
Citation: Allen, A.; Mylonas, A.;

Vidalis, S.; Gritzalis, D. Security

Evaluation of Companion Android

Applications in IoT: The Case of Smart

Security Devices. Sensors 2024, 24,

5465. https://doi.org/10.3390/

s24175465

Academic Editor: Maurizio Talamo

Received: 8 July 2024

Revised: 20 August 2024

Accepted: 21 August 2024

Published: 23 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Security Evaluation of Companion Android Applications in IoT:
The Case of Smart Security Devices
Ashley Allen 1, Alexios Mylonas 1,* , Stilianos Vidalis 1 and Dimitris Gritzalis 2

1 Cybersecurity and Computing Systems Research Group, Department of Computer Science,
University of Hertfordshire, Hatfield, AL10 9AB, UK; a.allen3@herts.ac.uk (A.A.)

2 Department of Informatics, Athens University of Economics and Business (AUEB), 76 Patission Ave.,
GR-10434 Athens, Greece; dgrit@aueb.gr

* Correspondence: a.mylonas@herts.ac.uk

Abstract: Smart security devices, such as smart locks, smart cameras, and smart intruder alarms
are increasingly popular with users due to the enhanced convenience and new features that they
offer. A significant part of this convenience is provided by the device’s companion smartphone app.
Information on whether secure and ethical development practices have been used in the creation
of these applications is unavailable to the end user. As this work shows, this means that users are
impacted both by potential third-party attackers that aim to compromise their device, and more subtle
threats introduced by developers, who may track their use of their devices and illegally collect data
that violate users’ privacy. Our results suggest that users of every application tested are susceptible to
at least one potential commonly found vulnerability regardless of whether their device is offered by a
known brand name or a lesser-known manufacturer. We present an overview of the most common
vulnerabilities found in the scanned code and discuss the shortcomings of state-of-the-art automated
scanners when looking at less structured programming languages such as C and C++. Finally, we
also discuss potential methods for mitigation, and provide recommendations for developers to follow
with respect to secure coding practices.

Keywords: cybersecurity; smart home; IoT; Android; software development; SAST

1. Introduction

Internet of Things (IoT) devices are becoming pervasive in both domestic and business
environments, serving a variety of purposes. IoT technology allows the user to perform
remote actions, network devices together, and receive alerts of events of interest. Of these
smart security devices, one of the most popular is the smart lock. These devices are drop-in
replacements for traditional mechanical locks that add smart capabilities, such as remote
unlocking, timed access, and software key sharing. Previous work such as [1] has looked at
vulnerabilities in these devices, and in the implementation of communication protocols
such as Bluetooth Low Energy (BLE), Wi-Fi, RFID, and Zigbee. An interested reader can
look to [2–5] for current research into Bluetooth security, and to [6–8] for research into RFID
security. Furthermore, as IoT devices are the “lowest hanging fruit in cybersecurity”, there
have been several cases in the current threat landscape (e.g., Mirai botnet), where these
devices have been compromised and used by threat actors to mount other attacks, such as
distributed denial of services (DDoS) [9].

Smart security devices often have an associated software component, separate to the
physical component, in the form of mobile phone companion apps. These companion
applications run on the user’s mobile phone and provide enhanced functionality. This
can range from auto-locking or timed locking and unlocking, through to the sharing of
temporary codes with other people. As these companion applications manage devices that
protect physical assets, developers should ensure that they are free from vulnerabilities and
coded with security in mind. Previous work such as [10,11] discuss ways of ensuring that

Sensors 2024, 24, 5465. https://doi.org/10.3390/s24175465 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24175465
https://doi.org/10.3390/s24175465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8819-5831
https://orcid.org/0000-0002-7793-6128
https://doi.org/10.3390/s24175465
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24175465?type=check_update&version=1


Sensors 2024, 24, 5465 2 of 19

applications are written in a secure fashion. However, other recent research such as [12,13]
indicates that vulnerabilities are still found across the majority of tested apps. This presents
a significant risk to the end user, especially where these smart devices are used in situations
where financial loss or physical injury may occur.

Furthermore, with the popularity of “direct to consumer” marketplaces and the ability
for sellers to sell their products at low cost via established channels, such as eBay and
Amazon, the barrier to entry has been lowered considerably. This means that “lesser
known” brands can compete directly with those bearing an established name, such as Yale
or Chubb. The benefit of this is enhanced consumer choice. This comes with a potential
cost, in that companies selling under “white label” or “disposable” brand names may feel
less inclined to support their products. As part of the testing performed, we have compared
the results obtained from traditional brands and their “lesser known” counterparts.

Secure coding metrics have existed for many years. Bodies such as OWASP [14] and
security vendors such as Veracode [15] describe factors, such as code coverage, vulnerability
density, false positive rates, as methods for determining the “quality” of written code. When
one is using the companion applications to these security devices, they need to be confident
that their developers have considered their security, and thus they are not exposed to cyber
attacks. Previous research from [16] discusses the wide range of methodologies open to
developers to ensure that their code is secure. In addition, AI-enhanced coding tools are
now also available to developers and work in [17] indicates that these help to produce more
secure code.

In this paper, we assess 54 smart security companion applications and present our
results with regards to common vulnerabilities discovered in their implementation. To do
so, we propose and use 13 different metrics to measure the security performance of the
apps. In summary, this paper makes the following contributions:

• We provide a comparison of the number of common vulnerabilities found in
54 Android companion applications of smart security devices, such as smart lock,
smart camera, and smart alarm. To identify these vulnerabilities, we use both com-
mercial and open-source automated static application security testing (SAST) software
used in SecDevOps and manual testing.

• We uncover that every tested companion application contains at least one vulnerability
in scope of our analysis. Several applications contain critical vulnerabilities that have
been known for multiple years. We further identify and discuss concerning practices
used by developers of the companion apps, which could adversely impact the user’s
security and impair privacy, as well as potentially break relevant laws, such as General
Data Protection Regulation (GDPR).

• We discuss remediation steps and recommendations that will allow developers to
create more secure apps. We also discuss the steps that users can take to protect
themselves when using these apps.

The rest of the paper is structured as follows: Section 2 includes background and
related work. Section 3 describes our methodology and Section 4 presents our results.
Section 5 includes a discussion before the paper concludes in Section 6.

2. Background

Significant literature from the past 15 years exists with respect to Android application
testing in general. This section includes relevant work from the past five years. In their
2021 paper [18], the authors conduct a review of previous literature and produce a threat
taxonomy for Android apps. This presents researchers with a coherent methodology for
assessing distinct types of application threats. The authors of [19] discuss the varying types
of mobile application testing tools available, although their coverage of security tools is
weak. Work in [20] also discusses software analysis of a significant (i.e., more than 1000)
number of Android apps, focusing on code quality and application design. The authors also
discuss the findings with a focus group of five subject matter experts. Their results suggest
that most Android applications are poorly written, and existing tests are weak at finding



Sensors 2024, 24, 5465 3 of 19

code defects during the design and quality assurance phases of development. Further
systematic study of previous literature is made in [21], which discusses the range of tools
available for analysing vulnerabilities in web applications. The range of vulnerabilities
discussed in the OWASP Mobile Top 10 [22] has a significant overlap with those discussed
in the OWASP Web Application Top 10 [23] and so attacks and defences discovered for one
domain will have validity in the other. Similar studies can be found in [24,25]. The work
of [26] looks at Android application analysis using MobSF and finds similar coding issues
to the ones we have found. The authors of [27] also use MobSF to investigate the coding
standards found inside an Indonesian eGovernment app. Additionally, the work of [28,29]
presents static analysis studies similar to ours relating to hotel booking applications and
wearable health tech companion applications, respectively.

Much of the relevant literature focuses on the Android permissions ecosystem and
developers’ overuse of dangerous permissions. In [30], the authors present a comprehensive
analysis of the permissions system since its introduction in 2008. In reviewing the changes
in the permissions requested by several applications over a period of years, the authors
have identified significant increases in requested privileges. In one case, a growth of more
than 70% was identified. Whilst the increased permission requests may be the result of
the addition of new features to the app, it may also indicate a more relaxed attitude to
producing tightly defined code. Users are also often confused by the permissions that are
being asked of them and may ignore them, as discussed in [31,32]. The authors of [33] have
created a tool that automatically checks applications for permission-related vulnerabilities.
Again, this suggests that application developers might not be paying enough attention to
the output of their security tooling, if it is being used at all. The works of [34,35] discuss
issues relating to runtime permissions, indicating that many Android applications suffer
from vulnerabilities caused by overly permissive permission models. More recently, [36]
looks at hashing the AndroidManifest.xml file, which is used as a signature to quickly
verify whether the file has been modified. Finally, the authors of [37] discuss the use of
machine learning techniques, specifically XGBoost, to perform granted Android permission
analysis over a large sample set.

