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Abstract—Smart manufacturing systems are a new
paradigm in Industry 4.0 driven by the emerging informa-
tion and communication technology and artificial intelli-
gence that converge to digital twin, which are able to per-
ceive, recognize, and handle the changes in demand and
production. Reconfigurable machine tools (RMTs) can pro-
mote the flexibility of smart manufacturing systems. The
fundamental problem lies in dynamically reconfiguring the
RMTs in smart manufacturing systems efficiently and ac-
curately by considering the flexibility of production prece-
dence and operation sequences simultaneously. Therefore,
in this article, a deep reinforcement learning-based re-
configuration planning method of digital twin-driven smart
manufacturing systems with RMT is proposed to seek opti-
mal reconfiguration policy online. The reconfiguration pro-
cesses of smart manufacturing systems are modeled by
considering reconfiguration cost, moving cost, and pro-
cessing cost. Deep Q-network is adopted to explore the
state space and action space to find the optimal reconfig-
uration scheme with the highest return. An industry case
study is presented to demonstrate the effectiveness and ef-
ficiency of the proposed method, where the reconfiguration
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processes of a smart manufacturing system consisting of
five RMTs for producing four parts are discussed.

Index Terms—Deep reinforcement learning, digital twin,
Industry 4.0, reconfigurable machine tools (RMTs), recon-
figuration planning, smart manufacturing systems.

I. INTRODUCTION

INDUSTRY 4.0, driven by emerging information and com-
munication technology (ICT) and artificial intelligence (AI),

requires a new paradigm of manufacturing systems that can
respond in real time to meet the changing demands and con-
ditions in factories and supply networks and satisfy varying
customer needs, that is, smart manufacturing systems [1], [2],
[3]. The responsiveness of smart manufacturing systems in case
of demand fluctuation is fundamentally determined by their
changeability and reconfigurability, which can be enabled by
reconfigurable machine tools (RMTs) [4], [5], [6]. Digital twin
as the synthesis of the emerging ICT and AI is one of the
core enabling technologies of smart manufacturing systems with
RMT to promote production efficiency and accuracy through
seamless interaction between virtual space and physical space
[7], [8], [9], which digital twin model should be capable of
reconfigurability as well [10].

The concept of a reconfigurable manufacturing system (RMS)
to explore reconfiguration in manufacturing systems was pro-
posed by Koren et al. [11], where RMT is the fundamental
equipment of RMS to promote its responsiveness [12]. RMS is a
promising manufacturing paradigm aiming at providing exactly
the functionality and capacity needed and exactly when needed
[13]. Smart manufacturing systems with reconfigurability are
the evolved version of RMS to some extent in Industry 4.0
era [14], [15], [16], moving toward smart RMSs. Lee and Ryu
[17] proposed smart, self-reconfigurable manufacturing system
and discussed its architecture and key features. Reconfiguration
planning, i.e., how to reconfigure a manufacturing system, is
the key problem to be solved when demand changes. Reconfig-
uration planning is the key phase to successfully implement-
ing RMS or smart manufacturing systems with reconfigura-
bility. Many researchers investigated reconfiguration planning.
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Typically, this problem has been studied from two main perspec-
tives, including scalability and convertibility [18], [19]. Koren
et al. [20] studied the scalability planning problem of RMS to
maximize system throughput after reconfiguration. Also, Koren
et al. [21] discussed the principles, design, and development
trends of RMS. Ma et al. [22] proposed a bilevel coordinated
optimization model solved by a nesting genetic algorithm to
address the reconfigurable process planning problem. Azab and
ElMaraghy [23] put forward mathematical modeling for recon-
figurable process planning in which a process plan reconfigu-
ration index that captures the extent of changes in the plan and
their implications has been introduced in this study. Recently, the
production mode is shifting from mass customization to mass
personalization [24]. Convertibility of manufacturing systems
should, hence, be of more importance in order to meet the
individual customization demand. Huang et al. [13] concerned
convertibility enhancement of RMS through delayed reconfigu-
ration. Machine-level changeovers [25] provided a great option
to realize convertibility rapidly and cost effectively. Gadalla and
Xue [26] proposed an approach to identify optimal reconfigu-
ration processes by considering the configuration variation of
RMT. Leng et al. [27] introduced a digital twin-driven rapid re-
configuration method of smart manufacturing systems via RMT
based on open architecture. Touzout and Benyoucef [28] pro-
posed a multiobjective model for optimizing the reconfiguration
process plan by considering the configuration changes of RMT,
where an iterative multiobjective integer linear programming
approach is developed to solve this model. Similarly, Khezri et
al. [29] attempted to generate a reconfiguration process plan by
minimizing sustainability-metric value, total production time,
and total production cost using heuristic algorithms. Liu et al.
[30] proposed a distributed reconfiguration planning algorithm
by considering modular robots that share similar characteristics
of RMT. Due to the narrower production time window and
higher demand uncertainty, it is necessary and important to
effectively handle dynamic arrival production tasks in a dy-
namic environment [31]. However, most of the existing studies
focus on the offline method to figure out the reconfiguration
planning problem of manufacturing systems resulting in static
solutions generally. They fail to perceive the real-time status of
smart manufacturing systems with RMT and provide optimal
solutions for reconfiguration planning dynamically. It is signif-
icant to update reconfiguration planning method and promote
the production accuracy and efficiency of smart manufacturing
systems with RMT at a high level. In addition, process plan-
ning [32], scheduling [33], capacity planning [34], and other
points should be considered when optimizing the performance
of smart manufacturing systems. The single-point optimization
that largely exists in the literature is gradually unable to meet the
new demands for more and more complex smart manufacturing
systems.

