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Memristive Tabu learning neuron generated
multi-wing attractor with FPGA implementation and

application in encryption
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Abstract—Memristors, with their unique nonlinear character-
istics, are highly suitable for construction novel neural mod-
els with rich dynamic behaviors. In this paper, a memristor
with piecewise nonlinear state function is introduced into the
tabu learning neuron model, resulting in a novel memristive
tabu learning neuron model capable of generating a double-
wing chaotic butterfly. By modulating the state function of
the memristor, we can effectively and easily alter the number
of wings of the chaotic butterfly. Equilibrium points analysis
further elucidates the mechanism behind the generation of multi-
wing chaos. Various numerical simulation techniques, including
phase portraits, bifurcation diagrams, Lyapunov exponent spec-
tra, and local attraction basins, are employed to illustrate the
dynamical behaviors of the proposed model. Moreover, the newly
constructed neuron model is validated using FPGA hardware,
with the results aligning with numerical simulations, thereby
offering a dependable foundation for a memristor digital circuit-
based brain-like neuron model. Lastly, an image encryption
application based on the multi-wing chaotic butterfly is developed
to demonstrate the potential application of the model.

Index Terms—multi-wing, memristor, tabu learning neuron,
FPGA implementation, encryption

I. INTRODUCTION

INVESTIGATING the dynamical behaviors of neural net-
works can guide us in exploring more appropriate control

strategies to achieve neural dynamics in the artificial neural
networks. The recurrent neural network proposed by J. J.
Hopfield in 1984 [1], has received extensive attention not only
because of its engineering applications in optimization prob-
lems [2] and content-address memory [3], but also because
it can revel some dynamical behaviors of the human brain
[4]–[6]. Aimed at solving non-convex optimization problems,
Beyer and Ogier introduced tabu learning into the Hopfield
neural network (HNN), which enables the state trajectory to
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climb out of local minima thus performing an efficient search
of the energy surface [7].

Dynamical behaviors of tabu learning neurons (TLNs) have
attracted attention, prompting a closer examination of the
running trajectories of the neural network. Li et al. took the
memory decay rate as a bifurcation parameter and studied
the dynamical behaviors of tabu learning neurons, proving
that a single TLN can transition between stable and unstable
dynamics through the Hopf bifurcation [8]. Xiao and Cao
studied the stability of a discrete-time tabu learning single neu-
ron model, finding that Pitchfork, Flip, and Neimark-Sacker
bifurcations occur when the bifurcation parameter exceeds a
critical value [9]. Bao et al. studied the dynamical behaviors
of a non-autonomous TLN by introducing an external input to
the TLN, discovering complex neuron firing patterns in their
non-autonomous TLN model [10]. Doubla et al. introduced
and investigated a model of two-neuron tabu learning network
based on a composite hyperbolic tangent function as the
activation function, demonstrating the bistable property in their
novel model [11]. Bao et al. presented a non-autonomous
single TLN model based on a sinusoidal activation function,
which can generate a class of multi-scroll chaotic attractors
[12].

The memristor, considered as the fourth fundamental circuit
component, has garnered attention due to its unique memory
function. Its non-volatile and nonlinear properties make it a
prime candidate in neural network applications [13]–[15]. In
the realm of dynamical behaviors research, memristors are
employed to simulate various nonlinear phenomena in neuron
models function [16]–[18]. The memristive neuron models
have led to the discovery of more abundant dynamic phe-
nomena, promoting the rapid development of neurodynamics
research. For example, Hou et al. introduced a memristor into
a single TLN to reflect the self-adaption physical processing
in biological neurons and found coexisting infinitely many
nonchaotic attractors in the novel memristive tabu learning
neuron (MTLN) [19]. Njitacke et al. introduced a memristor
into the TLN and proposed a simple MTLN that can produce
an infinite number of coexisted chaotic attractors [20]. Ding
et al. substituted the external stimulus of a TLN with the
memristive current and proposed a novel memristive TLN that
can generate a multi-scroll chaotic attractor [21].

Neural systems with multi-scroll or multi-wing chaotic
attractors exhibit complex topological structures and abundant
dynamic characteristics, holding a significant position in both
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engineering applications and the revelation of neural chaotic
dynamic behaviors [22]–[24]. However, the current proposed
MTLN models cannot generate multi-wing chaotic attractors.
To address this gap in knowledge, this article proposes a novel
memristive tabu learning neuron model capable of generating
multi-wing chaotic attractors by controlling the state function
of the memristor. Firstly, a novel memristor model with
piecewise nonlinear state function is proposed and verified
by numerical simulations. Then, the novel memristor is intro-
duced into a single TLN model to construct the novel MTLN
model. Furthermore, the dynamical behaviors of the novel
MTLN are analyzed through various methods, including phase
portraits, bifurcation diagrams, Lyapunov exponent spectra,
and local attraction basins. The simulation results illustrate
that the MTLN can generate butterfly-shape chaotic attractors.
Additionally, the multi-wing butterfly can be easily generated
by adjusting the state function of the memristor. Moreover, a
field programmable gate array (FPGA)-based digital hardware
implementation of the MTLN model is performed, demonstrat-
ing the correctness of numerical model. Finally, a multi-wing
MTLN chaotic attractor-based encryption scheme is designed
and tested. The numerical simulation results of the encryption
system demonstrate that the proposed multi-wing based image
encryption has good performance in key sensitivity, informa-
tion entropy, and robustness in resisting attacks.

The main contributions of this work can be summarized in
following aspects:
1) A novel multi-wing butterfly shape attractor generated by

a memristive TLN is proposed for the first time.
2) The memristive TLN is implemented based on FPGA

digital circuit, which may guide for the hardware imple-
mentation of tabu learning neural networks.

3) An image encryption system has been designed based on
the multi-wing chaotic attractor, which possesses a large
key space, extreme sensitivity to keys, and the ability to
resist various attacks, thus effectively ensuring the security
of image data.