In [38], the authors discuss the prevalence of weak application configurations relating
to the enforcement of HTTPS. Their paper indicated that only 13% of applications were
taking advantage of options available to prevent data transfer via a weak method, such
as HTTP. Scanning of the same dataset at a later date, after developers had released new
versions of the same apps, improved this percentage, but it indicates that many developers
are either unaware of enhanced security configurations, or are under no pressure to use
them. Finally, the authors of [39] discuss using unsupervised machine learning to identify
incorrect usage of cryptographic functions across a real-world dataset.

Third-party libraries, i.e., those which are not part of the core Android source code, are
an important part of many Android applications. However, using them presents developers
with challenges around auditing them for malicious or unwanted behaviour, as well as
potential supply chain issues. The authors of [40] introduce their tool for identifying these
libraries in published applications. This technology allows a more accurate vulnerabil-
ity scanning of applications, but it can also aid malicious actors with the identification
of potential attack vectors. Similarly, work in [41] reviews available third-party library
detection tools, as well as a roadmap for the creation of more accurate scanners from the
combination of more than one tool. Work in [42] discusses one specific scanner and presents
an evaluation of its detection capability. Further examples of third-party library detection
methods are also given in [43].

In their 2020 paper [44], the authors investigate collaborative bug finding and pro-
pose identifying classes of vulnerabilities by investigating similar apps. Similarly, the
work in [45] focuses on triaging vulnerabilities and vulnerabilities using Bayesian graphs.
Additional work focusing on the detection of multiple classes of vulnerabilities and vulner-
abilities can be found in [46,47].



Sensors 2024, 24, 5465 4 of 19

Related works in the literature discuss security frameworks and strategies for con-
ducting security-based assessment. A 2022 paper by [48] discusses the usage of formal
methodologies in security research, noting in the conclusion that they provide “evidence of
the presence, not the absence of flaws”. This indicates that the task of finding new flaws
(our emphasis) is best suited to experimental methods, whilst formal methodologies are
best suited to catching security vulnerabilities of a known and classified type. The authors
of [49] discuss a new, SLA-based, secure by design methodology. By using threat modelling
and risk management processes, they aim to reduce the number of vulnerabilities that
reach the end product. The authors in [50] discuss SAST tooling, providing detail on 7 tools
chosen from a field of 161. Their work indicates that performance against synthetic bench-
marks outperforms performance against real-world examples with vulnerabilities in this
case being underreported. This indicates that the focus of researchers should be improving
detection performance through combining results from tools to enhance detection.

Finally, recent research focuses on vulnerability detection using machine learning/artificial
intelligence approaches. Specifically, the work in [51] discusses vulnerability detection using
deep neural networks. The authors highlight the challenges of code representation learning,
given the multiple ways in which the same functional statement can be represented by different
development styles, and across different languages. Many tools struggle when presented with
such non-standard code, and developing methods for analysing it is a key area of research,
especially for languages without recognised standard frameworks, such as C and C++. Similar
work appears in [52] where the authors attempt to create a taxonomy of vulnerability types, as
well as machine learning approaches. Graph-based network learning is also a popular topic in
machine learning vulnerability analysis, with [53–56] discussing work on this topic.

3. Methodology

This section provides the proposed threat model, experimental methodology, and
metrics used in the analysis.

3.1. Threat Model

Our threat model includes an attacker with limited resources. This means that the
attacks they mount should not require significant amounts of time and/or computing
resources. The attacker is presumed to be technically proficient, but not necessarily an
expert. In the following subsections we discuss further assumptions.

Access Vectors and Techniques and Tactics

We assume that the attacker is only aware of the specific smart security applications
that are installed on the target’s phone. For ease of comparison and analysis, we have
assumed that the target is using an Android phone. Many tools exist that allow the export of
Android application install files (APKs) from a standard, non-rooted phone. In comparison,
exporting installation files from an iPhone can take considerable amounts of time and skill.
Finally, we also assume that the attacker and the target are using the same make and model
of mobile phone and that the device has not been “rooted.” These assumptions ensure that
any vulnerabilities our attacker finds will also exist on the target’s phone.

The attacks covered in this work are based on the following activities: (a) static analysis
of the APK by cloud service Ostorlab; (b) static analysis of the APK by locally hosted service
MobSF; and (c) code quality analysis of the decompiled APK using cloud service Snyk.
Each of these services was chosen as they offer a completely free tier of service, as well as
free access to their JSON API endpoint. This allows for the automation of results collection
and analysis. Static analysis is a well-established technique, used by both developers and
attackers, to determine potential vulnerabilities. Using a cloud-based tool and a self-hosted
one gives the opportunity for comparison between the results obtained. Code quality
analysis is used during application implementation by development teams, to ensure that
common code vulnerabilities are avoided. Source-code files are analysed for patterns
pertaining to specific vulnerabilities, such as path traversals, cross-site request forgeries,



Sensors 2024, 24, 5465 5 of 19

hardcoded secrets, and inadequately secure cryptographic algorithms. An attacker can
use code quality analysis as a tool to their advantage by decompiling the APK file and
discovering even more vulnerabilities. The list of vulnerabilities discovered can then be
used by the attacker to target that application on the user’s smartphone.

3.2. Experimental Setup

To select a representative set of Android applications for smart locks, a search was
made in the Play Store for “smart lock”, “smart security”, “smart camera”, and “smart
padlock” applications. We decided to focus on the official application repository (i.e., Play
Store) instead of other unofficial ones where users could sideload Android apps, because,
as follows: (i) we considered that non-security and non-technical savvy users are more
likely to use the official application repository and (ii) smart device manufacturer often
post their companion applications in the official application repository. Fifty-four Android
applications, which are listed in Table A1, were downloaded and installed to an Android
smartphone running Android 11. The applications selected are companion applications
of branded products that fall in the four device categories. These are offered by known
manufacturers, such as Master Lock and Schlage, as well as generic products from lesser-
known manufacturers. Several of the applications selected are “suite” apps, meaning
that they contain the code to control two or more of the devices in the four categories. In
addition, applications such as Xiaomi Home and Tuya Smart, and Kasa are designed to
control a wide variety of other devices, such as smart lightbulbs and kitchen appliances.
These applications have been included in the study as they have an extensive user base [57]
and whilst not solely managing smart security products, a significant proportion of the
application code is dedicated to supporting these products.

This work used a combination of state-of-art software, both open source and commer-
cially used in SecDevOps, to automatically identify vulnerabilities in Android apps. The
identified vulnerabilities were confirmed with manual code inspection by a SecDevOps
developer with 10 years of experience. For each application we selected, an APK file was
then exported using AirDroid. Then, the APK file was automatically scanned against a list
of common vulnerabilities for Android apps, which is summarised in Table 1. During the
vulnerability scanning, the APKs were uploaded and scanned by Ostorlab and MobSF. In
addition, each APK was decompiled using jadx and uploaded to GitHub and analysed by
Snyk Code. To avoid including false positives in our results, the results from the different
tools were confirmed manually before populating the results summarised in Tables 2–7.
The tools used together with their associated URLs can be found in Table A2.

Table 1. Vulnerabilities used as security assessment metric of companion apps.

Vulnerabilities Description Measure Tool

Dangerous Android
Permissions

Dangerous Android permissions give access to sensitive
functions. Excessive use can indicate poor coding
practices or attempts to breach user’s privacy.

Number MobSF

Traffic to OFAC Sanctioned
Countries

Office of Foreign Assets Control (OFAC) sanctioned
entities are individuals, companies, or nations that the
United States government consider to be engaged in
either military or economic behaviours to the detriment of
the USA and other Western nations. Data transferred to
these entities will not have the same level of protection
that data processed in the USA and the EU has.

Number MobSF

Trackers Trackers can be used to profile users and breach
their privacy. Number MobSF

Use of outdated vulnerable
components Third-party components with at least one CVE. Yes/No Ostorlab



Sensors 2024, 24, 5465 6 of 19

Table 1. Cont.

Vulnerabilities Description Measure Tool

Path traversal An attacker may gain access to sensitive file locations via
incorrect directory permissions. Number Snyk

Server Side Request Forgery
SSRF attacks leverage vulnerabilities in code to force an
application to serve data that it should not. This can lead
to sensitive information disclosure.

