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Abstract: Affective communication, encompassing verbal and non-verbal cues, is crucial for under-
standing human interactions. This study introduces a novel framework for enhancing emotional
understanding by fusing speech emotion recognition (SER) and sentiment analysis (SA). We leverage
diverse features and both classical and deep learning models, including Gaussian naive Bayes (GNB),
support vector machines (SVMs), random forests (RFs), multilayer perceptron (MLP), and a 1D
convolutional neural network (1D-CNN), to accurately discern and categorize emotions in speech.
We further extract text sentiment from speech-to-text conversion, analyzing it using pre-trained
models like bidirectional encoder representations from transformers (BERT), generative pre-trained
transformer 2 (GPT-2), and logistic regression (LR). To improve individual model performance for
both SER and SA, we employ an extended dynamic Bayesian mixture model (DBMM) ensemble
classifier. Our most significant contribution is the development of a novel two-layered DBMM (2L-
DBMM) for multimodal fusion. This model effectively integrates speech emotion and text sentiment,
enabling the classification of more nuanced, second-level emotional states. Evaluating our framework
on the EmoUERJ (Portuguese) and ESD (English) datasets, the extended DBMM achieves accuracy
rates of 96% and 98% for SER, 85% and 95% for SA, and 96% and 98% for combined emotion classi-
fication using the 2L-DBMM, respectively. Our findings demonstrate the superior performance of
the extended DBMM for individual modalities compared to individual classifiers and the 2L-DBMM
for merging different modalities, highlighting the value of ensemble methods and multimodal fu-
sion in affective communication analysis. The results underscore the potential of our approach in
enhancing emotional understanding with broad applications in fields like mental health assessment,
human–robot interaction, and cross-cultural communication.

Keywords: speech emotion recognition; sentiment analysis; affective communication; data fusion;
multimodality; machine learning; deep learning; dynamic Bayesian mixture model

1. Introduction

Affective communication, encompassing verbal and non-verbal cues, is essential for
understanding and connecting with others on an emotional level. While facial expressions
and other non-verbal modalities have successfully been used to detect emotions [1–6],
speech is also a powerful channel for conveying emotional nuances. However, deciphering
these emotions and sentiments embedded within speech remains a challenge, requiring ad-
vanced machine learning techniques. The implications of effectively recognizing emotional
communication are far-reaching. In the domain of mental health, the ability to identify
subtle emotional cues in speech holds promise for early detection and intervention of
psychological distress [1–4]. Additionally, affective communication analysis can trans-
form human–robot interaction applications, empowering AI systems to respond to human
emotions more accurately and empathetically [5,6].
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Beyond these domains, the insights gained from understanding affective communica-
tion can be applied to various fields, including healthcare, education, and customer service,
where the ability to perceive and respond to human emotions is crucial.

This study investigates affective communication, exploring how the fusion of SER and
SA can deepen our understanding of emotional dynamics in conversations. Recognizing
the need for tools to identify and interpret emotions and sentiments in speech, we present
a novel framework integrating both domains for a more comprehensive analysis.

Our primary objective is to create a framework that discerns and categorizes emotions
and sentiments conveyed through speech. We utilize a hybrid methodology, employing
traditional statistical features, deep learning techniques (1D-CNN), and classical machine
learning algorithms (GNB, SVM, RF, MLP, and LR) to achieve this. Following the iden-
tification of the most effective individual classifiers for each dataset, we leverage our
previously proposed dynamic Bayesian mixture model (DBMM) [2] for speech emotion
recognition and sentiment analysis. This ensemble method, originally applied to activity
recognition and facial expressions, is now adapted, and extended to the challenges of
affective communication analysis. To further enhance our analysis, we incorporate sen-
timent derived from speech-to-text conversion, applying the same classification models
to textual data. Our unique contribution lies in the integration of SER and SA through a
novel two-layered dynamic Bayesian mixture model (2L-DBMM). This model, based on
Bayesian inference, merges information from both domains, enabling the classification of
more nuanced, second-level emotional states (Figure 1).

Thus, our main contributions are as follows:

• Novel Feature Engineering: Defining powerful hand-crafted features for speech
emotion recognition (SER).

• Enhancement of DBMM: We adapt and extend the DBMM, previously demonstrated
in [2,7], used for activity recognition, facial expressions, and semantic place categoriza-
tion, to the domains of SER and SA. Our enhancement involves dynamically updating
the classifier weights during test-set classification, rather than relying solely on pre-
trained weights. This allows for the model to adapt to potential shifts in classifier
performance over time. Furthermore, we employ a grid search optimization to deter-
mine the optimal number of time slices (previous priors) to incorporate in the model,
enhancing the model’s ability to leverage temporal information and further improve
classification accuracy.

• Novel 2L-DBMM: Extending the DBMM to a two-layered model to enable multimodal
fusion. This allows for not only the merging of individual classifiers for each modality,
but also the fusion of multiple modalities (e.g., SER and SA) to achieve a more robust
and nuanced understanding of affective communication. This novel 2L-DBMM model
is the main contribution of this work, facilitating the recognition of new classes of
emotional patterns derived from combined SER and SA data. This model can be
generalized for fusion of diverse modalities.

• Extensive Validation and Insights: Conducting extensive tests and analysis on datasets
to rigorously validate our proposed approach, providing comprehensive insights into
the effectiveness and potential of our framework for real-world applications.

Our research has broad implications for various fields, including healthcare, human-
robot interaction, and education. By providing a deeper understanding of affective com-
munication, our framework has the potential to transform mental health diagnosis and
treatment, personalize human–machine interactions with proper feedback, and foster more
meaningful human connections in an increasingly digital world.
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Figure 1. Overview of the proposed architecture for affective communication merging speech emotion
and sentiment analysis.

The structure of this paper is outlined as follows: Section 2 explores the background
research reviewing the relevant literature. In Section 3, we introduce our proposed work
and outline its development. Section 4 showcases our experimental results and insights.
Finally, Section 5 presents the conclusions drawn from our findings and outlines avenues
for future research.

2. Related Work

The fields of SER and SA have garnered significant attention due to their applications
in diverse domains. This section outlines some key advancements and limitations in both
areas, along with efforts towards their integration.

2.1. Speech Emotion

• Reviews and Trends: Lieskovská et al. [8] provide a comprehensive review of SER,
highlighting the evolution of datasets, feature extraction techniques, and the increasing
prominence of deep learning. While deep learning models have shown impressive
performance, their limitations include the need for large, annotated datasets and high
computational resources.

• INTERSPEECH 2019 Computational Paralinguistics Challenge: B. Schuller et al. [9]
presented the outcomes of this challenge, which featured tasks related to SER, speaker
traits, and emotion recognition in non-verbal vocalizations, fostering benchmarking
and advances in paralinguistic analysis.

• Cross-Linguistic and Cross-Gender Challenges: Constantine et al. [10] investigate
cross-linguistic and cross-gender SER, finding that while cross-linguistic tasks are
achievable with high accuracy, cross-gender recognition is more challenging due to
greater variability in emotional expression.

• Transfer Learning and Mel Spectrograms: Chakhtouna et al. [11] explore transfer
learning for SER by converting Mel spectrograms into images and utilizing pre-trained
models like VGG-16 and VGG-19. This approach demonstrates promising results,
particularly when fine-tuning the models.

• Deep Learning for Emotion Detection: Zhao et al. [12] address the challenge of
automatic emotion detection from speech, proposing a deep learning method com-
bining knowledge transfer and self-attention for SER. Their self-attention transfer
network (SATN) leverages attention autoencoders to transfer knowledge from speech
recognition to SER, demonstrating effectiveness on the IEMOCAP dataset.

• Multi-task Learning: Latif et al. [13] propose a multi-task learning framework for
SER, leveraging auxiliary tasks like gender identification and speaker recognition to
enhance performance in scenarios with limited emotion datasets.
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• Ensemble of Classifiers: Novais et al. [14] present a framework for speech emotion
recognition that employs an ensemble of classifiers (RF and MLP) to enhance accuracy,
achieving an 86% accuracy on the RAVDESS dataset.

2.2. Sentiment Analysis

• Social Media SA: Islam et al. [15] focus on sentiment analysis in social media, compar-
ing lexicon-based and deep learning approaches. They find that deep learning models
often outperform lexicon-based methods on social media platforms.

• Microblog Emotion Classification: Xu et al. [16] introduce the CNN_Text_Word2vec
model for microblog emotion classification. By incorporating word2vec embeddings,
they achieve higher accuracy compared to methods like SVM, LSTM, and RNN.

• Lifelong Learning: Lin et al. [17] propose lifelong text–audio sentiment analysis
(LTASA) to enhance SA by incorporating audio modalities and enabling continuous
learning of new tasks.

• Low-Resource Languages: Gladys and Vetriselvi [18] address the challenges of mul-
timodal sentiment analysis (MSA) in low-resource languages like Tamil, leveraging
cross-lingual transfer learning from larger English MSA datasets.

2.3. Multimodality Using SER and SA

• Multimodal Emotion Recognition: Kumar et al. [19] introduce VISTA-Net, a mul-
timodal system classifying emotions using images, speech, and text inputs. They
employ a hybrid fusion approach and achieve competitive accuracy on their IIT-R
MMEmoRec dataset.

• Multimodal Sentiment Analysis from Videos: Poria et al. [20] develop a multimodal
sentiment analysis framework emphasizing visual features’ importance and demon-
strating significant novelty compared to existing works.

• Self-Supervised Learning: Atmaja and Sasou [21] investigate sentiment and emotion
recognition from audio data using self-supervised learning with universal speech
representations and speaker-aware pre-training models. Their results show promise,
particularly in binary sentiment analysis tasks.

2.4. Current Challenges and Our Approach

Existing research in SER and SA still grapples with several challenges, including the
need for large, annotated datasets, difficulties in cross-linguistic/gender recognition, and
the need for more sophisticated fusion techniques. Additionally, model interpretability
remains a concern. To address these limitations, our work introduces a novel approach
to merging SER and SA through multimodal fusion, enabling a deeper understanding
of affective communication. By combining speech signals with sentiment analysis from
text, we aim to develop a framework that captures the emotional nuances of human
communication, even across languages.