The rest of the article is organized as follows. Section
II describes the model of memristor and the model of the
memristive TLN. In Section III, dynamical behaviors of the
proposed memristive TLN are studied by the numerical simu-
lation method from multiple perspectives. Section IV designs
and implements the memristive TLN based on FPGA. Section
V presents a chaotic image encryption scheme based on the
multi-wing chaotic sequence, and its security performances
are analyzed. Section VI concludes this paper and provides an
outlook for future research.

II. MODEL DESCRIPTION

A. Memristor model

A voltage controlled memristor can be described as{
i = f(w)v
dw
dt = g(w, v)

(1)

where v and i denote the voltage and current, and w repre-
sents the internal state variable of the memrsitor device. The
function g(·) defines the switching behavior of the memristor

TABLE I
COMPARISON OF PIECE-WISE MEMRISTORS

Literature memristor model attractor type
Ref. [27] sgn-based sawtooth function multi-scroll
Ref. [28] tanh-base step function grid multi-scroll
Ref. [29] sgn-based sawtooth function multi-structure
this work piece-wise quadratic function multi-wing

depending on the state variable w and the applied voltage v
to the memristor [25].

In alignment with the concept of the general voltage-
controlled memristor, we introduce a novel memristor model.
The mathematical representation of this memristor model is
formulated as {

i = (w)v
ẇ = 1−G(v)− 0.1w

(2)

where v, i and w denote the voltage, current, and internal state
variable of the memristor, respectively. The state-dependent
function G(v) is given by

G(v) =


G0v

2, N = 0

G0v
2 −∑N

n=1Gn(α+ β(sgn(v − En)
−sgn(v + En)), N > 0

(3)

where α, β, G0, Gn (where Gn=n+2), and En (where
En=n+1) are positive parameters, and sgn(·) represents the
sign function. The integer parameter N serves to modulate
the number of wings. The piecewise nonlinear state function
of the memristor is inspired by the method of constructing
multi-wing chaotic attractors from the Lorenz-family chaotic
systems. In Ref. [26], the goal of creating multi-wing chaotic
attractors is accomplished by extending the unstable saddle-
foci from the Lorenz-family chaotic systems. Motivated by
prior research, we design the state function of the memristor
as a nonlinear function with piecewise characteristics. This
segmented approach, in turn, imparts greater complexity in
dynamical behaviors to both neuron model and neural net-
work model. Table I presents a selection of piece-wise linear
memristor-based neural models and their associated types of
chaotic attractors. An examination of the table reveals that the
piece-wise memristor models are instrumental in the emer-
gence of complex attractor structures within neural models.

To validate the proposed mathematical model of the mem-
ristor, we conducted tests on the pinched hysteresis loops of
the memristor under periodic sinusoidal voltage excitation,
given by v=Asin(ft). For the sake of generality, the parameters
are chosen as G0=1, α=1.5, β=0.75, N=5. Figs.1(a) and (b)
illustrate the hysteresis loops influenced by voltage frequency
and amplitude, respectively. The analysis reveals that in the
v-i plane, the memristor’s hysteresis loops pinched at the
origin. The side lobe areas of the loops decrease as the
voltage frequency increases, and the loop converge to a single-
valued straight line as the frequency approaches infinity. These
observations confirm the effectiveness of proposed memristor
model [30].
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Fig. 1. Hysteresis loops of the memristor model with sinusoidal voltage
source v=Asin(ft), (a) different frequencies at A=1V; (b) different amplitudes
at f =0.5.

B. Memristive tabu learning neuron model

In the tabu learning neural network , the linear proximity
function can be used to perform gradient descent on the energy
function [7], thereby resulting in the state equation of the i-th
neuron in the network being expressed as{

Ciu̇i = − 1
Ri
ui +

∑
j TijVj + Ji + Ii

J̇i = −cJi − dVi
(4)

where Ci, Ri, and ui represent the membrane capacitor, the
membrane resistance, and the membrane potential of the i-th
neuron in the network, respectively. Tij is the correspondence
connection matrix element for the j-th neuron to the i-th
neuron.

Since (4) describes the state variations when the i-th neuron
interacts with other neurons in the network. Li et al. simplified
it during their study of the bifurcation behavior of individual
neuron in the neural network, obtaining the single tabu learn-
ing neuron as {

ẋ = −ax+ bf(x) + y + I
ẏ = −cy − df(x)

(5)

where x and y correspond to state variable u and J in (4),
respectively, a, b, c and d are constant parameters, and I is
the external input current. Recent studies, such as Ref. [10]–
[12], have paid attention to the dynamic behavior of single
tabu learning neuron under the influence of memristor. These
studies focus on dynamics of individual neuron, laying the
foundation for the research on the dynamics of memristive
tabu learning neural networks.

Following the concept of studying of the dynamics of
a single tabu learning neuron, we integrate the memristor
into the state equation of TLN to study neuron’s dynamical
behavior. For the sake of simplifying the study, we have
neglected the external input current I in the model. The
resulting novel memristive TLN model is formulated as ẋ1 = −ax1 + btanh(x1) + x2 − kx3x1

ẋ2 = −cx2 − dtanh(x1)
ẋ3 = G(x1)− 0.1x3 − 1

(6)

where x1, x2, x3 denote the state variables of the tabu learning
neuron and the memristor, respectively. The constants a, b, c, d
and k are positive parameters. The hyperbolic tangent function
tanh(·) serves as the activation function, while G(·) represents

the nonlinear function in memristor. Compared to previous
works, the key features of this model are that it can generate
doubling chaotic attractor and the convenience of altering the
number of wings of the chaotic attractor by modifying the
state function of the memristor.

III. DYNAMICS OF MEMRISTIVE TABU LEARNING NEURON
MODEL

In this section, we uncover the intricate dynamics of the
proposed MTLN through a combination of theoretical analysis
and numerical simulations. The numerical simulations are
performed using the MATLAB R2022b software and the
ODE45 algorithm, with a fixed time step of 0.001, and time
length of 500.

