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General Abstract

Simultaneous recording of Electroencephalography (EEG) and functional Mag-
netic Resonance Imaging (fMRI) has been used consistently in the past as a
means of understanding EEG microstate function. EEG microstates are quasi-
stable states of EEG activity. Here, I investigate existing methodologies that
attempt to draw relationships between microstate classes and fMRI signal, shed-
ding light on their limitations and proposing alternative methods which may
better utilise the advantages of simultaneously recorded EEG-fMRI.

Three distinct studies are presented, each using a novel methodology which
compares EEGmicrostates to the simultaneously recorded fMRI signal in resting
state recordings. Each proposed method could be used and developed upon in
the future to address gaps in the existing literature.

The first study shows how EEG microstate n-grams exhibit varied durations
and frequencies in some participants during concurrent fMRI Co-Activation
Patterns (CAPs). The second study employs a random forest regressor model,
utilising microstate n-gram parameters as features per fMRI time point in a
sliding window, attempting to predict patterns in fMRI activity in a low dimen-
sional space. In the third study, the focus shifts to conceptualising the EEG
signal as a continuous signal rather than sequence of microstates, with analysis
of microstates occurring post-hoc; a novel means of investigating microstates
which has not yet been attempted.

I also show how existing investigations of microstate syntax may benefit
from adjustments to their processing pipelines in order to better retain the
information apparent in EEG microstate sequences.

Keywords: Computational Neuroscience; EEG; fMRI; BOLD Signal; Simul-
taneous EEG-fMRI; EEG Microstates; EEG Microstate Syntax; fMRI Gradient
Space; Methodological Developments.
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1 General Introduction

1.1 Background and Context

Electroencephalography (EEG) is a means of measuring the electrical activity of
the human brain non-invasively with high temporal resolution. Electrodes are
evenly distributed across the scalp of participants to capture the topographical
distribution of electrical activity. The signal captured at the scalp represents
the local current flows of active neuronal assemblies. Only large populations of
active neurons can generate electrical activity recordable on the head surface
using EEG (Teplan, 2002).

Observed activity patterns across time commonly have sinusoidal wave shapes,
which range in frequency. These ranges are categorised into bands: delta
(0.5 − 4Hz), theta (4 − 8Hz), alpha (8 − 13Hz), beta (13 − 30Hz), and gamma
(> 30Hz). The alpha band frequency range is dominant in the human brain
during quiet wakefulness and has been the most extensively investigated fre-
quency range (Teplan, 2002). Whilst its precise neural origin is not known, it is
widely believed that alpha activity is driven by layer V pyramidal cells within
the cortex (Silva et al., 1991). The primary alpha pacemaker is believed to be
the thalamus, with the posterior alpha rhythm being driven by the pulvinar
nuclei and/or the Lateral Geniculate Nucleus (LGN) (Halgren et al., 2019).

1.1.1 Definition of EEG Microstates

EEG activity is somewhat discontinuous in that it is characterised by rapid
changes in spatial configuration, followed by periods of quasi-stable topographic
distribution or maps, referred to as EEG microstates (Lehmann et al., 1987).
These quasi-stable topographies maintain a consistent location of the maximum
positive and negative potential poles on the scalp for a short period (approx.
30− 60ms), with the poles swapping their locations intermittently. The formal
definition of a microstate ignores the intermittent pole switching, only consider-
ing the pole locations, with a single microstate lasting approximately 80−120ms
in eyes-closed resting-state healthy human participants throughout their lifes-
pan (Koenig et al., 2002). Microstates have historically been investigated in the
alpha band due to past investigations of the resting state (Lehmann et al., 1987).
A past study has suggested that each microstate may be primarily driven by a
different alpha generator using source localisation methods (Milz et al., 2017)
1.

Four observed topographies are more common across time points than others
and are highly replicable across studies in both healthy and clinical populations,
accounting for about 80% of variance in eyes-closed resting-state EEG signal

1Although it may be the primary driver, all studies that have investigated microstates
thus far apply bandpass filtering during preprocessing (usually between 2 and 20Hz Michel
and Koenig (2018)), which may limit the impact of beta and gamma bands. Furthermore, the
method used to derive microstates is a simple clustering algorithm, which could be applied
to different frequency bands, yet I am unaware of any study that has attempted to identify
similar microstates in other bands.
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(Michel & Koenig, 2018). These four discrete topographic classes are referred
to as “canonical” EEG microstates and are labelled as A, B, C, and D. Fig-
ure 1 shows four canonical microstate class topographies, as adopted from Milz
et al. (2017). Microstate A is characterised by a right frontal-to-left posterior
configuration, whilst B is a mirrored left frontal-to-right posterior configura-
tion. Microstate C has a symmetric anterior-to-posterior configuration, and
microstate D has a similar symmetric configuration, but has a more central
pole than C’s anterior pole.

Figure 1: The canonical microstate classes A to D left to right adopted from
Milz et al. (2017). EEG microstate classes are defined by the topographical
distribution of electrical activity across the scalp. Note that the location of
the poles defines a microstate class, with the polarity itself considered to be
irrelevant.

Different methods have been used to derive EEG microstates (e.g., Yuan
et al. (2012)), but the most common are forms of clustering analysis, which
through a process of labelling only allow for one microstate class to be active
at each time point (Pascual-Marqui et al., 1995). In the clustering analysis
process, EEG time points where Global Field Power (GFP) peaks occur are
used as input into the clustering algorithms. GFP is equal to the root mean
square across the electrodes, i.e., the standard deviation across electrodes at
each time point:

GFP (t) =

√
Σn

i=1(vi(t)− v̄(t))2

n
(1)

where vi(t) is the measured voltage of electrode i at time point t, v̄(t) is the
mean voltage across electrodes at time point t, and n is the number of electrodes
(Murray et al., 2008).

Topographies which occur at local maxima of the GFP time series have a
high Signal-to-Noise Ratio (SNR), and therefore the GFP peaks are used for
the derivation of microstates, with the time points in between, which have low
SNR, assigned a microstate observed at a neighbouring GFP peak (Lehmann et
al., 1987). Clustering methods vary across the studies, with the most common
being the modified k-means clustering algorithm (Pascual-Marqui et al., 1995).
The algorithm modifies the standard k-means clustering by taking into account
the polarity invariance of the EEG topographies used as input.
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The canonical set of microstates have been demonstrated to be stable across
different clustering algorithms, as well as different numbers of electrodes, with
as few as 16 electrodes across the scalp being sufficient to derive four canonical
classes (Khanna et al., 2014). Due to this demonstrated stability, some studies
(e.g., Milz et al. (2017)) opt to label observed GFP peaks based on spatial sim-
ilarity to microstates derived in other studies (Koenig et al., 2002; Milz et al.,
2016), rather than using data-driven microstate classes, to increase generalis-
ability across the studies when investigating the functional significance of EEG
microstates.

Whilst the approach of assigning predefined microstate maps to a dataset
ensures that the same microstate classes are investigated across studies, a data-
driven approach to the derivation of microstates provides a more accurate rep-
resentation of the data being investigated and is therefore more preferable for
advancing the understanding of EEG microstates and their functional signifi-
cance across cognitive states and populations (Michel & Koenig, 2018).

1.1.2 Choosing the Optimal Number of EEG Microstates

When using the data-driven approach of deriving microstates, the studies have
applied a set of criteria to determine the best fitting number of microstates for
their given dataset (e.g., Custo et al. (2017) and Michel and Koenig (2018)).

The Global Explained Variance (GEV) is commonly used to quantify the
quality of class assignment of GFP peaks to each of the microstates (Murray
et al., 2008). GEV is defined as:

GEV =
Σtmax

t=1 (GFP (t) · r)2

Σtmax
i=1 GFP 2(t)

(2)

where r is the Pearson’s cross-correlation between the given microstate to-
pography and the current time point topography.

Another is the cross-validation criterion, which is a ratio between GEV and
the degrees of freedom of the topographies in question (Pascual-Marqui et al.,
1995). More recently, a meta-criterion has been developed which considers mul-
tiple existing clustering criterion and computes an overall fit for the given num-
ber of cluster centres (Michel & Koenig, 2018).

When implementing a data-driven approach to microstate derivation, differ-
ent studies may arrive at different numbers of microstate classes, with poten-
tially different cluster centres, making meta-analysis between studies difficult.
To mitigate the issue, a database of data-driven microstates has been developed,
where the input microstates are compared to those already found in previous
studies through meta-analysis (Koenig et al., 2023). The microstate topogra-
phies found across studies were also clustered in a meta-analysis, referred to as
“meta-microstates”. When clustering microstates generated from over 50 stud-
ies using k = 4, the canonical set of A to D were indeed identified. However,
when increasing to k = 5, 6 and 7, the meta-microstates E, F and G in addition
to the canonical A-D set were defined. Microstate E is similar to microstate D,
but has a more posterior location of its central pole. Microstates F and G show
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similarities to B and A respectively with their left-right distributions, but with
less frontal-posterior splits and more hemispheric pole locations.

E F G
Figure 2: The meta-microstates additional to the canonical set of 4, generated
by Koenig et al. (2023), with microstate classes E to G left to right. EEG
microstate classes are defined by the topographical distribution of electrical
activity across the scalp. Note that the location of the poles defines a microstate
class, with the polarity itself considered to be irrelevant.

It should be noted, however,, that the microstate label assigned to a specific
cluster centre in some of the studies was not necessarily the same as the meta-
microstate label derived in the meta-analysis Koenig et al. (2023).

1.1.3 EEG Microstate Parameters

It is immediately apparent that due to their quasi-stable nature and relatively
short duration, it is not sufficient to attempt to compare microstates between
tasks, groups or participants simply by occurrence alone. It is common for all
microstate classes derived in an analysis to occur multiple times within a 1-
second window of EEG time series. For this reason, attempting to associate
the individual occurrences of these states to cognitive processes or brain net-
works is untenable. Therefore, parameters have been derived to characterise
how microstate behaviour varies between tasks and groups.

The standard parameters used are mean duration, occurrence, coverage and
GEV. Mean duration is defined as the average amount of time that a instance
of a microstate lasts for, formalised as:

d̄m =
Σsm

i=1dmi

sm
(3)

where dmi
is the duration of the given occurrence i of microstate m; sm is the

total count of occurrences of the given microstate m, d̄m is the mean duration
of the given microstate m. 2

2How the duration of an individual microstate (dmi ) is determined varies between method-
ological approaches, which can impact investigations of transitions between microstates. See
Chapter 3 for a discussion of this area.
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Occurrence is defined as the average number of times that a given microstate
occurs within a 1-second window, formalised as:

om =
sm
T

(4)

where om is the occurrence rate of microstates m and T is the total amount
of time in the time series in seconds.

Coverage is defined as the percentage of the whole time series that the given
microstate is dominant, formalised as:

cm =
Σsm

i=1dmi

Tf
(5)

where cm is the coverage of microstate m and Tf is the amount of time in
the whole time series in the appropriate sample frequency f .

Note the distinction made between T and Tf between Equations 4 and 5.
This is because coverage is calculated using durations of microstates rather than
a count of occurrences of microstates. This is done because the percentage of
the time series that is dominated by a given microstate includes all time points,
not just the GFP peaks.

GEV is also often used to characterise microstates individually (defined in
Equation 2), where the overall GEV is the sum of each individual microstate’s
contribution to explained variance.

A combination of these parameters allows characterising microstates’ dy-
namics within- and between-datasets, experimental conditions, mental states,
and/or populations.

1.1.4 Functional Significance of EEG Microstates: Findings from
the Studies Of Clinical Populations

EEG microstates could potentially be developed into clinical bio-markers since
differences in microstate parameters and their dynamics have been reported in
the EEG microstate dynamics between clinical populations and healthy indi-
viduals. 3

Firstly, microstate A has shown longer duration and higher coverage in
groups with panic disorder versus controls (Kikuchi et al., 2011). Conversely, it
has shown shorter duration and lower coverage in adult Attention Deficit Hy-
peractivity Disorder (ADHD) patients (Férat et al., 2021). A decrease in the
duration of A has also been observed in Parkinson’s patients from before to
after drug administration which caused an increase in dopamine levels (Serrano
et al., 2018).

3Since the inception of the meta-microstates software (see Section 1.1.2, or Koenig et al.
(2023)), understanding which microstates are associated with which function or dysfunction
has become difficult without the use of the software. A study published before the creation
of this software may label a microstate with a C yet meta-analysis suggests it is labelled
with meta-microstate D, for example. For this reason, the following section which covers the
functional significance of microstates, will refer to the meta-microstate label of the microstate
in question where possible.
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Microstate B has shown a shorter duration, occurrence and coverage in bipo-
lar patients versus healthy controls (Vellante et al., 2020), with all parameters
showing a negative correlation with self-reported symptoms of dissociation and
anxiety. Higher coverage has also been observed in Parkinson’s disease patients
versus healthy controls (Chu et al., 2020).

Microstate C has shown a lower occurrence in panic disorder patients versus
healthy controls (Kikuchi et al., 2011), and shorter duration in fronto-temporal
Dementia patients versus healthy controls (Nishida et al., 2013). A lower occur-
rence and coverage in Parkinson’s disease patients versus healthy controls was
also observed (Chu et al., 2020).

A longer duration of microstate D has been observed in ADHD patients
(Férat et al., 2021), whilst shorter duration has been reported in schizophrenia
patients across multiple studies (Kindler et al., 2011; Nishida et al., 2013; Soni
et al., 2018; Strelets et al., 2003).

In general, a decrease in the duration across all canonical states in schizophre-
nia patients has been reported in multiple studies, (Nishida et al., 2013; Soni
et al., 2018; Strelets et al., 2003). This may indicate a need for balance of
the parameters of microstates C and D, with the dominance of microstate C
resulting in detachment of mental states from environmental output.

Multiple studies have also shown differences in multiple microstate parame-
ters between Alzheimer’s disease patients and healthy controls (Schumacher et
al., 2019; Strik et al., 1997; Tait et al., 2020), but the differences are inconsistent
(Tait et al., 2020).

Canonical microstate parameters have also been shown to differ between
age groups and sexes. Microstate D has been shown to have longer duration in
males, and C longer duration in females. Both sexes show changes in microstate
parameters between age groups, and some share changes with age, such as
a general increase in microstate D occurrence from childhood to adulthood
(Tomescu et al., 2018).

Overall, although EEGmicrostates hold promise as biomarkers of psychopatho-
logical and neuro-developmental/degenerative disorders, there is a lack of repli-
cability across studies, with a notable exception for schizophrenia. Furthermore,
earlier studies focused on the canonical set of 4, which might have contributed to
inconsistency of findings across the studies. For example, when the data-driven
approach was applied to the Parkinson’s patients vs. healthy controls compar-
ison, the observed microstate D in healthy controls did not occur as a cluster
centre in Parkinson’s patients, and instead was replaced by meta-microstate E
when using four cluster centres(Chu et al., 2020; Pal et al., 2021).

Despite these preliminary findings differentiating clinical and non-clinical
populations, it is difficult to ascertain the functional significance of EEG mi-
crostates from comparing individuals with complex disorders characterised by
often co-morbid symptoms as well as overlapping and divergent cognitive dys-
function. Utilising cognitive manipulation processes in healthy controls has
yielded further insight into the functional significance of EEG microstates.
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1.1.5 Functional Significance of EEG Microstates: Findings from
Cognitive Manipulation, Source Localisation and fMRI BOLD
Signal Association Studies

Several studies have investigated the functional significance of canonical EEG
microstates by comparing EEG microstate parameters during different experi-
mentally manipulated cognitive processes/mental states in healthy participants.
Although all microstates occur during all cognitive processes/experimental con-
ditions, there are a few consistent findings across the studies regarding the rela-
tive dominance of a particular microstate during a particular cognitive process.
Additionally, given that more is known about the relationship between mental
states/cognitive processes and brain regions/large-scale networks (Damoiseaux
et al., 2006; Karapanagiotidis et al., 2020; Yeo et al., 2011), studies have at-
tempted to better understand the functional significance of EEG microstates
by using source localisation techniques (Custo et al., 2017; Grech et al., 2008),
or by associating EEG microstates with Blood-Oxygenation Level Dependency
(BOLD) signal using simultaneously recorded EEG/Functional Magnetic Res-
onance Imaging (fMRI)data (See Chapter 2 for an in-depth review of the as-
sociation methods used in previous research, including the overview of their
shortcomings).

Thus, microstate A parameters have been found to increase during tasks
requiring visualisation. A higher duration and occurrence during both object
and spatial visualisation tasks as compared with a verbalisation task and no-
task resting state (Milz et al., 2016), as well as during visualisation tasks when
compared to a spatial reasoning task (Zanesco et al., 2021) have been reported.
Seitzman et al. (2017) reported decreased duration of microstate A in an eyes-
open vs. eyes-closed condition during a serial subtraction task, possibly reflect-
ing decreased visualisation with eyes-open due to the increased visual sensory
input. An indirect evidence for the association of microstate A with visualisa-
tion comes from the reported increased duration, occurrence, and coverage when
moving from rest to light to deep hypnosis (Katayama et al., 2007), with the
latter known to be associated with increased visual imagery (Lanfranco et al.,
2021).

However, other findings appear to be inconsistent with the visualisation as-
sociation. Lower duration and higher occurrence of microstate A (i.e., shorter
but more frequent) have been reported during self-reported verbal thoughts such
as ‘I thought in words’ or ‘I imagined talking to myself’ (Tomescu et al., 2022).
Other studies reported no significant differences in microstate A parameters be-
tween experimental conditions requiring visual vs. verbal processing (Antonova
et al., 2022; D’Croz-Baron et al., 2021). Microstate A duration was also found
to positively correlate with alertness ratings during rest and a verbalisation task
but not a visualisation task (Antonova et al., 2022), contradicting association
with visualisation.

Some have suggested that associations made between microstates and fMRI
networks may further support microstate A’s association with visualisation.
Britz et al. (2010) associated microstate A with negative BOLD signal in the
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left-lateralised phonological network, with source localisation studies showing
similar networks (Custo et al., 2017). It has been suggested that these two
associations could potentially be reconciled by Antonova et al. (2022). The
reasoning is the following: microstates may be driven primarily by sources in the
alpha band (Milz et al., 2017), and the alpha band has shown inhibition of neural
activity in the past. This combined with the suggestion that a negative BOLD
signal may be associated with an inhibition of neural activity (Sten et al., 2017).
Hence, the association reported by Britz et al. (2010) could be interpreted as
an inhibition of the language processing network during visualisation (Antonova
et al., 2022).

It should be pointed out however that association of alpha band activity
with neural inhibition is perhaps an oversimplification. O’Gorman et al. (2013)
highlighted alpha activity may be associated with negative BOLD signal. Whilst
some associate negative BOLD signal with inhibition of neural activity (Sten
et al., 2017), it may also be due to regions that are functionally connected to
areas exhibiting positive BOLD responses, reflecting complex neural interactions
within the brain (Braga & Leech, 2015; Leech et al., 2014), or indeed, neural
desynchronisation (Mantini et al., 2007).

Microstate B parameters (duration, occurrence, and coverage) have been
reported to increase during tasks requiring verbal processing as compared to vi-
suospatial processing tasks and no-task rest (Milz et al., 2016). However, other
cognitive manipulation studies have reported a higher coverage in a visualisa-
tion task versus a verbalisation task and rest (Antonova et al., 2022) and an
increased coverage and occurrence during the eyes-open vs. eyes-closed resting
state (Seitzman et al., 2017).

Microstate B was associated with negative BOLD signal in the visual net-
work (Britz et al., 2010). Source localisation studies have also placed microstate
B generators in the visual cortex (Bréchet et al., 2019; Custo et al., 2017; Diezig
et al., 2022). The same argument regarding reconciliation of these two findings
as with microstate A have also been made (Antonova et al., 2022), and the same
criticisms as above are also apparent here.

Increases in microstate B parameters have been reported during other cog-
nitive states, including higher class B duration being associated with less effort
during a visualisation task (Antonova et al., 2022), stage 2 non-Rapid Eye Move-
ment (REM) sleep (Brodbeck et al., 2012), and meditation versus rest (Faber
et al., 2005). A recent study has also found a positive correlation between
microstate B and simultaneously recorded fMRI BOLD signal in the auditory
network during sleep (Xu et al., 2020). These findings suggest that there is
more to be understood about the functional significance of microstate B.

Microstate C occurrence was reported to decrease during visualisation tasks
relative to resting state (Milz et al., 2016; Seitzman et al., 2017). Class C was
also less frequent during a mathematics task and more frequent in a memory
task (Bréchet et al., 2019), as well as decreased in duration, occurrence, and
coverage during a serial subtraction task (Seitzman et al., 2017). Based on
these findings and microstate C topography, Seitzman et al. (2017) proposed
microstate C reflects the anterior part of the
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The association of microstate C with positive BOLD in the salience network,
the Anterior Cingulate Cortex (ACC), bilateral Inferior Frontal Gyri (IFG), and
right Anterior Insula (AI) (Britz et al., 2010), implicated in various aspects of
executive function, including cognitive control, error monitoring, attention and
working memory (Tops & Boksem, 2011), also appears to contradict the pro-
posed relationship between microstate C and mind-wandering. It has been
suggested that microstate C may be associated with the interplay between rest-
ing state and attention/executive control networks, or attention reorientation
(Michel & Koenig, 2018).

Supporting the proposal that microstate C may be associated with atten-
tion orientation, a Transcranial Magnetic Stimulation (TMS) study (Croce et
al., 2020) found after the TMS inhibition of the IPS, a key region in the Dor-
sal Attention Network (DAN), microstate C of the four canonical microstates
derived using a data-driven approach during rest was replaced with microstate
G. Similarly, when the Angular Gyrus (AG), a key region of the Default Mode
Network (DMN), was interfered with, microstate C was replaced by microstate
F .

Furthermore, it might be necessary to further split microstate C into two
sub-clusters as was done by Custo et al. (2017). Although topographically sim-
ilar to class C, the reported C’ appears to be associated with the activity of the
anterior nodes of the DMN. With the canonical set of four microstate classes,
the anterior and posterior activation gradient subsumed under the class topog-
raphy might in fact reflect the activity of different networks: an anterior saliency
network, associated with error detection/attention reorienting back to task, vs.
a posterior network, associated with mind-wandering/self-referencing. Overall,
further studies are required to determine the association between microstate C
and underlying functional networks to understand its role in attention orienta-
tion and mind-wandering.

Microstate D has also been associated with attention orientation and mind-
wandering. Cognitive manipulation studies suggest microstate D’s association
with the resting state, reporting an increase in duration (Antonova et al., 2022)
and occurrence (Milz et al., 2016) during the resting state versus visualisation
and verbalisation tasks. Lower class D occurrence was associated with higher
alertness ratings during mind-wandering were, whilst higher occurrence with a
higher level of spontaneous mind-wandering during verbalisation and visualisa-
tion tasks (Antonova et al., 2022). However, Seitzman et al. (2017) reported
class D parameters to decrease during the resting state versus task conditions.
As noted by others (Antonova et al., 2022; Michel & Koenig, 2018), class C
and D topographies in the Seitzman et al. (2017) study resemble class D and C
topographies reported by other researchers (see Michel and Koenig (2018) and
Milz et al. (2016), with the two classes being highly spatially correlated more
generally (Antonova et al., 2022), potentially explaining conflicting findings from
behavioural studies in relation to both classes C and D.

The suggested generator of microstate D being the DAN has been consistent
between studies (Britz et al., 2010; Custo et al., 2017), with Britz et al. (2010)
showing the association with negative BOLD activity in the DAN, indicating an
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inhibition of this network, supporting class D association with mind-wandering
and attention reorientation during resting state.

The meta-microstates outside the canonical set are understudied, with no
confirmed associations of classes E, F and G with cognitive processes. A recent
literature review (Tarailis et al., 2023) associated microstate E with interocep-
tion/sensorimotor processes based on the findings of twelve studies. Classes F
and G were only reported in two studies, with inconsistent findings., Therefore,
further investigation of these classes is required to understand their functional
significance.

Whilst it might be possible and fruitful to determine the functional signif-
icance of each microstate class of the canonical set of four and beyond, these
functional associations can only be relative to other cognitive processes or men-
tal states given the very short microstate duration, on average. All microstates
are observed during all mental states/cognitive processes in the behavioural
studies (Antonova et al., 2022; Milz et al., 2017). Since brain network activity
is constantly changing, it is expected that EEG microstate activity would reflect
the constant switching between brain networks (Abreu et al., 2021).

Furthermore, it has been shown that observed microstate sequences are non-
Markovian at short-term time lags up to 1 second (von Wegner et al., 2017),
suggesting the importance (non-randomness) of microstate sequences. How-
ever, the behavioural studies to date only looked at the pair-wise transitions
between the microstates (Antonova et al., 2022; Milz et al., 2016). Exploring
the associations between a more complex microstate syntax with brain network
activity might aid a better understanding of the functional significance of EEG
microstates.