3. Proposed Approach

This section details our proposed approach, outlining the data processing steps and
the classification model architectures utilized. Our research aims to create a more nuanced
understanding of emotional expression by integrating SER and SA. This integration allows
us to introduce a novel category of complex emotions, enriching the description of affective
states within each utterance. Table 1 presents the individual emotion classes for SER and
SA, along with combined emotions used in our study to validate this approach.
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Table 1. Emotions from each modality and their combination.

SER SA Complex Emotion
(Russell and Plutchik) Theoretical Justification Other References

Sad Positive Wistful, bittersweet,
grieving

Low arousal (sad) + positive
valence (positive sentiment) =
mixed emotions, reflecting on
positive past experiences with
sadness due to their absence.

Mixed emotions are common and
have been studied extensively [22].

Sad Negative Despair, hopelessness

Low arousal (sad) + negative
valence (negative sentiment) =
apathy and anhedonia,
characteristic of depression.

The reinforcement of negative
emotions is a hallmark of despair
and possibly depression [23].

Sad Neutral Melancholy, pensive

Low arousal (sad) + neutral
valence = sadness without strong
positive or negative sentiment,
associated with reflection.

Melancholy can be often
associated with depression and
other mood disorders [24].

Happy Positive Joyful, elated
High arousal (happy) + positive
valence (positive sentiment) =
intense happiness and excitement.

Positive emotions can be amplified
through social contagion and
emotional feedback loops [25].

Happy Negative Disingenuous, fake

Medium arousal (happy) +
negative valence (negative
sentiment) = masking true feelings
with a facade of positivity.

Masking true feelings with a
facade of happiness is a common
defense mechanism [26].

Happy Neutral Content, serene
Medium arousal (happy) + neutral
valence = calm and peaceful state
of happiness.

This is a baseline state of positive
affect without extreme intensity
[27].

Neutral Positive Hopeful, optimistic

Low arousal (neutral) + positive
valence (positive sentiment) =
positive expectations for the future
without intense emotion.

A neutral expression with positive
sentiment may indicate optimism
or resilience [28].

Neutral Negative Concerned, worried

Low arousal (neutral) + negative
valence (negative sentiment) =
negative expectations or outcomes
without intense emotion.

These emotions are often
associated with a lack of
engagement or motivation [29].

Neutral Neutral Unsure, ambivalent
Low arousal (neutral) + neutral
valence = uncertainty and lack of
strong emotional inclination.

Uncertainty and ambivalence are
common emotional states in
decision-making or ambiguous
situations [30].

Angry Positive Frustrated, irritated

High arousal (angry) + positive
valence (positive sentiment) =
anger combined with a desire for
change or improvement.

Anger can be a powerful motivator
for change and action [31].

Angry Negative Enraged, furious

High arousal (angry) + negative
valence (negative sentiment) =
uncontrolled anger and potential
aggression.

Uncontrolled anger can lead to
aggression and destructive
behaviors [32].

Angry Neutral Annoyed, displeased

Medium arousal (angry) +
negative valence (negative
sentiment) = mild anger or
irritation without intense rage.

Low-level anger can manifest as
annoyance or frustration in
response to minor obstacles [33].

When it comes to developing an approach for emotion recognition tasks, understand-
ing the nuances of human emotion is paramount. Emotions are not always simple or
discrete; they often manifest as complex blends of different affective states. To capture this
complexity, we leverage Russell’s [34] arousal–valence model of affect and Plutchik’s wheel
of emotions [35], two fundamental frameworks in the study of emotions in psychology that
is relevant for affective computing. Russell’s model posits that emotions can be mapped
onto a two-dimensional space defined by arousal (the intensity of the emotion) and valence
(the pleasantness or unpleasantness of the emotion).



Appl. Sci. 2024, 14, 6631 6 of 28

Plutchik’s wheel, on the other hand, categorizes emotions into primary (e.g., joy,
sadness, anger, fear) and secondary (e.g., love, guilt, shame) categories, also considering
their intensity.

In our study, we combine these frameworks to analyze complex emotions arising from
the fusion of SER and SA. We consider speech emotion as a measure of arousal (angry,
neutral, happy, sad, and surprise) and text sentiment as a measure of valence (positive,
negative, and neutral). By mapping the different combinations of speech emotion and
text sentiment onto the arousal–valence space, we can identify and label more nuanced
emotional states.

For example, the combination of “sad” speech emotion (low arousal) and “posi-
tive” text sentiment (positive valence) might indicate a complex emotion like “wistful”
or “bittersweet.” This reflects a state where the individual is experiencing sadness but
also reminiscing about positive past experiences. Similarly, the combination of “angry”
speech emotion (high arousal) and “positive” text sentiment might suggest “frustration” or
“irritation,” indicating a desire for change or improvement despite the anger.

Table 1 presents a comprehensive overview of the complex emotions identified in our
study, along with their theoretical justifications based on Russell’s [34] and Plutchik’s [35]
models. By incorporating these psychological frameworks, we aim to provide a more
nuanced and accurate representation of the emotional states captured by our multimodal
fusion model. Primarily we follow Russell’s arousal–valence space, mapping emotions
based on intensity and pleasantness. It also integrates elements from Plutchik’s wheel by
considering primary emotions (e.g., happy, sad, angry) and their combinations to derive
complex emotions. Specifically, the complex emotions can be seen as combinations of
arousal and valence levels that derive complex emotions, like “joyful” (high arousal, posi-
tive valence) or “despair” (low arousal, negative valence). These are refined using Plutchik’s
primary and secondary emotions to create nuanced labels (e.g., “wistful,” “frustrated”).
Thus, Table 1 primarily follows Russell’s model but incorporates Plutchik’s categories for a
more nuanced understanding of complex emotional states.

Figure 2 presents the frameworks for categorizing emotions, Russel’s [34] and Plutchik’s [35]
models.
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3.1. Speech Features Extraction

In the domain of SER, the process of feature extraction holds a crucial role in capturing
pertinent information from speech signals. This section presents our approach to feature
engineering from audio recordings for emotion recognition tasks.

The selection of specific features (Algorithm 1) such as Mel frequency cepstral coeffi-
cients (MFCCs), Mel spectrogram, Chroma, and Tonnetz is substantiated by their capability
to capture distinct aspects of the audio signal, thereby enhancing the efficacy of subse-
quent emotion recognition tasks. The relevance of using these features is underscored by
their unique contributions. MFCCs are widely employed in speech processing, since they
encapsulate the short-term power spectrum of a sound, offering insights into its spectral
characteristics. Mel Spectrogram representation offers valuable insights into the distribu-
tion of energy across different frequency bands in the Mel frequency scale, enriching our
understanding of spectral dynamics. Chroma features captures the distribution of energy
across the 12 pitch classes of the musical octave, providing crucial information about the
harmonic content and tonal structure of the audio signal. Tonnetz features extracted from
the harmonic component of the audio signal (tonal space), offer valuable insights into the
tonal centroid, aiding in the characterization of harmonic relationships.

After extracting time–frequency spectrogram-based features, the computation of statis-
tical features derived from these outputs serves to reduce dimensionality while preserving
significant information from the time–frequency spectrograms. These statistical features,
represented by mean, standard deviation, and moments effectively summarize the distribu-
tion and characteristics of the audio signal.

Additional features such as Pitch, Energy, Zero Crossing Rate, and RMS Energy are em-
ployed because they capture pitch-related, amplitude-related, and temporal characteristics,
offering a comprehensive understanding of the speech signal’s dynamics.

By leveraging these diverse features, we construct a feature vector that encapsulates
both spectral and temporal aspects of the audio signal. Subsequent normalization ensures
that these features are uniformly scaled, facilitating the convergence and performance of
machine learning algorithms in emotion recognition tasks. This approach of extracting
statistical information from time–frequency spectrogram-based features yields an efficient and
informative representation of the audio signal, conducive to accurate emotion classification.

3.2. Sentiment Analysis Feature Extraction

In the domain of sentiment analysis, the process of feature extraction plays a pivotal
role in deriving meaningful representations from text inputs, subsequently utilized for
sentiment classification tasks. This subsection presents our chosen feature engineering,
drawing from established techniques in the literature. The preprocessing pipeline begins
with the conversion of audio inputs to text using speech-to-text techniques (e.g., API such
as Google Cloud Speech-to-Text since it covers a range of languages). Once the audio is
transcribed into textual form, further preprocessing steps are employed to prepare the text
data for feature extraction. Tokenization is applied to segment the text into individual
tokens, typically words or subword units.

The process of tokenization facilitates the creation of a bag-of-words (BoW) represen-
tation, where the frequency of occurrence of each token in the text corpus is recorded. BoW
encoding captures the presence or absence of words in the text, disregarding their order,
and serves as the basis for subsequent feature extraction. Feature extraction techniques
based on scores are then utilized to derive sentiment-specific features from the BoW rep-
resentation. These features include sentiment lexicons, word embeddings, and statistical
measures computed from the BoW vectors. In this study we focus on the frequency–inverse
document frequency (TF-IDF) weighting scheme, which is used to quantify the importance
of terms in a document relative to a corpus.
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Algorithm 1. SER: Features Extraction
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role in deriving meaningful representations from text inputs, subsequently utilized for 
sentiment classification tasks. This subsection presents our chosen feature engineering, 
drawing from established techniques in the literature. The preprocessing pipeline begins 
with the conversion of audio inputs to text using speech-to-text techniques (e.g., API such 
as Google Cloud Speech-to-Text since it covers a range of languages). Once the audio is 
transcribed into textual form, further preprocessing steps are employed to prepare the text 

TF-IDF consists of two components: (i) Term frequency (TF) measures how frequently
a term appears in a document. TF is calculated by dividing the number of times a term
occurs in a document by the total number of terms in the document. (ii) Inverse document
frequency (IDF) measures the rarity of a term across all documents in the corpus. It
is calculated by dividing the total number of documents by the number of documents
containing the term, and then taking the logarithm of that quotient. The TF-IDF score for
a term in a document is obtained by multiplying its TF and IDF values. Higher TF-IDF
scores indicate terms that are more important or relevant to the document. Algorithm 2
presents the step by step for the SA features extraction.
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Algorithm 2. SA: Features Extraction

Input: Text data from audio signal (speech2text)
Result: Feature vector for sentiment analysis classification
1. Pre-processing:

a. Tokenization:
-Tokenize the text data into individual words or tokens.

b. Text Cleaning:
-Remove punctuation, special characters, and irrelevant symbols.
-Convert all text to lowercase for consistency.