A. Equilibrium points and stability

The stability of equilibrium points is an important character-
istic of nonlinear dynamical systems. The equilibrium points
of the model (6), which is denoted by P=(x̂1, x̂2, x̂3), can be
determined by the following equations

f1(x̂1, x̂3) = −ax̂1 + btanh(x̂1)− (d/c)tanh(x̂1)− kx̂3x̂1

f2(x̂1, x̂3) = G(x̂1)− 0.1x̂3 − 1
(7)

where x̂2 = −(d/c)tanh(x̂1). The value of x̂1 and x̂3 can be
seen as the intersection of the curves drawn by (7). Without
loss of generality, we set parameters as a = 1.5, b = 2.5, c =
3.5, d = 17 and k = 3.5 and choose four case of the parameter
N in G(·) to plot the the solution of x̂1 and x̂3, as shown in
Fig.2.
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Fig. 2. Numerical simulated curve of (7) in which f1(x̂1, x̂3) denoted by red
color and f2(x̂1, x̂3) denoted by blue color with parameters α=1.5, β=0.75,
G0=1 and (a) N=0, (b) N=1, (b) N=2, (b) N=3.

The Jacobian matrix of the system (6) at the equilibrium
points can be calculated by −a+ bsech2(x̂1)− kx̂3 1 −kx̂1

−dsech2(x̂1) −c 0
2G0(x̂1) 0 −0.1

 . (8)

The equilibrium points and their stability can be numer-
ically determined using MATLAB software, based on the
positions identified in Fig.2. The stability of these points,
as inferred from the eigenvalues of the Jacobian matrix, is
visually represented in the same figure with different colors.
Pink-colored stars correspond to the equilibrium points with
one positive and two negative eigenvalues of the Jacobian
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matrix, indicating an unstable index-1 saddle. Green-colored
dots represent points with one negative real eigenvalue and a
pair of conjugate complex eigenvalues with positive real part,
suggesting that these equilibrium points are unstable index-
2 saddle-foci. In light of the Shil‘nikov theorem [31], the
presence of unstable index-2 saddle-foci in the system suggests
the potential for chaotic attractors to emerge.

B. Double-wing chaotic attractor generated by MTLN

For the numerical integration of the model (6), we em-
ployed a set of randomly chosen initial conditions x1(0)=0.1,
x2(0)=0.1, and x3(0)=0.1. The parameters were set to a=1.5,
b=2.5, c=3.5, d = 17 and k = 3.5. Additionally, the parameter
N was set to zero in the function G(·). The resulting phase
portraits and time domain waveforms of state variables are
depicted in Fig.3. specifically, Figs.3(a) and (b) display the
phase portraits of the system in x1 − x2 and x1 − x3 planes,
respectively. Fig.3(c) presents the time domain waveforms of
the state variables x1 and x3 within 500-second simulation
period. As observed in the figures, the MTLN generates a
double-wing butterfly-shaped chaotic attractor in the x1 − x3
plane.
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Fig. 3. Numerical simulation results of the model (6) for (a) phase portrait
in x1 − x2 plane, (b) phase portrait in x1 − x3 plane, (c) time domain wave
of the variable x1 and x3.

To delve deeper into the dynamics of the model (6), we
maintained the parameters a=1.5, and b=2.5 constant while
treating the parameter k, memory decay rate c, and learning
rate d as adjustable control parameters. Our investigation
focused on the Lyapunov exponent spectra and bifurcation
diagrams to understand the dynamical behaviors. In a three-
dimensional continuous-time system, the state can be deter-
mined by the signs of Lyapunov exponents (LEs). If the first
LE is positive, the second on equals to zeros and the last one
is negative, the system is in a chaotic state, indicating that the
system has inherent instability. Furthermore, by examining the
bifurcation diagram, one can gain insights into the dynamic
evolution process of the system. This analysis enables a
clear understanding of the system’s long-term behavior under
various parameter settings and the transition processes that
occur as the system parameters change.

Fig. 4. Lyapunov exponent spectra and bifurcation diagrams (the blue and
the red trajectories are with initial condition (0.1,0.1,0.1) and(0.1,-0.1,0.1),
respectively) with parameters (a) fixing c=3.5,d=17 varying k in range [1,15],
(b) fixing k=3.5,d=17 varying c in range [2,5], (c) fixing k=3.5,c=3.5 varying
d in range [5,20].

Fig.4 presents the Lyapunov exponent spectra and the bi-
furcation diagrams of state variable x1, with initial conditions
(0.1,0.1,0.1), marked in red, and (0.1,-0.1,0.1), marked in
green. In Fig.4(a), the influence of memristor on dynamics
is examined by fixing the memory decay rate c=3.5, and the
learning rate d=17, while varying k in region [1,15]. The
chaotic region of the model is observed for k ∈ [1.98, 12.36],
where LE1 is positive and LE2 is zero. As depicted in
Fig.4(a2), the MLTN demonstrates intricate bifurcation phe-
nomena, including forward period-doubling bifurcation, re-
verse period-doubling bifurcation, as well as several periodic
windows as k increments. An increase in the memory decay
rate c leads to the observation of forward period-doubling
bifurcation, crisis scenarios, periodic windows, and reverse
period-doubling bifurcation, as depicted in Fig.4(b2). The
chaotic regions corresponding to k=3.5, d=17 and c ∈ [2, 5]
are determined from Fig.4(b1), which are c ∈ [3.36, 4.17]
and c ∈ [4.45, 4.95], respectively. When k=3.5, c=3.5, and
the learning rate d is varied in the range [5,20], the Lya-
punov exponent spectra and bifurcation diagram for x1 are
shown in Fig.4(c). The bifurcation diagram reverses reverse
and forward period-doubling bifurcations, along with several
periodic windows, as d increases. The numerical simulation
results highlight the complex dynamical behaviors that emerge
by changing the control parameters of the MTLN. Moreover,
the bifurcation diagrams illustrate that different initial values
lead to distinct bifurcation trajectories, indicating the multi-
stability phenomenon of the MTLN.

