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Abstract—Most existing visual object tracking approaches are
implemented based on von Neumann computation systems, which
inevitably have the problems of high latency. Additionally, remote
server processing of video resources requires a large amount
of data transmission over the Internet, which limits real-time
tracking performance. The integration of visual object tracking
technology into electronic devices has become a new trend.
However, current visual object tracking approaches have high
algorithm complexity, making it difficult to design circuits to im-
plement the corresponding functions. In this paper, a memristor-
based attention network and its corresponding algorithm are
proposed to achieve online real-time tracking under parallel
computing. Memristors are used to construct attention encoding
circuits to record changes of the target in historical frames,
and adjust attention signals to the target online and in real-
time during the tracking process, avoiding the latency problem
of the von Neumann architecture. Inspired by the working
process of γ-GABAergic interneuron and tripartite synapse, we
propose an attention allocation module to selectively allocate
attention values. Combining the Winner-Take-All principle, we
design a target localization circuit and an optimal attention
zone selection circuit for parallel computation to track the
location of the target. Finally, experiments and analyses on OTB-
100, NFS, and VOT-RTb2022 benchmark datasets verify that
the proposed memristor-based attention network has promising
tracking performance and achieves a tracking speed of 1000 FPS,
demonstrating superior real-time performance.

Index Terms—Attention network, memristor, object tracking,
allocation module, online, real-time, winner-take-all.

I. INTRODUCTION

V ISUAL Object Tracking (VOT) is one of the key prob-
lems in computer vision, which aims to track any given

object in a sequence of video frames based on an initial state.
VOT has wide applications in the fields of autonomous driving,
visual surveillance, visual navigation, and robotics [1], [2].

Currently popular trackers are mostly designed based on
Correlation Filter (CF) or Siamese networks [3]. The CF-based
approaches convert computation from the time domain to the
frequency domain, training filters for distinguishing between
background and target. In 2017, Valmadre et al. [4] proposed a
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tracking model called CFNet, which interprets the correlation
filter learner as a differentiable layer in deep neural networks,
enabling the learning of deep features tightly coupled with
the correlation filters. In 2024, Yang et al. [5] proposed a
new correlation filter through saliency-driven localization and
cascaded scale estimation (SDCS-CF), which improves the
confidence and robustness of target localization. Nevertheless,
the CF-based approaches usually require additional computa-
tional components and have a large computational cost. The
Siamese network-based approaches takes Siamese networks
as the main body, and traditional Siamese networks perform
feature matching by directly calculating the distance between
two features. In 2016, Bertinetto et al. [6] proposed a novel
fully-convolutional Siamese network called SiamFC for end-
to-end training of a convolutional neural network (CNN) for
tracking objects. In 2018, Li et al. [7] proposed a Siamese
region proposal network (SiamRPN). SiamRPN consists of
Siamese subnetwork for feature extraction and region proposal
subnetwork including the classification branch and regression
branch, and is trained end-to-end using a large-scale dataset
of image pairs. In 2020, Chen et al. [8] views the visual
tracking problem as a parallel classification and regression
problem, and proposed a Siamese Box Adaptive Network
(SiamBAN) to directly classifies objects and regresses their
bounding boxes in a unified fully convolutional network. In
2023, Wei et al. [9] proposed an online updatable Siamese
tracker called SiamSTC, which exploits spatiotemporal context
to improve the accuracy and robustness of tracking. However,
matching operations and complex network structures make
Siamese network-based approaches time-consuming.

Recently, Transformer that introduces the attention mech-
anism to enhance and integrate the features of the tracked
object has achieved good tracking performance. In 2021,
Chen et al. [10] proposed a Transformer Tracking (TransT)
method, which effectively combines the template and search
region features solely using attention, including an ego-context
augment module based on self-attention and a cross-feature
augment module based on cross-attention. In 2022, Mayer et
al. [11] proposed a Transformer-based target model prediction
network for tracking called ToMP, where Transformer is used
to capture global relationships. In 2023, Nardo et al. [12]
proposed a novel visual object tracking model called ViTCRT
based on Siamese network and vision Transformer, which
utilizes the learning and memory capabilities of the visual
Transformer to achieve tracking. Although the Transformer
based approaches achieve higher tracking performance, the
lack of sufficient training data to train network structures and
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Fig. 1. Framework of the memristor-based attention network for object tracking.

the complexity of the models limit their applications.

Current VOT approaches are almost all run on the comput-
ing systems based on the von Neumann architecture such as
CPUs and GPUs. Due to the physical separation of the storage
unit and computing unit of the von Neumann architecture, the
frequent data transmission between the storage unit and the
computing unit, as well as the performance difference between
them, result in varying degrees of latency in trackers used
for VOT, limiting the real-time performance of the tracker at
the hardware level [13]. In addition, the processing of video
resources by remote servers requires a large amount of data
transmission over the Internet, and the time-consuming data
transmission also limits the real-time tracking performance
of trackers [14], [15]. Therefore, integrating object tracking
technology into electronic devices is a promising trend. How-
ever, the existing VOT approaches contain a large number of
network models and complex functions, making it difficult to
design corresponding circuits to implement related algorithms
[16]. As a new type of non-volatile nanodevice, memristors
have advantages such as in-memory computing, low power
consumption, and ease of integration [17], providing a novel
approach for hardware design of VOT. The memristor as
the fourth basic circuit element to represent the relationship
between charge and flux was defined by Chua [18], and was
first physically produced by Hewlett Packard Laboratories in
2008 [19]. Since then, memristors have been widely used in
circuit designs such as network circuits [20]–[23], computing
circuits [24]–[27], memristor crossbar [28]–[30], and brain-
inspired circuit [31], [33]. Taking advantage of the in-memory
computing characteristics of memristors, VOT circuit design
based on memristors can greatly simplify the circuit structure,
achieve online real-time computation, and greatly improve
tracking speed [32]. However, the attention network based on
memristors for online real-time object tracking has yet to be
proposed.

In this paper, a memristor-based attention network (MAN)
and its corresponding algorithm are proposed for online real-
time object tracking. The MAN records changes of the target
in historical frames to adjust the attention encoding of the

attention zone online, while allocating attention values to the
current frame according to the encoded attention signals, and
performs parallel computation based on the Winner-Take-All
(WTA) principle to locate the target. The contributions of this
paper are as follows:
1) Attention encoding circuits are designed based on mem-

ristors to record target information from historical frames
and dynamically encode attention signals for the attention
zone online and in real-time, avoiding the latency prob-
lem of the von Neumann architecture.

2) Inspired by the working process of γ-GABAergic
(GABA) interneuron and tripartite synapse, an attention
allocation module is designed to selectively allocate atten-
tion values. Combined with the WTA principle, a target
localization circuit and an optimal attention zone selec-
tion circuit are designed for parallel computing attention
allocation results and tracking the target location.

