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ABSTRACT Clinical methods for dementia detection are expensive and prone to human errors. Despite
various computer-aided methods using electroencephalography (EEG) signals and artificial intelligence,
a reliable detection of Alzheimer’s disease (AD) remains a challenge. The existing EEG-based machine
learning models have limited performance or high computation complexity. Hence, there is a need for an
optimal deep learning model for the detection of AD. This paper proposes a low-complexity EEG-based AD
detection CNN called LEADNet to generate disease-specific features. LEADNet employs spatiotemporal
EEG signals as input, two convolution layers for feature generation, a max-pooling layer for asymmetric
spatiotemporal redundancy reduction, two fully-connected layers for nonlinear feature transformation and
selection, and a softmax layer for disease probability prediction. Different quantitative measures are
calculated using an open-source AD dataset to compare LEADNet and four pre-trained CNN models. The
results show that the lightweight architecture of LEADNet has at least a 150-fold reduction in network
parameters and the highest testing accuracy of 99.24% compared to pre-trained models. The investigation of
individual layers of LEADNet showed successive improvements in feature transformation and selection for
detecting AD subjects. A comparison with the state-of-the-art AD detection models showed that the highest
accuracy, sensitivity, and specificity were achieved by the LEADNet model.

INDEX TERMS Alzheimer’s disease, convolutional neural network, electroencephalogram, pre-trained
models.

I. INTRODUCTION
The most prevalent form of dementia that targets older
adults is Alzheimer’s disease (AD). Cognitive dysfunctions,
trouble with daily tasks, aphasia, impaired judgment, and
diminishedmemory are some of the characteristics of AD [1].
AD cannot be cured, but its incidence can decrease with
prompt detection. An early phase of AD known as mild

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno M. Garcia .

cognitive impairment (MCI) affects 5-20% of older persons
(age over 60) [2]. Most MCI sufferers are mainly unaware
of the signs as they go about their regular lives. Since
AD symptoms sometimes coincide with those of aging,
it is challenging to recognize the disease early at the MCI
stage. The number of individuals suffering from AD will
rise from 60 million in 2020 to over 130 million in 2050,
as confirmed by the work of the Alzheimer’s Association [3].
Also, compared to wealthy nations, the incidence of AD is
much greater in developing countries.
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Since there is currently no treatment for AD,medicines can
postpone the disease’s severe stages [4]. Thus, it is imperative
to have a computerized AD detection system in the initial
stages. Early detection and appropriate safeguards can help
people with AD retain their autonomy for longer while reduc-
ing social expenses and despair [5]. Numerous neurological,
biochemical, and psychosocial tests are used to diagnose AD.
The clinical diagnosis is an arbitrary process that relies
on a neurologist’s skill [6], [7]. AD is diagnosed using a
variety of neuroimaging techniques, including positron emis-
sion tomography (PET), single-photon emission computed
tomography (SPECT), and magnetic resonance imaging
(MRI). Still, imaging-based methods for detecting AD are
expensive, laborious, and subject to high radiation [8]. The
Electroencephalogram (EEG) has gained recognition for
identifying neurological disorders seen in individuals with
AD, thereby overcoming the constraints of conventional
approaches. EEG-based systems can be implemented at a low
cost, with non-invasive features, high temporal resolution,
and sensitivity [9]. Compared to normal controlled (NC)
people, AD patients exhibit more EEG slowdown, decreased
synchronization, and reduced signal diversity [10]. Literature
reports several binary classes as AD vs. MCI, AD vs. NC,
or MCI vs. NC.

Approaches, such as Shannon entropy (ShEn) [11], sample
entropy (SampEn) [12], approximate entropy (ApEn), epoch-
based entropy, spectral entropy (SpEn) [13], wavelet entropy,
Tsallis entropy [14], auto mutual information (MI) [15],
Kolmogorov complexity [16], multiscale entropy (MSEn)
[17], permutation entropy (PrEn), sure entropy (SuEn),
fuzzy entropy (FuEn) [18], Hjorth parameters [19], β/θ