To elucidate the impact of memristor on the dynamical
evolution, we selected four representative values of k: 2, 3.5,
11 and 12.5, while keeping the memory decay rate c=3.5
and the learning rate d=17 constant. The phase portraits
of the MTLN for these values are depicted in Fig.5. As
the parameter k is incremented, the attractor of the system
transitions from periodic state to a double-wing chaotic state,
then to single-wing chaotic state and ultimately returns to
a periodic state. This observed behavior is consistent with
the dynamic analysis performed using the Lyapunov exponent
spectra and bifurcation diagram with respect to parameter k.

As depicted in Fig.4, varying the initial conditions results
in distinct bifurcation trajectories. The phase portraits of
coexisting attractors are presented in Fig.5.Specifically, the
left-side and right-side periodic attractors (in Fig.5(a)) as well
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Fig. 5. Phase portraits of the model (6) with c=3.5, d=17 (a) k=2, (b) k=3.5,
(c) k=11, (d) k=12.5, where red trajectories are from initial (0.1,0.1,0.1) and
blue trajectories are from initial (0.1,-0.1,0.1), respectively.

Fig. 6. Attraction basins of the coexisting attractors in (a) x1(0) − x2(0)
plane, (b) x1(0)− x3(0) plane, (c) x2(0)− x3(0) plane.

as the left-wing and right-wing chaotic attractors (in Fig.5(c))
correspond to initial conditions I1=(0.1,0.1,0.1) and I2=(0.1,-
0.1,0.1), respectively. The blue curve represents the trajectory
for initial condition I1, while the red curve represents the
trajectory for initial condition I2. The basins of attraction
for nonlinear system provide a visual representation of the
dynamical distribution of the nonlinear system. By fixing the
system control parameters at k=11, setting the initial value of
x3 to 0.1, and varying the initial values of x1 and x2 within
the region [-5,5], we obtain the 2D attraction basin shown
in Fig.6(a). Similarly, Figs.6(b) and (c) display the attraction
basins of the MTLN in the x1(0)− x3(0) and x2(0)− x3(0)
planes, respectively. In Fig.6, the attraction basins are color-
coded to indicate the type of attractor: blue regions represent
the attraction regions of the right-wing chaotic attractor, while
red regions indicate the left-wing chaotic attractor. The figure
reveals that the MTLN exhibits complex coexisting attraction
basins when generating a single-wing chaotic attractor.

C. Multi-wing chaotic attractors generated by MTLN

In accordance with the memristor model in Section II,
when the parameter N in state-dependent function G(v) is
positive, additional breaking points are introduced into the
state function of the memristor. This can lead to the emergence
of multi-wing attractors. Without loss of generality, we have
chosen the parameter N in G(v) to be 1, 2, 3, 4, 5, and
6 to show the dynamics of the multi-wing butterfly chaotic
attractors. The phase portraits of the MTLN in the x1 − x3
plane for these values of N are displayed in Figs.7(a) to (f).

The system parameters and initial values for these phase por-
traits are consistently set to a=1.5, b=2.5, c=3.5, d=17, k=3.5
and (x1(0),x2(0),x3(0))=(0.1,0.1,0.1). Observation from Fig.7
indicate that as the parameter N increases, the number of
wings of the chaotic attractor transitions from 4-wing to 14-
wing.

Fig. 7. Phase portraits of the model (6) in x1 − x3 plane with (a) 4-wing,
(b) 6-wing, (c) 8-wing, (d) 10-wing, (e) 12-wing, (f) 14-wing.

To further investigate the dynamics of the multi-wing
MTLN, we have plotted the bifurcation diagrams of the state
variable X1 for various control parameter values of k, under
different cases of memristor parameter N=1, 2, 3, 4, 5, and 6.
These bifurcation diagrams are presented in Fig.8. In contrast
to the bifurcation diagrams shown in Fig.4(a), where the
function G(v) lacks breakpoints, it is evident that the chaotic
regions in the bifurcation diagrams are expanded by the
introduction of multi-wing forms. This analysis demonstrates
that the complexity of the system’s dynamics is enhanced by
the presence of breakpoints in the state-dependent function of
the memristor, leading to a richer variety of chaotic behaviors.

IV. HARDWARE IMPLEMENTATION OF THE MTLN

A. Discretization of the MTLN

FPGA-based digital circuit implementations have gained
widespread adoption in the design of chaotic neurons, sur-
passing analog circuit implementations. This preference is

Fig. 8. Bifurcation diagrams of the model (6) with different number of
attractor wings.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

attributed to the FPGA’s high calculation speed, high stability,
and convenience of altering system parameters and initial val-
ues, as demonstrated in recent studies [32]–[34]. In this article,
we implement the proposed MTLN using an FPGA platform.
The neuron model presented in (6) can be transformed into a
discrete-time system using the fourth-order Runge-Kutta (Rk4)
method. For the three state variables, x1, x2, and x3 in (6), we
define xn, yn, and zn as the sample values at the start of the
n-th iteration. Similarly, xn+1, yn+1, and zn+1 are defined as
the sample values at the beginning of the (n+1)-th iteration.

