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A B S T R A C T

In various cities/other urban settlements, buildings are replaced with newer stocks, ending many buildings’ lives. Unfortunately, these buildings nearing or at end-of-
useful lives are mostly not deconstructed; instead, they get demolished, resulting in waste generation and pollution, among other environmental concerns.
Deconstruction supports closing the material loop in construction, facilitating reuse at end-of-life of the building; however, it is not always easy to assess the
feasibility of deconstruction for existing buildings – deconstructability. For this purpose, this paper investigated critical factors that needed to be checked to make
informed decisions about the deconstructability of buildings. These factors cover economic, social, environmental, legal, and technical dimensions. Based on the
exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), 31 significant drivers were identified. These drivers were classed into seven factors. The
findings in this paper contribute to the practice of deconstruction, mainly supporting deconstructability decision-making and are helpful for deconstruction/de-
molition auditors, waste-management consultants and/or other stakeholders with waste minimisation goals, particularly for buildings nearing or at the end-of-useful
lives.

1. Background

In the United Kingdom (UK), the architectural, engineering, and
construction (AEC) sector employs around 2.4 million people, repre-
senting 10% of total employment, and contributes over 6% to the
country’s economic output, equivalent to £117 billion in 2018 (Rhodes,
2019). Similar substantial economic impacts are observed globally,
including in China, the United States of America, and India (Alaloul
et al., 2022). Furthermore, the industry promotes social development by
improving well-being and advancing healthier communities (Altomonte
et al., 2020), (Chadwick, 2020), (Younger et al., 2008). The sector is
noteworthy in a nation’s socioeconomic development and growth.

Despite the undeniably positive impacts of the AEC industry on the
economy and people’s well-being, growing arguments highlight its
detrimental effects on the socio-physical environment. The sector gen-
erates significant waste, primarily from construction, demolition, and
excavation activities collectively called CDEW. Among these activities,
an end-of-life process, demolition is mainly responsible for producing
the most significant volume of waste compared to other construction
activities (Balogun et al., 2022a). This is primarily attributed to the fact
that demolition renders more than 90% of the building components as
waste and renders the waste irrecoverable (Del Río Merino et al., 2010).
According to a report by the Department for Environment, Food, and

Rural Affairs (DEFRA), demolition activities account for approximately
62% of UK waste (DEFRA, 2020). Like the UK, demolition contributes
significantly to the waste stream in other countries, such as China and
the USA (Aslam et al., 2020), (Huang et al., 2018).

The urgent need to address most of the identified concerns at
building end-of-life has prompted the adoption of deconstruction as an
alternative to demolition. Deconstruction has gained popularity as a
sustainable building strategy in recent years due to its ability to decrease
waste and enhance resource efficiency. Deconstruction, in contrast to
demolition, is the deliberate and non-destructive dismantling of a
building to reuse the materials and components (Rios et al., 2015a)
rather than disposing of them in a landfill.

Despite the benefits of deconstruction, the decision-making process
regarding selecting between demolition and deconstruction when a
building has reached or nears its useful end-of-life remains complex and
intricate, owing to a wide range of factors (Balogun et al., 2022a) herein,
this paper aims to investigate the critical drivers/factors for assessing
deconstructability for building nearing or at the end-of-useful lives.

1.1. Terms and their definitions

Thomson et al. (Thomsen et al., 2011) defined demolition as
completely removing all building parts. Furthermore, Zahir et al. (2016)
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referred to demolition as an intentionally engineered process to knock
down buildings, mainly resulting in debris. Deconstruction, however, is
carefully knocking down a building into its components to rescue its
materials for recycling, reuse, and reconstruction reasons (Rios et al.,
2015b). Deconstruction is a means to an end; it exists for the appropriate
recovery of building elements, components, sub-components, and ma-
terials for either reuse or recycling in the most cost-effective manner
(Bradley Guy, 2004). Meanwhile, deconstructability is a concept that
evaluates the feasibility and practicality of deconstructing buildings
(Akinadé et al., 2015), (Kim and Kim, 2022), (Guy, 2001), (Guy and
Ohlsen, 2003). It extends beyond the physical aspects and considers
broader implications, including structural, environmental, social, and
economic factors. Through systematically examining these facets,
deconstructability aims to determine whether deconstructing a building
offers advantages over conventional demolition.

2. Drivers influencing deconstructability

Balogun et al. (2022a) established that studies have explored and
used various deconstructability influencing drivers. Still, they predom-
inantly considered these drivers and deconstructability from specific
dimensions, such as technical (e.g., (Rakhshan et al., 2021a), (Akinade
et al., 2015), (Àkànbí et al., 2019), (Basta et al., 2020a)) or economic
(Guy, 2001), (Rakhshan et al., 2021b). For instance, focusing on eco-
nomic rewards, Guy (2001) proposed a tool to predict the deconstruct-
ability of wooden building structures, mainly considering drivers that
could contribute to revenue and reduce costs from the deconstruction.
The study considered drivers like building age, damages, grade of the
materials, and disposal cost. Similarly, Rakshan et al. (Rakhshan et al.,
2021b) proposed using drivers like labour cost, purchasing price, and
insurance cost, among others, to assess the deconstructability of
load-bearing components. The study highlights the joint effects of labour
cost, financial risk, and procurement process on load-bearing
reusability.

In another study focused on the deconstructability of a building from
a design and technical point of view, the authors developed a decon-
structability assessment score (DAS) (Akinadea et al., 2015). Akinade
et al. (Akinadea et al., 2015) proposed DAS and considered drivers like
connection type, materials, and secondary finishes. Also, Basta et al.
(2020b) extended DAS to assess the deconstructability of a steel-framed
building. Aside from this study, others like (Àkànbí et al., 2019) and
(Akinade and Oyedele, 2019) have adopted DAS in different settings.

Using a machine learning model, Rakshan et al. (Rakhshan et al.,
2021a) assess the deconstructability of load-bearing building compo-
nents. This study considered technical and design-related drivers, like
the presence of hazardous or banned materials, among others. As per the
findings of this study, the foremost factor impacting the reusability of a
building component from a design perspective is the compatibility of the
reclaimed materials.