entropy ratio [20], and Lempel Ziv complexity (LZC)
[21] have been investigated. However, the signal length
and different input parameters primarily affect ApEn,
SampEn, MSEn, and LZC values. Dauwels et al. [22]
investigated the comparative study of various synchrony
measures for early diagnosis of AD patients. These metrics
include Granger causality (GC), phase synchrony, association
entropy, synchronization entropy, probabilistic occurrence
harmony, information-theoretic metrics, and synchronization
function. According to the studies in [22], GC and stochastic
events are the most effective ways to differentiate between
AD and NC patients. The studies relied on the time domain
characteristics before obtaining substantial frequency data.
Cataldo et al. [23] investigated the multiscale FuEn to
detect the AD. They concluded that AD subjects displayed
higher complexity values for low-frequency bands than NC
subjects, while the opposite was found in fast-frequency
bands. Criscuolo et al. [24] extended the work using MFE
with magnitude-square coherence and obtained 93.50%
accuracy. It has been noted that the majority of research
in recent years included wavelet decomposition, nonlinear
algorithms, Fast Fourier Transform (FFT), and empirical
mode decomposition (EMD) in conjunction with window
choice, sequence of filters, and wavelets to identify AD.
Because EEG signals are unpredictable, choosing breakdown

values for EMD, discrete wavelet transform, and variational
mode decomposition is laborious. Nonlinear methods are
dependent on parameters, such as entropy-based methods.
As a result, choosing the essential factors is complex. Further-
more, signal analysis, feature extraction, and categorization
are time-consuming. Research abundantly shows that the
custom characteristics have a dynamic categorization rate.
Furthermore, these require extensive statistical evaluation,
both qualitative and quantitative, which impacts the precision
of the system. A deep neural network (DNN) model is a
classifier and feature generator hybrid. As a result, the process
of computing and choosing features is automated.

A computerized identification of AD framework based
on DNN and EEG signals is presented to address these
problems. The less complex AD detection convolution
neural network (LEADNet) has been designed to lower the
computational burden while maintaining a high AD detection
rate. Additionally, the variable feature correlation technique
was used to reduce the number of variables trained in
the convolutional neural network (CNN) to determine the
computing overhead to ensure only features with strong
correlations are considered. At first, all EEG readings
underwent pre-processing to eliminate the 60 Hz powerline
frequency. A 40th-order Chebyshev filters remove the noise,
and the CNN and other learned deep-learning models, such
as VGG16, VGG19, ResNet50, and EfficientNetB4, are fed
filtered AD and NC EEG signals. A summary of paper
contributions is as follows:

• Improving the automatic AD detection model by
utilizing spatiotemporal EEG analysis and introducing
a simpler CNN-based, the LEADNet, to reduce compu-
tation delay.

• Extracting AD-specific nonlinear features using con-
volutional layers, minimizing redundancyusing a max-
pooling layer, identifying salient feature susing fully-
connected layers, and estiamting likelihood of AD using
softmax layer.

• Evaluating LEADNet’s classification performance and
computational complexity against existing AD detection
techniques and pre-trained models.

• Discriminating between AD and NC EEG recordings
and presenting generalization by visualizing the layers
of the LEADNet model

The rest of the paper is structured as follows. Section II
describes the proposed methodology. In section III, the
experimental results are discussed. Section IV compares
the planned work and the most advanced techniques.
Section 5 provides the conclusions.

II. PROPOSED METHOD
Deep neural networks (DNN) are considered to assess the
significance of EEG signals in identifying AD. The flow of
the EEG dataset and classification algorithms is provided
below. The autoamtic AD detection process flow is depicted
in Fig. 1 followed by a comprehensive explanation of the
method.
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FIGURE 1. Schematic of the proposed LEADNet-based Alzheimer’s detections system.

A. EEG DATASET
The EEG signals from 11 NC subjects (4 male & 7 female)
and 12 AD patients (5 male & 7 female) make up the
dataset [25]. Every AD patient belonged to the Valladolid
Alzheimer’s Individuals Family Organisation (AFAVA). Par-
ticipants were screened for the existence of undesirable neu-
rological conditions, such as epilepsy, Parkinson’s disease,
etc., throughout the hiring procedure. The MMSE average
for individuals with AD was 13.1, with a 5.9 standard
deviation. The MMSE scores of NC participants were higher
than 30 [26]. Each subject’s EEG signals were captured
for five seconds using the 2.3.411 EEG profile study room
equipment from Oxford Instruments. The 12-bit analog-to-
digital conversion is used to digitise the EEG data at a rate
of sampling of 256 Hz. Table 1 lists the characteristics of the
EEG signals for both AD and NC subjects.