To cope with the urgent challenges, a dynamic optimization
model for reconfiguration planning of smart manufacturing sys-
tems with RMT using deep reinforcement learning is proposed
in this article, where the corresponding digital twin scenario is
constructed based on the Unity 3-D platform to manifest the
power of the proposed method. The proposed method attempts

to fill the above-mentioned gap by optimizing the reconfig-
uration planning of smart manufacturing systems with RMT
by considering production flexibility and operation flexibility
simultaneously. Traditionally, discrete optimization algorithms
(i.e., genetic algorithm [35], simulated annealing [36], particle
swarm optimization [37], etc.) can solve production planning
and reconfiguration problem well, which is an offline mode and
cannot meet the requirement of smart manufacturing systems.
Due to its ability to dynamically interact with the environment
during optimization, deep reinforcement learning shows the
potential to shift reconfiguration planning from offline mode
to online mode. Also, this study actively explores the effective
reconfiguration planning method to catch up with the rapidly
developing speed of new technologies and accommodate new
application scenarios in Industry 4.0 era. So, deep reinforce-
ment learning plays a crucial role in this article. As we know,
reinforcement learning [38], [39], [40] is the problem faced
by an agent that learns behavior through trial-and-error inter-
actions with environment, which is learning what to do—how
to map situations to actions—so as to maximize reward [41].
Recently, deep learning has been prevailing in reinforcement
learning in recent years to scale to decision-making problems
with high-dimensional state and action spaces [42], [43], [44].
The application of reinforcement learning is becoming popular
in the manufacturing domain. Wang et al. [40] adopted reinforce-
ment learning to optimize the energy efficiency of Industrial
Internet of Things that can promote management efficiency
alongside with Industrial Internet platforms [45]. Yang and Xu
[33] used deep reinforcement learning to solve the scheduling
and reconfiguration model in smart manufacturing. Epureanu
et al. [46] proposed a self-repair method based on deep re-
inforcement learning for smart manufacturing systems to find
optimal strategy by considering system status and performance.
Bakopoulos et al. [47] studied the production scheduling based
on deep reinforcement learning under the framework of digital
twin.

In summary, the main contributions of this article are as
follows.

1) A digital twin of smart manufacturing systems with RMTs
is constructed to explore the online optimization of re-
configuration planning by recognizing demand changes
in time to support the realization of dynamic reconfigu-
ration.

2) The reconfiguration processes of smart manufacturing
systems with RMT are directly modeled based on Markov
decision processes (MDP) to construct an online opti-
mization environment, where the flexibility of produc-
tion precedence and operation sequences is included to
promote the accuracy of the reconfiguration scheme.

3) A deep reinforcement learning algorithm named deep
Q-network (DQN) is adopted to dynamically search
the optimization reconfiguration scheme of smart man-
ufacturing systems with RMT, in which the capa-
bility of DQN to efficiently solve high-dimensional
problems can equip the proposed optimization model
with high adaptability for handling dynamic demand
fluctuation.
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Fig. 1. Digital twin-driven smart manufacturing system based on RMT.

