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ABSTRACT The transient power grid stability is greatly affected by the unpredictability of inverter-based
resources of today’s interconnected power grids. This article introduces an efficient transient stability status
prediction method based on deep temporal convolutional networks (TCNs). A grey wolf optimizer (GWO)
is utilized to fine-tune the TCN hyperparameters to improve the proposed model’s accuracy. The proposed
model provides critical information on the transient grid status in the early stages of fault occurrence, which
may lead to taking the proper action. The proposed TCN-GWO uses both synchronously sampled values and
synthetic values from various bus systems. In a postfault scenario, a copula of processing blocks is imple-
mented to ensure the reliability of the proposed method where high-importance features are incorporated into
the TCN-GWO model. The proposed algorithm unlocks scalability and system adaptability to operational
variability by adopting numeric imputation and missing-data-tolerant techniques. The proposed algorithm is
evaluated on the 68-bus system and the Northeastern United States 25k-bus synthetic test system with credi-
ble contingencies using the PowerWorld simulator. The obtained results prove the enhanced performance of
the proposed technique over competitive state-of-the-art transient stability assessment methods under various
contingencies with an overall accuracy of 99% within 0.64 s after the fault clearance.

INDEX TERMS Deep learning (DL), grid stability prediction, power system dynamics (PSD), time series
data, transient stability.

NOMENCLATURE
Xin Input embeddings.
Variables

δmax Maximal phase angle discrepancy.
η Transient stability index (TSI).
Ni Set of buses adjacent to bus i.
Bi j Imaginary component of the admittance matrix.
Gi j Real component of the admittance matrix.
Pi

inj Real power injection at bus i.

Qi
inj Reactive power injection at bus i.

t Time variable spanning the interval [t0, T ].

x State variables of the system in R
n.

Abbreviations
ACC Accuracy.
AWGN Additive white Gaussian noise.
BGRU Bidirectional gated recurrent unit.
BLSTM Bidirectional long short-term memory.
CNN Convolutional neural network.
DBN Deep belief network.
DKDE Diffusion-type kernel density estimator.
DL Deep learning.
DT Decision tree.
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ELU Exponential linear unit.
F1 F1-score.
FN False negative.
FP False positive.
GCNN Classical convolutional neural network.
GINN Inception neural network.
GM Geometric mean.
GPU Graphical processing unit.
GRU Gated recurrent unit.
GWO Grey wolf optimizer.
LSTM Long short-term memory.
MLP Multilayer perceptron.
PCC Pearson correlation coefficient.
PFC Postfault cycle.
PMU Phasor measurement unit.
Prec Precision.
PSD Power system dynamics.
PWS PowerWorld simulator.
R Recall.
RAM Random access memory.
ReLU Rectified linear unit.
RES Renewable energy sources.
RNN Recurrent neural network.
SCADA Supervisory control and data acquisition.
SD Standard deviation.
SNR Signal-to-noise ratio.
SSD Solid-state drive.
t-SNE t-distributed stochastic neighbor embedding.
TCN Temporal convolutional networks.
TN True negative.
TNR True negative rate.
TP True positive.
TPR True positive rate.
TrT Training time.
TSA Transient stability assessment.
TT Testing time.
Uns. Unstable.
WGN White Gaussian noise.
XGB Extreme boosting trees.

I. INTRODUCTION
A. MOTIVATION
With the constantly expanding scale of modern power sys-
tems, the existing power infrastructure encounters unprece-
dented changes in the wake of extensive penetration of
renewable energy sources (RESs) [1]. However, the power
generation from RES is subjected to large disturbances by
the natural environment leading to randomness, intermittence,
and weak controllability of energy generation [2]. The dras-
tic change in power system dynamics (PSD) due to RES
integration jeopardizes system stability [3]. Therefore, the
power system stabilizers and turbine governors are pushed to
their operational limits [4]. Furthermore, the incorporation of
power electronic devices, which possess low or zero inertia,
diminishes the system’s disturbance tolerance [5]. When the
power systems encounter various disturbances, grid stability

becomes an inevitable problem for power grid control. Nev-
ertheless, the supervisory control and data acquisition system
shows a reduced efficacy for the adoption of wide-area moni-
toring systems and fast-acting inverter-based resources due to
the slow sampling rate [6]. Thus, efficient real-time transient
stability monitoring is pivotal for active power balance.

The transient rotor angle stability evaluates a power sys-
tem’s ability to return to normal operation or reach a new
state after a severe malfunction [1]. Transient instability can
quickly lead to system collapse in just a few seconds following
an incident [7]. This can occur when generators experience a
decrease or increase in output power, causing rotor accelera-
tion or deceleration [8]. To prevent the collapse of the power
grid, transient stability assessment (TSA) attained a surge of
interest in power instability prevention in its early stages. This
assessment method gives control actions enough time to be
executed before the system’s collapse [3]. Control actions are
typically ascertained by iterating over multiple postcontin-
gency scenarios within the transient window of 0–10 s [9].
Generator rescheduling and load shedding are perceived as
effective control measures for enhancing transient stability
performance [10]. Yet, the escalating scale and intricacy of
contemporary power systems introduce additional challenges
to prevent transient instability in different operating environ-
ments [11].

B. RELATED WORKS
Extensive literature is dedicated to investigating TSA-based
machine learning as a promising solution for addressing sud-
den contingencies and blackouts. For instance, Zhou et al. [12]
employed a gated graph neural network for TSA. The core
idea is to produce unstable samples by a conditional gen-
erative adversarial network from the New England 39-bus
system simulations. Therefore, the proposed model repre-
sents a topology change-tolerant and class imbalance resilient
by generating its costume data for training. However, the
goodness of the generated samples is missed in the concep-
tion of the proposed paradigm. Thus, the proposed method
is susceptible to falling into erroneous predictions. Yadav
et al. [13] implemented a diffusion-type kernel density esti-
mator (DKDE)-based multilayer perceptron for accurate real-
time classification of events in power systems. The DKDE is
employed to identify the shape of 3-D voltage and frequency
distributions over time. With varying levels of renewable
penetration, the proposed technique features fast processing
with limited computational requirements and high model ex-
plainability. Nevertheless, the adopted feature extraction does
not consider the various faulty issues in the sensors, thereby
limiting the feasibility of the proposed DKDE in practical
implementations.

A multitude of specialized deep learning (DL) tech-
niques have been employed for TSA, including deep belief
networks (DBNs), recurrent neural networks (RNNs), and
convolutional neural networks (CNNs). DBN-based method-
ologies, as illustrated in [19], incorporate a local linear
interpreter to constrain the DBN, albeit without providing a
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TABLE 1 Related Research Works of Representation Learning Methods for TSA

comprehensive explanation of the entire TSA model. CNNs,
renowned for their superior feature extraction capabilities,
significantly expedite the training process and enhance the
accuracy of the final results. For instance, Zhou et al. [20] de-
veloped a CNN-based ensemble method that can be promptly
updated with informative samples before substantial alter-
ations occur in the power system. Similarly, the work in [21]
employs a twin convolutional support vector machine (SVM)
network to predict transient stability by effectively mining the
internal structure of trajectory features. In addition, Arteaga
et al. [22] demonstrated how power system snapshots can
be represented as images, allowing CNNs to directly predict
stability status. Yan et al. [23] proposed a technique that com-
bines cascaded CNNs with time-domain simulation, thereby
improving computational efficiency for prefault stability as-
sessment by extracting features from various time intervals.
Furthermore, the work in [23] introduced a hierarchical and
self-adaptive CNN approach to ascertain postdisturbance sta-
bility via an integrated decision-making framework utilizing
multiple CNNs. On the other hand, Zhang et al. [24] proposed
an active transfer learning with DBN for online TSA. DBN
model is an efficient DL algorithm for judiciously reduc-
ing the dimensionality of features, which makes the system
perfectly tailored for TSA using synthetic sets [25]. Unfor-
tunately, the proposed single-event identification restricts its
practical usage in various industrial scenarios.