However, assessing deconstructability while looking at it from a
single dimension, as mostly done in literature, arguably fails to provide a
holistic overview of the perspectives necessary for a realistic decon-
structability assessment of buildings. Some studies emphasised
expanding beyond technical criteria when assessing building decon-
structability (Akinadé et al., 2017) (Balogun et al., 2022b) (Balogun
et al., 2024). These studies advocate for a broader evaluation and
consideration of a more comprehensive array of drivers from various
dimensions beyond mere technical or economic. As a result, in a 2023
study, (Balogun et al., 2022a) adopted a systematic literature review to
unveil the drivers influencing deconstructability at the building end of
life. This comprehensive review identified 42 drivers from distinct di-
mensions. While the study arguably established a more comprehensive
dimension and drivers influencing deconstructability, it has failed to
investigate the critical drivers/factors that deconstruction stakeholders
need to be aware of to decide on the deconstructability of a building; as
such, there is a need for empirical investigation. Following this, we

aimed to investigate critical drivers/factors influencing deconstruct-
ability for buildings nearing or at the end of life using exploratory and
confirmatory factor analysis. The remaining part of the paper is struc-
tured as follows: research methodology (Section 3), analysis and result
(Section 4), discussion and conclusions (Section 5).

3. Methodology

3.1. Study setting and design

The research study adopted the established drivers (Balogun et al.,
2022a). These drivers cover diverse dimensions: economic, technical,
legal, social, schedule and environmental. Subsequently, the chosen
drivers were transformed and operationalised into 42 explanatory var-
iables. These variables constituted the core elements employed in col-
lecting data. Fig. 1 presents the overview of the methodology.

3.2. Data collection

A survey tool was initially developed based on the established vari-
ables to collect data. A pilot survey was conducted among construction/
civil engineering academicians, including research fellows and students,
to ensure the utmost clarity and appropriateness of the survey questions.
The valuable feedback garnered from this pilot was analysed and judi-
ciously incorporated to refine and enhance the quality of the questions.

Following this, a purposive random sampling strategy was employed
to recruit participants possessing requisite expertise in the field of
deconstruction, given the specialised knowledge required to respond
effectively to the survey questions.

The electronically distributed survey questionnaires targeted a
diverse cohort of recognised deconstruction experts and professionals,
representing a rich tapestry of disciplines, including architects, quantity
surveyors, project managers, deconstruction engineers and managers,
and demolition engineers and managers. Identifying these professionals
was achieved by carefully exploring various sources, such as reputable
professional bodies, groups, and forums, as well as renowned companies
operating within and beyond the geographic boundaries of the United
Kingdom (UK). Prominent organisations and entities, including the
Institute of Demolition Engineers (IDE), the Chartered Institute of
Builders (CIOB), and the Royal Institute of British Architects (RIBA),
among numerous others, were actively engaged and contacted to ensure
the broadest possible reach. Furthermore, academicians possessing a
profound understanding and expertise in the realm of deconstruction
were also thoughtfully approached, both from within and beyond the
authors’ institution.

A panoply of communication channels, including but not limited to
widely recognised professional networking platforms like LinkedIn,
were adroitly harnessed to establish fruitful and meaningful connections
with these esteemed professionals following studies such as (Kayam and
Hirsch, 2012), (Koranteng and Wiafe, 2019). Additionally, conventional
means of communication, such as emails, were effectively utilised to
reach these highly regarded experts. The data collection phase spanned
an extended period from November 2021 to June 2022, allowing for a
thorough gathering of vital information.

The survey questionnaire was carefully crafted, featuring a series of
close-ended questions divided into five sections. The inaugural section,
aptly designated as the “Opening Section,” embarked on the inquiry into
the professional’s deconstruction expertise, specifically probing their
involvement in leading or participating in previous deconstruction
projects. In the event of a negative response, the subsequent questions
were rendered redundant, effectively terminating the respondent’s
participation in the survey. Conversely, an affirmative response would
prompt the professionals to provide additional insights into their roles,
including their job titles and the number of years of experience amassed
in the field of deconstruction. This strategic addition of supplementary
details was conceived with the overarching objective of augmenting the
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quality and depth of the collected data.
Furthermore, respondents were instructed to confine their responses

to a single deconstruction project they had previously worked on,
instilling a sense of coherence and focused analysis within the collected
dataset. Moreover, respondents were asked to assess the deconstruct-
ability of the building based on their first-hand experience. They pro-
vided scores indicating the degree of deconstructability, with higher
percentages indicating deconstructible for most of the building compo-
nents and elements and a lower percentage suggesting non-
deconstructible (denoted as q1 in the paper).

3.3. Ethical issues

Ethical approval was obtained from the University ethics committee
before conducting this research. Supporting statements and approval
reference numbers were included as part of the introductory session of
the survey. Participants were informed of the nature of the study and
provided their informed consent for the survey.

3.4. Data description

A total of 2831 prospective deconstruction professionals were con-
tacted. After several back-and-forth reminders, 301 responded. Two
hundred sixty-three professionals were confirmed to have previously
worked on deconstruction projects, representing the valid data retrieved
– indicating 263 deconstruction projects.

Data were downloaded from the survey platform in CSV format and
then exported to JASP 0.18.1 for detailed analysis. Descriptive data
analysis was used to check for missing values. Data pre-processing was
done accordingly. Outliers were checked, and the response rates of all
items were also checked (Obaid et al., 2019).

To evaluate the validity and reliability of the data, Cronbach’s alpha
coefficient, standardised lambda coefficient and squared multiple cor-
relation coefficient (R2) were employed following exploratory factor
analysis (EFA) and confirmatory factor analysis (CFA).