The rest of this article is organized as follows. Section II
analyzes the problem to be solved of digital twin-driven smart
manufacturing systems with RMT. The reconfiguration process
modeling based on MDP and deep reinforcement learning-based
optimization is elaborated in Section III. In Section IV, we
provide a case study to demonstrate the effectiveness of the
proposed method. Finally, Section V concludes this article.

II. PROBLEM STATEMENT

Smart manufacturing systems are expected to be aware of
internal and external changes and respond rapidly and accu-
rately. This requires the application of emerging ICT based
on the flexibility of their physical structure (flexible layout,
changeable machine tools, etc.). RMT is a typical machine
tool that can change its functionality or capacity through con-
figuration adaption to meet the demand fluctuation. A smart
manufacturing system consisting of a group of RMTs can ensure
its flexibility in a relatively mild way without requiring system
layout adjustment, which could be a good option to mitigate
production interruptions. A typical smart manufacturing system
with the consideration of arch-type RMT [6] based on digital
twin is shown in Fig. 1, where a couple of RMTs constitute
a manufacturing system and digital twin technology is used
to connect physical space and virtual space for enhancing the
smart awareness of demand fluctuation and dynamically opti-
mizing the performance of the manufacturing system. Due to
the capability of digital twin, the smart manufacturing system
can recognize the demand changes (e.g., red line in the left top of
Fig. 1) that can be the changes of part type, part quantity, or both
in both physical space and virtual space, where reconfiguration
planning is dynamically executed by considering the flexibility
of production precedence and operation sequences simultane-
ously. Also, the reconfiguration activities will synchronously
happen in physical and virtual space to update the performance
of the manufacturing system.

Generally, there is more than one part to be produced in
a smart manufacturing system. The production precedence of
these parts could be changed due to some specific reasons
(production precedence flexibility), which may require different
manufacturing resources. Namely, the reconfiguration planning
could be different when the production precedence of parts is
changed. For example, as shown in Table I, there are two parts
(part a and part b) to be produced in a smart manufacturing

TABLE I
INFLUENCE OF PRODUCTION PRECEDENCE FLEXIBILITY

Fig. 2. Influence of operation flexibility.

system consisting of two RMTs (RMT 1 and RMT2). Part a
should be produced by RMT 1 with configuration 2 (named c12)
and RMT 2 with configuration 1 (named c21). Part b should be
produced by c11 and c22. Assuming that the current configuration
of these two RMTs is c12 and c21, if part a is produced first, these
two RMTs only need to be reconfigured when producing part
b, c12 → c11 and c21 → c22. However, if part b is produced at
first, reconfiguration activities will occur when processing part
a and part b, c12 → c11 → c12 and c21 → c22 → c21. Therefore, it
is significant to consider the flexibility of production precedence
when executing reconfiguration planning.

Similarly, the operation sequence of a part is generally not
rigid. In other words, the operation sequence of a part could
be flexible. Different operation sequences may require different
manufacturing resources resulting in different reconfiguration
schemes as well. Consider the part with four features to be
machined and the corresponding precedence order, as shown
in Fig. 2. Due to whether S4 or S1 can be selected when S3 is
completed, the example part can be machined using flexible op-
eration sequences (S3-S4-S1-S2 or S3-S1-S4-S2) that can lead
to different reconfiguration schemes. Moreover, there is more
than one option when selecting RMT for producing a specific
feature of a part. That is to say, the same feature of a part can be
produced in different RMTs producing different reconfiguration
planning results. Take the part in Fig. 2 as an example again,
although there is no precedence limitation between S4 and S1,
the reconfiguration options (different RMTs or configurations of
the same RMT) could affect operation sequences as well. If the
configuration for S3 can be used for machining S1, operation
sequence 2 could be the better one. Thus, it is also important
to exploit the operation flexibility of parts when conducting
reconfiguration planning for smart manufacturing systems.

Above all, the reconfiguration planning problem of smart
manufacturing systems with RMT by considering the flexibil-
ity of production precedence and operation sequences simul-
taneously can be described as follows. A smart manufactur-
ing system with RMT is constructed to possess the ability of
handling dynamic demands, where SMS = {RMTm|m =
1, 2, 3, . . .} denotes the structure of the smart manufacturing
system andPT = {(Pi, Ni)|i = 1, 2, . . .}means the dynamic
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production tasks assigned to the smart manufacturing system
by providing the information of part type Pi and part number
Ni. Part i consists of several features to be produced, that is,
f i
j (j = 1, 2, . . .), where priority relationships between these

features are given and will be considered during optimization.
When production task PT changes, the smart manufacturing
system SMS should simultaneously find the optimal reconfig-
uration scheme, the production precedence, and operation se-
quences, which the reconfiguration effort of RMTs themselves,
part moving effort among RMTs, and processing cost are used to
estimate the optimization process. So, the fundamental problem
of this article lies in dynamically reconfiguring the RMTs in
smart manufacturing systems efficiently and accurately while
simultaneously optimizing production precedence and operation
sequences. To increase the accuracy and efficiency of optimiza-
tion, AI algorithms (i.e., deep reinforcement learning) could
be adopted. It is the requirement of making the manufacturing
system smarter as well.