This work uses a 40th-order Chebyshev broadband filter
of 0.5-100Hz to eliminate the frequencies above 100Hz
and the DC line. After that, we used a notch filter with a
60Hz. Data segments that are longer than 1 sec are removed.
Additionally, the ICA (RunICA from EEGLAB) is used
to implement the Independent Component Analysis (ICA)
approach. ICA technique that can decompose these mixed

TABLE 1. EEG dataset details used in this work.

signals into independent components, making it possible to
identify and isolate noise sources. This processing created
16 unique ICA components from the original 16-channel
EEG signals. The automatic classification tool ICLabel on
the EEGLAB platform was used in the procedure to identify
eye or jaw artifacts from particular ICA components. The
EEG signals of these detected artifact components were
cleaned.

B. FEATURE EXTRACTION
The techniques used for feature extraction are described in
this section. Convolutional neural networks (CNN) with a
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TABLE 2. Architectural of the proposed LEADNet model.

max-pooling layer are used for feature extraction. Following
these techniques, the recovered parameters for the AD and
NC EEG signals are passed via thick and flattened layers.
The last layer categorizes the features that the preceding three
layers have extracted. The LEADNet architecture is detailed
in Table 2, along with each layer’s trainable parameters and
output dimension. Each block of LEADNet comprises a
2D convolutional layer to learn feature maps using suitable
weights. As shown in Fig. 1, input data of EEG signal with
the shape of (16, 1280) applied to LEADNet. Here, 16 and
1280 are the frequency and duration of the EEG signal
samples. The input EEG signal is combined with 20 kernels,
each measuring 3 × 3, in the first layer of the LEADNet to
produce an outcome shape of (14, 1278, 20). These make
the number of trainable parameters 200. The max-pooling
layer selects the highest level patterns in the input EEG
signals. It is achieved by enhancing the span of convolutional
calculation [27] using the following calculation:

ymax(h, v) = max({x(h+ s, v+ s); 0 ≤ h < H , 0 ≤ h < V })

(1)

where H is horizontal kernel size, V is vertical kernel sizes,
and s is a stride. A 2 × 21 kernel is selected to extract max
values from 14×1280 input features in themax pooling layer.
A larger kernel size in the max-pooling layer can capture

more temporal information from the input features. This
kernel size helps to reduce the redundancy and extract the
most essential features for further processing. After max-
pooling, the featuremap shape becomes (7, 60, 20). This layer
does not introduce any additional parameters. The second
2D convolutional layer exposes 2,900 trainable parameters
and generates an output shape of (5, 58, 10). The classifier
converts the feature extraction stage’s output into a vector.
At this point, dropout and fully connected layers are utilized
instead of convolution and max-pooling layers. In the fully-
connected layer, there are between 50 and 80 neurons.

Due to fewer neurons, the computation complexity for
dense layers decreases linearly with fewer variables that can
be trained. For each output label, a probabilistic score is
produced by a softmax layer. The network weights are trained
using the Adam optimizer that integrates stochastic root
mean square propagation and stochastic gradient descent. The

Adam optimizes the learning rate in the network. In addition,
its accuracy is superior to that of the SGD and RMSP
optimization methods.

For k th predicted probability of mth training example
{ypredic(l, k)|s.t.

∑
k ypredic(l, k) = 1, ∀l}. The cross-entropy

loss is calculated as:

Crossentropy Loss = −

Ntrain∑
l−1

Nclass∑
k−1

y(l, k) × log ypredic(l, k)

(2)

where Ntrain and Nclass are the total number of training
samples and number of classes, respectively. As shown in
Fig. 1, the trainable parameters from dense and convolution
layers are minimized in the proposed LEADNet.

1) EVALUATION METRICS
The effectiveness ofML classifiers is assessed using different
parameters such as accuracy (CA), sensitivity (SNS), speci-
ficity (SPC), and F1-score (F1) [28], [29]. These parameters
are calculated as:

CA =
Ta+ Tn

Ta+ Tn+ Fa+ Fn
× 100 (3)

SNS =
Ta

Ta+ Fn
× 100 (4)

SPC =
Tn

Tn+ Fa
× 100 (5)

F1 =
2 × Ta

2 × Ta+ Fa+ Fn
× 100 (6)

MACC =
Tn× Ta−Fn× Fa

√
(Ta+ Fa)(Ta+ Fn)(Tn+ Fa)(Tn+ Fn)

× 100 (7)

G− mean =
√
SNS × SPC (8)

Here, Ta and Tn are AD and NC subjects detected correctly,
respectively. Fn is AD patients detected as NC (falsely AD)
and Fa is NC subjects detected as AD (falsely NC) [30].

