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ABSTRACT App stores allow users to search, download, and purchase software applications to accomplish
daily tasks. Also, they enable crowd-users to submit textual feedback or star ratings to the downloaded
software apps based on their satisfaction. Recently, crowd-user feedback contains critical information for
software developers, including new features, issues, non-functional requirements, etc. Previously, identifying
software bugs in low-star software applications was ignored in the literature. For this purpose, we proposed
a natural language processing-based (NLP) approach to recover frequently occurring software issues in
the Amazon Software App (ASA) store. The proposed approach identified prevalent issues using NLP
part-of-speech (POS) analytics. Also, to better understand the implications of these issues on end-user
satisfaction, different machine learning (ML) algorithms are used to identify crowd-user emotions such as
anger, fear, sadness, and disgust with the identified issues. To this end, we shortlisted 45 software apps with
comparatively low ratings from the ASA Store. We investigated how crowd-users reported their grudges
and opinions against the software applications using the grounded theory & content analysis approaches and
prepared a grounded truth for the ML experiments. ML algorithms, such as MNB, LR, RF, MLP, KNN,
AdaBoost, and Voting Classifier, are used to identify the associated emotions with each captured issue
by processing the annotated end-user data set. We obtained satisfactory classification results, with MLP
and RF classifiers having 82% and 80% average accuracies, respectively. Furthermore, the ROC curves for
better-performing ML classifiers are plotted to identify the best-performing under or oversampling classifier
to be selected as the final best classifier. Based on our knowledge, the proposed approach is considered the
first step in identifying frequently occurring issues and corresponding end-user emotions for low-ranked
software applications. The software vendors can utilize the proposed approach to improve the performance
of low-ranked software apps by incorporating it into the software evolution process promptly.

INDEX TERMS User reviews, app store analytics, software issues, bug reports, data-driven requirements.

I. INTRODUCTION
The software app market is highly competitive and con-
stantly growing. Crowd-users can search for, download,
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and purchase software apps through various application
stores, such as Amazon, Google Play, and Apple Stores,
to fulfill their daily needs and tasks. As of June 2020,
nearly 3 million software apps were available in the Google
Play and Apple stores, with over 75 billion software app
downloads per month [1]. This huge volume of downloads
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and user interactions has created a fascinating phenomenon
of app approval within the user community [2]. Furthermore,
these app platforms enable crowd-users to express their
feelings, opinions, or sentiments by providing feedback on
the performance and functionalities of software applications.

End-user-generated reviews about software products and
services are widely available on various social media
platforms. Automated analysis of end-user feedback from
large datasets is essential to extract valuable insights for
software decision-making [3], [4], [5]. These reviews provide
critical information that helps software engineers understand
user requirements and design issues, thereby facilitating the
evolution of software products [6], [7]. Additionally, end-
users can request new features, report issues or bugs, share
user experiences, and ask for non-functional requirements
through these platforms [8]. Consequently, app vendors
must regularly release new versions to address pressing
issues or bugs and provide requested new features. High
end-user satisfaction is achieved when application developers
respond quickly to customer feedback regarding bugs and
problems with software functionalities and performances [9],
[10], [11]. The literature reports that dissatisfied end-users
uninstall apps rapidly and are more likely to seek alternatives,
damaging the software applications’ reputation [12], [13].
Even renowned and highly rated apps can quickly succumb
to user dissatisfaction if software vendors neglect timely
listening to the user’s voice [14]. Therefore, successful app
evolution necessitates regularly monitoring and analyzing
end-user feedback, particularly regarding software issues or
bugs, to improve app quality and user satisfaction.

However, app vendors receive substantial end-user feed-
back regularly via various channels such as app stores,
Twitter, or user forums. Manually analyzing, filtering, and
evaluating such a large amount of feedback is challenging,
complex, and time-consuming for software vendor orga-
nizations [15]. Recent advancements have made it possi-
ble to automatically identify and recover software-related
information by processing end-user feedback [16], [17],
such as software bugs or issues [18], [19], non-functional
app usability issues [20], feature requests [15], [21],
software methodologies insights [22], clustering similar
comments [23] to discover common user problems [24].
However, most research focuses on app reviews for popular
and highly rated software applications. Apps with higher
rankings and star ratings are more likely to be down-
loaded [25]. As a result, software vendors might overlook
vital information from crowd-users to improve the quality of
lesser-known applications [26], [27]. Additionally, existing
research approaches primarily classify end-user comments on
social media into various requirements-related information
but need more identification of specific software-related
information that could be used as indicators to enhance the
performance of discussed applications.

To fill this gap, We undertook a detailed quantitative and
qualitative research study with the proposed approach. The
proposed study focuses on how crowd-users report issues

and bugs in low-ranked software applications in the ASA
store. We propose a novel approach that involves identifying
common issues or bugs reported in user comments using NLP
and employing different ML algorithms to identify end-user
emotions such as anger, fear, sadness, and disgust associated
with these issues or bugs. This study aims to understand
user opinions about software apps better and enhance their
overall quality and performance by systematically identifying
and addressing user-reported issues and their associated
emotional responses.
The Key Contributions of the Proposed Approach Are as

Follows:
• We propose a semi-automated approach leveraging NLP
to identify and capture frequently occurring issues
or bugs in the ASA store, involving developing an
NLP-based algorithm that detects critical issues from
end-user comments.

• Crowd-user comments on identified issues are collected
to encapsulate end-user opinions or emotions.

• To better understand the frequently identified issues,
an additional analysis of the crowd-user comments is
performed to identify various types of end-user opinions
associated with the captured issues, such as anger, fear,
sadness, and disgust.

• A novel dataset is curated using a novel grounded
theory and content analysis approach for identifying
associated emotions. The dataset can be used by
software vendors, researchers and educationists for
understanding frequently occurring issues.

• Various pre-processing, feature engineering and data
balancing approaches are used to fine-tune various ML
algorithms for better issue classification results.

• The proposed approach can be used as a baseline to
further improve the performance of issue detection and
emotion classification approaches.

The manuscript structure is thoroughly organized to ensure
a comprehensive understanding of the research. Section II,
Related Work, reviews the existing literature and frames the
study within the broader context of data-driven requirements
engineering, focusing on analyzing app reviews and user
feedback across various platforms, including Amazon. Sec-
tion III, Methodology for the Proposed Research, elaborates
on the research methodology, detailing the approach for data
collection, analysis, and utilizing NLP and ML algorithms.
Section IV, Data Gathering and Preprocessing discusses
the initial steps of data collection and the preprocessing
necessary for analysis. Section V, Issues Extraction using
NLP, describes extracting significant issues from user
feedback in the ASA store using NLP techniques. Section VI,
Identify End-User Opinions with the Identified Issues, details
how the study identifies and categorizes user opinions
related to the extracted issues. Section VII, Automated
Classification of End-User Emotion, covers the application of
ML algorithms to classify the emotions associated with user
feedback. Section VIII, Discussion, delves into the analysis
of the findings, discussing their implications for software
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development and user satisfaction. Section IX, Conclusion
and Future Work, concludes the manuscript, summarizing
the study’s contributions and outlining directions for future
research.

II. RELATED WORK
Recently, research on data-driven requirements engineering
has grown exponentially, with studies looking at app
reviews [21], [28], [29], [30], tweets [24], [31], Developers
forums (Stake Overflow) [22], product reviews, i-e, Amazon
reviews [32], [33], or a combination of product descriptions
and feedback [34]. They all have in common: i-e, a software
product already exists, and customers review and write about
their experiences with it [35]. User feedback and end-user
participation are vital for software engineers and require-
ments analysts since they contain insightful information
like issues, bugs, non-functional requirements, and feature
requests [18], [23], [36]. Categorizing and analyzing end-
user feedback [29] was an initial step in understanding
user requirements. Also, research studies [33], [34], [37]
examined the end-user reviews in the social media platforms
to understand the rationale for requirements decision-making
and identify conflict-free requirements-related information
on a run. The release planning process is initiated by software
vendors when they decide to incorporate, for example,
an innovative feature request into a software product or
improve a frequently reported issue or bug in the software
application [38], [39]. Similarly, Khalid et al. [40] did
a qualitative study on how app store users utilized app
reviews to report difficulties. They detected 12 categories
of complaints by critically analyzing end-user feedback in
the app stores to detect and elicit latent requirements by
analyzing variations in numerous patterns connected to app
price, rating, and popularity. Additionally, Qazi et al. [41]
proposed a generalized feature-optimized transfer learning
approach to identify issues or bugs, which is evaluated with
various benchmark datasets. However, their approach is not
validated and tested on end-user reviews.

Furthermore, unlike Haering et al. [42], and
Mezouar et al. [43], we consider app reviews from the
Amazon platform. In contrast, they focus on end-user reviews
from app stores and Twitter. Additionally, Haering et al.
[42] proposed an automated approach using deep learning to
match issues or bugs reported in app stores to the bug reports
in the issue tracking system. Similarly, Mezouar et al. [43]
conducted an empirical study to investigate whether the
analysis and validation of end-user comments on the Twitter
social network improve the issues identification and fixing
process. Like, Twitter, the ASA store also allows for
lengthy multi-level conversations with end-users [26], [44],
which leads to in-depth insights into, i-e., the crowd-users
context, such as software app version and steps to recreate.
In comparison, app stores allow application developers to
reply to crowd-user reviews and enable crowd-users to
modify their feedback [45]. Also, Khan et al. [33] proposed

an automated approach, which filters out crowd-user
feedback in the user forum into end-user feedback containing
rationale information and without rationale. In the second
experiment, ML classifiers are employed on the end-user
feedback containing rationale information and classified
into supporting, attacking claims, new features, and issues.
Alkadhi et al. [46] proposed a fine-grained ML approach
that analyzes developers’ chat messages to identify useful
software and requirements-related information such as
decisions, alternatives, issues, and positive & negative
arguments. Additionally, khan et al. [37], [47] proposed
an ML learning-based approach, which analyses end-user
comments in the Reddit forum to identify conflict-free new
features or issues using argumentation theory based on their
supporting and attacking arguments.

Moreover, Sentiment analysis, often known as opinion
mining, is the process of understanding user sentiments in
app evaluations. It differentiates between positive, neutral,
and negative sentiment polarities at a variety of discrete
levels, including entire reviews, sentences, and phrases.
Research conducted by Martens and Johann [48], Martens
and Maalej [49], and Srisopha et al. [50] have investigated
sentiment analysis at the review level, whereas Guzman and
Maalej [21], Panichella et al. [51], and Panichella et al. [52]
have concentrated on sentence-level analysis. Gu and Kim
[53] and Dbrowski et al. [7] delved into phrase-level senti-
ment detection with more detail. App reviews are recognized
as a valuable source of user comments, showcasing attitudes
on various themes, features, and program attributes. This
has been emphasized in studies conducted by Guzman and
Maalej [21], Malik et al. [54], and Masrury et al. [55], along
with other researchers. Analyzing these perspectives helps
software developers comprehend user attitudes towards their
applications, revealing user needs, preferences, and factors
impacting app sales and downloads, as demonstrated in the
studies conducted by Liang et al. [56] and Nicolai et al. [57].