3.5. Exploratory Factor Analysis (EFA)

EFA was adopted to investigate latent variables. Basic steps were
tried, including evaluating suitability and probing the sample size and
correlations using measures like Kaiser Meyer Olkin (KMO) adequacy
and Bartlett’s correlation test. Additionally, steps including factor

extraction, determining retained factors, and eventually applying rota-
tion methods were agreed upon as part of EFA (Taherdoost et al., 2014).
KMO value falls within a range of [0, 1]; it will be deemed adequate if
the value is > 0.5 (Hair et al., 2014), (Tabachnick et al., 2013) or even
better if it is > 0.6 (Lloret et al., 2017), (Burton and Mazerolle, 2011).
Bartlett’s test of sphericity was also used to measure the overall signif-
icance of correlations among variables. It tells whether the matrix is an
identity matrix: a significant p-value <0.05 indicates that the data is
appropriate for factor analysis (Hair et al., 2014), (Burton and Mazer-
olle, 2011), (Hair et al., 2021).

In EFA, various methods can be employed to retain factors, such as
principal axis factoring (PAF), image factoring (IF), maximum likeli-
hood (ML), and principal component analysis (PCA), among others
(Tabachnick et al., 2013). Notably, PCA is a default option in many
analytical software. Arguably, PCA is the most utilised in EFA studies
(Tabachnick et al., 2013). The choice between PCA and PAF is debated
among analysts despite often having negligible practical differences
(Burton and Mazerolle, 2011). Considering these, this study will adopt
PCA.

Additionally, the number of retainable variables is obtained using
the variable loading. A variable loading >0.3 is acceptable (Tabachnick
et al., 2013), while Burton and Stephanie (Burton and Mazerolle, 2011)
emphasised a threshold≥0.50 as a practical guideline. In this paper, we
decided to set a variable loading threshold of≥0.5 as this is one of the
commonest acceptable thresholds among construction research studies
(Xu et al., 2019), (Liu et al., 2020), (Yang et al., 2022), (Mohammed
et al., 2021), (Mardani et al., 2020).

3.6. Confirmatory Factor Analysis (CFA)

Conversely, CFA is a hypothesis-testing technique that appraises the
fit of a predetermined model. Consequently, utilising CFA to investigate
a model derived from EFA is a valid methodology for developing theory
and its analysis (Taherdoost et al., 2014), (Hair et al., 2021), (Kline,
2023), (Rodrigues et al., 2019). Usually, Structural Equation Modelling
(SEM) is chosen for conducting CFA, as CFA is seen as a specialised use of
SEM. Within SEM, CFA is termed the “measurement model”, focusing on
revealing how latent variables are reflected by their underlying
observed variables, using measures: parameter estimates and fit indices.
Different model fit indices assessed the overall model fit. We adopted
χ2/df, comparative fit index (CFI), Tucker Lewis’s index (TLI), parsi-
mony normed fit index (PNFI), goodness of fit index (GFI), where

Fig. 1. Overview of the methodology.
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comparative fit index (CFI) and Tucker Lewis Index (TLI) values > 0.9
indicated an acceptable model fit. χ2/df< 3.0, PNFI and PGFI>0.5 were
considered good and acceptable (Hair et al., 2014), (Rodrigues et al.,
2019). Additionally, root mean square error of approximation (RMSEA)
was adopted, where values between 0.05 and 0.08 were considered an
adequate model fit (Liu et al., 2020), (Yang et al., 2022), (Mohammed
et al., 2021), (Mardani et al., 2020), (Ajayi and Oyedele, 2018), (Jiang
et al., 2020), (Naji et al., 2022).

3.7. Reliability and validity tests

The reliability and validity were tested after assessing the model’s
overall fit. Reliability relates to the internal consistency of observed
variables, while validity relates to the underlying cause of the variable’s
covariation. The reliability herein was estimated via Cronbach’s alpha
coefficient. Cronbach’s alpha coefficient ranges between 0 and 1, with
higher values indicating better reliability. The Cronbach alpha >0.7 is
considered acceptable (Nunnally, 1994), (Cortina, 1993).

The validity of each path in the CFA model was evaluated using a
standardised lambda coefficient. In contrast, reliability was assessed
using a squared multiple correlation coefficient (R2)—both the validity
coefficient and R2 value range from 0 to 1. As the validity coefficient
approaches 1, the indicator reveals a higher level in representing the

construct of interest. Similarly, as the R2 value approaches 1, the greater
the variability in each indicator accounted for by the unobserved
variable.

4. Analysis and results

4.1. Exploratory factor analysis

To ensure that the survey tool was suitable for EFA, statistical tests
such as KMO, Bartlett’s test of sphericity, and communalities were
applied. Sampling adequacy tested by KMO was reported at 0.739,
indicating that items were sampled adequately. Bartlett’s test of sphe-
ricity was reported at a p-value of 0.001, which is less than the signifi-
cance level of 0.05 and indicates a robust concomitant probability
among samples. These tests confirm that the collected data is wholly fit
for analysis using the EFA method.

Principal component analysis with varimax rotation was conducted
on 42 variables influencing deconstructability. As illustrated in Table 1,
the presence of seven factors was revealed, which are labelled as
Technical (F1), Building characteristics (F2), Time (F3), Policy (F4),
Safety & recoverability (F5), Market (F6) and Region (F7). These seven
factors explain 60.99% of the total variance satisfying requirements
(Hair et al., 2012), (Egwim et al., 2021).

Table 1
Results of the exploratory factor analysis.

