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Developing, understanding and verifying the behaviour of cognitive models is a non-trivial task. A good cognitive model 
explains and predicts human behaviour in a particular experimental setting. Cognitive models are often in the form of 
computer programs which need to be designed and written for the given experiment and behaviour: time constraints or 
natural bias (oversights) often lead to models written by human programmers being constrained to particular theoretical 
assumptions. We apply program synthesis to this task, introducing novel training and post-processing techniques; our 
experiments automatically create good quality models, and help visualise the structure of the solution space. 
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Introduction 

Developing and verifying the behaviour of cognitive models is a non-trivial task. Ideally, a cognitive model will 
provide some explanation of how a human performs in a particular experimental setting, and even provide 
predictions for new settings. In many cases cognitive models are based around computer programs which need 
to be written. The area of program synthesis studies ways to generate executable computer programs from user 
specifications. In this paper we demonstrate how an evolutionary algorithm can generate programs representing 
candidate computational models in a typical neuro-scientific experiment. We present techniques to improve the 
understandability of the resulting programs, which enables their use as the starting point for developing 
scientific theories.  

Proposed System 

Our proposed system is based on Genetic Programming [4], a technique which searches a large space of 
programs for candidate solutions to a given fitness criterion. We have applied our methodology to various tasks, 
including variants of the Delayed Match To Sample task (DMTS) and a Decision Making task – in this paper, we 
discuss only the DMTS task. Unique aspects of our system include a phased-evolution system, which aids in 
finding models with both behaviour and time fitness requirements, and extensive post-processing steps, which 
reduce the large number of models output by the system to a smaller, more understandable subset, with 
graphical and text representations. Our approach [2, 5, 6] using GP appears unique in developing cognitive 
models which focus on symbolic, information-processing [8] explanations of human cognition. This contrasts 
with many current approaches in artificial intelligence which rely on connectionist (statistical) explanations 
based on large datasets: a recent study in this area is that of [7]. 

As an example of program synthesis, our system can be conveniently divided into three parts [3]: the task 
definition (user intent), to express what makes a good program; a search space of candidate programs; and a 
search technique (Genetic Programming), to explore the given search space for good programs.  

The task studied in this paper is the DMTS task [1], a typical neuroscientific experiment, popular for studies of 
short-term memory, which tests the accuracy and reaction time for subjects to recognise images. In this 
experiment a picture is presented for 1 second in the centre of the screen. Then, after a delay of 0.5 seconds, 
two pictures are presented for 2 seconds, one on the left and the other on the right of the screen. The participant 
must select which of those two pictures is the same as the first picture.  

Although this task is an example of “programming-by-example”, where the model must reproduce the example 
input-output behaviour, the overall quality of the model is not judged on the number of correct input-output 
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pairs. As reported in [1], across the complete set of presentations, human subjects only score 95.7% accuracy, 
with an average response time of 767ms: the model’s accuracy and simulated response times are judged against 
these values. Such time-dependent models require special attention during the evolution process and, in 
particular, we have created a novel phased-evolution system which gradually introduces elements of the fitness 
function over time. 

Each individual model is defined by a control program to be interpreted within a simple cognitive architecture: 
the space of possible control programs is the search space for our system. This architecture has some task-
specific input/output components: a set of inputs and a response. It also has some task-independent 
components: a fixed-size short-term memory (STM), and a working memory. Finally, each model has a clock, to 
record its current in-task time. The model’s control program is composed from a set of operators defining a 
simple imperative programming language. The model’s current working value, STM and clock values can all be 
manipulated, inputs read and a response prepared: the current response is “made” when the program ends. 

Phased Evolution The fitness function is a linear combination of three components: accuracy, the proportion of 
correct responses compared to humans; response time, the simulated response time compared to humans; and 
program size, the number of operators in the control program. 

Our phased-evolution approach introduces these components gradually. Initially, the GP system is trained using 
just accuracy as the fitness. Once the best model reaches a good level of accuracy (defined as a value less than 
0.1), the fitness is changed to be a combination of accuracy and response time. Thus, the models so far showing 
accurate results must now additionally make their response in the appropriate amount of time. Again, when the 
best model reaches a good level of fitness, the fitness is adjusted to be a combination of all three factors, which 
has the effect of encouraging the evolved models to reduce in size. 

Post-Processing In order to reduce the size and complexity of the evolved programs, two post-processing steps 
are applied. The first simply removes “dead code”, defined as code which is not actually called during the running 
of the program. For example, a condition may always be true and so the else-block of an if-statement may never 
be used. This can be rewritten as follows: 

(IF (CONDITION) (SOME-CODE) (UNUSED)) -> (PROG2 (CONDITION) (SOME-CODE)) 

Secondly, some operators may be “masked” by later operators, e.g. the information from looking left may be 
over-written when subsequently looking right. In this case, the initial look left can have no behavioural effect, 
except for the simulated time. We can thus rewrite such a case with a special WAIT operator, as follows: 

(PROG2 (INPUT-LEFT) (INPUT-RIGHT)) -> (PROG2 (WAIT-INPUT) (INPUT-RIGHT)) 

Results and discussion 

In one experiment, we used a population size of 500 individuals and 2000 generations, and collected models 
from six runs.  

Fig.1 (a) illustrates the effect of our phased-evolution system. For the first 10 generations, the models are 
evaluated purely on accuracy: once the best model produces a good accuracy (the red line), the overall fitness 
drops and the next component of the fitness is introduced – the response time. This second stage lasts up to 60 
generations during which period the program size of the best model increases until the response time (the blue 
line) itself drops, and now the third component can be introduced – program size. The later generations develop 
models optimised against all three components of fitness in combination, producing small models with a high 
accuracy and good response time. 
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Fig. 1. (a) A graph of fitness against generation, showing how the overall fitness drops in stages, with the separate fitness 
components being optimized in turn. (b) A scatter plot of similarity of the final models, showing how the models fall into 
two main groups and one exception. 

The GP search technique is used to generate multiple candidate models: each run generates many ‘good’ models 
(based on a fitness value threshold). A unique aspect of our approach is the amount of post-processing 
performed on the candidate models, which are otherwise too numerous to analyse and understand. For example 
(see [6] for details), a typical output of six runs of the GP system produced 1164 distinct models with a good 
fitness value. By removing bloat, these were reduced to 248 distinct models. We then rewrote semantically 
equivalent programs to further reduce the number to 11 distinct models. Application of a clustering algorithm 
(see Fig.1(b)) divides this space of models into two basic groups and one exceptional group – studying individual 
members of those groups enables a scientist to develop an explanation of behaviour in this domain. 

Conclusion 

The results obtained so far demonstrate that the approach is successful in synthesizing high-quality cognitive 
models, based on comparisons with human data. Apart from applying the approach to more complex tasks, 
further areas for investigation include a co-evolution approach, to optimise the operator time parameters, and 
domain-specific heuristics for the GP algorithm. 
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