In contrast, we first proposed NLP-based co-occurrence
algorithms to identify frequently reported issues in the ASA
store. Then, different ML algorithms are utilized to identify
the end-user emotions with the identified issues, such as
anger, disgust, fear, and sadness, to understand their impor-
tance and implications on the quality of software applications
under discussion. Additionally, unlike Twitter’s social media
platform, issues reported in the crowd-user feedback in the
ASA store specifically showcase the platform against which
the software application is installed. On Twitter, it becomes
challenging to identify the platform, i.e., Mac, Android,
Windows, or Amazon, mentioned in the tweets.

Table 1 presents a comparative overview of existing
research and highlights the distinctiveness of our study.

III. METHODOLOGY FOR THE PROPOSED RESEARCH
This section elaborates on the research methodology, which
is comprised of two steps. Firstly, we describe the research
questions aiming to answer using the proposed research
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TABLE 1. Comparison of existing research and our study.

approach. Secondly, we defined the approach that first
identifies frequently occurring issues or bugs using NLP
utilities. Then, using different ML algorithms, we identify
end-user opinions with the associated issues in the ASA store.

A. RESEARCH QUESTIONS
In this research paper, our objective is to identify frequently
reported issues and associated end-user opinions by focusing
on low-ranked software applications in the ASA store to
help software vendors or developers in timely incorporate
the end-user feedback in the software evolution that helps
to improve their performance and ultimately gets end-user
satisfaction. For this purpose, we formulate the following
research questions.

RQ1. How do end-users register issues against
low-ranked software apps in the ASA store?

RQ2. Can frequent issues in end-user reviews on the
ASA Store be automatically identified?

RQ3. What is the precision of ML classifiers in
identifying end-users opinions against the issues captured
in the ASA store?

In summary, RQ-1 emphasizes the detailed manual analy-
sis of end-user feedback in the ASA store to recover different
patterns on how crowd users report problems or bugs against
the low-ranked software applications under discussion. Also,
identify and retrieve various types of end-user opinions
expressed against identified bugs using grounded theory and
content analysis approaches that are mandatory to develop a
ground truth for the ML classifiers. For RQ-2, we emphasize

identifying frequently occurring issues or bugs using POS
analytics, such as identifying objects cum nouns, verbs cum
operations, adjectives, and their combinations. Furthermore,
RQ-3 focuses on identifying the performance of various ML
algorithms in automatically classifying and detecting the end
user’s opinions with the associated captured issues, such as
anger, fear, sadness, and disgust.

B. RESEARCH METHODOLOGY
The proposed research approach, shown in Figure 1, com-
prises three main steps. In the first step, we curated a unique
research data set containing crowd-user feedback against the
various low-rating software applications in the ASA store
(details are in Section IV). The selection criteria for these
apps included those with ratings of three stars or below and
at least 500 user reviews to ensure a significant amount
of feedback data for analysis. The reviews were selected
based on their recency and relevance to capture the most
current issues faced by users.We selected low-rating software
applications intending to identify and capture issues or bugs
reported by the end-users to improve the ratings of the
under-discussed software apps by developing a mechanism
to incorporate the user feedback into software evolution in
a timely manner. Next, we developed a mechanism using
the NLP toolkit to recover frequently reported issues or
bugs in the ASA store. This involved the use of part-of-
speech tagging to identify key terms and patterns indicative of
software issues. Specific patterns and rules were formulated
to automate the identification process, based on the frequency
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FIGURE 1. The proposed research methodology.

and context of the terms used. Next, in the proposed
approach, we collected the end-user comments representing
the captured issues (details in Section V). Its purpose is to
record the end-users emotions about the problems or issues
identified. Next, to run the ML experiment and automatically
identify end-user opinions, we iteratively developed a coding
guideline that would work as a baseline for the crowd-user
annotation process. We developed an annotated research data
set by processing and analyzing each crowd-user comment
using the developed coding guideline1 and content analysis
approach. We assigned the captured label (anger, fear,

1https://github.com/nekdil566/Issues_Extraction-_using-NLP_ML

sadness, and disgust) to each user comment in the data set.
We removed the conflicts, if any, during the annotation of
the user comments (explained in section VI). The labels
were identified by manually analyzing the type of feedback
collected from the ASA store. After manually identifying
user emotions about reported issues, we aim to automate the
proposed approach by employing different ML algorithms to
identify the associated end-user opinions with the captured
bugs. The ML algorithms used include MNB, LR, RF, MLP,
KNN, AdaBoost, and Voting Classifier, chosen for their
effectiveness in text classification tasks. For this purpose,
we pre-process the input user comments to remove stop
words, brackets, numeric values, special characters, etc.
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We also used techniques like tokenization, lemmatization,
and conversion to lower case to standardize the text data.
For better results from the ML experiment, we used two
baseline resampling methodologies, i.e., under-sampling and
oversampling, to balance the number of instances (user
comments) in each end-user opinion category (anger, fear,
sadness, and disgust). Since ML algorithms operate on
numerical data, we used various textual features (Bag of
Words and TF-IDF) to convert textual data into a numerical
form to train and validate the ML algorithms efficiently.
We used the standard k-fold cross-validation approach to train
and validate the ML algorithms for reliable results. Finally,
we calculate each classifier’s accuracy, recall, precision, and
F-measure values to identify the most suitable ML algorithm
for identifying end-users opinions or emotions associated
with the user comments that possess the captured issues.
Below, in each section, we elaborate in detail on the main
steps of the proposed research approach.

IV. DATA GATHERING AND PREPROCESSING
To conduct our research effectively, we focused on collecting
a dataset that encapsulates end-user feedback on software
applications. Specifically, we targeted applications within
the ASA store with three stars or below ratings. The
ASA store, renowned for its extensive catalog of 824,220
applications provided by 174,237 app publishers, serves as
a pivotal platform in the global mobile app ecosystem, with
a significant portion of its 236,550 apps being actively rated
by users [58]. A total of 45 applications across 10 distinct
categories were selected for our study, aiming to cover a broad
spectrum of software applications. This selection strategywas
underpinned by the goal to delve into the reasons behind
these applications’ low ratings, dissect the emotions conveyed
through user feedback, and categorize the various types of
emotions to better understand user grievances with these
software applications. Detailed information on each selected
software application and its category is provided in Table 2.
For the collection of user reviews, the Instant Data Scraper2

tool was employed, facilitating an efficient and systematic
approach to data extraction from web pages. This tool
enabled the aggregation of 71,853 end-user reviews across the
selected 45 software applications from the 10 categories of
the ASA store. The first two authors meticulously carried out
the selection process and manually identified and analyzed
the reported issues and user opinions for these low-ranked
software applications. The diversity in application categories
ensures the generalizability of our findings, capturing a wide
array of end-user experiences and opinions. The categories
were chosen based on a predefined criterion requiring a
minimum of 500 reviews per application, aiming to collect
a comprehensive dataset that reflects a wide range of user
feedback and issues.

2https://chrome.google.com/webstore/detail/instant-data-scraper/
ofaokhiedipichpaobibbnahnkdoiiah

To ensure the high quality of the collected data,
we implemented several measures to mitigate noise and
enhance data representativeness. First, we cleaned data to
remove duplicate entries, irrelevant comments, and spam.
We utilized automated and manual techniques to filter out
non-informative reviews, such as single-word feedback or
generic praise/complaints that lacked specific details about
the software. To further ensure data representativeness,
we stratified the data collection process to include reviews
from different periods, capturing both recent and older
feedback to account for changes in user sentiment or app
performance over time. We also ensured that the selected
reviews covered a range of app versions to reflect any updates
or changes made by the developers. The rationale behind
selecting these preprocessing techniques was to maximize
the clarity and relevance of the feedback data, ensuring that
the resulting dataset accurately represents user experiences
and opinions. By focusing on detailed and specific user
comments, we aimed to create a rich dataset that can provide
meaningful insights into the issues and emotions expressed
by users.

This manual selection process was particularly challeng-
ing, as finding applications with a significant number of
reviews highlighting issues or missing functionalities is not
straightforward [59]. Our study aims to fill this gap by focus-
ing on low-rated software applications, a largely neglected
area in requirements engineering (RE) literature which
often concentrates on more popular software applications
like AngryBird, Google Maps, Firefox, and Chrome [21],
[37], [43], thereby overlooking the wealth of information
present in user feedback on less popular applications. The
comprehensive details of the applications selected for our
study, including the category names and the total number
of reviews per category and application, are showcased
in Table 2. Alongside each review, we collected data on
the feedback submitter’s name, rating, review title, and
the content of the feedback, placing a significant emphasis
on end-user feedback as the cornerstone of our proposed
approach.

V. ISSUES EXTRACTION USING NLP
By manually analyzing end-user comments in the ASA store,
we learn that many crowd-users report issues, complaints,
or bugs against low-rated software applications, mainly due
to incomplete or missing features, the bombardment of
advertisements, usability issues, performance issues, etc.,
affecting the overall quality of the application under discus-
sion, which leads to user dissatisfaction and a low rating of the
software application. For this purpose, the first two authors
of the article analyze 1000 end-user comments randomly
selected across the different apps, as shown in Table 2.
Aiming to propose an automated approach that identifies
frequently reported issues in the ASA store to improve the
overall quality of software applications by satisfying end-user
issues and emotions. Each author analyzes 500 end-user
feedback to recover how crowd-users express their problems
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TABLE 2. Summary of gathering data-set of crowd-user reviews.

with the software apps. The task was completed in eight
working hours. The finding from the analysis was grouped to
remove the repetitions in how end-users report their grudges.
The conflicts between the two authors were resolved with
discussion and negotiations, if any.

During the manual analysis, we identified various lin-
guistic patterns in user feedback that indicate common
issues. These patterns typically involve using specific nouns,
adjectives, and verbs to describe problems. For instance,
in the feedback ‘‘Worst application ever for texts and
calls,’’ the nouns/objects and adjectives are used to express
dissatisfaction. Similarly, the feedback ‘‘I have had for two
months and all of a sudden I am unable to send texts at all.
Contacted support, and they cannot seem to help either.’’ uses
adjectives and verbs to detail the issue. Another example is
‘‘This app does not work on my Kindle Fire HD. It always
says that I am not connected to WiFi when I try to use it,’’
which combines adjectives, nouns, and verbs in a specific
sequence to report an issue. Based on these observations,
we developed certain patterns and rules using the NLP
toolkit to automate the identification of frequently reported

issues in user comments. Our approach involves identifying
nouns, adjectives, and verbs to detect common problems.
We formulated these patterns by analyzing specific words’
co-occurrence and syntactic relationships.