Description Loadings

Code F1 F2 F3 F4 F5 F6 F7

Project Location q2 0.425 0.373 0.186 0.043 0.075 0.047 0.055
Neighbourhood Type q3 0.023 0.330 0.051 0.213 0.056 0.193 0.553
Structure Type q4 0.086 0.268 0.088 0.093 0.549 0.075 0.542
Social acceptance q5 0.151 0.037 0.075 0.101 0.027 0.373 0.601
Building age q6 0.134 0.691 0.099 0.011 0.182 0.134 0.151
Size q7 0.510 0.100 0.543 0.177 0.170 0.099 0.165
Floor area (average) q8 0.074 0.154 0.576 0.361 0.422 0.076 0.212
Frame q9 0.219 0.692 0.036 0.263 0.159 0.095 0.007
HVAC q10 0.052 0.191 0.112 0.103 0.164 0.541 0.143
Interior finishes q11 0.131 0.357 0.129 0.183 0.212 0.535 0.271
External/Government policies q12 0.025 0.098 0.089 0.911 0.026 0.164 0.008
Ill-defined benefits q13 0.078 0.404 0.040 0.024 0.175 0.214 0.289
Incentives q14 0.021 0.019 0.106 0.478 0.014 0.078 0.460
Damages q15 0.228 0.582 0.052 0.199 0.054 0.103 0.188
Road network/Accessibility q16 0.207 0.375 0.280 0.001 0.526 0.076 0.272
Standard quality/grading q17 0.366 0.757 0.085 0.044 0.124 0.083 0.039
Skills/Experience q18 0.672 0.135 0.061 0.080 0.138 0.168 0.070
Landfill/tipping tax q19 0.515 0.059 0.208 0.343 0.191 0.260 0.069
Permit cost/time q20 0.159 0.344 0.077 0.199 0.035 0.280 0.464
Equipment/resources q21 0.065 0.082 0.041 0.036 0.164 0.704 0.021
Specialised labour q22 0.776 0.058 0.018 0.038 0.011 0.010 0.284
Economic value/social q23 0.371 0.508 0.149 0.059 0.322 0.011 0.203
Prefab/traditional q24 0.876 0.130 0.018 0.021 0.106 0.012 0.051
Material demand q25 0.486 0.283 0.013 0.016 0.543 0.082 0.145
Market q26 0.251 0.104 0.145 0.037 0.110 0.720 0.049
Financial aid q27 0.002 0.290 0.027 0.132 0.048 0.010 0.738
Storage q28 0.560 0.358 0.268 0.065 0.092 0.339 0.279
Insurance q29 0.255 0.020 0.293 0.536 0.136 0.282 0.072
Materials Recoverable q30 0.406 0.084 0.113 0.108 0.632 0.220 0.108
Toxic/banned material q31 0.368 0.155 0.142 0.322 0.670 0.250 0.162
Insurance q32 0.017 0.149 0.206 0.154 0.411 0.053 0.173
Inventory Document q33 0.660 0.001 0.040 0.090 0.271 0.028 0.229
Design and plan document q34 0.704 0.089 0.040 0.203 0.321 0.078 0.235
Composite Material q35 0.176 0.135 0.022 0.032 0.597 0.064 0.118
Accessible connection q36 0.065 0.029 0.801 0.318 0.236 0.001 0.163
Connection types q37 0.108 0.628 0.648 0.072 0.025 0.117 0.039
Sorting & Processing duration q38 0.099 0.253 0.677 0.050 0.019 0.453 0.097
project time q39 0.002 0.056 0.770 0.137 0.318 0.138 0.031
Complexity of activities q40 0.125 0.429 0.315 0.317 0.365 0.253 0.101
Code/regulation q41 0.005 0.222 0.037 0.596 0.194 0.119 0.119
Stakeholders’ decision q42 0.327 0.101 0.424 0.204 0.077 0.486 0.137
inertia q43 0.335 0.242 0.276 0.036 0.111 0.258 0.373

Loading Cumulative % 15.43 25.98 35.32 43.66 50.91 56.07 60.99
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As seen in Table 1, the model retained 38 items that displayed an
item loading of 0.5 or higher. At the same time, the findings revealed
that a few variables yielded loadings≥0.5; however, they appeared in
more than one factor (i.e., seven cross-loadings were discovered). We
decided to drop all the cross-loadings following recommendations
(Costello and Osborne, 2005), (Dion, 2008), (Bowen and Guo, 2011),
and we were left with 31 variables.

4.2. Confirmatory factor analysis

Results from EFA disclosed seven latent factors contributing to the
deconstructability of buildings. We employed CFA to check the factorial
validity of the different factors influencing deconstructability and to
generate evidence regarding the fitness of the proposed model. The
result of the CFA shows all variables were significant with p < 0.05. At
the same time, the overall model fitness was acceptable and satisfactory.
Table 2 offers the overall model fitness.

4.3. Reliability and validity tests

After assessing the model’s overall fit, its reliability and validity were
investigated. Reliability refers to the consistency of a set of observed
indicators, while validity relates to the underlying cause of the in-
dicators’ covariation. The validity of each path in the CFA model was
evaluated using a standardised lambda coefficient. In contrast, reli-
ability was assessed using a squared multiple correlation coefficient (R2)
- both the validity coefficient and R2 value range from 0 to 1. As the
validity coefficient approaches 1, the indicator reveals a higher level in
representing the construct of interest.

Similarly, as the R2 value approaches 1, the greater the variability in
each indicator accounted for by the unobserved variable. The lower
acceptable limit for the validity coefficient is 0.5. However, there has yet
to be a consensus on the lower limit for accepting R2 (Xu et al., 2019). All
the standardised loadings (standardised lambda coefficients) range from
0.076 to 0.927 for the observed variables. This exceeds the minimum
threshold. The p-value associated with each latent variable is significant
at the 0.05 level, and all the standardised loadings are higher than 0.5,
except F5 and F6 loading, which stands at 0.346 and 0.379. While this
loading is low, the latent variable of F5 and F6 was retained as it has
been argued in previous studies to be a significant dimension deter-
mining deconstruction feasibility.

Furthermore, in assessing the reliability, the composite reliability
(CR) was calculated (Raykov, 1997). It has been suggested in earlier
studies that CR > 0.6 is a satisfactory threshold (Hair et al., 2014).
Similarly, the average variance extracted (AVE) > 0.4 is an acceptable
threshold (Gebremedhin et al., 2022), (Dilekli and Tezci, 2019).
Applying these tests to the data, we discovered that CR and the AVE
scores, respectively, for each construct were F1 (0.86, 0.45), F2 (0.81,
0.42), F3 (0.83, 0.45), F4 (0.73, 0.49), F5 (0.76, 0.44), F6 (0.79, 0.41)
and F7 (0.7, 0.48). Findings suggested that all seven criteria satisfied the
required level. These comprehensive checks proved the proposed model
satisfactory, providing the best fit for the collected data. Overall, the
proposed model, which contains 31 variables grouped under seven
factors/dimensions, offers critical factors/drivers for determining the
deconstructability of buildings under consideration for deconstruction.