Firstly, three temporary variables x, y, and z are given as
x = xn, y = yn, and z = zn. Then we can get

K11 =− axn + btanh(xn) + yn − kznxn

K21 =− cyn − dtanh(xn)

K31 =G(xn)− 0.1zn − 1 (9)

Secondly, the temporary variables are reassigned as x =
xn + 0.5∆hK11, y = yn + 0.5∆hK21, and z = zn +
0.5∆hK31, where ∆h is a sampled interval. Then one gets

K12 =− a(xn + 0.5∆hK11) + btanh(xn + 0.5∆hK11)

+ (0.5∆hK21)− k(zn + 0.5∆hK31)(xn + 0.5∆hK11)

K22 =− c(0.5∆hK21)− dtanh(xn + 0.5∆hK11)

K32 =G(xn + 0.5∆hK11)− 0.1(zn + 0.5∆hK31)− 1 (10)

Thirdly, reassigning the temporary variables as x = xn +
0.5∆hK12, y = yn + 0.5∆hK22, and z = zn + 0.5∆hK32,
we can get

K13 =− a(xn + 0.5∆hK12) + btanh(xn + 0.5∆hK12)

+ (0.5∆hK22)− k(zn + 0.5∆hK32)(xn + 0.5∆hK12)

K23 =− c(0.5∆hK22)− dtanh(xn + 0.5∆hK12)

K33 =G(xn + 0.5∆hK12)− 0.1(zn + 0.5∆hK32)− 1 (11)

Finally, these three temporary variables are redefined as x =
xn + ∆hK13, y = yn + ∆hK23, and z = zn + ∆hK33, and
we can obtain

K14 =− a(xn + ∆hK13) + btanh(xn + ∆hK13)

+ (∆hK23)− k(zn + ∆hK33)(xn + ∆hK13)

K24 =− c(∆hK23)− dtanh(xn + ∆hK13)

K34 =G(xn + ∆hK13)− 0.1(zn + ∆hK33)− 1 (12)

With (9) – (12), the discrete-time model can be obtained as xn+1 = xn + ∆(K11 + 2K12 + 2K13 +K14)/6
yn+1 = yn + ∆(K21 + 2K22 + 2K23 +K24)/6
zn+1 = zn + ∆(K31 + 2K32 + 2K33 +K34)/6

(13)

In an iterative process, xn, yn, and zn provide data for the
system, while xn+1, yn+1, and zn+1 provide data for the next
iteration.

B. FPGA-based implementation

The hyperbolic tangent function, known for its smooth
saturation characteristics, is used as the activation function in
the MTLN. However, implementing this activation function

in an FPGA-based neuron model presents challenges due to
hardware resource limitations. To address this issue, Kwan et
al. introduced a simple sigmoid-like second-order piecewise
activation function that can be directly implemented in hard-
ware and closely approximates the behavior of the hyperbolic
tangent function [35]. In pursuit of enhanced hardware effi-
ciency, we adopt this approximated tanh function in our FPGA
implementation. The approximation is expressed as

tanh(x) ≈

 1, M < x
Hs(x), −M ≤ x < M
−1, x < −M

(14)

Hs(x) =

{
x(µ− θx), 0 ≤ x < M
x(µ+ θx), −M < x < 0

(15)

where µ=1 and θ=0.25 represent the slop and gain of Hs(x),
respectively, and M=2 determines the length of the middle
area of the function.

We have developed an FPGA-based digital circuit for
the RK4 algorithm-driven discrete-time system (6) using the
Xilinx xc7z020clg400-1 platform, with a sampled interval
of 0.0001. The Verilog Hardware Digital Language (Verilog
HDL) was utilized to write the program code, and the variable
values are outputted through a digital-to-analog converter
(DAC) chip (AD9767). A 32-bit fixed-point decimal format,
comprising 1 sign bit, 6 integer bits, and 25 decimal bits,
is employed for precision. The hardware setup, including the
Zynq FPGA, AD9767 DAC, analog oscilloscope, and the Vi-
vado simulation platform is exhibited in Fig.9(a). Additionally,
the program flow block diagram is provided in Fig.9(b). The
MTLN model features five input signals and three output
signals. The CLK and RST are 1-bit input signals used
for synchronizing each module unit. To achieve the desired
processing speed, a clock frequency of 50MHz was selected
for the FPGA implementation. The initial values x0, y0, and
z0 are 32-bit fixed-point decimals. The three 32-bit output
signals xn, yn, and zn represent the state at the n-th iteration,
which are fed back into the MTLN block for the (n + 1)-
th iteration and into the Data Transfer block for DAC output
signal preparation. The Data Transfer unit performs truncation
of bits [31:18] from the input 32-bit fixed-point decimals.
According to the numerical simulation results presented in
Fig.7, it can be determined that the minimum value of state
variable x1 is greater than -9.5, and the minimum value of state
variable x3 is greater than -2.5. Therefore, in order to ensure
that the output data of the data transfer block is positive, offset
values of 9.5 and 2.5 are respectively added to the variables
xn and zn. Subsequently, the digital signals are converted to
analog signals by the DAC and captured by an oscilloscope.
The oscilloscope results are presented in Fig.10. These results
confirm that the phase diagrams of FPGA-implemented MTLN
are consistent with its numerical simulations, validating the
FPGA implementation.

V. APPLICATION IN IMAGE ENCRYPTION

Modern cryptographic algorithms, including the Data En-
cryption Standard (DES), Advanced Encryption Standard
(AES), and Rivest-Shamir-Adleman (RSA) possess advantages
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Fig. 9. FPGA-based circuit implementation for the MTLN, (a) hardware
experimental prototype with the captured chaotic attractor, (b) flow block
diagram of FPGA-based MTLN.

(a) (b) (c)

(d) (e) (f)

Fig. 10. FPGA-based implementation of multi-wing chaotic attractors in x1−
x3 plane with (a) 4-wing, (b) 6-wing, (c) 8-wing, (d) 10-wing, (e) 12-wing,
(f) 14-wing.

like ability to resistance to a wide range of attacks [36],
high speed [37], and efficient hardware implementation [38].
However, these algorithms can encounter challenges when
dealing with the large volume of image data and the intricate
interdependencies among pixels. Chaotic systems, character-
ized by their extreme sensitivity and unpredictability, provide
a compelling alternative for image encryption [39]–[41]. The
adoption of chaos-based encryption methods has gained signif-
icant traction in the realm of secure communication and has
been successfully implemented in practical applications, in-
cluding optical communication [42]. Therefore, the exploration
of chaos-based encryption techniques is of great importance
for their application in secure communication.