RNNs, including long short-term memory (LSTM) and
gated recurrent units (GRU), are adept at processing variable-
length input sequences by considering both temporal and
spatial correlations. The work in [26] proposed a self-adaptive
LSTM model for online TSA, capable of capturing tem-
poral and spatial data dependencies. While Yu et al. [27]
introduced an LSTM-based approach for classifying transient
stability using multiple time-step algebraic variables. GRU-
based methodologies, as detailed in [28] and [29], facilitate
real-time transient instability prediction without necessitating
fault information, exhibiting robustness against measurement
topology changes and noise. Table 1 summarizes some of the

emerging TSA-based methods from the literature [14], [15],
[16], [17], [18]. While higher model complexity can lead to
improved accuracy, as seen in the high scores reported, it often
comes at the cost of increased computational demand and po-
tential overfitting. The challenge lies in balancing complexity
with practical deployability, especially in real-time systems
where quick decisions are crucial.

C. CONTRIBUTIONS
This article presents an efficient TSA method based on tem-
poral convolutional networks (TCNs) and grey wolf optimizer
(GWO) to address the TSA challenges posed by the increased
complexity of modern interconnected power grids. Herein, the
TSA is mapped as a two-class classification problem. The
main contributions are summarized as follows.

1) A DL-based approach with efficient feature extraction
ability is proposed for TSA status prediction of the
power system. The proposed approach provides a lower
memory footprint while extracting deep features and
long-term temporal relationships through the adoption
of TCN and GWO models, where the proposed GWO is
employed for TCN hyperparameters’ optimization.

2) Unlike existing algorithms, the performance of the
proposed TCN-GWO method is validated on a large
synthetic power system with high penetration of differ-
ent types of RES and proved to be of high accuracy.

3) Various data conditions are simulated and findings
verify the proposed model’s ability to maintain high
accuracy and reliability under imperfect data condi-
tions. The conditions considered includes noisy data
with different signal-to-noise ratios (SNRs) and scenar-
ios simulating missing and faulty PMU data.

4) The proposed TCN-GWO-based TSA approach is val-
idated through real-time simulation via its implemen-
tation on Raspberry Pi 3, where the sensor data are
transmitted to the software platform through the
network-connected Raspberry Pi. Conversely, the soft-
ware platform dispatches control signals to thee
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Raspberry Pi via the network, thereby facilitating user
feedback within the physical environment.

The rest of this article is organized as follows. Section II
explores the problem formulation. The transient stability in-
dex (TSI) and feature selection are introduced in Section III.
The overall framework of the proposed algorithm in the study
is outlined in Section IV. Section V presents the simulation
results to demonstrate the validity of the proposed DL model.
Finally, Section VI concludes this article.

II. PROBLEM FORMULATION
The PSD comprising N buses linked by transmission lines
is predominantly influenced by the synchronous generators
and their accompanying control strategies [30]. The PSD are
governed as

ẋ = f (x, u) (1)

where x encapsulates the dynamic states of various bus dy-
namics, and u defines the external inputs to the system. The
real power (Pinj) and reactive power (Qinj) injections at bus i
are, respectively, expressed as [31]

Pi
inj = GiiV

2
i +

∑
j∈Ni

ViVj (Bi j sin(θi j ) + Gi j cos(θi j )) (2)

Qi
inj = −BiiV

2
i −

∑
j∈Ni

ViVj (Bi j cos(θi j ) − Gi j sin(θi j )) (3)

where θi j and Vi are the nodal voltage angle and magni-
tude, respectively. Ni denotes the set of buses adjacent to
bus i, while Gi j and Bi j represent the real and imaginary
components of the admittance matrix, respectively. The above
equations are reformulated by differential and algebraic equa-
tions to represent the dynamics of the bus system as [32]

ẋ = f (x, y, u, ξ ) (4)

0 = g(x, y, ξ ) (5)

where f (·) encapsulates the system’s nonlinear differential
equation reflecting the controls and dynamics of synchronous
generators and loads, and their initial conditions are denoted
by x0. g(·) represents the network and static components.
u denotes the operating parameters of the system including
the nodal voltages and phase angles of the system at a time
variable t spanning from an interval [t0, T ]. ξ encompasses
all variable resources, such as flexible loads and intermittent
RES. The determination of transient stability is based on the
maximal phase angle discrepancy |�δ|max, which is extracted
from the state vector x. The interrelation of x and y is given by
the nonlinear differential–algebraic system of equations

x(t0 + �t ) = x0 +
∫ t0+�t

t0

f (x, y, u, ξ )) dt (6)

0 = g(x(t0 + �t ), y(t0 + �t ), ξ (t0 + �t )). (7)

The magnitude of the greatest angle of separation between the
rotors of any two generators throughout the simulation period

|�δ|max is determined as

|�δ|max = max
{|δi(t ) − δ j (t )|
∀i, j ∈ {1, . . ., n}, t ∈ [t0, T ]} . (8)

III. TSI AND FEATURE SELECTION
This section presents an overview of the ground truth TSI and
delves into the intricacies of the feature selection process.

A. GROUND TRUTH TSI
The ground truth in this study is obtained based on the TSI
denoted by η, where the system stability status depends on
the postfault rotor angle dynamics. The TSI is defined as
follows [33]:

η = 180o − |�δ|max

180o + |�δ|max
. (9)

One or more generators lose their synchronization when
|�δ|max > 180◦ then η ≤ 0, and the system is defined as tran-
sient unstable, otherwise, the system is defined as transient
stable. Thus, the ground truth or class, c of time instance i, is
decided stable or unstable as follows:

c(i) =
{

Stable, η > 0
Unstable, η ≤ 0.

(10)

B. SELECTIVE DIMENSIONALITY REDUCTION
1) HIGH FEATURE–FEATURE CORRELATION ELIMINATION
Power systems are large-scale, complicated physical systems
with massive features and measurement data. Large dimen-
sionality increases the model complexity and may confuse the
learning process. Thus, this study applies the feature–feature
correlation reduction techniques based on the Pearson corre-
lation coefficient (PCC). The linear correlation is calculated
between every two features and a correlation threshold is set
to 0.9. When the correlation coefficient between two features
is greater than the threshold, the first feature will be removed
from the feature set. The correlation coefficient is calculated
as follows [34]:

PCCx,y =
∑T

i=t [(xi − x)(yi − y)]√∑T
i=t (xi − x)2

∑T
i=t (yi − y)2

(11)

where PCCx,y is the correlation coefficient between feature
x and feature y, which has a mean of x and y, respectively.
Considering the dynamics of the power system in the post-
disturbance period, i = t and T are the starting time instant
and the simulation time, respectively. Although this approach
reduces dimensionality and feature–feature high correlation, it
may drop the relevant feature to the target class identification.
Thus, this study applies a feature ranking technique before
highly correlated feature elimination.