1.1.6 EEG Microstate Syntax

There is a growing literature which investigates the syntax of microstate se-
quences. That is, the dynamics of transition between microstate classes, both
at the state-to-state level, and across short sub-sequences of states. Multiple
studies have demonstrated that these dynamics can be associated to different
groups and cognitive states. Transition probabilities are often used as an ad-
ditional parameter of microstate investigation alongside duration, occurrence,
coverage and GEV (see Section 1.1.1 on parameters).

Differences in transition dynamics between groups may elucidate some of
the shortcomings of studies that aim to understand the function of microstates.
Multiple studies have shown that the frequency of specific transitions changes
between groups. Vellante et al. (2020) demonstrated for example that transi-
tions from microstate B to C were more prominent in patients with bipolar dis-
order versus controls. Other studies have demonstrated differences in transition
probabilities between various task conditions in healthy participants (Antonova
et al., 2022).

Whilst it is clear that differences in transition probabilities point to mi-
crostate syntax being associated to function in some way, investigating transi-
tions between individual states may be too brief of a period of investigation.
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Important steps in this direction came from von Wegner et al. (2017), where
properties of the transition matrix between microstates were analysed using
information theory. The analysis showed a non-Markovian element to resting
state microstate sequences at the zeroth, first and second order. They also
demonstrated that the information retained in the microstate sequence at dif-
ferent time intervals showed peaks in contribution every 50ms periodically. The
Auto-Information Function (AIF) (a method developed by the authors) showed
a devolving into a first order Markov model after 1000ms into the future, with
a decrease in peak size from 500ms to 1000ms. von Wegner et al. (2021) then
demonstrated that the periodic peaks in retained information could be explained
by phase patterns of alpha oscillations, suggesting that the microstate syntax
retained the periodicities of the underlying alpha band in its sequence.

Developing upon this Sikka et al. (2020) used a Recurrent Neural Network
(RNN) which modelled the microstate sequences at multiple time scales from
200− 2000ms, and captured stably recurring microstate patterns. Importantly,
they highlighted that the traditional uni-variate measures of microstates could
not delineate statistically between a group at rest, and the same group that were
in a stressed state. Transition probabilities were also not significantly different
between rest and stress conditions. When training an RNN on the microstate
sequences of both rest and stress conditions however, they observed that the
model could correctly classify the sequence as rest or stress 63−73% of the time,
demonstrating that microstate syntax changes with cognitive state, and hence
has a role to play in understanding microstate function. The approach used by
Sikka et al. (2020) also highlights the need for an interpretable method. As it
was pointed out by the authors, the hidden layers within the RNN model were
too complex for simple visualisation, and hence interpreting the classification
process of the model was difficult.

Past studies suggest that microstate transition ratios are not sufficient to
understand microstate syntax. Both Tait et al. (2020) and Musaeus et al.
(2019) showed that transitions between microstates were not significantly dif-
ferent in Alzheimer’s or mild cognitive impairment patients respectively. Tait
et al. (2020) highlighted that a non-Markovian difference in syntax may have
been observed in the data, but was not identifiable by investigating transition
probabilities alone, perhaps suggesting that investigation of longer sequences of
microstates is required to better understand microstate syntax.

1.1.7 EEG Microstate n-Grams

Past studies have also investigated shorter length sequences of microstate classes
beyond the use of transition probabilities. It was shown by Lehmann et al.
(2005) that the frequency of specific microstate sequences of length 4 differed
between a control group and schizophrenic patients. The sequence ACDA was
more frequent in controls, whereas the opposite order of ADCA was more fre-
quent in patients. Schlegel et al. (2012) has since demonstrated a similar pattern
between two groups that showed personality differences. It is the case that these
shorter length sequences fall within the period of time where memory is retained
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in the sequence. With the average duration of a microstate being 80− 120ms, a
length 4 sub-sequence would be expected to on average of 320−480ms. Since it
is clear that longer sequences of microstates need to be characterised in order to
understand microstate function and microstate syntax function, a clear defini-
tion of sub-sequences is needed. Here we define a sub-sequence of microstates as
a microstate “n-gram”, where n is the number of consecutive microstate labels
in the sub-sequence. An illustration of n-grams of different lengths is shown in
Figure 3.

A BC D C AB A C D

A C

C D

BC

D C

. . .

A C D

C D C

BD C B . . .

Microstate Sequence
(1-grams)

2-grams

3-grams

Figure 3: Illustration of event-mode microstate n-grams. Top shows sequence
of microstates from observed EEG time series, equivalent to 1-grams. Second
row shows 2-grams, 3rd shows 3-grams. n-grams are effectively derived using a
sliding window of size n with step size 1.

The n-gram approach has the problem of “dictionary size”. If considering a
sequence where five microstate classes are the possible states at each time point,
the possible number of 4-grams that could be generated (without repetition,
ABAB, ABAC, ABAD, ABAE, ABCA,.. etc) would be 320; its dictionary
size. If considering every possible n-gram as n increases, the number of n-grams
to consider explodes combinatorially, limiting the length of n-grams that can be
investigated.
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Artoni et al. (2022) demonstrated a method which circumvented this prob-
lem. In the study, 6-grams were investigated in resting state participants, and
participants under general anaesthesia. All length 6 sequences of microstates
that occurred in the participants were recorded, and were categorised into what
were referred to as “entropy classes”. Entropy classes were defined by how much
new information was contained within an n-gram. For example, the 6-gram
ABDCBA shows that within the n-gram, microstate-to-microstate transitions
are unpredictable. This would be a high entropy class 6-gram. In contrast, the
6-gram ABABAB shows a predictable transition back and forth between two
microstates, and would hence be in a low entropy class.

It was demonstrated by Artoni et al. (2022) that high entropy class 6-grams
were more common than expected in the awake, at rest participant, and the same
was the case for low entropy class 6-grams in those under general anaesthesia.
Such methodologies that reduce the number of n-grams by assigning them to
categories are useful and require further investigation. A shortcoming of this
approach however is that such approaches assume that the transition between
states holds the same weight. It may be the case that the transition from A to B
is much more common in the observed data than from B to A, but classification
in complexity classes does not take this into consideration.

Whilst there has been significant development regarding the investigation
of microstate syntax, I am not aware of any investigation of microstate syntax
which associates syntax to brain regions or networks through simultaneous fMRI
recording. There are multiple reasons why this may be, but the most promi-
nent are regarding the disparity between the temporal resolutions of EEG and
fMRI, as well as a lack of existing methodologies that would allow for a direct
comparison between microstate sequences and fMRI signal. It is also apparent
that there is yet to be a robust EEG processing and analysis pipeline that con-
siders the syntax of the microstate sequence at every stage. The following two
chapters will hence be literature reviews of; methodological approaches for the
association of EEG and fMRI, and; methodological considerations regarding the
investigation of microstate syntax.

1.2 Aims and Objectives

Microstates have been associated with multiple different processes in different
studies through comparison of microstate parameters, and through association
with brain regions and networks. It may be the case that a microstate is more ac-
tive during a certain state, or may exhibit higher coverage when a specific brain
region is more active. But all microstates are active during all tasks, and whilst
all brain regions are active. For this reason, attempts to associate microstate
parameters with individual processes will always leave unexplained associations.
Investigations into microstate syntax have begun to show these shortcomings, as
the interaction between microstates may be a correlate with functions or brain
region activities, and circumvent the need for a one-to-one association between
microstate and functional process. However, current methodologies that do in-
vestigate microstate syntax use preprocessing and analysis methods which do
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not consider the microstate syntax in their pipeline, and therefore may provide
misleading results. Therefore, the first aim of this thesis is to demonstrate the
shortcomings of current approaches that are used to investigate microstate syn-
tax, and to propose a suitable microstate pipeline that updates the traditional
approach so that it can investigation of microstate syntax can be prioritised.

Past studies that have attempted to associate EEG microstates with fMRI
have generally done so through reduction of the temporal resolution of the EEG
signal to that of the fMRI signal, therefore completely destroying the relation-
ship between microstates and time. More recently, studies that have investigated
microstates have clearly shown that microstate syntax retains information with
a short term memory, meaning that retention of the relationship between mi-
crostates and time is extremely important, and therefore could be used to better
understand their function. For this reason, the second aim of this project is to
first demonstrate these shortcomings of existing methodologies, and suggest
more suitable methods that associate microstates to simultaneously recorded
fMRI, whilst retaining the high temporal resolution of EEG, and therefore re-
taining the grammar inherent in microstate syntax.

Whilst multiple studies have shown that microstates and their parameters
may be used as valuable bio-markers for neurological disorders, attempting to
understand the function of microstates by only using their duration, occurrence
and coverage, may be too simple of an approach. This is exemplified by the
multiple contradicting studies that were highlighted in Section 1.1.1. It has been
suggested in the past that microstates are better conceptualised as attractor
points in a multidimensional space. The parameters are perhaps a surface level
investigation of this claim. The “duration of a microstate” in this context can be
thought of as how long the EEG time series is under the influence of the given
microstate attractor point. For this reason, it may be beneficial to develop
methodological approaches which use this concept to investigate microstates.
Hence, the third aim of this thesis is to develop a method that uses microstates
as a dimensionality reduction of the EEG time series, using them as labels that
associate EEG activity to the influence of an attractor point, rather than take
the microstates as “winner-takes-all” states.

The final aim of this thesis is to provide a proof of concept to each of these
methodological developments by applying them to our own dataset, and pro-
viding positive results that associate fMRI activity to microstate syntax in a
meaningful way.

1.3 Thesis Overview

The thesis will begin with a literature review which is split into two chapters.
The first investigates the current methodological approaches to associating EEG
(and more specifically EEG microstates) and fMRI. The second reviews current
methodological approaches to the analysis of microstate syntax in the field.
Both chapters end with suggested methodological practices based on their find-
ings. The suggested practices are then applied in three separate studies, which
all investigate the association between EEG microstate syntax and fMRI ac-
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tivity in different ways. Each of the three studies is presented as a standalone
investigation, with its own abstract, introduction, methodology, results, and
discussion. A general discussion of overall findings between the three studies is
then provided in the next chapter, followed by some preliminary investigations
into future directions that have already been conducted. The thesis is then
ended with a general conclusion chapter.
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2 Literature Review: Methodological Approaches
to the Association of EEG Microstates and
fMRI BOLD Signal Time-Series

Past studies have attempted to characterise simultaneously recorded Electroen-
cephalography (EEG)-Functional Magnetic Resonance Imaging (fMRI) Blood-
Oxygenation Level Dependency (BOLD) through various means. Attempts to
adapt these existing methodologies for application to the investigation of EEG
microstates have been made, with some novel developments also proposed. Here,
I review existing methodologies which attempt to associate fMRI BOLD signal
to EEG microstates and suggest potential developments.
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2.1 fMRI Networks

In order to compare microstates to fMRI, most approaches attempt to sim-
plify the BOLD signal through dimensionality reduction techniques. I separate
these techniques into two categories: spatial and temporal. A spatial network
is derived through an analysis method which assumes that spatial regions are
independent. In these analyses, a single voxel cannot belong to two different
networks, making the networks functional parcellations of the brain. The tem-
poral approach instead assumes that time points are independent, and so the
whole of the brain is included in a global state. The regions of each global
state show different levels of activation. Hence the temporal approach uses di-
mensionality reduction that summarises differences in activations between each
Repetition Time (TR), rather than between voxels. In general, these networks
are referred to under the umbrella term of Functional Connectivity (FC). The
term refers to spontaneous fluctuations from functionally related regions that
show correlation with one another (Biswal et al., 1995).

2.1.1 Spatial fMRI Networks

Spatial fMRI networks have been derived using various analysis methods. Early
investigation of BOLD signal during rest suggested a baseline activity of the
brain that was represented across studies by functionally relevant states, each
referred to as a Resting State Network (RSN) (Damoiseaux et al., 2006). An-
other name is the Intrinsic Connectivity Network (ICN) (Seeley et al., 2007),
used more generally when the generated networks are not necessarily from rest-
ing state data. 4

An example of such spatial networks are those generated by Yeo et al. (2011),
where clustering was used to derive parcellations of the cortex into functionally
distinct networks based on their connectivity profile. The authors found 7 and
17 to be the most stable numbers of networks in their analyses. Figure 4 shows
a visualisation of the 7 networks. Note that these networks are indeed a parcel-
lation, and hence no one region can belong to more than one network.

The spatially distinct networks derived by Yeo et al. (2011) and others (Gor-
don et al., 2017; Smith et al., 2009; Yeo et al., 2011) have since been used in
meta-analyses as the starting point of a proposed “taxonomy” of functional
states of the brain that reliably occur across multiple studies (Uddin et al.,
2019). Such a technique has been proposed due to difficulty cross-referencing
identified spatial networks between studies. Whilst utilisation of this method
streamlines meta-analyses, if not used cautiously it may lead to an enforcement
of the taxonomy onto spatial networks identified in the future, causing smaller
differences between networks to be overlooked.

Although the networks identified by Yeo et al. (2011) used clustering meth-
ods in their generation, earlier investigation of ICNs generally used methods such

4They were first referred to as ICNs by Seeley et al. (2007) to point out that the brain itself
was not at rest when the participant was in the “resting state”, since the brain was shown to
always be active.
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Figure 4: Visualisation of the 7 Yeo networks in volumetric MNI152 standard
space provided by Yeo et al. (2011) using the nilearn database package (Abra-
ham et al., 2014). Each colour indicates a different network. Note that networks
are parcellations, with no voxel belonging to more than one network.

as Independent Component Analysis (ICA), to identify functional networks in
the fMRI data (Damoiseaux et al., 2006; Seeley et al., 2007). The benefits of
ICA are in its model-free approach. The decomposition of a dataset into a set of
independent one-dimensional time series and associated three-dimensional spa-
tial maps allows for a description of the temporal characteristics of a specific
spatial patterns signal across the time series (Beckmann et al., 2005). Attempts
to associate EEG microstates with spatial fMRI networks have generally used
the ICA approach when deriving fMRI networks (Britz et al., 2010; Musso et al.,
2010; Xu et al., 2020; Yuan et al., 2012).

Seed-based approaches are another spatial network method. This approach
is employed when a specific region of interest is expected to be active (Fox
et al., 2006). Whilst this approach is more rare in microstate analysis, recent
studies have begun investigation in this direction. Case et al. (2017) used ICA
outputs of fMRI recordings in sickle cell disease patients using a seed in the
cerebellum, since it was expected that connectivity would differ in that region
in patients. Bréchet et al. (2019) derived fMRI sub-networks by investigating
the activation of different regions during specific tasks, and focused specifically
on sub-networks within regions that were expected to be more active during
each task. Conceptually there are some differences between local seed-based
maps and ICA derived networks, but the difference has been modelled simply
and can be accounted for when comparing between methods (Joel et al., 2011).

Reducing the dimensionality of the BOLD time series from thousands of
voxels to a few functional parcellations provides an overview of global activity
across TRs. However, the major shortcoming of this approach is in the parcella-
tion itself. If two distinct brain regions belong to two different parent networks,
their activity will be summarised by the time series of their parent network. If
those two regions were active simultaneously, yet overall their parent networks
were not active simultaneously, information regarding the functional connec-
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tivity of the child regions would be lost. Since the relationship between EEG
microstates and fMRI states is not well known, oversimplification of the fMRI
into a rigid taxonomy may limit the associations that can be made between
microstates and fMRI networks, which is not advisable. These parcellated net-
works should instead perhaps be utilised as descriptors of common patterns of
activity in global activity networks.

2.1.2 Global Temporal fMRI Patterns

The temporal ICA was a method suggested by Smith et al. (2012), after it
was highlighted that two ICNs could not have the same brain region in their
respective networks, even if they had patterns that proved to be similar. The
approach generates global maps where output Independent Component (IC)s
are global temporally independent states, rather than spatially independent
parcellations. All brain regions are included in all networks in this approach,
with differences between states being differences in activation patterns across
the whole brain, rather than between different parcellations.

Investigation of connectivity in this area is referred to as dynamic Functional
Connectivity (dFC) (Hutchison et al., 2013; Preti et al., 2017). Connectivity ma-
trices are derived either in a windowed or frame-wise manner across the BOLD
signal time series, providing a time series of connectivity between regions of in-
terest (Preti et al., 2017). This has been employed recently in the investigation
of microstates (Abreu et al., 2021), and is the first to utilise fMRI temporal
networks in the investigation of EEG microstates to the authors knowledge.

There are various other temporal network derivation techniques that have
not been utilised by the EEG microstate literature however. A relatively simple
approach is the Co-Activation Pattern (CAP). CAPs are derived using k-means
clustering across time points (Gutierrez-Barragan et al., 2019), with the set of
CAPs being the cluster centres. This is an equivalent derivation to the most
common methodological derivation of EEG microstates (Michel & Koenig, 2018;
Pascual-Marqui et al., 1995). Unlike temporal ICA, the number of CAPs derived
in an analysis is participant to the users decision on number of clusters to use.
Additionally, generation of CAPs across the time series leads to each TR being
labelled with the cluster it belongs to. Hence a discrete sequence of CAPs can be
generated, similar to the EEG microstate sequence outlined in previous sections
(see Section 1.1.6).

A new functional descriptor of fMRI that is yet to be utilised in the mi-
crostate literature is the gradient analysis approach. The term “gradient” is
used to describe the internal structure of brain areas. Unlike traditional parcel-
based methods, gradients characterise the brain area’s organisation in terms of
spatial variations between regions. Margulies et al. (2016) derived a set of func-
tional gradient maps by applying diffusion embedding (Coifman et al., 2005) to
the overall connectivity matrix of fMRI from the Human Connectome Project
(HCP) dataset (n=32,492) (Van Essen et al., 2013). The first three connectivity
gradients derived by Margulies et al. (2016) are shown in figure 5.

After meta-analysis of the patterns identified in the first gradient, the au-
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Gradient 1 Gradient 2 Gradient 3

Figure 5: Visualisation of the first three gradient axes, on cortex surface de-
rived by Margulies et al. (2016), 1 to 3 left to right. Note the distribution of
activity across regional boundaries.

thors suggest that each of these functional gradients identified is a spectrum of
some functional activity. It was demonstrated that regions along the “principle”
gradient axis (the axis which explains the most variance in the connectivity ma-
trix, gradient 1 in Figure 5) associated with the Default Mode Network (DMN)
were active at one end of the spectrum, whereas primary sensory/motor regions
were active at the other end. This principle gradient has been proposed as a
dimension of functional organisation in the cortex, as it supports existing theo-
ries that activity in the cortex is organised along a “unimodal-transmodal” axis
(Mesulam, 1998). The second axis is also consistent with this past theory, which
differentiates regions solely within the unimodal end of the principal gradient on
a “visual-somoatosensory/motor” axis (Margulies et al., 2016; Mesulam, 1998).
The principle gradient has also been shown to co-correlate with gradients that
were derived in other observations, such as in intra-cortical myelin (Hunten-
burg et al., 2018), microstructure (Paquola et al., 2019), structural connectivity
(Vos de Wael et al., 2021), cortical thickness (Wagstyl et al., 2015) and gene
transcription (Burt et al., 2018).

Haak and Beckmann (2020) discuss how since the inception of systems neu-
roscience, the brain has been subdivided into regions in different ways, and that
each region has been used as reference for functional localisation. Yet brain re-
gions have shown clear “functional heterogeneity” (Jbabdi et al., 2013), that is,
even though areas may exhibit a homogeneous cytoarchitecture or connectivity,
a functional diversity can be apparent within that region (Purves et al., 2019).
For this reason, the use of parcellation can lead to signal mixing. If it is as-
sumed that the signal output of a brain region is due to a single function, when
a functional heterogeneity is present may lead to mistakes in inference. In the
context of understanding the relationship between EEG microstate syntax, and
fMRI activity, use of a global networks which considers gradients rather than
parcellations when attempting to understand how microstate syntax relates to
spatial patterns may be beneficial.
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2.2 Association of fMRI Networks with EEG Signal

Both EEG and fMRI are non-invasive neuroimaging methods that show dif-
ferent aspects of human brain activity. EEG records electrical activity at the
scalp, whereas fMRI BOLD signal is generated by changes in the ratio of oxy-
hemoglobin to deoxyhemoglobin in the brain (Heeger & Ress, 2002).

The main advantage of EEG over other neuroimaging techniques is its com-
paratively high temporal resolution, generally recorded at the millisecond time
scale. Due to electrical activity being captured at the scalp however, interme-
diate tissues and the skull separate the recording electrodes from the neuronal
tissue, making it difficult to identify the exact locations of neuronal genera-
tors (Jorge et al., 2014) and decrease the Signal-to-Noise Ratio (SNR) of the
neuronal signal (Mulert & Lemieux, 2023).

While fMRI offers high spatial resolution (millimetre-scale voxels), its tempo-
ral resolution is relatively low, commonly with a TR of 2 to 3 seconds (0.33-0.5Hz
sample frequency). Unlike EEG, which provides direct insights into neuronal
activities, fMRI indirectly records these activities through changes in oxygena-
tion of blood within the brain. When a brain area is active it requires more
oxygen, which leads to an increase in the ratio of oxygenated to deoxygenated
blood flow to that area (Heeger & Ress, 2002). fMRI detects these changes
by measuring the magnetic properties of oxygen-rich blood as it flows through
the brain. The BOLD signal is a complex combination of hemodynamic and
metabolic effects, making it more difficult to interpret than EEG (Logothetis,
2008). The Haemodynamic Response Function (HRF) is a mathematical model
that describes how the BOLD signal changes in the brain over time after a
neural event such as a change in neural activity or a stimulus (Buckner, 1998).
The HRF is typically characterised by a delay between the neural event and
the change in BOLD signal, followed by a gradual increase in blood flow over
several seconds to the active region.

In the context of associating EEG microstates with simultaneously recorded
BOLD signal, the HRF is convolved with the EEG signal at each time point to
estimate the change in blood flow over time that would be due to the neural
activity observed at the scalp at each instance (Artoni et al., 2022; Britz et al.,
2010; Faber et al., 2005; Musso et al., 2010; Yuan et al., 2012).

It is crucial to highlight that both EEG and fMRI need to be aligned in a con-
sistent mathematical space before analysis can proceed. Here, I use terminology
coined by Manganas and Bourbakis (2017) to categorise these alignment meth-
ods into two groups: asymmetrical and symmetrical. Asymmetrical approaches
adjust the resolution of one recording to fit the other, whereas symmetrical
approaches do not change the resolution of either recording. 5

5Where Manganas and Bourbakis (2017) used the terms asymmetrical and symmetrical
to describe the overall analysis approach of associating EEG and fMRI, here I refer to these
categories when referring to how the resolution of each recording is modified before analysis
proceeds.
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2.2.1 Asymmetrical Methods of Alignment

Alignments which use asymmetrical methods would either be characterised by
a resolution change of EEG to an fMRI space, or vice versa. The former has
been attempted in various capacities in the context of EEG microstates.

The most common means by which the asymmetrical approach has been
incorporated is the voxel-wise General Linear Model (GLM) (Britz et al., 2010;
Musso et al., 2010; Xu et al., 2020; Yuan et al., 2012). After convolution with
the HRF, the EEG time series is correlated with each microstate topography at
each time point, generating a correlation time series for each microstate class.
The time series of each microstate is then down-sampled to the same resolution
as the recorded fMRI, and each down-sampled microstate time series is used
as a regressor in a GLM. A model is constructed for each voxel in the fMRI,
with the set of microstates as regressors for each voxel. The map of voxels that
correlate with a microstate is then investigated as a generator of the microstate.
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Figure 6: Illustration of the standard process of generating regressors from
microstate sequences. First the microstate sequence is derived on the EEG time
series (top). The microstate topographies are correlated with each EEG time
point (middle), which are then down-sampled to the same sample frequency as
the simultaneously recorded TR (bottom). This down-sampled signal is used
in voxel-wise GLM analysis. TR denotes the amount of time for a single fMRI
time point. Note that duration of microstates is not accurate to observation.

Investigations using this approach use multiple comparison corrections across
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voxels to ensure statistical viability (Britz et al., 2010; Musso et al., 2010; Xu
et al., 2020; Yuan et al., 2012). Additionally, the conversion of the discrete
sequence of microstates into a continuous correlation time series for each mi-
crostate allows for an investigation of the dynamics of microstate dominance.

The shortcomings of this approach are primarily in its asymmetry. Down-
sampling the EEG time series to match the temporal resolution of the concur-
rently recorded fMRI yields a single microstate correlation value for the entire
TR. For instance, with a 250Hz EEG sample frequency and TR of 2s, 500 cor-
relation values within a TR are condensed into one. This simplification erases
the microstate sequence, which not only undermines any relationship that the
microstates may have to time, but also impedes the analysis of their syntax,
which may be crucial in understanding their function (see Section 1.1.6).