Number Snyk

Cleartext Transmission
Use of insecure protocols such as HTTP. This can lead to
information disclosure and person-in-the-middle
(PitM) attacks.

Number Snyk

Hardcoded Secrets These can be items such as usernames and passwords, or
3rd-party secrets such as API keys. Number Snyk

SQL Injection Running unsanitised SQL commands can lead to breaches
in the confidentiality, integrity, and availability. Number Snyk

Inadequate Encryption
Strength (TLS v1.0)

TLS v1.0 has been deprecated for security reasons, so its
use in an application may lead to potential information
disclosure attacks.

Number Snyk

Inadequate Padding for AES
Encryption

Where used, AES encryption has the option of several
data “padding” methods. Where insecure methods are
used, attackers may be able to leverage them to gain
system access.

Number Snyk

Improper Certificate
Validation

If HTTPS or other certificates are not correctly validated,
fake or self-signed certificates may be used to gain access
to secured modes of communication and the data
they protect.

Number Snyk

Broken Cryptographic
Algorithms

Use of deprecated methods such as the block cipher mode
in AES (CBC) may allow an attacker to use cryptographic
techniques to gain unauthorised access to the device.

Number Snyk

4. Experimental Results

This section discusses the results from the analysis of the companion applications of
smart locks, as described in Section 3. Firstly, we calculated the mean value and standard
deviation for the number of dangerous Android permissions, the number of URLs related
to Office of Foreign Assets Control (OFAC) sanctioned nations, and the number of trackers
(Table 2). Our analysis suggests that out of the 54 tested apps, the number of dangerous
permissions for nine applications is considerably higher than the rest of the group (i.e., one
standard deviation higher than the mean, as described in Table 3). As these applications
perform essentially the same function with respect to the rest of the tested apps, deviation
above the mean suggests unnecessary use of these permissions. This unnecessary use
of dangerous permission will increase privacy risk [58], as well as decrease the effort of
malicious authors [59].

Similar results were found when analysing the number of OFAC Sanction List URLs
present inside the 54 tested applications (as shown in Table 3, e.g., in the case of the
Mi Home application more than 5 standard deviations above the mean). This would
indicate that those applications are more likely to share data with servers in countries with
poor data privacy laws. Finally, as summarised in Table 2, the number of unique trackers
in 11 of the 54 applications exceed the mean by one standard deviation, which suggests
that these applications are more likely to be involved in user profiling.

One should note that there is an overlap relating to membership of applications to
three sets of results in Table 2. Specifically, the Mi Home application is a member of all three
groups, whilst the Nextlock, Oaks, Sciener, Sifely, and TTLock applications are found in two of
the groups. As these are all “lesser known” or “generic” apps, our results suggest that for
at least these three metrics, branded devices perform better. It also shows that applications



Sensors 2024, 24, 5465 7 of 19

that demonstrate significant deviation from average in one metric will do so in others.
Nonetheless, the analysis showed that companion applications for branded products are
also present in the results, with seven appearing in one of the columns in Table 2. However,
none of the applications appear in more than one column, and none appear in the OFAC
URL list.

Table 2. Dangerous permissions, OFAC URLs, and trackers in companion applications.

Application No. of Dangerous
Permission No. of OFAC URLs No. of Trackers

Alarm.com 0 0 4

Arlo 18 0 0

Conexis L1 0 0 5

eGeeTouch 0 0 6

Eufy 21 0 0

Kangaroo 0 0 4

Latch 0 0 4

Mi Home 18 78 7

NextLock 18 29 0

Oaks 20 29 0

Philips EasyKey 18 0 0

Raixer 0 0 4

Schlage Home 0 0 4

Sciener 20 30 0

Sifely 20 29 0

SimpliSafe 0 0 6

SmartSolity 0 0 4

Tedee 0 0 5

TTLock 20 30 0

Mean 11.81 6.26 2.26

Standard deviation 5.26 13.56 1.49

With regards to vulnerabilities from third-party components, we found that 14 out
of 54 applications had at least one outdated component included as part of their code. It
is worth noting that some of the Common Vulnerabilities and Exposures (CVEs) related
to these outdated components are more than 13 years old, e.g., CVE-2010-3492 that is
present in six different applications (i.e., NextLock, TTLock, Sorex SmartLock, Sciener, Oaks,
and Sifely). Again, these were found in companion applications of “lesser known” devices,
suggesting they are more likely to experience this type of vulnerability. Furthermore, our
analysis uncovered that each outdated component includes at least one CVE record that
is at least a year old, providing attackers with a significant period during which exploits
can be developed. We also found that some components relied on deprecated code, such
as libraries written in Python version 2.7, which is now out of support and, thus, is not
receiving any security updates.

Table 3 contains a list of the vulnerabilities discovered and the application with the
largest frequency of that specific vulnerability, as well as the frequency itself. Table 3
also contains the mean number of instances of each vulnerability, as well as the standard
deviation. Moreover, Table 4 highlights the companion applications where vulnerabilities



Sensors 2024, 24, 5465 8 of 19

are 1, 2, and 3 standard deviations (σ) or more above the average for the 54 companion
apps, as well as their absolute frequency.

Finally, this work uses two more metrics to assess the security of the companion apps,
namely vulnerabilities. The first one is the sum of standard deviations of all vulnerabilities
as described in Table 4 plus the standard deviation of the total vulnerabilities. We consider
that this sum indicates how poorly, with regards to SecDevOps, a companion application
is written, which is reflected by the number of vulnerabilities found compared to the rest
of the applications in scope. The second is the vulnerability density, i.e., calculated by the
average number of vulnerabilities per MB of decompiled code. As the 54 tested applications
vary significantly in size, this metric allows a comparison independent of the size of the
app. This metric was preferred instead of a more “traditional metric”, which is the number
of lines of source code per vulnerability. This holds as we do not have access to the initial
source code, as it was written by the application developer, but rather decompiled code
whose reconstruction depends on the decompiler used. Tables 5 and 6 list the top 10 worst
companion applications based on the two aforementioned metrics.

Table 3. Vulnerabilities with average frequency and standard deviation.

Vulnerability Mean Standard Deviation Maximum Number of
Instances

Application with Most
Instances

Path Traversal 11.94 14.91 66 Mi Home

SSRF 15.54 68.28 454 Tapo

Cleartext Transmission 1.48 2.03 9 Tapo

Hardcoded Secrets 23.89 44.04 230 Arlo

SQL Injection 5.30 6.44 34 Mi Home

Inadequate Encryption Strength
(TLS v1.0) 5.59 6.69 37 Yale Home 2023

Inadequate AES Padding 3.80 4.56 18 TTLock

Improper Certificate Validation 2.54 3.99 22 Banham Smart Alarm

Broken Cryptographic Algorithm 27.35 40.45 155 Ring

Table 4. Snyk identified vulnerabilities per application and deviation from mean.

Application Path
Traversal SSRF Cleartext

Transmission
Hardcoded
Secrets SQL TLS v1.0 AES

Padding
Cert
Validation

Broken
Crypto Total

Arlo 230 (3 σ) 14 (2 σ) 274 (1 σ)

Banham Smart
Alarm 34 (1 σ) 15 (1 σ) 22 (3 σ)

Conexis L1 112 (1 σ) 144 (2 σ) 280 (1 σ)

Hafele 20 (2 σ) 8 (1 σ)

Kangaroo 33 (3 σ)

Kasa 240 (3 σ) 8 (3 σ) 9 (1 σ) 392 (2 σ)

Lockly 7 (1 σ) 103 (1 σ)

Mi Home 66 (3 σ) 34 (3 σ) 18 (1 σ) 274 (1 σ)

My Home
Alarm 6 (2 σ)

NextLock 13 (2 σ)

Oaks 13 (2 σ)

Philips EasyKey 42 (2 σ) 10 (1 σ)

Raixer 106 (1 σ) 135 (2 σ) 268 (1 σ)

Reolink 114 (2 σ) 7 (1 σ) 149 (3 σ) 301 (1 σ)

Ring 128 (2 σ) 7 (1 σ) 155 (3 σ) 324 (1 σ)



Sensors 2024, 24, 5465 9 of 19

Table 4. Cont.