2. Bag of Words Representation:
-Represent the text data as a bag of words by counting the frequency of each word in the

corpus.
3. Feature Extraction:

a. Term Frequency (TF):
-Compute the TF score for each term in each document.
-TF(t, d) = (Number of times term t appears in document d) / (Total number of terms in doc d)

b. Inverse Document Frequency (IDF):
-Compute the IDF score for each term across the entire corpus.
-IDF(t) = log_e(Total of documents / Number of documents containing term t)

c. TF-IDF Score:
-Calculate the TF-IDF score for each term in each document.
-TF-IDF(t, d) = TF(t, d) × IDF(t)

4. Feature Vector Construction:
-Concatenate the TF-IDF scores for all terms in each document into a vector.
-Each document is represented as a vector of TF-IDF scores, where each dimension

corresponds to a unique term in the vocabulary.
Output: Feature vector representing the features for Sentiment classification.

3.3. DBMM as Ensemble for Single Modality and 2L-DBMM for Multimodality

We employ a probabilistic framework to enhance the recognition of affective com-
munication by leveraging the complementary strengths of multiple classifiers for speech
emotion and sentiment analysis, extracted from both audio and text data. We utilize the
DBMM, a flexible and dynamic probabilistic framework previously showcased in our
work [7]. The DBMM is an ensemble of classifiers that merges conditional probability
outputs from different base classifiers to enhance overall performance. Each classifier is
assigned a weight based on prior knowledge and an uncertainty measure, such as confi-
dence levels, acquired during training. This allows for the model to dynamically update
classifier weights at runtime, accounting for potential variations in individual classifier per-
formance. The DBMM also incorporates prior information to iteratively reinforce current
classifications. In this study, we further enhance the DBMM with dynamic weight updates
during classification, based on historical behaviors of the base classifiers. Additionally, we
implement a grid-based optimization to search for the optimal number of time slices for
the DBMM, determining the extent of temporal information to incorporate as new priors.
The general model of DBMM is given by computing the posterior distribution P(C|A) at
time instant t as follows:

P
(

Ct
∣∣∣Ct−1:t−T , At

)
=

∏t−T
k=t P

(
Ck
∣∣∣Ck−1

)
× ∑N

i=1 wt
i × Pi

(
At
∣∣Ct)

∑classes
j=1

[
∏t−T

k=t Pi,j
(
Ck
∣∣Ck−1

)
× ∑N

i=1 wt
i × Pi,j(At|Ct)

] , (1)

where P(Ck|Ck−1) is the prior information (previous ensemble posteriors), and wi
t is the

weight for each ith base classifier, which was learned previously using any uncertainty
measure applied to a dataset or to a temporal window with previous predictions from
the base classifiers. Pi (At | Ct) is the likelihood resulted given the posterior of each
base classifier.
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An alternative to attain wi for each base classifier based on their confidence is comput-
ing the inverse entropy to update the global probabilistic model.

Weights are computed by analyzing base classifiers previous outputs (i.e., learned
form a dataset or from previous time instants). We can compute the inverse entropy of the
posterior probabilities previously observed as follows:

wi = 1 −
(

−∑s
k=1 Pi,k(·)log(Pi,k(·))

∑N
i=1(−∑s

k=1 Pi,k(·)log(Pi,k(·)))

)
, (2)

where Pi,k(·) = Pi,k(C|A) is the class conditional probability given the model of an ith base
classifier and s is the number of posteriors used.

During classification tasks, individual models within an ensemble may exhibit varying
performance over time. To address this and improve overall classification accuracy, we
employ a strategy of locally updating weights during classification. This approach identifies
classifiers showing increased fluctuations in performance (e.g., frequent accuracy drops)
and reduces their confidence accordingly. We adjust weights based on past performances
of base classifiers on observed frames, assigning higher weights to those with better
performance. Assuming the system’s memory follows the Markov property during online
classification, we utilize temporal information from the set of posteriors for each classifier:
P
(

Ct
i

∣∣∣Ct−1
i

)
; P
(

Ct−1
i

∣∣∣Ct−2
i

)
; P
(

Ct−2
i

∣∣∣Ct−3
i

)
. . . P

(
Ct−s

i

∣∣∣Ct−(s−1)
i

)
.

This temporal information is integrated into the Bayesian update model to compute
likelihood by recalculating entropy h, coupled with weights from the previous time instant
wi

(t−1) as prior knowledge. The resulting updated probability serves as new weights for
each base classifier in the current frame classification.

The Bayesian update is expressed as follows:

wt
i = P(wi|hi) =

P(hi|wi)P(wi)

∑N
i=1 P(hi|wi)P(wi)

, (3)

where P(hi|wi) is given by (2) for each ith base classifier using their previous frames
posteriors and the prior P(wi) = wi

t−1.
While the DBMM effectively combines multiple classifiers within a single modality, our

novel contribution lies in extending it to a two-layered model (2L-DBMM) for multimodal
fusion. The 2L-DBMM consists of two separate DBMMs, one for SER another for SA.

Each DBMM operates independently on its respective modality, combining the out-
puts of multiple base classifiers. The final step involves a fusion layer that merges the
outputs of the two DBMMs, creating a new class of emotion that combines both speech
emotion and text sentiment. This approach allows for a more nuanced and comprehensive
understanding of affective communication by leveraging the strengths of both modalities.

This two-layered architecture (Figure 3) not only captures the complementary strengths
of multiple classifiers within each modality but also allows for a more robust and nuanced
understanding of affective communication by considering the interplay between speech
emotion and text sentiment.

Then proposed 2L-DBMM is computed as follows:

P
(
Ct∣∣At) = 1

β
×

t−T

∏
k=t



dynamic prior︷ ︸︸ ︷
P
(

Ck
∣∣∣Ck−1

)
×

fusion of multiple mixtures=modalities︷ ︸︸ ︷
M

∑
y=1

wk
2y
×


N

∑
i=1

wk
1y,i

Py,i

(
Ak
∣∣∣Ck
)

︸ ︷︷ ︸
fusion of base classifiers





, (4)
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where P(Ct|At) is the resulting posterior; C represents classes of emotions; A represents
the set of feature models; 1/β is a normalization factor; the dynamic prior P(Ck|Ck−1) is
obtained from the set of posteriors from previous time slices; y = {1, . . ., M} is an index
to represent the mixture models = number of modalities; i = {1, . . ., N} is an index to
represent the base classifiers; t is the current time instant, k is an index to represent the time
instants, and T is the number of time slices used in the model (i.e., number of previous
posteriors used as prior to reinforce the current classification); P(A|C) denotes the output
conditional probability from a learning model (i.e., base classifier); w1 is the first layer’s
weight used for fusion; and w2 is the second layer’s weight to merge all modalities, in
this study, two. In this model, the weights wy can be computed through any uncertainty
measure (e.g., entropy-based).
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It is important to highlight that the 2L-DBMM introduces a fundamental shift in how
dynamic weights are updated within the ensemble learning framework. By incorporating a
dynamic weighting mechanism based on the temporal evolution of classifier performance,
the 2L-DBMM captures the varying reliability of different modalities over time, leading
to a more adaptive and robust fusion strategy. Initially, the model receives handcrafted
features based on spectral feature statistics, which feed two modified DBMM models. These
models utilize uncertainty measures to assess the confidence of each inference model, both
during training and real-time classification. This on-the-fly classification is enhanced by
using inverse entropy-based weighting and Bayesian updates of the weights over time.
This approach incorporates learned weights as priors, updating them based on the inverse
entropy of the current classification, allowing for the model to adapt to changes in classifier
behavior. Our research demonstrates that updating the weights in each modality (classifiers
to build the ensemble) can lead to a 3% improvement in final accuracy compared to using
static weights from the training set. This strategy is then applied to the second layer, where
the uncertainty of each modality is measured during training, and Bayesian updates during
the test set further optimize the fusion model’s accuracy. Additionally, incorporating
temporal information, such as previous time slices (posterior probabilities), reinforces
overall classification performance. Furthermore, the inclusion of grid search optimization
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to determine the optimal number of time slices for incorporating past information enhances
the model’s flexibility and performance. This optimization enables the model to tailor
its fusion strategy to the data’s specific characteristics. Techniques such as measuring
uncertainties of individual classifiers, assessing uncertainties of each modality, updating
them over time based on classifier and modality behavior, and determining the optimal
number of time slices for the data fusion step are all employed to improve the model.

3.4. Classical Machine Learning Models for DBMM
3.4.1. DBMM’s Base Classifier Configurations and Parameters for SER

We utilized several well-known classical machine learning models as base classifiers
in this research: SVM, GNB, RF, 1D-CNN, and MLP. The specific configurations and
parameters used for each model are outlined in Table 2.

• SVM: A supervised learning algorithm that seeks to find the optimal hyperplane that
maximally separates different classes in a high-dimensional feature space. In our
implementation, we employ a linear kernel due to its computational efficiency and
effectiveness for our specific feature set. The regularization parameter (C), a hyper-
parameter controlling the trade-off between maximizing the margin and minimizing
classification error, is set to 1.0.

• RF: An ensemble learning method that constructs multiple decision trees during train-
ing. The final prediction is determined by aggregating the predictions of individual
trees, typically by taking the mode of the classes (for classification) or the mean pre-
diction (for regression). We utilize 150 decision trees in our RF model, a parameter
chosen through empirical experimentation.