We developed patterns and collocations by determining
the relationship between the captured nouns, adjectives,
and verbs using the Natural Language ToolKit (NLTK).3 A
collocation is a group of words that appear together excep-
tionally frequently [60], [61]. Additionally, collocations only
sometimes indicate that the words are next to one another.
However, the number of words may be wedged between
the words that make up the collocation. Collocations are
often used to explain issues since they are typically used to
express a particular meaning or concept. For example, in the
sentence ‘‘This app frequently crashes on startup,’’ the words
‘‘frequently’’ and ‘‘crashes’’ form a collocation that indicates
a performance issue. Identifying such collocations can more
accurately pinpoint specific problems users report.

Below, we describe the extraction of frequently reported
bugs from the ASA store using POS analytics. We employed
part-of-speech tagging to categorize words into nouns, verbs,
adjectives, etc. and used dependency parsing to understand
the grammatical structure of sentences. This enabled us to
formulate rules such as ‘‘noun + verb + adjective’’ or
‘‘adjective + noun’’ combinations frequently appearing in
bug reports. These rules were then used to automate the
detection of similar patterns in a larger dataset. For instance,
a rule might specify that any feedback containing the pattern
‘‘adjective + noun + verb’’ where the adjective is negative
(e.g., ‘poor,’ ‘bad,’ ‘unresponsive’), the noun is a feature or
component (e.g., ‘interface,’ ’performance’), and the verb
indicates a malfunction (e.g., ‘crashes,’ ‘fails’) should be
flagged as an issue report. By implementing these NLP-
based rules, we can systematically extract issues from a
large volume of user feedback, thus providing valuable
insights into the most common problems affecting software
applications in the ASA store. This automated process
significantly reduces the manual effort required and ensures
a more comprehensive analysis of user-reported issues.
The effectiveness of this approach was validated through
a series of tests, where the automated extraction results
were compared against manually identified issues to ensure
accuracy and reliability. However, tool-chain support is still
required to fully automate the issue extraction process for
the software evolution that filters out spare data that does
not exactly represent issue-related information, which in turn
will further reduce the time taken to identify the frequently
occurring issues only.

A. EXTRACTION OF ISSUES-RELATED INFORMATION
FROM THE ASA STORE
We used POS tagging from the NLKT library to identify
the domain objects, adjectives, and verbs (operations) in
the research dataset to identify frequently reported issues,

3https://www.nltk.org/
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TABLE 3. Top-ranked identified nouns cum objects.

TABLE 4. Frequently identified adjectives.

bugs, or concerns in the ASA store. We have determined
the commonly asked issues in the dataset by associating
the captured objects, adjectives, and operations. Below,
we elaborated on the process in detail:

1) CAPTURING NOUNS, OBJECTS AND ADJECTIVES
Previously, it is identified that crowd-users report issues or
bugs using objects cum nouns and adjectives. For example,
the end-user comments, ‘‘This is a terrible app. I prefer
Facebook video chat rounds over this. It Constantly crashes.
I hate this app,’’ ‘‘terrible app - hated it - would not
recommend to anyone,’’ and ‘‘It does work, but very poor
quality and response to the picture transmission is delayed.
Not good stuff’’. We extracted the key software-related
information, such as ‘‘terrible app’’ and ‘‘poor quality,’’
using co-occurrence patterns by combining objects with
adjectives. To automate the process, an NLTK library is
employed by first identifying all the possible nouns, objects,
and their frequencies in the dataset containing 71853 end-
user comments. In total, 30689 unique objects have been
identified in the end-user comment in the ASA store, along
with their frequencies, among which the topmost ranking
nouns are shown in Table 3. For example, the object
‘‘app’’ occurred in the dataset about 24111 times, and

TABLE 5. Frequently identified issues by combining nouns with
adjectives.

the ‘‘picture’’ object appeared 1145 times in the research
dataset, as shown in Table 3. By a similar method, all the
adjectives in the crowd-user comments are identified, which
represent issues. A total of 2922 unique adjectives were
found, and the top-ranked ones are shown in Table 4. For
example, the adjective ‘‘bad’’ has occurred in the dataset
about 1091 times, and the ‘‘terrible’’ adjective occurred
606 times in the research dataset, as shown in Table 4.
Furthermore, We developed a co-occurrence algorithm that
identifies frequently occurring issues by associating the
captured nouns and adjectives to provide an overview
to the software developers and vendors that might help
improve the performance of the low-ranked software apps
by incorporating the frequently occurring issues in the next
version of software application. Also, the objects or nouns
do not always appear immediately after adjectives in the data
set, but there could be a few words between them and vice
versa. In total, 28230 unique objects and adjective pairs are
identified in the dataset, among which the top-19 frequent
pairs are shown in Table 5. The ‘‘Terrible app’’ and ‘‘Poor
quality’’ noun-adjective association was reported 46 times,
‘‘false advertising’’ is reported 44 times in the dataset, and
vice-versa. Some examples are ‘‘Poor quality app, lots of
lag and distortion,’’ ‘‘Says it’s a free optimization app but
when you go to use it, it immediately tries to charge you.
False advertising and not worth the time it took to download,’’
‘‘Useless App. I deleted it’’, etc. Such requirement-related
information is of pivotal importance for the software and
requirements engineers that help improve the current version
or a specific software application feature under discussion in
the ASA store [33], [37].

2) VERB-ACTION
Furthermore, it is observed that capturing verbs in the
end-users comments helps identify the potential issues or
bugs by associating them with the previously identified
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TABLE 6. Frequently identified verbs in the end-user feedback.

objects and adjectives. For example, in the crowd-user
feedback, ‘‘Unable to get it to work and no help available.’’,
the adjective ‘‘unable’’ is associated with the verb ‘‘to get’’
representing a commonly occurring issue or bug with an
application under discussion. Similarly, in the comment, ‘‘It
says unable to connect to the internet when creating an
account. Don’t waste your time.’’, the adjective ‘‘unable’’
is combined with the verb ‘‘to connect’’, resulting in a
commonly reported bug or issue. It represents meaningful
information to software engineers, which needs attention
from software vendors to improve software app features.
Therefore, to automate the process, we first captured the verbs
in the end-user feedback using NLTK. In total, 3040 unique
verbs cum operations are identified, amongst which the
top 15 most frequently occurring operations are shown
in Table 6. For example, the operation ‘‘want’’ appears
2697 times in the data set, and the ‘‘find’’ operation appears
2242 times. Furthermore, the verbs alone do not represent
helpful information for software engineers [6]. Therefore,
by developing a co-occurrence algorithm, we associate the
identified verbs and cumulation operations with previously
captured adjectives to recover useful information on the
issues or bugs. In total, 22319 unique adjective and verb
pairs are identified in the data set, among which the top-16
frequently occurring pairs are shown in Table 7. The adjective
‘‘unable’’ appear quite often with the verb ‘‘to get,’’ ‘‘to use,’’
‘‘to watch,’’ ‘‘to play,’’ etc., as shown in Table 7. Also, the
adjectives do not always appear immediately after verbs in
the data set, but there could be a few words between them and
vice versa. For example, the possible issues ‘‘impossible to
watch’’ and ‘‘hard to navigate’’ occurred 30 times, as shown
in Table 7.

3) RELATIONS BETWEEN NOUN-OBJECT, ADJECTIVES
(ISSUES) AND OPERATIONS
Additionally, by manually analyzing end-user comments
in the ASA store, we learned that associating captured
adjectives, verbs, and nouns together can give valuable and
helpful information on frequently reported issues in the ASA
store. Therefore, we developed the co-occurrence algorithm

TABLE 7. Frequently identified bugs by combining verbs and adjectives in
the user feedback.

using the NLTK to find the association relationships between
the identified adjectives, noun objects, and operations. Also,
in the research dataset, we observed that an object or adjective
does not always appear immediately after an operation or
verb; there could be a few words between them. Therefore,
we introduced the threshold range parameter λ to find its
co-occurrence. The value is defined manually; we set it
to 5, be inclusive, and observe its occurrence patterns in
the dataset. For example, in the captured pair of entities,
operations, and the adjective ‘‘disappointed with this app,’’
where the adjective is ‘‘disappointed (expressing the end-user
emotion with the app),’’ the noun is ‘‘app,’’ and the verb is
‘‘with,’’ demonstrating the relationship among the end-user
emotion and the software app under discussion. The words
in between them are ‘‘to’’ and ‘‘is.’’ In this way, the
proposed approach captured many pairs, among which the
14 most frequently occurring pairs are shown in Table 8.
The pairs identified by the co-occurrence algorithm represent
frequently occurring valuable information for the software
engineers that can be utilized to improve the performance
of low-ranked software applications by incorporating them
in the software development and evolution processes in a
timely manner. For example, the pair ‘‘long time to load,’’
which is captured ‘‘17’’ times in the end-users feedback,
demonstrates useful requirements-related information in
which crowd-users complain about the current performance
problem of the software application under discussion in the
ASA store, such as, ‘‘horrible, it crashes toomuch and crashes
during calls. then sometimes never loads messages when I’m
on PC Skype. it bugs me so much, and loading messages
takes a long time. I say this app is not recommended.’’ Such
information is necessary for the software development team
if it is captured and incorporated into the decision-making
process in a timely manner to earn end-user satisfaction and
improve app ratings and quality. Algorithm 1 is developed
to identify the adjectives-verb-nouns pairs. Algorithm 1 also
identifies the pairs, such as ‘‘horrible customer service’’ or
‘‘bad sound quality,’’ which does not explicitly include a
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TABLE 8. Frequently identified issues categorized by user feedback.

verb, but the implied verb can be ‘‘to have’’ and ‘‘is.’’ For
example, the end-user commented, ‘‘Whenever I am on a
Skype call with my friend, it drops the call randomly. And
when it doesn’t drop the call, it is really bad sound quality.
Please fix this, and I would give it 5 stars’’, where the ‘‘is’’
can be referred as a possible verb and the identified pair can
be presented as ‘‘the sound quality is bad.’’