5. Discussions and conclusion

5.1. Comparisons and evaluation of the criteria

The result revealed that the critical factors/drivers for assessing
deconstructability are rooted in various considerations, including eco-
nomic (e.g., monetary value and demand), social (e.g., cultural and
historical values), environmental (e.g., the presence of toxic or banned
materials), technical elements (e.g., connection type and construction
method), and legal considerations (e.g., regional policy) (Balogun et al.,
2022a). This effectively fulfils the need to make well-informed decisions
regarding building deconstructability at the end of its life cycle, as seen
in Fig. 2.

Moreover, the research revealed that the established factors/drivers
encompass broader dimensions. Serving as a decision support, it in-
corporates both static criteria (e.g., technical elements) and dynamic
criteria (e.g., the volume and value of recoverable materials and com-
ponents), allowing the assessment of deconstructability to address
multiple objectives.

5.1.1. Policy
The study highlighted that policy is the most critical factor affecting

deconstructability (loadings = 0.933) (see Fig. 3). This is mainly due to
the multifaceted impact policies have. Whether devised by professional
bodies or the government, policies significantly influence deconstruc-
tion. These policies encompass regulations, incentives, and directives
that can either facilitate or hinder the dismantling of existing structures.

Setting clear sustainability targets and implementing supportive di-
rectives are pivotal in driving deconstruction practices. Regulations are
crucial in promoting global sustainability, which is evident in the
varying policies encouraging deconstruction. For instance, the UK gov-
ernment introduced a waste prevention program to reduce demolition
waste. At the same time, Paris aims for 30% of office space construction
to be reversible by 2030 as part of its Paris Climate Action Plan. These
initiatives are pivotal in driving more deconstructions.

Moreover, these policies are intricately linked to the region. The
regional setting, including geographical location, socio-economic dy-
namics, and cultural influences, significantly affects deconstruction
feasibility. The geographical location can influence cultural values,
community perceptions, and acceptance of deconstruction practices. It
also plays a role in determining the availability of resources, recycling
facilities, and market demands for reclaimed materials.

A critical examination of these factors reveals complexities in policy
formulation and regional variations. Policies that support sustainable
practices, provide financial incentives, or mandate deconstruction con-
siderations in building can substantially enhance feasibility. Conversely,
stringent regulations, a lack of incentives, or inadequate infrastructure
may hinder the feasibility of deconstruction. The interplay between
policy structures and regional dynamics strongly impacts building
deconstruction. This calls for a nuanced grasp of policy development and
regional intricacies to optimise deconstruction potential.

5.1.2. State of the building and environment
The factors of building characteristics, which include the physical

state of the building, play a more critical role in decision-making
regarding deconstructability. This is because buildings in good struc-
tural condition with minimal damage or degradation are generally more
conducive to deconstruction. Conversely, buildings compromised by
structural instability, extensive damage, or hazardous materials may
pose safety risks and logistical challenges, thereby impacting
deconstructability.

The surrounding environment also plays a pivotal role. Factors such
as accessibility, available space for deconstruction activities, and prox-
imity to other structures or infrastructure affect the feasibility. A
building in a congested urban area might need help with logistics, space
constraints, and disturbance to neighbouring properties during the

Table 2
Results of the overall fit test for the confirmatory factor analysis (CFA).

Indices Model Standard (Hair et al., 2014), (Liu et al., 2020), (Naji et al.,
2022), (S and LO Ajayi, 2018)

χ2/df 1.288 <3.0
CFI 0.986 >0.9
TLI 0.981 >0.9
PNFI 0.707 >0.5
GFI 0.975 >0.5
RSMEA 0.068 <0.08
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deconstruction process, impacting its feasibility.
Another critical aspect is the presence of surrounding utilities or

infrastructure. Buildings closely connected to essential services like
power lines, water mains, or transportation networks might pose chal-
lenges during deconstruction, impacting feasibility due to potential
service disruptions or safety concerns.

Community considerations and local perceptions about the building
and its surroundings are also crucial. Community sentiments, historical
significance, and cultural value attached to the building might influence
decisions regarding its deconstruction. Resistance from local commu-
nities or stakeholders due to sentimental or heritage reasons can
significantly impact the feasibility of deconstruction efforts.

In summary, the state of the building and its environment un-
derscores the need for a comprehensive evaluation that considers
structural integrity, environmental factors, logistical challenges, com-
munity sentiments, and the broader context to determine the decon-
structability effectively.

5.1.3. Economic and technical concerns
The economic and technical criteria are critical determinants in

evaluating the feasibility of building deconstruction. From an economic
sphere, deconstructability is intricately tied to market dynamics. The
potential for resource recovery and material reuse is a key economic
variable. Buildings with salvageable materials and components present
economic opportunities through material resale, contributing to the
cost-effectiveness of deconstruction projects. Additionally, market de-
mand for reclaimed materials, influenced by sustainability trends and
construction industry preferences, plays a pivotal role in determining
economic feasibility. Labour expertise, while indispensable, poses a
double-edged sword: while skilled workers streamline processes, their
fair compensation escalates costs, often significantly influencing overall
feasibility. Other significant economic variables include storage cost,
insurance, and specialised handling of hazardous materials.

Storage costs, an inevitable aspect of salvagedmaterial management,
demand scrutiny. While essential, adequate storage incurs additional
expenses, potentially straining budgets. The economic burden of storage
rentals, maintenance, and security amplifies the complexity of decon-
struction feasibility. Similarly, Insurance, regarded as a safety net
against potential risks, embodies a necessary yet substantial financial
component. Its comprehensive coverage shields projects from liabilities
but inherently adds to the inflated cost structures, raising pertinent
questions about balancing protection with economic sustainability. Still,
the specialised handling of hazardous materials, although imperative for
safety and regulatory compliance, introduces substantial economic im-
plications in economics. Costs associated with expert handling, disposal
procedures, and safety protocols elevate project expenses, prompting a
critical evaluation of the trade-offs between safety and financial
feasibility.