3) The proposed MAN is designed based on the corre-
sponding algorithm and realizes online real-time tracking
under parallel computing, with a tracking time of only 1
ms per frame and a tracking speed of 1000 frames per
second (FPS), which is higher than the other trackers.
Experiments on the tracking benchmarks demonstrate
that the MAN has promising tracking performance and
superior real-time performance.

The rest of the paper is organized as follows: Section II
introduces the network framework and algorithms. Section III
provides the circuit design and analysis of the MAN. Section
IV performs experiments and performance analysis on the
MAN. Section V concludes this work.

II. NETWORK FRAMEWORK AND ALGORITHM

A. Network framework

The framework of the memristor-based attention network
is shown in Fig. 1. The framework mainly consists of five
parts: voltage encoding, attention encoding, attention alloca-
tion, target localization, and optimal attention zone selection.
Set the current frame be the N th frame, and the attention
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zones that successfully locate the target in the (N − 1)th
and (N − 2)th frames are set as PC and PD, respectively.
The image size of each frame is set to H × W . The size
of the attention zone is set to n × m, where the number
of pixels is L = m · n. The size of each visual zone is
the same as the attention zone, and the number of visual
zones can be calculated as K =

(
H−n

s + 1
) (

W−m
s + 1

)
,

where s is the pixel intervals of each visual zone. We perform
voltage encoding on the pixel matrixes PC and PD of the
attention zones, obtaining voltage-encoded matrixes C and D,
respectively. At the same time, attention encoding is performed
on the voltage values within C and D to obtain the attention
signal matrix A, which is used to allocate attention values to
different visual zones of the current frame. The historical target
information is stored in memristors to adjust the attention
encoding process online, thereby eliminating tracking drift or
even tracking loss caused by tracking errors. The attention
allocation is calculated from the encoded voltages in matrices
A1, A2, · · · , AK of visual zones and the attention signals in
matrix A, and the attention allocation rule is inspired by the
working process of GABA interneuron and tripartite synapse.
Based on the WTA principle, we perform parallel computation
on the attention allocation results and locate the target by the
maximum attention output values. Furthermore, we set the
location of the attention zone in the first frame, and set Q
attention zones of different sizes to work independently to
output their respective maximum attention results, and then
utilize the WTA principle to select the optimal attentional
zone, thereby eliminating the impact of target scale changes.

B. Algorithm design

The algorithms of the MAN are shown in Algorithm 1 and
Algorithm 2. In Algorithm 1, cr(t) is the voltage-encoded
signal of the pixel prc , and dr(t) is the voltage-encoded signal
of the pixel prd, where α is an encoding coefficient and
r = 1, 2, . . . , L. The weight adjustment signal er(t) is used to
adjust the rth attention weight wr(t), and er(t) is calculated
from cr(t) and dr(t). The constants β1 and β2 are the gain
factors of cr(t) and dr(t), respectively. Vth1 and Vth2 are the
thresholds for weight adjustment. If er(t) > Vth1 > 0, the
change of wr(t) varies with η1(t)er(t). If Vth1 ≥ er(t) ≥
Vth2, wr(t) remains unchanged. If 0 > Vth2 > er(t), the
change of wr(t) varies with η2(t)er(t). Thereby the weight
change is affected by er(t), where η1(t) and η2(t) are weight
adjustment variables. In this paper, the conductance of the
memristor is used to represent the weight, thus the weight ad-
justment parameters are consistent with the memristor model.
The signals cr(t), er(t) and wr(t) jointly participate in the
generation of the attention signal ar(t), where λ1 and λ2

are the gain coefficients. The signal ari (t) is the voltage-
encoded signal of the pixel pri in the ith visual zone. The
allocation control signal fri (t) is calculated from ari (t) and
the attention signal ar(t), and fri (t) = ξ (ari (t) + ar(t)),
where ξ is a gain factor. The allocation control signal fri (t)
is used to control the attention value allocated to yri (t). If
fri (t) ≤ Vth3, then the attention value allocated to yri (t) is
0. If Vth4 > fri (t) > Vth3, then the attention value allocated

Algorithm 1 Attention encoding, attention allocation, and target
localization algorithm
1: K ← Number of visual zones
2: L← Number of pixels in an attention zone
3: t← 1
4: for i = 1 to K do
5: for r = 1 to L do
6: cr(t)← αprc //Voltage encoding of pixel prc
7: dr(t)← αprd //Voltage encoding of pixel prd

// Subalgorithm 1. Attention encoding
8: er(t) = β1cr(t)− β2dr(t) //Weight adjustment signal
9: if er(t) > Vth1 > 0 then
10: ∆wr = η1(t)er(t) //Change of weight
11: end if
12: if Vth1 ≥ er(t) ≥ Vth2 then
13: ∆wr = 0
14: end if
15: if 0 > Vth2 > er(t) then
16: ∆wr = η2(t)er(t)
17: end if
18: ar(t)=− (λ1cr(t)+λ2wr(t)er(t)) //Attention signal

// Subalgorithm 2. Attention allocation
19: ari (t)← αpri //Voltage encoding of pixel pri
20: fri (t) = ξ

(
ari (t) + ar(t)

)
//Allocation control signal

21: if fri (t) ≤ Vth3 then
22: yri (t) = 0 //Attention allocation value
23: end if
24: if Vth4 > fri (t) > Vth3 then
25: yri (t) = ϕ(fri (t))
26: end if
27: if fri (t) ≥ Vth4 then
28: yri (t) = 0
29: end if
30: end for

// Subalgorithm 3. Target localization
31: zi(t) = ρ(y1

i (t) + y2
i (t) + . . .+ yLi (t)) //Allocation result

32: end for
33: vz(t) = max(z1(t), z2(t), · · · , zK(t)) //Maximum value
34: for i = 1 to K do
35: if zi(t) ≥ vz(t) then
36: Zi(t) = φ //Localization result
37: end if
38: if zi(t) < vz(t) then
39: Zi(t) = 0
40: end if
41: end for
42: t← t+ 1

Algorithm 2 Optimal attention zone selection algorithm
1: Q← Number of attention zones
2: t← 1
3: for j = 1 to Q do
4: xo(t) = max(ε1vz1(t), ε2vz2(t), · · · , εQvzQ(t))
5: if εjvzj(t) ≥ xo(t) then
6: Oj(t) = ψ //Selection result
7: end if
8: if εjvzj(t) < xo(t) then
9: Oj(t) = 0
10: end if
11: end for
12: t← t+ 1

to yri (t) is ϕ(fri (t)), where ϕ(fri (t)) is a function related to
the value of fri (t). If fri (t) ≥ Vth4, then the attention value
allocated to yri (t) is 0. Vth3 and Vth4 are the thresholds of the
attention allocation, and ξ is a gain coefficient. The attention
value allocation rule for yri (t) is inspired by the working
process of GABA interneuron and tripartite synapse, which
is elaborated in Section III-C. zi(t) is the attention allocation
result of the ith visual zone, where ρ is a gain factor. vz(t)
is the maximum value from the attention allocation results
z1(t), z2(t), · · · , zK(t) of K visual zones. If zi(t) ≥ vz(t),
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then Zi(t) = φ, and the ith visual zone is the target location
corresponding to the maximum attention allocation result.