An algorithm is developed to extract frequently occur-
ring issues by associating adjectives, verbs, and nouns
by analyzing end-user comments in the ASA store. The
algorithm accepts end-user comments as input and returns
frequently occurring issues and their number of occurrences
as output. An empty dictionary called ‘‘relations’’ is created
for the algorithm, storing adjective, noun, and verb pairs.
The algorithm loads stopwords from the NLTK corpus to
capture the meaningful information for the software vendors
between verbs, adjectives, and nouns and is stored in the
‘‘stop_words.’’ The proposed algorithm then iterates over the
end-user reviews stored in the ‘‘Base_Review.’’ It tokenizes
the end-user review into individual words and tags the
tokens with the POS tags to determine the grammatical
category of each word. Also, if a token is found in the
‘‘entity_chunks,’’ which is a predetermined set of important
words, the algorithm searches for the nearest adjective (JJ)
5 tokens before the current token. If a valid adjective
is found, it is added to the ‘‘all_adjectives’’ set, and its
count in the ‘‘verbs_relation’’ dictionary is increased. The
algorithm also determines whether the adjective is already
in the ‘‘co_occur’’ dictionary. If it does not, it inserts
an empty dictionary entry for that adjective. The current
token (noun) count in the ‘‘co_occur’’ dictionary under
the associated adjective key is then increased. Finally, the
algorithm identifies frequently occurring issues in the ASA
store by combining verbs, adjectives, and nouns and their
count in the ‘‘relations’’ dictionary. The algorithm iterates
over the ‘‘relations’’ dictionary and lists the frequently
identified issues and frequencies.

VI. IDENTIFY END-USER OPINIONS WITH THE
IDENTIFIED ISSUES
By manually analyzing end-user comments, we learn that
crowd-users express their opinions, sentiments, or emotions

Algorithm 1 Extract Frequent Issues
1: Initialize an empty dictionary relations, verbs_relation,
co_occur

2: Initialize an empty dictionary verbs_relation
3: Load stopwords from the nltk corpus and store them in the set
stop_words

4: for each fea in data[’Base_Review’] do
5: Tokenize fea into words and store them in the list tokens
6: Perform part-of-speech tagging on tokens and store the

tagged tokens in the list tags
7: for each index and (token, pos) pair in enumerate(tags) do
8: if token is present in entity_chunks then
9: Initialize a variable i with the value of index - 1

10: while i ≥ 0 and index - i ≤ 5 and tags[i][1] ̸= ’JJ’ do
11: Decrease the value of i by 1
12: end while
13: if i ≥ 0 and tags[i][1] == ’JJ’ and tags[i][0] not in

stop_words then
14: Add tags[i][0] to the all_adjectives set
15: if tags[i][0] is already present in the verbs_relation

dictionary then
16: Increment the count of tags[i][0] in the

verbs_relation dictionary
17: else
18: Set the count of tags[i][0] in the verbs_relation

dictionary as 1
19: end if
20: if tags[i][0] not in co_occur then
21: Add an empty dictionary for tags[i][0] in the

co_occur dictionary
22: end if
23: if tags[index][0] not in stop_words and

tags[index][0] not in co_occur[tags[i][0]]
then

24: Increment the count of tags[index][0] in the
co_occur[tags[i][0]] dictionary

25: end if
26: Initialize an empty string variable temp
27: for each j in the range from i to index + 1 do
28: Append tags[j][0] to temp with a space separator
29: end for
30: if temp is already present in the relations dictionary

then
31: Increment the count of temp in the relations

dictionary
32: else
33: Set the count of temp in the relations dictionary

as 1
34: end if
35: end if
36: end if
37: end for
38: end for
39: Extract frequent issues using the Counter function on the

relations dictionary and retrieve the most common items
40: Store the frequent issues in the frequent_issues list

when they report issues in the ASA store. Also, end-users
submit many reviews in the ASA store against the software
applications, making it challenging to identify crowd-user
emotions manually. Therefore, various ML algorithms are
employed to better understand the end-user emotions with
the reported issues and automate the process. Martens and
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Johann [48] reported that identifying sentiments or emotions
with the requirements-related information can improve the
developer’s understanding of the current challenges with the
software application and predict the end user’s perception of
the new release. For this purpose, first, we need to curate a
research data set for identifying end-user emotions with the
associated captured issues in the ASA store. We developed a
research data set containing 7989 end-user comments. Each
included user comment in the data set represents an identified
issue in the ASA store. To make the data perusable for
the ML algorithms, we need to develop a unique coding
guideline to help the coders annotate the research data
set using the content analysis approach. To enhance the
rigor of our methodology, we integrated grounded theory to
systematically develop a theoretical framework directly from
the data, which guided the creation of our coding guidelines.
This approach helped us understand and categorize the
nuanced expressions of user emotions. Furthermore, our
content analysis was structured around these guidelines,
ensuring a systematic and quantifiable qualitative data anal-
ysis. Finally, to ensure the accuracy of our data annotation,
several measures were implemented.We conducted a training
session for all coders to calibrate their understanding of the
coding guidelines and conducted a pilot annotation phase
to refine them. Inter-rater reliability was assessed using
Cohen’s kappa [32], achieving a substantial agreement level,
thus validating the consistency of our annotations. After
establishing a reliable annotated dataset, we pre-process this
data, re-sample it to address class imbalance, and then apply
various ML algorithms to identify end-user opinions. Each
step is elaborated on below:

A. GROUNDED THEORY FOR IDENTIFYING END-USERS’
EMOTIONS
To curate an annotated sample for the ML experiment, it was
imperative to develop a coding guideline by manually ana-
lyzing and evaluating end-user comments in the ASA store
employing the grounded theory approach [62]. Through this
systematic and qualitative analysis of frequently occurring
user opinion information in the ASA store, a unique end-
user emotion theory was formulated. This phase resulted in
the creation of a consolidated coding guideline document,
iteratively developed to outline the distinct coding concepts
identified for implementing the proposedmethod, as depicted
in Figure 1. This document serves as a baseline for
establishing a truth set (annotated) for the proposed approach,
facilitating consensus among annotators and preventing
conflicts [63], [64]. Moreover, it includes definitions and
examples of each identified end-user emotion concept within
the ASA store. The development of these coding guidelines
involved iterative discussions, refinements, and resolution of
disagreements by the first two authors to further enhance and
stabilize them.

The diversity or uniformity in the emotions identified from
the reviews can be quantified using entropy. The entropy H

for the distribution of emotions can be defined as:

H = −

n∑
i=1

p(xi) log2 p(xi) (1)

where p(xi) is the proportion of the emotion xi within the
dataset and n is the number of distinct emotion categories
identified.A higher entropy value suggests a more uniform
distribution of emotions across the dataset, indicating a
wide range of emotional responses, whereas a lower entropy
value points to a skewed distribution, suggesting that certain
emotions are more predominant

B. ANALYZING OF END-USER COMMENTS
In the following subsections, we elaborate on the various
concepts identified in the ASA store using grounded theory
and the annotation process to annotate a sample data set to
automatically identify end-user emotions with the captured
issues using different ML algorithms.

1) END-USER OPINIONS CONCEPTS
For the proposed classification approach, we collected end-
user comments representing the captured issues in the
ASA store. We are interested in identifying the end-user
opinions or emotions of the type sadness, fear, disgust,
and anger with the associated captured issue by aiming
to improve the quality and overall user satisfaction of
low-ranked software applications by helping developers
better understand the reported issues in the ASA store.
In comparison, preference will be given to the captured issues
based on the identified end-user emotions in developing
the next release of the software application to improve
user satisfaction. To determine the corresponding end-user
opinion, we solicit various concepts of user emotions by
manually analyzing end-user comments in the ASA store.
Furthermore, the related and similar end-user emotion codes
were merged into concepts, which resulted in the theory of
user emotions for software engineering. The codes developed
and included in the coding guidelines were chosen based on
their frequency in the crowd-user reviews and their relevance
to the aim of the proposed research approach. As a result,
if the end-user emotion code appeared only once or twice
during the manual annotation process, it is then grouped
with the appropriate user emotional concept. Similarly, if one
coder identifies an end-user emotion code, it is rejected or
eliminated if considered irrelevant to the proposed approach.
Using grounded theory, we identified end-user emotion codes
against low-ranked software applications in the ASA store,
i.e., anger, disgust, sadness, and fear. The details of each
recognized code are given below:

a: SADNESS
The code ‘‘sadness’’ is assigned to an end-user comment in
the ASA store where crowd-users express grief or pain over a
software feature, a bug or issue in the software application,
or an issue reported in the software’s quality or with the
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overall software. Generally, sadness occurs when a beloved
one or an essential item is lost. Similarly, crowd-users express
‘‘sadness’’ when unsatisfied with a single feature or overall
software application in their reported comment in the ASA
store. Some examples are ‘‘For some time, the app shows
invalid file when trying to open almost any PDF, I used to
love the app and reinstalled hoping they fixed the problem,
but it doesn’t work’’ and ‘‘Fun way to connect with my
granddaughter. And I was unable to figure out how to use.
I am sad for it’’.

b: ANGER
The concept of ‘‘anger’’ is assigned to end-user feedback
in the ASA store and refers to what stops crowd users
from achieving the desired goals with either a single feature
or overall software application. Also, a specific software
feature or the overall application behaves unexpectedly or
unfairly. In general, ‘‘anger’’ is one of the seven universal
emotions that arise when we are not reaching our vision
or are maltreated. At its most extreme, anger can be one
of the most dangerous emotions due to its possible link
to violence. Such information is of pivotal importance for
software and requirements engineers, as it might result in
the uninstallation of the software applications. Therefore,
the proposed approach can be identified earlier to earn user
satisfaction and improve the overall quality of the software
application. Some examples of the ‘‘anger’’ concept in the
ASA store are: ‘‘I downloaded and deleted because of the
difficult layout.’’ Also, I got a problem like this: ‘‘invalid
file when trying to open.’’ Can you please fix this? ‘‘You’re
bothering me, bro,’’ and ‘‘They are big liars and stink.’’ Every
time I tried to open it, it would crash and then tell me an
unknown error had occurred.

c: DISGUST
The concept ‘‘disgust’’ is assigned to end-user feedback in
the ASA store where crowd-users strongly dislike a specific
software feature, a bug or issue that has arrived in the
software application, an issue reported in the software’s
quality, or the overall software application. In general,
‘‘disgust’’ is one of the seven universal emotions, defined by
a strong dislike for something unpleasant. In requirements
engineering, it is essential to identify the ‘‘disgust’’ emotions
of crowd-users in the ASA store, as they mainly describe
the software application’s negative behavior, specifically the
non-functional attributes. For example, ‘‘You can only make
calls to users of this application.’’ I couldn’t even sign up; it
just exited out and said the app had foreclosed three times, so I
uninstalled it and got a better texting app that lets me create
an account. And I’m on my Kindle Fire HD. ‘‘I don’t like
this app.’’ and ‘‘I couldn’t even sign up; it just exited out and
said the app forbade it three times, so I uninstalled it and got a
better texting app that lets me create an account.’’ ‘‘Don’t like
it.’’ Identifying such requirements-related information earlier
can help improve software applications’ quality and end-user
satisfaction.

d: FEAR
The concept ‘‘fear’’ is assigned to end-user feedback in
the ASA store where crowd-users sense or feel a possible
threat with a specific software feature or the overall software
application. In general, ‘‘fear’’ is induced by the threat of
harm, which can be physiological, emotional, or mental in
origin and can be real or imagined. In requirements and soft-
ware engineering, ‘‘fear’’ is often considered a ‘‘negative’’
emotion. Identifying it earlier in the software development
phase can give the crowd-users enough confidence in the
software’s functionalities and overall performance. Some
examples of ‘‘fear’’ emotions in the ASA store are ‘‘useless.’’
I was unable to make the simplest edit to my PDF. ‘‘I wish I
could get my money back, but Amazon makes it impossible.’’
and ‘‘I installed this app, and that’s as far as I got.’’ Every time
I tried to open it, it would crash and then tell me an unknown
error had occurred. I uninstalled and reinstalled it a few times
but never opened it. ‘‘I can’t say if I liked it or not because I
never got to try it.’’