From a technical point of view, variables such as construction
methods, connection types, accessibility, material type, and building
types are critical elements pivotal in assessing the feasibility and in-
tricacies of the process. Buildings constructed using modular or easily

Fig. 2. Model of critical factors influencing deconstructability.

Fig. 3. Significant Criteria influencing the deconstruction feasibility.
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disassembled methods, such as timber-framed structures or pre-
fabricated buildings, are often more conducive to deconstruction due to
their inherent design for dismantling. Equally, buildings employing
reinforced concrete or steel structures pose more significant challenges
due to their complex interconnections and integration, potentially
impacting deconstruction feasibility. Also, the type of connections uti-
lised within a building’s structure is paramount. Buildings relying on
bolted or mechanically connected systems facilitate easier disassembly,
contributing to higher deconstruction feasibility than structures with
welded or chemically bonded connections, which might necessitate
more intricate and time-consuming dismantling processes.

Accessibility to connections/integral components further influences
deconstruction prospects. Ease of access to building elements, such as
foundations, support structures, and mechanical systems, impacts the
deconstruction process. Buildings with accessible connections and
components typically fare better in terms of feasibility than structures
with concealed or inaccessible elements that might require specialised
equipment or techniques for dismantling.

Considerations of building materials and their compatibility with
recycling or reusability play a vital role. Buildings constructed using
materials with higher recyclability rates, such as timber or certain
metals, often offer more significant potential for salvage and resale,
enhancing their economic feasibility for deconstruction initiatives. In a
technical appraisal of building deconstruction, the amalgamation of
construction methods, connection types, accessibility to integral com-
ponents, and material recyclability forms the bedrock of strategic
planning. Understanding these technical intricacies aids in devising
efficient and cost-effective deconstruction strategies, paving the way for
sustainable and resource-efficient building practices.

5.2. Conclusions

The paper identified critical factors/drivers influencing decon-
structability. It comprises 31 variables chosen through exploratory fac-
tor analysis (EFA) and confirmatory factor analysis (CFA) from a
comprehensive literature review. The findings indicate policy, eco-
nomic, technical, building characteristics and environmental di-
mensions. Notably, the paper evaluates not only the inherent traits of a
specific building but also external factors like neighbourhood features,
regional context, and other related aspects.

Using exploratory factor analysis, the paper grouped the 31 identi-
fied drivers/variables into seven categories: Technical, Building

characteristics, schedules, Policy, Safety & recoverability, Market and
Region. Afterwards, confirmatory factor analysis (CFA) was adopted for
validity and reliability. From the results of the CFA, the most crucial
factors were policy and schedules, with a high loading score of 0.933.
This highlights the substantial influence of policies, whether set by
professional bodies or councils, in determining the deconstructability of
buildings. The estimated time to sort the deconstruction process was
highlighted as a significant and crucial factor influencing the
deconstructability.

Additionally, the region was significantly impacted (loading =

0.630), signifying their pivotal role in assessing deconstructability. The
technical factor (loading = 0.626), market (loading = 0.505), building
characteristics (loading = 0.476), schedule (loading = 0.455), and
building safety & recoverability (loading = 0.214) were also recognised
as significant factors impacting deconstructability.

The findings contribute to deconstruction by providing a realistic
guide to decision-making around building deconstructability. The paper
only established critical factors influencing the deconstructability of
buildings. However, further studies can explore using other advanced
techniques to develop essential factors/drivers influencing decon-
structability. At the same time, other studies can explore using these
factors/drivers to develop predictive techniques/models for
deconstructability.
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APPENDIX. Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

1 6.639 15.438 15.438 6.639 15.438 15.438 5.264 12.242 12.242
2 4.535 10.546 25.985 4.535 10.546 25.985 4.285 9.966 22.208
3 4.015 9.337 35.321 4.015 9.337 35.321 3.653 8.496 30.704
4 3.586 8.341 43.662 3.586 8.341 43.662 3.579 8.323 39.028
5 3.117 7.250 50.912 3.117 7.250 50.912 3.408 7.925 46.953
6 2.222 5.166 56.078 2.222 5.166 56.078 3.066 7.130 54.083
7 2.116 4.920 60.998 2.116 4.920 60.998 2.974 6.916 60.998
8 1.852 4.308 65.306
9 1.597 3.714 69.020
10 1.509 3.509 72.529
11 1.449 3.369 75.898
12 1.141 2.653 78.551
13 1.045 2.430 80.981
14 0.960 2.233 83.214
15 0.931 2.164 85.378
16 0.794 1.847 87.225
17 0.697 1.621 88.846
18 0.615 1.429 90.276
19 0.543 1.263 91.538

(continued on next page)
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(continued )

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %

20 0.462 1.075 92.613
21 0.439 1.022 93.635
22 0.390 0.908 94.542
23 0.343 0.797 95.340
24 0.315 0.734 96.073
25 0.274 0.636 96.709
26 0.228 0.531 97.241
27 0.186 0.434 97.674
28 0.186 0.433 98.107
29 0.152 0.354 98.461
30 0.133 0.310 98.770
31 0.117 0.272 99.042
32 0.088 0.204 99.246
33 0.080 0.186 99.432
34 0.069 0.162 99.594
35 0.046 0.107 99.701
36 0.043 0.100 99.801
37 0.033 0.076 99.877
38 0.021 0.049 99.926
39 0.020 0.046 99.971
40 0.007 0.015 99.987
41 0.004 0.009 99.996
42 0.002 0.004 100.000
43 0.000 0.000 100.000

Extraction Method: Principal Component Analysis.
#latent variable Model zero.
F1 = ~q18 + q19 + q22 + q24 + q28 + q33 + q34 + q7.
F2 = ~q6+q9+q15 + q17 + q23 + q37.
F3 = ~q7+q8+q39 + q38 + q36 + q37.
F4 = ~q12 + q29 + q41.
F5 = ~q16 + q25 + q30 + q31 + q35.
F6 = ~q10 + q11 + q21 + q26.
F7 = ~q27 + q5+q3+q4.
D = ~q1.
#regression.
D ~ F1.
D ~ F2.
D ~ F3.
D ~ F4.
D ~ F5.
D ~ F6.
D ~ F7.