In Algorithm 2, xo(t) is the maximum value in vz1(t),
vz2(t), . . . , vzQ(t) obtained from Q attention zones of different
sizes, where vzj(t) is the maximum attention allocation results
from the jth attention zone, and j = 1, 2, . . . , Q. The coeffi-
cient εj is the normalization factor of vzj(t), and its value is
the reciprocal of the number of pixels in the j-th attentional
zone. The optimal attention zone is selected by comparing the
amplitudes of εjvzj(t) and vo(t). If εjvzj(t) ≥ xo(t), then
Oj(t) = ψ, and the jth attention zone is the optimal attention
zone. The processing time for one frame is set as Tf , and all
calculations are performed in parallel.

Existing VOT methods involve a large number of network
models and computational functions, leading to high algorithm
complexity [3], [16]. It is difficult to design circuits to im-
plement corresponding functions, so these methods need to
run on CPUs or GPUs with von Neumann architecture, which
causes the latency problem and cannot achieve higher real-
time performance [13]. Different from VOT methods running
on CPUs and GPUs, the proposed algorithm can design
a corresponding memristor-based VOT circuit with non-von
Neumann architecture to achieve online real-time tracking
of the target. The algorithm parameters correspond to the
circuit parameters, and the algorithm parameter settings are
as follows: α = 0.1, β1 = 0.1, β2 = 0.1, Vth1 = 0.5,
Vth2 = −0.5, Vth3 = −5.5, Vth4 = 2.5, λ1 = 1, λ2 = −3000,
ξ = 0.5, ρ = 0.01, φ = 5, ψ = 5.

III. CIRCUIT DESIGN

A. Memristor Model

In recent years, various memristor models have been pro-
posed for circuit simulation, such as the TiO2 memristor model
[34] and the VTEAM model [35]. In this work, we utilize a
voltage-controlled threshold memristor model [36] for PSPICE
simulation, which is designed based on the experimental
data of Ag/AgInSbTe/Ta (AIST) memristors. Compared with
other memristor models, the AIST-based memristor model can
achieve stable regulation of memristance when applied pulse
voltages. The derivative of state variable in the AIST-based
memristor model is expressed as:

dw(t)

dt
=


µv

RON

D
ioff

i(t)−i0
F (w(t)) , v(t) > VT+ > 0

0, VT+ ≥ v(t) ≥ VT−

µv
RON

D
i(t)
ion
F (w(t)) , 0 > VT− > v(t),

(1)

F (w(t)) = 1 −
(

2w(t)

D
− 1

)2p

, (2)

M(t) = RON
w(t)

D
+ROFF

(
1−w(t)

D

)
, (3)

where i0, ioff and ion are constants, w(t) represents the state
variable of the memristor, µv is the average ion mobility and D
is the semiconductor film thickness. M(t) is the memristance.
ROFF and RON are the internal high and low memristances,
respectively. p is a positive integer. VT+ and VT− are positive

TABLE I
SIMULATION PARAMETERS OF MEMRISTORS

Parameters Setting
D (nm) 10
µv (m2s−1Ω−1) 3e-7
RON (kΩ) 1
ROFF (kΩ) 10
VT+ (V) 0.5
VT− (V) -0.5
ioff (A) 8e-8
ion (A) 1
i0 (A) 1e-7
p 10

and negative threshold voltages, respectively. F (w(t)) is a
window function. The simulation parameter settings of the
memristors are listed in Table I.

The configuration circuit for a memristor and the PSPICE
simulation results of the memristor are shown in Fig. 2. When
the voltage applied to the memristor does not exceed the
thresholds, the memristance remains unchanged. When the
voltage applied to the memristor exceeds VT+, the memris-
tance first decreases rapidly and then slowly. When the volt-
age applied to the memristor exceeds VT−, the memristance
increases rapidly and then slowly.
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Fig. 2. Configuration circuit for a memristor and PSPICE simulation results
of the memristor under different applied voltages.

B. Voltage encoding and attention encoding

Images are captured using CMOS image sensors, which
output the image information in digital signal form by Analog-
to-Digital Converter (ADC). For example, for an 8-bit digital
signal, there are a total of 256 (28) gray values ranging from
0 (black) to 255 (white). The voltage encoding is used to
converting image information into voltage signals. In the volt-
age encoding circuit as shown in Fig. 3, a Digital-to-Analog
Converter (DAC) is used to encode the u-bit digital signal of
a gray value into an analog voltage signal proportional to the
gray value. Each input of the DAC receives one bit of the
digital signal. The voltage encoding of the DAC for the gray
value can be represented as:

Vout =
Vref
2u

pgrad
Rd3

Rd2
, (4)

where pgrad is the gray value corresponding to the u-bit digital
signal, Vout is the output analog voltage. Vref is the reference
voltage of the DAC, which is generally the maximum output
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voltage. In this work, u is set to 8, Vref is set to +2.56 V,
Rd1 = Rd2 = 1 MΩ, Rd3 = 10 MΩ. The voltage encoding
time is set to 1 ms, which is also the parallel computing time
(the processing time) of our tracker for one frame, i.e. Tf =
1 ms.

Research indicates that the selection history of attention
plays an important role in the tracking performance of target
objects [37]. We combine the voltage-encoded signals of
the attention zones from the previous two frames with the
historical information stored in the memristor to perform
attention encoding. The attention encoding fully utilize the
historical information related to the target and pays attention to
the dynamic change of the scene, which can adjust the tracking
status online. Fig. 4 shows the attention encoding circuit for
encoding an attention signal a1,1(t). The signals a1,1(t) and
e1,1(t) can be calculated as:

e1,1(t) =

(
Ra2

Ra1
+ 1

)
Ra4

Ra3 +Ra4
c1,1(t) − Ra2

Ra1
d1,1(t), (5)

a1,1(t) = −
(
c1,1(t) − Ra5

M1,1
e1,1(t)

)
, (6)

where c1,1(t) and d1,1(t) are the voltage-encoded signals of
the (N−1)th frame and the (N−2)th frame, respectively. The
conductance of the memristor represents the attention weight,
i.e. w1,1 = 1

M1,1
.