It was previously outlined that source localisation is used in attempts to
estimate sources of EEG microstates (see Section 1.1.5). Source localisation
attempts to infer the position of the current sources in the brain from the elec-
trode potentials at the scalp using algorithms like “LORETA” (Pascual-Marqui,
1999), which use “inverse modelling” to estimate the location and strength of
current sources of the scalp activity. The term inverse modelling refers to the
“inverse problem” (Grech et al., 2008), which states that many different current
density distributions in a 3D volume can produce the same potential distri-
bution on the surface of the volume. Source localisation models are built on
prior assumptions such as the number of underlying generators in the brain
that lead to the spontaneous occurrence of a microstate at the scalp, resulting
in an uncertainty regarding the true nature of said generators.

Whilst multiple studies have used source localisation in place of the simulta-
neous recording of some higher spatial resolution imaging technique to estimate
the sources of EEG topographies, the method has also been utilised in simul-
taneous EEG-fMRI, comparing the estimated sources of EEG microstates with
the observed functional states in the fMRI (Bréchet et al., 2019).

Whilst asymmetrical methods of alignment have provided insight into the
function of EEG microstates, projecting microstate activity into an fMRI space
removes the syntactic structure of the EEG microstate sequence. If a method
aimed to investigate microstate sequences and their syntax, it should perhaps
instead utilise methods which employ symmetrical alignment methods.

2.2.2 Symmetrical Methods of Alignment

Alignments which ensure that both EEG and fMRI are aligned temporally but
do not alter the resolution of either recording are referred to here as symmetrical.
In the context of EEG microstate analysis this is a lesser used approach.

Even in the general context of EEG-fMRI studies which do not employ mi-
crostate analysis, methods which investigate EEG spectrum analysis for exam-
ple, tend to use the asymmetrical approach of GLMs (Jorge et al., 2014), or at
the very least will down sample the EEG data to one data point per fMRI scan.
Methods which simply compare the activity of EEG to fMRI without forcing
one resolution to the other are few. One example is joint ICA (Huster et al.,
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2012), where the simultaneously recorded EEG-fMRI are subject to the same
ICA after concatenation. Some studies have also applied separate ICAs to EEG
and fMRI and subject the components to Bayesian-formulated criteria to match
the components derived in each recording modality (Lei et al., 2011).

The only paper I am aware of which uses symmetrical methods of alignment
for the investigation of EEG microstates is Abreu et al. (2021). The authors
refrained from altering the resolution of their simultaneously recorded EEG
and fMRI by deriving microstate within each TR window, and comparing mi-
crostates between simultaneously occurring fMRI dFC states, and showed that
microstates could reliably predict said states. The derivation of microstates
within sliding windows raise questions regarding EEG sample sizes. Regardless,
this approach clearly demonstrates the strength of using symmetrical methods
of alignment.

Despite these existing methodologies exhibiting symmetrical alignment, these
approaches do not retain the syntax of the microstate sequence. A potential rea-
son for a lack of such methodology may be down to the difficulty of association
post-alignment. If for example fMRI was recorded at TR= 2s, and EEG at
250Hz, the 500 EEG time points that must be compared to the single fMRI
the question how the comparison should be conducted arises. Regardless, if the
aim of investigation is how EEG microstate syntax relates to fMRI signal, then
it is absolutely necessary to retain the EEG time series and not reduce it to a
more coarse representation. Each of the three studies presented in this thesis
(an overview of which can be found in Chapter 4) suggest a novel methodology
for this investigation.

It is the case that existing methodologies which process and analyse EEG
signal for the generation of microstates also do not consider the necessity of
retaining microstate syntax prior to its investigation. In the next chapter we
will review existing methods, of processing EEG and of microstate analysis, and
will identify points where syntax is not prioritised, suggesting alternatives that
do.
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3 Literature Review: Methodological Consider-
ations regarding Microstate Syntax

The primary objective of microstate analysis has been to categorise microstates
as bio-markers or cognitive markers (see Sections 1.1.4 and 1.1.5). Approaches
used to derive microstate topographies have, therefore, been employed to those
ends. Over time, studies have also begun to include the investigation of mi-
crostate syntax by investigating one-to-one transitions between microstates (e.g.,
Vellante et al. (2020)). Despite this, as well as preliminary investigations into
longer sequences and more complex characteristics of microstate syntax (see Sec-
tion 1.1.6 and 1.1.7), methods of microstate derivation still need to be updated
to account for possible pitfalls in the observation of syntax.

Here, I investigate existing microstate derivation methods, point out their
shortcomings in application to syntax analysis, and suggest updates to existing
preprocessing and analysis pipelines that will ensure that microstate syntax is
retained by the pipeline up to the analysis phase.
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3.1 EEG Pre-processing for Microstate Syntax Investiga-
tion

3.1.1 Standard EEG Pre-processing Pipeline

The steps for standard pre-processing prior to Electroencephalography (EEG)
microstate analysis include; re-referencing to a reference electrode or the average
potential across electrodes, bandpass filtering, downsampling from the recorded
frequency, artefact removal if applicable, removal of epochs of noise, removal
of noisy channels, and Independent Component Analysis (ICA) followed by
rejection of noise Independent Component (IC)s (Kleinert et al., 2023; Michel
& Koenig, 2018; Poulsen et al., 2018; Tait & Zhang, 2022). These steps are
intended to remove any signal in the EEG that may be from sources other than
the brain, such as eye movement, heartbeat, head movements, or muscles in the
head, and to generally increase Signal-to-Noise Ratio (SNR). Bandpass filtering
is used to isolate the alpha band. In the case of simultaneous EEG-Functional
Magnetic Resonance Imaging (fMRI), algorithms for Magnetic Resonance (MR)
noise removal are also employed (Allen et al., 2000).

While these methods adequately clean the EEG for microstate derivation,
their suitability for investigating microstate syntax requires careful examination.
It is immediately apparent that most of these steps do not affect the temporal
resolution of the EEG and, therefore, are not cause for concern. However, The
two steps that do affect it are down-sampling and epoch removal.

3.1.2 Downsampling

Downsampling from the recorded sample frequency may initially appear to af-
fect microstate syntax. However, microstate studies tend to down-sample to
approximately 250Hz from recordings commonly recorded in kHz (Michel &
Koenig, 2018). With the average length of a microstate consistently between
60− 120ms, a sampling frequency of 250Hz is unlikely to affect transitions be-
tween microstates.

3.1.3 Epoch Removal

Moving to epoch removal however, such a practice destroys the overall syntax
of the microstate sequence. Microstate sequences that would have otherwise
contributed to syntax are removed, meaning either that the periods before and
after a “cut” section of the time series are concatenated together, or that the
time series before and after the cut have to be considered as individual and
separate sequences during analysis. This damages the syntactic structure, and
may make identification of the underlying grammar of the syntax more difficult.

Additionally, in the context of simultaneous EEG-fMRI, the alignment of
two recording modalities becomes difficult when epoch removal occurs. Periods
of noise removed from the EEG time series will be removed in sections that are
recorded at a different resolution to fMRI. This difference adds further com-
plexity to the comparison if using symmetrical alignment methods (see Section
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2.2.2).
If epoch removal is ill-advised for investigating microstate syntax, the ques-

tion of how to deal with epochs of noise arises. Including periods of noise in the
time series for later microstate analysis would add noise to microstate cluster
centres, affecting the microstate syntax differently. Some potential solutions to
this problem begin first with cleaning algorithms.

Sinusoidal noise removal techniques are commonly applied using Fourier
transforms on a sliding window (Mitra & Bokil, 2007). Bad channel identi-
fication algorithms can remove or clean noise that is isolated to a single channel
by different forms of interpolation, using neighbouring channels, or using more
complex approaches such as random sample consensus (Bigdely-Shamlo et al.,
2015). Windows where noise is inherent for a period of time can be cleaned us-
ing approaches such as Artefact Subspace Reconstruction (ASR) (Mullen et al.,
2013), which interpolates noisy windows based on the rest of the EEG signal.

3.1.4 Improved Pre-processing Pipeline for Microstate Syntax in-
vestigations

On top of cleaning algorithms is the change in the role of ICA in this anal-
ysis. The standard EEG pre-processing pipeline first uses epoch removal and
follows that with noise IC identification and removal. When epochs of noise are
not removed but ICA is still applied for data cleaning, noise IC’s may include
noise inherent in the epochs that would have been removed previously. Algo-
rithms such as ICLabel (Pion-Tonachini et al., 2019) or MARA (Winkler et al.,
2011) automatically categorise IC topographies into their expected source, be
that brain or different sources of noise, based on comparison with a dataset of
topographies which have had their sources previously identified.

A combination of ICA and cleaning algorithms may allow for a sufficiently
clean EEG time series for microstate analysis without needing epoch removal,
hence retaining the microstate syntax.

3.2 Microstate Definition and Analysis Methods for Ap-
plication to Syntax Investigation

Following pre-processing, the process of microstate derivation contains potential
pitfalls regarding syntax investigation. Here, the microstate analysis pipeline is
reviewed, and potential remedies to these pitfalls are suggested.

3.2.1 Canonical vs Data-Driven Microstates

Section 1.1.1 discussed the difference between canonical and data-driven mi-
crostates, focusing on the debate regarding this point in the field (Michel &
Koenig, 2018). There is a need for more consideration as to how this difference
would affect syntax, however.

Using the canonical set of microstates ensures that a consistent set of states
is investigated between studies (Milz et al., 2017). Parameters are derived in
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each study on the same classes, meaning that they can be compared across
task conditions and between populations. This extends to the investigation
of syntax. If multiple studies fit their observed data to a pre-derived set of
microstates, then transitions, n-grams, and syntactic rules identified in each of
those studies will also be more comparable. However, when fitting the observed
data to microstates that were not derived from that data, the possibility of a
sub-optimal fit for that specific data means that the syntax observed may not
reflect the syntax that would be observed had the microstates been derived in
a data-driven manner.

However, a potential issue to consider when investigating data-driven mi-
crostates is the number of selected microstates. If using a data-driven method,
the optimal number of microstates is high; this increases the number of possible
transitions that can occur from one state to another. Increasing the number
of microstates causes a combinatorial explosion in the number of n-grams to
consider.

3.2.2 Smoothing Destroys Syntactic Structure

There are different approaches by which the duration of a microstate is defined.
Worded another way, there are different approaches by which the boundaries be-
tween consecutive microstates are defined. The most popular means of deriving
microstate boundaries is referred to as back-fitting (Poulsen et al., 2018). After
microstate (cluster centres) derivation from Global Field Power (GFP) peaks,
the topography of each microstate is correlated with each time point in the par-
ticipant time series, resulting in a correlation time series for each microstate.
Each time point is then labelled with the microstate that shows the highest
correlation with it in a winner-takes-all fashion, providing a discrete sequence
of microstates where the labelled microstate is given for each time point.

This process shows predominant long sequences where a microstate label
repeats. The number of consecutive labels of a single microstate is called the
microstate occurrence’s duration. Due to the conception that a microstate gen-
erally lasts approximately 60−120ms, however, a smoothing step is usually car-
ried out to remove microstate occurrences that are considered too short (Klein-
ert et al., 2023). This smoothing step removes microstates that last less than
a user-defined duration (which varies between studies) through a re-labelling
process. The microstates that occur before and after the “short-microstate”
are identified, and the short occurrence is assimilated into whichever of the two
neighbours is most similar.

While this does homogenise the duration of microstates and controls for
“noisy” short microstates, it must be pointed out that the smoothing step in-
troduces unnecessary noise into the microstate sequence. If a section of the time
series shows a short period that is most similar to microstate A, for example,
but is then re-labelled with C, the transitional structure of the microstates is
damaged. This has been highlighted previously (von Wegner et al., 2017), but
multiple studies which have investigated microstate sequences since have yet to
adopt the method.
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Additionally, whilst unlikely, this approach contains a theoretical possibility
that would damage the syntactic structure of the sequence further. The mi-
crostates themselves are generated using the topographies at GFP peaks with
clustering methods (see Section 1.1.1). The back-fitting process then uses these
cluster centres (which are only generated using the GFP peaks) to label the
whole time series. This approach intends to get a more precise transition point
between GFP peaks where the microstate label switches from the former to the
latter. It is possible, however, that the smoothing process could occur across
a GFP peak if the back-fitting process found the duration of the microstate
around the GFP to be under the user-defined threshold. This would result in a
GFP peak that was clustered with one centre being labelled with another.

Therefore, if the back-fitting procedure was adopted for syntax analysis,
smoothing should be avoided (von Wegner et al., 2017).

An alternative which some have adopted is the interpolation approach (Poulsen
et al., 2018; Tait & Zhang, 2022). It is referred to as the interpolation approach
because rather than correlating each time point with each microstate, the cen-
tre points between GFP peaks are assumed as the transition point. Whilst this
approach does lose the more precise boundaries between microstates that ap-
pear with the back-fitting approach, the microstate sequence here becomes an
analysis of the interactions between consecutive GFP peaks, the points used in
the microstate derivation in the first place, avoiding potential noise in the low
SNR regions between peaks.

3.2.3 A Formal Definition of Sequence Types - Event, Clock and
Peak Mode

While multiple recent studies have investigated microstate syntax in different
contexts, the definition of how the sequence should be analysed varies. There
are three clear means by which a microstate sequence is defined. An example
sequence of microstates will be used to illustrate the difference between these
“modes” by which the sequence can be conceptualised, A, shown in Figure 8.

A generated sequence of microstate labels is derived (either by back-fitting or
interpolation), with each label being one of the four microstates corresponding
to the microstate. The n-gram is A− > C− > D, with A lasting 100ms, C 80ms,
and D 120ms, with the EEG in question observed at a sampling frequency of
250Hz (each time point lasting 4ms). The first means by which this sequence
can be described (and how it is generally described in microstate literature,
which does not investigate syntax, see Michel and Koenig (2018) for a review)
is the “event-mode”. Event-mode refers to the occurrence of a transition from
one microstate to another different microstate. The example sequence would
be represented simply as ACD, and could hence be described as a 3-gram (see
Section 1.1.7 for a definition of n-grams).

The second means by which the sequence can be represented is the “clock-
mode”. Clock-mode refers to a sequence where each label represents a clock
tick on the time series. In this example, there would be 250 microstate labels
per second, one label for each time point. Hence, ACD would be represented
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Figure 7: Comparison of the back-fitting/smoothing and interpolation ap-
proaches. Colours are representative of different microstates. (A) shows the
back-fitting and smoothing method. First on top, each time point is correlated
with each microstate, and is then labelled with the microstate it is most similar
to (note labels are not to scale temporally on the illustration). Bottom then
shows the smoothing process. Where the number of consecutive time points
for a microstate is under the user defined number of time points, the short
microstate is assimilated into neighbouring microstates. (B) shows the interpo-
lation method. The GFP peaks are subject to clustering and hence are already
labelled with microstates. The durations are defined by the mid-points between
microstates.

as a sequence of 25 As (100ms/4ms = 25 time points), 20 Cs (80ms/4ms = 20
time points) and 30 Ds (120ms/4ms = 30 time points). In this analysis, the
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Figure 8: Visualisation of sequence derivation modes, event, clock and peak.
(A) Event-mode microstate sequences are shown on the top. Transitions be-
tween microstates are where boundaries are defined. Clock-mode microstate
sequences are on the bottom, where each clock tick is regarded as a separate
state in the sequence (note that illustration is not to scale temporally). (B) Top,
illustration of the GFP time series that generated the example microstate se-
quences. Two GFP peaks in a row labelled with microstate D would constitute
a single occurrence of D in the event-mode. Bottom, the peak-mode sequence
derived from the GFP time series. Note how there is a single microstate label
for each GFP peak.

sequence is tied to the sampling frequency. The only paper that directly defines
clock- and event-mode is that of von Wegner et al. (2017), where the authors
refer to them as permanence and non-permanence.

The third means by which the sequence can be investigated is referred to
as “peak-mode” and, to my knowledge, has not been previously defined. Peak-
mode only considers GFP peak labels in the sequence of microstates investi-
gated. Continuing with the example, we see in Figure 8 that the microstate D
is comprised of two GFP peaks. The event-mode sequence of ACD would be
represented in the peak-mode as ACDD, with each D lasting approximately
60ms. Note the possibility for repeating microstate labels, which is impossible
in event-mode. Note that peak-mode cannot be derived using the back-fitting
and smoothing approach since the point that shows the transition from one D
to the next cannot be identified. Peak-mode therefore, is only derivable using
the interpolation approach.

The definition of n-grams varies between these modes. The event-mode
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3-gram of ACD would be a 75-gram in clock-mode (AAA..CCC...DDD...D),
and a 4-gram in peak-mode (ACDD). Event-mode reduces the dimensionality
of the sequence drastically but changes the sequence’s relationship to time, as
each label in the event-mode sequence lasts a different period. Additionally,
to investigate shorter sequences like 3-grams in clock-mode by using a sliding
window of size 3, the window would only ever observe either 3 of the same letter
or a transition from one microstate to another (i.e., the movement from A to C
in the above example using a sliding window which moves one label at a time,
would observe AAA, AAC, ACC, CCC).

Further investigation into each of these modes is required for a better under-
standing of microstate syntax. Here, I propose that investigation using peak-
mode is preferred. This is not least because it has a natural development from
the preferred interpolation approach but also opens up a preliminary investi-
gation into “within-cluster” dynamics with regards to syntax (microstate D to
microstate D) whilst still reducing the dimensionality of the sequence from that
of clock-mode.

3.3 Within-Cluster Differences - Microstates as Attractor
Points

It has been suggested that microstates could be conceptualised as attractor
states in a multidimensional space (Milz et al., 2017). Existing investiga-
tions primarily use parameters to characterise microstates in various contexts,
the measures of duration, occurrence, coverage and Global Explained Variance
(GEV) being the most prominent (see Section 1.1.3 for an overview of microstate
parameters). In the context of microstates as attractor points, whenever a mi-
crostate occurs on the time series, that is, whenever the EEG time series is
most similar to that microstate for a given amount of time, the duration of the
occurring microstate could be conceptualised as how long the EEG time series
is “under the influence of” the given attractor point. The EEG time series can
be conceptualised as a trajectory in an attractor space. This concept allows us
to step back from existing approaches and consider how syntax analysis may be
improved.

The first change using this new perspective is what microstate parameters
mean in this context. The duration of a microstate is how long the EEG time
series is under the influence of the microstate attractor point. Coverage is how
much of the overall trajectory is spent under the influence of each attractor state.
A one-to-one transition from one microstate to another can be conceptualised
as the EEG time series moving from the influence of one attractor point to
another. Whilst these points may appear to be obvious, relatively few existing
methodologies have considered the relationship between microstate classes and
time beyond their average duration (Lehmann et al., 2005; Schlegel et al., 2012;
von Wegner et al., 2017).

Additionally, this perspective points out the shortcomings of the “event-
mode” (see Section 3.2.3 for the definition of modes) approach employed in
studies which do consider microstate syntax. Whilst microstate duration does
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show in this context how long the EEG signal is under the influence of a mi-
crostate, it does not consider how many GFP peaks occur within that duration.
In two separate occurrences of microstate A, which last 100ms, one may contain
one GFP peak and the other 3, yet existing methods do not detect this. Using
the peak-mode in conjunction with a model of an attractor space may allow for
an understanding of “within-microstate” dynamics. That is, if there are two
consecutive GFP peaks within the influence of microstate B, for example, it
may be the case that where within the cluster of microstate B each of those
peaks could affect where the trajectory goes next (i.e., it may affect the syntax
of the microstates).

Finally, although it is undoubtedly the case that microstates explain a high
percentage of variance in GFP peaks (Michel & Koenig, 2018), the use of an
attractor space shows the difference between the observed EEG and the mi-
crostate attractor points. In the existing winner-takes-all method of microstate
sequence labelling, each time point is assigned a single label. In the context of
an attractor space, the microstate that each EEG time point is closest to would
be the microstate that it is traditionally labelled with. However, there is a pos-
sibility for the investigation of each time point’s distance from each microstate,
meaning that the influence of each microstate can be modelled at each time
point rather than using the winner-takes-all approach.

If a methodology were derived which generated a space that the EEG time
series occupied and could be analysed as a trajectory, this would allow for a more
flexible investigation of the EEG time series. Upon understanding the dynamics
of the EEG as a multidimensional trajectory in that space, a post-analysis step
of re-labelling the EEG time series with microstates could be used to understand
microstate syntax. This would be a practical approach as it allows for investi-
gating the dynamics of microstate transitions without using discrete sequences
of states. Other analysis methods are possible with the EEG time series in a
space where it is considered a continuous signal. This is somewhat akin to the
step used in General Linear Model (GLM) analyses, where microstates are made
into continuous regressors using a correlation value (Britz et al., 2010; Musso
et al., 2010; Yuan et al., 2012).

3.4 Proposed Methodology for Microstate Syntax Analy-
sis

It is suggested that for the investigation of microstate syntax, first, in the pre-
processing stage, epoch removal should be avoided and replaced with noise arte-
fact reconstruction methods, or at the very least, epoch removal is minimised
wherever possible.

Then, in the microstate analysis phase, interpolation can be utilised to in-
vestigate peak-mode sequences so that within-microstate syntax can be better
understood. Additionally, if the back-fitting technique is employed, this is not
followed by smoothing, which destroys the syntactic structure of the sequence.

It is suggested that these considerations be utilised in conjunction with sym-
metrical EEG-fMRI alignment techniques when comparing microstate syntax to
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fMRI, as a failure to do so adds complexities to the comparison, and damages
the microstate syntactic structure in and of itself.

Finally, it is suggested that a methodology which conceptualises the EEG
time series as a trajectory in an attractor space be developed and used in con-
junction with syntax analysis methods as a complementary means of under-
standing EEG signal dynamics.
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4 Overview of Studies

Following the identification of a proposed methodology and pipeline for the in-
vestigation of Electroencephalography (EEG) microstate syntax with simultane-
ously recorded Functional Magnetic Resonance Imaging (fMRI) Blood-Oxygenation
Level Dependency (BOLD) signal, three studies were conducted which utilise
these methodologies, proposing new directions for these methods, whilst also
identifying preliminary results with regards to comparisons between EEG mi-
crostate syntax and BOLD signal in resting state, eyes-open recordings.

4.1 Data and Recording Paradigm

All studies used the same dataset. Information regarding the capture of this
data is as follows.

4.1.1 Participants

Simultaneously acquired EEG and fMRI data was collected from 18 partic-
ipants (11 males) in a previous study with mean age SD 28.02 +/- 5.44 (age
range 20 – 41). Two of the 18 participants were excluded due to incomplete data
acquisition. Participants had no history of neurological/psychiatric disorders.
All participants were right-handed with either normal or corrected-to-normal
vision. All participants gave written informed consent and the study was ap-
proved by the Hammersmith Hospital (London, UK) research ethics committee
(Fagerholm et al., 2015). All participants underwent an at-rest recording in an
awake, eyes-open state lasting 480s. An additional one participant was removed
from analysis during processing, showing characteristics of an outlier during
microstate analysis. This resulted in fifteen of the total eighteen participants
being used for the analysis.

4.1.2 EEG Recording

EEG data were collected simultaneously with fMRI scanning with an electrode
cap consisting of 30 electrodes placed according to the extended international
10-20 system (Klem et al., 1999). In addition to EEG, one channel of Electrooc-
ulargraphy (EOG) and Electrocardiography (ECG) were recorded respectively.
Clock synchronisation hardware between EEG and fMRI ensured simultaneous
recording (Fagerholm et al., 2015). The EEG was sampled at a rate of 5 kHz.

4.1.3 fMRI Recording

Images were acquired using a 3.0 Tesla Magnetic Resonance Imaging (MRI)
scanner. A whole-brain Echo-Planar Imaging (EPI) sequence was used (T2*-
weighted gradient-echo). Voxel size was 3.00 × 3.00 × 3.00mm, with a field of
view of 192 × 192 × 105mm and flip angle of 80°. The repetition time/echo
time (Repetition Time (TR)/Echo Time (TE)) ratio was 2000/30 ms, using 35
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ascending slices with 3.00 mm thickness. Whole-brain structural images (T1-
weighted) were also acquired for all participants (Fagerholm et al., 2015).

4.2 Code Availability

Code used for all studies in the project is available via the link here. Additional
figures for results can be found there also, in the “Results” section of each study.