R-Squared

R2

q18 0.392
q19 0.146
q22 0.532
q24 0.927
q28 0.089
q33 0.612
q34 0.777
q6 0.227
q9 0.076
q15 0.434
q17 0.837
q23 0.791
q8 0.207
q39 0.588
q38 0.805
q36 0.608
q12 0.871
q29 0.587
q41 0.386
q16 0.046
q25 0.852
q30 0.588
q31 0.816
q35 0.119
q10 0.255

(continued on next page)

H. Balogun et al.



Cleaner Engineering and Technology 21 (2024) 100790

9

(continued )

R-Squared

R2

q11 0.258
q21 0.206
q26
q27 0.396
q5 0.112
q3 0.454
q1 1.000
D

Parameter estimates.

Factor Loadings

Latent Indicator Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

D q1 1.000 0.000 1.000 1.000 1.000 0.992 1.000
F1 q18 1.000 0.000 1.000 1.000 0.626 0.626 0.626

q19 0.610 0.100 6.071 <0.001 0.413 0.806 0.382 0.382 0.382
q22 1.165 0.111 10.496 <0.001 0.948 1.383 0.729 0.729 0.729
q24 1.538 0.140 11.013 <0.001 1.264 1.812 0.963 0.963 0.963
q28 0.476 0.087 5.500 <0.001 0.307 0.646 0.298 0.298 0.298
q33 1.250 0.114 10.959 <0.001 1.027 1.474 0.783 0.783 0.783
q34 1.409 0.121 11.597 <0.001 1.171 1.647 0.882 0.882 0.882

F2 q6 1.000 0.000 1.000 1.000 0.476 0.476 0.476
q9 0.578 0.144 4.004 <0.001 0.295 0.861 0.275 0.275 0.275
q15 1.384 0.212 6.518 <0.001 0.968 1.800 0.659 0.659 0.659
q17 1.921 0.272 7.064 <0.001 1.388 2.454 0.915 0.915 0.915
q23 1.867 0.272 6.863 <0.001 1.334 2.401 0.889 0.889 0.889

F3 q8 1.000 0.000 1.000 1.000 0.455 0.455 0.455
q39 1.684 0.301 5.587 <0.001 1.093 2.275 0.767 0.767 0.767
q38 1.971 0.351 5.619 <0.001 1.283 2.658 0.897 0.897 0.897
q36 − 1.712 0.319 − 5.368 <0.001 − 2.337 − 1.087 − 0.780 − 0.780 − 0.780

F4 q12 1.000 0.000 1.000 1.000 0.933 0.933 0.933
q29 0.821 0.091 9.047 <0.001 0.643 0.999 0.766 0.766 0.766
q41 − 0.666 0.079 − 8.393 <0.001 − 0.822 − 0.511 − 0.622 − 0.622 − 0.622

F5 q16 1.000 0.000 1.000 1.000 0.214 0.214 0.214
q25 − 4.315 1.060 − 4.070 <0.001 − 6.392 − 2.237 − 0.923 − 0.923 − 0.923
q30 − 3.584 0.886 − 4.046 <0.001 − 5.320 − 1.848 − 0.767 − 0.767 − 0.767
q31 − 4.224 1.042 − 4.052 <0.001 − 6.266 − 2.181 − 0.904 − 0.904 − 0.904
q35 − 1.614 0.467 − 3.459 <0.001 − 2.529 − 0.700 − 0.345 − 0.345 − 0.345

F6 q10 1.000 0.000 1.000 1.000 0.505 0.505 0.505
q11 − 1.007 0.206 − 4.900 <0.001 − 1.410 − 0.604 − 0.508 − 0.508 − 0.508
q21 − 0.900 0.209 − 4.318 <0.001 − 1.309 − 0.492 − 0.454 − 0.454 − 0.454
q26 − 2.049 0.430 − 4.759 <0.001 − 2.892 − 1.205 − 1.034 − 1.034 − 1.034

F7 q27 1.000 0.000 1.000 1.000 0.630 0.630 0.630
q5 0.532 0.176 3.016 0.003 0.186 0.877 0.335 0.335 0.335
q3 1.071 0.276 3.877 <0.001 0.529 1.612 0.674 0.674 0.674

Regression coefficients

Predictor Outcome Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

F1 D 0.539 0.717 0.751 0.452 − 0.866 1.944 0.340 0.340 0.340
F2 D − 0.097 2.674 − 0.036 0.971 − 5.337 5.143 − 0.047 − 0.047 − 0.047
F3 D 1.502 1.453 1.034 0.301 − 1.345 4.350 0.690 0.690 0.690
F4 D − 1.488 0.648 − 2.297 0.022 − 2.757 − 0.218 − 1.399 − 1.399 − 1.399
F5 D − 1.259 4.546 − 0.277 0.782 − 10.169 7.652 − 0.271 − 0.271 − 0.271
F6 D 1.004 1.662 0.604 0.546 − 2.253 4.262 0.511 0.511 0.511
F7 D − 0.215 1.220 − 0.177 0.860 − 2.606 2.175 − 0.137 − 0.137 − 0.137

Factor variances

Variable Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

F1 0.392 0.055 7.086 <0.001 0.283 0.500 1.000 1.000 1.000
F2 0.227 0.057 3.974 <0.001 0.115 0.338 1.000 1.000 1.000
F3 0.207 0.068 3.066 0.002 0.075 0.340 1.000 1.000 1.000
F4 0.871 0.126 6.890 <0.001 0.623 1.118 1.000 1.000 1.000
F5 0.046 0.022 2.085 0.037 0.003 0.089 1.000 1.000 1.000
F6 0.255 0.083 3.085 0.002 0.093 0.416 1.000 1.000 1.000