C. MANUAL CONTENT ANALYSIS
After capturing the most frequent end-user opinions concepts
in the ASA store, we need to annotate the crowd-user com-
ments by critically analyzing each comment using content
analysis technique [32], as described by Neuendorf [64] and
Maalej and Robillard [63]. The code for sadness, anger,
disgust, or fear is assigned to each end-user comment based
on the coding guidelines developed in the previous step
of the proposed approach. We used the content analysis
technique [32] to annotate the crowd-user comments in the
ASA store (sadness, anger, disgust, and fear) by critically
examining each end-user feedback to determine the relevant
end-user emotion code. The objective of crowd-user feedback
annotation is to determine the frequency of end-user emotion
concepts and develop a truth set used to train and evaluate
the various ML classifiers in an attempt to address RQ3. The
manuscript’s first two authors independently assessed each
end-user feedback in the dataset to determine crowd-user
emotion type. Furthermore, a unique coding guideline is
developed to reduce misunderstandings and disagreements
among the annotators, containing precise instructions,
descriptions, and examples of end-user emotional types in
the ASA store.

1) ANNOTATION OF CROWD-USER ISSUES COMMENTS
Each coder is provided with a coding guideline and a
coding form, including a complete set of crowd-user feedback
representing identified issues in the ASA store, to annotate
the end-user comments in the curated data set. Each coder
independently analyzes the title and the main contents of each
end-user feedback to determine the user emotion associated
with the feedback as either sadness, anger, disgust, or fear.
A coding sample of the end-user emotions in the ASA store
is depicted in Table 9. The columns ‘‘User Name,’’ ‘‘Review
Rating,’’ ‘‘Review Title,’’ and ‘‘Review Contents’’ represent
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TABLE 9. Shows our labelled data-set.

TABLE 10. Distribution of end-user emotions for the identified issues in
the ASA store.

the end-user feedback information in the ASA store, while the
column ‘‘Emotion Type’’ defines the possible emotion types
that need to be recovered by the coder, including sadness,
anger, disgust, and fear. The software applications in the issue
coding form organize the crowd-user comments selected for
the annotation process. For this purpose, a random sample
of end-user feedback, denoted as N = 7989, is chosen from
all the crowd-user comments in the data set, representing the
captured issues in the ASA store. The sample size of end-user
reviews collected for the annotation process is organized to
represent each software category and application equally.
The feedback for a particular software application appears
first in the coding document, followed by the remaining user
comments in a specific order. Additionally, links to each
software application included in the annotation process are
provided in the coding document to aid coders in case of
confusion in understanding the user comments. Coders are
allowed to pause and resume the issue annotation process
at their convenience. The average time taken by coders to
complete the annotation process is reported to be T =

12 working hours.
After completing the individual annotation tasks, all

individual coding results are compiled, and a reconciliation
method is applied, as illustrated in Figure2, to identify and
resolve discrepancies. The inter-coder agreement, quantified
by the percentage of agreement, is reported to be α = 87%.
Concurrently, Cohen’s kappa (κ), a measure of inter-rater
reliability, is calculated as:

κ =
Po − Pe
1 − Pe

(2)

where Po is the relative observed agreement among raters,
and Pe is the hypothetical probability of chance agreement.
For this study, Cohen’s kappa is identified as κ = 0.65,
indicating a substantial agreement between the annotators
according to Cohen’s kappa scale. Following the reconcili-

FIGURE 2. Shows issues sentiment distribution in the data-set.

ation process, a conflict-free labeled dataset is curated and
used as input for various ML algorithms to identify and
categorize end-user emotional types within the ASA store.

2) FREQUENCY OF THE END-USERS EMOTIONS FOR THE
SUBMITTED ISSUES
To better understand the curated data set and end-user
feedback, we employed a content analysis approach to
recover and identify the frequencies of the crowd-user
emotion types and their relevancy to the associated issues.
Also, studying the significance of such information for
software developers will provide opportunities to enhance
the performance of existing low-rated software apps in the
ASA store. For this purpose, the proposed study reveals
that crowd-user feedback in the ASA store is essential
for identifying and capturing frequently reported issues
and corresponding end-user emotions. Figure 2 shows the
distribution of end-user emotions in the curated data set
from the ASA store, and Table 10 describes the number
of end-user feedback across each user’s emotional type.
We found that the ‘‘fear’’ end-user emotion type occurred
most frequently in the curated research data set, with an
overall percentage of 38.4% (3067 comments), as depicted
in Figure 2 and Table 10, respectively. One possible reason
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might be that most crowd-users feel a potential threat when
using a specific software feature or app. The second most
prominent end-user emotion type captured in the end-user
reviews is ‘‘sadness,’’ which is identified as 28.7% (2295 end-
user comments) of the total 7989 end-user comments. End-
users show pain or grief and become sad when the software
applications under discussion do not satisfy their desired
needs and requirements. Next, the most common and visible
end-user emotion type recovered in the ASA store is ‘‘anger,’’
21.9% (1746 comments). It is because end-users become
frustrated and angry when they suddenly stop achieving the
desired goals with either a single software feature or the
overall software application. Finally, the ‘‘disgust’’ end-user
emotion type is recovered as the least essential and most
prominent sentiment type in the ASA store. The disgust
emotion type is 11% (881 crowd-user comments) of the
overall end-user comment selected for the annotation process
because end-users do not frequently express their extreme
dislike for a specific software feature, bug, or issue that has
arisen in the software application. The analysis encourages
software researchers, vendors, and developers to propose
approaches by automating the issue identification process
with the corresponding emotion type to better understand
the issue’s severity. Later, the process may be embedded in
the existing software evolution phase to achieve higher user
satisfaction by incorporating the identified issues in a timely
manner.

VII. AUTOMATED CLASSIFICATION OF END-USER
EMOTION
Social media comments are a rich source of publicly available
text. Despite researchers’ claims that crowd-users submit a
large amount of information on these platforms, it becomes
difficult, time-consuming, and challenging to capture issues
and associated end-user emotions manually [8], [44], [45].
Also, previous research shows that extracting and identifying
end-user emotions from crowd-user comments on social
media is more complex than recognizing emotions through
faces, voices, and gestures. Furthermore, the end-user’s
confusing context, the complexity of natural language, and
its constant evolution (new expressions every day) are just
a few challenges that make text-based end-user emotion
identification challenging [65]. For this purpose, we are
interested in employing different ML algorithms and record-
ing their performance in automatically identifying end-user
emotion types in the ASA store. For this, 71853 crowd-user
feedback was collected from 45 various low-rating software
applications, for which we first identified the frequently
reported issues (explained in Section III). Next, we identified
crowd-user feedback that represented at least one captured
issue in the data set. In total, 49,700 such end-user comments
were identified. We selected 7,898 end-user comments
using a stratified random sample method to recover the
end-user emotion type using distant ML classifiers and
record their performance. To refine our approach to ML,
we meticulously outlined our feature engineering process,

which involved extracting n-grams, term frequency-inverse
document frequency (TF-IDF) features, and using word
embeddings to represent text data effectively. Each model
was trained using a robust validation framework employing
a 10-fold cross-validation methodology [66], ensuring that
our results are reliable and generalizable. The ML clas-
sifiers selected for this task are Support Vector Machine
(SVM), MNB, LR, KNN, MLP, Gradient Boosting (GB),
Voting Classifier, Ensemble Methods, and RF. To address
the challenge of imbalanced data, we implemented both
oversampling and undersampling techniques. This ensured
a balanced representation of classes, crucial for training
unbiased machine learning models. Our evaluation measures
included accuracy, precision, recall, and F1-score, providing
a comprehensive view of model performance across mul-
tiple dimensions. Furthermore, we used the K-fold cross-
validation methodology [66] to validate and train the various
ML algorithms to identify end-user emotion types in the ASA
store. Also, we are interested in adopting those ML features
from the software engineering literature that lead to better
classification results. The details of each ML experiment step
are explained below:

A. EXPERIMENTAL SETUP
In the ML experiment, we used various text pre-processing
and feature engineering approaches to examine the perfor-
mance of the ML algorithms and demonstrate their efficacy
in classifying end-user emotions in the ASA store. Before
text pre-processing, text features selection, data resampling,
and classifier training, we chose ML classifiers from the
software engineering literature that did better on the textual
data from social media [34], [67], [68]. To recap, the
algorithms utilized in the experiment are SVM, RF, MNB,
LR, Ensemble Methods, GB, MLP, Voting Classifier, and
KNN. The voting algorithm is a classification method
that generates predictions by integrating the classification
results from multiple classifiers that perform better in a
specific classification task. Similarly, the ensemble ML
classifier builds a bunch of classifiers and then categorizes
incoming text data points based on a (weighted) vote on
their predictions. Moreover, each ML classifier is trained
and validated with the crowd-user emotions to automatically
identify and classify different emotions in the ASA store,
i.e., anger, fear, disgust, and sadness. The ML experiment is
conducted in Python, as elaborated below.

B. PREPROCESSING AND FEATURE ENGINEERING
Crowd-user submissions often contain raw feedback that
includes special characters, symbols, HTML tags, links, etc.
Directly utilizing such raw textual data for machine learning
classifiers might impede their classification performance.
Therefore, it is imperative to cleanse the input data through
several preprocessing steps. These steps include converting
all text to lowercase, and removing HTML tags, URLs, punc-
tuation, special characters, and alphanumeric words from
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the end-user comments. Additionally, text lemmatization,
a process of text normalization, is applied to further reduce
the words in the dataset to their base or root form to enhance
the classifiers’ performance.

Formally, let D be the raw dataset containing end-user
comments, where each comment ci ∈ D undergoes pre-
processing to yield a cleaned dataset D′. The preprocessing
function P can be represented as:

D′
= P(D) (3)

where P encompasses the operations of case normalization,
HTML tag removal, URL removal, punctuation removal, and
lemmatization.