Application Path
Traversal SSRF Cleartext

Transmission
Hardcoded
Secrets SQL TLS v1.0 AES

Padding
Cert
Validation

Broken
Crypto Total

Sciener 13 (2 σ)

Sifely 13 (2 σ)

SimpliSafe 117 (2 σ) 95 (1 σ) 245 (1 σ)

Smart Life 49 (2 σ) 4 (1 σ) 10 (1 σ)

Sorex
SmartLock 10 (1 σ)

Tapo 454 (3 σ) 9 (3 σ) 24 (2 σ) 7 (1 σ) 602 (3 σ)

TTLock 18 (3 σ)

Tuya Smart 59 (3 σ) 4 (1 σ) 10 (1 σ)

WeLock 10 (1 σ)

Yale Home 2023 1 σ 3 σ

Yale Home 33 (1 σ)

Yale View 10 (1 σ) 7 (1 σ)

Table 5. Summed standard deviation metric—total standard deviations summed across the 10 metrics
in Table 4.

Application Summed Standard Deviation Metric

Tapo 12

Kasa 9

Mi Home 8

Ring 7

Arlo 6

Reolink 7

Tuya Smart 5

Banham Smart Alarm 5

Yale Home 2023 5

Table 6. Vulnerabilities per MB.

Application Vulnerabilities per MB

Conexis L1 1.70

Yale Home 2023 1.52

Tapo 0.89

Reolink 0.86

Kasa 0.68

Raixer 0.66

Philips EasyKey 0.64

Sorex SmartLock 0.57

Arlo 0.55

TTLock 0.52

5. Discussion

Users face two different potential concerns when using any Android app. The first is
the security of the application against third-party attackers. These attackers aim to exploit



Sensors 2024, 24, 5465 10 of 19

vulnerabilities in an application to gain access to the device and perform actions that the
user would not want them to. For instance, this could be transferring money from a bank
account, or in the case of companion applications for security devices, disabling an alarm
or opening a door. As such, users are at the mercy of application developers with regards to
the existence of vulnerabilities in application and keeping them to a minimum to avoid this
threat. The second concern relates to the intentions of the application developers themselves.
Less scrupulous developers may attempt to harvest data, impairing users’ privacy, for
their own use or to sell them to third parties. Examples of this include the use of trackers,
communication with suspicious domains, and overuse of dangerous permissions, such as
requesting access to the user’s address book or camera. Our analysing showed a significant
overlap when one considers the top 20% of applications in the dangerous permissions,
OFAC sanctioned countries, and tracker categories. Considering the top nine applications
in the first two categories and the top nine in the trackers category, we can see that the Mi
Home application appears in all three categories. Oaks, Sciener, Sifely, TTLock, NextLock,
and Philips EasyKey applications appear in two of the three categories (see Table 7). There
appears to be a strong correlation between excessive use of dangerous permissions and
accessing servers in OFAC sanctioned countries, but no correlation between membership of
the first two categories and the number of trackers. This might suggest a lower perceived
impact of including tracking code in these companion apps.

Table 7. Top 9 apps pertaining to design time decisions.

Dangerous Android Permissions OFAC Sanctioned URLs Trackers

Eufy Mi Home Mi Home

Oaks Sciener eGeeTouch

Sciener TTLock SimpliSafe

Sifely Oaks Tedee

TTLock Sifely Conexis L1

Arlo NextLock Alarm.com

Mi Home Banham Smart Alarm Latch

NextLock eSmartLock SmartSolity

Philips EasyKey Philips EasyKey Kangaroo

Use of the standard deviation test clearly indicates which applications contain the most
security vulnerabilities compared to their peers. Interestingly, the majority (i.e., 6 of 9) of
the applications listed in Table 5 are developed by well-known brands, whilst the remaining
3 are more well-known examples of “generic” brands, namely Mi Home, Reolink, and Tuya
Smart. The top two entries in the list, i.e., Kasa and Tapo, are both produced by TP-Link.
This suggests that the issues highlighted might be a product of company-wide coding
standards, rather than those of individual teams within the organisation. As summarised
in Table 6, with respect to the number of vulnerabilities per MB, 6 applications represent
well-known brands and 4 represent “generic” products. As discussed earlier, the presence
of a substantial number of vulnerabilities, especially ones that are that are published for at
least a year, can be considered evidence of poor coding practices and adherence to secure
coding standards.

Along with evidence of poor coding practice, there are also indicators of more con-
cerning techniques by several application developers. The correlation between the number
of dangerous permissions requested and the number of calls to OFAC sanctioned URLs
suggests that the developers at the top of this list are less concerned about limiting access
to user data. In general, this would be a concerning result in a review of any application,
especially when applications for security devices are concerned as they may contain sen-
sitive data. For example, during our experiments, an unauthenticated Firebase database



Sensors 2024, 24, 5465 11 of 19

referenced in the application code was found to contain logs of every device user account
configured worldwide. This database included the date, time, and location of every device
access. It is worth noting that this data collection is not indicated in the user agreement
and as such under data protection laws, such as GDPR, it is unlawful. It is not required for
everyday use of the device, and the logical inference is that it has been collected to allow
greater targeting in advertising, or for sale to a third party. It should be noted that whilst
we only uncovered one instance of this behaviour, we cannot rule out other applications
collecting similar intrusive data. It is only because of a coding mistake that we were able to
uncover the issue in this instance.

Some of the vulnerabilities found present immediate threats to the user, whilst others
would require more subtle exploitation, e.g., via specially crafted phishing messages or
drive-by downloads. The first category includes applications with cleartext transmission
and hardcoded secrets, which increase the security risk for the end user. Data transmission
in plain text is vulnerable to both interception and tampering whilst in transit, whether
it is being sent from application to device directly, or via a central management server.
Protocol sniffing tools are inexpensive and readily available and can capture and replay
traffic from multiple hundreds of meters away, as demonstrated in [1]. In this paper, an
unlocking password sent in plain text via Bluetooth was identified for the eGeeTouch smart
lock. Once captured, it is then trivial to replay and unlock the device. Similarly, data
sent to a central management server must always be encrypted as the intermediary hops
are untrusted.

Hardcoded secrets present significant security concerns when they are used as encryp-
tion keys or initialisation strings for cryptographic functions. Another potential concern
is user data security and privacy. If the strings found correspond to API keys for online
services, then an attacker may be able to gain access to privileged data held remotely
and thus breach the user’s privacy. For instance, according to [60], 0.5% of all mobile
applications contain Amazon Web Services API keys. In the past, these API keys have been
used to access sensitive data and lead to significant breaches, e.g., [61,62].

As discussed earlier, another common threat to user privacy that was present in the
companion apps of security devices is the use of trackers accompanied by communications
sent to OFAC sanctioned countries. Prior work discusses the potential misuse of tracking
data by threat actors, for example [63,64]. The Electronic Frontier Foundation has a useful
tool that indicates just how much data is collected by web trackers [65]. The more trackers
an application contains, the more likely is that the user’s privacy is impaired. When coupled
with excessive use of dangerous permissions, an application could exfiltrate personally
identifiable information from the user’s device [32,58]. Additionally, received updates may
trigger functions based on a user’s location [59]. Whilst this is also possible when data are
sent and received from a non-sanctioned source, the OFAC sanctions list indicates locations
where such behaviour may be more likely.

Users can take several steps to protect themselves from the vulnerabilities found in
this study. Most importantly, they must upgrade their applications whenever an update
becomes available. As well as introducing new features, application updates often address
vulnerabilities, similar to the ones that were identified in this work. By updating their apps,
users assume that they use the “most secure” application version. Nonetheless, as this
work suggests, end users are at the mercy of developers with regards to the elimination of
vulnerabilities. This holds true as we have identified cases where vulnerabilities that were
known for a long time remained in the most recent version (i.e., at the time of our analysis)
of some of the companion apps that we have analysed.

Secondly, Android users are not restricted by Android’s “all or nothing” security
model [31], and nowadays can limit the permissions they approve for apps, or revoke
permissions of installed apps. Nonetheless, revoking permissions may stop the application
from working as expected, or crash it. As a result, users, often non-security and non-
technically savvy, are asked to balance the permission requests of a given application
against the potential security risk of granting these permissions due to its access to sensitive



Sensors 2024, 24, 5465 12 of 19

data and functionality [32,58]. When installing a new app, users are expected to scrutinise
the permissions requested, which is not often the case, e.g., as demonstrated in [31,66]. They
should also make sure to install the application from a trusted source, such as the Google
Play store. Users can also use workarounds in order to protect their security, until an
official patch is made available from the application developers. For example, by disabling
access to resources, such as Bluetooth and GPS, they can minimise the risk of clear text
data transmission between the device and the companion app, and avoid location tracking,
respectively. Similarly, as discussed in our previous work [1], end users could disable or
avoid the use of functionality offered by the smart security device (e.g., use of tags, use of
Bluetooth) to protect themselves from cyber-physical attacks, such as theft, impersonation,
and physical injury.