Algorithm 1 LEADNet Training Process
1: Input: Labelled Spatiotemporal EEG data
2: Output: Trained LEADNet model
3: Split data training-validation-testing (70-10-20 %)
4: Initialize LEADNet architecture
5: Initialize hyperparameters of LEADNet
6: while epoch < max_epoch do
7: while batch < max_batch do
8: Generate LEADNet outputs for training data
9: Estimate validation outputs & compute loss
10: Compute gradients using training data
11: Update LEADNet parameters using gradients
12: end while
13: end while
14: Evaluate performance using testing data
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TABLE 3. Performance evaluation using LEADNet and other pre-trained CNNs.

III. RESULTS AND DISCUSSION
This section uses various pre-trained models, including
VGG16, VGG19, ResNet50, and EfficientNetB4 for compar-
ison purposes. To ensure the robustness of our performance
evaluation and prevent data leakage, we used a train, test,
and validation data splitting method. Here, 70% of the data
is used for training the model. 10% of the data is used for
model validation and hyperparameter tuning, and 20% for
testing the model. Table 4 shows the confusion matrix of
LEADNet on the testing dataset. The confusion matrix shows
the classification results of the model, where the Ta rate is
high, and the Fa and Fn rates are low. The hyperparameters
of the proposed LEADNet and the state-of-the-art pre-trained
networks are presented in Table 5.

A. COMPARISON WITH PRE-TRAINED MODELS
Table 3 compares different pre-trained and suggested LEAD-
Net performance metrics in terms of CA, SNS, SPC, and F1-
score. The LEADNet has 99.24% CA, 100% SNS, 98.18%
SPC, 99.35% F1-score, MCC 98.45%, Kappa 98.41%, and
the geometric mean 99.08% in the testing stage.

TABLE 4. Confusion matrix of LEADNet models.

The VGG19 also performed better than VGG16,
ResNet50, and EfficiantNet-B4, with a testing accuracy of
96.99%. The more pre-trained parameters in EfficiantNet-
B4 caused the worst training, validation, and testing
performance.

In the comparison of models, the learning rate is set
to 0.0001 for LEADNet, VGG16, and EfficientNetB4, while
it is set to 0.001 for the other models. Additionally, all
models are trained for 150 epochs, maintaining consistency
across the experiments. In contrast, this part uses multiple

TABLE 5. Hyper-parameter setting for different models.

pre-trained models, such as VGG16, VGG19, ResNet50,
and EfficientNetB4. Table 5 presents the hyperparameters
of the state-of-the-art pre-trained networks and the proposed
LEADNet. The learning rate for LEADNet, VGG16, and
EfficientNetB4 in the model comparison is 0.0001, but it is
set to 0.001 for the other models. Furthermore, all models
undergo 150 training epochs to ensure uniformity throughout
the studies.

The convergence analysis has been performed on all mod-
els, including the proposed LEADNet. From the convergence
analysis, the stability of learning patterns can be learned over
many epochs. Figures 2-6 depict all the model’s accuracy and
loss plots over the number of epochs. These accuracy and
loss curves show the convergence over time as the model
learns from the data. This convergence indicates that the
model is improving and approaching an optimal solution.
The accuracy and loss curves of VGG-16 and ResNet50,
Figures 2 and 4, indicate the dissimilarities between all
training and validation curve epochs compared to other
models’ accuracy and loss curves. Similarly, for the VGG-19
and the LEADNet, Figures 3 and 6 show the difference
between 0 to 25 epochs and 5 to 15 epochs, respectively. The
accuracy and loss curve of the EfficientNetB4 is continuously
fluctuating. This fluctuation can occur due to the stochastic
nature of specific algorithms.

B. VISUALIZATION OF LEADNET LAYERS
The flattened layer data distribution plots of VGG16,
VGG19, ResNet50, EfficientNetB4, and LEADNet are
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FIGURE 2. Training and validation accuracy (left) and loss (right) curves using VGG16.