A. Description of the cryptosystem

This paper introduces an image encryption scheme that
leverages the proposed model (6) to demonstrate its potential
application in secure communication. The encryption scheme’s
architecture is depicted in Fig.11. The encryption process
begins with a gray-scale plaintext image P of dimensions
M and N. For ease of manipulation, the plaintext image P
is stretched into a one-dimensional vector containing M×N
elements. The encryption and decryption procedures within
the cryptosystem are outlined as follows:

The encryption operation can be decomposed into three
main parts: pixel substitution-scrambling-substitution, where
fD1 and fD2 represent the first and second pixel substitution
operations, respectively, and fS denotes the pixel scrambling
operation. The pixel substitution operation refers to chang-
ing the pixel values of an image, while operation of pixel
scrambling represents altering the positions of image pixels.
In chaos-based image encryption systems, pixel substitution

fD1 fS

Chaotic System

fD2

D1 CD2

K1 K2 K3

P

Fig. 11. Chaotic attractor based image encryption scheme.

and scrambling are typically combined to enhance security
[43]. The chaotic sequences K1, K2 and K3 are obtained by
iterating the system (6) using the initial values set by the user.
And they are applied to fD1, fS and fD2 respectively, resulting
in intermediate output variables D1, D2 and the final encrypted
result C.

K1 = mod(floor((Y1 + Y2)× 1012), 256) (16)

D1(k) = P (k)⊕mod(D1(k − 1) + P (k − 1)

+K1(k), 256)⊕K1(k − 1)
(17)

The chaotic sequence K1 consists of M×N random numbers
within the region [0,255], and its values can be obtained by
(16), where Y1 and Y2 are the state variables of (6). The k-
th element of the intermediate output D1 in the first pixel
substitution operation fD1 with K1 can be calculated by (17),
where P (k) and K1(k) represent the k-th element in the
original image P and the chaotic sequence K1 and P (k− 1),
K1(k−1) and D1(k−1) denote the previous step element of
the original image P , chaotic sequence K1 and intermediate
output D1, respectively.

[∼,K2] = sort(Y1 + Y2 + Y3) (18)

D2(K2(M ×N − k + 1)) = D1(K2(k)) (19)

In the pixel scrambling operational, the sum of state variables
are used to get the chaotic sequence K2 through (18), where
sort(·) denotes a function that sorts elements in ascending
order. The single non-repetitive transformation of intermediate
output D1 is realized by (19), where D1(k) denotes the k-th
element in D1.

K1 = mod(floor((Y1 + Y3)× 1012), 256) (20)

C(k) = D2(k)⊕mod(C(k − 1) +K3(k), 256)

⊕mod(D2(k − 1) +K3(k − 1), 256)
(21)

The final encrypted result C is obtained by applying another
pixel substitution operation fD2 to the scrambled intermediate
result D2. The pixel substitution key K3 for this operation
is generated by (20), where Y1 and Y3 represent the first
and the third state variables of (6), respectively. In this
pixel substitution process, the value of the k-th element is
determined by (21), where D2(k) and K3(k) represent the k-th
element in D2 and K3, respectively and D2(k−1), K1(k−1)
and C(k−1) denote the previous step element of D2, K3 and
the final output C, respectively.

Quanli
下划线

Quanli
下划线
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The primary strengths of the encryption scheme designed in
this paper reside in its innovative approach to secure generat-
ing current ciphertext. Specifically, it meticulously integrates
the current plaintext, preceding plaintext, current key, prior
key, and previous ciphertext through bitwise XOR and modulo
operations. The strategic integration of the feedback mech-
anism significantly enhances the security of the encryption
system [44]–[46].

The restoration of the original image from the encrypted
data is achieved by inverting the encryption process. The
MATLAB implementation of the above encryption and
decryption algorithms have been uploaded to the github
public repository and it can be downloaded by visiting
https://github.com/quanliden/MultiwingEncryptionCode.git.

(a) (b) (c)

Fig. 12. Simulation results of the cryptosystem where (a) is the original
image, (b) is the encrypted image (c) is the decrypted image.

Initialize the values of (6) to 0.1 for each state variables. For
the sake of simplicity, all initial values within the pixel sub-
stitution process, namely P (0), D1(0), K1(0), D2(0), K3(0)
and C(0) are uniformly set to 1. In practical applications, users
have the flexibility to define these initial values. The numerical
simulation outcomes of the cryptosystem are demonstrated
in Fig.12. The results indicate that the encrypted image no
longer contains any visually useful information, while the
decrypted image is visually indistinguishable from the original
image. This result reflects the effectiveness of the designed
cryptosystem in terms of encryption and decryption from a
visual perspective.

B. Security analysis

The fundamental components of a cryptosystem are the
plaintext, ciphertext, encryption algorithm, decryption algo-
rithm, and key. Adhering to Kerckhoff’s principle, the encryp-
tion and decryption algorithms of a cryptosystem are made
public, with the key being only confidential element. Given the
cryptanalyst’s knowledge of plaintext and ciphertext, typical
attack methodologies can be categorized into four distinct
types:

(1) Ciphertext-only attack: The adversary has access to some
ciphertext but no corresponding plaintext or key information.

(2) Known-plaintext attack: The adversary is aware of
certain plaintext-ciphertext pairs, which can be used to analyze
the encryption process.

(3) Chosen-plaintext attack: The adversary is granted tem-
porarily access to the encryption capabilities of the cryptosys-
tem, allowing them to select specific plaintext and obtain the
corresponding ciphertext.

(4) Chosen-ciphertext attack: The adversary gains temporary
decryption authority within the cryptosystem, enabling them
to choose ciphertext and obtain the corresponding plaintext.