It is worth noting that addressing vulnerabilities of smart security devices relies on three
different release cycles, namely for the (i) companion application, (ii) operating system it
runs on, and (iii) the firmware of the smart security device hardware. The easiest of all three
to update is the application itself, followed by the host operating system, then the physical
hardware. The user is therefore at the mercy of three distinct development teams whose
update schedules may not align, thus exposing users to a security risk. For instance, it is not
uncommon for a device vendor to stop supporting a particular device after a few years, thus
depriving users of security updates, which might be available from the OS vendor, as in the
case of Android and Samsung devices [67,68]. Furthermore, in comparison with operating
system and hardware updates, which usually must be triggered manually, application updates
can be configured to auto-install. This removes a burden from the user and ensures that the
application itself should be the most secure of all three of the components, as it is the one
that can update more frequently. Research does indicate that in some cases users may be
reluctant to enable automatic updating, e.g., [69,70]; thus, it is important for smart security
device manufacturers to stress the importance of automatic updates.

Static analysis is a challenging task to perform due to the complexity of applications’
source code. The authors have significant experience with state-of-the-art static analysis
tools, such as Snyk, Veracode, and SonarQube, which are used in SecDevOps to assess the
quality of applications. Such tools look for patterns of behaviour to identify coding issues
and potential vulnerabilities that can be exploited by attackers. With modern development
frameworks in use across multiple languages, the task of code quality analysis becomes
easier, as code is written in the same way, even if the code itself is performing a different
functionality. However, when code is written in ways that do not conform to known
patterns, code vulnerabilities can become harder to identify by a static analysis tool. The
usefulness of results produced by these tools relies on the language used. Analysing newer
languages, with more predictable language constructs and well-defined structure, such as
Go and Java, produces fewer false positives, whilst “older” languages, such as C and C++,
require significant amount of manual investigation to confirm or reject their findings. As
such, while the results from static analysis are generally useful, one should note that these
tools are prone to false positives and false negatives. Furthermore, in scenarios similar
to our work, static analysis becomes more challenging when the Java/Kotlin source code
is unavailable. In this case, the Android application must be decompiled prior to static
analysis. However, as shown by [71,72], decompilation is not entirely accurate.

Assessing vulnerabilities using only one tool is not considered good practice. While
one tool could give a good indication of the code quality of a given application, it is
considered good practice to corroborate their results with at least one more tool, as in this
work. As such, as described in Section 3, in this work we have (i) used a combination of tools
(both open source and commercial) that are often used in SecDevOps and (ii) eliminated
false positives in the tools’ findings by manually confirming them before recording them
in Tables 2–7. SAST tools are good at matching known vulnerable coding patterns, but
often identify weaknesses that may not be reachable, due to decisions made elsewhere
in the code. However, we would argue that the cost of fixing such issues remains low,
especially when using the enterprise features of such products, which include the ability to



Sensors 2024, 24, 5465 13 of 19

automate pull requests (code updates) for many discovered issues as part of a DevSecOps
pipeline. The identified issues may not be exploitable at present, but they do indicate poor
code quality. A change to other areas of the code may thus render this an exploitable
vulnerability in a subsequent version of the application.

Whilst outside the scope of this work, the usage of dynamic application security testing
(DAST) tools, such as [73,74], can validate results found in SAST scans from providers such
as Snyk and Ostorlab. They do this through the simulation of both regular user behaviour
and that of an attacker to determine the exploitability level of a vulnerability. Other tools
such as [75] and the built-in service offered by the Google Play store [76] can provide
similar results. A DAST scan can be considered an automated penetration test. When
performing a DAST scan, or a traditional manual penetration test, the potential for missing
vulnerabilities is considerable. Whilst modern DAST scanners have some default routines
built in, they rely on the skill of the operator to determine exactly where to attack and
what additional tools to use. In a production environment, the time required to conduct
a significant manual investigation of vulnerabilities is limited. Additionally, the skills
required to perform a manual penetration test or to correctly configure a DAST scanner
are also not widely spread. Automatic remediation of code weaknesses, even when not
exploitable, is encouraged for this reason, as well as since it is useful training for developers.
For an in-depth discussion of DAST tools in relation to Android application analysis, an
interested reader may wish to view [77].

Existing code quality standards may need updating, or new standards created, to ensure
that end users are as secure as possible when using a smart security device, such as a smart
lock. As we discuss in our previous work [1], the gold standard for products sold in the
UK market is the British Standards Institute (BSI) Kite Mark. This is given to products that
the institute feels are sufficiently safe and secure for everyday use. However, this does not
cover the code quality of the companion application. This is demonstrated by the fact that
the companion application for the only BSI certified lock in scope of our analysis was also
one of the worst performers when assessed for its code quality. Other standards, such as ISO
9001 [78] and ISO 27001 [79], are used in the promotional literature for some of the devices
in scope of this work; however, these are not specifically related to code quality. Finally, one
should note that while an ISO standard (i.e., ISO 5055) for software quality exists [80], none
of the companion applications assessed in this work appear to conform to it.

6. Conclusions

The use of smart security devices provides the end user with many benefits, such
as remote locking and key sharing, but it is not clear that they are adequately aware of
the potential risks. The work uncovers that every tested companion application exposes
the user to some level of security risk. Most end users who use computers in a work or
home setting are aware of basic security issues, such as password reuse, malware, and
phishing. Smart security devices introduce a new class of computers into the work and
home environment, yet there does not appear to be a similar level of knowledge related
to the threats they contain. The end-user mindset is still based on the performance of the”
non-smart” predecessors of these devices. Whether a simple key lock, or a wired burglar
alarm or CCTV camera, users know approximately the potential threats and can mitigate
them. It is unrealistic to expect that those same users possess a deep understanding of
code vulnerabilities. However, to truly understand the threats that smart security products
contain, this level of insight is required.

Our work shows that the companion applications expose its users to threats originating
from cryptographic vulnerabilities, path traversal, cleartext transmission, SQL injection,
and more. Each of these could potentially be used to take control of the companion
application, and therefore, also the device it is connected to. We found that both lesser-
known and well-known devices possessed significant vulnerabilities. Whilst there are a
greater number in the generically branded devices, the well-known devices also possess
a significant number of vulnerabilities. In some areas, the well-known brands perform



Sensors 2024, 24, 5465 14 of 19

worse than their generic counterparts, for example, in issues per MB of code. None of
the applications tested were completely free of vulnerabilities. Three applications showed
no identified issues when their source code was scanned with Snyk. However, this may
indicate either that there are no vulnerabilities, or that the scanner is unable to recognise the
coding style used. Ideally greater transparency of code vulnerabilities should encourage
safer design and coding practices. Finally, we consider that when choosing a smart security
device, consumers should be confident that the companion applications that interface with
it are as secure as they can be. This confidence can be promoted via more transparent
vulnerability reporting. Improved static analysis and well-configured dynamic analysis
during development and quality assurance could also significantly assist. Moreover, future
work could increase the sample size with applications from Google Play and third-party
sources, and thus, provide further insight.

Author Contributions: Conceptualization, A.A.; Validation, A.A. and A.M.; Formal analysis, A.A.
and A.M.; Investigation, A.A.; Data curation, A.A.; Writing—original draft, A.A., A.M., S.V. and D.G.;
Writing—review & editing, A.A., A.M., S.V. and D.G.; Supervision, A.A., A.M. and S.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All APKs used in this work can be downloaded from a dedicated
GitHub repository here: https://github.com/aja08379/MDPI_Paper_APKs, accessed on 7 July 2024.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The following table lists the Android companion applications and their version that
are in scope of our work. All APKs can be downloaded from a dedicated GitHub repository
here: https://github.com/aja08379/MDPI_Paper_APKs, accessed on 7 July 2024.

Table A1. Android applications used in the experiments.

App_Name Version Manufacturer

Agoda 8.26.1 Agoda

Alarm.com 5.2 Alarm.com

App Lock 1.0.9 akmobile

Arlo Secure 4.9.1 Arlo

August 23.19.0 August

Blink 6.30.0 Blink

Bold 2.6.5 Bold

cloud smart lock 2.0.2 WeHere

Conexis L1 3.4.13 Yale

Danalock 2.01 Danalock

eSmartLock 4.10.0 ELINK SMART

eufy Security 4.7.6 eufy

EZSET BLE Smart Lock 1.9 EZSET

Hafele Smart Lock 1.3.7 Hafele

Home Assistant 10.2 Home Assistant

igloohome 3.0.4 igloo

Kangaroo 10.33.0 Kangaroo

Kasa 3.3.501 TP-Link

Latch 03.31.00.001 Latch, Inc.

https://github.com/aja08379/MDPI_Paper_APKs
https://github.com/aja08379/MDPI_Paper_APKs


Sensors 2024, 24, 5465 15 of 19

Table A1. Cont.