III. RECONFIGURATION PLANNING METHOD BASED ON

REINFORCEMENT LEARNING

In this section, a reconfiguration planning method based on
reinforcement learning will be presented, including the reconfig-
uration process modeling of smart manufacturing systems with
RMT and the optimization solution of reconfiguration planning
using DQN.

A. Assumptions

To focus on the core problem to be solved in this article, the
necessary assumptions should be given at first, as shown in the
following.

1) One machine only can process one part at a specific time.
2) Only one feature of a part can be arranged for processing

at the same time.
3) One RMT can be reconfigured to more than one configu-

ration.
4) A feature can be completed by a specific configuration of

RMT.
5) Once feature processing is started in a specific configura-

tion of RMT, it will not be interrupted until complete.
6) Part consists of features. Once all features are finished,

the processing work of this part is completed.
7) Only one part is produced at the same time. Namely, one

RMT only can process one part at the same time.
8) To control the complexity of the proposed problem, mixed

model production is not considered in this article.

B. Reconfiguration Process Modeling

Generally, reinforcement learning uses MDP to define the
interaction between a learning agent and its environment in
terms of states, actions, and rewards. The reconfiguration of
smart manufacturing systems with RMT is executed based on
the current state without necessarily considering the influence
of the previous states. So, the reconfiguration process is typical
MDP. The reconfiguration process modeling will sort out the

details of the MDP tuple 〈S, A, P, R, γ〉, where S denotes
the state space, A represents the action space, P denotes the
state transition probability, R represents the reward function,
and γ ∈ (0, 1] is the reward discount factor. In the proposed
work, the next state is always fixed when action is taken in the
current state. So, the state transition probability is deterministic.
Namely, the state transition probability P (s′|s, a) = 1.

1) State Space: In smart manufacturing systems with
RMTs, parts with one or more features will be assigned to one
or more RMTs and different configurations could be needed. At
time slot t, the system state consists of the following:

1) part processing progress;
2) feature processing progress;
3) part position;
4) configuration of RMT.

So, the current state st ∈ S can be expressed by (1). Addition-
ally, the agent will take appropriate action to update the current
state during production

st = (U t,F t,Post,Ct) (1)

where U t = { ui|i = 1, 2, . . .} denotes the part process-
ing progress at time t, ui records the processing progress of
part i (ui ∈ {0, 1, 2} represents NotStarted, InComplete, and
Completed states, respectively, of part i). For example, U t =
{0, 1, 2, 2}means that the production of part 1 has not started,
part 2 is incomplete, while part 3 and part 4 have been completed
at time t.F t = {f i

j |i = 1, 2, . . . ; j = 1, 2, 3, . . .} represents the
processing progress of feature j in part i at time t ( f i

j = 1 means
feature j of part i is completed; otherwise,f i

j = 0). For example,
part 2 is incomplete at time t, the corresponding Ft = {1, 0, 0,
1} means that feature 1 and feature 4 have been completed,
while feature 2 and feature 3 are incomplete at time t. Post =
{pm|m = 1, 2, . . .}is used to show the position of part i at
time t, where pm means the fixed position of RMT m in the
smart manufacturing system. Due to only the position changes
of parts being concerned, the real position value will not affect
the results. Namely, p1 means the position of the RMT1, in which
the real position value RMT1 will not be involved. As mentioned
before, part 2 is incomplete, if Post = {p2}means part 2 is
located in RMT2. Ct = {cmk|m = 1, 2, . . . ; k = 1, 2, . . .}
is a configuration set of the RMTs in the current manufacturing
system at time t, where cmk refers to the configuration k of RMT
m. For example,Ct = {c11, c21, c32}means that there are three
RMTs in the smart manufacturing system and the configuration
states of RMT1, RMT2, and RMT3 are configuration 1 (c11),
configuration 1 (c21), and configuration 2 (c32), respectively.