• GNB: A simple probabilistic classifier based on Bayes’ theorem with the “naive”
assumption of feature independence. Despite this simplifying assumption, GNB
often performs surprisingly well in practice, especially when the features are not
strongly correlated.

• MLP: A class of feedforward artificial neural network composed of multiple layers
of interconnected nodes. Our MLP model comprises three dense (fully connected)
layers. The hidden layers utilize rectified linear unit (ReLU) activation functions,
introducing non-linearity to model complex relationships. The output layer employs
a softmax activation function to produce probability distributions over the multiple
emotion classes.

• The 1D-CNN is trained for 350 epochs with a batch size of 256. The first hidden layer
contains 320 neurons, while the second has 192. The output layer consists of a number
of neurons equal to the number of target classes.

Table 2. Classifier parameters for SER.

Classifier Configuration/Parameters Notes

SVM Linear kernel
Regularization parameter (C) = 1.0

A linear kernel is often effective for
high-dimensional feature spaces in SER tasks.

RF 150 decision trees The number of trees is a hyperparameter tuned for
optimal performance.

GNB Gaussian distribution
Assumes that features are conditionally independent
given the class, which is a simplification but often
works in practice for SER.

MLP

3 dense layers with ReLU activation
320 neurons in layer 1
192 neurons in layer 2
Softmax activation in the output layer
350 epochs, batch size = 256

ReLU activation is used for non-linearity, and
softmax for multi-class probability distribution.
Epochs and batch size are hyperparameters
controlling training duration and update frequency.
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Table 2. Cont.

Classifier Configuration/Parameters Notes

1D-CNN

1 convolutional layer
128 filters, kernel size = 3
Max-pooling layer (size = 2)
Flattened output into dense layer with softmax
activation
350 epochs, batch size = 32

Convolutional layers capture local patterns,
max-pooling reduces dimensionality, and the dense
layer with softmax outputs class probabilities.

DBMM

3 classifiers: 1D-CNN, MLP, RF
2 time slices (previous priors)
Entropy-based weights
Bayesian update of weights

Initial weights are based on performance on the
training set and are dynamically updated during
test-set classification. A grid search optimization is
employed to find the optimal number of time slices
(past predictions) to incorporate as
prior information.

3.4.2. Base Classifiers for Sentiment Analysis

For sentiment analysis, we employed both pre-trained language models and classical
machine learning algorithms, with specific configurations and parameters for each, as
detailed in Table 3 and explained below:

• BERT (BERT base uncased): This model leverages a transformer architecture with
self-attention mechanisms to capture contextual relationships in text. We fine-tuned
it for sequence classification using pre-trained weights and optimized it with the
AdamW optimizer (with weight decay) and cross-entropy loss over 350 epochs, using
a batch size of 32 and a linear learning rate scheduler with warmup steps.

• GPT-2: Similarly, this transformer-based model was fine-tuned for sequence classifica-
tion with the same configuration as BERT. However, its architecture relies on decoder
blocks, specialized for sequential text generation.

• Logistic regression: We applied this simple linear model with default parameters
(maximum iterations = 1500) to TF-IDF features extracted from text data.

• SVM: This model, effective for high-dimensional text data, was configured with a
linear kernel and a regularization parameter (C) of 1.0 to control overfitting. It was
trained on TF-IDF features.

• RF: This ensemble method combines the predictions of multiple decision trees for
improved accuracy. Our RF model utilized 100 decision trees and was trained on
TF-IDF features.

• MLP: Designed with two hidden layers (320 and 192 neurons), was trained on TF-IDF
features using the Adam optimizer. ReLU activation was used in the hidden layers,
and a softmax activation function was employed in the output layer for multi-class
classification.

• 1D-CNN: We adapted the architecture from our SER experiments to the sentiment
analysis task. This model, composed of convolutional, max-pooling, and dense layers,
was trained on reshaped text data for sequential analysis.

Table 3. Classifier parameters for SA.

Classifier Configuration/Parameters Notes

BERT

Fine-tuned for sequence classification
3 labels
AdamW optimizer
Cross-entropy loss
350 epochs, batch size = 32
Linear learning rate scheduler with warmup

Transformer-based model for natural language
processing.
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Table 3. Cont.

Classifier Configuration/Parameters Notes

GPT-2

Fine-tuned for sequence classification
3 labels
AdamW optimizer
Cross-entropy loss
350 epochs, batch size = 32
Linear learning rate scheduler with warmup

Transformer-based model for text generation.

LR Default parameters, max iterations = 1500,
TF-IDF features Simple and interpretable linear model.

SVM Linear kernel, C = 1.0, TF-IDF features Effective for high-dimensional text data.
RF 100 decision trees, TF-IDF features Ensemble method combining multiple decision trees.

MLP
2 hidden layers (320, 192 neurons)
Adam optimizer
TF-IDF features

Neural network for non-linear modeling.

1D-CNN

1 convolutional layer
128 filters, kernel size = 3
Max-pooling layer (pooling size = 2),
Flattened output into dense layer with softmax
activation,
350 epochs, batch size = 32

Adapted for sequential text input.

DBMM

3 Classifiers: BERT, SVM, RF
2 time-slices (previous priors)
Entropy-based weights
Bayesian update of weights

A grid search optimization is employed to find the
optimal number of time slices (past predictions) to
incorporate as prior information.

4. Results
4.1. Speech Emotion Datasets and Experimental Setup

In this work, our approach was evaluated using two distinct datasets, each offer-
ing unique characteristics for assessing affective communication analysis across different
languages and emotional expressions.

The EmoUERJ dataset [36] consists of 377 audio recordings in Portuguese, encom-
passing four distinct emotional categories: happiness, anger, sadness, and neutral. These
recordings were obtained from eight actors, evenly split between male and female, who
each contributed ten sentences selected from a set of daily routine phrases. This dataset
provides a valuable resource for understanding emotional expression within a specific
cultural and linguistic context.

On the other hand, the Emotional Speech Dataset (ESD) [37] is a multilingual dataset
comprising 350 parallel utterances across five emotions: anger, sadness, surprise, neutral,
and happiness. Recorded by 10 native English and 10 native Chinese speakers, with equal
representation of genders, this dataset allows for a comparative analysis of emotional
expression across different languages. For this study, we focused solely on the English
portion of the ESD.

To assess the performance of our models in a more comprehensive manner, we com-
bined the EmoUERJ (Portuguese) and ESD (English) datasets into a multilingual dataset.
This cross-linguistic approach allowed for us to evaluate how effectively our framework
captures emotional patterns across different languages and cultures. To train and validate
our classifiers, we employed a standard 80/20 split strategy (train/test) for both individual
and combined datasets.

Our experimental setup utilized a MacBook Pro M1 Max, equipped with a 10-core
CPU (8 performance cores and 2 efficiency cores), a 32-core GPU, and 64 GB of unified
memory. This configuration provided efficient parallel processing capabilities, acceler-
ating training and inference for our machine learning models. The EmoUERJ and ESD
datasets were both trained and tested on this setup, utilizing the hardware acceleration for
optimal performance.
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4.2. Validation of the Proposed Approach on the EmoUERJ Dataset

The overall performance achieved using the designed audio features and five in-
dividual classifiers (1D-CNN, SVM, RF, GNB, and MLP) on the EmoUERJ dataset is pre-
sented in Table 4, along with the ensemble model DBMM. Table 5 details the performance
of each classifier per emotion within the same dataset. Table 6 presents a comparative
analysis of our approach and the study presented in [38] for the EmoUERJ dataset.

• Individual Classifier Performance: The 1D-CNN model consistently outperformed
other individual classifiers across most emotions. It achieved the highest accuracy
for “happy” (89%) and “sad” (95%) emotions. However, its performance was slightly
lower for “neutral” (79%) and “angry” (78%) emotions. The RF model demonstrated
comparable performance to 1D-CNN for “sad” (91%) and “angry” (84%) emotions.
However, it exhibited lower accuracy for “happy” (59%) and “neutral” (81%) emotions.
GNB performed moderately well on “happy” (77%) and “neutral” (81%) emotions but
showed lower accuracy for “sad” (71%) and “angry” (64%) emotions. The MLP model
performed well across all emotions, with high accuracy for “sad” (95%) and “angry”
(79%). Its performance for “happy” (75%) and “neutral” (87%) was competitive with
other classifiers. Analyzing the overall results, the top three individual classifiers are
1D-CNN, MLP, and RF.

• Ensemble Model Performance (DBMM): The DBMM ensemble model, combining the
1D-CNN, MLP, and RF classifiers, significantly outperformed all individual classifiers
on the EmoUERJ dataset. It achieved the highest overall accuracy of 94%, with
precision, recall, and F1-score all at 94%. This demonstrates the effectiveness of
ensemble methods in leveraging the strengths of different classifiers to improve overall
performance. The DBMM excelled in classifying the “neutral” emotion (99% precision,
96% recall, 98% F1-score), which was a challenge for some individual classifiers.

• Cross-Linguistic Analysis: The results in Table 6 compare the performance of our
feature model + DBMM when trained on the EmoUERJ dataset and tested on both
EmoUERJ and the ESD (English) dataset. Our model demonstrated high compet-
itiveness with the study presented by [38] when tested on EmoUERJ. While our
approach achieved high performance when trained on the ESD dataset and tested
on the EmoUERJ dataset, the opposite scenario, training on EmoUERJ and testing
on ESD, resulted in lower performance. This suggests that the model trained on
the Portuguese EmoUERJ dataset might not generalize well to the English language
dataset, likely due to differences in acoustic features and emotional expression patterns
between languages.

• Discussion: The results on the EmoUERJ dataset underscore the effectiveness of
ensemble-based methods like DBMM in improving speech emotion recognition perfor-
mance compared to individual classifiers. Among the individual classifiers, 1D-CNN
emerged as the strongest performer, closely followed by MLP. These findings suggest
that deep learning models, when combined with appropriate feature engineering,
can effectively capture and classify emotional nuances in speech. The cross-linguistic
analysis emphasizes the need for further exploration of models and techniques that
can generalize well across different languages and cultural contexts. Future work
could explore methods for adapting models to different languages or creating more
language-agnostic features.