FIGURE 3. Training and validation accuracy (left) and loss (right) curves using VGG19.

FIGURE 4. Training and validation accuracy (left) and loss (right) curves using ResNet50.

depicted in Fig. 7. The flattened layer is used to transform
multi-dimensional data into a one-dimensional array. This
operation is typically applied before feeding the data into a
fully connected layer, which requires one-dimensional input.
So, the flattened layer plays a vital role in the model to
observe the model’s behavior and complexity. The flattened
layer data is distributed using the t-distributed stochastic
160 neighbor embedding (t-SNE) for visualizing data. This
data distribution shows both class samples with different
colors. The complexity of the model can be observed through
that distribution plot. Except for the EfficientNetB4, all the

models of the distribution plots can be separated easily. The
feature maps revealed altered patterns for AD compared to
NC EEG recordings, indicating potential biomarkers and
neurophysiological changes.

In summary, these feature maps emphasize the important
input data regions for detection and becomemore informative
for deeper layers. The results underscore the potential of
the LEADNet model to distinguish AD and NC EEG
recordings. The visualizations of feature maps aids to
develope quantitative and objectivemethods for detection and
monitoring of the Alzheimer’s disease.
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FIGURE 5. Training and validation accuracy (left) and loss (right) curves using EfficientNetB4.

FIGURE 6. Training and validation accuracy (left) and loss (right) curves using LEADNet.

FIGURE 7. The Flatten Layer visualization using t-SNE for: (a) VGG16, (b) VGG19, (c) ResNet50, (d) EfficientNetB4, and (e) LeadNet.

C. COMPARISON WITH EXISTING MODELS
The Table 6 compares performance of the LEADNet and
existing techniques based on the AFAVA dataset. Various

EEG-based automatic Alzheimer’s disease detection models
have been reviewed earlier in Section I. However, Table 5
compares the performance of the existing models against the
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TABLE 6. Comparison of LEADNet and existing techniques using the
AFAVA dataset.

developed LEADNet in terms of CA, SNS, and SPC. As per
Table 6, the developed LEADNet attained higher CA, SNS,
and SPC results than the existing models.

Abásolo et al. [25] improved accuracy to 95.45% using
detrended fluctuation analysis (DFA), AMI, detrended mov-
ing average. However, these models are limited due to the
time-varying and parametric entropy-based methods [12],
[31]. Simon et al. [32] explored various techniques such as
quadratic SpEn, generalized MSE, distance-based LZC [33],
and FuEn [18] achieving an AD detection accuracy of
86.36% using the Mann-Whitney U-test and Lilliefors test.
Puri et al. [34] investigated the wavelet packet subband-based
features with traditional machine learning models. However,
it reached a 95% classification rate. The performance of this
method is dynamic [19]. In general, methods in Table 5 utilize
duration-dependent features, failing to focus on frequency
domain information. Some directions for future work are:

• Increasing the size and diversity of the population
included in the dataset could improve the suggested
CNN model’s generalizability. Its performance can be
enhanced by including data from various demographic
groups, ethnicities, and disease stages.

• Investigating transfer learning techniques could help to
improve the CNN model’s performance on this job by
fine-tuning it specifically for AD detection.

• Creating tools to analyze and visualize CNN’s decision-
making process can improve the model’s reliability
and transparency, making it more enticing for clinical
use.

IV. CONCLUSION
These days, early and reliable AD detection is the pri-
mary concern. An effective AD detection method using a
low-complexity convolutional neural network, LEADNet,
is presented. The proposed model generated disease-specific
features using spatiotemporal EEG signals. It used two
convolutional layers, one max-pooling layer, two fully-
connected layers, and a softmax layer. With CA: 99.24%
SNS:100%, SPC: 98.18%, and F-score: 99.35% over the
testing subset, the LEADNet performed better than the
other pre-trained and state-of-the-art models. Because of
its reduced complexity compared to other models, it is an

excellent option for real-world healthcare scenarios. This
work has highlighted the shortcomings of hand-crafted
methods based on features and current clinical tests for AD
detection, highlighting the demand for more independent and
reliable methods. In summary, this work has advanced the
use of CNNs and EEG signals for the early identification
of AD. Due to its good performance in AD detection, this
model might have broader potential applications than AD;
it may also be helpful in the diagnosis of other neurological
conditions like epilepsy and sleep problems.
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