Subsequently, stop words are eliminated from the cleaned
dataset. Stop words are the most frequently occurring words
in the dataset that contribute minimally to the classification
outcome, such as ‘‘is’’, ‘‘the’’, etc. Let S denote the stop
word removal operation applied to D′ to obtain the final
preprocessed dataset D′′:

D′′
= S(D′) (4)

Feature Engineering: For transforming the end-user com-
ments into a numerical format comprehensible by ML
classifiers, the Label Encoder function from the Python
‘‘sklearn.preprocessing’’ class is utilized. This operation
converts the categorical labels of end-user emotions (e.g.,
anger, fear, disgust, sadness) into numerical form. Let L
denote the label encoding operation with the emotional labels
set E , and numerical labels set N :

N = L(E) (5)

Additionally, textual features are extracted using the Term
Frequency-Inverse Document Frequency (TF-IDF) and
CountVectorizer methodologies to generate a features-
documents matrix. TF-IDF, for example, is calculated as:

TF-IDF(t, d) = TF(t, d) × IDF(t) (6)

where TF(t, d) is the term frequency of term t in document d ,
and IDF(t) is the inverse document frequency of term t across
the corpus.

C. DATA IMBALANCE
These days, a significant technical challenge in supervised
ML is imbalanced data sets [69], elaborated as unequal
instances of user comments across the identified labels in
the data set. The research data set for this experiment
is unbalanced, as depicted in Figure 3. The 38.4% of
the end-user feedback in the dataset was recognized as
‘‘fear’’ user emotions, and 11% were recovered as ‘‘disgust’’
emotions. As a result, training a classifier on an imbalanced
data set causes theML classifier to skew towards the majority
class and ignore the minority classes, i.e., the annotation
classes containing a limited number of records in the data
set. To overcome the imbalanced data issue, we adopted two
popular rebalancing approaches in software engineering liter-
ature [69], i.e., undersampling and oversampling, to improve

FIGURE 3. Distribution of end-user comments against emotions
categories.

the performance of the classifiers in identifying end-user
emotions.

Under-sampling is a non-heuristic methodology for bal-
ancing class distribution that randomly excludes or eliminates
majority class samples [70]. The undersampling method can
be mathematically represented as:

Runder =
Nminority

Nmajority
× 100 (7)

where Runder is the percentage of majority class samples to
be kept, Nminority is the number of minority class samples,
and Nmajority is the number of majority class samples.
While oversampling is a non-heuristic methodology for

balancing class distribution that includes randomly repeating
minority class examples [71]. The oversampling method can
be mathematically represented as:

Rover =
Ndesired − Nminority

Nminority
(8)

where Rover is the number of times minority class samples
need to be duplicated, Ndesired is the desired number of
minority class samples after oversampling, andNminority is the
original number of minority class samples.

Also, in the ML experiment, we used receiver operating
characteristic (ROC) [72], and precision-recall [73] curves
to assess and identify which data balancing approach, i.e.,
oversampling or undersampling, is appropriate for training
the ML classifiers. To accomplish this, we identify and cal-
culate the percentage of true positives against false negatives
for each classifier employed in the ML experiment. Figure 4
shows ROC curves for RF and MLP classifiers that explore
and evaluate under and oversampling methodologies to
identify the best resampling methodology for capturing end-
user emotions. These two ML classifiers were selected based
on their better performance in identifying and classifying
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end-user emotion types in the ASA store. Furthermore,
we identified from the classification experiment that ML
algorithms perform better with the oversampling approach
and yield better results than the undersampling approach.
One possible reason for the degraded classification results
is that valuable and critical information is discarded while
employing an undersampling approach [74].

D. DATA ASSESSMENT & TRAINING
We employed a stratified 10-fold cross-validation methodol-
ogy to train, validate, and test ML classifiers on end-users
emotional feedback from the ASA store. The classifiers are
trained on 9 folds of cross-validation and validated with
1 fold. The classifier training and validation are repeated
10 times by rotating the testing and training folds. The main
advantage of cross-validation in training and validating the
classifiers is to assess how well an ML model performs with
the limited availability of textual data. The stratified K-fold
approach has recently been widely adopted for training and
validating ML algorithms. Each fold in the stratified K-fold
approach has the same number of labels belonging to each
class. To identify and test the efficacy of the ML classifiers
in capturing the end-user emotion types, we computed and
presented the average results obtained from the 10-fold
cross-validation. We employed recall (R), precision (P),
and F-measure scores to analyze and validate the machine
learning classifiers. Below are the formulas for calculating
P and R:

Pk =
TPk

TPk + FPk
(9)

Rk =
TPk

TPk + FNk
(10)

Pk is the proportion of true positives (correctly identified
crowd-user emotion types) to the complete set of end-user
feedback in the data set (both correctly and incorrectly
classified user emotion types). Similarly, Rk measures and
identifies the classifiers’ reliability to capture end-user
rationale types. TPk shows the number of crowd-users’
emotions correctly identified as type k; FPk shows the
number of end-user emotions wrongly identified as type
k; and FNk indicates the number of end-user emotions
incorrectly identified as not type k. Finally, F1 represents the
harmonic mean between Pk and Rk.

E. END-USERS EMOTION IDENTIFICATION RESULTS
The optimized and improved results of various ML algo-
rithms in identifying end-user emotion types in the ASA
store are shown in Table 11. It can be concluded from
Table 11 that the majority of theML classifiers perform better
in classifying end-user emotion types, but MLP, RF, and
SVM perform comparatively better and outperform other ML
classifiers. They achieved a higher classification accuracy
of 82%, 80%, and 70%, respectively. The ML classifiers,
i.e., RF-TFIDF, MLP-TFIDF, and MLP-CountVectorizer
give the highest precision value of 82%, 79%, and 79%,

respectively while MLP-CountVectorizer and MLP-TFIDF
yield the highest recall and F-measure values of 82%
and 81%, respectively, in identifying anger as an end-user
emotional type in the ASA store. Next, MLP-TFIDF and
MLP-CountVectorizer classifiers result in the highest preci-
sion, recall, and F-measure values of 77%, 79%, 78%, 74%,
82%, and 78%, respectively, in identifying and classifying
disgust as an end-user emotion type in the user feedback
on ASA store. Although RF-CountVectorizer results in
the highest F-measure values, i.e., 81% in identifying
end-user emotion type as disgust while its performance
becomes degraded for identifying Precision and Recall
values. Similarly, to classify the fear emotion type in the end-
user feedback, the MLP-TFIDF and MLP-CountVectorizer
classifiers yield the highest F-measure value of 85%,
respectively. Also, when classifying end-user comments as
fear emotion type, the RF-TFIDF and RF-CountVectorizer
ML algorithms result in better F-measure scores of 83%
and 81%, respectively. Likewise, the MLP-TFIDF and MLP-
CountVectorizer classifiers yield the highest F-measure value
of 82%, respectively, in classifying sadness as an end-user
emotion type in the ASA store. These ML algorithm results
encourage the identification of end-users emotional types to
better understand the issues and their severity in the ASA
application store. It provides opportunities for the software
vendors to improve the current ranking of low-ranked soft-
ware applications by emphasizing the identified issues during
the software evolution process. To summarize, comparatively,
most of the ML classifiers shortlisted for the proposed
experiment perform comparatively better in identifying
end-user emotion types in the ASA store. However, in the
proposed automated approach,MLP, RF, and SVM classifiers
outperform other ML algorithms in identifying different
end-user emotion types, i.e., anger, disgust, fear, and sadness.
Also, based on the classification result shown in Table 11,
we conclude that the MLP or RF algorithm can be selected as
the best classifier to identify and recover end-user opinions
about the captured issues in the ASA store and improve
the overall quality of low-ranked software applications by
timely identifying frequently mentioned issues together with
end-user emotion types to understand the issues better. This
study can be considered a baby step toward understanding
end-users emotions while reporting issues with software
applications. It will help software developers prioritize the
issues identified in social media based on emotional intensity
based on our knowledge.

Further, to validate the baseline configuration of ML
classifiers used to identify and classify end-user emotions
with the identified issues of anger, disgust, fear, and
sadness in the ASA store, we investigate the learning
curves of the best-performing classifiers, such as MLP and
RF. Learning curves are crucial as they demonstrate how
the addition of training instances of end-user comments
impacts classification accuracy and performance. Figure 5 (a)
illustrates the learning curve of the RF classifier, showcasing
its capability in identifying and classifying end-user emotions

VOLUME 12, 2024 98019



N. D. Khan et al.: How Do Crowd-Users Express Their Opinions Against Software Applications

FIGURE 4. Shows MLP and RF machine learning ROC curves showing the performance of oversampling and undersampling.

FIGURE 5. Learning curves of RF (a) and MLP(b) algorithms.

for the identified issues in the ASA store. In a similar vein, the
MLP classifier, as depicted in Figure 5 (b), is highlighted for
its efficacy in the classification task, thereby being recognized
as the optimal classifier for discerning end-user emotions in
the ASA store. The analysis of these learning curves plays
a pivotal role in understanding the performance dynamics
of the RF and MLP algorithms, with a particular emphasis
on the superiority of the MLP algorithm for this specific
classification challenge.