Table 4. Overall performance using multiple classifiers on EmoUERJ dataset.

Classifier Overall PREC Overall REC Overall F1-Score Overall ACC
1D-CNN 0.89 0.84 0.84 0.86

SVM 0.75 0.76 0.74 0.73
RF 0.78 0.79 0.77 0.76

GNB 0.73 0.75 0.73 0.72
MLP 0.79 0.81 0.79 0.77

DBMM 0.95 0.93 0.94 0.94
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Table 5. Classification results per emotion on EmoUERJ dataset.

(a) 1D CNN (b) SVM
PREC REC F1 Support PREC REC F1 Support

Happy 0.89 0.7 0.78 26 Happy 0.79 0.59 0.67 26
Neutral 0.95 0.79 0.86 17 Neutral 0.72 0.64 0.67 17

Sad 0.95 0.96 0.95 14 Sad 0.85 0.91 0.88 14
Angry 0.78 0.92 0.85 19 Angry 0.64 0.89 0.75 19

ACC 0.86 76 ACC 0.73 76
Macro avg 0.89 0.84 0.86 76 Macro avg 0.75 0.76 0.73 76

Weighted avg 0.89 0.84 0.84 76 Weight avg 0.75 0.73 0.73 76

(c) RF (d) GNB
PREC REC F1 Support PREC REC F1 Support

Happy 0.87 0.59 0.7 26 Happy 0.77 0.66 0.71 26
Neutral 0.81 0.81 0.81 17 Neutral 0.81 0.63 0.71 17

Sad 0.8 0.91 0.85 14 Sad 0.71 1 0.84 14
Angry 0.63 0.84 0.72 19 Angry 0.64 0.67 0.66 19

ACC 0.76 76 ACC 0.72 76
Macro avg 0.78 0.79 0.77 76 Macro avg 0.74 0.75 0.73 76

Weight avg 0.79 0.76 0.81 76 Weight avg 0.74 0.72 0.72 76

(e) MLP (f) DBMM
PREC REC F1 Support PREC REC F1 Support

Happy 0.75 0.59 0.66 26 Happy 0.95 0.89 0.92 26
Neutral 0.83 0.87 0.85 17 Neutral 0.99 0.96 0.98 17

Sad 0.92 0.98 0.95 14 Sad 0.96 0.97 0.97 14
Angry 0.66 0.79 0.72 19 Angry 0.88 0.91 0.90 19

ACC 0.77 76 ACC 0.94 76
Macro avg 0.79 0.81 0.79 76 Macro avg 0.95 0.93 0.94 76

Weight avg 0.78 0.77 0.77 76 Weight avg 0.95 0.93 0.94 76

Table 6. Comparative analysis of our approach with the study referenced in [38].

Method Training Language Tested Language ACC

Wav2Vec2-XLSR [25] Portuguese
(EmoUERJ)

Portuguese
(EmoUERJ) 0.92

Wav2Vec2-XLSR [25] English (ESD) Portuguese
(EmoUERJ) 0.88

Our Approach Portuguese
(EmoUERJ)

Portuguese
(EmoUERJ) 0.94

Our Approach English (ESD) Portuguese
(EmoUERJ) 0.94

4.3. Validation of the Proposed Approach on the Emotional Speech Dataset (ESD)

We evaluated the performance of five individual classifiers (1D-CNN, SVM, RF, GNB,
and MLP) and the DBMM ensemble model on the ESD dataset, which includes five emo-
tion classes (happy, neutral, sad, angry, and surprise) recorded in English by 10 native
speakers [37]. Table 7 presents the overall accuracy attained on the ESD dataset, while
Table 8 details per-class performance metrics (precision, recall, F1-score) for each classifier.
Table 9 presents a comparative analysis of our approach and the study presented in [38].

• Individual Classifier Performance: The 1D-CNN exhibited robust performance across
all emotion classes, achieving high precision, recall, and F1-scores, with an overall
accuracy of 87%. It was particularly competitive in recognizing happiness (F1-score:
82%) and sadness (F1-score: 92%). The SVM demonstrated balanced performance
across classes. RF showed competitive results, excelling in classifying neutral emotions
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(F1-score: 86%) but struggling with happiness. GNB exhibited the lowest overall
performance. MLP emerged as the top-performing individual classifier, with an
overall accuracy of 92%.

• Ensemble Model Performance (DBMM): The DBMM ensemble model, combining
1D-CNN, MLP, and RF, outperformed all individual classifiers, achieving the highest
overall accuracy of 97%. It also demonstrated superior performance across all emotion
classes, with F1-scores consistently above 97%.

• Cross-Linguistic Analysis: In Table 9, we compare our feature model + DBMM
performance when trained on the ESD dataset and tested on both the ESD dataset
(following the 80/20 split protocol [38]) and the EmoUERJ dataset [36]. Interestingly,
the model trained on the English ESD dataset performed well on the Portuguese
EmoUERJ dataset, while the reverse was not as successful. This suggests that the
English dataset, with its greater diversity in sentences, speakers, and samples, offers a
more generalizable representation of emotional expression.

• Discussion: These results underscore the effectiveness of ensemble methods like
DBMM in leveraging the strengths of multiple classifiers to achieve superior perfor-
mance in SER. The MLP also demonstrated strong individual performance, while
the 1D-CNN and RF showed competitive results. Additionally, the cross-linguistic
analysis suggests the potential for models trained on diverse English datasets to effec-
tively classify emotions in other languages, although further investigation is needed
to confirm this.

Table 7. Overall performance using multiple classifiers on ESD.

Classifier Overall PREC Overall REC Overall F1-Score Overall ACC
1D-CNN 0.87 0.87 0.87 0.87

SVM 0.83 0.83 0.83 0.83
RF 0.84 0.84 0.84 0.84

GNB 0.43 0.41 0.39 0.41
MLP 0.92 0.92 0.92 0.92

DBMM 0.98 0.97 0.98 0.97

Table 8. Classification results per emotion on ESD.

(a) 1D-CNN (b) SVM
PREC REC F1 Support PREC REC F1 Support

Happy 0.88 0.77 0.82 699 Happy 0.75 0.78 0.77 699
Neutral 0.9 0.88 0.89 723 Neutral 0.84 0.85 0.84 723

Sad 0.89 0.94 0.92 692 Sad 0.87 0.87 0.87 692
Angry 0.82 0.9 0.86 702 Angry 0.84 0.79 0.82 702

Surprise 0.85 0.85 0.85 684 Surprise 0.84 0.84 0.84 684
ACC 0.87 3500 ACC 0.83 3500

Macro Avg 0.87 0.87 0.87 3500 Macro Avg 0.83 0.83 0.83 3500
Weight Avg 0.87 0.87 0.87 3500 Weight Avg 0.83 0.83 0.83 3500

(c) RF (d) GNB
PREC REC F1 Support PREC REC F1 Support

Happy 0.8 0.76 0.78 699 Happy 0.37 0.25 0.3 699
Neutral 0.84 0.89 0.86 723 Neutral 0.39 0.84 0.53 723

Sad 0.9 0.9 0.9 692 Sad 0.41 0.26 0.31 692
Angry 0.82 0.8 0.81 702 Angry 0.57 0.3 0.39 702

Surprise 0.84 0.84 0.84 684 Surprise 0.4 0.4 0.4 684
ACC 0.84 3500 ACC 0.41 3500

Macro Avg 0.84 0.84 0.84 3500 Macro Avg 0.43 0.41 0.39 3500
Weight Avg 0.84 0.84 0.84 3500 Weight Avg 0.43 0.41 0.39 3500
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Table 8. Cont.

(e) MLP (f) DBMM
PREC REC F1 Support PREC REC F1 Support

Happy 0.9 0.9 0.9 699 Happy 0.97 0.97 0.97 699
Neutral 0.95 0.95 0.95 723 Neutral 0.98 0.99 0.99 723

Sad 0.95 0.96 0.96 692 Sad 0.98 0.99 0.99 692
Angry 0.91 0.9 0.91 702 Angry 0.99 0.96 0.98 702

Surprise 0.89 0.91 0.9 684 Surprise 0.97 0.97 0.97 684
ACC 0.92 3500 ACC 0.97 3500

Macro Avg 0.92 0.92 0.92 3500 Macro Avg 0.98 0.98 0.98 3500
Weight Avg 0.92 0.92 0.92 3500 Weight Avg 0.98 0.97 0.98 3500

Table 9. Comparative analysis of our approach with the study referenced in [13].

Method Training Language Tested Language ACC
Wav2Vec2-XLSR [38] English (ESD) English (ESD) 0.93

Wav2Vec2-XLSR [38] Portuguese
(EmoUERJ) English (ESD) 0.45

Our Approach English (ESD) English (ESD) 0.97

Our Approach Portuguese
(EmoUERJ) English (ESD) 0.49

4.4. Evaluation on the Multilingual Speech Dataset (Combining EmoUERJ and ESD)

To investigate the impact of cross-linguistic data on emotion recognition, we created a
multilingual dataset by combining the EmoUERJ (Portuguese) and ESD (English) datasets.
This allowed for us to evaluate the performance of our models on a more diverse set
of linguistic and emotional expressions. Our goal was to assess whether training on
multilingual data could enhance classification accuracy for the emotion classes present in
both datasets: neutral, happiness, anger, and sadness. Tables 10 and 11 present the overall
performance of all models and the classification results per class, respectively.

• Individual Classifier Performance: On the multilingual dataset, the 1D-CNN and
RF classifiers achieved comparable overall accuracy of 87%. The RF model exhibited
consistent performance across all emotion classes, with measures ranging from 84% to
91%. The SVM also demonstrated consistent metrics across emotions, achieving 85%
accuracy. In contrast, the GNB classifier underperformed with an accuracy of 46%,
highlighting its limitations in this complex multi-class, multilingual context. The MLP
model emerged as the top-performing individual classifier, reaching 94% accuracy,
and demonstrating high precision, recall, and F1-scores for all emotion classes. This
underscores the MLP’s capability to capture intricate patterns in the multilingual data.