2) FEATURE RANKING STAGE
Feature ranking and feature selection help identify the relevant
features to the target. By adopting the adequate feature subset
selection algorithm, the system’s exploitability in real-time
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FIGURE 1. Flowchart of (a) conceptual diagram of a stack of dilated causal
convolutions and (b) architecture of the TCN consisting of two residual
blocks.

implementation is significantly promoted by its minimalistic
set of features, which not only adds to its simplicity but also
enhances its interpretability and reduces its computational re-
quirements [35]. This article employs extreme boosting trees
for feature ranking [36]. The approach maximizes a feature
set’s relevance to the answer variable while minimizing its
inconsistency [37].

3) FORWARD FEATURE SELECTION
Lastly, forward feature selection is applied to ensure efficient
performance, where model training is an iterative process,
each iteration adds one more feature to the feature set and
records the model performance. Finally, the best-performing
feature set is selected.

IV. PROPOSED METHODOLOGY
This section provides a detailed overview of the proposed
methodology. We begin by introducing the fundamentals of
the TCN model, followed by an explanation of the GWO
technique. Lastly, we present a comprehensive discussion of
the intelligent classifier employed in our approach.

A. TCN MODEL GENERALITIES
TCN is a monodimensional CNN variant designed to fully
understand the hidden temporal dependencies in the abun-
dant time series data [38]. Therefore, the TCN model is
perfectly tailored to model the temporal dynamic behavior of
power systems. Multiple studies validate the outperformance
of TCN over various state-of-the-art models, such as CNNs
and LSTMs. The TCN is able to identify temporal correlations
in the features due to its integration of CNN’s feature extrac-
tion capabilities and RNN’s ability to model time-series data.
TCN consists of a stack of residual blocks hierarchically dis-
tributed, as shown in Fig. 1(a). The TCN architecture contains
dilated-causal convolution followed by batch normalization
and ELU activation, as shown in Fig. 1(b). Xia et al. [39]

FIGURE 2. Architecture of TCN with n residual blocks.

improved the basic structure of TCN by incorporating residual
connectivity and regularization. The original 1-D causal con-
volutional layer is replaced by a residual block with two layers
having the same expansion privacy and residual connectivity,
as shown in Fig. 2. The receptive field size r can be obtained
by [39]

r = 1 +
n−1∑
i=0

2(k − 1)bi = 1 + 2(k − 1)
bn − 1

b − 1
. (12)

The convolution kernel size is denoted by k, while the dilation
base is denoted by b, and it must satisfy the condition k ≥ b.
The number of residual blocks (n) is determined based on the
length of the input tensor and can be calculated as described
in [39]

n =
[

logb

(
(l − 1)(b − 1)

2(k − 1)
+ 1

)]
. (13)

To ensure that the residual block maintains the same length
between input and output, a 1-D fully convolutional network
architecture is utilized. The use of dilated causal convolution
W ensures that the output remains unaffected by future infor-
mation. The dilated convolution is computed as [40]

W (s) = (x ∗ df )(s) =
k−1∑
i=0

f (i) × Xs−d.i (14)

where f : 0, . . ., k − 1 represents the convolution filter, while
k denotes the kernel size. The dilation factor, d , signifies the
gap between convolution kernels, and s − d.i corresponds to
the convolution involving only the previous time state. The
residual connection can be represented as [41]

o = Activation(x + F (x)). (15)

The activation function, which may include rectified linear
unit (ReLU) and Sigmoid, is used in the TCN architecture.
During the offline training phase, the TCN is trained using
simulation data. In the online assessment phase, the TCN as-
sessment model is triggered whenever a fault is detected. If the
system is deemed unstable, the TCN will provide additional
information to support the implementation of emergency con-
trol strategies.
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FIGURE 3. Mechanism of the (a) ranking of grey wolf pack and
(b) position adjustment for the GWO technique.

B. GREY WOLF OPTIMIZER
The GWO is a bio-inspired, swarm-centric metaheuristic op-
timization technique. The GWO draws its inspiration from the
hunting patterns and pack hierarchy observed in grey wolves.
This algorithmic approach mirrors the social dynamics and
the predatory tactics of these animals. Within the pack, the
beta wolf (β) is considered the second in command, offering
counsel and support. The role of the delta wolf (δ) encom-
passes scouting and providing wisdom, whereas the omega
wolves (ω) are typically involved in more subordinate tasks,
including looking after young wolves.

The alpha wolf (α) is the pack leader, exerting dominance
and making key decisions. The social structure is depicted in
Fig. 3(a). In addition, the GWO mimics the wolves’ hunting
technique, which involves surrounding, pursuing, and ulti-
mately capturing prey, as illustrated in Fig. 3(b). In this model,
the position of the wolves is dynamically adjusted during the
hunt, informed by the leading wolves (α, β, δ), to effectively
encircle the prey. The mathematical formulation for the encir-
clement strategy is provided in [42]

−→
D =

∣∣∣−→C × −−→
Xp(t) − −−→

X(t )
∣∣∣ (16)

−−−−−→
X(t + 1) = −→

Xp(t ) + −→
A × −→

D (17)

where Xp represents the prey’s position, while t refers to the

number of iterations. The vector
−→
A signifies the coefficient

vector. The distances between the prey and other grey wolves
are denoted by

−→
Dα ,

−→
Dβ , and

−→
Dδ , respectively. The computation

rules for the vectors
−→
A and

−→
C are as follows [42]:

−→
A = 2−→a × −→r 1 − −→a (18)

−→
C = 2 × −→r2 (19)

where −→r1 and −→r2 are random number vectors. The GWO
algorithm caught researchers’ attention from various engi-
neering areas. However, the application of the GWO to
TSA has not been extensively investigated, prompting us to
investigate its capability in handling highly nonlinear tem-
poral dependencies in the TSA paradigm. The GWO is
selected to identify the best sets of TCN hyperparameters

FIGURE 4. Process of the proposed TCN-based transient stability predictor.

FIGURE 5. Flowchart of data processing steps.

for its excellent optimization accuracy. Furthermore, GWO is
evaluated against five other hyperparameter optimization
techniques to highlight its outstanding performance. These
techniques are simulated annealing (SA), particle swarm opti-
mization (PSO), random search (RS), evolution strategy (ES),
and Bayesian optimization (BO) [43].

C. PROPOSED METHOD
The proposed method is shown in Fig. 4. Specifically, the
proposed method starts with getting the topology of the grid.
Initially, the power grid’s topology is acquired. In order to
generate useful data, the proposed system targets the critical
buses using trial and error to apply the faults. Faults are simu-
lated on critical buses, generating data, such as bus voltages
Vi, voltage angles θi, frequency Fi, reactive power Qi, and
active power Pi. Next, a dedicated data processing strategy is
applied, as shown in Fig. 5.