F. COMPARISON WITH THE STATE OF THE ART
In advancing the domain of app review analysis, the
proposed study integrates NLP and ML to uniquely identify
software issues and the corresponding user emotions from
Amazon app store reviews, focusing specifically on low-rated
software applications. The proposed approach is different
from the state-of-the-art in a few perspectives: 1) it focuses
on comparatively low-rating software applications, unlike
previous approaches that analyze popular applications; 2) it
approaches certain co-occurring algorithms that can identify

frequently occurring issues using various POS rules; 3) the
proposed approach identifies end-user emotions including
Anger, Disgust, Fear, and Sadness with the associated issues
to better understand the identified issues, as shown in
Table 12. The proposed methodology is contrasted against
other significant contributions in the field, emphasizing
the unique aspects of the proposed work. Below is a
discussion of how the proposed study compares with other
seminal works in the domain, as shown in Table 12.
Guzman and Maalej [21] primarily analyzed app reviews
from the Apple App Store and Google Play Store. Their
work focused on extracting fine-grained app features and
associated sentiments using topic modelling and sentiment
analysis approaches, respectively. While foundational, their
study did not link the emotional aspect of user feedback
to specific software issues as we have. Phong et al. [75]
addressed the challenge of extracting relevant information
frommany reviews across various platforms. They developed
advancedNLP techniques to facilitate information extraction,
setting a precedent for handling large datasets without
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TABLE 11. Results obtained by identifying end-user emotions with ML
classifiers.

focusing on emotional analysis related to software bugs.
Johann et al. [76] proposed an automated approach to extract
frequently mentioned features from the app store and verify
them with the features mentioned in the app description
page. For this purpose, authors developed 18 POS-based
patterns to identify frequently mentioned features. Their
approach focuses on popular and high-rated apps aiming
to identify features only unlike the proposed approach
which foresees frequently occurring issues for low-rated
software apps. However, the proposed approach is inspired
by Johann et al. approach in terms of developing a POS-based
pattern to identify frequently occurring issues for low-rating
software applications. Williams and Mahmoud [24] explored
how the vocabulary and length of reviews correlate with
user ratings in major app stores. Their content analysis
provided correlations but did not delve into the emotional
nuances that might affect user perceptions and app ratings.
Li et al. [14] combined machine learning and sentiment
analysis to mine user opinions from reviews and social
media platforms. Their work aimed to understand user
requirements and preferences, offering a broad analysis of
user sentiment without a specific focus on the linkage to
software quality issues. Using sentiment analysis, Malik et al.
[54] provided a detailed analysis of user opinions concerning
specific app features. While informative, their research
did not explore the emotional depth associated with user
feedback on software issues. Masrury et al. [55] focused on
detecting sentiment polarity related to specific app features
from Android app store reviews. Their sentiment analysis
helped identify positive, neutral, or negative sentiments

but did not connect these sentiments to specific bugs
or issues. Haering et al. [42] conducted a comprehensive
sentiment extraction and analysis from app reviews across
multiple platforms. To summarise, the approaches from
the literature, mainly focused on high-rated and popular
applications from various app stores that aim to identify
software issues and associated sentiments. In contrast, the
proposed approach focused on end-user feedback for low-
rating software applications from the ASA store aiming
to identify frequently occurring issues and associated end-
user emotions. The proposed approach provides valuable
insights into end-users grudges with the software applications
and provides insight for software vendors and developers
to improve app rating, quality and end-user experiences by
enhancing the software evolution process. According to our
knowledge, linking specific emotions with identified issues
offers a novel perspective that currently needs to be explored
in existing literature, as demonstrated in the comparison
Table 12.

VIII. DISCUSSION
App and market-driven software developers must solve end-
user issues, as their disappointment may lead to the loss of
previously popular apps [13], [14]. One possible approach
for reducing end-user dissatisfaction is to fix bothersome
problems as soon as possible, which may lead crowd users to
switch to competitor software and register negative reviews.
On the other hand, bugs appear due to various factors
identified while manually analyzing end-user reviews in the
ASA store. For example, a specific software feature or overall
software working incorrectly, an unexpected error while
performing a task, a quality issue, etc. Some software issues
or problems affect only a limited number of end-users with
particular hardware or software versions, while others affect
many people. Furthermore, not all issues are apparent to
developers, especially non-bugs, which are difficult to detect
in automated testing and quality assurance [26]. Additionally,
the software issues and their associated end-user emotion
types identified and captured from the end-user feedback
in the ASA store prove pivotal for software developers to
improve the quality of low-ranked software applications.
Also, we identify different types of end-user emotions, i.e.,
anger, disgust, fear, and sadness, to understand better the
intensity of frequently occurring issues in the ASA store.
Using NLP and ML algorithms, this section summarizes
and highlights the findings based on the types of end-user
emotions and the issues that come up most often.

A. IMPLICATIONS FOR SOFTWARE QUALITY
IMPROVEMENT
The comprehensive analysis of user emotions captured
through the ML classifiers offers significant implications
for improving software quality by understanding better the
frequently occurring issues. By systematically identifying
and classifying emotions such as anger, disgust, fear, and
sadness, developers can obtain a nuanced understanding
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TABLE 12. Detailed comparison of methodological approaches.

of user reactions to software features and functionalities.
This emotional feedback is vital for assessing the criticality
of reported issues. For example, issues that elicit strong
emotions like anger or disgust may signify fundamental flaws
that could deter users from continued use of the software.
Addressing these issues promptly not only rectifies usability
concerns but also serves to enhance the overall reliability and
user-friendliness of the software.

In addition, the emotional data extracted can guide
developers in refining user interface design to better align
with user expectations and emotional responses. For instance,
knowing that a feature evokes confusion or fear can lead to
targeted redesigns that make the software more accessible
and less intimidating to new users. This proactive approach to
software development ensures that emotional considerations
are integral to the design process, potentially leading to higher
user satisfaction and loyalty.

B. ENHANCING USER ENGAGEMENT THROUGH
EMOTIONAL INSIGHTS
The study’s findings can have profound implications for
enhancing user engagement by associating their emotions
with the issues reported in the ASA store. By leveraging
emotional insights, software vendors can tailor their user
interaction strategies to be more empathetic and responsive
by adding the proposed approach to the software evolution
process. Recognizing and addressing the emotions behind
user feedback can transform standard customer service into
a more engaging and supportive experience, thus deepening
user trust and commitment. For example, responding to
feedback denoted by ‘sadness’ with genuine understanding
and prompt corrective actions mitigates the user’s immediate
frustrations. Moreover, integrating emotional analysis into
software development strategies can help developers improve
their products. Software developers who acknowledge com-

mon user frustrations and highlight specific improvements
can effectively demonstrate the company’s commitment to
user satisfaction, enhancing the overall software applications.

C. STRATEGIC DECISION MAKING IN SOFTWARE
DEVELOPMENT
Beyond immediate problem-solving, the classification of user
emotions plays a critical role in strategic decision-making
within software development projects. It provides a
data-driven basis for prioritizing development tasks, allo-
cating resources, and scheduling releases. Emotion-rich
feedback helps management teams identify the most frequent
and impactful issues that significantly affect user satisfaction
and retention. For instance, features that consistently generate
negative emotions might be deprioritized or redeveloped,
whereas features that elicit positive responses can be
leveraged to boost user engagement and attract new users.
This strategic use of emotional data ensures that development
efforts are closely aligned with actual user needs and
emotions, optimizing the investment return in development
resources. Furthermore, the ability to map emotions to
specific aspects of software usability and functionality allows
for more nuanced risk assessments and quality assurance
strategies. It supports a more agile development environment
where decisions are continually informed by up-to-date user
feedback, enabling companies to remain competitive in fast-
evolving markets.

D. THEORETICAL IMPLICATIONS OF THE FINDINGS
This study significantly improves the theoretical understand-
ing of end-user feedback dynamics within social media
analytics by connecting insights from human psychology
with the expression of specific emotions in digital platforms.
By focusing on app store reviews, our research examines
how the emotions of anger, sadness, and disgust are linked
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to user-reported issues, offering a detailed perspective on
emotional responses in user interactions. Additionally, our
findings reveal different patterns of bugs and issues and their
associated emotional expression. This compliance supports
psychological theories that posit emotions as powerful
influences of communication and user behavior in online
environments. By mapping specific emotions to reported
problems, our study highlights how emotional analysis
can provide deeper insights into user dissatisfaction and
engagement.

Moreover, this approach advances the concept of emotional
sensitivity in digital communication, suggesting that different
negative emotions are associated with unfavorable types
of end-user feedback. For instance, anger may be more
frequently associated with functionality problems, while
sadness might relate to unmet expectations from the software.
Understanding these nuances can help developers and
companies tailor their responses more effectively, addressing
the technical aspects of feedback and emotional undertones.
This study also explores how emotional responses influence
other users’ perceptions and developers’ decision-making
processes. It opens up new avenues for research into the
psychological impact of design and communication strategies
in digital platforms.

E. ENHANCING LOW-RANKED SOFTWARE APPLICATIONS
THROUGH ISSUES AND BUGS IDENTIFICATION
Based on this research study, software vendors have access
to a lot of crowd-user feedback about frequently reported
issues and their corresponding end-user opinions on social
media platforms. Software vendors can utilize such important
end-user feedback to improve the software’s quality and
achieve end-user satisfaction with low-ranked software
applications by making essential requirements decisions. For
this purpose, we manually analyzed and investigated the
crowd-user feedback in the ASA software store using manual
content analysis methodology and discovered that end-user
reviews are quite significant for requirements and software
engineers in recovering requirements-related information,
such as issues and bugs and their corresponding user opinions
that can be used as an alternative source to improve the quality
of low-ranked software applications. However, it poses
certain challenges for software vendors to detect, identify,
and analyze requirement-related information (frequently
reported issues or bugs) in the increasing number of users’
feedback on social media platforms. For this, we develop co-
occurrence algorithms that identify the frequently occurring
issues on social media platforms by associating the captured
nouns with adjectives, adjectives with verbs, and combining
adjectives, nouns, and verbs using the NLP toolkit. Also,
with a coding guideline and a content analysis approach,
we identify the end-user emotions and the associated issues
of anger, disgust, fear, and sadness that help understand
end-user opinions, behaviours, and perceptions, improving
the software quality and user satisfaction. Furthermore, the
software decision-making process is improved by introducing

different ML algorithms that automatically identify end-user
opinions with associated captured issues and report them to
the requirements and software teams to incorporate in the
software application and improve the quality of low-ranked
software applications.

F. AUTOMATED IDENTIFICATION OF FREQUENTLY
REPORTED ISSUES IN THE ASA STORE
Thoroughly examining user feedback on the ASA store
reveals that crowd-users often voice concerns and problems
or identify bugs that negatively impact their experience and
satisfaction with software applications. The flaws include
insufficient or missing features, excessive ads, usability,
and performance challenges, all contributing significantly
to the software’s diminished quality. Identifying common
concerns, complaints, or faults from the numerous feedback
submissions by customers on the ASA store is a challenging
and time-consuming operation. We developed advanced
co-occurrence algorithms to tackle this difficulty and simplify
the process. The algorithms utilize NLP to identify prevalent
topics on social media platforms by linking nouns with adjec-
tives, adjectives with verbs, and combining adjectives, nouns,
and verbs. This novel method decreases the amount of human
work needed to analyze user feedback and improves the
precision and effectiveness in identifying common concerns.
Valuable critical insights are essential for requirements and
software engineers seeking to enhance the quality of software
programs and improve user pleasure. By integrating these
insights into the decision-making processes about software
requirements and development, software manufacturers can
make well-informed decisions that directly cater to the
demands and concerns of their consumers. This approach
helps identify areas for improvement in advance, enabling
a more user-focused approach to software development in
today’s fast-changing digital environment [33], [47].