4.3 Plan of Investigation

4.3.1 Study 1 (Chapter 5)

I first derive data-driven microstates in resting state EEG data, reporting their
observed parameters. I then derived microstate n-grams at various lengths in the
event-mode and parameters for each length. I then derive fMRI Co-Activation
Pattern (CAP)s, and after alignment of the recording modalities, conduct statis-
tical analyses which show differences in microstate n-gram parameters between
fMRI CAPs, which are simultaneously active. The objective is to show prelim-
inary results that demonstrate the microstate syntax is related to fMRI signal
and to demonstrate that the methodological developments proposed in Chapters
2 and 3 alleviate some shortcomings of previous studies.

4.3.2 Study 2 (Chapter 6)

I then go on to derive an fMRI gradient space to place the observed resting state
fMRI BOLD signal in order to reduce the dimensionality of the signal without
reducing TRs into categories as in Study 1. This results in a distribution of
microstate parameters across the fMRI space for each participant individually.
The objective is to show more precisely how the microstate syntax is associated
with the fMRI signal, with the potential to associate n-gram parameter changes
with more precise cognitive function using the fMRI gradient space.

4.3.3 Study 3 (Chapter 7)

Finally, I derive a preliminary data-driven EEG gradient space, and following
alignment with the fMRI signal, attempt to predict co-occurring fMRI CAPs
based on the EEG gradient trajectory, using deep-learning techniques. Mi-
crostates and microstate n-grams could be used as categories for post-analysis
description rather than as the object of analysis. This approach may better
associate general patterns of microstate syntax with function, developing upon
previous methodologies which have associated individual microstates with cog-
nitive functions.
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5 Study 1 - Microstate n-Gram Parameters dur-
ing fMRI “Macro-states”

Past investigations into associations between Electroencephalography (EEG)
microstates and cognitive states have provided a general overview of the re-
lationship between microstates and mental activity. By some, this has been
done by associating microstates with Functional Magnetic Resonance Imag-
ing (fMRI) networks and leveraging those networks’ knowledge to understand
microstate function better. Some studies have investigated how microstate se-
quences may be related to different cognitive states through cognitive manip-
ulation approaches, but there has yet to be a methodology that attempts to
associate microstate sequences with fMRI states. Here, I derive EEG microstate
sequences and align them to simultaneously occurring fMRI Co-Activation Pat-
tern (CAP)s, using CAPs as labels to categorise sub-sequences of microstates,
referred to as n-grams. I demonstrate apparent differences in microstate n-gram
parameters between fMRI CAP labels that would not be expected in random
labelling.
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5.1 Introduction

EEG activity can be described by quasi-stable epochs of scalp potential to-
pography lasting approximately 60− 120ms before rapidly changing to another
topographical pattern of quasi-stability. Each epoch is called an EEG microstate
(Lehmann et al., 1987). Microstates may reflect states of global neuronal ac-
tivity, and hence transitions between these topographies may reflect dynamic,
synchronous patterns of global neuronal activity (Antonova et al., 2022; Nehaniv
& Antonova, 2017).

There are several scalp topographies which have been identified as consistent
across individuals. The “canonical” topographies of A, B, C and D have been
identified in multiple studies, explaining approximately 70 − 80% of variance
in the data (Michel & Koenig, 2018). These states are highly replicable across
multiple studies (Khanna et al., 2014). Other studies which have used data-
driven approaches to derive microstates that better fit specific datasets have
been clustered across studies and identified as “meta-microstates” outside the
canonical set (Koenig et al., 2023). They are referred to as meta-microstates
due to their derivation from a meta-analysis that investigated microstates across
multiple studies.

The standard parameters used in many studies are duration, the average
amount of time that the given microstate remains stable; occurrence, the number
of times that a microstate appears within 1s, regardless of the duration of each
of those microstates, and coverage, the fraction of the time series that the given
microstate is dominant.

Additionally, there have been preliminary investigations into the syntax of
microstates, including transition probabilities (Bréchet et al., 2019) and the
frequency of microstate sequences in the time series (Lehmann et al., 2005;
Schlegel et al., 2012).

Despite the canonical microstates being replicable across multiple studies,
the functional significance of microstates remains to be determined. Cognitive
manipulation studies have attempted to elucidate function, generally associ-
ating microstate A with inhibition of language processing, microstate B with
inhibition of visual processing, microstate C with self-relevant thought, and mi-
crostate D with attention orientation (Antonova et al., 2022; Sten et al., 2017).

However, many of these associations are heavily debated, with different stud-
ies reporting conflicting findings (Antonova et al., 2022; Bréchet et al., 2019;
Milz et al., 2017; Seitzman et al., 2017). Furthermore, all EEG microstates are
active during all cognitive states, so the association of each microstate to an
individual process may be an oversimplified explanation of their function (see
Section 1.1.5 for a more in-depth description of speculated microstate function).

Aspects of microstate syntax, such as transitions between microstates, differ
between populations (Lehmann et al., 2005; Schlegel et al., 2012). It has been
shown that specific microstate transitions are significantly more likely to occur
in different task conditions (Bréchet et al., 2019). Whether there is a difference
in microstate syntax between simultaneously occurring intrinsic brain networks
has not been investigated. Therefore, investigating how microstate sequences
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differ between intrinsic brain networks can clarify microstate function.
fMRI has been used in past studies to relate EEG microstates to intrinsic

brain networks using voxel-wise regression models in an attempt to derive mi-
crostate function (Britz et al., 2010; Musso et al., 2010; Xu et al., 2020; Yuan
et al., 2012). However, this approach has two key issues: 6:

1. EEG and fMRI are recorded at different sample frequencies, with EEG
microstates generally down-sampled to 250Hz (Khanna et al., 2014; Michel
& Koenig, 2018) and taking an example of fMRI being recorded with a
standard Repetition Time (TR) of 2 seconds means a sampling frequency
0.5Hz. The EEG signal, which must be convolved with the Haemodynamic
Response Function (HRF), is often down-sampled to the same resolution
as the fMRI (Britz et al., 2010; Musso et al., 2010; Xu et al., 2020; Yuan
et al., 2012). This dismantles any relation to time that the microstates
may have, including the complexity of their syntax, and does not utilise
the high temporal resolution of EEG effectively.

2. The fMRI states that have been compared to the voxel-wise EEG maps
used in regression studies have historically been networks derived from
spatial Independent Component (IC)s (Britz et al., 2010; Xu et al., 2020);
static networks which are not temporally independent from one another,
but spatially independent from one another. When investigating differ-
ences in EEG microstates, which are derived as temporally independent,
comparing them to fMRI states, which are temporally dependent does not
utilise the high spatial resolution of the fMRI effectively. Associating each
microstate with spatially independent fMRI states also assumes that one
fMRI state cannot be associated with multiple EEGmicrostates or, indeed,
that a single brain region can contribute to more than one microstate.

Therefore, it may be more beneficial to use a methodology which considers
the dynamics of EEG microstates and fMRI states simultaneously to understand
better the function of EEG microstates.

A recent study used dynamic Functional Connectivity (dFC) fMRI states in
relation to EEG microstates using simultaneously recorded EEG-fMRI (Abreu
et al., 2021). The study aimed to predict the current dFC state given the
microstates that co-occurred alongside it. This highlighted that the occurrence
of all canonical microstates correlated with all dFC states, but each microstate
contributed a different proportion of explained variance to the prediction of each
dFC state.

It is apparent that the relationship between intrinsic brain networks and
EEG microstates is more complex than previously indicated one-to-one rela-
tionships (Britz et al., 2010; Custo et al., 2017; Musso et al., 2010). However,
the sliding window approach used in this study limits the possibility for robust
investigation of microstate syntax, since the sequences of microstates that could

6See Chapter 2 for a discussion of this area in more detail.
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be investigated are bound by the arbitrary size of the sliding window, rather
than a functionally relevant boundary.

Here, I aim to investigate whether there are distinct differences between
microstate parameters in the resting state when microstates are active during
different simultaneously occurring dynamic fMRI states. To this end, I employ
CAPs as the dynamic fMRI states, which are derived by clustering in a frame-
wise fashion to retain global activity patterns that occur across the time series;
a process equivalent to the process of derivation of EEG microstates (Gutierrez-
Barragan et al., 2019; Pascual-Marqui et al., 1995).

Past studies have yet to understand the neural origins of CAPs. Dynamic
fMRI states, in general, likely reflect the continuous reorganisation of brain
networks in response to internal and external stimuli (Calhoun & Adali, 2016;
Hutchison et al., 2013). Whilst EEG microstates have not been directly linked
to neuronal origins, associating CAPs and EEG microstate syntax to one an-
other may assist in understanding the neural origins of CAPs and microstates
simultaneously.

Here, I collected parameters of short EEG microstate sequences (referred to
as microstate n-grams) that co-occurred with each of the derived CAPs to inves-
tigate whether microstate syntax differed between fMRI states. I demonstrate
that the parameters of microstate n-grams are significantly different between
some pairs of CAPs.

These findings suggest that if applying fMRI to the investigation of EEG
microstates, future work should use dynamic rather than static fMRI networks
and voxel-wise regression models should be used cautiously. It is suggested
that the methodology proposed be developed by first analysing the continuous
signals of EEG and fMRI before reducing them to discrete sequences of states.
This could allow for more flexible analysis that may be investigated with state
sequences post hoc.

5.2 Methodology

5.2.1 EEG Preprocessing

All EEG data were processed using the EEGLAB toolbox (Delorme & Makeig,
2004). The average potential across all electrodes was calculated and used as
a reference for all other electrodes for each participant individually (Croft &
Barry, 2000). The data were down-sampled from their recorded sample fre-
quency of 5kHz to 250Hz. The FMRIB suite was then used to remove noise in
the EEG signal caused by the scanner (Iannetti et al., 2005; Niazy et al., 2005).
Magnetic Resonance (MR) noise was first removed from the EEG signal using
the FASTR artefact slice removal template. Using the simultaneously recorded
Electrocardiography (ECG) channel as a reference, the heartbeat detection al-
gorithm was used to detect and remove irregularities in the EEG signal that
correlated with observed ECG peaks.

The dataset contained an unusual noise component caused by vibrations
from the scanner. The vibration caused a consistent frequency artefact through-

58



out the EEG time series at approximately 17Hz. Using EEGLAB CleanLine
(Delorme & Makeig, 2004), which estimates and removes sinusoidal artefacts
for each channel using frequency domain regression techniques (Mitra & Bokil,
2007), sinusoidal signal of excessive amplitude was regressed from the time series
with a sliding window of 2 seconds across individual time series.

In order to minimise the number of epochs removed due to bursts of noise,
Artefact Subspace Reconstruction (ASR) was used to clean epochs of the data
that the algorithm labelled as noisy (Miyakoshi et al., 2020).

The signal was bandpass filtered between 2 and 20Hz to isolate alpha band
activity before being subject to Independent Component Analysis (ICA). The
analysis was applied at the subject level, and ICs were removed from partici-
pants using the ICLabel algorithm, which cross-references IC topographies with
a database of existing IC topographies which have been labelled as genuine
brain signal or noise. The algorithm measures the likelihood that a given EEG
topography has its source from brain signal, eye movement, heartbeat, muscles,
or noise. All ICs with a brain correlation less than 0.7 were assumed to be noise
and removed from the signal (Khanna et al., 2014; Milz et al., 2017).

5.2.2 EEG Microstate Analysis

EEG microstates were generated using a data-driven technique with applica-
tion of the EEGLAB microstate plug-in MST (Poulsen et al., 2018). For each
participant, the EEG topographies at time points of maximum Global Field
Power (GFP) (Skrandies, 1990) were collected as input into a modified k-means
clustering algorithm, applied here to classify EEG time points based on spa-
tial similarity. The modified version of k-means differs from the traditional
algorithm in that the polarity of channels is ignored to derive the microstates
(Pascual-Marqui et al., 1995).

All GFP peaks over the defined threshold of one standard deviation above the
mean across the fifteen participants were applied to k-means up to a maximum
of 500 iterations, with 100 repetitions of the given number of clusters. The
run with the highest explained variance was used as the result at each k. The
process was repeated with 3, 4, 5, 6, 7 and 8 clusters. This range was used to
keep the number of microstates down for n-gram analysis without using so few
microstates that variation across classes was an issue.

The number of clusters to use was chosen using Global Explained Vari-
ance (GEV) (defined in Equation 2) and the Cross-Validation (CV) criterion
(Pascual-Marqui et al., 1995). The CV criterion calculates an estimator of the
variance of residual noise in the fit (Pascual-Marqui et al., 1995). The resulting
cluster centroids were then assessed on their physiological feasibility.

After choosing the number of clusters, the GFP peaks were labelled with
their associated microstate, and these labels were placed at the corresponding
GFP index on the time series. The interpolation approach was used to determine
the transition points between microstates (see Section 3.2.2). The centre index
between each peak index was taken. A microstate’s duration was then defined
as the number of time points between the before and after the centre point of
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the given GFP peak. The first and last GFP peak in each participant time series
were excluded since the centre point of their before and after peaks could not
be accounted for. The standard parameters were calculated for each microstate
class (see formal definition of duration in Equation 3, coverage in Equation 5
and GEV in Equation 2).

5.2.3 EEG Microstate n-gram Derivation and Parameter Calcula-
tion

An n-gram is defined as a sequence of states of a given length n. Here, we derived
microstates using event-mode analysis (see Section 3.2.3 for an explanation of
temporal modes of microstate derivation. Comparison between event- and peak-
mode can be found in Chapter 6). These n-grams were generated for n = 1, 2,
3, 4 and 5.

The mean duration of each possible n-gram was calculated. The duration
of a single n-gram occurrence is the sum of the durations of the constituent
microstates of the n-gram. After the calculation of each n-grams duration, the
mean duration of each n-gram is calculated (i.e., mean duration of ABC, of
BCD, etc).

Coverage is the proportion of the time series that each microstate is active.
Since microstate n-grams overlap with one another in the time series when
n > 1 (Figure 3), the proportion of the time series that each sequence takes up
is dependent upon the n-grams before and after it. This makes the calculation
of an equivalent percentage for n-grams of length 2 or more infeasible.

Instead, I define a novel parameter - frequency. Microstate n-gram frequency
is defined as:

fn
i =

oni∑I
i=1 o

n
i

(6)

and:
I∑

i=1

fn
i = 1 (7)

where fn
i is the frequency of the given n-gram i of length n, oni is the number

of occurrences of the given n-gram i of length n. I is the total number of n-grams
at the given length n.

The sum of frequencies at a given n-gram length is equal to 1. For example, if
the entire sequence of microstate observations is ABCDE, the possible number
of occurrences of an event-mode 3-gram would be 3; ABC, BCD, and CDE.
ABC, BCD and CDE would have one occurrence each over the total of three
possible occurrences and hence would have a frequency of 33.3% each.

This definition of n-gram frequency accommodates the length of the n-gram
considered but should not be considered equivalent to the traditional microstate
coverage, as its derivation makes it independent from microstate duration, which
microstate coverage is not. Instead, frequency should be considered a normalised
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n-gram occurrence, returning a percentage for the whole time series sample
whilst also being independent of duration.

5.2.4 FMRI Preprocessing

Processing of fMRI was carried out using FEAT version 6.00, part of the FSL
software library (Jenkinson et al., 2012) and visually checked using FSLeyes.

First, brain and non-brain tissues were identified in the images using the
brain extraction tool (BET) (Smith, 2002). This algorithm identifies voxels
associated with the brain by generating a surface mesh. The mesh is updated
through an iterative process, which begins as a sphere in the centre of the brain
volume and is expanded and refined to fit the shape of the brain with each
iteration.

MCFLIRT is next applied (Jenkinson et al., 2002), a registration and mo-
tion correction tool which aligns the 3D images of each time point across a
participant’s time series to ensure that a single voxel location implies the same
anatomical location across participants. To do this, between Echo-Planar Imag-
ing (EPI) scans across TRs, MCFLIRT minimises dissimilarity by a set of trans-
formations. The set of transformations used here can be rigid-body transforma-
tions (3 rotations and 3 translations) or affine transformations (the 6 rigid-body
transformations plus 3 or 6 additional transformations that allow for linear non-
rigid-body manipulations), which are referred to as Degrees Of Freedom (DOF)
also defined by the user. Here 12 DOF were used.

Applying this alignment between EPI images corrects for motion across the
time series of the given participant. The EPI scans are then aligned with their
structural data (T1 image) for registration. The structural image was registered
to the MNI152 2mm standard space so participants could be compared.

Spatial smoothing was then applied. This process assigns each voxel a
weighted average of its neighbouring voxels, which is weighted based on its
closeness to the voxel of interest. This was applied using a Gaussian kernel
of Full-Width-at-Half-Maximum (FWHM) 5mm. The process reduces the spa-
tial resolution of the data but increases Signal-to-Noise Ratio (SNR), and a
minimum smoothness is required for Gaussian random field theory to apply to
analysis, a prior that must be adhered to for processing to be valid.

A high-pass temporal filter was applied at 0.01Hz with a weighted least
squares regression line and sigma equal to 50s to remove low-frequency compo-
nents commonly associated with signal drift. The ICA-AROMA package was
applied to reduce noise further (Pruim et al., 2015). The algorithm applies the
it FSL package MELODIC; an ICA, and detects components which would be
considered noise based on comparison to known motion artefacts. This was
applied at the participant level to avoid generalising noise across the group.

A group mask was quantified to ensure homogeneity across participants.
With all participants in the MNI152 space, voxels that were not active in every
participant and were not in the standard brain were removed across the group.
The ventricles of each participant’s signal were also removed using the MNI152
template. The global signal of each participant’s time series was calculated as
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the mean Blood-Oxygenation Level Dependency (BOLD) signal across voxels
at each TR, for each participant individually. The global signal was removed
from the fMRI time series for the following CAP analysis. The global signal is
the mean BOLD signal across all voxels at each time point. 7

Finally, a parcellation was applied to the data for particular analyses. Par-
cellation takes the average activity across a set of voxels labelled with the same
region and assigns the mean value across voxels to the region rather than each
voxel retaining its observed value. The Schaeffer-1000 cortex parcellation was
used here (Schaefer et al., 2018), meaning that the CAPs derived here only
include the cortex.

5.2.5 EEG Microstate fMRI General Linear Model

To compare previously applied methods to those developed here, the General
Linear Model (GLM) approach described in Section 2.2.1 was applied to the
EEG microstate time series and fMRI signal.

Each microstate map was correlated with the EEG topography at each time
point to establish a microstate correlation time series for each microstate. Using
FSL’s FEAT analysis (Jenkinson et al., 2012), each correlation time series was
then down-sampled to 0.5Hz to match the fMRI recording of TR of 2 seconds.
The design matrix of the GLM was set up with each down-sampled microstate
correlation time series as regressors, aiming to model the BOLD responses as-
sociated with each microstate map. Each regressor was convolved with the
canonical double gamma HRF in FEAT with a peak at 6 seconds.

Statistical maps were obtained using t-tests and corrected for multiple com-
parisons using False Discovery Rate (FDR) at p = 0.05.

5.2.6 FMRI Co-Activation Pattern Derivation

Co-activation patterns were generated by applying a standard k-means cluster-
ing algorithm to the time series of fMRI using the python packages scikit-learn
(Pedregosa et al., 2011) and nilearn (Abraham et al., 2014).

The individual participants were concatenated into a single time series. Each
participant’s 4D time series was then reduced into a 2D matrix, the size of which
was the number of parcels by the number of time points across participants.
Clustering was applied in the temporal dimension, using a maximum of 1000
iterations for 100 repetitions. The best fit was identified for 6, 8 and 10 clusters.
Only even numbers are considered due to the typical activation/attenuation
CAP pairs (Liu et al., 2018).

Upon generation of cluster centres (CAPs), a matrix of spatial similarity
between CAP volumes was then applied to the Munkres algorithm (Munkres,
1957). This combinatorial optimisation algorithm was used to assign pairs of

7For ease of understanding in any descriptions of analysis throughout the thesis, the global
signal should be assumed as included in fMRI time series unless specifically stated as it is
here.
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CAPs based on the highest level of dissimilarity. Each TR was then labelled with
the cluster it belonged to to generate a sequence of CAPs for each participant.

5.2.7 Microstate and Co-Activation Pattern Sequence Alignment

The EEG and fMRI time series are aligned by their recording timings in the data
acquisition phase (see Section 4.1). Following sequence generation of both EEG
microstates fMRI CAPs, the microstate sequence was offset against the CAP
sequences by 6 seconds; the time to the peak of the canonical double-gamma
HRF (Buckner, 1998). This offset is used to align the haemodynamic response
expected from the EEG microstate activity with the observed BOLD response
of the fMRI.

Any EEG that was recorded before and after the aligned fMRI was removed
from the EEG microstate sequence since it could not be compared to a corre-
sponding TR. This process is repeated for each participant individually.

5.2.8 Obtaining Microstate Sub-Sequences per Co-occurring fMRI
TR

In order to compare the EEG microstate time series to each CAP, the microstate
sequence which occurred during each CAP was isolated through a “cutting”
process. Figure 9 shows the process. Figure 9A shows the alignment of each
modalities sequence, with 9B showing the cutting process described here.

Each CAP which occurs in the time series could potentially be multiple TRs
long, so if the study aims to compare how microstate sequences differ between
CAPs, it is not suitable to investigate microstates and microstate n-grams per
TR, as this can create arbitrary separation of microstate sequence within a
single occurrence of a CAP. Therefore, the microstate sequence is cut only at
the transitions between CAPs.

At transition boundaries from one CAP to the next, it is rare for a microstate
to end precisely at the boundary. When an EEG microstate occurs across the
boundary of transition between CAPs, rather than treat that microstate as
two separate shorter microstates, the boundaries between CAPs were altered
slightly. Whichever CAP a boundary microstate occurred the longest in, its
whole duration was taken as part of that CAP. If the microstate was in both
CAPs for an equal amount of time, the microstate was assigned to the pre-
transition CAP.

Finally, once microstate sequences were aligned and cut for each CAP class,
the microstate and n-gram parameters were calculated using the n-gram pa-
rameters within the CAP (Figure 9C). This was done for n-grams length 1 to 5
in event-mode.

5.2.9 Comparison of Microstate n-gram Parameters between Co-
occurring fMRI CAPs

Differences in n-gram parameters between CAPs were calculated. Using fre-
quency as an example parameter, differences were measured by calculating the
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Figure 9: Pipeline Schematic of alignment and cutting process between EEG
Microstate sequences and fMRI CAPs. The time series of EEG and fMRI are
aligned using the recording offset and the time to the peak of the HRF (A).
The microstates which occur during a given CAP are cut from the time series
and isolated (B). The microstates and n-grams which occur simultaneously with
each CAP state type then have their parameters calculated across all the state
type occurrences to obtain a summary of microstate and n-gram parameters for
the given CAP type (C).

L1 distance between the distribution of n-gram frequencies during each CAP:

L1(x− y) = ||fnx − fny ||T (8)

where fnx and fny are vectors of frequencies of length I for the given n-gram
length during CAPs x and y respectively. The n-grams compared between CAPs
must be of the same length and mode. For example, if n = 1 and the canonical
microstates are used, the vector f1x = (f1

A, f
1
B , f

1
C , f

1
D)x holds the frequency of

each microstate during the CAP x. L1(x − y) is the distance between the
microstate n-gram frequencies that occur during CAP x and y. The distance
was calculated for all pairs of CAPs, and was applied at all n-gram lengths
individually, 1 to 5 for all parameters.

When considering the mean duration of n-grams, if an n-gram did not occur
in one CAP but did occur in another, taking the non-occurrences mean duration
as zero would have resulted in a huge difference between n-grams, when in fact,
should that n-gram have occurred in both CAPs (which it may have done had

64



more data been recorded), the difference would have been much smaller. As
such, when the n-gram did not occur in a given CAP, its mean duration was
replaced by the mean duration of that n-gram across the whole time series of
the given participant. Hence, when the L1 distance between the CAPs was
calculated, the L1 distance would include how far away the n-grams in the
occurring CAP were from the global mean. If the n-gram did not occur anywhere
in the time series, replacement was unnecessary since the difference between
CAPs would be zero. This process was only necessary for mean duration, as
a frequency of zero would not cause such an offset, and coverage can only be
calculated in n = 1 where non-occurrences would not happen.

5.2.10 Microstate n-Gram Parameter Differences between CAP La-
bels as an Undirected Graph

Following the generation of a matrix of pairwise L1 distances between CAPs,
the CAP labels were conceptualised as nodes in a network, with L1 distances
being weights on edges that connect each label. A sparse matrix was generated
in each case by setting an edge weight threshold and removing any edges where
the weight was less than the threshold to establish meaningful connections.

The threshold was defined as a matrix’s mean L1 distance plus one stan-
dard deviation. The corresponding edge was removed if an observed weight was
less than this value. The original all-to-all connected graph was hence reduced
to a sparse representation of the largest L1 distances between CAPs. The de-
gree centrality of each node in the sparse graph was recorded (total number
of remaining connections), and the sum of degree centrality across nodes for
the graph was also recorded. This process was repeated for each participant
individually, for each n-gram length, for each parameter.