In the context of ciphertext-only and known-plaintext at-
tacks, two prevalent strategies are typically employed: brute
force and statistical analysis [47]. As for defending against
brute force attacks, selecting the initial value of the system
(6) as the encryption key. Given the computational precision
of a computer at 10−14, the key space of the proposed
encryption system is calculated to be 1042, which is exceeds
2100. This substantial key space renders the system highly
resistant to brute force attacks [48]. Regarding the defense
against statistical attacks, Fig.13 illustrate the statistical char-
acteristics of both the plaintext, Starfish, and its decrypted
counterpart. The figure demonstrates that the pixel histogram
of the encrypted image is uniformly distributed, devoid of any
discernible statistical patterns. Furthermore, the distribution
of adjacent pixel pairs covers the entire area, effectively
disrupting the original diagonal distribution characteristics.
These observations confirm that the designed system is capable
of effectively withstanding statistical attacks [49].

Fig. 13. Statistical analysis of the plaintext and the ciphertext where (a) and
(b) are the histogram of the pixels; (c) and (d) are the correlation of adjacent
pixels.


D1(k) = P (k)⊕mod(D1(k − 1) + P (k − 1)

+K1(k), 256)⊕K1(k − 1)

D0
1(k) = P 0(k)⊕mod(D0

1(k − 1) + P 0(k − 1)

+K1(k), 256)⊕K1(k − 1)

(22)

∆D1(k)⊕∆P (k) = mod((∆D1(k − 1) + ∆P (k − 1)

+K1(k))⊕K1(k), 256)
(23)

∆C(k)⊕∆D2(k) = mod(C(k − 1) +K3(k), 256)

⊕mod(D2(k − 1) +K3(k − 1), 256)

⊕mod(C0(k − 1) +K3(K), 256)

⊕mod(D0
2(k − 1) +K3(k − 1), 256)

(24)

Quanli
矩形
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In scenarios involving plaintext-ciphertext pair attacks, such
as chosen-plaintext and chosen-ciphertext attacks, let us delve
into the methodology of differential cryptanalysis, a pivotal
cryptographic analysis technique for assessing the security of
encryption systems. Firstly, we consider the pixel substitution
operation in the first round, characterized by operational rela-
tionship in (17). Define D0

1 as an image composed entirely of
zero elements. Let P 0 represent the plaintext image obtained
after feeding D0

1 into the first round of the inverse pixel
substitution process of the decryption algorithm. To elucidate
the relationship between the difference plaintext and the dif-
ference ciphertext, we need to rearrange the formula of (22).
According to the computational relationship, we derive the
relationship between the difference plaintext and the difference
ciphertext, as shown in (23). Here ∆P and ∆D1 denote the
difference plaintext and ciphertext, respectively. The formula
reveals that the influence of the chaotic random sequence
K1 persists in the form of the difference plaintext-ciphertext
pair, thereby indicating that K1 plays a protective role in
this process. Similarly, in the subsequent pixel substitution
process, we can get the relationship of the difference plaintext-
ciphertext pair as (24). By observing the formula, it can be
found that the influence of K3 also cannot be eliminated. The
above analysis based on the plaintext-ciphertext pair verified
the keys in the designed encryption system has a protective
effect on the encryption process, thereby confirming that the
designed system has a certain level of security [50]–[52].

C. Numerical simulations

Key sensitivity analysis: Key sensitivity refers to the prop-
erty where a minor alteration in the encryption key should
prevent the decrypted image from revealing any discernible
original image information. Fig.14 illustrates the simulation
outcomes, showcasing the successful decryption using the
original secret key and unsuccessful attempts with minuscule
(10−15) variations in different key values. The results confirm
that even the slight change in the secret key makes the
retrieval of the original image information from the ciphertext
impossible.

(a) (b) (c) (d)

x1(0)+10-15 x2(0)+10-15 x3(0)+10-15(0.1,0.1,0.1)

Fig. 14. Decrypted images with (a) correct secret keys, (b)-(d) incorrect secret
keys with tiny variations in different initial values.

Histogram analysis: The distribution of pixel values
throughout an image is a significant characteristic, and the
histogram serves as a valuable tool for visualizing this distribu-
tion. In a robust encryption scheme, generating a flat histogram
for the encryption image is crucial to defend against statistical
attacks. The pixel histograms for the four original images and
their corresponding encrypted counterparts are presented in

TABLE II
CORRELATION COEFFICIENTS OF ORIGINAL AND ENCRYPTED IMAGES

Direction Plain image Cipher image
Horizontal 0.9582 -0.0154

Vertical 0.9629 0.0084
Diagonal 0.9404 -0.0103

Fig.13 (a) and (b). A comparison of the histograms of the
encrypted images (Fig.13(b)) with that of the original images
(Fig.13(a)) reveals that the proposed encryption scheme ef-
fectively disrupts the correlation within the original image,
thereby offering strong defense against statistical attacks.

Correlation analysis: The correlation coefficient between
adjacent pixels, as defined by (25), is a significant metric for
assessing the robustness of the encrypted image. In a plaintext,
adjacent pixels typically exhibit a high correlation coefficient,
approaching 1 in all directions. Conversely, for an effective
encryption scheme, the correlation coefficient of the encrypted
image should approach zero, indicating a lack of correlation
between adjacent pixels. This property is essential for ensuring
that the encrypted image is resistant to pattern recognition
and other forms of statistical analysis that could potentially
compromise the security of the encrypted data.

ρxy =

∑N
i=1(xi − E(x))(yi − E(y))√∑N

i=1(xi − E(x))2
√∑N

i=1(yi − E(y))2
(25)

The correlation coefficients for the Starfish image in various
directions (horizontal, vertical, diagonal) are depicted in Fig13
(c) and (d). Table II provides a summary of these coefficients
before and after encryption. The results clearly show that
the correlation coefficients for the original image approach
1, whereas those for the encrypted images are nearly zero.
This indicates that the encrypted images retain no discernible
correlation information from the original image, effectively
resisting any attempts to deduce the original content based on
correlation analysis.

Differential attack analysis: Differential attack analysis in-
volves manipulating one or more pixel values in the plaintext
image to generate a new decrypted image. Subsequently,
attackers analyze the differences in pixel values between the
two encrypted images to identify patterns that could potentially
undermine the encryption algorithm. Quantifying the impact
of a single-pixel change in the plaintext image on the resulting
ciphertext image is crucial. To this end, the number of pixel
change rates (NPCR) and the unified average change intensity
(UACI) serves as key metrics. Calculation of NPCR and UACI
values can be carried as follows.