+

—
OP

Ra6
+

—
OP

Ra2

Ra6

Ra1

Ra3 Ra4

M1,1

a1,1(t)

d1,1(t)

c1,1(t) e1,1(t) +

—
OP

Ra5

Ra6

Fig. 4. Attention encoding circuit for encoding an attention signal a1,1(t).

Fig. 5 shows the encoding process of a1,1(t). The signals
c1,1(t) and d1,1(t) both contain ten pulses with different
voltage amplitudes. When the voltage of e1,1(t) is greater
than the positive threshold 0.5 V, the memristance of M1,1

decreases. When the voltage of e1,1(t) is less than the negative
threshold −0.5 V, the memristance of M1,1 increases. The
simulation results indicates that the smaller the memristance,
the smaller the voltage amplitude of a1,1(t). The memristance
stores the voltage changes of the historical attention zones,
which contains change information of the target. The more
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Fig. 5. Encoding process of an attention signal a1,1(t).

significant the voltage changes, the more the memristance ad-
justs, while the voltage change is less than the thresholds of the
memristor, the memristance remains unchanged. The historical
information recorded by the memristor is used to modify the
attention encoding process of the current frame, allowing the
attention encoding considers historical information such as the
color, position, and shape changes of the target during the
tracking process. In simulations, the circuit parameters are set
as Ra1 = Ra3 = Ra6 = 10 MΩ, Ra2 = Ra4 = 1 MΩ,
Ra5 = 3 kΩ.

C. Attention allocation and target localization

The traditional tripartite synapse structure includes presy-
naptic axons, postsynaptic dendrites, and astrocytes. Recent
studies have shown that the GABA interneuron is involved
in the activity of the tripartite synapse [38], [39], and the
signaling pathway between the GABA neuron and the tripartite
synapse is shown in Fig. 6. The working process of the
GABA neuron and the tripartite synapse has the following
three situations, and relevant works [39], [40] indicate that the
regulation of IP3 and synaptic efficacy in the working process
can be described as shown in Fig. 7.

GABA

Neurotransmitters

NGABA ER

Ca
2+

AS

IP3

GABA-B

Npre

GABA-A

mGluR

Npost

GABAIN

Fig. 6. Signaling pathway between the GABA neuron and the tripartite
synapse. NGABA represents the GABA interneuron, Npre represents the
presynaptic neuron, Npost represents the postsynaptic neuron, AS represents
the astrocyte, and IN represents the input signal. ER is the endoplasmic
reticulum of the astrocyte.
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Fig. 7. Regulation process of the GABA neuron and the tripartite synapse
with changes in input frequency. (a) IP3. (b) Synaptic efficacy.

(1) When both the presynaptic neuron and the GABA neu-
ron receive low-frequency pulse signals less than a threshold
frequency fLTH, the GABA neuron release GABA to both the
presynaptic neuron and the astrocyte. However, the amount of
inositol-1,4,5-trisphosphate (IP3) released by GABA binding
to GABA-B receptors on the astrocyte is not sufficient to in-
duce the release of Ca2+ from the endoplasmic reticulum (ER)
of the astrocyte. Thereby Ca2+ induced glutamate cannot be
released from the astrocyte to enable the presynaptic neuron to
release neurotransmitters. At the same time, GABA also binds
to GABA-A receptors at the presynaptic neuron, resulting in
inhibitory effects. Therefore, the presynaptic neuron is unable
to release neurotransmitters, and synaptic efficacy cannot be
enhanced.

(2) When both the presynaptic neuron and the GABA
neuron receive high-frequency pulse signals with frequencies
greater than fLTH and less than fHTH, GABA binds to GABA-
B receptors on the astrocyte and produces sufficient IP3,
leading to the release of Ca2+ from the ER. The release of
Ca2+ causes glutamate to be released outside of the astrocyte.
Subsequently, glutamate binds to metabotropic glutamate re-
ceptors (mGluR) at the presynaptic neuron, causing the release
of excitatory neurotransmitters from the presynaptic neuron.
This process overcomes the inhibitory effects of GABA-A on
the presynaptic neuron. As glutamate increases, the release
of excitatory neurotransmitters also increases, leading to a
continuous enhancement of synaptic efficacy.

(3) If the input frequency continues to increase, IP3 in
the astrocyte will also increase. When the input frequency is
greater than the threshold frequency fHTH, the release of Ca2+

stops instantly, and glutamate in the astrocyte is no longer
released, resulting in the cessation of the release of excitatory
neurotransmitters at the presynaptic neuron. The inhibitory
effects of GABA-A once again dominate, and the presynaptic
neuron is unable to release neurotransmitters, leading to a
rapid decrease in synaptic efficacy.

Therefore, the interaction between the GABA neuron and
the tripartite synapse exhibits selective behavior towards fre-
quency information. Researches have shown that in the human
visual system, when attention is focused on target information,
the response of neurons in specific visual cortex regions signif-
icantly enhances [41], while irrelevant information are ignored

by attention and cannot elicit neural responses. Thereby, the
attention mechanism demonstrates selective processing of vi-
sual information. Furthermore, the accurate tracking of targets
depends on the allocation of attentional resources in the human
brain. Allocating more attentional resources can improve the
tracking performance of target objects [42]. Inspired by the
selective behavior in the working processes of the GABA
neuron and the tripartite synapse, we design an attention
allocation module to selectively allocate attention to different
visual zone.

Fig. 8 shows the circuit structure and schematic diagram
of attention allocation module (AAM). a1,1

i (t) is the voltage-
encoded signal of the (1,1) pixel in the ith visual zone. y1,1

i (t)
is the attention allocation signal of the (1,1) pixel in the
ith visual zone. The allocation control siganl f1,1

i (t) can be
calculated as:

f1,1
i (t) =

a1,1(t) + a1,1
i (t)

2
, (7)

where i = 1, 2, . . . ,K. The PSPICE simulation results of
AAM are shown in Fig. 9, where the parameters are set to
VA = 2 V, Ry1 = 10 MΩ, and Ry2 = 3 MΩ. The results
indicate that there are three cases for the attention allocation
value of signal y1,1

i (t), and these three cases correspond to the
working process of GABA neuron and tripartite synapse:

(1) When f1,1
i (t) ≤ −5.5 V, PMOS Py is fully turned on.

Since the output voltage of NOT gate is 5 V, NMOS Ny

is turned on. So the voltage of y1,1
i (t) = −VA+VA

2 = 0 V.
Thereby the low voltage of f1,1

i (t) causes the attention al-
location module to be inhibited, and the attention allocation
value is 0 V.