A concise data processing protocol for TSA begins with nu-
meric imputation to address missing values in data. This step
is followed by the elimination of low-variance features, which
are statistically unlikely to influence the TCN predictive ac-
curacy due to their minimal variation. The dataset is then
normalized, allowing different scale features to contribute
equally to the analysis. Subsequently, outlier removal purges
anomalous data points that could otherwise distort the model’s
predictive capabilities. To prepare the data for balanced mod-
eling, imbalance removal is implemented, correcting skewed
distributions that could bias the model toward the majority
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Algorithm 1: Proposed TCN-GWO Method.
1: Input: Power grid data stream D, critical buses set B
2: Acquire topology of the power grid
3: Identify critical buses Bc ⊂ B
4: for each critical bus bi in Bc

5: Simulate faults on bi, generating data Di

6: Process data Di with numeric imputation and
normalization

7: Remove low variance and outliers from Di

8: Balance the dataset Di to form D f inali
9: Reduce collinearity and select relevant features

from D f inali
10: Optimize TCN hyperparameters θTCN using

GWO
11: Train TCN model with D f inali and θTCN

12: Produce TSA result T SAresulti
13: Determine control actions based on T SAresulti
14: end for
15: Output: Control actions to prevent instability

class. High collinearity features are also discarded to prevent
overfitting and ensure that the model relies on independent
predictors. With the data refined, feature ranking assesses the
relative importance of each variable, leading to a judicious
feature selection leading to a refined dataset Dfinal. The GWO
optimizes the hyperparameters θTCN for the TCN model. The
TCN model, trained on Dfinal and θTCN, outputs a TSA result
TSAresult. Based on this result, appropriate control actions are
determined, ensuring efficient and effective decision-making
in the power system’s operation. To prevent system instabil-
ity, these control actions can range from adjusting generator
outputs to implementing load shedding and system recon-
figuration. The proposed algorithm is further described in
Algorithm 1.

V. SIMULATION RESULTS
This section demonstrates the feasibility and effectiveness of
the proposed method using multiple simulations. Two bus
systems of different scales are discussed: the IEEE 68-bus
system and the ACTIVSg25k-bus power system.

A. SIMULATION SETUP
A systematic simulation setup is employed to develop a com-
prehensive dataset for TSA. The IEEE systems are subjected
to disturbances to generate transient stability with stable and
unstable samples for training and testing. In the final train-
ing dataset, the stable/unstable ratio is approximately 1:1.
The system stability is judged at the end of the simulation.
The subjected disturbance considered is the three-phase short-
circuit grounding faults since they portray the most severe
disturbance in a network compared to other types of faults,
at selected critical buses. The subjected faults are precisely
located at the bus terminals and subsequently cleared. To
introduce variability and enhance the robustness and diversity

of the dataset, the fault clearance times are randomly selected
to fall within a range of 0.1–10 s. That is coinciding with
the span of the simulation time with a sampling frequency of
100 Hz (0.01 s).

Fig. 6 depicts the generator rotor angles under different
severity scenarios following short-circuit faults at critical
buses: where Fig. 6(a) and (b) represents less severe and
more critically severe conditions, respectively, while Fig. 6(c)
captures an unstable scenario. Data acquisition concludes the
simulation, and once the fault is cleared, critical parameters
include the active (P) and reactive (Q) power for all lines,
alongside voltage magnitude (V ), frequency (F ), and phase
angle (θ ) for each bus, are captured to form the feature space,
as shown in Fig. 7. This TSA system plays a significant role
in predicting stability issues in real time, enabling proactive
adjustments and interventions in the grid’s operation. These
data form the basis for assessing system stability, and each
time sample is classified based on (10).

The samples are generated for each bus system, to balance
the number of stable and unstable samples. The acquired data
are simulated through detailed time-domain simulations us-
ing the commercial software PowerWorld Simulator (PWS)
version 23. The numerical simulations are performed using
Python 3.8 on a Lenovo IdeaPad L340 running on an envi-
ronment powered by a NVIDIA GeForce GTX 1650 4 GB
dedicated graphics and a 9th Generation Intel Hexa-Core i7-
9750H Processor, six cores, 12 M Cache CPU @ 2.60 GHz
with an installed memory (RAM) of 16 GB, and 256 GB
solid-state drive. All data analytics experiments have been im-
plemented via Google Colab Pro Plus with High-RAM, A100
graphical processing units (GPU), and background execution
options enabled. The used platform features preinstalled pack-
ages, which reduces potential errors due to the compatibility
of all the versions. All comparison results are based on ten
repeated simulation trials for each IEEE bus system to obtain
a mean value of recognition metrics.

To further investigate the TCN performance, the
t-distributed stochastic neighbor embedding (t-SNE) is
used to visualize and map the high-dimensional space into a
2-D space. Fig. 8 shows that the stable and unstable samples
are interspersed in the original feature space. However, the
separation into two distinct clusters differs from one bus
system to another, which stresses the learning algorithm. As
observed in Fig. 8(a), there are many overlapping regions
in the feature space. Thus, the separability of samples is
poor. This makes it intuitively difficult to identify unstable
cases in the representation space as compared to the original
feature space. In Fig. 8(b), most of the samples have a
diverse distribution and are far away from the class decision
boundaries of the stable and unstable samples.

This demonstrates that training models in environments
with frequent topological changes are particularly challenging
due to the risk of overfitting. GWO is proposed as an effective
optimization strategy that is essential to address this issue.
Table 2 comprehensively compares different hyperparameter
optimization techniques applied to a proposed model on the
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FIGURE 6. (a) Transient stable case with a less severe fault, (b) transient stable case with a very severe fault, and (c) transient unstable case.

TABLE 2 Comparison of Hyperparameter Optimization Techniques on the IEEE 68-Bus System

FIGURE 7. Feature inputs of the TSA system.

FIGURE 8. 2-D visualization of sampling strategy behaviors with t-SNE.
(a) 68-bus system. (b) ACTIVSg25k-bus system.

IEEE 68-bus system. It succinctly outlines the various config-
urations tested and the outcomes achieved through different
optimization methods, including key model parameters, such
as the number of layers, kernel size, number of filters, activa-
tion function, and learning rate. To ensure a fair comparison,
each optimizer completed 30 iterations. From Table 2, it can

be seen that there are three TCN layers, each having a dropout
rate of 0.5. The chosen activation function is ReLU. The
learning rate is 0.004 with a kernel size of 3 and 52 filters.
These identified hyperparameters are applied to tune the
model, regardless of changes in the bus system. Performance
metrics, such as accuracy, total computation time, and time per
iteration, are listed for each method. GWO notably achieved
the highest accuracy at 99.11%, suggesting its superiority in
optimally adapting the model parameters for this specific task.
On the other hand, BO excelled in efficiency, with the lowest
total time and time per iteration among all methods. It is
worth mentioning that the hyperparameter optimization meth-
ods other than GWO failed to optimize the model designed for
the ACTIVSg25 k bus system.

B. EVALUATION MEASURES
In this study, the proposed method’s effectiveness is evalu-
ated using the accuracy (ACC), precision (Prec), recall (R),
F1-score (F1), and geometric-mean (GM). The mathematical
formulas for these measures are also provided [44]

ACC = TP + TN

TP + TN + FP + FN
(20)

Prec = TP

TP + FP
, R = TP

TP + FN
(21)

F1 = 2 × Prec × R

Prec + R
, GM = √

TNR × TPR (22)
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FIGURE 9. One-line diagram for (a) the IEEE 68-bus system and (b) the
synthetic 25k-bus Northeastern United States system [46].

TABLE 3 Description of the Knowledge Base

where TP, TN , FN , and FP denote true positive, true negative,
false negative, and false positive, respectively. TPR and TNR
are the true positives rates and true negatives rates, respec-
tively. Moreover, the computational time is assessed. Here,
the training time (TrT) reveals the GPU time of the training
process, and the testing time (TT) denotes the time required
for the online application process.