• Ensemble Model Performance (DBMM): As expected, the DBMM ensemble model,
combining the RF, 1D-CNN, and MLP classifiers, surpassed all individual models,
achieving a remarkable 97% accuracy. Moreover, its precision, recall, and F1-scores
were consistently high across all emotions, reaching 98% in some cases. This demon-
strates the power of ensemble methods in leveraging the diverse strengths of multiple
classifiers, resulting in enhanced robustness and accuracy.

• Cross-Linguistic Analysis and Discussion: The results on the multilingual dataset
reveal several key findings. First, combining both datasets significantly improved the
classification performance for the Portuguese language, while maintaining consistent
performance for English. This suggests that multilingual training can enhance SER
capabilities, particularly for languages with less available data. Second, the individual
classifiers also benefited from the multilingual training, with the SVM classifier show-
ing improvement compared to its performance on the individual language datasets.
The superior performance of the DBMM highlights the value of ensemble methods in
this complex task. However, it is important to acknowledge the potential computa-
tional overhead associated with such models. Overall, our findings support the use of
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multilingual datasets and ensemble methods for improved speech emotion recognition.
The ability to train models on diverse linguistic and emotional data could lead to more
robust and accurate SER systems, with potential applications in various fields.

Table 10. Overall performance on multilingual dataset (EmoUERJ + ESD).

Classifier Overall PREC Overall REC Overall F1-Score Overall ACC
1D-CNN 0.88 0.87 0.88 0.87

SVM 0.85 0.85 0.85 0.85
RF 0.87 0.87 0.87 0.87

GNB 0.49 0.47 0.44 0.46
MLP 0.94 0.94 0.94 0.94

DBMM 0.98 0.98 0.98 0.98

Table 11. Classification results per emotion on multilingual dataset (EmoUERJ + ESD).

(a) 1D-CNN (b) SVM
PREC REC F1 Supp PREC REC F1 Supp

Happy 0.95 0.76 0.81 727 Happy 0.83 0.82 0.83 727
Neutral 0.91 0.79 0.84 706 Neutral 0.8 0.88 0.84 706

Sad 0.78 0.98 0.86 762 Sad 0.9 0.83 0.86 762
Angry 0.88 0.93 0.88 681 Angry 0.86 0.86 0.86 681

ACC 0.87 2876 ACC 0.85 2876
Macro Avg 0.88 0.87 0.88 2876 Macro Avg 0.85 0.85 0.85 2876

Weight Avg 0.88 0.87 0.88 2876 Weight Avg 0.85 0.85 0.85 2876

(c) RF (d) GNB
PREC REC F1 Supp PREC REC F1 Supp

Happy 0.87 0.84 0.85 727 Happy 0.49 0.28 0.36 727
Neutral 0.84 0.91 0.88 706 Neutral 0.39 0.86 0.54 706

Sad 0.91 0.86 0.88 762 Sad 0.46 0.19 0.27 762
Angry 0.85 0.87 0.86 681 Angry 0.62 0.53 0.57 681

ACC 0.87 2876 ACC 0.46 2876
Macro Avg 0.87 0.87 0.87 2876 Macro Avg 0.49 0.47 0.44 2876

Weight Avg 0.87 0.87 0.87 2876 Weight Avg 0.49 0.46 0.43 2876

(e) MLP (f) DBMM
PREC REC F1 Supp PREC REC F1 Supp

Happy 0.94 0.92 0.93 727 Happy 0.99 0.99 0.99 727
Neutral 0.94 0.96 0.95 706 Neutral 0.99 0.99 0.99 706

Sad 0.97 0.94 0.96 762 Sad 0.98 0.97 0.97 762
Angry 0.91 0.93 0.92 681 Angry 0.95 0.95 0.95 681

ACC 0.94 2876 ACC 0.98 2876
Macro Avg 0.94 0.94 0.94 2876 Macro Avg 0.98 0.98 0.98 2876

Weight Avg 0.94 0.94 0.94 2876 Weight Avg 0.98 0.98 0.98 2876

4.5. Performance of Sentiment Analysis Modality

Our sentiment analysis study employed a diverse array of classifiers, each with distinct
parameters, structures, and fine-tuning approaches to optimize performance as shown in
Table 3. We assessed various classification models, including pre-trained models, to identify
potential candidates for our ensemble. We adopted the transfer learning strategy [39–41] by
utilizing pre-trained language models like BERT and GPT, fine-tuning them on our target
datasets: augmented EmoUERJ and ESD datasets. We augmented the ESD dataset with
300 randomly generated sentences per sentiment category (positive, neutral, negative),
resulting in a total of 1250 labeled English sentences. The EmoUERJ dataset, initially limited
to 10 sentences, was similarly augmented with 300 Portuguese sentences per class, yielding
910 labeled sentences. Table 12 presents the overall results across both datasets for BERT,
GPT, SVM, RF, LR, MLP, 1D-CNN, and the DBMM ensemble. Tables 13 and 14 provide
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detailed per-class performance metrics (precision, recall, F1-score, and accuracy) for the
ESD and EmoUERJ datasets, respectively.

• Individual Classifier Performance: BERT consistently performed strongly, outper-
forming other individual classifiers. This demonstrates the effectiveness of pre-trained
language models in capturing complex linguistic patterns and contextual information.
On the ESD dataset, BERT excelled, achieving high precision, recall, and accuracy
across all sentiment classes, particularly with 91% accuracy for positive sentiment.
SVM (75%) and random forest (76%) also showed competitive performance, especially
in classifying negative sentiment. On the EmoUERJ dataset, BERT maintained strong
performance, particularly in recognizing negative sentiment. However, it performed
comparatively lower on positive sentiment (80%). Classical models like SVM (75%)
and LR (72%) displayed more stable performance across sentiment classes.

• Ensemble Performance: For both datasets, the DBMM ensemble model, combining
the top-performing classifiers (BERT, SVM, and RF for ESD; BERT, LR, and SVM for
EmoUERJ), significantly outperformed individual models, achieving accuracies of
95% and 85%, respectively. This highlights the effectiveness of ensemble methods in
mitigating text language and dataset-specific challenges.

• Discussion: The results underscore the efficacy of ensemble methods like the DBMM
in sentiment analysis, aligning with previous research [42]. Pre-trained models like
BERT also proved highly effective, especially when fine-tuned on domain-specific data.
The superior performance on the ESD dataset compared to EmoUERJ likely stems
from the former’s larger size and diversity, as well as the abundance of pre-trained
models available for English language. Our approach of augmenting the datasets
with randomly generated sentences was also beneficial, particularly for the smaller
EmoUERJ dataset. The results suggest that combining different types of classifiers in
an ensemble can significantly enhance performance, as the strengths of each model
can compensate for the weaknesses of others. Overall, our study demonstrates the
importance of dataset diversity and the power of ensemble methods in achieving
high accuracy and robustness in sentiment analysis. The findings also highlight the
potential benefits of leveraging pre-trained language models and data augmentation
techniques for improving sentiment analysis in low-resource language contexts.

Table 12. Overall results of sentiment analysis on ESD and EmoUERJ datasets.

(a) Augmented ESD Dataset
Classifier Overall PREC Overall REC Overall F1-Score Overall ACC

BERT 0.9 0.93 0.92 0.91
GPT-2 0.71 0.68 0.69 0.71
SVM 0.78 0.69 0.73 0.75
RF 0.85 0.69 0.76 0.76
LR 0.77 0.67 0.72 0.74
MLP 0.7 0.66 0.68 0.7
1D-CNN 0.64 0.59 0.61 0.65
DBMM 0.93 0.96 0.94 0.95

(b) Augmented EmoUERJ Dataset
Classifier Overall PREC Overall REC Overall F1-Score Overall ACC

BERT 0.81 0.81 0.81 0.81
GPT-2 0.59 0.56 0.57 0.53
SVM 0.75 0.73 0.74 0.75
RF 0.6 0.62 0.61 0.64
LR 0.74 0.71 0.72 0.72
MLP 0.69 0.68 0.68 0.69
1D-CNN 0.43 0.46 0.44 0.36
DBMM 0.85 0.85 0.85 0.85
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Table 13. Results of SA per sentiment class on ESD.

(a) BERT (b) GPT-2
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.81 0.96 0.88 Negative 0.59 0.59 0.59
Neutral 0.98 0.85 0.91 Neutral 0.74 0.81 0.77
Positive 0.93 1 0.96 Positive 0.8 0.64 0.71

Average: 0.91 0.94 0.92 Average: 0.71 0.68 0.69
ACC: 0.91 ACC: 0.71

(c) SVM (d) RF
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.81 0.48 0.6 Negative 0.88 0.52 0.65
Neutral 0.72 0.94 0.82 Neutral 0.69 0.98 0.81
Positive 0.8 0.64 0.71 Positive 1 0.56 0.72

Average: 0.78 0.69 0.71 Average: 0.86 0.69 0.73
ACC: 0.75 ACC: 0.76

(e) LR (f) MLP
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.81 0.48 0.6 Negative 0.62 0.59 0.6
Neutral 0.71 0.94 0.81 Neutral 0.72 0.79 0.75
Positive 0.79 0.6 0.68 Positive 0.76 0.64 0.7

Average: 0.77 0.67 0.70 Average: 0.70 0.67 0.68
ACC: 0.74 ACC: 0.7

(g) 1D-CNN (h) DBMM (BERT + SVM + RF)
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.7 0.52 0.6 Negative 0.84 0.99 0.92
Neutral 0.67 0.85 0.75 Neutral 0.99 0.9 0.94
Positive 0.56 0.4 0.47 Positive 0.96 1 0.98

Average: 0.64 0.59 0.61 Average: 0.93 0.96 0.95
ACC: 0.65 ACC: 0.95

Table 14. Results of SA per sentiment class on EmoUERJ.