5.2.11 Comparison of Distances between CAPs against a Data-Driven
Null Distribution

In order to establish whether the differences in parameters between CAPs were
meaningful, a null distribution of comparison L1 distances was generated to be
compared against the observed L1 distance between CAPs, as shown in Figure
10.

The order of CAP labels was first shuffled on the time series, with the EEG
microstate sequence kept the same, hence changing the CAP labels relationship
to microstate labels. The parameters mean duration, frequency (and coverage
for n = 1) were calculated within each of the shuffled CAP labels as described in
Section 5.2.9, from n = 1 to 5 (Figure 10B). The L1 distances between pairwise
CAPs of a single shuffle were then calculated. The process outlined in the
previous Section regarding the derivation of sparse graphs was also carried out
on each shuffle. The threshold used for the shuffle was the same as the observed
threshold for the given parameter at the given n-gram length for the given
participant, i.e., the threshold in the observed data for frequency in participant
1 for n = 2, was used in the shuffled CAPs for the same parameter, participant
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and n-gram length. Again, once the sparse graph was created for a shuffle,
the degree centrality of each node was recorded, and the total sum of degree
centrality for the sparse graph was also recorded.

This process was repeated in each case P times (in this case P = 1000). The
set of P sum degree centrality of a sparse graph was used as a null distribution
and compared against the total degree centrality in the same graph in the ob-
served data to evaluate the significance of labelling microstate sequences with
the observed CAP sequence (Figure 10C). More connections in the observed
sparse graph than in the graphs generated from shuffled CAP data would sug-
gest that differences between n-gram parameters in each CAP are not random.
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Figure 10: Pipeline Schematic of alignment and cutting process between EEG
Microstate sequences and fMRI CAPs. The time series of EEG and fMRI are
aligned using the recording offset and the time to the peak of the HRF (A).
The microstates which occur during a given CAP are cut from the time series
and isolated (B). The microstates and n-grams which occur simultaneously with
each CAP state type then have their parameters calculated across all the state
type occurrences to obtain a summary of microstate and n-gram parameters for
the given CAP type (C).

A p-value was computed to represent the fraction of shuffled CAP labels

66



where a total distance between CAP n-gram parameter distributions is equiva-
lent to the original data. This was calculated as:

p =
X + 1

P + 1
(9)

where X is the number of permutations which had a total number of con-
nections in their sparse graph that was greater than the number in the observed
data (one-tailed test), this process was repeated for each parameter at each
n-gram length.

Benjamini-Hochberg FDR (Benjamini & Yekutieli, 2005) was applied for
each participant individually across n-gram lengths to correct for multiple com-
parisons. This process was repeated for all calculated parameters.

5.3 Results

5.3.1 EEG Microstate Derivation

The EEG microstates were derived from k = 3 to k = 8. The topographies for
each k are shown in Figure 11. The left side of panel A shows the change in GEV
and CV as k increases. From k = 3 to k = 5 GEV steadily increased to 69.5%
with five microstates. Beyond five showed a plateau around approximately 70%.
CV showed a plateau from three to five microstates, approximately 50% at three,
up to 51% at five microstates (Figure 11A). Onward from five, a steady increase
is observed, with 8 microstates measuring 61% CV. Since the aim is to maximise
GEV and minimise CV, five microstates were chosen as the optimal number of
microstates for this dataset.

The chosen microstates are shown in Figure 11B, where the microstates
have been labelled with their corresponding meta-microstate labels (Koenig et
al., 2023). The meta-microstate labels are derived from a meta-analysis which
clustered the microstates generated across multiple studies (see Section 1.1.2 for
information).

5.3.2 EEG Microstate Parameters

The mean duration, frequency, coverage and GEV of each microstate across the
15 participants is shown in Figure 12. The mean duration of each microstate of
each participant is given in Figure 12A. All microstate group mean durations
were in the range of 70− 80ms. The highest was microstate D at 79.32ms, and
the lowest was C at 70.64ms.

Frequency is proposed here as a novel parameter independent of duration
and can be considered a normalised occurrence (defined in Equation 6). Group
frequency was the highest for microstate D at 23.3%, and lowest at C at 15.4%.
Figure 12B shows the distribution of each microstate frequency across the group.

Group coverage was highest for microstate D, at 24.4%, and C again showed
the lowest value at 14.8% (Figure 12C). Group GEV was highest for microstate
F at 16.6%, followed by B at 15.02%. Then microstates A and D, which showed
group GEV of 12.4% and 12.2% respectively. Microstate C was the lowest at
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Figure 11: Selection of number of microstates. (A) Left side sub-figures give
the GEV and CV criterion. Output of multiple runs of microstates are given
on right side of figure from 3 to 8 clusters. Microstates are numbered and
ordered for each number of microstates by the amount of explained variance
that each contributes. (B) The five data-driven microstates chosen after k-
means clustering from k = 3 to k = 8. The states are re-ordered and labelled
with meta-microstate labels (Koenig et al., 2023).

6.9% (Figure 12D). Consistently microstate D showed the largest parameter
values, and microstate C showed the smallest.

5.3.3 EEG Microstate fMRI General Linear Model

The statistical maps for each of the microstates across the group are found in
Figure 13. Each microstate shows an observed z-map which summarises the
voxels that correlated with the given microstate sufficiently across all partici-
pants.

Microstate A shows activation in the right cingulate gyrus and the right
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Figure 12: Box plots of microstate parameters across participants. Box in-
dicates interquartile range across participants, whiskers show maximum and
minimum participant values. Mid-line indicates median of participants. Pa-
rameters calculated are mean duration (A), frequency (B), coverage (C) and
GEV (D).

supplementary motor area. Activation is also found on the left and right superior
temporal gyrus and the left and right frontal pole. Microstate B shows a very
similar activation pattern, which may indicate that these activity patterns are
due to noise. Microstate C showed strong correlations across the group with a
small region on the border of the right inferior and middle frontal gyrus and the
frontal pole. Microstate D shows a group correlation with the right amygdala
and the left occipital pole. Finally, microstate F showed group correlations with
the right temporal occipital fusiform cortex and the left occipital pole.

The output of each participant’s z-map can be found here. In general mi-
crostates A and B showed the most voxel correlations, but those correlations
were not consistent between participants. Regions of correlation varied be-
tween participants. In some participants, microstate A showed correlations
with temporal cortices, whereas in others, it correlated with the visual cortex,
the Posterior Cingulate Cortex (PCC) and frontal regions. Similarly, microstate
B showed correlations in some participants with the PCC and frontal regions,
sub-cortical structures in one participant and visual regions in others.

Microstate C showed visual cortex correlations in one participant, the supra-
marginal gyrus in three participants, and PCC correlations in one participant.
Microstate D showed two participants with correlations with the Default Mode
Network (DMN), one participant correlating with visual regions, and two with
sub-cortical structures. Microstate F showed correlations in five participants
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Figure 13: Output of group GLM z-maps for each microstate on the MNI152
standard brain, generated using the down-sampled time series of the EEG mi-
crostates as regressors. Red voxels highlight those under p-value threshold of
0.05.

with sub-cortical regions and the cerebellum in two participants.

5.3.4 fMRI CAPs and Parameters

Six CAP pairs are shown in Figure 14. Due to the nature of the approach, the
number of CAPs was to be kept to a minimum (see Section 5.2.6). Clustering
was run for 6,8 and 10 CAPs. Six demonstrated the highest level of functional
feasibility and so were selected for further analysis. Each row of Figure 14 shows
the pairings of anti-correlated CAPs (visualisations of 8 and 10 CAPs can be
found here).

The parameters of each CAPs were also calculated for each participant,
shown in Figure 15. The average dwell time of each CAP (average number
of consecutive labels, equivalent to microstate duration) across participants is
given in Figure 15A. The pair CAPs 6 and 5 had the first and second highest
mean dwell time across the group at 2.50 and 2.14 TRs, respectively. CAPs 4
and 2 had the lowest average dwell times, at 1.66 and 1.64 TRs, respectively.

The coverage of each CAP across each participant is also given in Figure 15B.

70

https://gitfront.io/r/user-6600259/286wwLR3FDXK/David-Haydock-PhD/tree/analysis/study1/Results/CAPs/


CAP 1 CAP 2

CAP 3 CAP 4

CAP 5 CAP 6

CAP 1 CAP 2

CAP 3 CAP 4

CAP 5 CAP 6

Figure 14: Six Co-Activation Patterns from clustering of the resting-state
eyes-open data across participants. CAPs are numbered in their pairs, with
each row showing a pair. Brighter red-yellow values indicate higher activation,
brighter blue values indicate higher deactivation. CAPs are represented on
surfaces with a colour range of −1 to 1 for visualisation purposes. Ll and Lm
are left hemisphere lateral and medial views respectively. Rl and Rm are right
hemisphere lateral and medial views respectively.
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Figure 15: Parameters of each of the six derived fMRI CAPs. (A) shows the
average dwell time of each CAP by participant in box plots. Dots which are not
included in the plots are participants which were greater or less than the mean
of the group, plus or minus 1.5 times the interquartile range. Note the averages
given in the text are of the whole group and include these values. (B) shows
the coverage of each CAP across the time series by participant. Box plots are
represented in a equivalent way to in (A). Each CAP pair uses a similar colour
in both (A) and (B) to indicate their pairing. (C) shows the Pearson’s Rank
Correlation of each CAP, white showing most dissimilar and dark red showing
most similar. Note the matrix is symmetrical. (D) shows the transition ratio
between each of the CAPs, the y-axis giving the starting CAP and the x-axis
giving the ending CAP. Note the diagonal would be transition of a CAP to itself,
and so in this case is zero in each instance.

All CAPs showed relatively stable coverage across the group, with medians of
each ranging from 12 − 20%. The lowest coverage across the group was CAP
2, which showed relatively consistent coverage across the group, other than a
single outlier at 25%. CAP 3 showed the highest variability across participants,
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with the minimum participant showing coverage of 9% and the maximum at
30%.

The similarity matrix in Figure 15C highlights the dissimilarity between
CAP pairs and was used to pair the CAPs using the Munkres algorithm (see
Section 5.2.6). The pair with the most minor dissimilarity were CAPs 3 and 4.
The least common transitions between CAP also happened to be between the
pairs (Figure 15D). The most common transition across the group was from 3
to 5, which interestingly occurred 45% of the time that CAP 3 was transitioned
out of. Other common transitions were from CAP 2 to 5, 6 to 3 and 4 to 6.

5.3.5 Functional Significance of CAPs

Observed CAPs were applied to Neurosynth in order to associate their patterns
with the broader field (Yarkoni et al., 2011), shown in Figure 16.

CAP 1 was associated with the DMN and various prefrontal regions as well
as more abstract cognitive labels such as theory of mind, social, and autobio-
graphical thoughts. Its pair CAP 2 was associated with visual processing, as
well as visual regions such as V1 and the occipital cortex and spatial processing,
and other regions such as those in the parietal cortex and fusiform gyrus.

CAP 3 showed labelling with somatosensory and motor tasks, the movement,
motor and premotor cortices, whereas CAP 4 showed a clear correlation with
more cognitive states, such as memory and working memory, and tasks. The
associated regions were the angular gyrus, frontal, and prefrontal regions.

CAPs 5 showed an association with visual regions and some association
with temporal regions. CAP 6 labelled sensory regions primarily associated
with somatosensory and pain.

For further clarification on function, the cortex of each CAP was correlated
with the first three functional connectivity gradients derived by (Margulies et
al., 2016), which are visualised in Figure 5.

Figure 17 shows the correlation between each CAP and each gradient, with
each gradient correlation represented as an axis, creating a 3D correlation space,
or “gradient space”. Each pair is coloured similarly and is connected with a line.

Each of the CAP pairs was strongly correlated with the positive or negative
of one of the first three gradients derived in Margulies et al. (2016).

5.3.6 EEG Microstate n-gram Parameters

The transition probabilities between each of the data driven microstates across
the group are shown in Figure 18.

Abnormally low transitions were observed into microstate D across the
group. The most common transitions were generally from B to A and A to
B, as well as C to B, B to C and F to C.

Microstate n-gram parameters mean duration and frequency were derived
from lengths 2 to 5 in event-mode. A visualisation of duration distribution per
n-gram and frequency is shown in Figure 19 for 2- and 3-grams. Visualisation
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Figure 16: Word clouds indicating the most correlated topics to each CAP
generated using Neurosynth image decoder. Each CAP has their visualisa-
tion shown next to its word cloud. Larger words and more orange words indi-
cate most strongly correlated topics for each CAP, where black text indicates
less correlated topics. Abbreviations are as follows: medial Prefrontal Cor-
tex (mPFC), ventromedial Prefrontal Cortex (vmPFC), Inter-Parietal Sulcus
(IPS), Middle Temporal (MT), Dorsolateral Prefrontal Cortex (dlPFC), Work-
ing Memory (WM).

of 4- and 5-grams is not given here due to the number of n-grams to view (320
for 4-grams and 1280 for 5-grams).

On each subplot, the left axis shows mean duration, and the right shows
frequency. The violin plots show the overall distribution of durations of each
n-gram, with the white dot showing the mean across participants and the line
showing the median. The grey bars show the frequency of each n-gram. Violin
plots are coloured based on the first microstate in the sequence. In general, we
can see how the shorter coverage and frequency of C carries up to occurrences of
n-grams that contain microstate C. Some 3-grams that show abnormally high
frequencies appear to be repeating states, such as DAD and its cycle ADA, as
well as DFD and BFB.

The microstate time series was then aligned with the fMRI time series, and n-
gram parameters were calculated during each CAP label. Figure 20 shows the 2-
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Figure 17: CAPs projected into gradient space. Each CAP was correlated
with each of the gradients derived by Margulies et al. (2016). The coordinate
on the given axis denotes the CAPs correlation with the given gradient. The
CAP pairs are coloured similarly and connected with a straight line.

gram distributions of mean durations during different CAPs across participants.
L1 distances were calculated between these distributions for each participant
individually.

5.3.7 L1 Distance Null Distributions Compared to Observed CAP
Differences

Since many calculations were made for each combination of parameters and n’s
for each participant, visualisation of all L1 distances calculated and p-values
generated can be found here.

After calculating L1 distances, the process of creating sparse graphs was
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Figure 18: Matrix showing transition ratios between microstates across the
group. Y-axis shows the starting microstate, with x- axis shows the ending
microstate. Note that the matrix is not symmetrical. Colour bar indicates
ratio.

carried out for both observed and shuffled values. Figure 21A shows the L1

distances between CAPs for n = 1 coverage in participant RS007. The all-to-
all graph between CAPs, with the L1 distance values as edge weights, is given
if Figure 21B. After thresholding of edge weights, those over the threshold are
shown in Figure 21C.

The total number of degrees for the graph is then summed across all nodes.
Note that the number of degrees in the sparse graph counts a single edge twice
since that edge is counted in the degrees of both nodes. Figure 21D shows the
total number of observed degrees at the red line - 10 degrees (5 connections on
21C, each counted twice). The histogram indicates the number of shuffles for
each number of degrees. In the example shown, all shuffles showed no connec-
tions between CAP nodes over the threshold.

For all participant coverages, no edge weights were over the threshold during

76



AB AC AD AE BA BC BD BE CA CB CD CE DA DB DC DE EA EB EC ED

0

200

400

600

800

1000

1200

0

200

400

600

800

1000

1200

1400

0

1

2

7

8

3

4

5

6

0

0.5

1.0

3.0

3.5

1.5

2.0

2.5

D
ur
at
io
n
(m
s)

C
overage

(%
)

F F F

FF FF FF FF FF FF FF FF

F F F F F F F F F F F F F F F F F F F F F F F F F F F F F
F

F F F F
F

F F F F F F F
F

F

F

Frequency
(%
)

Figure 19: Visualisation of microstate 2- and 3-grams across the group.
Coloured violin plots represent duration distributions of each n-gram across
the group. Colours indicate the starting microstate of each n-gram. White dot
on each violin indicates median, with line indicating mean. The duration distri-
butions correspond to the left. Right axis gives frequency of each n-gram across
participants, with grey bars corresponding to this axis.

shuffles, and all observed data showed at least one connection retained for each
participant (equivalent plots for all observed and shuffled values, for frequency,
coverage and mean duration, across all n’s can be found here, in the Study 1
results section).

The distributions identified for shuffles were used as null distributions versus
the observed value in each case to calculate a p-value. Matrices that show the
p-values for each parameter at each n-gram length are shown in Figure 22.

Mean Duration exhibited three participants, which showed a meaningful
difference to the shuffled CAP total number of connections: participants 5 and
18 for n = 4, and participant 8 for n = 3. In frequency, participant 17 showed
abnormally different CAP labels compared to the group, with differences from
the null distribution observed for n = 1, 2, 3 and 4. Participant 13 differed
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Figure 20: Mean duration of microstate 2-grams during each of the six ob-
served CAPs across participants. Box plots denote each 2-gram mean duration
distribution across participants. Subplots top to bottom show mean duration of
each 2-gram for CAPs 1 to 6. Colour of each box denotes the starting microstate
in the n-gram.

from the null distribution in n = 3. Since there were no coverage connections
in shuffled CAP labels as mentioned previously, and all observed participants
showed at least one connection, all p-values calculated for coverage were the
minimum value of 0.001 (P = 1000).

In each case where any p-value was less than 0.05 for a single participant, the
calculated p-values across all n’s for the given participant and parameter were
subject to FDR multiple comparison correction. Figure 23 shows an example
correction across multiple p-values for participant 17 frequency.

All observed p-values which were less than 0.05 survived the correction. It
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Figure 21: Plot showing example observed L1 distances between observed
EEG n-gram coverage distributions between CAPs at n = 1 for individual
participant 7. (A) Pairwise L1 distances between CAP labels. (B) All-to-all
graph representation of L1 distances between CAP labels. Nodes are CAP
labels and edge weights are observed L1 distances between the microstate n-
gram parameter distributions of connected CAP labels. (C) Sparse graph of
connections, removing all connections from (B) that are less than the threshold
defined in methods. (D) Comparison of total number of degrees of observed
graph (in red) and the same value in shuffled CAP labels (blue histogram). Y-
axis shows the number of shuffles out of 1000 that were observed at the given
number of connections. X-axis shows the number of connections. Equivalent
plots for all other participants, parameters and n’s can be found here.

was the case that all p-values were under the threshold for all those in the bottom
section of Figure 22. The coverage p-values were not subject to correction since
there was only one observation per participant.
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Figure 22: Output p-values for each participant across all lengths, for each
parameter. Left column shows mean duration, middle column shows frequency
and right column shows coverage. Top row shows p-values where most red is 1
and most blue is 0. Bottom row marks black where p-value is less than 0.05. In
each matrix, the y-axis shows the participant and the x-axis shows the n-gram
length investigated. Note that for coverage there is only 1 n-gram length, since
coverage cannot be calculated for n > 1.

5.3.8 Observed Differences in Microstate n-gram Parameters be-
tween CAP Labels

The parameters at each n-gram length, which were significantly different, were
subject to further investigation. Since all CAP node degree counts for coverage
were significantly different from shuffles for all participants, the connections
retained between CAPs were investigated across participants. The retained
connections in the sparse matrix of each participant were first isolated. Figure
24 shows the number of degrees of each node for each participant.

Figure 24A shows the distribution of the number of degrees for each CAP
across participants. All but CAP 4 show a median degree of 1. CAP 6 shows
all but 4 participants with a degree of 1. Hence, they are identified as outliers.
CAP 2 is the only CAP which observed a participant with 4 degrees.

Figure 24B then shows the most to least common connections between CAPs
across participants, with the y-axis indicating the number of participants out of
15 where the observed distance was over the threshold.

The most common difference was between CAPs 2 and 5, with 5 of the 15
participants observed with this difference retained over the threshold. Review-
ing differences in microstate coverage distribution between CAPs 2 and 5, the
most common factor for differences between these CAPs is not consistent across
participants(Figure 24C).
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Figure 23: Example False Discovery Rate across p-values for participant 7
frequency. (A) Shows observed p-values. (B) shows p-values after Benjamini-
Hochberg adjustment of threshold p-value. (C) and (D) show the value of each
observed p in relation to the uncorrected and corrected thresholds respectfully.

5.4 Discussion

5.4.1 Microstates and Parameters

Included in the five data-driven microstates are the canonical four microstates
presented in past studies (Khanna et al., 2014; Michel & Koenig, 2018; Milz
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Figure 24: Observed Differences between microstate Coverage During Differ-
ent CAPs across participants. (A) Degree of each CAP node across participants.
Degree is the number of connections a node has to other nodes. Box plots show
the distribution of each CAPs degree across participants. Outliers are defined as
the median plus 1.5 times the standard deviation. CAPs are coloured by their
pairs. (B) The number of participants out the 15 observed that retained an
edge between CAPs after thresholding. Each bar shows an edge. Since graphs
were not directed, 1-2 is equivalent to 2-1. (C) The difference between the cov-
erage of each microstate between CAPs 2 and 5 across the five participants that
observed a difference higher than the threshold in the graph analysis. Each
colour indicates the participant in question. Positive numbers indicate coverage
is higher in CAP 2, negative in CAP 5.

et al., 2017) as well as meta-microstate F (Koenig et al., 2023).
In general, the range of mean durations of the generated microstates agrees

with previous studies, which state a general duration of 60− 120ms (Khanna et
al., 2014; Michel & Koenig, 2018). Frequency is proposed here as a novel param-
eter independent from duration and can be considered a normalised occurrence
(see Section 1.1.3).

Results reflecting a general lack of preference for microstate C is unusual
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when related to the rest of the literature, as in general C has shown a pref-
erence for eyes open studies (Seitzman et al., 2017). However, the parameters
observed for microstate B were in line with these findings, which showed a
higher preference of B for eyes-open versus closed.

Microstate D consistently demonstrated the highest measures on all param-
eters on group averages. Microstate D is speculated as being associated with
resting state by multiple studies (Antonova et al., 2022; Milz et al., 2016), which
this study agrees with despite lack of comparison to other task modalities in the
same group.

The meta-microstate F requires further investigation, as it rarely appears
in analysis. Custo et al. (2017) conducted source localisation, which associated
the microstate with regions of the anterior DMN. Bréchet et al. (2019) found
associations with prefrontal regions of the DMN. The DMN has been associated
with the resting state (Damoiseaux et al., 2006). Microstate F here showed
the highest GEV across the group and high-frequency values, which may reflect
this. Further investigation would, of course, be required.

5.4.2 Microstates fMRI General Linear Model

The standard approach for comparing microstates and fMRI was applied here
to compare to the developed methodologies (Figure 13). In general, past simul-
taneous EEG-fMRI studies have not agreed upon the fMRI activation patterns
associated with each microstate. A review of these associations can be found in
Section 1.1.5.

Microstate A has, in general, been associated with a deactivation of the
phonological network (Antonova et al., 2022; Britz et al., 2010), as well as
visual processing (Milz et al., 2016). Here, microstate A showed activation in
the right cingulate gyrus and the right supplementary motor area. Correlation
is also found on the left and right superior temporal gyrus and the left and right
frontal pole. Correlations with the temporal gyrus suggest some overlap with
reports of the phonological network.

Microstate B has generally been associated with activity in visual regions
(Antonova et al., 2022; Britz et al., 2010). Microstate B here, however, shows
a very similar activation pattern to microstate A, which is unusual.

Britz et al. (2010) reported microstate C as being associated with the poste-
rior of the Anterior Cingulate Cortex (ACC) as well as bilateral Inferior Frontal
Gyri (IFG), the right Anterior Insula (AI) and the left claustrum. Here, mi-
crostate C showed strong correlations across the group with a small region on
the border of the right inferior and middle frontal gyrus and the frontal pole.

Microstate D shows a group correlation with the right amygdala and the left
occipital pole, which has not been reported previously, as microstate D is most
commonly associated with the DMN (Antonova et al., 2022; Britz et al., 2010;
Michel & Koenig, 2018).

Finally, microstate F showed group correlations with the right temporal oc-
cipital fusiform cortex and the left occipital pole. To my knowledge, microstate
F has yet to be compared in this way to fMRI. Past reports of microstate F
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have associated its activity to DMN (Custo et al., 2017), and the Prefrontal
Cortex (PFC). The results here do not align with these suggestions.

Whilst this approach does assist in identifying potential generators of each
microstate, as outlined in Chapter 2, this approach is unsuitable for microstate
syntax analysis. The down-sampling of the EEG time series required to imple-
ment the approach destroys the syntactic structure of the microstate sequence.

Additionally, an equivalent set of custom regressors that used n-grams over
microstates would not be possible, as the correlation is done on a time-point-
by-time-point basis. A sliding window approach to correlation could be imple-
mented, but an arbitrary window size would have to be used to implement this
approach. As such, whilst the findings here contribute to previous findings, the
methodology implemented here does not utilise the microstate syntax.