App_Name Version Manufacturer

LOCKLY 2.7.1 Lockly

Lokies 0.0.28 Starcom

Master Lock 1.10.1.2 Master Lock

My Home Alarm 3.46 CSL DualCom

Next lock 1.8.6 Safesky

Nuki 10.3 Nuki

Oaks 2.6.0 Oaks

Philips EasyKey Plus 3.9.20 Philips

Raixer 4.2.13 Raixer

Reolink 4.41.0.4.1023 Reolink

Ring 3.64.0 Ring

Schlage Home 4.2.1 Schlage

Sciener 8.0.0 Sciener

Sifely 1.9.0 Sifely

SimpliSafe 5.21.0 SimpliSafe

Smart Life 5.6.1 tuya

Smart Lock 1.2.8 Bauer

Smart Lock 8.1 ttlock

SmartAlarm+2 3.1.2.0627 Banham

SmartLock-Gold 2.1.2 Wenzhou Ouhai Jinjian
Hardware Co., Ltd.

SmartSolity 2.0.8 Solity Co.

SOREX SmartLock 1.4.0 Sorex

Tapkey 2.38.6 Tapkey

Tapo 3.0.544 TP-Link

Tapplock 3.9.3 Tapplock Corp.

tedee 1.182.0 tedee

TTLock 7.0.0 TTLock

Tuya Smart 5.6.1 tuya

U-tec 2.1.7.7 U-tec

Verisure 10.2309.166 Verisure

WeLock 4.1.1 WeLock

Xiaomi Home 8.9.706 Xiaomi

Yale Home 6 Yale

Yale Home 2023 3.0.0.75 Yale

Yale View 1.7.4 Yale

The tools used in the paper can be found at the following URLs:



Sensors 2024, 24, 5465 16 of 19

Table A2. URLs for the tools used in the experiments.

MobSF https://github.com/MobSF/Mobile-Security-Framework-MobSF,
accessed on 7 July 2024

OstorLab https://www.ostorlab.co/, accessed on 7 July 2024

Snyk https://snyk.io/, accessed on 7 July 2024

jadx https://github.com/skylot/jadx, accessed on 7 July 2024

AirDroid https://play.google.com/store/apps/details?id=com.sand.airdroid&hl=
en_GB, accessed on 7 July 2024

References
1. Allen, A.; Mylonas, A.; Vidalis, S.; Gritzalis, D. Smart homes under siege: Assessing the robustness of physical security against

wireless network attacks. Comput. Secur. 2024, 139, 103687. [CrossRef]
2. Sevier, S.; Tekeoglu, A. Analyzing the Security of Bluetooth Low Energy. In Proceedings of the 2019 International Conference on

Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January 2019; pp. 1–5.
3. Kwon, G.; Kim, J.; Noh, J.; Cho, S. Bluetooth low energy security vulnerability and improvement method. In Proceedings of the

2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Republic of Korea, 26–28 October 2016;
pp. 1–4.

4. Barua, A.; Al Alamin, M.A.; Hossain, M.d.S.; Hossain, E. Security and Privacy Threats for Bluetooth Low Energy in IoT and
Wearable Devices: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2022, 3, 251–281. [CrossRef]

5. Garbelini, M.E.; Wang, C.; Chattopadhyay, S.; Sumei, S.; Kurniawan, E. {SweynTooth}: Unleashing Mayhem over Bluetooth Low
Energy. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Boston MA, USA, 15–17 July 2020;
pp. 911–925.

6. Kumar, S.; Banka, H.; Kaushik, B.; Sharma, S. A review and analysis of secure and lightweight ECC-based RFID authentication
protocol for Internet of Vehicles. Trans. Emerg. Telecommun. Technol. 2021, 32, e4354. [CrossRef]

7. Aghili, S.F.; Mala, H.; Kaliyar, P.; Conti, M. SecLAP: Secure and lightweight RFID authentication protocol for Medical IoT. Future
Gener. Comput. Syst. 2019, 101, 621–634. [CrossRef]

8. Shariq, M.; Singh, K.; Bajuri, M.Y.; Pantelous, A.A.; Ahmadian, A.; Salimi, M. A secure and reliable RFID authentication protocol
using digital schnorr cryptosystem for IoT-enabled healthcare in COVID-19 scenario. Sustain. Cities Soc. 2021, 75, 103354.
[CrossRef] [PubMed]

9. ENISA. ENISA Threat Landscape Report 2023; ENISA: Athens, Greece, 2023.
10. Caballero-Gil, C.; Álvarez, R.; Hernández-Goya, C.; Molina-Gil, J. Research on smart-locks cybersecurity and vulnerabilities.

Wirel. Netw. 2023, 30, 5905–5917. [CrossRef]
11. Ye, T.; Zhuang, Y.; Qiao, G. MDSSED: A safety and security enhanced model-driven development approach for smart home apps.

Inf. Softw. Technol. 2023, 163, 107287. [CrossRef]
12. Ruaya, P. Smart Lock Technology: Developing and Enhancing Home Security using Android-Based Controlled Door Locking

App’s. Int. J. Adv. Res. Sci. Commun. Technol. 2023, 538–547. [CrossRef]
13. Sivakumaran, P.; Zuo, C.; Lin, Z.; Blasco, J. Uncovering Vulnerabilities of Bluetooth Low Energy IoT from Companion Mobile

Apps with Ble-Guuide. In Proceedings of the 2023 ACM Asia Conference on Computer and Communications Security, Melbourne,
Australia, 10–14 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1004–1015.

14. OWASP Security Culture|OWASP Foundation. Available online: https://owasp.org/www-project-security-culture/v10/8-
Metrics/ (accessed on 22 March 2024).

15. Veracode. Available online: https://www.veracode.com/sites/default/files/pdf/resources/ipapers/everything-you-need-to-
know-about-measuring-your-appsec-program/index.html (accessed on 22 March 2024).

16. Senanayake, J.; Kalutarage, H.; Al-Kadri, M.O.; Petrovski, A.; Piras, L. Android Source Code Vulnerability Detection: A Systematic
Literature Review. ACM Comput. Surv. 2023, 55, 1–37. [CrossRef]

17. Perry, N.; Srivastava, M.; Kumar, D.; Boneh, D. Do Users Write More Insecure Code with AI Assistants? In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023;
pp. 2785–2799.

18. Garg, S.; Baliyan, N. Android security assessment: A review, taxonomy and research gap study. Comput. Secur. 2021, 100, 102087.
[CrossRef]

19. Arif, K.S.; Ali, U. Mobile Application testing tools and their challenges: A comparative study. In Proceedings of the 2019 2nd
International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January
2019; pp. 1–6.

20. Pecorelli, F.; Catolino, G.; Ferrucci, F.; de Lucia, A.; Palomba, F. Software testing and Android applications: A large-scale empirical
study. Empir Softw. Eng 2021, 27, 31. [CrossRef]

21. Aydos, M.; Aldan, Ç.; Coşkun, E.; Soydan, A. Security testing of web applications: A systematic mapping of the literature. J. King
Saud Univ.—Comput. Inf. Sci. 2022, 34, 6775–6792. [CrossRef]

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://www.ostorlab.co/
https://snyk.io/
https://github.com/skylot/jadx
https://play.google.com/store/apps/details?id=com.sand.airdroid&hl=en_GB
https://play.google.com/store/apps/details?id=com.sand.airdroid&hl=en_GB
https://doi.org/10.1016/j.cose.2023.103687
https://doi.org/10.1109/OJCOMS.2022.3149732
https://doi.org/10.1002/ett.4354
https://doi.org/10.1016/j.future.2019.07.004
https://doi.org/10.1016/j.scs.2021.103354
https://www.ncbi.nlm.nih.gov/pubmed/34584833
https://doi.org/10.1007/s11276-023-03376-8
https://doi.org/10.1016/j.infsof.2023.107287
https://doi.org/10.48175/IJARSCT-12176
https://owasp.org/www-project-security-culture/v10/8-Metrics/
https://owasp.org/www-project-security-culture/v10/8-Metrics/
https://www.veracode.com/sites/default/files/pdf/resources/ipapers/everything-you-need-to-know-about-measuring-your-appsec-program/index.html
https://www.veracode.com/sites/default/files/pdf/resources/ipapers/everything-you-need-to-know-about-measuring-your-appsec-program/index.html
https://doi.org/10.1145/3556974
https://doi.org/10.1016/j.cose.2020.102087
https://doi.org/10.1007/s10664-021-10059-5
https://doi.org/10.1016/j.jksuci.2021.09.018


Sensors 2024, 24, 5465 17 of 19

22. OWASP Mobile Top 10|OWASP Foundation. Available online: https://owasp.org/www-project-mobile-top-10/ (accessed on
30 December 2023).