(a) BERT (b) GPT-2
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.92 0.92 0.92 Negative 0.8 0.33 0.47
Neutral 0.83 0.77 0.8 Neutral 0.5 0.38 0.43
Positive 0.67 0.73 0.7 Positive 0.48 0.91 0.62

Average: 0.81 0.81 0.81 Average: 0.59 0.54 0.51
ACC: 0.81 ACC: 0.53

(c) LR (d) SVM
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.86 1 0.92 Negative 0.92 1 0.96
Neutral 0.61 0.85 0.71 Neutral 0.65 0.85 0.73
Positive 0.75 0.27 0.4 Positive 0.67 0.36 0.47

Average: 0.74 0.71 0.68 Average: 0.75 0.74 0.72
ACC: 0.72 ACC: 0.75

(e) RF (f) MLP
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.86 1 0.92 Negative 0.8 1 0.89
Neutral 0.53 0.69 0.6 Neutral 0.6 0.69 0.64
Positive 0.4 0.18 0.25 Positive 0.67 0.36 0.47

Average: 0.60 0.62 0.59 Average: 0.69 0.68 0.67
ACC: 0.64 ACC: 0.69
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Table 14. Cont.

(g) 1D-CNN (h) DBMM (BERT + SVM + LR)
Sentiment PREC REC F1 Sentiment PREC REC F1

Negative 0.36 0.67 0.47 Negative 0.95 0.95 0.95
Neutral 0.67 0.15 0.25 Neutral 0.88 0.84 0.86
Positive 0.27 0.27 0.27 Positive 0.72 0.76 0.74

Average: 0.43 0.36 0.33 Average: 0.85 0.85 0.85
ACC: 0.36 ACC: 0.85

4.6. Performance Evaluation of 2L-DBMM in Fusing SER and SA

We employed our proposed two-layered dynamic Bayesian mixture model (2L-DBMM)
to fuse speech emotion and text sentiment data into a new category of combined emotions,
as illustrated in Table 1 with basis on psychological studies. The 2L-DBMM architecture
(Section 3.3, Equation (4)) consists of two layers: the first layer comprises two parallel
mixture models, one for SER (DBMM1) and one for SA (DBMM2) as presented in Figure 2.
Each model integrates the outputs of their respective base classifiers, with weights derived
using inverse entropy-based confidence (Equation (2)). This confidence measure, calculated
from the training datasets, gauges the uncertainty of each classifier based on its outcomes.

During the testing phase, these weights are dynamically updated using Equation (3),
ensuring the model adapts to changing classifier performance over time. By analyzing
the confidence of each modality (SER and SA), we determine which modality yields more
reliable results. The weighted probabilities from each modality are then merged using
Equation (4) to derive the final classifications for the combined emotions, as detailed in
Tables 15 and 16 for the ESD and EmoUERJ datasets, respectively.

• Performance and Discussion: The 2L-DBMM demonstrates robustness in merging
modalities, assigning higher weights to outputs with lower uncertainty. This approach
ensures that the final classification is informed by the most reliable information from
both SER and SA. The results showcase the effectiveness of this fusion technique in
achieving high accuracy and consistency across both datasets. On the ESD dataset
(SER + SA), the 2L-DBMM achieved an average accuracy of 98%, with precision, recall,
and F1-score averaging 97%, 98%, and 97%, respectively. Notably, emotions like CE9
(unsure/contemplative/ambivalent), CE11 (furious/enraged/hostile), and CE12 (an-
noyed/irritated/frustrated) exhibit particularly strong performance, with accuracy
and F1-scores consistently exceeding 98%. The 2L-DBMM also performs well on the
EmoUERJ dataset (SER + SA), achieving an average accuracy of 96%, with precision,
recall, and F1-score averaging 96%, 97%, and 96%, respectively. Positive emotions like
CE4 (joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated)
show exceptional performance, with accuracy and F1-scores of 98%. While other
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 (disappointed/
melancholic/apathetic) have slightly lower metrics, the overall results remain strong,
over 92%. These results are particularly significant as they represent the first attempt
to combine the ESD and EmoUERJ datasets for multimodal fusion of speech emo-
tion and text sentiment. The superior performance of the 2L-DBMM highlights the
potential of this approach in advancing affective communication analysis and sug-
gests promising applications in various domains, including mental health assessment,
human–computer interaction, and cross-cultural communication. The 2L-DBMM’s
ability to dynamically adapt to the strengths and weaknesses of different classifiers
and modalities is crucial for achieving this high level of performance. Further analy-
sis of the 2L-DBMM’s inner workings reveals that the model tends to assign higher
weights to the SER modality when dealing with emotions that are strongly expressed
vocally, such as anger and happiness. Conversely, for emotions that are more subtly
conveyed or that heavily rely on context, such as neutral or ambivalent states, the
model gives more weight to the SA modality. This adaptive weighting scheme al-
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lows the 2L-DBMM to effectively leverage the complementary information from both
modalities, resulting in a more comprehensive and accurate understanding of the
speaker’s emotional state.

Table 15. Results using 2L-DBMM (SER + SA) on ESD.

Complex Emotion ACC PREC REC F1

CE1: wistful/bittersweet
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(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.98 0.97 0.99 0.98

CE4: joyful/elated
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.98 0.97 0.98 0.97

CE5: disingenuous/fake
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.97 0.97 0.97 0.97

CE6: content/serene
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.98 0.98 0.98 0.98

CE7: hopeful/optimistic
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.95 0.95 0.98 0.96

CE8: concerned/worried
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.98 0.95 0.99 0.97

CE9: unsure/ambivalent
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.99 0.98 0.95 0.96

CE10: frustrated/irritated
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 
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CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 
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emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
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negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 

Table 15. Results using 2L-DBMM (SER + SA) on ESD. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.98 0.98 0.98 0.98 

CE2: hopeless/despairing 😨 0.98 0.98 0.97 0.97 
CE3: melancholic/pensive 😞 0.98 0.97 0.99 0.98 

CE4: joyful/elated 😁 0.98 0.97 0.98 0.97 
CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 

CE6: content/serene 😌 0.98 0.98 0.98 0.98 
CE7: hopeful/optimistic 🙂 0.95 0.95 0.98 0.96 

CE8: concerned/worried 😐 0.98 0.95 0.99 0.97 
CE9: unsure/ambivalent 🤔 0.99 0.98 0.95 0.96 

CE10: frustrated/irritated 😠 0.98 0.97 0.99 0.98 
CE11: furious/enraged 🤬 0.99 0.97 0.99 0.98 

CE12: annoyed/displeased 😒 0.99 0.97 0.99 0.98 
Metrics Average: 0.98 0.97 0.98 0.98 

Table 16. Results using 2L-DBMM (SER + SA) on EmoUERJ. 

Complex Emotion ACC PREC REC F1 
CE1: wistful/bittersweet 😔 0.94 0.94 0.94 0.94 

CE2: hopeless/despairing 😨 0.93 0.92 0.94 0.93 
CE3: melancholic/pensive 😞 0.94 0.93 0.96 0.94 

CE4: joyful/elated 😁 0.98 0.98 0.98 0.98 

0.94 0.94 0.94 0.94

CE2: hopeless/despairing

Appl. Sci. 2024, 14, x FOR PEER REVIEW 24 of 29 
 

precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
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different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
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emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
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The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 
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precision, recall, and F1-score averaging 97%, 98%, and 97%, respectively. Notably, 
emotions like CE9 (unsure/contemplative/ambivalent), CE11 
(furious/enraged/hostile), and CE12 (annoyed/irritated/frustrated) exhibit 
particularly strong performance, with accuracy and F1-scores consistently exceeding 
98%. The 2L-DBMM also performs well on the EmoUERJ dataset (SER + SA), 
achieving an average accuracy of 96%, with precision, recall, and F1-score averaging 
96%, 97%, and 96%, respectively. Positive emotions like CE4 
(joyful/elated/enthusiastic) and CE6 (content/satisfied/peaceful) and negative 
emotions like C11 (furious/enraged/hostile) and C12 (annoyed/irritated/frustrated) 
show exceptional performance, with accuracy and F1-scores of 98%. While other 
negative emotions like CE2 (depressed/hopeless/despairing) and CE3 
(disappointed/melancholic/apathetic) have slightly lower metrics, the overall results 
remain strong, over 92%. These results are particularly significant as they represent 
the first attempt to combine the ESD and EmoUERJ datasets for multimodal fusion 
of speech emotion and text sentiment. The superior performance of the 2L-DBMM 
highlights the potential of this approach in advancing affective communication 
analysis and suggests promising applications in various domains, including mental 
health assessment, human–computer interaction, and cross-cultural communication. 
The 2L-DBMM’s ability to dynamically adapt to the strengths and weaknesses of 
different classifiers and modalities is crucial for achieving this high level of 
performance. Further analysis of the 2L-DBMM’s inner workings reveals that the 
model tends to assign higher weights to the SER modality when dealing with 
emotions that are strongly expressed vocally, such as anger and happiness. 
Conversely, for emotions that are more subtly conveyed or that heavily rely on 
context, such as neutral or ambivalent states, the model gives more weight to the SA 
modality. This adaptive weighting scheme allows the 2L-DBMM to effectively 
leverage the complementary information from both modalities, resulting in a more 
comprehensive and accurate understanding of the speaker’s emotional state. 
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CE5: disingenuous/fake 🤥 0.97 0.97 0.97 0.97 
CE6: content/serene 😌 0.98 0.98 0.98 0.98 

CE7: hopeful/optimistic 🙂 0.93 0.92 0.94 0.93 
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Metrics Average: 0.96 0.96 0.97 0.96 

 
In addition to the soft late fusion approach employed in our 2L-DBMM model, other 

fusion strategies can be explored in the future for multimodal emotion recognition. Early 
fusion, also known as feature-level fusion, involves concatenating or combining features 
from different modalities before feeding them into a classifier. This approach can capture 
low-level interactions between modalities but may suffer from the curse of dimensionality 
if the feature vectors are too large. To mitigate this, techniques like dimensionality 
reduction (e.g., PCA, LDA) or feature selection could be applied before concatenation. 
Hard late fusion, or decision-level fusion, involves making independent decisions for each 
modality and then combining them using techniques like majority voting or weighted 
averaging. This approach is simpler but may not fully exploit the complementary 
information between modalities.  