G. EFFICACY OF ML CLASSIFIERS IN ANALYZING
END-USER SENTIMENTS
Earlier, this research study highlighted that end-users submit
a large number of reviews in the ASA store against
the software applications daily. At the same time, this
feedback is pivotal for requirements engineers to improve the
quality of low-ranked software applications by identifying
requirements-related information, such as issues, bugs, and
complaints, and incorporating it into the ongoing software
development process. However, manually analyzing and
processing such a large number of requirements-related infor-
mation in the social media platform becomes challenging
and time-consuming [34], [37]. We propose a two-step
automated process. First, we identify frequently reported
issues and bugs using the NLP toolkit by developing co-
occurrence algorithms. Secondly, to further understand the
nature and intensity of the issues identified, we employed
different machine learning algorithms to recover the end-user
emotions associated with each identified issue on the social
media platform. The end-user emotions identified in the ASA
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store are anger, disgust, fear, and sadness. Furthermore, to
determine the performance of machine learning algorithms,
we manually annotated 7,989 end-user comments collected
from the ASA store against various software applications
from different categories. We selected nine machine learning
algorithms to identify their performance in detecting and
classifying end-user emotion types. The classifiers selected
are MNB, Support Vector Machine, LR, KNN, MLP,
Gradient Boosting, Voting Classifier, RF, and Ensemble
Methods. For this study, all the machine learning algorithms
performed well in identifying end-user emotion types. MLP,
RF, and Voting classifiers yield high accuracy, precision,
recall, and F-measure when identifying and classifying
different end-user emotion types by outperforming other
machine learning algorithms. The MLP classifier yields high
F-measure values for identifying and classifying end-user
emotion types of 98%, 99%, 98%, and 98%, respectively,
for anger, disgust, fear, and sadness. Such information helps
requirements and software engineers understand end-user
opinions and the identified issues and bugs to improve
performance and user satisfaction with low-ranked software
applications.

H. LEVERAGING USER FEEDBACK FOR ENHANCING THE
SOFTWARE DEVELOPMENT LIFECYCLE
Integrating end-user feedback into the software development
lifecycle signifies a shift towards a more user-centric
approach in software engineering [59], [77]. This integra-
tion is essential for uncovering real-world usability and
functionality concerns that users encounter, which may not
be apparent in the early stages of software design and
testing. As emphasized in this study, systematic gathering
and examination of user input offer useful insights into
user expectations, experiences, and issues faced when using
software applications. The feedback loop allows developers
to improve and prioritize feature development and issue
fixes more efficiently, ensuring that software progresses
according to user needs and preferences. This technique
is crucial because of the growing complexity of user
interactions with software programs on many platforms and
devices, requiring a more detailed understanding of user
experiences. Furthermore, including user feedback in the
development process promotes the use of agile approaches,
which emphasize iterative development with quick cycles of
feedback and enhancement. This agile approach enables a
dynamic and responsive software development process by
incorporating user feedback to influence development objec-
tives and decision-making. The difficulty is in effectively
handling and examining the large amounts of feedback to
get useful insights. Implementing this method successfully
necessitates strong processes and tools for systematically
collecting, categorizing, and analyzing feedback. Utilizing
advanced NLP and ML technologies in our study has been
crucial in automating and optimizing the process through the
creation of complex analytical frameworks. Software teams

can improve software programs by converting unprocessed
customer feedback into organized, practical data to better
meet user requirements and enhance overall quality and user
happiness.

I. THREATS TO VALIDITY
The experiment and evaluation for the proposed approach
were planned by the same authors who wrote the research
article, annotated it and labelled the crowd-user comments in
the data set. However, the authors annotated end-user feed-
back collected from the ASA store in a more professional,
organized, and iterative manner. There is still a possibility
that the annotation experts made a second guess without
realizing it. Furthermore, it is difficult, if not impossible,
to keep the researcher’s bias out of these studies. End-
user comments were intricately analyzed and evaluated to
determine which characteristics reveal the most about why
end-users think the way they do and how the performance of
existing software features and applications can be improved.
Although the proposed approach obtained valuable results
utilizing different ML approaches, we did not test all possible
combinations of textual features. Also, different parameters
for the MLP, RF, and Voting-TFIDF algorithms, all of
which use statistical feature selection techniques, could be
optimized to improve the results. Using the proposed method,
we showed that using user feedback on ASA to improve
the performance of low-ranked software applications is a
great way to do so. Furthermore, we only investigated
45 apps from 10 different software categories. It is a small
proportion of ASA’s total of 236,550 apps being actively
rated by users [58]. However, our findings apply to the vast
majority of ASA store apps. By studying end-user comments,
we looked at low-ranked ASA Software App Store apps and
considered ways to improve their quality. To broaden the
scope of the proposed strategy, we will test it with high-,
mid-, and low-ranked software. Also, by collecting many
end-user comments and utilizing more categories, we can
further improve the performance of automated experiments
by using baseline deep-learning classifiers to identify the
sentiments with the identified associated issues. Currently,
we employ only traditional ML learning algorithms.

To address the potential for survivorship bias and manual
label identification concerns, we acknowledge the limitations
inherent in the proposed methodology and data set. The
survivorship bias, arising from the focus on apps that have not
been removed from the store despite low ratings, may limit
the generalizability of the proposed findings. Furthermore,
the manual process of label identification, while rigorous,
may not fully capture the complexity and variability of
human emotions expressed in user reviews. Additionally,
we aim to further develop NLP-based rules to not only
identify features and non-functional requirements but also to
classify associated emotions, including positive sentiments
such as happiness and joy. This extension of our approach
will enable a more nuanced analysis of user feedback,
capturing a broader spectrum of user emotions and their
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implications for software development and improvement.
Moreover, the co-occurrence algorithms for identifying
issues further need improvements to filter the frequently
occurring issues from a large number of sparse data that do
not present issues only. For this purpose, we need to introduce
more POS-based patterns to better present issues-related
information. In summary, while our current study provides
valuable insights into the use of NLP and ML for analyzing
user feedback in the ASA store, future work will seek to
address the identified methodological limitations, expand the
scope of the analysis to include additional app sources and
emotional dimensions and refine the analytical techniques
to enhance the generalizability and applicability of our
findings. Furthermore, to thoroughly address and minimize
threats to validity, we will implement ongoing revisions and
enhancements based on real-time feedback from industry
professionals. This continuous improvement process, guided
by their expertise, will refine our methodologies and ensure
their adaptability to various scenarios. By engaging directly
with developers who use our approaches in their daily
processes, we aim to uncover any latent biases or oversights
and correct them promptly. This collaboration not only aids
in validating our current findings but also helps identify
potential differences that could impact the generalizability
and reliability of our research outcomes.

IX. CONCLUSION AND FUTURE WORK
In this study, we proposed an automated approach to recover
frequently occurring issues in the ASA store using NLP
and ML algorithms. We focused on low-ranked software
applications to improve their performances and end-user
satisfaction by providing in-time remedies for frequently
occurring bugs. For this purpose, we selected 45 low-
rated software applications with comparatively low ratings
from 10 software categories in the ASA App Store. Next,
we investigated how crowd-users reported their grudges,
sentiments, and opinions against the software applications in
the ASA store using the grounded theory and content analysis
approaches. Next, we identify the most frequent issues
reported in the end-user comments by developing different
co-occurrence algorithms using an NLP toolkit. Finally,
to better understand the intensity of the captured issues,
we employed different ML algorithms, such as MNP, LR,
RF, MLP, KNN, AdaBoost, and Voting Classifier, to identify
associated end-user emotions of the types of anger, disgust,
fear, and sadness by utilizing the annotated end-user data
set. For this, we first preprocess the input data to remove
irrelevant data and then employ two standard resampling
approaches (under-sampling and over-sampling) to balance
the data sets, extract and recover different textual features
(Bag of Words and TFIDF) from the end-user comments, and
finally train and validate the variousML algorithms using a k-
fold cross-validation approach. To enhance the robustness of
our analysis and address the methodological flaws identified,
we have incorporated a more detailed examination of the
algorithmic performance, introducing additional metrics such

as the area under the curve (AUC) for each ROC curve
to understand the misclassifications better. In summary,
each ML algorithm performs better and accurately identifies
end-user emotions associated with the recovered issues.
Notably, the MLP, RF, and voting classifiers perform better
and yield higher precision, recall, and F-measure values for
identifying end-user sentiments about the captured issues,
such as sadness, fear, disgust, and anger. We also provide a
theoretical framework that integrates our empirical findings
with existing literature on sentiment analysis in social media
analytics, highlighting the implications of our findings for
software engineering practices. This theoretical integration
helps position our work within the broader context of
social media analytics, illustrating how automated tools can
significantly enhance the understanding of end-user feedback
and drive software development. From the classification
experiment, we concluded that either MLP, RF or a voting
classifier could be shortlisted as the best ML algorithm
to identify crowd-user emotions with the recovered issues
to understand better their implications on the quality of
the software applications under discussion and suggest
in time remedies to the development teams. Furthermore,
our analysis delves deeper into the practical applications
of our findings, discussing how software developers can
utilize these insights in real-time to prioritize and address
user-reported issues more effectively, thereby enhancing user
satisfaction and engagement. Additionally, we achieved 96%,
98%, 97%, and 97% average F-measure values for anger, dis-
gust, fear, and sadness when identifying end-user sentiments
or opinions with the captured issues from the ASA store.

In the future, we are interested in collecting more
crowd-user comments for software applications in the ASA
store covering multiple app ratings, i.e., low, high, and
medium, to explore the scalability and applicability of
the proposed approach. Further, to improve the end-user
satisfaction and quality of low-ranked software applications
in the ASA store, a toolchain must be developed to integrate
the remedies for the identified issues into the ongoing
software development process. Another future direction is
to restructure and redesign the current end-user feedback
interfaces of the ASA store and other social media plat-
forms to help software engineers efficiently and quickly
identify requirements-related information by employing an
ML algorithm that processes each end-user comment and
determines whether it showcases any valuable informa-
tion for requirements and software engineers of the type
(new feature, issue, non-functional requirement, etc. In the
future, we aim to detect and recover the key stakehold-
ers [78] and prioritize [79] those who frequently contribute
requirements-related information on social media platforms
to timely report the valuable information to the software
development team and improve end-user satisfaction and the
quality of the software applications under discussion. Also,
we are interested in exploring the existence of deceptive
reviews [80] in the ASA store to validate the large volume
of issues or bugs reported on social media platforms.
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Another future direction is to redesign and restructure the
crowd-user comments and discussion in the ASA store to
quickly and efficiently extract prominent issues or bugs
by introducing argumentation theory [19], [47]. Although
we obtained encouraging results with the baseline machine
learning algorithms, we still aim to employ cutting-edge deep
learning and transfer learning classifiers, i.e., LSTM, RNN,
BERT, etc., to improve the performance of the proposed
approach in identifying requirements-related information and
improve the quality of low-ranked software applications.
Similarly, in the future, a bug prioritization [81] approach can
be proposed to prioritize [82] the identified bugs in an agile
software development setting.
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