(2) When −5.5 V< f1,1
i (t) < 2.5 V, the output voltage of

NOT gate is 5 V, NMOS Ny is turned on. As the voltage
of f1,1

i (t) gradually increases from −5.5 V, PMOS Py is

Ry1

Ry1

VA

-VA

Ry2

Ry2

Ny

Py

ia t1,1( )

if t1,1( )

ia t1,1( )

a t1,1( ) a t1,1( )
AAM

iy t1,1( ) iy t1,1( )

Fig. 8. Circuit structure and schematic diagram of the attention allocation
module, where i = 1, 2, . . . ,K.
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Fig. 9. PSPICE simulation results of the attention allocation module.
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gradually turned off, and the voltage of y1,1
i (t) gradually

increases. When f1,1
i (t) ≥ −2.5 V, Py is completely turned

off, and y1,1
i (t) reaches the maximum voltage VA

2 . Therefore,
the high voltage of f1,1

i (t) can overcomes the inhibitory effects
and enable the attention allocation module to allocate positive
attention values.

(3) When f1,1
i (t) ≥ 2.5 V, PMOS Py is turned off. Since

the output voltage of NOT gate is 0 V, NMOS Ny is also
turned off. So the voltage of y1,1

i (t) is 0 V. Therefore, the
excessive voltage of f1,1

i (t) exceeding the threshold causes
the attention allocation module to stop working, resulting in
no attention value being generated and the attention allocation
value is 0 V.

The above attention allocation rule shows that when the
difference in pixel information between the visual zone and
the attention zone is small, the pixel information is focused
by attention as important information and is allocated more
attention value. When the difference in pixel information
between the visual zone and the attention zone is large, the
pixel information is regarded as irrelevant information and
ignored by the attention, and the attention value cannot be
assigned. Therefore, the designed attention allocation module
demonstrates the selective processing of visual information
by attention, which can allocate more attention to important
information related to the target, thereby achieving target
tracking.

For color images, we separately perform attention encoding
and attention allocation on the RGB color components, and
design an RGB-attention allocation module (RGB-AAM), as
shown in Fig. 10. In RGB-AAM, r1,1(t), g1,1(t) and b1,1(t)
are the attention signals of the red, green and blue color
components, respectively. r1,1

i (t), g1,1
i (t) and b1,1i (t) are the

voltage-encoded signals of the red, green and blue color
components, respectively. y1,1

ri (t), y1,1
gi (t) and y1,1

bi (t) are the
attention allocation values of the red, green and blue color
components, respectively. y1,1

rgbi(t) is the attention allocation
signal of the (1,1) pixel in the ith visual zone, which can be
calculated as:

y1,1
rgbi(t) = −Ry4

Ry3

(
y1,1

ri (t) + y1,1
gi (t) + y1,1

bi (t)
)
. (8)

In simulations, Ry3 = 3 MΩ and Ry4 = 0.1 MΩ.
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Fig. 10. Circuit structure and schematic diagram of RGB-AAM.
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Fig. 11. Target localization circuit.

We combined RGB-AAMs with WTA principles to design
a target localization circuit as shown in Fig. 11. The attention
allocation result zi(t) can be calculated as:

zi(t) =
R2

R1

(
y1,1

rgbi(t) + y1,2
rgbi(t) + · · · + yn,mrgbi(t)

)
. (9)

To locate the target from K attention allocation results, the
target localization circuit perform parallel computations on the
attention allocation results. According to the WTA principle,
all attention allocation results compete with each other, the
result with the maximum value wins and is output, while the
other attention allocation results are suppressed. In Fig.11,
the signal vz(t) is obtained by attention allocation results
z1(t), z2(t), . . . , zK(t) competing with each other, and the
voltage of vz(t) is the maximum value of all the attention
allocation results. The attention allocation result that equals
vz(t) wins and outputs a pulse at the corresponding output
terminal, which can be expressed as:

vz(t) = max(z1(t), z2(t), . . . , zK(t)), (10)

Zi(t) =

{
5 V, zi(t) ≥ vz(t)

0 V, zi(t) < vz(t).
(11)

When Zi(t) = 5 V, it means that the ith visual zone is the
target location, and the attention zone of this frame is the i
visual zone. In simulations, R1 = 1 MΩ, R2 = 10 kΩ, and
R3 = 1 MΩ.

D. Optimal attention zone selection

To address the negative impact of target scale changes on
tracking, we set up Q attention zones of different sizes to
work simultaneously in corresponding circuits, and obtain their
respective maximum attention allocation results vz1(t), vz2(t),
. . ., vzQ(t).

Fig. 12 shows an optimal attention zone selection circuit
for selecting the optimal attention zone. Since the different
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Fig. 12. Optimal attention zone selection circuit.

number of pixels contained in different sizes of attention
zones, the normalization of attention values is achieved by
resistance settings of Rz1, Rz2, . . . , RzQ. For example, if the
number of pixels in the attention zone corresponding to vz1(t)
is L = m ·n, then the resistance of Rz1 is set to Rz1 = LRx1.
In simulations, Rx1, Rx2, . . . , RxQ are set to 1 kΩ. In addition
to Rz1, Rz2, . . . , RzQ, the other resistors are set to 1 MΩ. The
output signal xo(t) can be calculated as:

xo(t) = max(x1(t), x2(t), . . . , xQ(t)), (12)

Oj(t) =

{
5 V, xj(t) ≥ xo(t)

0 V, xj(t) < xo(t),
(13)

where j = 1, 2, . . . , Q. If Oj outputs a pulse voltage, it
indicates that the attention allocation value of the jth attention
zone is the largest, and the jth attention zone is the optimal
attention zone.

IV. EXPERIMENT AND ANALYSIS

In the experiments, we use OTB-100 [43], NFS [44] and
VOT-RTb2022 [45] benchmark datasets for performance eval-
uation. The OTB-100 dataset is a popular tracking benchmark
contains 100 videos with the frame rate of 30 FPS. The NFS
dataset contains 100 videos with the frame rate of 240 FPS.
The VOT-RTb2022 focused on real-time short-term tracking
by bounding boxes, which contains 62 videos with the frame
rate of 30 FPS. The frame image size of OTB-100 dataset is
set to 240× 180, and the frame image size of NFS and VOT-
RTb2022 datasets are set to 240 × 135. The proposed tracker
processes the tracking problem based on one-shot detection,
which obtains the target object in the initial frame and locates
the target in subsequent frames. By manually providing the
initial positions of the attention zones containing the target in
the first frame, the proposed tracker dynamically fine-tunes the
attention to detect the target.