5.4.3 CAPs and Parameters

CAPs are an underutilised means of investigating dFC. Some studies have used
CAP analysis to identify common patterns of activity that occur during the
peaks of activity in a specific seed region by clustering the TRs where the peaks
occur (Amico et al., 2014; Li et al., 2021; Liu & Duyn, 2013). Both seed-based
and whole brain analysis are possible; however, (Liu et al., 2018), with the use of
CAPs motivated by the possibility that spontaneous BOLD signal results from
brief and temporally isolated (that is, on the fMRI times scale) neural activity.

Whilst past studies have investigated how CAPs differ between tasks (Li et
al., 2021) and groups (Amico et al., 2014), I am not aware of any existing studies
which attempt to investigate CAPs as a set of overall states that summarise the
resting state time series as a sequence of these states.

The phenomenon of observed CAP pairs identified here was described in the
past by Li et al. (2021), who reported anti-correlations in brain activity during
task performance and in resting state data, pointing to potential fluctuations
between anti-correlated states.

These pairs highlight that they are representative global activity patterns
when investigating CAPs. The activation of a network is also observed with
the attenuation of all other regions. A CAPs pair shows its opposite, with
the attenuation of its activated regions and activation of its attenuated regions.
These pairs may be explained by the observations made in gradient analysis
studies. Each of the six CAPs observed in this study were found to be well
anti-correlated pairs (Figure 17), and the three pairs correlated strongly with
different gradients (Figure 17).

The first gradient (sometimes referred to as the principal gradient or axis)
has been identified as a spectrum between sensorimotor and transmodal re-
gions (Huntenburg et al., 2018; Margulies et al., 2016) and supports an existing
theory that proposes that human brain activity is organised along a “unimodal-
transmodal” axis (Mesulam, 1998). CAPs 3 and 4 showed a strong correlation
with either end of this axis, with the other pairs also showing weaker correla-
tions.
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Furthermore, gradient two has been referred to as a sensory axis, distinguish-
ing visual regions from other sensory regions (Margulies et al., 2016), and also
corroborates the pre-existing theory proposed by Mesulam (1998) which states
that sensory activity in the human brain is organised along this axis. CAPs
5 and 6 appeared to be strongest at the poles of this axis, with CAP 5 also
showing some preference for the opposing end of gradient 1.

Whilst the third gradient has been investigated to a lesser degree, it has
been speculated as the “task axis”, with solid correlations being associated
with goal-orientated cognition and negative correlations being associated with
resting state and mind wandering (Margulies et al., 2016; Smallwood et al.,
2021). CAPs 1 and 2 showed the most substantial relationship with either pole
of this axis. The meta-analysis conducted using Neurosynth agrees with the
task-axis suggestion (Figure 16).

The observations made here indicate that the use of clustering analysis in
the time domain on fMRI data may derive the poles of each of these gradients
organically, and both methodologies may identify similar functional patterns.
It should be pointed out, however, that since each was derived on a different
dataset (the gradients used here were derived by Margulies et al. (2016)), further
investigation into these observations is required.

Chen et al. (2015) created a set of parameters to describe CAPs and pro-
posed these be used to understand better the temporal dynamics of said states,
as well as understand which CAP was the most dominant. Some parameters
defined there are equivalent to those proposed here. The coverage of each CAP
demonstrates overall dominance on the time series, and dwell time shows, on
average, how long each CAP was occurring for, similar to those suggested by
Chen et al. (2015).

The CAP pairs 3 and 4, and 5 and 6 showed high median coverage across the
group versus 1 and 2, whereas the average dwell time across CAPs was relatively
consistent, with few differences observed between CAPs.

The transition ratios between CAPs show a low-resolution representation of
CAP dynamics, with the most common transitions from 3 to 5, 2 to 5, and 6 to
3. All these common transitions are between generally more unimodal sensory
CAPs (Liu et al., 2018; Margulies et al., 2016). This, combined with relatively
low coverage of CAP 2, suggests a less stable occurrence of sensory CAPs during
this observed resting state data. However, more investigation would be required
to confirm this.

5.4.4 Statistically Significant Differences between n-Gram Parame-
ters Occurring during Different CAPs

The aim of identifying differences in microstate n-gram parameters that are oc-
curring during simultaneously occurring fMRI CAPs is to show that microstate
n-grams and their syntax differ between brain states. Whilst this was demon-
strated in many participants in coverage, there were fewer observations in mean
duration and frequency, which identified this, with observed differences in the
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latter parameters being few. Additionally, there was a lack of consistency be-
tween the participant microstate coverages during different CAPs.

A comparison between underlying fMRI states has yet to be attempted be-
tween microstate or n-gram parameters. This is in part likely due to exist-
ing comparisons between microstates and fMRI not considering the temporal
domain sufficiently (See Chapter 2), but may also be due to the difficulty of
comparing these two domains that are active in different temporal resolutions.

It was shown that differences in coverage between CAP labels were signif-
icantly different in the observed data than in shuffles in all participants, indi-
cating that the observed microstate coverages during each of the CAPs may be
related to the CAP labels themselves, and not due to arbitrary labels. When
investigating the driving label differences, the distance between CAPs 2 and
5 was most commonly observed in participants, with 5 of the 15 participants
showing a difference greater than the threshold.

Despite this difference being the most common, when reviewing the differ-
ence across participants, no consistent difference in distributions was observed.
For example, in 2 of the 5 participants, there was a higher coverage in CAP
5, whereas in another 2, there was higher coverage in CAP 2. Whilst the
present study does suggest some connection between microstate n-gram param-
eters and underlying fMRI CAP states, this lack of consistency makes it difficult
to tie down any solid comparisons, suggesting further study is needed using this
methodology.

Whilst the methodology proposed here demonstrates a means of comparing
the two modes of recording without reducing the dimensionality of either of
them, some shortcomings are inherent in the approach. When comparing n-
gram parameters between CAPs, it is assumed that each of the n-grams is
independent of one another when they are most definitely not. Each n-gram in
an observed sequence of microstates overlaps with one another, meaning that the
calculation of the parameters of one n-gram includes the constituent n-grams
that make up that n-gram at smaller ns, as well as neighbouring n-grams on
the time series.

It should also be highlighted that the method implemented here; using L1
distances between CAPs across all n-grams, results in loss of information about
differences in individual n-grams. Distances between individual n-grams may
cancel out between two CAPs for example, leading to a false negatives. Since
identifying difference in the parameters of specific n-grams between CAPs is the
objective of the methodology, this shortcoming must be considered in earnest.
This approach was chosen however due to the number of n-grams that must
be compared between CAPs. Comparing every n-gram between CAPs would
make identification of statistically significant differences impossible after multi-
ple comparison correction. The extra steps taken to identify specific differences
were implemented to attempt working around the issue of loss of information
in comparing whole n-gram parameter distributions between CAPs. Following
identification of a general difference between CAPs, investigation of the indi-
vidual differences between n-grams was conducted, as shown in the example of
Figure 24. It is accepted that this approach may miss out on false negatives, as
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previously mentioned. Further refinement of this approach would be required
to address such issues.

At longer lengths of n, it is also the case that the parameter distributions
are stretched thin. More data would be required to increase n. Many n-grams
at length five did not occur in multiple participants, meaning that when the
observed participant time series was split into six classes for each of the CAPs,
the possibility for insufficient data also increased.

Finally, the lack of consistency across participants when comparing mi-
crostate n-gram parameters between fMRI states suggests that the relationship
may be more complex than the observed parameters of n-grams can identify.
Comparison between categories of fMRI states may limit the differences that can
be identified. Therefore, it may be more beneficial to move away from fMRI
CAPs as a means of analysis and use a continuous representation of the fMRI
signal to compare against the microstate parameters to allow more specific asso-
ciations to fMRI networks. The following study develops a methodology which
attempts to do this.
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6 Study 2 - EEG Microstate n-gram Parameters
in the fMRI Gradient Space

Previous studies have attempted to understand Electroencephalography (EEG)
microstate function through association with simultaneously recorded Func-
tional Magnetic Resonance Imaging (fMRI) Blood-Oxygenation Level Depen-
dency (BOLD) signal. Such studies have most often used fMRI Intrinsic Con-
nectivity Network (ICN)s as common spatial patterns of fMRI activity and
have attempted to correlate such patterns with the dominance of each EEG
microstate. More recently, an investigation utilising global patterns of fMRI
activity has taken place, utilising dynamic functional connectivity states to un-
derstand how microstate activity may be associated with global fMRI activity
rather than with localised networks. The previous chapter developed on this
by associating EEG microstate n-grams with global fMRI activation patterns
rather than individual microstates. Here, I develop the approach by considering
the fMRI time series as a continuous signal rather than a set of dynamic states
using gradient correlations. This continuous signal allows for an overview of
activity across the time series rather than temporally localised associations.
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6.1 Introduction

Past studies have attempted to investigate the relationship between EEG mi-
crostate n-grams and mental states using cognitive manipulation studies (Lehmann
et al., 2005; Schlegel et al., 2012). Others have also identified that information is
retained in the syntax of observed EEG microstate sequences (von Wegner et al.,
2017). These short sequences of microstates were observed as non-Markovian,
as the microstate observed at a given time depended on more than the previous
state (first order) or the previous two states (second order).

Despite these observations regarding the functional significance of EEG mi-
crostate sequences, whilst there have been attempts to localise the source of
EEG generators in the brain (e.g., Pascual-Marqui (1999), to my knowledge,
there has been no attempt to investigate the relationship between EEG mi-
crostate syntax and fMRI. Studies which have investigated the relationships
between microstates and fMRI have only done so using static states and have
not investigated the dynamics of fMRI states or microstate sequencing (Abreu
et al., 2021; Britz et al., 2010; Musso et al., 2010; Xu et al., 2020; Yuan et al.,
2012). The difference between EEG and fMRI sample frequencies are seldom
considered in these investigations (see Chapter 2 for a review). A method which
uses sequences of microstates that occur for a period of time equal to that of a
single fMRI Repetition Time (TR), or the dwell time of an fMRI state, has yet
to be utilised.

Preliminary studies suggest there are differences between microstate pa-
rameters during different fMRI dynamic Functional Connectivity (dFC) states
(Chapter 5), but the differences identified were difficult to pin down. Although
differences in microstate n-gram parameter distributions could be observed be-
tween fMRI Co-Activation Pattern (CAP) states, those differences were either
difficult to generalise across participants or differences identified were isolated
to individual participants.

It may be the case that these difficulties were due to the finite number of
fMRI states that were derived. Categorising the whole fMRI time series into a
set of six states may be an oversimplification of the BOLD signal and may have
made identifying associations to microstate syntax difficult.

Recently, fMRI gradients have been utilised to relate the activity profiles of
brain regions across parcellation boundaries(Margulies et al., 2016). They are a
set of functional maps derived by applying diffusion embedding (Coifman et al.,
2005) to the overall connectivity matrix of recorded fMRI. A set of gradients
has been derived on the Human Connectome Project (HCP) dataset (Margulies
et al., 2016), which have since been identified as functionally significant axes
(see Figure 5 and Section 2.1.2 for an in-depth description).

As such, I suggest a novel methodology that utilises fMRI gradients in con-
junction with microstate sequence analyses. I describe an fMRI gradient space,
where the observed fMRI time series is correlated with each of the gradients,
taking said gradients as axes and creating a multi-dimensional space. This
dimensionality reduction reduces the observed continuous BOLD signal from
thousands of voxels down to a few relatively orthogonal representations of the
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original signal.
The signals are correlated with each of the first three gradient axes proposed

by Margulies et al. (2016). Each of these first three axes has been proposed as
a “unimodal-transmodal” axis, “visual-somatosensory/motor” axis, and “rest/-
task” axis, respectfully (Margulies et al., 2016; Mesulam, 1998).

The proposed method attempts to predict the dimensionally reduced BOLD
signal using co-occurring EEG microstate n-gram parameters as features in an
ensemble regression model. Preliminary results using this approach are reported
here using peak-mode n-grams, with the goal of the method being to identify
how EEG microstate n-gram parameters may change with the simultaneously
changing coordinate of the fMRI gradient space.

6.2 Methodology

All EEG and fMRI pre-processing that was outlined in Study 1 (Chapter 5)
was also used for analysis here. The microstate classes generated in that study
were also used here (see Chapter 4 for an overview of the dataset used). First,
The difference is in the derivation of microstate durations and temporal modes.
Here, the microstate sequences were derived using the peak-mode, meaning
interpolation was used to define durations instead of back-fitting (see Chapter 3
for a detailed overview of these differences). The other difference in the pipeline
before analysis was using fMRI gradient coordinates. These differences are
described in the following two sections of this chapter.

6.2.1 Derivation of Microstate Parameters for Peak-Mode n-Grams

As discussed in Section 3.2.3, there are different temporal modes for analysing
microstate sequences. Here, peak-mode was used. Briefly, peak-mode sequences
consider the boundaries between microstate readings as the centre points on the
time series between consecutive Global Field Power (GFP) peaks. In the peak
mode, microstate sequences can have multiple repetitions of a single class next
to one another if consecutive GFP peaks were labelled with the same class. This
cannot take place using the more standard event-mode.

Microstate n-gram parameters were calculated for peak-mode n-grams. These
are equivalent to the parameters calculated in the previous Chapter 5 where
event-mode was used: mean duration, frequency and coverage for n = 1 to 5.
Note, however, that comparison of parameters between modes should be done
cautiously. Whilst comparison between peak-mode and event-mode durations
and coverages can provide a direct comparison between the two methods of
duration definition (back-fitting and interpolation, see Section 3.2.2 for further
discussion), frequency of a given n-gram depends specifically on how many n-
grams there are at the given n. More peak-mode n-grams can occur versus
event-mode due to the possibility of repeating classes.
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6.2.2 fMRI Gradient Coordinate Calculation

The cortex parcellations of the observed data of each participant were correlated
with each of the first three gradient axes derived by Margulies et al. (2016).
This approach aimed to create a coordinate space where all participants’ fMRI
data could be located. Since each of the three axes has also been associated
with different cognitive functions, placing each participant’s time series within a
space categorised by these axes could potentially point to changes in participant
functional association throughout the recording.

6.2.3 Alignment of Microstate n-Gram Parameters with fMRI Time-
Series

Similar to the alignment process described in Chapter 5, the recorded EEG and
fMRI time series were aligned with recording offset, as well as the Haemody-
namic Response Function (HRF) time to peak of 6 seconds. Following this align-
ment, the microstate sequence was cut in windowed blocks that corresponded to
fMRI TRs in time (2 seconds). If a microstate (a single peak mode microstate)
occurred across the boundary between TRs, it was removed from the analysis.

The constituent n-grams of each TR window of EEG sub-sequence were then
used to calculate parameters, using n-grams within the TR only. The mean
duration and frequency of n-grams with n = 1 to 5 were calculated for each TR.
It should be highlighted that these parameters cannot be compared directly to
those derived in Chapter 5, since the whole time series of a participant was used
to calculate parameters in the previous chapter.

The goal was to have a distribution of EEG microstate n-gram parameters,
which could predict the observed fMRI gradient coordinates at each TR.

6.2.4 Application of Random Forest Regressors

A random forest serves as a meta-estimator (Breiman, 2001), constructing mul-
tiple classification decision trees on different subsets of the dataset. A decision
tree is a flowchart-like structure used for making decisions in a tree-like model.
The tree is constructed by recursively partitioning the data based on features
that best predict a continuous target variable. Mean Squared Error (MSE) was
used in this case as a measure of “impurity” to minimise.

The random forest employs averaging across the decision trees to enhance
predictive accuracy and manage the risk of over-fitting. In this case, the features
used were the distribution of microstate n-gram parameters at a given n, and
the target continuous variable was the fMRI gradient coordinates of the given
TR. This was repeated for each participant, at each n-gram length, for each
parameter separately.

Here, sklearn was used to apply the random forest regressor (Abraham et al.,
2014). For each model, a grid of hyper-parameters was searched for the best
combination for the particular data, and the combination of parameters that
best fit the data was used in each case. The hyper-parameters were: number
of estimators as 50, 100, 150 or 200; maximum tree depth as none, 10 or 20;
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minimum samples to split as 2, 5 or 10; and the minimum number of samples per
leaf, at 1, 4 or 8. The data were split into train, validation and test segments.
60% of the TRs of the given participant were randomly selected as the training
segment, 30% were used for validation, and 10% were selected for testing. TRs
were selected randomly to avoid temporal dependencies.

6.2.5 Analysis of Random Forest Models

Upon fitting, each model which returned an R2 value over 0.3 was subject to
feature importance analysis. The overall importance of a feature is the average
of the MSE decrease across all decision trees. The value is normalised across
features so that all sum to 1 to quantify how much of the fit was attributed
to each feature. In context, this quantifies the parameters of which microstate
n-gram contributed the most to predicting the fMRI gradient coordinates.

The permutation feature importance was also quantified. This measures
how much of a drop in model performance is observed when the given feature
is permuted in the training data. In context, parameters of each n-gram are
permuted within a given model, and a more significant drop-off in performance
for the prediction of fMRI gradient space coordinates indicates the n-gram has
high permutation feature importance.

Once the n-grams with the highest contribution were identified for the pa-
rameter, a partial dependency plot was used for these n-grams to identify how
the given parameter changed with the gradient coordinate. For example, if the
frequency of n-gram ABC contributed highly to the prediction of fMRI gradi-
ent 1 coordinates, the coordinates where that dependency was highest would
be identified using partial dependency. Following this, the coordinates were
projected into the original fMRI space to visualise the global fMRI activation
pattern they represented.

6.3 Results

6.3.1 fMRI Gradient Coordinates

Each participant TR was correlated with each of the three gradients derived
by Margulies et al. (2016). The gradients were conceptualised as axes, and
correlation values were taken as coordinates in space to define an “fMRI gradient
space”.

Figure 25 shows the gradient coordinates across participants, with the global
signal removed.

Figure 26A shows kernel density estimate of TRs across participants within
the gradient space visualised as cross sections. The distributions appear to be
relatively normal on each axis across the group. There is a general preference
for the positive gradient 1 and 2 to negative 1 and 2 in the left panel rather
than the more general distributions shown on the other cross sections.

Figure 26B shows how the density estimate differs between participants.
In general, the normal distribution from the 0 point is retained, but slight
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Figure 25: Participant fMRI gradient coordinates in 3D space. Each of the
three axes denotes a correlation with one of the first three gradients derived by
Margulies et al. (2016). Each colour indicates a different participant. Correla-
tions are with global signal removed, since the gradients that were correlated
with also have this signal removed. TRs are visualised as a scatter plot but each
participant’s time series of TRs can be conceptualised as a trajectory through
the space.

differences in the amplitude of peaks and the width of the distribution can be
seen. A few participants also appear to have slight preferences for extremes of
gradients 1 and 2, which likely explains the offset in the distribution in the left
panel of Figure 26A.

6.3.2 EEG Microstate Sequences in fMRI Gradient Space

Figure 27 shows a plot of the density distribution of each of the microstates
within the fMRI gradient space.

Distributions of all microstates appear relatively normal, with specific den-
sity maxima appearing in slightly different locations. Microstates A B and D
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Figure 26: Kernel Density Estimate of fMRI coordinates in the three dimen-
sional gradient space. (A) Cross sections of density estimates across all par-
ticipants, 1 to 2, 1 to 3 and 2 to 3 left to right. (B) Kernel Density Estimate
distributions of individual participants. Gradients 1 to 3 left to right. Individ-
ual colours indicate density estimates of different recorded participants.

show a pocket of density maxima at the null point, whereas microstate C is
more evenly distributed. This may be due to the number of microstates in
each case, which should be considered. Microstate F appears to have a more
evenly distributed density, with no one particular point showing a pocket of
high density.

6.3.3 Peak-Mode Microstate n-Grams

Figure 28 shows peak-mode microstate parameters across participants. The
mean duration (Figure 28A) of peak-mode microstates is around 50 − 60ms
consistently across participants and microstates. There are differences in the
distribution of microstates due to the difference in derivation methods when
comparing these to the mean duration of event-mode microstates shown in the
previous Chapter (Figure 12). Peak-mode microstates appear to be shorter,
likely due to their derivation method. It is also the case that the underrepre-
sented event-mode microstate C is not found in peak-mode.

Each microstate’s frequency (Figure 28B) is also relatively consistent, with
microstate D showing a group average that is lower than the other microstates,
which generally showed frequencies of around 20%. This is in contrast to the
event-mode microstates, where, in general, microstate C demonstrated lower
parameter values. A similar distribution to frequency is found in the coverage
distribution (Figure 28C), likely due to the relatively uniform distribution of
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Figure 27: Kernel Density Estimate of each microstate label projected into the
fMRI gradient space via interpolation across the group. Rows of subplots show
microstates, columns show the three cross sections of the 3 dimensional space.
Colour indicates microstate in question. Histogram shows the given microstates’
density distribution across the axis.
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Figure 28: Microstate parameters for microstates derived using the peak-
mode. (A) shows mean duration, (B) shows frequency, and (C) shows coverage.
X axes indicate the microstate in question, with different coloured box plots
indicating different microstates. Box plots show the parameter measure across
participants. Dots indicate outlier participants. An outlier is defined as a value
over the defined threshold of the upper quartile plus 1.5 times the interquartile
range.

mean durations across microstates.
Peak-mode n-gram parameters were also calculated for n > 1 up to n = 5.

Figure 29 shows the duration and frequency distributions of microstate 2-grams
across the group. In general, the parameters observed in each microstate (Figure
28) translated to the longer n-gram lengths. The lower coverage of microstate D
likely resulted in lower durations of 2-grams, which included microstate D due,
perhaps due to a smaller sample of these 2-grams occurring versus others. The
observation of multiple outliers in each box plot indicates a high variation of
these parameters between participants, which is reflected more at higher n-gram
lengths.

Figure 30 shows how the frequency of peak-mode 2-grams varies within each
TR across the time series of an example participant, within a 40-second window
(20 TRs). Each line shows the change in frequency of each 2-gram across TRs.
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Figure 29: Peak-mode microstate 2-gram parameters observed across the
group. Left shows mean duration, right shows frequency. Box plots show the
distribution across participants. Dots indicate outliers. An outlier is defined as
such if they were greater (or less than) the median plus (or minus) 1.5 times the
interquartile range. X-axis shows the 2-gram in question. Note the inclusion of
repeated microstates due to peak-mode.

In many cases, the frequency drops to zero for a given TR since the n-gram
in question did not occur within the 2-second window of the given TR. In this
case, the green line with high peaks is the 2-gram DD, which in this participant
was more prominent than other n-grams across the time series.

Similarly, the frequency across the whole time series of TRs for an example
participant is shown in Figure 31. The colour indicates the frequency of the
given 3-gram for each TR. This visualisation demonstrates that in many TRs,
there is no occurrence of some 3-grams and that some are rarer than others.
In some cases, there are also peaks in the frequency of specific n-grams during
specific TRs, which the following models aim to predict.

6.3.4 Random Forest Regressors Three Coordinates

A random forest regressor model was run for each n-gram length for each par-
ticipant, using mean durations or frequencies of those n-grams as features and
three-dimensional fMRI coordinates as targets. Figure 32 shows the output R2

value for each model fit.
Most models failed to produce a strong accuracy, with any fit between the

feature n-gram parameters and the fMRI coordinates, with only one instance of
an R2 value over 0.25 (frequency n = 3 participant 14).
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Figure 30: Example 40 second window observed in participant 18 showing
the frequency of peak mode 2-grams that are occurring simultaneously during
each TR. Each coloured line indicates the frequency of each peak-mode 2-gram
within the example participant at the given TR.

6.3.5 Random Forest Regressors for Separate fMRI Gradient Coor-
dinate Axes

Due to the lack of good fits using all three coordinates as targets at once, models
were instead applied using one gradient axis as a target at a time. Figure 33
shows the R2 values for each model.

More success was found using this method versus using all three coordinates
together. Participant 5 showed a stronger fit for the first gradient at n = 3
for mean duration and frequency, with R2 over 0.3 in each case. Interestingly,
this relationship was only found for length 3. Participant 6 showed similar
correlations for n = 5 in mean duration and frequency. Participant 14 also
showed R2 values over 0.3 for both n = 2 and n = 3.

For gradient 2, participant 7 showed some weak R2 values for n = 3 and
n = 5 for mean duration and frequency. Participant 14 showed values over 0.3
for n = 4 and 5. Gradient 3 showed the fewest higher value correlations (relative
to the mean R2 value across models).

There was no n-gram length for any participant with an R2 of 0.3 for more
than one gradient axis. In each case where a participant showed more than one
gradient axis showed a relatively high R2 value across different n-gram lengths.
Interestingly, all models at n = 1 failed to find a strong fit for any participant.

