxy cluster. For completeness, we extend 
he comparison of supervised and self-supervised classification 
esults, where testing is performed on the Antlia and Hydra galaxy
lusters. 

Fig. E1 shows the macro-averaged precision and recall of the 
upervised and self-supervised classifications. In the case of the 
ntlia galaxy cluster, self-supervised classification outperforms the 

upervised case due to higher precision and recall scores. Ho we ver, in
MNRAS 532, 270–294 (2024) 
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igure E1. Macro-averaged precision and recall scores for supervised and
elf-supervised approaches when testing on galaxy images from the Antlia
nd Hydra clusters. 

he Hydra cluster case, the supervised approach has a higher precision
91 per cent) than the self-supervised approach (82 per cent). On
he other hand, the recall scores are similar for the self-supervised
pproach (86 per cent) and the supervised approach (85 per cent).
NRAS 532, 270–294 (2024) 
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hese two experiments reinforce the fact that SSL provides results
ompetitive to supervised learning and can ev en impro v e classifica-
ion results compared to supervised classification. 
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