2) Action Space: In the reconfiguration process, the action
can be described from two aspects: Selecting a new part, namely
wpi; or selecting a feature of the current part (InComplete)
to process using a specific configuration of the selected RMT,

namely c
fi
j

mk, where c
fi
j

mk means that the agent selects RMT m
with configuration k for processing feature j of part i. Reconfig-
uration activities could happen if the current configuration of the
selected RMT is not the selected one. Based on the description
of the state and action, the decision point at which the agent
selects an action to update the state should be after a feature
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Fig. 3. Action space example.

of the current part is completed or after a new part is selected.
So, the action at ∈ A can be defined according to the following
equation:

at =

{
wpi, Condition 1

c
fi
j

mk, Condition 2
(2)

where Condition 1 means when the current part is completed or
the system is in the initial state, the agent will select a new part for
production from the current production task.Condition 2 means

a part has been selected in state InComplete, action c
fi
j

mk will be
taken to process a new feature of the selected part (f i

j ), which
can be completed by using cmk. For example, a part contains two
features and a feature can be processed in different RMTs; the
mapping among features and configurations is shown in Fig. 3,

where the corresponding action space is {wp1, c
f 1

1
11 , c

f 1
1

21 , c
f 1

2
12}.

3) Policy: The process of reconfiguration from the cur-
rent state to the next state by conducting the selected action
is regarded as a policy π : S → A, which is the mapping
between the state space and the action space. The policy
provides a definition of action selection of agent in cur-
rent state. When finishing performing action at in state st,
the next state st+1 ⇐ st + at can be obtained. Adopting
the example in Fig. 3 again, supposing the current state is
s1 = { u1 = 0}, {f 1

1 = 1, f 1
2 = 0}, p1, {c11, c21} , the agent will

choose the action a1 from action space according to the policy

π. In this situation, a1 = c
f 1

2
22 will be the best action.

4) Reward: Generally, a reward will be obtained when the
agent executes an action under a state, that is, rt ∼ R(st, at).
The reward determines the optimization direction of deep rein-
forcement learning, which is the crucial indicator for evaluating
the optimization effectiveness. Therefore, the reward function
for reconfiguration planning will be set based on the minimum
production cost of multiple parts, as shown in the following
equation:

R (st, at)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

GP−

⎛
⎜⎝

δ · d (pm, pm′)
+g (cm′k, cm′k′)

+Ni · pd
(
c
fi
j

m′k

)
⎞
⎟⎠ , (st, at) ∈ Condition 3

positive value, (st, at) ∈ Condition 4
negative value, (st, at) ∈ Condition 5

(3)

where Condition 3 denotes selecting a feature of the current
part for producing, which the production cost will be calculated.
GP denotes the gross profit of producing a specific production

Fig. 4. Reconfiguration planning based on DQN.

task. d(pm, pm′) means the cost of moving part from RMTm to
RMTm′ [if the part is processed in the same RMT (i.e.,m = m′ ),
d (pm, pm′) = 0]. δ = 	Ni/B
 is the moving factor consid-
ering parts that can be moved in batches for saving cost, where
Ni is the total number of part i, B denotes the batch size, and 	

means round up to an integer. g(cm′k, cm′k′) means the recon-
figuration cost of RMTm′ from configuration k to configuration
k′ [similarly, if the configuration of RMTm′ is exactly needed

(reconfiguration is not needed), g (cm′k, cm′k′) = 0]. pd(c
fi
j

m′k)
means the processing cost of producing feature i of part j in con-
figuration k of RMTm′ .Condition 4 is selecting an unprocessed
part from the production task when initializing production or
the current part is completed, in which a positive value (the
value should be greater than zero) will be assigned to reward this
action. Condition 5 means other situations, including selecting
the same part, reprocessing the same feature, violating operation
sequence, etc., in which a negative value (the value should be
less than zero) will be assigned to penalize this action. Above
all, the reward is obtained based on the evaluation of actions,
which can be explained through two phases: First, an action will
meet one of the three different conditions. Second, the action
will be evaluated under a specific condition. In Condition 3,
the benefit of completing a production task will be calculated
by considering the gross profit, processing cost, reconfiguration
cost, and moving cost. In Condition 4, if the right part is
selected, a positive value will be assigned. Condition 5 means
a wrong action will be punished.