A. Experimental results

Fig. 13 shows six tracking examples from the OTB-100,
NFS, and VOT-RTb2022 datasets performed by the proposed

#1 #10 #50 #200 #400 #550

#1 #20 #40 #80 #100 #120

#1 #20 #200 #300 #400 #500

#1 #50 #100 #170 #250 #350

#1 #10 #25 #40 #50 #80

#1 #10 #35 #50 #80 #110

Fig. 13. Experimental results of the MAN on object tracking of video
sequences from the OTB-100, NFS, and VOT-RTb2022 datasets. The first
two rows of video sequences are from the OTB-100 dataset, the middle two
rows of video sequences are from the NFS dataset, and the last two rows of
video sequences are from the VOT-RTb2022 dataset. The frame number is
displayed in the upper-right corner of each frame. The first column is the first
frame, with four attention zones of different sizes. The yellow box represents
the target bounding box tracked by the MAN, and the red box indicates the
ground-truth bounding box of the datasets.

MAN. The number of attention zones is set to Q = 4, and
their sizes are set as: 12×12, 20×20, 28×28, and 36×36. The
pixel interval of visual zones is set to s = 1. The processing
time for one frame is set to Tf = 1 ms. The tracking results
demonstrate that the MAN can accurately track the target, and
the attention zone can be adaptively selected according to the
scale change of the target.

We comprehensively evaluate the performance of the pro-
posed MAN on OTB-100 and NFS datasets on Success plots
and Precision plots. In the Success plot, Overlap Score (OS)
is defined as the Intersection over Union (IoU) ratios of the
predicted target bounding box and the ground-truth box. When
the OS of a frame is greater than a set threshold, the frame is
considered successful for tracking, and the percentage of total
success frames out of all frames is defined as Success Rate
(SR). The success plot shows the SR from threshold 0 to 1, and
the Area Under Curve (AUC) of the Success plot is used to
evaluate trackers. The Precision plot is the percentage of video
frames in which the Euclidean distance between the center

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

20

40

60

80

100

O
ve

rl
ap

 p
re

ci
si

on
 [

%
]

Success plot of OPE on OTB-100

TransT [69.1]
MAN [66.5]
DiMP [65.8]
ATOM [65.4]
SiamRPN [62.9]
CFNet [58.9]
SiamFC [58.6]

(a)

0 10 20 30 40 50
Location error threshold [pixels]

0

20

40

60

80

100

D
is

ta
nc

e 
pr

ec
is

io
n 

[%
]

Precision plot of OPE on OTB-100

TransT [89.5]
MAN [86.6]
DiMP [85.4]
ATOM [85.1]
SiamRPN [84.5]
SiamFC [79.0]
CFNet [77.2]

(b)

Fig. 14. Performance on the OTB-100 dataset. (a) The AUC in the success
plot. (b) The distance precision at the threshold of 20 pixels (DP20) in the
precision plot.
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Fig. 15. Performance on the NFS dataset. (a) The AUC in the success plot.
(b) The DP20 in the precision plot.

point of the predicted target bounding box and the center point
of the ground-truth bounding box is less than a given threshold.

Fig. 14 shows the experimental evaluation results of all
100 videos in the OTB-100 dataset, scores are obtained by
using One-Pass Evaluation (OPE) protocol. We compared the
performance of our proposed MAN with trackers CFNet [4],
SiamFC [6], SiamRPN [7], ATOM [46], DiMP [47], SiamBAN
[8], TransT [10]. In the OPE Success plot of Fig. 14(a), the
AUC of the MAN is 66.5%, which is 7.9% and 7.6% higher
than the baseline trackers SiamFC and CFNet, respectively. In
the OPE Precision plot of Fig. 14(b), the precision score of
the MAN is 86.6%, which is higher than the trackers CFNet,
SiamFC, SiamRPN, ATOM, and DiMP. Additionally, Fig. 15
shows the experimental evaluation results of all 100 videos
in the NFS dataset. In the OPE Success plot of Fig. 15(a),
the AUC of the MAN is 61.1%. In the OPE Precision plot of
Fig. 15(b), the precision score of the MAN is 72.8%, which
is higher than the trackers ATOM, SiamBAN and DiMP.

In addition, the overall performance of the trackers on VOT-
RTb2022 dataset is evaluated by Expected Average Overlap
(EAO), accuracy and robustness. In the short-term perfor-
mance evaluation protocol of VOT2022 [45], accuracy is
defined as the average overlap on frames before tracking
failure, averaged over all sub-sequences. Robustness is defined
as the percentage of successfully tracked subsequence frames,
averaged over all sub-sequences. Tracking failure is defined as
the frame at which the overlap between the predicted target
bounding box and the ground-truth bounding box dropped
below 0.1 and did not increase above this during the next
10 frames. EAO is the main evaluation index to evaluate
the overall performance of trackers, which is obtained by
combining accuracy and robustness. The larger the EAO, the
better the overall performance of the tracker. Table II lists

TABLE II
PERFORMANCE COMPARISON ON VOT-RTB2022

Trackers EAO Accuracy Robustness
MAN 0.480 0.736 0.785
ATOM 0.391 0.672 0.728
DiMP 0.434 0.689 0.761

ViTCRT 0.434 0.774 0.711
ToMP 0.478 0.728 0.796
TransT 0.513 0.781 0.800

SBT 0.523 0.791 0.814

the evaluation performance of trackers MAN, ATOM, DiMP,
ViTCRT, ToMP, SBT [48], and TransT on VOT-RTb2022. The
comparison results show that the proposed MAN has higher
EAO compared to ATOM, DiMP, ViTCRT, and ToMP.

Furthermore, tracking speed is also an important evaluation
metric. The speed of the tracker reflects the degree of real-
time tracking, and the faster the speed, the better the real-time
performance. Table III shows the comparison results in terms
of tracking speed for all trackers. Because the processing time
for the MAN to process each frame is 1 ms, the tracking
speed of the MAN is 1000 FPS, which is higher than the other
trackers. Meanwhile, the trackers CFNet, SiamFC, SiamPRN
and SiamBAN are implemented on Intel CPU and NVIDIA
GPU, and the trackers DiMP, ATOM, ViTCRT, TransT, ToMP,
and SBT are implemented on NVIDIA GPU. Since CPUs and
GPUs adopt the von Neumann architecture, where the storage
unit and the computing unit are physically separated. The
frequent data transmission between the storage unit and the
computing unit, as well as the performance difference between
them, lead to varying degrees of latency in trackers running on
CPUs and GPUs. The proposed circuit integrates storage and
computation using memristors, avoiding the latency problem
present in trackers running on CPUs and GPUs, thus enabling
tracking speeds consistent with the processing time. Therefore,
the MAN achieves higher real-time tracking performance
compared to the other trackers.