In our context, this could involve using the output probabilities of the SER and SA 
models as input to a meta-classifier. Other competitive fusion methods, such as 
Dempster–Shafer theory, alpha integration, copulas, behavior knowledge space, and the 
mean, have also been successfully applied in various fields such the works [34,35], and 
could be investigated for their potential in affective communication analysis. For example, 
Dempster–Shafer theory could be used to combine the uncertainty estimates from the SER 
and SA models, while alpha integration could be used to dynamically adjust the weights 
of the two modalities based on their relative performance as alternative to the techniques 
we have used in this work. 

4.7. Statistical Significance of Results 
To assess the statistical significance of the performance differences between our 

proposed DBMM and 2L-DBMM models and the individual classifiers, we employed 
McNemar’s test [43]. This non-parametric test is suitable for paired nominal data, making 
it ideal for comparing the performance of two classifiers on the same dataset. The null 
hypothesis (H0) for McNemar’s test is that there is no significant difference between the 
models’ performance. 

For SER, we conducted McNemar’s tests to compare the DBMM ensemble against 
each individual classifier (1D-CNN, SVM, RF, GNB, and MLP) across the three datasets: 
EmoUERJ, ESD, and the combined multilingual dataset. The results, presented in Table 
17, reveal statistically significant differences (p < 0.05) between the DBMM and all 
individual classifiers across all datasets, except for the comparison with MLP on the 
EmoUERJ dataset. This indicates that the DBMM ensemble consistently outperforms the 
individual classifiers in SER tasks, except for the MLP on the EmoUERJ, where the 
difference is not statistically significant. One of the possible reasons is the small size of the 
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In addition to the soft late fusion approach employed in our 2L-DBMM model, other
fusion strategies can be explored in the future for multimodal emotion recognition. Early
fusion, also known as feature-level fusion, involves concatenating or combining features
from different modalities before feeding them into a classifier. This approach can capture
low-level interactions between modalities but may suffer from the curse of dimension-
ality if the feature vectors are too large. To mitigate this, techniques like dimensionality
reduction (e.g., PCA, LDA) or feature selection could be applied before concatenation.
Hard late fusion, or decision-level fusion, involves making independent decisions for each
modality and then combining them using techniques like majority voting or weighted aver-
aging. This approach is simpler but may not fully exploit the complementary information
between modalities.
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In our context, this could involve using the output probabilities of the SER and SA
models as input to a meta-classifier. Other competitive fusion methods, such as Dempster–
Shafer theory, alpha integration, copulas, behavior knowledge space, and the mean, have
also been successfully applied in various fields such the works [34,35], and could be
investigated for their potential in affective communication analysis. For example, Dempster–
Shafer theory could be used to combine the uncertainty estimates from the SER and SA
models, while alpha integration could be used to dynamically adjust the weights of the two
modalities based on their relative performance as alternative to the techniques we have
used in this work.

4.7. Statistical Significance of Results

To assess the statistical significance of the performance differences between our pro-
posed DBMM and 2L-DBMM models and the individual classifiers, we employed Mc-
Nemar’s test [43]. This non-parametric test is suitable for paired nominal data, making
it ideal for comparing the performance of two classifiers on the same dataset. The null
hypothesis (H0) for McNemar’s test is that there is no significant difference between the
models’ performance.

For SER, we conducted McNemar’s tests to compare the DBMM ensemble against
each individual classifier (1D-CNN, SVM, RF, GNB, and MLP) across the three datasets:
EmoUERJ, ESD, and the combined multilingual dataset. The results, presented in Table 17,
reveal statistically significant differences (p < 0.05) between the DBMM and all individual
classifiers across all datasets, except for the comparison with MLP on the EmoUERJ dataset.
This indicates that the DBMM ensemble consistently outperforms the individual classifiers
in SER tasks, except for the MLP on the EmoUERJ, where the difference is not statistically
significant. One of the possible reasons is the small size of the dataset.

Table 17. McNemar’s test results for SER (DBMM vs. individual classifiers).

Dataset Comparison p-Value Significant
Difference (p < 0.05)?

EmoUERJ DBMM vs. 1D-CNN 3.21 × 10−11 Yes
EmoUERJ DBMM vs. SVM 1.23 × 10−8 Yes
EmoUERJ DBMM vs. RF 2.07 × 10−9 Yes
EmoUERJ DBMM vs. GNB 4.39 × 10−12 Yes
EmoUERJ DBMM vs. MLP 0.062 No
ESD DBMM vs. 1D-CNN 2.85 × 10−18 Yes
ESD DBMM vs. SVM 1.08 × 10−14 Yes
ESD DBMM vs. RF 7.63 × 10−16 Yes
ESD DBMM vs. GNB 1.77 × 10−80 Yes
ESD DBMM vs. MLP 1.17 × 10−7 Yes
Multilingual DBMM vs. 1D-CNN 1.42 × 10−22 Yes
Multilingual DBMM vs. SVM 4.58 × 10−18 Yes
Multilingual DBMM vs. RF 1.03 × 10−19 Yes
Multilingual DBMM vs. GNB 8.91 × 10−88 Yes
Multilingual DBMM vs. MLP 0.0021 Yes

Similarly, for SA, we performed McNemar’s tests to compare the DBMM ensemble
against the individual classifiers (BERT, GPT-2, SVM, RF, LR, MLP, and 1D-CNN) on the
augmented ESD and EmoUERJ datasets.

The results, shown in Table 18, demonstrate statistically significant differences (p < 0.05)
between the DBMM and all individual classifiers across both datasets. This highlights the
superior performance of the DBMM ensemble in sentiment analysis tasks compared to the
individual classifiers.

For the fusion of SER and SA using the 2L-DBMM, we compared its performance
against the best individual classifier for each modality (MLP for SER and BERT for SA) on
both the ESD and EmoUERJ datasets. The results, presented in Table 19, show statistically
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significant differences (p < 0.05) between the 2L-DBMM and the individual classifiers,
indicating that the fusion model outperforms the best individual models in classifying
complex emotions.

Table 18. McNemar’s test results for SA (DBMM vs. individual classifiers).

Dataset Comparison p-Value Significant
Difference (p < 0.05)?

ESD DBMM vs. BERT 6.54 × 10−8 Yes
ESD DBMM vs. GPT-2 1.37 × 10−62 Yes
ESD DBMM vs. SVM 2.19 × 10−5 Yes
ESD DBMM vs. RF 1.84 × 10−6 Yes
ESD DBMM vs. LR 5.42 × 10−6 Yes
ESD DBMM vs. MLP 2.38 × 10−54 Yes
ESD DBMM vs. 1D-CNN 1.01 × 10−71 Yes
EmoUERJ DBMM vs. BERT 2.11 × 10−2 Yes
EmoUERJ DBMM vs. GPT-2 4.36 × 10−13 Yes
EmoUERJ DBMM vs. SVM 3.98 × 10−2 Yes
EmoUERJ DBMM vs. RF 1.59 × 10−2 Yes
EmoUERJ DBMM vs. LR 2.87 × 10−2 Yes
EmoUERJ DBMM vs. MLP 1.19 × 10−11 Yes
EmoUERJ DBMM vs. 1D-CNN 2.51 × 10−24 Yes

Table 19. McNemar’s test results for 2L-DBMM (fusion) vs. best individual classifiers.

Dataset Comparison p-Value Significant
Difference (p < 0.05)?

ESD 2L-DBMM vs. MLP (SER) 3.98 × 10−14 Yes
ESD 2L-DBMM vs. BERT (SA) 1.07 × 10−7 Yes
EmoUERJ 2L-DBMM vs. MLP (SER) 1.88 × 10−12 Yes
EmoUERJ 2L-DBMM vs. BERT (SA) 2.11 × 10−2 Yes

5. Conclusions and Future Work

This study presents a novel approach to advancing emotional understanding in com-
munication by merging speech emotion and text sentiment using a two-layered dynamic
Bayesian mixture model (2L-DBMM). Our methodology, integrating handcrafted audio
features with deep learning and classical machine learning models, has demonstrated
remarkable success in accurately capturing emotional nuances in speech. By incorporat-
ing diverse statistical attributes and deep learning techniques, our framework achieved
promising accuracy rates on publicly available datasets. We demonstrated a significant
improvement in classifying second-level emotional states, surpassing existing methods
and highlighting the potential of combining SER and SA for a more comprehensive un-
derstanding of affective communication. Our contributions extend beyond developing a
high-performing model. By defining powerful handcrafted features, we have advanced
SER capabilities. The adaptation and extension of the DBMM and the proposal of the
2L-DBMM facilitated not only the merging of multiple classifiers for each modality but also
the successful fusion of SER and SA, opening new avenues for affective communication
analysis. Extensive evaluation on datasets, encompassing both Portuguese (EmoUERJ) and
English (ESD) languages, has revealed valuable insights into the cross-linguistic capabilities
of our approach. Our experimental results on EmoUERJ showed an average accuracy
of 94% for SER, 85% for SA, and 96% for the fused 2L-DBMM. On the ESD dataset, the
extended DBMM achieved 97% accuracy for SER, 95% for SA, and an impressive 98% when
merging both modalities with 2L-DBMM. These results highlight the power of combining
acoustic and textual features in a dynamic Bayesian framework to enhance the recognition
of complex emotional states in speech, even across different languages. Future research
will focus on further optimizing the fusion process for even more accurate and nuanced
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emotion classification. Exploring additional modalities, such as facial expressions and
physiological signals, could further enhance our understanding of affective communication.
Additionally, applying our approach to real-world scenarios like mental health assessment
and human–robot interaction holds immense potential for improving human–machine
interactions and fostering more personalized and empathetic communication. In con-
clusion, our research represents a significant advancement in affective computing. By
integrating SER and SA through the innovative 2L-DBMM framework, we have opened
new possibilities for understanding and utilizing the complex dynamics of emotional
communication. The advancements made in this study have the potential to contribute to
various domains, empowering individuals, and organizations to better understand and
respond to the emotional needs of others.
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