C. IEEE 68-BUS SYSTEM: FEASIBILITY STUDY
To further validate the performance of the proposed risk
assessment method, the 16-machine 68-bus test system is
used [45]. This system has 16 machines, 86 transmission
lines, and five areas, representing a reduced version of the
New England test system linked with the New York power
system, as shown in Fig. 9(a) [45]. The IEEE 68-bus sys-
tem provided a total of 68 800 samples, split nearly evenly
between 34 389 unstable and 34 411 stable contingencies,
as given in Table 3. These samples were distributed across
three distinct sets: training and validation (70%), and testing
(30%). Specifically, the IEEE 68-bus system’s training and
test sets comprised 48 160 and 20 640 samples, respectively.
To analyze the proposed method convergence, performance
curves depicting the results are shown in Fig. 10. According
to Fig. 10, the results show that the proposed model reaches
the state of convergence after 30 epochs. The model has a
fast convergence in terms of the loss function from the fourth
epoch. To obtain a more objective model accuracy, Table 4
presents the tenfold cross-validation results of the TCN-GWO
method. SD stands for the standard derivation. According to
Table 4, the proposed method is found highly performing with
an overall accuracy of 98.54% and precision of 98.56%. It
is worth mentioning that the model performance has a minor
standard deviation of 0.38%, which proves the robustness of

FIGURE 10. Diagnostic evaluation indicators F-1 and loss.

TABLE 4 TCN Performance Measures for Tenfold Cross-Validation, test on
IEEE 68-Bus System

TABLE 5 Comparative Results on the IEEE 68-Bus System

the TCN method in providing a reliable prediction based on
fair assessment from tenfold cross-validation. The reported
results demonstrate the high performance of the proposed
model for the TSA application.

To benchmark the proposed TCN-GWO model, systematic
comparisons are made with the approaches presented in [47]
and [48]. The compared models include the classical convolu-
tional neural network (GCNN) [47], inception neural network
(GINN) [47], and the decision tree (DT) classifier [48] for
TSA on the IEEE 68-bus system. GCNN employs two con-
volutional layers for quick execution compatible with data
sampling rates, whereas GINN utilizes inception blocks in
its advanced CNN architecture for enriched feature extraction
without a significant increase in computational demand. The
DT classifier uses postfault cycles (PFCs) of voltage samples
for input. Table 5 showcases the accuracy comparison of the
proposed model with other state-of-the-art models in the IEEE
68-bus system.

Table 5 demonstrates the superior accuracy of the pro-
posed TCN-GWO method over the methods presented in [47]
and [48]. According to Table 5, the GCNN and GINN models
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FIGURE 11. Time domain simulation of TCN method using a Raspberry
Pi 3. (a) Experimental setup. (b) Raspberry Pi 3.

scored 97.22% and 98.4%, respectively [47]. The DT classi-
fier predicts over 95% of unstable contingencies without any
PFC data and achieves a mean accuracy exceeding 97% with
60 PFCs [48]. The proposed TCN-GWO method outperforms
the other approaches with an accuracy of 98.54%.

The proposed system deploys a TCN-GWO on a Rasp-
berry Pi 3, equipped with a Quad Core 1.2 GHz Broadcom
BCM2837 64 b CPU with 1 GB on-chip RAM and 32 GB
Micro SD, optimized for real-time TSA in power systems.
To ensure the adequacy and capacity of the deployed solu-
tion, a TCN-GWO model is converted through TensorFlow
lite, handling real-time data processing on the device. The
experimental setup is seen in Fig. 11. According to Fig. 11,
the data information collected by the sensors are sent to the
terminal application through the Raspberry Pi connected to
the network, and the software platform sends control signals
to the Raspberry Pi through the network to realize feedback
to the user in physical space. In this study, measurement data
are processed locally using a USB device to minimize latency,
with the option to relay data to a Google Drive platform
for extended analysis. A Python 3.9 environment is used,
displaying real-time and historical data through graphs and
charts. The system is connected to the Internet while real-time
domain simulations validate the model’s performance under
various grid conditions. Fig. 12 illustrates a block diagram for
TSA in power systems leveraging a TCN-GWO algorithm and
implemented on a Raspberry Pi 3. The process initiates with
the assessment start, where PMU measurements are taken
immediately after a fault occurrence. These measurements
are processed by a trained TCN-GWO model deployed on
the Raspberry Pi. The model assesses the current state of
the system and decides whether it is stable. If the system
is deemed unstable, a control action is triggered to rectify
or mitigate the instability. Following the control action, an
assessment analysis is conducted to evaluate the effective-
ness of the intervention, after which the assessment process
concludes. This flow emphasizes real-time monitoring and
rapid response to ensure the system’s stability. The proposed
model has been developed and tested to ensure high efficiency
and accuracy in scenarios where real-time data processing is
critical. Table 6 presents the simulation results of the proposed

FIGURE 12. Block diagram of the TCN-based TSA with Raspberry Pi 3.

TABLE 6 Performance Metrics of the TCN-GWO Model Implemented on
Raspberry Pi 3

model. According to Table 6, the obtained results presented
demonstrates the model’s exceptional performance across sev-
eral metrics. The ACC, Prec, and F1 score are all remarkably
high, nearly reaching perfection at approximately 98.98%. In
addition, the model demonstrates outstanding efficiency with
an average test time of only 0.672 ms per instance. This rapid
processing capability makes the TCN-GWO model highly
suitable for real-time dynamic system monitoring in TSA.

D. MODEL SENSITIVITY TO DATA QUALITY
To evaluate the proposed model’s robustness against different
data quality levels, the following three tests were performed:

1) involving data with varying levels of noise across differ-
ent training ratios;

2) fixed training ratio across different noise levels;
3) involving missing data.
Fig. 13 summarizes the obtained results against different

data qualities.
For the first test, white Gaussian noise (WGN) is added

to the data at varying percentages with an SNR of 34 dB,
which is approximately 2%, followed by repeating the training
process with diverse training ratio percentages [48]. To model
the impact of WGN on the signal, let s represent the pristine
signal and n the additive WGN. The perturbed signal x is
then expressed as x = s + n, where n is the Gaussian distri-
bution with a zero mean and a variance of σ 2, symbolized
as N (0, σ 2) [49]. Fig. 13(a) presents a comparative analysis
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FIGURE 13. Performance of the TCN-GWO on IEEE 68-bus system against
varying data qualities: (a) involving noisy data with various training ratios,
(b) fixed training ratio across different noise levels, and (c) involving
missing data.

of model accuracy against the size of training data and data
quality levels.

Regarding Fig. 13(a), the model shows a significant re-
silience to decreasing data quality levels, with a maximum
accuracy drop of 0.62%. Even with 60% data quality re-
duction, performance only suffers a marginal reduction. The
graph shows that even with lower data quality, accuracy can
be significantly improved with the increase in data percentage
used for training. However, at a data quality level of 0.2, there
is a stark variability in performance, suggesting that poor data
quality can lead to less reliable model outcomes. Furthermore,
the most substantial noise levels introduced in this experiment
exceed the noise thresholds set by the IEEE C37.118.1-2011
standard by nearly double, illustrating the model’s ability to
maintain high accuracy in real-world scenarios compared to
this test’s severe conditions [50].