23. OWASP Top Ten|OWASP Foundation. Available online: https://owasp.org/www-project-top-ten/ (accessed on 30 December 2023).
24. Tebib, M.E.A.; Graa, M.; Andre, P.; Aktouf, O.-E.-K. A Survey on Secure Android Apps Development Life-Cycle: Vulnerabilities

and Tools. Int. J. Adv. Secur. 2023, 16, 54–71.
25. Bhat, P.; Dutta, K. A Survey on Various Threats and Current State of Security in Android Platform. ACM Comput. Surv. 2019,

52, 1–35. [CrossRef]
26. Khan, S.A.; Adnan, M.; Ali, A.; Raza, A.; Ali, A.; Hassan Naqvi, S.Z.; Hussain, T. An Android Applications Vulnerability

Analysis Using MobSF. In Proceedings of the 2024 International Conference on Engineering & Computing Technologies (ICECT),
Islamabad, Pakistan, 23 May 2024; pp. 1–7.

27. Kusreynada, S.U.; Barkah, A.S. Android Apps Vulnerability Detection with Static and Dynamic Analysis Approach using MOBSF.
J. Comput. Sci. Eng. (JCSE) 2024, 5, 46–63. [CrossRef]

28. Wongsuna, V.; Ngamsuriyaroj, S. Security Analysis of Android Applications for Hotel and Flight Booking Applications. In
Proceedings of the 2024 26th International Conference on Advanced Communications Technology (ICACT), Pyeongchang,
Republic of Korea, 4–7 February 2024; pp. 1–6.

29. Timko, D.; Sharko, M.; Li, Y. Security Analysis of Wearable Smart Health Devices and Their Companion Apps. In Proceedings of
the 2024 IEEE Security and Privacy Workshops (SPW), San Francisco, NC, USA, 23 May 2024; pp. 274–280.

30. Almomani, I.M.; Khayer, A.A. A Comprehensive Analysis of the Android Permissions System. IEEE Access 2020, 8, 216671–216688.
[CrossRef]

31. Mylonas, A.; Kastania, A.; Gritzalis, D. Delegate the smartphone user? Security awareness in smartphone platforms.
Comput. Secur. 2013, 34, 47–66. [CrossRef]

32. Mylonas, A.; Theoharidou, M.; Gritzalis, D. Assessing Privacy Risks in Android: A User-Centric Approach. In Proceedings of the
Risk Assessment and Risk-Driven Testing, Istanbul, Turkey, 12 November 2013; Bauer, T., Großmann, J., Seehusen, F., Stølen, K.,
Wendland, M.-F., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 21–37.

33. Li, R.; Diao, W.; Li, Z.; Du, J.; Guo, S. Android Custom Permissions Demystified: From Privilege Escalation to Design Shortcomings.
In Proceedings of the 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; pp. 70–86.

34. Wang, S.; Wang, Y.; Zhan, X.; Wang, Y.; Liu, Y.; Luo, X.; Cheung, S.-C. Aper: Evolution-aware runtime permission misuse detection
for Android apps. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May
2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 125–137.

35. Wang, Y.; Wang, Y.; Wang, S.; Liu, Y.; Xu, C.; Cheung, S.-C.; Yu, H.; Zhu, Z. Runtime Permission Issues in Android Apps:
Taxonomy, Practices, and Ways Forward. IEEE Trans. Softw. Eng. 2023, 49, 185–210. [CrossRef]

36. Hussein, O. Detection of Integrity Attacks on Permissions of Android-Based Mobile Apps: Security Evaluation on PayPal. IJCI.
Int. J. Comput. Inf. 2024. [CrossRef]

37. Kumar, P.; Singh, S. Enhancing android application security: A novel approach using DroidXGB for malware detection based on
permission analysis. Secur. Priv. 2024, 7, e361. [CrossRef]

38. Possemato, A.; Fratantonio, Y. Towards {HTTPS} Everywhere on Android: We Are Not There Yet. In Proceedings of the 29th
USENIX Security Symposium, Boston, MA, USA, 12–14 August 2020; pp. 343–360.

39. Sun, C.; Xu, X.; Wu, Y.; Zeng, D.; Tan, G.; Ma, S.; Wang, P. CryptoEval: Evaluating the risk of cryptographic misuses in Android
apps with data-flow analysis. IET Inf. Secur. 2023, 17, 582–597. [CrossRef]

40. Zhang, Y.; Wang, J.; Huang, H.; Zhang, Y.; Liu, P. Understanding and Conquering the Difficulties in Identifying Third-Party
Libraries From Millions of Android Apps. IEEE Trans. Big Data 2022, 8, 1511–1523. [CrossRef]

41. Zhan, X.; Liu, T.; Liu, Y.; Liu, Y.; Li, L.; Wang, H.; Luo, X. A Systematic Assessment on Android Third-Party Library Detection
Tools. IEEE Trans. Softw. Eng. 2022, 48, 4249–4273. [CrossRef]

42. Zhan, X.; Fan, L.; Chen, S.; We, F.; Liu, T.; Luo, X.; Liu, Y. ATVHunter: Reliable Version Detection of Third-Party Libraries for
Vulnerability Identification in Android Applications. In Proceedings of the 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), Madrid, Spain, 22–30 May 2021; pp. 1695–1707.

43. Nguyen, D.C.; Derr, E.; Backes, M.; Bugiel, S. Up2Dep: Android Tool Support to Fix Insecure Code Dependencies. In Proceedings
of the 36th Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 263–276.

44. Tan, S.H.; Li, Z. Collaborative bug finding for Android apps. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, Seoul, Republic of Korea, 27 June–19 July 2020; Association for Computing Machinery: New York, NY, USA,
2020; pp. 1335–1347.

45. Lee, Y.-T.; George, R.; Chen, H.; Chan, K.; Jaeger, T. Triaging Android Systems Using Bayesian Attack Graphs. In Proceedings of
the 2023 IEEE Secure Development Conference (SecDev), Atlanta, GA, USA, 18–20 October 2023; pp. 171–183.

46. Tang, J.; Li, R.; Wang, K.; Gu, X.; Xu, Z. A novel hybrid method to analyze security vulnerabilities in Android applications.
Tsinghua Sci. Technol. 2020, 25, 589–603. [CrossRef]

47. Qin, J.; Zhang, H.; Guo, J.; Wang, S.; Wen, Q.; Shi, Y. Vulnerability Detection on Android Apps–Inspired by Case Study on
Vulnerability Related With Web Functions. IEEE Access 2020, 8, 106437–106451. [CrossRef]

https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/3301285
https://doi.org/10.36596/jcse.v5i1.789
https://doi.org/10.1109/ACCESS.2020.3041432
https://doi.org/10.1016/j.cose.2012.11.004
https://doi.org/10.1109/TSE.2022.3148258
https://doi.org/10.21608/ijci.2024.277929.1156
https://doi.org/10.1002/spy2.361
https://doi.org/10.1049/ise2.12117
https://doi.org/10.1109/TBDATA.2021.3093244
https://doi.org/10.1109/TSE.2021.3115506
https://doi.org/10.26599/TST.2019.9010067
https://doi.org/10.1109/ACCESS.2020.2998043


Sensors 2024, 24, 5465 18 of 19

48. Kulik, T.; Dongol, B.; Larsen, P.G.; Macedo, H.D.; Schneider, S.; Tran-Jørgensen, P.W.V.; Woodcock, J. A Survey of Practical Formal
Methods for Security. Form. Asp. Comput. 2022, 34, 1–39. [CrossRef]

49. Casola, V.; de Benedictis, A.; Rak, M.; Villano, U. A novel Security-by-Design methodology: Modeling and assessing security by
SLAs with a quantitative approach. J. Syst. Softw. 2020, 163, 110537. [CrossRef]

50. Li, K.; Chen, S.; Fan, L.; Feng, R.; Liu, H.; Liu, C.; Liu, Y.; Chen, Y. Comparison and Evaluation on Static Application Security
Testing (SAST) Tools for Java. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, San Francisco, NC, USA, 3–9 December 2023; Association for Computing Machinery:
New York, NY, USA, 2023; pp. 921–933.