C. Reconfiguration Planning Using DQN

Q-learning [38] is one of the classical reinforcement learning
algorithms, but it suffers from the curse of dimensionality when
solving high-dimensional problems. DQN [39], [40] is proposed
to overcome the limitation of Q-learning by introducing a deep
neural network to approximate the Q-function, which can de-
scribe high-dimensional state spaces better. Also, DQN has
stronger scalability than Q-learning benefiting from the deep
neural network. According to the previous problem analysis,
the reconfiguration planning of smart manufacturing systems
with RMT is a typical high-dimensional problem. So, DQN is
adopted to solve the proposed reconfiguration process model in
this article. The optimization details of DQN for reconfiguration
planning are shown in Fig. 4.
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DQN is also a value-based algorithm. The goal of DQN is to
learn an optimal strategy by approximating the Q-value function
so that the agent can obtain the maximum return in its interaction
with the environment. The Q-value function represents the long-
term expected return of an agent performing an action in a given
state, as shown in the following equation:

Qπ (s, a) = Eπ [Gt| st = s, at = a]

= Eπ

[
rt+1 + γ

(
rt+2 + . . .+ γk−1rt+k

)∣∣ st, at]

= Eπ [rt+1 + γQπ (st+1, at+1)| st, at] (4)

where return Gt is the total discounted reward of the agent from
time t to the end. γ is the discount factor, which is used to tradeoff
the influence of future reward on return. It is also capable of
ensuring the convergence of Gt.

According to DQN, the agent attempts to seek maximum
return by constantly updating the Q-value. To guarantee the
efficiency of training, the temporal-difference method based
on the Bellman expectation equation is adopted to execute a
single-step update, as shown in the following equation:

Qnew (st, at)← (1− α)Qold (st, at)

+ α [rt+1 + γmaxa′εAQ
π (st+1, a

′)] (5)

where st+1 and a′ are the next state and action, respectively.
α ∈ (0, 1) is the learning rate, which determines the influence of
new information on current Q-value. A lower learning rate may
require more learning rounds due to smaller influence; however,
a higher learning rate could lead to suboptimal and even cannot
converge.

As the state space and action space of MDP are too large in the
proposed problem, a deep neural network (Q-network) is used
to approximate Q-value function, that is Q(s, a;θ). By feeding
the current state into the Q-network, a Q-value prediction will
be executed for each possible action. Then, the DQN agent will
select an action based on these predictions and gather experience
by interacting with the environment. These experiences are
used to update the parameters θ of Q-network to make it more
accurate as shown in the following equation:

θ ← θ − η∇θLθ (6)

where η is the learning rate that controls the weight updating
speed of the neural network; ∇ denotes the gradient function,
and L is the loss function, as shown in the following equation:

Lθ =
1
2
[target− prediction]2

=
1
2
[rt+1 + γmaxa′εAQθ (st+1, a

′)−Qθ (st, at)]
2
. (7)

Besides, the techniques of experience replay and target net-
work are used to help DQN agent stabilize the training process
and solve the problem of sample correlation and instability in
reinforcement learning.

The pseudocode of DQN for reconfiguration planning is given
in Table II.

TABLE II
DQN PSEUDOCODE

Fig. 5. Case study scenario and production task 1.

IV. CASE STUDY

To demonstrate the effectiveness of the proposed reconfigu-
ration planning method, a case study is presented in this section.

A. Basic Experiment

A smart manufacturing system consisting of five RMTs is
adopted to inspect the reconfiguration process of a production
task with four parts (Production task 1) in which the correspond-
ing digital twin is constructed using the Unity 3-D platform
to provide high-fidelity virtual scenario and monitor real-time
production activities, as shown in Fig. 5. Also, the feature
precedence of these four parts and the configuration-feature
mapping is given in Fig. 5.

The optimization goal of this case study is to maximize the re-
turn of completing the production task in the selected smart man-
ufacturing system with five RMTs. GP value and the batch size of
production can be set according to the feature of production task.
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Fig. 6. Moving cost and reconfiguration cost.

TABLE III
PROCESSING COST

TABLE IV
RANDOMLY INITIAL CONFIGURATIONS OF FIVE RMTS

The necessary parameters should be preset before optimization,
that is, positive value = 1 and negative value = −50. In
addition, the moving cost and the reconfiguration cost are given
in Fig. 6. The red arrow means reconfiguration direction. The
number on the red arrow means the value of reconfiguration cost.
The processing cost is given in Table III.