The second test includes varying the SNR value and apply-
ing noise to all measurements introducing noise to the PMU
data to simulate a noisy measurement scenario. The noise in
PMU data has a standard deviation ranging from 0.0005 to
0.01, resulting in a typical SNR of 45 dB. Fig. 13(b) exhibits
the performance of TCN for TSA predictions under a certain
value of noise. According to Fig. 13(b), when SNR reduces
to 40 dB (higher than the typical SNR), the performance still
maintains at a high level, i.e., only a 0.32% decrease in accu-
racy. The model maintains stable performance for strong noise
levels with an SNR of 20 dB. Hence, the proposed model is
robust against the noise in PMU data. Furthermore, random
values were set to zero in examining the model’s robustness
to PMU data inconsistencies to emulate the effect of missing
data. The resilience of the model is evident from the analysis
presented in Fig. 13(c); even when up to 50% of the data are
missing, the model sustains high accuracy levels, with only a
slight decrease of 1.60% from the ideal state.

TABLE 7 Effect of Faulty and Lost PMU Data on the Performance of the
TCN-GWO Model

In the evaluation of the TCN-GWO performance, vari-
ous scenarios were considered to assess the resilience of the
monitoring system. When one PMU is faulty, and provides
incorrect readings or the PMU data are lost, there is a notable
impact on the performance metrics. Therefore, the following
four different scenarios are considered in this study:

1) one PMU provides incorrect readings;
2) three PMUs are faulty;
3) five PMUs provide incorrect data;
4) the data from one PMU are missing.
Each of these scenarios provided valuable insights into the

system’s ability to withstand and adapt to imperfect condi-
tions. When a PMU is compromised, it is presumed that all
readings taken from that unit are assumed as zero as referred
to in [51]. Table 7 provides the optimized TCN-based TSA
performance under the aforementioned scenarios.

According to Table 7, the accuracy and F1-score remained
high across all scenarios, with a single faulty PMU achieving
the best metrics at 99.20% and 99.18%, respectively. Even
with three faulty PMUs, accuracy marginally decreased to
99.00%, and the F1-score to 98.97%. Notably, a significant
performance dip occurred with five faulty PMUs, dropping
to 98.40% accuracy and 98.33% for both the GM and the
F1-score. A scenario with one missing PMU resulted in slight
reductions in precision and F1-score but maintained 99% ac-
curacy, showing that the system is more affected by faulty data
than by the absence of data. These findings indicate that the
proposed model can handle both data loss and faulty data with
high accuracy.

E. ACTIVSG25K-BUS SYSTEM: SCALABILITY STUDY
To illustrate the issues raised in this study and to evalu-
ate the effectiveness and scalability of the proposed method
in a large-scale real-world system with high photovoltaic
(PV) penetration, this section presents a 25 000-bus synthetic
power grid (ACTIVSg25 k) that is built on the geographic
footprint of the northeast and mid-Atlantic Interconnection
of the United States, as shown in Fig. 9(b) [46]. The test
system is a realistic synthetic system created only on geo-
graphic and statistical data for planning and stability studies
[52]. The simulated area includes 227 generators of which
116 are modeled as solar, 1109 transmission lines, 385
transformers, and 1148 buses. It is designed to supply a
demand of 10 104 MW and 2693 MVar spanning nine volt-
age levels (345/138/69/24/22/20/18/13.8/1 kV) [53]. The area
contains five fuel types including coal, natural gas, nuclear
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TABLE 8 Performance Comparison of Different Classifiers, test on
ACTIVSg25-k Bus System

power, hydropower, and solar, where the solar penetration is
approximately 10%. Generators are designed with their ap-
propriate machine and control models to capture their effect
on the system dynamics. The IEEE 25k-bus system yielded
24 004 samples, with 12 021 unstable and 11 983 stable con-
tingencies, as given in Table 3. These samples were distributed
across two distinct sets: training (70%) and testing (30%).
For the IEEE 25k-bus system, the corresponding sets included
8415 and 3606 stable contingencies, and 8388 and 3595 un-
stable contingencies, respectively.

To model the solar and wind generator models, various
combinations of models are used in PWS. The solar dynam-
ics model consists of the machine model REGC_A and the
exciter model REEC_A. The machine model represents the
utility interface and the electrical control module is the exciter
model. The wind generator model consists of the machine
model WT3G1, exciter WT3E1, governor WT3T1, and sta-
bilizer WT3P1. Here, the machine model denotes the power
electronic converter, the exciter represents the electrical con-
troller, the governor symbolizes the mechanical drive train,
and the stabilizer serves as the blade pitch controller.

Based on the previously defined performance indices,
the performance of the developed TCN predictor is thor-
oughly evaluated and compared with other classifiers. Table 8
presents the performance metrics of multiple DL models.
These models include GRU, LSTM, RNN, bidirectional gated
recurrent unit (BGRU), and bidirectional long short-term
memory (BLSTM). All studies are performed on the same
training and testing dataset as well as having the same hy-
perparameters. As seen in Table 8, the original RNN provides
an accuracy of 46.20%, which reflects the poorest ability to
accurately predict the transient status of the system. On the
other hand, the LSTM and BLSTM models exhibited an en-
hanced performance with 96% accuracy. The GRU and BGRU
models provide an accuracy of 99.13% and 98.20%, respec-
tively. This indicates that the proposed TCN classifier can
effectively identify stable and unstable patterns in the dataset
and maintain a high accuracy of 99.37%. According to Table
8, the proposed model is performing best with precision and
F-1 scores of 99.38% and 98.87%, respectively. The achieved
accuracy of the TCN model is better than the competitive
models. Fig. 14 compares the proposed model performance
and verifies its scalability with the change of the IEEE bus
systems using the confusion matrix index. According to the
confusion matrix from Fig. 14, the proposed system is found

FIGURE 14. Classification performance of the TCN model on (a) IEEE
68-bus system and (b) ACTIVSg25k-bus system based on confusion matrix.

FIGURE 15. Computational time for different evaluation models, tested on
the ACTIVSg25-k bus system.

to perform well with all the benchmark datasets from different
IEEE bus systems. The minimum performance is found to
be 98%. The model’s efficiency and flexibility in IEEE bus
system applications have been validated. In addition, the ne-
cessity for labeled data to achieve satisfactory accuracy does
not substantially escalate with the scaling up of the system.
Fig. 15 presents the computational time for different evalua-
tion models.

Regarding Fig. 15, the TCN model has a TrT of 175.74 s.
Under the same environment, the GRU model requires 251.39
s to complete its training cycles. Moving to the testing phase,
the TCN model generates the TSA result in only 0.64 s, which
matches the industrial implementation requirements. While
the LSTM and BGRU models require 3.56 and 6.51 s to pro-
cess the final result, respectively. The TCN model assesses the
transient stability status less than 640 ms after the short-circuit
clearance. This leads to saying that the proposed model is
providing the most accurate result in the shortest time, which
demonstrates its high applicability in real-world environ-
ments. Furthermore, for memory requirements, the proposed
model for the 68-bus system is approximately 2.94 MB, and
for the 25k-bus system, it is approximately 12.07 MB. The
model size increases by 311.37% when the system size ex-
pands from 68 buses to 25 k buses, a system size increase of
36 664.71%. The ratio of the model size growth to the power
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FIGURE 16. Feature importance using LightGBM for (a) 68-bus system and
(b) 25 k bus system.

system size growth is approximately 0.85%, indicating that
the model scales efficiently in comparison to the significant
expansion of the power system, underscoring the potential
scalability of the approach for larger and more complex net-
works.