51. Lin, G.; Wen, S.; Han, Q.-L.; Zhang, J.; Xiang, Y. Software Vulnerability Detection Using Deep Neural Networks: A Survey.
Proc. IEEE 2020, 108, 1825–1848. [CrossRef]

52. Hanif, H.; Md Nasir, M.H.N.; Ab Razak, M.F.; Firdaus, A.; Anuar, N.B. The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches. J. Netw. Comput. Appl. 2021, 179, 103009. [CrossRef]

53. Wang, H.; Ye, G.; Tang, Z.; Tan, S.H.; Huang, S.; Fang, D.; Feng, Y.; Bian, L.; Wang, Z. Combining Graph-Based Learning With
Automated Data Collection for Code Vulnerability Detection. IEEE Trans. Inf. Forensics Secur. 2021, 16, 1943–1958. [CrossRef]

54. Li, Y.; Zuo, Y.; Song, H.; Lv, Z. Deep Learning in Security of Internet of Things. IEEE Internet Things J. 2022, 9, 22133–22146.
[CrossRef]

55. Cheng, X.; Wang, H.; Hua, J.; Xu, G.; Sui, Y. DeepWukong: Statically Detecting Software Vulnerabilities Using Deep Graph Neural
Network. ACM Trans. Softw. Eng. Methodol. 2021, 30, 1–33. [CrossRef]

56. Li, Z.; Zou, D.; Xu, S.; Chen, Z.; Zhu, Y.; Jin, H. VulDeeLocator: A Deep Learning-Based Fine-Grained Vulnerability Detector.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 2821–2837. [CrossRef]

57. Xiaomi Global Home. Available online: https://www.mi.com/global/discover/article/ (accessed on 22 July 2024).
58. Theoharidou, M.; Mylonas, A.; Gritzalis, D. A Risk Assessment Method for Smartphones. In Proceedings of the Information

Security and Privacy Research, Heraklion, Greece, 4–6 June 2012; Gritzalis, D., Furnell, S., Theoharidou, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 443–456.

59. Mylonas, A.; Dritsas, S.; Tsoumas, B.; Gritzalis, D. Smartphone security evaluation The malware attack case. In Proceedings of the
International Conference on Security and Cryptography, Seville, Spain, 18–21 July 2011; pp. 25–36.

60. BeVigil Mobile Apps Exposing AWS Keys Affect 100M+ Users’ Data. BeVigil Blog 2021. Available online: https://bevigil.com/
blog/mobile-apps-exposing-aws-keys-affect-100m-users-data/ (accessed on 7 July 2024).

61. ZDNET. Available online: https://www.zdnet.com/article/accenture-left-a-huge-trove-of-client-passwords-on-exposed-
servers/ (accessed on 22 July 2024).

62. Uber Paid Hackers to Delete Stolen Data on 57 Million People. 2017. Available online: https://www.bloomberg.com/news/
articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data (accessed on 7 July 2024).

63. Kanungo, K.; Khatoliya, R.; Arora, V.; Bari, A.; Bhattacharya, A.; Maity, M. How Many Hands in the Cookie Jar? Examining
Privacy Implications of Popular Apps in India. In Proceedings of the 9th IEEE European Symposium on Security and Privacy,
Vienna, Austria, 8–12 July 2024.

64. Tyler, L.; Nunes, I.D.O. Towards Browser Controls to Protect Cookies from Malicious Extensions. arXiv 2024, arXiv:2405.06830.
[CrossRef]

65. Cover Your Tracks. Available online: https://coveryourtracks.eff.org/ (accessed on 22 July 2024).
66. Felt, A.P.; Ha, E.; Egelman, S.; Haney, A.; Chin, E.; Wagner, D. Android permissions: User attention, comprehension, and behavior.

In Proceedings of the Eighth Symposium on Usable Privacy and Security, Washington, DC, USA, 11–13 July 2012; Association for
Computing Machinery: New York, NY, USA, 2012; pp. 1–14.

67. Acar, A.; Tuncay, G.S.; Luques, E.; Oz, H.; Aris, A.; Uluagac, S. 50 Shades of Support: A Device-Centric Analysis of Android
Security Updates. In Proceedings of the 2024 Network and Distributed System Security Symposium, San Diego, CA, USA, 26
February–1 March 2024; Internet Society: San Diego, CA, USA, 2024.

68. Farhang, S.; Kirdan, M.B.; Laszka, A.; Grossklags, J. Hey Google, What Exactly Do Your Security Patches Tell Us? A Large-Scale
Empirical Study on Android Patched Vulnerabilities. arXiv 2019, arXiv:1905.09352. [CrossRef]

69. Mathur, A.; Chetty, M. Impact of User Characteristics on Attitudes Towards Automatic Mobile Application Updates. In
Proceedings of the Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017), Santa Clara, CA, USA, 12–14 July 2017;
pp. 175–193.

70. Fu, S.; Xue, K.; Yang, M.; Wang, X. An exploratory study on users’ resistance to mobile app updates: Using netnography and
fsQCA. Technol. Forecast. Soc. Change 2023, 191, 122479. [CrossRef]

71. Jang, H.; Jin, B.; Hyun, S.; Kim, H. Kerberoid: A Practical Android App Decompilation System with Multiple Decompilers. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November
2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2557–2559.

72. Mauthe, N.; Kargén, U.; Shahmehri, N. A Large-Scale Empirical Study of Android App Decompilation. In Proceedings of
the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA,
9–12 March 2021; pp. 400–410.

73. Mobile Secure. Available online: https://www.datatheorem.com/products/mobile-secure/ (accessed on 22 July 2024).

https://doi.org/10.1145/3522582
https://doi.org/10.1016/j.jss.2020.110537
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1016/j.jnca.2021.103009
https://doi.org/10.1109/TIFS.2020.3044773
https://doi.org/10.1109/JIOT.2021.3106898
https://doi.org/10.1145/3436877
https://doi.org/10.1109/TDSC.2021.3076142
https://www.mi.com/global/discover/article/
https://bevigil.com/blog/mobile-apps-exposing-aws-keys-affect-100m-users-data/
https://bevigil.com/blog/mobile-apps-exposing-aws-keys-affect-100m-users-data/
https://www.zdnet.com/article/accenture-left-a-huge-trove-of-client-passwords-on-exposed-servers/
https://www.zdnet.com/article/accenture-left-a-huge-trove-of-client-passwords-on-exposed-servers/
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://www.bloomberg.com/news/articles/2017-11-21/uber-concealed-cyberattack-that-exposed-57-million-people-s-data
https://doi.org/10.48550/arXiv.2405.06830
https://coveryourtracks.eff.org/
https://doi.org/10.48550/arXiv.1905.09352
https://doi.org/10.1016/j.techfore.2023.122479
https://www.datatheorem.com/products/mobile-secure/


Sensors 2024, 24, 5465 19 of 19

74. Dynamic Application Security Testing (DAST) Tool|Appknox. Available online: https://www.appknox.com/vulnerability-
assessment/dynamic-application-security-testing-dast (accessed on 22 July 2024).

75. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.-G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones. ACM Trans. Comput. Syst. 2014, 32, 1–29. [CrossRef]

76. App Quality. Available online: https://developer.android.com/privacy-and-security/googleplay-asi (accessed on 27 July 2024).
77. Sutter, T.; Kehrer, T.; Rennhard, M.; Tellenbach, B.; Klein, J. Dynamic Security Analysis on Android: A Systematic Literature

Review. IEEE Access 2024, 12, 57261–57287. [CrossRef]
78. ISO ISO 9001:2015. Available online: https://www.iso.org/standard/62085.html (accessed on 31 July 2024).
79. ISO ISO/IEC 27001:2022. Available online: https://www.iso.org/standard/27001 (accessed on 31 July 2024).
80. ISO 5055; CISQ Software Quality Standards. CISQ: Boston, MA, USA, 2024. Available online: https://www.it-cisq.org/standards/

code-quality-standards (accessed on 21 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.appknox.com/vulnerability-assessment/dynamic-application-security-testing-dast
https://www.appknox.com/vulnerability-assessment/dynamic-application-security-testing-dast
https://doi.org/10.1145/2619091
https://developer.android.com/privacy-and-security/googleplay-asi
https://doi.org/10.1109/ACCESS.2024.3390612
https://www.iso.org/standard/62085.html
https://www.iso.org/standard/27001
https://www.it-cisq.org/standards/code-quality-standards
https://www.it-cisq.org/standards/code-quality-standards

	Introduction 
	Background 
	Methodology 
	Threat Model 
	Experimental Setup 

	Experimental Results 
	Discussion 
	Conclusions 
	Appendix A
	References