6.3.6 Random Forest Post-hoc Analysis

Figure 34 shows the feature importance and permutation feature importance
plots of models from participant 14 at n-gram lengths where R2 was more sig-
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Figure 31: Matrix visualising participant 10’s peak-mode 3-gram frequency
per TR for all 3-grams. Each row of the matrix shows the frequency of each
3-gram within each TR column. Colour bar indicates the frequency of each
3-gram across the time series per TR.

nificant than 0.3 for Gradient 1. Feature importances sum to 1. Hence, each
feature’s importance score should be considered as contributing to the resulting
R2 value. Figures 34A and 34C show said values for n = 2 frequency, with
Figures 34A and 34C showing n = 3 frequency. Figures of feature importance
and permutation importance for all subjects at all n-gram lengths can be found
here.

In the example of Participant 14, models showed a higher than average
R2 score for both n = 2 and 3 (Figure 32). Interestingly, the 2-gram CA
could contribute to differences at the 3− gram level, with CAD showing higher
than average feature importance. It can also be seen that, generally, n-grams
containing microstate D have a lower importance. This may be due to the
group’s lower coverage and frequency of microstate D in general (Figure 28).

Table 1 shows the n-grams in each participant that contributed the highest
feature importance for all models where R2 was more significant than 0.3 for
each gradient axis.
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Figure 32: R2 values calculated for each random forest regression model using
best fitting hyper-parameters in each case. Left matrix shows tests which used
n-gram mean durations as features, right matrix shows tests which used n-gram
frequencies as features. Y-axes of each matrix shows the participant tested, and
x-axes show the n-gram length of the features used. For example, at n = 3 for
mean duration of participant 7, the features used in the regression model were
mean durations of 3-grams per TR. All three fMRI gradient coordinates were
used together as the target in these models.

Eight out of the fifteen observed participants showed R2 values greater than
0.3 across the gradient axes. Two of those 8 participants had models over the
0.3 threshold on more than one gradient axis. Multiple instances of n-grams
containing BC are apparent in three of the eight participants on gradient 1.
Other than this, there is a lack of consistency between participants for each
n-gram length.
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Figure 33: R2 values calculated for each random forest regression model using
best fitting hyper-parameters in each case. Top row shows tests which used
n-gram mean durations as features, bottom row used n-gram frequencies as
features. Y-axes of each matrix shows the participant tested, and x-axes show
the n-gram length of the features used. For example, at n = 3 for mean duration
of participant 7, the features used in the regression model were mean durations
of 3-grams per TR. The columns show the target coordinate for each model. In
these cases, the gradient coordinate axes were considered individually to simplify
the fitting process for the model.

6.4 Discussion

6.4.1 fMRI Gradient Space

This study used an fMRI gradient space, which takes correlations with each of
the derived gradients of Margulies et al. (2016) as coordinates in a multidimen-
sional space. A multidimensional coordinate in the low-dimensional space can
be projected back up into the original space post hoc, allowing for a drastic
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Figure 34: Feature importance and permutation feature importance of EEG
microstate n-gram frequency for individual participant at n = 2 and 3 across
gradient 1. (A) and (B) show the feature importance of 2-grams and 3-grams
for the participant respectively. (C) and (D) show the permutation importance
of 2-grams and 3-grams respectively. The n-grams with the highest scores in
each plot are indicated with a label.

reduction in the spatial dimensionality of the fMRI whilst still retaining the
complexity of global activation patterns, as well as temporal dynamics (Brown
et al., 2022).

Figure 26 shows the density distribution of fMRI TRs across the group within
the gradient space. In general, the group appears to prefer the negative to
positive x = y plane between gradients 1 and 2. This is similar to the previous
study in Figure 17, where two of the three CAP pairs were at either end of this
plane. The lack of TR coverage along the x = −y line of this slice points to a
lack of visual cortex and Default Mode Network (DMN) co-activation in general
in the group (Margulies et al., 2016).

The density distribution along each axis tended to be relatively normal for
each participant, with some participants showing a preference for the poles of
the first axis. The principle axis has been called the “sensory association axis”
to highlight its separation of regions associated with sensory processing and
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cognition (Margulies et al., 2016). The few participants showing this polarisa-
tion of density at either end of the axis suggest a more robust separation of the
sensory and cognitive regions. Such polarisation is less common in the second
and third gradients, potentially pointing to less separation of activities on the
sensory axis (gradient 2) and task axis (gradient 3) (Mesulam, 1998).

It is worth highlighting that since the gradient axes used for correlation
values here are taken from a past study (Margulies et al., 2016), it may be more
beneficial in future studies to derive data-driven gradient axes so that the axes
that the time series are related to are more directly related to the dataset, in a
similar vein to how recent studies suggest use of data-driven EEG microstates
(Michel & Koenig, 2018).

Further investigation into the fMRI gradient space is advised in general. For
example, other measures, such as the directions moved in the space from TR-to-
TR, may uncover general patterns of global state transitions. These movement
patterns could also be related to EEG microstates.

6.4.2 Microstates in fMRI Gradient Space

Alignment of the EEG time series with the fMRI time series via the use of
the HRF allows for a visualisation of the relationship between microstates and
fMRI that has not yet been achieved. Figure 27 shows the density of microstate
occurrences within this fMRI derived space.

The distribution of microstate occurrences appears to follow the distribu-
tion of fMRI coordinates. This suggests a uniformity of occurrences of each
microstate when comparing their activity to global patterns of activity in fMRI
recordings, something touched on in a previous Chapter 2.

Past studies that have investigated the relationship between microstates and
fMRI have generally identified specific networks which show correlations with
the microstates (Britz et al., 2010; Xu et al., 2020; Yuan et al., 2012). The
methods used in these studies are equivalent to the General Linear Model (GLM)
reported in Figure 13. Such an approach does not attempt to draw a relationship
to global activation patterns in fMRI, but rather more static parcellations of
states.

The normal density distribution of each microstate within the fMRI gradient
space (Figure 27) suggests that these patterns do not appear when considering
whole brain activities. A recent study which did investigate global fMRI pat-
terns and was able to predict the dFC state (Abreu et al., 2021). This approach,
however, generated unique sets of microstates per TR, rather than using the con-
ventional approach of deriving microstates across the group, making comparison
to these results difficult.

The results shown here highlight the difficulty inherent in drawing a relation-
ship between EEG microstate occurrence and fMRI global activation pattern, as
a simple increase in the occurrences of specific microstates in particular regions
of the gradient space does not occur.

104



6.4.3 Peak-Mode EEG Microstates

As discussed in Chapter 3, the lack of definition of sequence modes in the EEG
microstate literature highlights a need for solid definition. Here, peak-mode
microstates were derived and used to highlight the validity of their derivation
and show the differences between the conventional event-mode and this peak-
mode.

First, worth highlighting is the difference between parameters between peak-
mode (Figure 28) and the event-mode microstates (Figure 12) derived in the
previous study. Although the same participants and the same data were used
in both studies, differences in parameters are apparent. Microstate C had
low occurrences in the event-mode relative to other microstates. In the peak-
mode, however, microstate C showed the highest average frequency and coverage
amongst all microstates, and microstate D generally showed relatively low pa-
rameters. Coverage is different between the event-mode and peak-mode values
in Chapters 5 and 6 respectively due to event-mode being derived using back-
fitting, and peak-mode being derived using interpolation (see Chapter 3 for a
discussion).

It is the case that peak-mode is a more accurate representation of GFP peak
dynamics than event-mode methods. GFP peaks are used to derive microstate
classes (Pascual-Marqui et al., 1995) due to their high Signal-to-Noise Ratio
(SNR) (Lehmann et al., 1987). Peak-mode sequencing allows for investigating
within-cluster transitions between GFP peaks, which is impossible in event-
mode.

When considering that microstate parameters differ significantly between
peak-mode and event-mode, as well as accepting that peak-mode may more
accurately represent microstate dynamics and therefore may be more suited
for syntax investigation, highlights that adoption of interpolation over back-
fitting (see Section 3, and hence the use of peak-mode over event-mode, may be
beneficial for microstate syntax investigations.

6.4.4 Predicting fMRI Gradient Space Coordinates Using EEG Mi-
crostate n-Gram Parameters

Of the seventy-five models for mean duration and seventy-five for frequency
(fifteen participants by five n-gram lengths), sixteen had R2 values greater than
0.3. These are the best-performing models; in each case, the n-grams with the
highest feature importance were reported. The highest contributing n-grams in
each case were not shared between participants. This may be due to individual
differences, but further investigation is required to understand the significance of
the associations between gradient axes coordinates and EEG microstate n-gram
parameters.

A shortcoming of this methodology is the difficulty of reporting the influ-
encing n-grams. The number of feature n-grams in each model is high, meaning
identification of the influence of each is difficult. The use of n-grams in this
context is also problematic because each n-gram length is assumed to be inde-
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pendent of every other n-gram, which is not the case. It may be beneficial in
future analysis to use n-gram parameters across n within a single model, but
this will require careful consideration.

Additionally, future use of this methodology should apply a permutation
step where models attempt to fit the same models using shuffled n-gram labels
to establish a baseline R2 value to understand the model results’ significance
better. Using multiple n-gram parameters as a set of features in the same model
will also be investigated as a potential method.

It should also be highlighted that fMRI gradient space allows for the op-
portunity to investigate BOLD signal dynamics. Future work which applies
this method to understand the functional significance of EEG microstates may
simultaneously investigate the dynamics of both the EEG and fMRI activity.

Since there were no n-grams which showed a good fit across gradients, there
was no need to pinpoint a coordinate where the peak of the given n-grams
parameter was. A back-fitting process would take place in future uses of this
methodology should a well-fitting model consider more than one fMRI gradient
at a time. This particular advantage of this approach could not be utilised in
this instance.

The number of models needed to report results across n-gram lengths and
the need to apply models for each parameter individually point to an issue
of multiple comparisons. It may be more beneficial to use a model that ini-
tially considers the continuous EEG signal and then considers the syntax of
microstates post hoc to avoid these pitfalls. The following study attempts to
implement such a method.
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7 Study 3 - EEG Gradient Space as a Method
for the Investigation of Microstate Sequence
Patterns between fMRI States

Past studies that investigated the relationship between Electroencephalography
(EEG) microstates and Functional Magnetic Resonance Imaging (fMRI) Blood-
Oxygenation Level Dependency (BOLD) signal, including those here (Chapters
5 and 6), have done so by drawing relationships directly, either through applica-
tion of modelling techniques such as voxel-wise General Linear Model (GLM)s,
or by using microstate and microstate n-gram parameters as predictors of fMRI
signal. Here, a novel method is introduced, which uses microstates as post
hoc labels for the investigation of the measured EEG sequence, rather than
microstates being the subject of analysis. This pivot allows for a more robust
modelling of EEG signal dynamics that can be used in future studies to under-
stand EEG microstate syntax.
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7.1 Introduction

Past investigations of microstate syntax generally identified differences in tran-
sition probabilities between microstates (Michel & Koenig, 2018), or differences
in occurrence rates of microstate n-grams; short sequences of microstates of
length n (e.g., von Wegner et al. (2017) or Chapters 5 and 6). The investiga-
tion of microstate syntax has demonstrated differences in clinical populations
(Lehmann et al., 2005), as well as between specific groups (Schlegel et al., 2012),
but the underlying mechanisms of microstate syntax are yet to be understood.

Methodologies previously applied which attempt to understand microstate
syntax do so using the microstate sequence as an input into analyses. Method-
ologies will generally apply analysis which accounts for the discrete sequence of
states, limiting investigation to either parameters which describe microstates,
or which describe short sequences of microstates. Whilst there have been identi-
fied differences in n-grams and their parameters between populations (Schlegel
et al., 2012; von Wegner et al., 2017), as well as between simultaneously oc-
curring fMRI states (Chapter 5) the number of possible n-grams that can be
investigated as n increases leads to a combinatorial explosion, which limits the
length of the microstate sequence that can be investigated.

von Wegner et al. (2017) demonstrated that information is retained within
clock-based microstate sequences up to a length of 1000ms, and that microstate
sequences are therefore non-Markovian. In the context of the conventional
event-mode microstate being approximately 100ms long, a microstate 10-gram
would be required to account for this length. The number of possible mi-
crostate 10-grams that could occur assuming event-mode sequencing (see Chap-
ter 3) and k = 4 (canonical microstates; Lehmann et al. (1987)) would be
4× (4− 1)(10−1) = 262, 144. This is referred to by von Wegner et al. (2017) as
the “dictionary of possible words” of the given length. This does not even con-
sider the possibility of information transmitted between n-gram lengths. It may
be the case that information which is gained from investigating previous mi-
crostates in the sequence, that for example a 4-gram may inform the prediction
of the following 5-gram. Previous studies which have investigated microstate se-
quences have not accounted for this (including the previous two chapters). The
number of possible n-gram combinations as well as the number of microstate
combinations, makes understanding syntax through n-gram analysis difficult.

For this reason I propose an adjustment regarding the target of analysis.
Microstate sequences are derived primarily from the occurrence of EEG Global
Field Power (GFP) peaks. These peaks of activity are points of spontaneous
activity on the time series of EEG recordings. The EEG time series is initially
a continuous recording of electrical activity before the conversion into a dis-
cretised sequence of microstates, where the difficulties of n-gram combinatorics
arise. Hence, I suggest that the continuous time series of EEG first be investi-
gated in relation to fMRI, with a reduction of the EEG time series to a discre-
tised sequence of microstates being applied post-hoc. Such a method bypasses
problems regarding associations between microstates, and instead conducts the
association between EEG and fMRI initially, and categorises those associations
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using the microstates as labels, rather than making the labels the subject of
analysis.

Here, as a novel means of investigating the EEG signal, I propose the EEG
gradient space. I derive a set of EEG gradient axes, using the methodology used
to derive fMRI gradients in previous studies (Margulies et al., 2016) and hence
reduce the EEG time series into a trajectory which occupies the “EEG gradient
space”. The coordinates of the continuous trajectory of EEG are used as fea-
tures in a classifier, where the EEG time series is segmented by simultaneously
occurring fMRI Repetition Time (TR)s, and the classifier attempts to predict
the corresponding fMRI Co-Activation Pattern (CAP) label (see Chapter 5 for
an explanation of CAPs). This method is a preliminary means of bypassing
the n-gram problem, and proposals for improvements and developments are
discussed.

7.2 Methodology

7.2.1 EEG Gradient Space and fMRI Alignment

EEG gradient space “sub-trajectories” that occurred per TR were then used
as features to predict an fMRI CAP label (defined in Chapter 5) that was
associated with each TR. A visualisation detailing the process to predict the
fMRI CAPs is shown in Figure 35.

A dimensionality reduction of the EEG time series was applied that retained
the continuous signal observed. The pre-processed EEG time series of the fifteen
participants was concatenated, and each channel was correlated with every other
channel (Figure 35A), resulting in an EEG channel connectivity matrix, 30x30
(30 EEG channels). Principle Component Analysis (PCA) was then applied to
this connectivity matrix, and the first three components were used as prototype
gradient axes for the dataset (Figure 35B). This process was applied using the
concatenated time series of all participants, as well as the GFP peaks alone.

Following this, each individual time point of each participant (or GFP peak)
was correlated with each of the gradient axes, and the correlation value for
each time point was used to generate a correlation time series. The time series
for each of the gradient axes resulted in what is referred to here as a “gradi-
ent trajectory”, where trajectory refers to the movement of the observed EEG
through a space defined by the derived gradients. Each participant time series
was placed in the space individually (Figure 35C).

The EEG signal in this space was then aligned with the observed fMRI using
an Haemodynamic Response Function (HRF) with a peak at 6 seconds. After
cleaning, the EEG was observed at 250Hz, and the fMRI had a TR of 2 seconds.
Hence, for each fMRI TR, there are 500 time points of EEG when considering
the whole time series. Following the alignment, the EEG gradient trajectory
was segmented into these 500 time point long sub-sections. A trajectory of EEG
within the space was therefore isolated for each individual fMRI TR.

GFP peaks were isolated during each simultaneously occurring TR, and a
trajectory between these EEG peaks (rather than all time points) was also used.
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Figure 35: Pipeline of data preparation to derive EEG gradient space. The
whole time series of each EEG channel (top) is correlated with every other
channel (A). A PCA is applied to this “connectivity matrix” and the highest
contributing components are defined as the EEG gradients (B). The time series
of EEG of an individual is then correlated with each of the gradients (in this
toy example, three) in order to derive an EEG gradient space (C). Each axis is
between -1 and 1 based on correlation values.

In this case, a different number of EEG coordinates were isolated for each fMRI
TR.
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7.2.2 Predicting fMRI CAPs using EEG Gradient Space Trajecto-
ries

The models used to predict fMRI CAP labels were Recurrent Neural Network
(RNN)s. An RNN is an artificial neural network designed for sequential data
processing where the order of the input elements is important (Yu et al., 2019).
In general, RNNs have the ability to maintain a hidden state that captures
information about previous inputs in the sequence. For this application, Long
Short-Term Memory (LSTM) layers were used in the RNNs. LSTMs can se-
lectively remember or forget information over long sequences, making them
well suited for tasks that require capturing dependencies over extended periods
(Hochreiter & Schmidhuber, 1997).

Tensorflow was used to build an RNN (Abadi et al., n.d.), an open source
Python package that can be used to build neural networks and machine learning
algorithms. The model was a simple LSTM model. An input layer was followed
by the LSTM layer. The LSTM layer returned full sequences, and included a
kernel regulariser to prevent over-fitting. This was followed by a self-attention
layer which was applied to the LSTM layer.

A self-attention layer enables the model to weigh the importance of different
sections of a sequence with respect to each other, allowing it to focus on relevant
parts of the input when making predictions. In this case, where the self-attention
layer was used it was used in conjunction with the LSTM layer. LSTMs are
effective handling sequential information over extended periods. Self-attention
is good at capturing local dependencies. A combination of the two allows for the
possibility of capturing relevant information at both the local and long-range
levels.

The self-attention layer was followed by a flattened layer, resulting in an
output dense layer with six units, each unit corresponding to a CAP label.
The model was fitted to whole time series trajectories, as well as GFP peak
trajectories. Thirty training epochs were used for each model fitting. Sixty
percent of participant TRs were used for training, twenty percent for validation,
and ten percent for testing. Models used categorical cross-entropy loss as a
target to minimise. The coverage of each CAP across a participant was used to
control for an offset in the proportion of categories.

In context, a single input to the RNN would be the 2 second EEG gradient
space, with its associated CAP label. The use of an RNN aimed to capture
patterns of activity within the trajectory at different ranges, with the target
being to identify patterns of EEG activity that may be unique to each fMRI
CAP.

A range of hyper-parameters were searched across for each model during
fitting. These were, the number of LSTM units (8, 16, 32, 64, 128), the kernel
regulariser weight (0.01, 0.05, 0.1) and the dropout layer weight (0.1, 0.25, 0.5).
The precise architectures with the resulting hyper-parameters after fitting are
reported in the following section.
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7.3 Results

7.3.1 EEG Gradient Space Axes

The groups EEG time series’ were concatenated and used to generate a set
of data-driven EEG gradient axes by correlating each channel time series with
every other channel time series. Figure 36A shows this output “connectivity”
matrix. Figure 36B shows the output of the PCA as cumulative explained
variance of each added gradient component. The first component explained 59%
of the variance, the second explained an additional 35%, and the third explained
3%. All other components following this explained less than 1% variance each.
For this reason, the first three components were used for further analysis, the
three collectively explaining 97% of the variance.

Figure 36C shows the topographies of each of the first three gradients. Gra-
dient 1 is a slightly skewed hemispheric split, with poles at the most lateral
positions. Gradient 2 is a fronto-occiptal configuration and gradient 3 a dorso-
ventral configuration (ventral here being the ventral part of the scalp, which are
the most superficial regions of the scalp recorded).

7.3.2 EEG Gradient Space Trajectory and Density

Following derivation of the gradients, each of the gradients were conceptualised
as axes of a multidimensional space. The time series of each participant was
correlated with each of the axes at each time point, generating a trajectory
EEG activity through the EEG gradient space. Figure 37 shows the kernel den-
sity estimate of each participant along each axis, with each colour distribution
representing a participant.

Figure 38 shows same density estimate across participants, visualised as cross
sections of the three dimensional space. Darker colours indicate higher density.

In general across the group there is preference for the poles of the first
gradient, with a less profound preference also indicated across gradient 2. In-
terestingly, the EEG trajectories occupy an ellipsoid within the EEG gradient
space.

7.3.3 LSTM Prediction of CAPs

Following hyperparameter tuning, the optimal RNN configuration across those
tested for the models which used the whole EEG time series as input, is found
in Table 2, using a regulariser value of 0.01 in the LSTM layer. Sixteen nodes
were used. This was the case for both the whole time-series model, and GFP
peak model.

The training and validation loss and accuracy are found in Figure 39 for
application to the whole time series for each participant. Figure 39A shows the
performance on the training segment. Loss was generally low in the training
data. After thirty epochs, all participants showed an accuracy over 60% of
CAPs during training. Validation did not perform as successfully (Figure 39B).
Loss was substantially larger across epochs during validation versus training.
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Figure 36: EEG channel time series similarity matrix and EEG gradient space
axes. (A) shows the similarity matrix between recorded EEG channels across all
participants. Both axes are labelled with channel names. Colour bar indicates
similarity. (B) shows the cumulative explained variance of each of the gradients
as the number of gradients is increased. (C) The EEG topographies of the first
three gradients. Gradients are ordered by their explained variance. Gradient 1
shows a hemispheric split, gradient 2 a frontal-occipital split, and gradient 3 a
dorsal-ventral split.

Accuracy did not improve during validation across epochs, with a maximum
value across participants of 40%. The average test accuracy across participants
was similar to the results found in the validation data, around 19.4%.

A similar result was observed in the trajectory which only used GFP peak
coordinates. Figure 40 shows the loss and accuracy of this model. Trajectory
of learning across epochs is similar to the whole time series, with the subtle
difference of a slightly lower loss in both the training and validation steps.
Average test accuracy was also similar, at 17.4%. Both test accuracy results are
close to what would be considered guessing (1/6 = 16.7%).
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EEG Gradient 1 Correlation

EEG Gradient 2 Correlation

EEG Gradient 3 Correlation

Figure 37: Kernel density estimate of individual participant EEG gradient
trajectories within the three dimensional space. Each of the three subplots
shows the kernel density estimate of the given gradient axis.
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Figure 38: Kernel density estimate of all participant EEG gradient trajectories
within the three dimensional space. Each of the three subplots show a plane of
the three dimensional space.

7.3.4 EEG Microstates within the EEG Gradient Space

In order to understand how the EEG gradient space relates to EEG microstates,
GFP peaks across participants were subject to modified k-means clustering.
Figure 41A shows the output of clustering in the gradient space. Each colour
indicates a cluster centre. There are two points for each microstate, since the
polarity of the microstates is invariant, which are connected by a line.

Figure 41B shows the reconstruction of the coordinates of each cluster centre
as scalp topographies. The topographies found appear to be equivalent to meta-
microstates A, G, F , C and B respectfully, but the 5th cluster centre has a less
anterior/posterior delineation between poles than microstate B. Microstate D
does not seem to appear here, likely due to its gradient 3 weighted topography,
which contributed a low explained variance to the derivation of axes.
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Figure 39: Performance of RNN model using whole EEG gradient trajectory
time series as input. (A) Training categorical cross-entropy loss (left) and accu-
racy. (B) Validation categorical cross-entropy loss (left) and accuracy. Epochs
on x-axis denote number of training epochs.
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Figure 40: Performance of RNN model using GFP peaks of EEG gradient
trajectory time series as input. (A) Training categorical cross-entropy loss (left)
and accuracy. (B) Validation categorical cross-entropy loss (left) and accuracy.
Epochs on x-axis denote number of training epochs.
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Layer Output Shape No. Parameters Connected to:
Input Layer (None, 500, 3) 0
LSTM (None, 500, 16) 1280 Input Layer
Attention (None, 500, 16) 0 LSTM
Flatten (None, 8000) 0 Attention
Dense Output (None, 6) 48006 Flatten

Table 2: Optimal configuration of the LSTM model applied to the whole EEG
time series. Each layer’s output shape and number of output parameters are
shown in consequent columns. The pipeline of the RNN is also shown in the
“connected to” column. Note the input shape in this case as (None,500,3),
where “None” indicates the undefined number of TRs taken as input, and the
(500, 3) denoting the 500 EEG time points per TR that are used in the whole
EEG time series model, and the 3 gradient axes.

Comparing each of the derived cluster centres here each gradient axis makes
clear that most cluster centres are within a ring that is at the boundary of the
ellipsoid found in Figure 38.