TABLE III
THE TRACKING SPEED OF TRACKERS

Trackers MAN CFNet SiamFC SiamRPN
Speed (FPS) 1000 75 86 160

Trackers ATOM DiMP SiamBAN TransT
Speed (FPS) 30 43 40 50

Trackers ToMP ViTCRT SBT
Speed (FPS) 26 83 62

B. Parameter influence analysis

Since the irregular change of the target location in the video
sequence, setting different pixel intervals for the visual zones
will produce different tracking effects. Fig. 16(a) and Fig.
17(a) shows the evaluation scores of the MAN on OTB-100,
NFS, and VOT-RTb2022 datasets with the pixel interval s set
to 1, 2, and 3. The results indicate that as s increases, the
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Fig. 16. Influence of different parameters on tracking performance of NFS and
OTB datasets. (a) Different pixel interval s of the visual zones. (b) Different
initial memristances.
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Fig. 17. Influence of different parameters on tracking performance of VOT-
RTb2022 dataset. (a) Different pixel interval s of the visual zones. (b)
Different initial memristances.

tracking performance gradually decrease, which we analyze is
mainly caused by the accumulation of errors in the attention
zone.

In addition, considering that different initial memristances
will affect the experimental results, we set different initial
memristances for experiments. The initial memristances are
set to 2 kΩ, 5 kΩ and 8 kΩ respectively, and the evaluation
scores of the OTB-100, NFS and VOT-RTb2022 datasets are
shown in Fig. 16(b) and Fig. 17(b). The results illustrate that
the tracking performance at both 2 kΩ and 8 kΩ is lower
than that of 5 kΩ. Therefore, excessively large or small initial
memristances will have a negative impact on tracking process,
setting the initial memristance to the intermediate value can
generally achieve better tracking performance.

Furthermore, considering that the duration of the voltage
applied to the memristor affects the change in memristance,
different processing times will result in different tracking
performance. Therefore, we analyze the impact of processing
time on tracking performance by setting different processing
times. As listed in Table IV, the processing times are set to 0.1
ms, 1 ms and 10 ms respectively. Combining the analysis of
memristance change and tracking performance under different
processing times, the results indicate that a longer processing
time can lead to an excessively large change in memristance,
resulting in an overly significant adjustment of the attention
signal, making it difficult for our tracker to accurately track
the target. Conversely, a shorter processing time can cause too
small change in the memristance, leading to an insufficient
adjustment of the attention signal, making it challenging for
our tracker to track rapidly changing targets and potentially
causing target loss. Therefore, setting an appropriate process-
ing time can achieve better tracking performance.

TABLE IV
THE IMPACT OF PROCESSING TIME ON TRACKING PERFORMANCE

Processing times 0.1 ms 1 ms 10 ms
AUC (OTB-100) 31.2% 66.5% 24.8%
DP20 (OTB-100) 45.3% 86.6% 30.5%

AUC (NFS) 27.9% 61.1% 22.7%
DP20 (NFS) 36.4% 72.8% 25.6%

EAO (VOT-RTb2022) 0.072 0.480 0.041
Accuracy (VOT-RTb2022) 0.276 0.736 0.205

Robustness (VOT-RTb2022) 0.316 0.785 0.240

C. Power Consumption and Area Overhead

The components of MAN include the attention encoding
circuit, the attention allocation module, the RGB-attention al-
location module, the target localization circuit, and the optimal
attention zone selection circuit. The circuit elements in MAN
include memristors, NMOSs, PMOSs, resistors, operational
amplifiers, 8-bit DAC, and NOT gates. The average power
consumption of MAN is obtained from PSPICE simulation
report, as shown in Table V. The parameters are set to
K = 1, n = 12,m = 12. The size of the AIST mem-
ristor is 100 nm × 25 nm × 100 nm [49]. The area of
an NMOS or a PMOS is approximately 0.9 µm2. Using
the sheet resistance of 25 Ω/square whose poly width is
0.6 µm, the area of a 1 kΩ resistor can be calculated as
(1 kΩ ÷ 25 Ω) × 0.6 µm × 0.6 µm = 14.4 µm2. The area of
an operational amplifier is approximately 600 µm2, the area
of a 8-bit DAC is approximately 9.0 mm2, and the area of
a NOT gate is about 1.8 µm2. Based on the above analysis,
the area overhead of the proposed circuit can be estimated as
shown in Table V.

TABLE V
POWER CONSUMPTION AND AREA OVERHEAD

Components Power
consumption Area overhead

Voltage encoding circuit 0.15 mW 9.188 mm2

Attention encoding circuit 0.58 mW 7.506 ×105 µm2

Attention allocation module 0.01 mW 3.744 ×105 µm2

RGB-attention allocation module 0.04 mW 1.255 mm2

Target localization circuit 5.86 mW 1.828 ×102 mm2

Optimal attention zone selection
circuit 0.05 mW 6.149 ×104µm2

V. CONCLUSION

In this paper, we propose a memristor-based attention
network and its corresponding algorithm for online real-time
object tracking. By constructing attention encoding circuits
based on memristors, the changes of the target in the historical
frame are recorded in memristors. At the same time, the
memristors adjust the attention signals of the attention zone
online and in real-time, allowing the MAN to track the target in
dynamically changing scenes. The tracking of the target relies
on the attention values selectively allocated by the attention
allocation module, and the attention allocation rule is inspired
by the working process of GABA interneuron and tripartite
synapse. The optimal target location is determined by the
target localization circuit and the optimal attention zone selec-
tion circuit based on the WTA principle. Experimental results
on OTB-100, NFS, and VOT-RTb2022 benchmark datasets
show that the proposed MAN achieves competitive tracking
performance and has higher real-time tracking performance
than the other trackers. Therefore, our work can provide
support for high-real-time tracking applications of electronic
devices. In the future, we will further optimize the algorithm
and circuit structure of the attention network to achieve higher
tracking performance.
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[34] D. Biolek, V. Biolková, and Z. Biolek, “SPICE model of memristor with
nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210–214,
2009.

[35] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A general model for voltage-controlled memristors,” IEEE Trans. Cir-
cuits Syst. II-Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[36] Y. Zhang, X. Wang, Y. Li, and E. G. Friedman, “Memristive model for
synaptic circuits,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 64,
no. 7, pp. 767–771, 2017.

[37] J Theeuwes, “Goal-driven, stimulus-driven, and history-driven selec-
tion,” Curr. Opin. Psychol., vol. 29, pp. 97–101, 2019.

[38] G. Perea et al., “Activity-dependent switch of GABAergic inhibition into
glutamatergic excitation in astrocyte-neuron networks,” eLife, vol. 5, p.
e20362, 2016.

[39] J. Liu et al., “Exploring self-repair in a coupled spiking astrocyte neural
network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp.
865–875, 2019.

[40] J. Liu et al., “GABA regulation of burst firing in hippocampal astrocyte
neural circuit: A biophysical model,” Front. Cell. Neurosci., vol. 13,
no. 335, pp. 1–14, 2019.