To inspect the effectiveness and adaptability of the proposed
method, we explore the optimal solution based on three ran-
domly initial situations of the smart manufacturing system con-
sisting of five RMTs. The corresponding configurations of these
five RMTs are given in Table IV.

Also, the parameters of DQN should be appropriately set for
the three situations based on the experience of the existing litera-
ture and the situation details, as shown in Table V. For example,
in order to explore more states and actions at the beginning
of training, the initial epsilon value is set as ε = 0.9, which
gradually decrease linearly to 0.1 for increasing the utilization
of the learned strategies.

TABLE V
DQN PARAMETER SETTINGS OF THREE SITUATIONS

Fig. 7. Training process of three situations.

The experiments of these three situations are executed on
PyCharm with Python in a 3.20 GHz AMD Ryzen 7-5800H
laptop. The training processes of these experiments are shown
in Fig. 7.

In DQN, the loss value of the neural network is used to
measure the difference between the predicted value and the
target value, which reflects the prediction accuracy of Q-value
in the current state of the neural network. Also, if the change
in the return function is small, the value function is consid-
ered to have converged. Therefore, the training effectiveness
and convergence of DQN can be determined by evaluating the
changes in the return value curve and loss value curve. The ε
value (light green curve) in all experiments decreases gradually
to sufficiently explore the potential solutions until ε value equals
0.1. The return value (light orange curve) and loss value (blue
curve) in all experiments can converge to a stable level within
400 rounds, indicating that the agent’s strategy or value function
has converged.

The experimental results are shown in Table VI, including
returns and optimal policies. The returns of these three situa-
tions are 713.4, 718.4, and 706.2, respectively. The policy of
these experiments includes the description of the production
sequence of parts, the operation sequence of each part, and
the reconfiguration sequence of RMTs. As shown in Fig. 8,
in situation 1, the production sequence of parts is part2→
part 3→ part 1→ part 4; the operation sequence of part 2
is to process feature 1→ feature 3→ feature 5 using RMTs
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TABLE VI
EXPERIMENTAL RESULTS OF THREE SITUATIONS

Fig. 8. Optimal policy of these three situations.

Fig. 9. Details of production tasks 2–5.

c11, c22, and c52 in turn, and part 3, part 4, and part 1 follow the
same pattern; the reconfiguration activity is c22 → c21, means
that RMT2 is reconfigured from c22 to c11 to process feature 6 of
part 4. Similarly, the optimal policy of situation 2 and situation 3
can be obtained from Fig. 8 as well. It can be observed that these
reconfiguration schemes never violate feature precedence in
Fig. 5 and only require reconfiguration activities when necessary.
Besides, the reconfiguration planning results demonstrate that
the proposed method can fully facilitate the initial configurations
to reduce reconfiguration activities to avoid frequent production
interruption, which empowers the smart manufacturing system
with RMT to deal with demand fluctuation easily.

B. Dynamic Production Tasks

To further present the application process of the proposed
method and verify its effectiveness, a series of experiments
with dynamic production tasks are conducted. The details of the
dynamic production tasks are shown in Fig. 9. The part quantity
changes in the new production tasks, in which the zero quantity
of a part means this part is not needed in the production task.
These four new production tasks are assumed to arrive in order,
which will start from the last states of situation 1 of production
task 1 in Fig. 5. The robustness of the trained DQN model can
be tested as well.

Fig. 10. Optimal policy of new production tasks.

Fig. 11. Automatic reconfiguration optimization (.GIF) (Adobe Acrobat
reader can show the GIF).

The optimal policy of these new production tasks is shown in
Fig. 10. Again, these results based on the trained DQN model
for different production tasks do not violate the assumptions and
restrictions in this article. That means the trained DQN model
can deal with different production tasks well.

In order to make the proposed method easier to use, the
corresponding optimization model is integrated with the digital
twin of the smart manufacturing system with five RMTs to au-
tomatically execute reconfiguration optimization when changes
happen, including different initial states and dynamic production
tasks, as shown in Fig. 11 (GIF). A digital Kanban is used
to dynamically show the reconfiguration policy of the current
production task in the upper left. The initial states of the smart
manufacturing systems can be selected using the button “Situa-
tion” in the bottom left. The current state and action are shown
in the upper left, where “?” is used to label reconfiguration
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TABLE VII
RANDOM EXPERIMENTAL RESULTS

TABLE VIII
GREEDY ALGORITHM RESULTS

demand and “!” means that reconfiguration has happened in
specific RMT.