(continued on next page)
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(continued )

Factor variances

Variable Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

F7 0.396 0.155 2.551 0.011 0.092 0.701 1.000 1.000 1.000
D − 0.200 0.350 − 0.571 0.568 − 0.886 0.486 − 0.203 − 0.203 − 0.203

Factor covariances

Variables Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

F1 – F2 0.148 0.024 6.081 <0.001 0.101 0.196 0.498 0.498 0.498
F1 – F3 − 0.013 0.013 − 1.037 0.300 − 0.039 0.012 − 0.047 − 0.047 − 0.047
F1 – F4 0.105 0.035 3.021 0.003 0.037 0.173 0.180 0.180 0.180
F1 – F5 − 0.094 0.024 − 3.938 <0.001 − 0.141 − 0.047 − 0.701 − 0.701 − 0.701
F1 – F6 − 0.076 0.021 − 3.593 <0.001 − 0.117 − 0.034 − 0.239 − 0.239 − 0.239
F1 – F7 0.035 0.030 1.192 0.233 − 0.023 0.094 0.090 0.090 0.090
F2 – F3 0.054 0.016 3.341 <0.001 0.022 0.085 0.247 0.247 0.247
F2 – F4 0.055 0.033 1.684 0.092 − 0.009 0.119 0.124 0.124 0.124
F2 – F5 − 0.058 0.016 − 3.549 <0.001 − 0.090 − 0.026 − 0.568 − 0.568 − 0.568
F2 – F6 0.007 0.015 0.471 0.637 − 0.022 0.035 0.029 0.029 0.029
F2 – F7 0.184 0.044 4.218 <0.001 0.099 0.270 0.615 0.615 0.615
F3 – F4 0.168 0.038 4.383 <0.001 0.093 0.243 0.394 0.394 0.394
F3 – F5 − 0.024 0.008 − 2.916 0.004 − 0.041 − 0.008 − 0.251 − 0.251 − 0.251
F3 – F6 − 0.080 0.023 − 3.549 <0.001 − 0.124 − 0.036 − 0.348 − 0.348 − 0.348
F3 – F7 0.015 0.026 0.555 0.579 − 0.037 0.066 0.051 0.051 0.051
F4 – F5 − 0.050 0.018 − 2.858 0.004 − 0.084 − 0.016 − 0.251 − 0.251 − 0.251
F4 – F6 0.086 0.043 2.014 0.044 0.002 0.169 0.182 0.182 0.182
F4 – F7 − 0.033 0.062 − 0.532 0.595 − 0.155 0.089 − 0.056 − 0.056 − 0.056
F5 – F6 0.046 0.015 3.064 0.002 0.017 0.075 0.425 0.425 0.425
F5 – F7 − 0.001 0.009 − 0.121 0.903 − 0.020 0.017 − 0.009 − 0.009 − 0.009
F6 – F7 0.024 0.025 0.960 0.337 − 0.025 0.073 0.076 0.076 0.076

Residual variances

Variable Estimate Std. Error z-value p 95% Confidence Interval Standardized

Lower Upper All LV Endo

q18 0.608 0.000 0.608 0.608 0.608 0.608 0.608
q19 0.854 0.000 0.854 0.854 0.854 0.854 0.854
q22 0.468 0.000 0.468 0.468 0.468 0.468 0.468
q24 0.073 0.000 0.073 0.073 0.073 0.073 0.073
q28 0.911 0.000 0.911 0.911 0.911 0.911 0.911
q33 0.388 0.000 0.388 0.388 0.388 0.388 0.388
q34 0.223 0.000 0.223 0.223 0.223 0.223 0.223
q6 0.773 0.000 0.773 0.773 0.773 0.773 0.773
q9 0.924 0.000 0.924 0.924 0.924 0.924 0.924
q15 0.566 0.000 0.566 0.566 0.566 0.566 0.566
q17 0.163 0.000 0.163 0.163 0.163 0.163 0.163
q23 0.209 0.000 0.209 0.209 0.209 0.209 0.209
q8 0.793 0.000 0.793 0.793 0.793 0.793 0.793
q39 0.412 0.000 0.412 0.412 0.412 0.412 0.412
q38 0.195 0.000 0.195 0.195 0.195 0.195 0.195
q36 0.392 0.000 0.392 0.392 0.392 0.392 0.392
q12 0.129 0.000 0.129 0.129 0.129 0.129 0.129
q29 0.413 0.000 0.413 0.413 0.413 0.413 0.413
q41 0.614 0.000 0.614 0.614 0.614 0.614 0.614
q16 0.954 0.000 0.954 0.954 0.954 0.954 0.954
q25 0.148 0.000 0.148 0.148 0.148 0.148 0.148
q30 0.412 0.000 0.412 0.412 0.412 0.412 0.412
q31 0.184 0.000 0.184 0.184 0.184 0.184 0.184
q35 0.881 0.000 0.881 0.881 0.881 0.881 0.881
q10 0.745 0.000 0.745 0.745 0.745 0.745 0.745
q11 0.742 0.000 0.742 0.742 0.742 0.742 0.742
q21 0.794 0.000 0.794 0.794 0.794 0.794 0.794
q26 − 0.068 0.000 − 0.068 − 0.068 − 0.068 − 0.068 − 0.068
q27 0.604 0.000 0.604 0.604 0.604 0.604 0.604
q5 0.888 0.000 0.888 0.888 0.888 0.888 0.888
q3 0.546 0.000 0.546 0.546 0.546 0.546 0.546
q1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

H. Balogun et al.



Cleaner Engineering and Technology 21 (2024) 100790

11

References

Ajayi, S.O., Oyedele, L.O., 2018. Critical design factors for minimising waste in
construction projects: a structural equation modelling approach. Resour. Conserv.
Recycl. 137, 302–313. https://doi.org/10.1016/j.resconrec.2018.06.005.
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