[41] T. Moore and M. Zirnsak, “Neural mechanisms of selective visual
attention,” Annu. Rev. Psychol., vol. 68, no. 5, pp. 47–72, 2017.

[42] S. E. Donohue, J. M. Hopf, M. V. Bartsch, M. A. Schoenfeld, H. Heinze,
M. G. Woldorff, “The rapid capture of attention by rewarded objects,”
J. Cogn. Neurosci., vol. 28, no. 4, pp. 529–541, 2016.

[43] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, 2015.

[44] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey, “Need
for speed: A benchmark for higher frame rate object tracking,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 1134–1143.

[45] M. Kristan et al., “The tenth visual object tracking VOT2022 challenge
results,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2023, pp. 431–460.

[46] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ATOM: Accurate
tracking by overlap maximization,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2019, pp. 4655–4664.

[47] G. Bhat, M. Danelljan, L. Gool, and R. Timofte, “Learning discrim-
inative model prediction for tracking,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), 2019, pp. 6181–6190.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[48] F. Xie, C. Wang, G. Wang, Y. Cao, W. Yang, and W. Zeng, “Correlation-
aware deep tracking,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2022, pp. 8741–8750.

[49] Y. Zhang and Z. Zeng, “A multi-functional memristive pavlov associative
memory circuit based on neural mechanisms,” IEEE Trans. Biomed.
Circuits Syst., vol. 15, no. 5, pp. 978–993, 2021.

Zekun Deng received the B.S. degree in commu-
nications engineering from Northeastern University,
Shenyang, China, in 2018. He is currently pur-
suing the Ph.D. degree in College of Computer
Science and Electronic Engineering, Hunan Univer-
sity, Changsha, China. His research interests include
memristive neural network circuits, algorithm design
of neural networks, and analog implementation of
neuromorphic systems.

Chunhua Wang received the M.S. degree from
Zhengzhou University, Zhengzhou, China, in 1994,
and the Ph.D. degree from Beijing University of
Technology, Beijing, China, in 2003. He is currently
Professor of College of Information Science and En-
gineering, Hunan University, Changsha, China. He
is Doctor tutor, director of advanced communication
technology key laboratory of Hunan universities,
member of academic committee of Hunan university,
director of chaos and nonlinear circuit professional
committee of circuit and system branch of China

electronic society. Now, his research interests include memristor circuit,
complex networks, chaotic circuit, chaos secure communication, current-mode
circuit and neural networks based on memristor. He has presided over 8
national and provincial projects, and published more than 200 papers, among
which more than 180 were retrieved by SCI.

Hairong Lin received M.S. and Ph.D. degrees
in information and communication engineering and
computer science and technology from Hunan Uni-
versity, Changsha, China, in 2015 and 2021, respec-
tively. From 2022 to 2023, he was a Postdoctoral
Fellow with the School of Computer Science and
Electronic Engineering, Hunan University, China.
He is currently an Associate Professor at the School
of Electronic Information, Central South University,
Changsha, China. He is a member of the Chaos and
Nonlinear Circuit Professional Committee of Circuit

and System Branch of China Electronic Society. He has presided over three
national and provincial projects, and published more than 50 papers in related
international journals, such as IEEE-TIE, IEEE-TII, IEEE-TCAD, etc. His
research interests include memristive neural networks, chaotic systems and
circuits, information and network security, and Internet of Things

Quanli Deng received the B.S. degree in Xiangtan
University School of Physics and Optoelectronics,
Xiangtan, China, in 2016, and the M.S. degree in
College of Computer Science and Electronic En-
gineering, Hunan University, Changsha, China, in
2020. He is currently pursuing the Ph.D. degree
in College of Computer Science and Electronic
Engineering, Hunan University, China. His research
interests include modeling and analysis of neural
systems, fundamental theory of nonlinear systems
and circuits, and analog implementation of neuro-

morphic systems.

Yichuang Sun (M’90–SM’99) received the B.Sc.
and M.Sc. degrees from Dalian Maritime University,
Dalian, China, in 1982 and 1985, respectively, and
the Ph.D. degree from the University of York, York,
U.K., in 1996, all in communications and electronics
engineering.

Dr. Sun is currently Professor of Communications
and Electronics, Head of Communications and Intel-
ligent Systems Research Group, and Head of Elec-
tronic, Communication and Electrical Engineering
Division in the School of Engineering and Computer

Science of the University of Hertfordshire, UK. He has published over 330
papers and contributed 10 chapters in edited books. He has also published four
text and research books: Continuous-Time Active Filter Design (CRC Press,
USA, 1999), Design of High Frequency Integrated Analogue Filters (IEE
Press, UK, 2002), Wireless Communication Circuits and Systems (IET Press,
2004), and Test and Diagnosis of Analogue, Mixed-signal and RF Integrated
Circuits - the Systems on Chip Approach (IET Press, 2008). His research
interests are in the areas of wireless and mobile communications, RF and
analogue circuits, microelectronic devices and systems, and machine learning
and deep learning.

Professor Sun was a Series Editor of IEE Circuits, Devices and Systems
Book Series (2003-2008). He has been Associate Editor of IEEE Transactions
on Circuits and Systems I: Regular Papers (2010-2011, 2016-2017, 2018-
2019). He is also Editor of ETRI Journal, Journal of Semiconductors, and
Journal of Sensor and Actuator Networks. He was Guest Editor of eight
IEEE and IEE/IET journal special issues: High-frequency Integrated Analogue
Filters in IEE Proc. Circuits, Devices and Systems (2000), RF Circuits
and Systems for Wireless Communications in IEE Proc. Circuits, Devices
and Systems (2002), Analogue and Mixed-Signal Test for Systems on Chip
in IEE Proc. Circuits, Devices and Systems (2004), MIMO Wireless and
Mobile Communications in IEE Proc. Communications (2006), Advanced
Signal Processing for Wireless and Mobile Communications in IET Signal
Processing (2009), Cooperative Wireless and Mobile Communications in IET
Communications (2013), Software-Defined Radio Transceivers and Circuits
for 5G Wireless Communications in IEEE Transactions on Circuits and
Systems-II (2016), and the 2016 IEEE International Symposium on Circuits
and Systems in IEEE Transactions on Circuits and Systems-I (2016). He
has also been widely involved in various IEEE technical committee and
international conference activities.


	Introduction
	Network framework and algorithm
	Network framework
	Algorithm design

	Circuit Design
	Memristor Model
	Voltage encoding and attention encoding
	Attention allocation and target localization
	Optimal attention zone selection

	Experiment and analysis
	Experimental results
	Parameter influence analysis
	Power Consumption and Area Overhead

	Conclusion
	References
	Biographies
	Zekun Deng
	Chunhua Wang
	Hairong Lin
	Quanli Deng
	Yichuang Sun