C. Comparison Experiments

The random experiment, greedy algorithm experiment, and
Q-learning experiment are presented to compare with DQN,
where the effectiveness of the proposed optimization model is
also assessed through cross validation. Similarly, the random
experiment, greedy algorithm experiment, and Q-learning ex-
periment are executed according to production task 1 (see Fig. 5)
for comparison.

In the random experiment, all feasible actions that match the
current state are first selected from the action space. And then, a
random function is used to select an action randomly, in which
the current state will be updated to a random new state. Repeat
the above steps until a random feasible solution is obtained. The
results of the random experiment are shown in Table VII. The
returns of the three situations based on the random experiment
are 560.65, 574.15, and 552.35, respectively. Obviously, the
results of DQN are far better than random experiments, which
proves the validity of DQN.

The greedy algorithm is one of the typical heuristic algo-
rithms. The core idea of greedy algorithm is to make a locally
optimal choice at each step based on the current state, without
considering the global optimum. In this experiment, a greedy
choice rule is used to select the action with the maximum reward
at each step (if multiple actions have the same reward, one is
randomly chosen). Repeat the above step until a feasible solution
is obtained. The results of the greedy algorithm experiment are
shown in Table VIII. The returns of the three situations are
698.10, 686.20, and 674.10, respectively. Similarly, the results of
greedy algorithm are better than random experiment but worse
than DQN, which further verify the effectiveness of DQN as
well.

TABLE IX
Q-LEARNING HYPERPARAMETERS’ SETTINGS

Fig. 12. Convergence process of three situations based on Q-learning.

TABLE X
EXPERIMENTAL RESULTS OF Q-LEARNING

In the Q-learning experiment, the hyperparameters’ settings
are shown in Table IX. The convergence processes of these
experiments are shown in Fig. 12. All experiments can reach
convergence within 12 000 iterations, which is less efficient than
DQN. The experimental results are shown in Table X, and the
returns of the three situations are 702.15, 712.75, and 693.45,
respectively.

The optimal policies obtained from Q-learning also can satisfy
the assumptions and restrictions, which can demonstrate the
correctness of the proposed optimization model based on MDP.
However, the training efficiency and results of Q-learning are
inferior to DQN. DQN shows its advantage in solving high-
dimensional problems.

V. CONCLUSION

Technology-driven Industry 4.0 is setting the trend of integrat-
ing the emerging ICT and AI with traditional industrial scenarios
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to promote production efficiency and accuracy in the mass
personalization era. Smart manufacturing systems with RMT
equipped with high flexibility are a new paradigm to deal with
demand fluctuation growing out of individual customization.
Digital twin, as the synthesis of the emerging ICT and AI, is
the core enabler of smart manufacturing systems with RMT to
increase responsiveness. Digital twin-driven smart manufactur-
ing systems with RMT are gradually unfolding the potential of
accelerating the development of current industrial evolution. It is
significant and necessary to investigate digital twin-driven smart
manufacturing systems with RMT.

How to take advantage of the new technologies to promote
the efficiency and accuracy of reconfiguration activities is the
key problem to be solved when implementing smart manufac-
turing systems with RMT. Therefore, in this article, a deep
reconfiguration planning method of digital twin-driven smart
manufacturing systems with RMTs was proposed to dynam-
ically adapt and optimize production activities when demand
changes. MDP was used to model the reconfiguration processes
of RMTs within a specific smart manufacturing system. The
DQN was adopted to search for the optimal reconfiguration
scheme, which provides the flexibility to integrate with digital
twin smoothly. A case study with three randomly initial sit-
uations of given smart manufacturing systems was presented.
Besides, the experiment based on different production tasks
was used to verify the effect of the proposed method. The
experimental results showed that the proposed method can effi-
ciently find optimal reconfiguration schemes online, which also
demonstrates the effectiveness and adaptability of the proposed
method as well. The comparison between DQN and random
experiment, greedy algorithm experiment, and Q-learning ex-
periment provides a cross validation of the proposed optimiza-
tion model showing its correctness and effectiveness. However,
there are some limitations in the proposed work due to the space
restriction.

1) The mixed model production is not considered.
2) The production makespan is not involved.
3) The optimal algorithm (e.g., SARSA, Dyna-Q, etc.) for

reconfiguration planning is not studied as well.
We will investigate the influence of these factors in future

work. Moreover, we will further study reconfiguration and
scheduling problems simultaneously and figure out the relation-
ships between reconfiguration and scheduling based on digital
twin.
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