NCPR =
∑

i,j
D(i,j)
M ·N × 100%

D(i, j) =

{
0, if C1(i, j) = C2(i, j)
1, if C1(i, j) 6= C2(i, j)

UACI = 1
M ·N

∑
i,j
|C1(i,j)−C2(i,j)|

255 × 100%

(26)

where M and N denote the image width and height of,
respectively, C1 and C2 represent the cipher image before and
after a single-pixel change in the plaintext image, respectively.

The NPCR and UACI values, detailed in Table III, reflect
the results of altering a single pixel in the plaintext image



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III
RESULTS OF NCPR AND UACI TEST FOR THE EXPERIMENTAL IMAGES

image changed
position NPCR(%) UACI(%)

plaintext (37,69) 98.87 33.22
ciphertext (95,21) 99.58 33.38

TABLE IV
COMPARISON OF ENCRYPTION/DECRYPTION SPEED WITH AES

AES-128 AES-192 AES-256 This work
Encryption 15.71 16.04 16.42 0.53
Decryption 26.47 28.01 29.71 0.47

at random. The close alignment of the calculated NPCR and
UACI values with these theoretical benchmarks, as observed
in the cipher images produces by the encryption system,
demonstrates a high level of resistance to different attacks.

D. Performance comparison

In the field of data encryption, the AES demonstrates robust
security due to its intricate mechanisms, including byte sub-
stitution, row shifting, column mixing, and other multifaceted
operations. However, when applying AES to image encryption,
it also encounters several challenges. For instance, image
data is characterized by its vast volume, high information
redundancy, and strong correlation among adjacent pixels,
requiring AES to process numerous data blocks during the
encryption process. Despite the notable advantages of AES
in the realm of data security, its encryption speed poses a
challenge in image encryption tasks. Table IV compares the
speed difference between the chaos-based image encryption
method proposed in this work and the AES-based encryption
method. For fairness, we utilized an open-source, manually
coded AES encryption algorithm as specified in [53]. The
experiment was conducted on a computer equipped with an
AMD Ryzen 7-5800H CPU with a base clock speed of
3.2GHz, complemented by 32GB of RAM. The operating
system was Windows 11, and software environment included
MATLAB version 9.13 (R2022b). By examining the Table
IV, it can be seen that chaos-based encryption offers superior
speed performance compared to AES-based image encryption.

E. Analysis of non-ideal characteristics of memristor

Given the issue of device inconsistency inherent in memris-
tors produced by the current manufacturing process, we aim
to more realistically account for the limitations of physical
memristors within the encryption system. To achieve this, we
introduce noise into the state variable z to simulation the
device inconsistency characteristics that memristors exhibit
during their operational lifecycle. Within the system described
by (6), the state variable z represents the resistance value of
the memristor. Consequently, incorporating noise into this state
variable enables us to mimic the non-ideal characteristics of
physical memristors to a certain extent. The formulation for

the simulated non-ideal characteristics in the memristor can
be written as

ẑ = z + k(max(z)−min(z))rand(N) (27)

where ẑ is the resistance value affected by non-ideal phenom-
ena, k is the variation strength from the ideal value of z and
N is the total number of state variable z.

Fig. 15. Non-ideal characteristics of memristor effects on decrypted image
measured by PSNR and correlation coefficient.

Taking the image of parrot as an example, Fig. reffig:devva
shows the simulated results of the decrypted image effect
caused by the mismatch degree of the memristor during the
decryption process. The peak signal-to-noise ratio (PSNR) and
the correlation coefficient between the original image and
decrypted image are selected as indicators to measure the
impact caused by the variation of memristor in the decryption
process. For clarity, the reciprocal of the logarithm of k is
used as the horizontal axis, and the larger the value of the
horizontal axis, the less influence of the non-ideal factors on
the memristor during the decryption. It can be observed from
the figure that the non-ideal state of the memristor during the
decryption process has a significant impact on the performance
of the decrypted image. When k is approximately 10−14,
the PSNR value exceeds 30dB, indicating that the quality
of the decrypted image obtained at this time is comparable
to that of the original image. Through the analysis of this
process, we can find that during the decryption process, when
the resistance value of the memristor is affected by strong
non-ideal characteristics such as device-to-device variability,
it will severely affect the quality of the decrypted image.
Therefore, improving the manufacturing process to fabricate
memristors with high consistency is of great significance for
the application and promotion of memristors.

VI. CONCLUSION AND OUTLOOK

This paper introduces, for the first time, a butterfly-shaped
double-wing chaotic attractor generated by a memristive TLN.
The number of chaotic butterfly wings can be effectively
extended by simply manipulating the state function of the
memristor. The rich dynamical properties of the proposed
MTLN are verified through multiple numerical simulations,
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such as Lyapunov exponent spectra, bifurcation diagrams,
and attraction basins. This lays the groundwork for revealing
chaotic dynamical phenomena in neurons. The digital circuit
design, implemented on FPGA, not only validates the pro-
posed mathematical model but also offers a reliable circuit
model reference for hardware research in brain-inspired com-
puting using memristor-based digital circuits. Furthermore, the
image encryption application proposed in this paper, which
leverages the multi-wing MTLN, demonstrates excellent key
sensitivity, good resistance to statistical attacks, and robustness
against noise and data loss attacks through various analytical
methods.

In the aspect of building neural systems with complex
dynamical behaviors, we will devote to study neuron and
neural network models that incorporate complex topology and
intricate dynamics, in the future. In encryption applications,
due to the extreme key sensitivity of the encryption system,
there may be unpredictable impacts on the system caused by
the variability of memristor devices. In our future works, we
will conduct in-depth research on this issue from the perspec-
tive of using error correction codes, adaptive management of
keys and other approaches.
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