To gain deeper insights into the factors most influential on
prediction results, a feature importance analysis is conducted
using the light gradient-boosting machine (LightGBM) algo-
rithm [54], which is widely recognized for feature ranking.
This approach clarifies how each feature contributes to the
model’s decisions. Notably, when a fault occurs, it signifi-
cantly impacts the measurements of the surrounding buses,
underscoring the critical role of fault location. However, the
data used in this study encompass various faults across mul-
tiple locations. Therefore, conclusions are drawn based on
the type of feature rather than its specific location. Fig. 16
presents a summary of the feature ranking analysis for the two
IEEE systems under study. For the 68-bus system, as shown
in Fig. 16(a), critical features, such as the frequency, voltage
magnitude, and active power, are identified. In the analysis
of the 25 k bus system, as illustrated in Fig. 16(b), the top
features include the voltage angle and magnitude, highlighting
the significance of phase relationships and voltage magnitudes
in assessing power system stability. Overall, the feature im-
portance analysis underscores that voltage magnitudes, active
and reactive power, and frequency metrics are essential for
accurate TSA in power systems.

F. MODEL SENSITIVITY TO DATA SIZE
In this section, the model performance is assessed with dif-
ferent sizes of data from the ACTIVSg25k-bus system. It is
crucial to consider the size of the dataset when designing and
training DL models to ensure efficient training and accurate
generalization. Table 9 presents the error metrics of the TCN
model across varying data sizes. From Table 9, the model
demonstrates significant improvement in precision, F1 score,
and accuracy when the percentage of data increases from 10%
to 20%. As the data size continues to grow, the improvement
in model performance becomes more gradual, with smaller
increments in the precision score, F1 score, and accuracy val-
ues. It is important to note that the model reaches near-perfect
precision, F1 score, and accuracy values when trained with
60% or more of the data. This suggests that the model has a
high capacity to learn from the available data and is capable
of achieving excellent performance even when trained on a

TABLE 9 Performance Metrics of the TCN-GWO Model Across Varying Data
Sizes on the ACTIVSg25 k Bus System

FIGURE 17. Impact of the data completeness on accuracy for the IEEE bus
systems using the TCN-GWO model.

relatively smaller proportion of the dataset. Fig. 17 shows
the accuracy of the TCN model trained on the IEEE 68k-bus
system and the ACTIVSg25k-bus system—as a function of
the percentage of data used for training. According to Fig. 17,
both systems show an increase in accuracy as more data are
used, which is typical because more data generally provide
a model with more information to learn from, potentially
improving its predictive performance. According to the figure,
the IEEE 68k-bus system starts at a lower accuracy with 10%
of the data used but shows a significant increase as more
data are introduced, reaching its peak at around 40%. It then
maintains a relatively stable accuracy despite further increases
in data percentage. For the ACTIVSg25k-bus system, the
TCN starts with a higher initial accuracy at 10% data usage
compared to the 68k-bus system. It increases to its highest
point at around 30%, and, similar to the 68k-bus system, it
plateaus with little to no increase in accuracy with more data.
The plateauing of accuracy for both systems suggests that
beyond a certain point, adding more training data does not
necessarily lead to significant performance gains, which might
indicate that the models have reached their learning capacity
or that the additional data do not add new information to
further refine the model’s understanding. Fig. 18 illustrates the
computational efficiency of the TCN-GWO model.

According to Fig. 18(a), as the percentage of training data
increases, the TrT exhibits a general upward trend, albeit
with some variability. This suggests that more data typically
require longer to process during training, which is expected.
Regarding Fig. 18(b), the inference time does not show a
consistent trend as the training data percentage changes. The
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FIGURE 18. Computational efficiency analysis of the TCN-GWO model:
(a) TrT versus percentage of training data, (b) inference time versus
percentage of training data, (c) TrT per epoch, and (d) inference time
distribution, tested on ACTIVSg25-k bus system.

variations are notable and suggest that the relationship be-
tween the amount of training data and inference time is
not linear or direct. According to Fig. 18(c), the TrT per
epoch fluctuates significantly, which may indicate changes in
computational load, variations in convergence speed across
epochs, or other processing tasks occurring in the background.
The downward trend at the beginning might suggests an ini-
tial adjustment period for the model, while the following
fluctuations indicate that the model training is not entirely
stable across epochs. According to Fig. 18(d), the histogram
displays the frequency of different inference times recorded.
The concentration of inference times around specific intervals
indicates the common duration for the model to make pre-
dictions on new data. Notably, these results pave the way for
exploring deeper aspects of the model’s operational envelope.

To build upon this work, the optimized TCN model offers
several advantages, including improved accuracy under N-
1 contingencies, high computational efficiency compared to
RNN-based models, and resilience against PMU data noise,
making it suitable for real-time TSA. Nonetheless, two lim-
itations warrant attention: the model may need enhanced
interpretability, and it may face challenges in identifying rare
transient events and adapting to topological changes in the
electric grid without retraining.

VI. CONCLUSION
This article developed an innovative method for transient sta-
bility status prediction. The model utilizes a feature selection
methodology that undergoes a high feature–feature correla-
tion elimination, followed by a feature ranking. Finally, a
forward feature selection is employed while considering the

best-performing features. In addition, TCN-based GWO is ex-
amined for TSA of power systems. The developed TCN model
was successfully implemented on the IEEE 68-bus system and
the synthetic 25k-bus Northeastern United States system. The
performance of the proposed model is evaluated and com-
pared with other approaches. The various studies performed in
this article reveals that inaccuracies from faulty measurements
present a greater challenge in predicting transient stability
status compared to instances of missing PMU measurements.
Further, the model’s scalability and effectiveness remain in-
tact, even when the system is scaled up from 68 buses to
25 000 buses. This scalability underscores the model’s ro-
bustness and adaptability to varying system complexities. In
addition, the findings suggest that prediction accuracy im-
proves with larger datasets, indicating the importance of data
volume in enhancing the learning process. Overall, the study
underscores the model’s resilience to data quality issues and
its capacity to handle diverse system sizes effectively.

Compared to existing approaches, the proposed model has
superior performance in terms of error metrics. Nevertheless,
the TCN model has not been tested on unseen faults that
have not been included in the training dataset. Therefore,
future work will consider fusing the optimized TCN with
graph neural networks to inherently recognize patterns within
both the temporal sequence of events and the complex inter-
connectivity of the power grid topology, thus enhancing the
classification of rare transient events. Future work will involve
leveraging Big Data platforms to improve the model’s effec-
tiveness in TSA. In addition, extending this work to address
the recently emerging stability issues, such as resonance and
converter-driven stability, due to the growing integration of
power electronics-dominated grids, represents a meaningful
direction.
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[45] M. Wang and J. V. Milanović, “The impacts of demand side manage-
ment on combined frequency and angular stability of the power system,”
IEEE Trans. Power Syst., vol. 38, no. 4, pp. 3775–3786, Jul. 2023.

[46] “ACTIVSg25 k: 25,000 bus synthetic grid on footprint of northeast-
ern United States,” Accessed: Sep. 23, 2019. [Online]. Available: http:
//electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg25k/

[47] S. K. Azman, Y. J. Isbeih, M. S. El Moursi, and K. Elbassioni, “A
unified online deep learning prediction model for small signal and tran-
sient stability,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4585–4598,
Nov. 2020.

[48] S. M. Mazhari, N. Safari, C. Chung, and I. Kamwa, “A quantile
regression-based approach for online probabilistic prediction of un-
stable groups of coherent generators in power systems,” IEEE Trans.
Power Syst., vol. 34, no. 3, pp. 2240–2250, May 2019.

[49] A. Hariri and M. Babaie-Zadeh, “Compressive detection of sparse sig-
nals in additive white Gaussian noise without signal reconstruction,”
Signal Process., vol. 131, pp. 376–385, 2017.

VOLUME 5, 2024 281

https://www.sciencedirect.com/science/article/pii/S0142061518319914
https://www.sciencedirect.com/science/article/pii/S0142061518319914
https://www.mdpi.com/1996-1073/12/17/3217
https://www.mdpi.com/1996-1073/12/17/3217
https://doi.org/10.24963/ijcai.2017/249
https://doi.org/10.24963/ijcai.2017/249
https://github.com/SimonBlanke
http://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg25k/
http://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg25k/


MASSAOUDI ET AL.: FAST TRANSIENT STABILITY ASSESSMENT OF POWER SYSTEMS

[50] “IEEE standard for synchrophasor measurements for power systems,”
IEEE Standard C37.118.1-2011 (Revision IEEE Standard C37.118-
2005), pp. 1–61, 2011.

[51] M. Hijazi, P. Dehghanian, and S. Wang, “Transfer learning for transient
stability predictions in modern power systems under enduring topologi-
cal changes,” IEEE Trans. Autom. Sci. Eng., early access, pp. 1–15, Jun.
1, 2023.

[52] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Over-
bye, “Grid structural characteristics as validation criteria for synthetic
networks,” IEEE Trans. power Syst., vol. 32, no. 4, pp. 3258–3265,
Jul. 2017.

[53] T. Xu, A. B. Birchfield, and T. J. Overbye, “Modeling, tuning, and
validating system dynamics in synthetic electric grids,” IEEE Trans.
Power Syst., vol. 33, no. 6, pp. 6501–6509, Nov. 2018.

[54] T. Chen et al., “Power system dynamic security region algorithm based
on lightGBM and improved SVM,” in Proc. Int. Conf. Power System
Technol., 2021, pp. 2027–2032.

MOHAMED MASSAOUDI (Member, IEEE) re-
ceived the Ph.D. degree in electronics engineering
from the National Institute of Applied Sciences
and Technology (INSAT), University of Carthage,
Carthage, Tunisia, in 2022.

He has eight years of hands-on experience in
applying data-driven strategies to tackle real-world
problems. During his work with Texas A&M Uni-
versity at Qatar, he was the lead author of more
than 40 peer-reviewed journals and conference
publications, including IEEE OPEN JOURNAL OF

INDUSTRY APPLICATIONS and IEEE TRANSACTIONS ON POWER SYSTEMS. He
has an H-Index of 13 and his work has been cited more than 800 times. His
research interests include machine learning and deep learning techniques for
power system stability, power grid partitioning, and cybersecurity.

Dr. Massaoudi was the recipient of the Outstanding Student Research Ex-
cellence Award in 2021, the Thomas W. Powell’62 and Powell Industries Inc.,
Fellowship award in 2024, and the Richard E. Ewing Award for Excellence
in 2024 for his research contributions.

TASSNEEM ZAMZAM received the B.Sc. (Hons.)
and M.Sc. degrees in electrical engineering from
Qatar University, Doha, Qatar, in 2018 and 2021,
respectively. She is currently working toward the
Ph.D. degree in electrical engineering with Texas
A&M University, College Station, TX, USA.

From 2018 to 2022, she was a Research Assis-
tant with the Electrical Engineering Department,
Qatar University. Her research interests include
grid stability, reinforcement learning, distributed
energy resources, and smart grid.

MAYMOUNA EZ EDDIN received the B.Sc. de-
gree in electrical engineering from Qatar Univer-
sity, Doha, Qatar, in 2020, and the M.Sc. degree
in data science and engineering from Hamad Bin
Khalifa University, Doha, in 2022. She is currently
working toward the Ph.D. degree in electrical and
computer engineering with Texas A&M Univer-
sity, College Station, TX, USA.

From 2020 to 2022, she was a Research Assis-
tant with the Qatar University Machine Learning
Group. She is currently an Associate Research As-

sistant with Texas A&M University at Qatar, Doha. Her research interests
include the application of deep learning and machine learning in smart grid
security, and healthcare.

ALI GHRAYEB (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from The Univer-
sity of Arizona, Tucson, AZ, USA, in 2000.

He is currently a Professor with the Department
of Electrical and Computer Engineering, Texas
A&M University at Qatar, Doha, Qatar. Prior to
his current position, he was a tenured Profes-
sor with the Electrical and Computer Engineering
Department, Concordia University, Montreal, QC,
Canada. He has coauthored two books and au-
thored or coauthored more than 250 journal and

conference papers. His research interests include wireless and mobile com-
munications, physical layer security, massive MIMO, visible light communi-
cations, smart grid, artificial intelligence, and machine learning.

Dr. Ghrayeb was an Instructor or Co-Instructor in many technical tu-
torials at several major IEEE conferences. He was the Executive Chair
of the 2016 IEEE WCNC Conference. He was the Member of the IEEE
ComSoc Conferences Council, IEEE GITC Committee, and IEEE WCNC
Steering Committee. He was in different editorial capacities on a number of
IEEE transactions journals. He is currently with the IEEE ComSoc Awards
Committee.

HAITHAM ABU-RUB (Fellow, IEEE) received
the first Ph.D. degree in electrical engineering
from the Technical University of Gdansk, Gdansk,
Poland, in 1995, and the second Ph.D. degree in hu-
manities from Gdansk University, Gdansk, in 2004.

He has worked with many universities in many
countries, including Poland, Palestine, USA, Ger-
many, and Qatar. Since 2006, he has been with
Texas A&M University at Qatar, Doha, Qatar,
where for five years, he was the Chair of the Elec-
trical and Computer Engineering Program, and is

currently the Managing Director with Smart Grid Center. He has authored or
coauthored more than 600 journal and conference papers, five books, and six
book chapters. He has supervised many research projects on smart grid, power
electronics converters, and renewable energy systems. His research interests
include electric drives, power electronic converters, renewable energy, and
smart grid.

Dr. Abu-Rub was the recipient of many prestigious national and interna-
tional awards and recognitions, such as the American Fulbright Scholarship
and the German Alexander von Humboldt Fellowship. He is the Coeditor-in-
Chief for IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.

SHADY S. REFAAT (Senior Member, IEEE) re-
ceived the B.A.Sc., M.A.Sc., and Ph.D. degrees in
electrical engineering from Cairo University, Giza,
Egypt, in 2002, 2007, and 2013, respectively.

He was with the industry for more than 12 years
as Engineering Team Leader, Senior Electrical En-
gineer, and Electrical Design Engineer on various
electrical engineering projects. He was an Asso-
ciate Research Scientist with the Department of
Electrical and Computer Engineering, Texas A&M
University at Qatar, Doha, Qatar, for more than 11

years. He is currently a Senior Lecturer with the University of Hertfordshire,
Hatfield, U.K. Also, he has participated in and led several scientific projects
in the last nine years. He has successfully realized many potential research
projects. He has authored or coauthored more than 178 journal and conference
articles, one patent, and one book. His research interests include electrical
machines, power systems, smart grid, Big Data, energy management systems,
reliability of power grids and electric machinery, fault detection, and condi-
tion monitoring and development of fault-tolerant systems.

Dr. Refaat is a Member of the Smart Grid Center–Extension in Qatar
(SGC-Q) and The Institution of Engineering and Technology (IET).

282 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