With each of the GFP peaks within the EEG gradient space, each of their
original microstate labels (see Chapter 5) were isolated within the gradient
space to understand microstate distribution within the space. Figure 42 shows
the kernel density estimate of each of the original microstates within this space.

Each microstate occupies an area of the space, with each microstate showing
a cone-like distribution of occurrences out from the origin, and high density at
the edge of the ellipsoid.

7.4 Discussion

7.4.1 EEG Gradient Axes

The EEG gradient axes derived in Figure 36 are a novel means of reducing the
spatial dimensionality of the EEG connectivity matrix into a set of components.
The three axes explain 97% of the variance within the EEG channel connectiv-
ity matrix. In general, the gradients demonstrate a preference for channels to
activate with those closest to them. The pole locations on the topographies of
each gradient could be considered similar to the three dimensions of space (i.e.,
left to right, front to back, top to bottom). Any pair of poles could reasonably
be conceptualised within a space where each of these gradients are the axes,
making visualisation intuitive.

The connectivity matrix calculated here using simple correlation coefficients
between EEG channel time series’ is preliminary means of investigating the EEG
gradient space. The field of EEG connectivity analysis is a large one, with many
options for deriving connectivity measures between channels (Bakhshayesh et
al., 2019; Haufe et al., 2013). Future work will investigate the utility of each
of these methods with application to gradient analysis, and compare the spaces
derived therein.
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Figure 41: (A) Output of modified k-means clustering with k=5 in the EEG
gradient space, using coordinates of EEG GFP peaks as input across partic-
ipants. Each colour indicates a microstate, cluster centre, with each cluster
showing two points to the polarity invariance of the clustering method(Pascual-
Marqui et al., 1995). (B) Cluster centres from EEG gradient space reconstructed
as scalp topographies. Note that polarity is invariant.

Additionally, past studies which have applied gradient analysis to BOLD
signal have done so using diffusion embedding (Margulies et al., 2016) rather
than PCA, which was applied here. Diffusion embedding is known to project
long distance connections more effectively projected into a common space more
effectively than linear dimensionality reductions such as PCA (Coifman et al.,
2005). Future investigations of the EEG gradient space will utilise diffusion
embedding over PCA for this reason.
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Figure 42: Planes of kernel density estimate of the originally derived mi-
crostate labels placed in the EEG gradient space. Each row denotes a mi-
crostate, also coloured accordingly, each column shows a single plane of the
three dimensional space. X and Y axes of each column are gradient 1 to 2, 2
to 3 and 1 to 3 respectively. Histograms show the density distribution across
the given axis, and darker colours within the plot indicate a higher density. All
axes are between -1 and 1.
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7.4.2 EEG Gradient Space

Placing the time series of each individual into the gradient space demonstrated
a limitation and preference for the locations of coordinates within the space.
Firstly, all participant time series’ occupied an ellipsoid within the space. Whilst
further investigation is required to understand this phenomena, most likely the
outer boundaries of the shape are simply likely to the correlation calculation. For
example, it is simply not possible for an EEG topography to have a correlation
approaching 1 for both the first and second gradients.

The density distribution within the ellipsoid however requires further exam-
ination. There is a higher density of coordinates on the surface of the ellipsoid
than within the body of it. Whilst it may be the case that this is due to the
correlation with each gradient, there are still occurrences within the body of the
ellipsoid, unlike the complete lack of density outside it. Further investigation
into this phenomena is required.

Here, the density was much higher than average at either end of the gradient
1 axis. This was also the case for gradient 2 to a weaker extent. This indicates
a preference for these topographies as well as combinations of the two in the
recorded participants. Gradient 3 showed a relatively normal distribution with
of density with a mean of zero, across participants. This is to be expected due
to the low explained variance of gradient 3 relative to the other axes (Figure
36).

7.4.3 Prediction of fMRI CAPs

Application of LSTMmodels that use EEG gradient space trajectories to predict
fMRI CAPs were not successful. Although model accuracy on the training data
was high (between 70% and 90% across participants for both whole time series
and GFP peak models), this accuracy did not generalise to the validation or
test data, indicating over-fitting.

This over-fitting occurred even with implementation of regularisation on the
LSTM layer. It may be the case that the model implemented was too simple,
and therefore was incapable of capturing patterns of activity between features
and targets.

Additionally, it may also be the case that the complexity of EEG gradient
trajectories cannot be binned into six distinct categories that represent global
fMRI activity patterns, and that associations are more particular. For this
reason, future work will apply the same approach as is used here, only using a
regressor with a target of the fMRI gradient space (as in Chapter 6, rather than
a classifier which targets fMRI CAP states.

7.4.4 Microstates in EEG Gradient Space

The coordinates of GFP peaks in the gradient space were subject to the same
modified k-means clustering (Pascual-Marqui et al., 1995) that is used to derive
microstates using whole topographies (Figure 42). Interestingly, the cluster
centres that were derived in the gradient space are not the same as those derived
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in the topographical space. The derived clusters do reflected previously observed
meta-microstates however (Koenig et al., 2023). This phenomena is most likely
due to the lack of gradient 3 activity within the space, which as is seen on Figure
42, is where microstate D occurs.

The coordinates of GFP peaks were coloured using the microstate labels
they were assigned in Chapter 6 (Figure 42). These distributions will be used
in future studies to derive the microstate sequence which leads to the prediction
of fMRI using the LSTM model. The microstates are likely attractor points
in this space (Milz et al., 2017). Extraction of the microstate sequence post
hoc allows for the use of complex models such as LSTMs that capture long-
range dependencies, something that is more difficult to do when investigating
sequences of symbols. Output attention weights can be used to compute heat
maps per TR to identify preferences for each fMRI CAP label.

This preliminary investigation into the use of microstates as a post hoc
analysis therefore proposes that further use of this approach is encouraged.
The liberation of EEG microstate analysis from the investigation of microstate
parameters and transition dynamics allows for a more robust understanding of
microstates in the context of the EEG signal in general, and may lead to a
better understanding of microstate syntax in the long run.
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8 General Discussion

Multiple methodologies were proposed across three studies. Preprocessing and
analysis principles were proposed in the literature review as necessary for the
investigation of simultaneous Electroencephalography (EEG)-Functional Mag-
netic Resonance Imaging (fMRI) and EEG microstate syntax (Chapters 2 and
3). Whilst a consistent relationship between microstate sequences and fMRI
signal could not be drawn across participants from the presented studies, each
study proposes a novel methodological development based on the lessons learned
from the previous one. Preliminary results in each instance point to some asso-
ciation between EEG microstate sequences and fMRI Blood-Oxygenation Level
Dependency (BOLD) signal. Each has the aim of retaining the EEG microstate
syntax and not reducing its dimensionality to fit the fMRI temporal resolution.
Such attempts have not yet been made in the literature, other than some recent
attempts that do not cover all bases (Abreu et al., 2021; Artoni et al., 2022;
von Wegner et al., 2017). The following Chapter will review the methodologies
proposed, relate findings across studies to the literature, and will suggest future
directions.
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8.1 Review of Proposed Methodologies

8.1.1 Pre-processing Considerations for EEG Microstate Syntax

The pre-processing methods proposed herein may provide a more robust means
of investigating microstate syntax. The “interpolation method” proposed as a
microstate derivation method in Chapter 3, along with the avoidance of the
smoothing method has already been highlighted by others as ill advised due
to its tendency to destroy the syntactic structure of microstate sequences (von
Wegner et al., 2017). von Wegner et al. (2017) did apply the smoothing method
however, only without the removal of microstates that were deemed too short.
The peak-mode method of derivation applied in Chapter 6 takes the proposal
of avoiding smoothing a step further by simply taking the centre point between
Global Field Power (GFP) peaks as a transition between microstates, using
the GFP peaks from which the microstates are derived as the focus of syntax
analysis. The result was a set of parameters that more accurately described
the patterns of activity between GFP peaks, the source of microstate derivation
(Lehmann et al., 1987).

Minimisation or complete avoidance of epoch cutting of the EEG time series
is also used here to avoid both the misalignment of EEG and fMRI and the
damaging of syntactic structure. Conventional methods either down-sample the
temporal resolution of EEG to that of fMRI such as in the voxel-wise General
Linear Model (GLM) approach (Britz et al., 2010), or apply epoching. Whilst
epoching does improve Signal-to-Noise Ratio (SNR)s, cutting periods of the time
series from analysis may weight the calculation of n-gram parameters, or cause
difficulties in the alignment process between EEG and fMRI data. The methods
used in each study here would not be possible with cutting, as the amount of
EEG data per fMRI state or Repetition Time (TR) would vary, likely skewing
sample sizes in favour of particular Co-Activation Pattern (CAP)s (Chapters 5
and 7) or fMRI gradient coordinates (Chapter 6).

It is suggested that future work minimises the cutting of noise in the time
series, instead opting for cleaning algorithms. It is also suggested that the
interpolation method of microstate derivation is to be utilised on the time series
when investigating microstate syntax to avoid loss of information.

8.1.2 Considerations for Simultaneous EEG-fMRI Analysis

As investigations of the relationship between EEG and fMRI become more con-
cerned with dynamic, global states (Abreu et al., 2021), it is important to
consider whether the analysis methods used are chosen with those dynamics in
mind. In general, methods that draw relationships between EEG and fMRI data
use GLMs (Britz et al., 2010; Xu et al., 2020; Yuan et al., 2012). Whilst these
models do provide a general overview of EEG signal that correlate with the
BOLD signal at each voxel, the temporal dimensionality reduction of the EEG
signal completely destroys its dynamics, whether investigation is of microstates
or EEG signal in general (Chapter 2).
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Each study presented here demonstrates the complexity of the EEG signal,
and each proposes a potential modelling method that could circumvent the
issue of temporal dimensonality reduction of the EEG time series. Particularly
the EEG gradient space, which conceptualises the EEG signal as a trajectory
in a multidimensional space (Chapter 7). The whole of the trajectory within
a window that corresponds to a simultaneously recorded BOLD image allows
for potential similarities in trajectories to be drawn across TRs. This direct
symmetrical comparison avoids any destruction of the EEG time series, retaining
its complexity.

8.1.3 Sparse Distance Graphs

Study 1 (Chapter 5) used simultaneously occurring EEG microstates and fMRI
CAPs. The methodology attempted to measure the L1 distance between distri-
butions of EEG microstate n-gram parameters during each of the fMRI CAPs.
The distances were then used as edges to connect CAPs as nodes, and edges
over a given threshold were retained in sparse graphs. The number of remain-
ing edges from the observed CAPs’ sequences were then compared against the
number of remaining edges in the CAPs’ sequences with shuffled labels.

This methodology allowed for direct comparison between the fMRI classes,
which simplified the fMRI analysis. Although there was not a consistent result
found across participants, the method showed statistically significant results at
the subject-level, even after Benjamini-Hochberg multiple comparison correction
(Benjamini & Yekutieli, 2005). The method shows that there is a clear difference
between each n-grams parameters during simultaneously occurring CAPs, and
that the observed differences between CAPs are not due to random chance.

The shortcomings of this approach however are, firstly, in the derivation of
EEG microstate n-gram parameters during each fMRI CAP. Since the cover-
age of each CAP can vary, there is an immediate possibility for a difference in
‘sample sizes’ between the CAPs, which can skew the estimates of the EEG
microstate n-grams’ ‘preferences’ across the CAPs. Additionally, since compar-
isons have to be made between CAPs at each n-gram length individually, it is
difficult to show comparisons across n-grams of lengths. It is not the case that
n-grams of different lengths are independent of one another, but the process of
conducting tests on each n individually assumes that they are. Applying mul-
tiple comparison correction across lengths was used as a potential control for
this shortcoming, but the method itself does not allow for comparisons across
n’s, which is more desirable due to being true to the actual nature of neural
dynamics that do not follow a fixed length of sequence iterations.

Finally, the use of the degree centrality of each node in the sparsely connected
graphs may be developed in future investigations of differences between fMRI
states. Future iterations of this model should utilise other measures to compare
nodes or fMRI classes (CAPs) such as betweenness centrality and clustering
coefficients to get a better understanding of how microstate n-gram parameters
vary across fMRI dynamic Functional Connectivity (dFC) states (Dennis et al.,
2012).
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8.1.4 fMRI Gradient Coordinates and Ensemble Regressors

The regressor models used to identify a relationship between the change in
microstate n-gram parameters and fMRI gradient space coordinates (Chapter 6)
could fit the data at R2 = 0.3 when considering each axis individually.The value
of 0.3 indicates a weak fit for the data, but in drawing relationships between
EEG and fMRI BOLD signal, it is not uncommon to report such relationships
as meaningful (e.g. (Yuan et al., 2012)). Both EEG and fMRI data are subject
to noise components of many types (see Chapter 2) which makes drawing any
relationships difficult. Furthermore, a null R2 should be calculated in future
studies to confirm the predictive power of these models.

However, better fitting models would of course be desirable. The use of a
single model per gradient axis, as well as per parameter and per participant,
increases the number of models to a point of concern. Use of parameters of each
individual n-gram, rather than the whole of a microstate sequence (as in Study
3) causes this combinatorial increase in the number of models.

If one was concerned with the investigation of n-gram parameters specifically,
an ideal model would consider the parameters of microstate n-grams at multiple
lengths at once. It is clear syntactically that relationships between microstates
within a sequence could occur between lengths. An immediate shortcoming
of this approach (as well as the approach used in Study 1) is the inability to
consider multiple lengths simultaneously. It may be possible to use a regression
model to do this, but the number of features in such a model would be very large,
requiring an extremely large dataset, but even then, the regression approach will
be compounded by collinearity across the predictors.

8.1.5 Using the EEG Gradient Space to understand EEG Microstate
Syntax

It was proposed that the first target of microstate syntax analysis should be
an understanding of EEG dynamics in general that should then be used to
understand microstate sequences post hoc (Chapter 7). This approach has the
benefit of allowing for the utilisation of models such as the Recurrent Neural
Network (RNN) used here, which use a continuous dynamic signal, rather than
the limitations imposed by a sequence of class labels. Whilst this proposed
technique may allow for a robust understanding of the relationship between
EEG microstate sequences and fMRI BOLD signal, the model architectures
used here require further investigation in order to achieve generalisable models.

Across all studies developed here, an important limitation to consider is the
issue of EEG-fMRI alignment. Whilst these approaches do indeed allow for a
retention of EEG microstate sequencing, and therefore for a direct association
between EEG microstate syntax and fMRI, in each case the findings depend
upon the offset of timing between the electrical signal observed at the scalp,
and the BOLD signal observed in the brain. This is accounted for by the
Haemodynamic Response Function (HRF), but in each study here, a simple
single peak, gamma response function was used as a reference, with the time
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to peak at 6 seconds. It is known that different regions of the brain have
different response functions, and can differ between subjects (Handwerker et
al., 2004). In the methods of association proposed between EEG and fMRI
here, the choice made for offset time to peak affects all results. Alignment is a
critical issue when considering these approaches, and therefore caution should
be taken when applying these methods without first considering the HRF.

8.2 Relevance to the Field

8.2.1 Derived EEG Microstates

The microstates identified here in resting state recordings exhibited similar to-
pographies to those identified in the field. The canonical set of four (Koenig
et al., 2002; Lehmann et al., 1987) as well as the less common non-canonical
meta-microstate F (Koenig et al., 2023; Tarailis et al., 2023) were all identified.
All results reported here therefore can be used as contributions to the field and
may aid in better understanding the commonly identified microstates.

The non-canonical microstate F has previously been identified in few studies
(Tarailis et al., 2023) and has been associated with the anterior Default Mode
Network (DMN) (Custo et al., 2017) and the medial prefrontal cortex (Bréchet
et al., 2019). Here, it was found using the generally adopted GLM method that
microstate F correlated with activity across the group in the right temporal
occipital fusiform cortex, as well as the left occipital pole (Figure 13). These
findings have not been described previously, and further investigation is needed.

The microstate parameters reported may be used as an addition to the field
when investigating the resting state, eyes-open. Additionally, report of EEG
microstate parameters in the conventional event-mode (Figure 12), along with
the same parameters reported in peak-mode (Figure 28), allow for a comparison
between derivation modes.

The proposal of frequency as a new parameter, as well as the reporting of
n-gram parameters at lengths greater than 1, are also novel metrics that may
be useful if adopted by the field in future investigations of n-grams.

8.2.2 Development of Microstate and EEG-fMRI Association Method-
ologies

It was highlighted in the literature review that current investigations of mi-
crostates do not sufficiently consider the temporal relationship between EEG
and fMRI (Chapter 2) or the impact of microstate syntax (Chapter 3) suffi-
ciently.

With regards to microstate syntax, a distinct lack of consideration has been
made in the literature when defining microstate sequences, defining parameters
for sub-sequences, or indeed updating existing preprocessing methods to account
for syntax.

Sequence modes have not been defined previously, meaning that comparison
between studies regarding microstate syntax is difficult without careful scrutiny
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of each individual studies methodologies. Additionally, the continuous nature of
the EEG time series is also not considered when investigating syntax. Using the
EEG gradient space as a continuous signal to extract the microstate sequence
from post-hoc, is a novel means of syntax investigation which does not reduce
the EEG signal down to a discrete sequence of classes immediately.

With regards to the relationship between EEG and fMRI signals, the stan-
dard practice is the use of a GLM, with signal from the EEG data used as a
regressor for voxel-wise attempts at association with fMRI BOLD signal. Whilst
this approach does show a general relationship between the two recordings, there
are shortcomings in the approach. The down-sampling of EEG to the same sam-
ple frequency as the fMRI destroys the dynamic structure of EEG. It has been
shown that the EEG microstate time series has a short term memory, in that in-
formation is retained in the time series in a non-Markovian manner (von Wegner
et al., 2018). Destroying the syntax of microstate sequencing makes associating
the patterns of EEG activity with fMRI signal impossible.

Furthermore, studies which associate the GLM output of voxel-wise statis-
tical maps to fMRI signals do so through association with static Functional
Connectivity (FC) networks. These networks are parcellations (e.g., Figure 4),
which do not allow a network or region to co-activate with more than one set
of regions. This means that more complex connectivity between brain regions
cannot be associated to the EEG signal in these models.

In the studies laid out here, multiple attempts were made to alleviate these
shortcomings. In the first study, fMRI CAPs were used as global activation
patterns over static FC states.

8.2.3 Findings

Study 1 (Chapter 5) firstly demonstrated the standard set of results that are laid
out in traditional investigations of the relationship between EEG microstates
and simultaneously recorded fMRI BOLD signal. The reports of microstate
parameters, as well as GLM outputs contribute to the findings reported in other
studies. Most notably is the fMRI activity pattern associated with microstate
F , which is underrepresented in microstate literature (Tarailis et al., 2023).

Furthermore, the statistically significant differences identified between mi-
crostate n-gram parameters during different simultaneously occurring fMRI
global activation patterns such as CAPs, validates the use of dynamic states
as proposed in Chapter 2, as more recent studies have also done (Abreu et al.,
2021). The use of these global patterns shows that EEG microstates need not
be associated with spatial parcellations of fMRI BOLD signal, as is common
practice (Britz et al., 2010; Michel & Koenig, 2018; Musso et al., 2010; Xu
et al., 2020; Yuan et al., 2012).

Whilst the associations on the subject-level did not necessarily generalise
to the group-level, these initial results validate an association between global
fMRI activation patterns and EEG microstate syntax. The lack of consistency
between participants should inform future methodological designs which wish to
investigate microstate n-grams parameters specifically, and microstate syntax
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more in generally.
Moving to Study 2 (Chapter 6), the use of an fMRI gradient space is a novel

approach (Brown et al., 2022), not previously used to associate fMRI and EEG
signals. The method reduces the spatial dimensionality of the fMRI data whilst
still retaining its functional significance.

The demonstration of a uniform density of EEG microstates within the fMRI
gradient space is a helpful visualisation which demonstrates the uniformity of
their occurrence throughout the time series, and highlights the need for more
sophisticated relationships to be drawn between EEG microstates and fMRI
BOLD signal in general. It may be the case therefore that the underlying
structure of EEG sequences may be what drives associations between EEG mi-
crostates and fMRI BOLD signal, rather than one-to-one associations assumed
by previously used methods.

Furthermore, the results of Study 2 demonstrated peak-mode (and the pre-
processing pipeline used to derive them) as a valid means of EEG microstate
derivation. The use of such a method (as is discussed in Chapter 3) may be
a more appropriate means of investigating microstate n-grams, and microstate
syntax in general, due to the isolation of analysis to GFP peaks, as well as the
possibility for transition from a microstate class to another occurrence of the
same microstate class. The parameter of duration in the context of peak-mode
also indicates the amount of time between consecutive GFP peaks, something
that is not accounted for in the conventional event-mode (Michel & Koenig,
2018).

The random forest regressor models used to predict fMRI gradient space co-
ordinates using co-occurring microstate n-gram parameters demonstrated fur-
ther connections between EEG syntax and fMRI activity. Whilst overall rela-
tionships at the group-level could not be established, the predictive power of
all models with an R2 value greater than zero indicates an interaction between
the two measures. Further investigation into these results is needed to confirm
whether associations are due to chance or whether they are participant spe-
cific. Future work should measure the R2 values with shuffled n-gram labels to
establish a baseline R2 for each n-gram to compare with the observed value.

Finally, the findings of Study 3 (Chapter 7) were derived using an EEG gra-
dient space as a novel means of observing EEG activity. Investigation of the
density of EEG activity within this space shows the utility of EEG microstates,
allowing them to be conceptualised as attractor points within a multidimen-
sional space, as has been suggested in the past (Milz et al., 2017). Investigating
GFP peaks and labelling each peak with its corresponding microstate class
within the space allows for a continuous representation of EEG activity which
can be subject to a wider range of analyses methods, yet still be investigated as
a microstate sequence post hoc.

Although preliminary results failed to identify a classifier which could cor-
rectly identify EEG gradient space trajectories as a given fMRI CAP between
both training and test partitions, further investigation of the method using
other RNN architectures may lead to identification of a better fitting model.
Additionally, a regressor may be utilised rather than a classifier in the future,
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with the target being an fMRI gradient space coordinate rather than a CAP la-
bel. These methods developments are valuable to the field of microstate syntax
investigation, and to attempts of simultaneous EEG-fMRI analysis in general.

8.2.4 Usefulness of EEG Microstates and n-Grams

Previous studies have demonstrated that microstates and microstate n-grams
are valuable biomarkers for identifying neurological disorders and diseases (Lehmann
et al., 2005; Nishida et al., 2013; Serrano et al., 2018; Vellante et al., 2020). In-
vestigations of EEG microstate sequences have demonstrated a complexity that
is represented as a short-term memory in the sequence (von Wegner et al., 2017)
that is yet to be understood.

The methods used in Chapters 5 and 6 use microstate n-gram parameters as
tools of their analysis. It is worth highlighting that such parameters do not con-
sider the individual microstate parts. The measurements for ABC for example,
do not consider the parameters of A, B, C, AB and BC. Whilst parameters
were collected for each of these 1- and 2-grams, a summarising measurement
that takes all into account at once would be valuable for investigations of n-
grams, and would not limit comparison of n-grams to their own length. There
are clear dependencies between lengths that are yet to be addressed.

The EEG gradient method does appear to demonstrate a shortcoming of the
microstate method in general however. In the gradient space, the moment-to-
moment EEG signal is conceptualised simply as a trajectory moving through
the multidimensional gradient space. Since microstates are derived via cluster-
ing, the microstates are a segmentation of this space where the label associated
with each EEG data point indicates the region of the space that it is occupying.
Studies that have investigated EEG microstate parameters such as duration,
occurrence, and coverage have been attempting to understand the average be-
haviour of subsections of the overall trajectory. Mean duration for example is
the average length of each subsection of the trajectory where the microstate
label remains the same.

Whilst the microstate approach does uncover some general characteristics of
the EEG signal with regards to its topography, the specifics are lost. There is
possibility of investigating the dynamics of the signal beyond the labels associ-
ated. Two sub-trajectories that are labelled with microstate A for 100ms could
both be moving in different directions in the space, and could be occupying
different regions of “A space”, but would be seen as identical when considered
solely as microstates with parameters. This problem extends to the investigation
of microstate n-grams, they are longer sub-trajectories that pass through the
pre-defined microstate boundaries. The percentage occurrence of microstate n-
grams may show how often these transitions across boundaries occur, but there
is a lack of consideration for the differences in these sub-trajectories.

I believe that future investigations of microstates should keep these points
in mind. Microstate labels simplify the trajectory through discretisation into
a sequence of labels, and allow for methods that shed light on the quasi-stable
topographies that appear around GFP peaks. But, the information about the
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EEG signal that is lost when applying microstate analysis should not be forgot-
ten, and methods should be developed that retain it.

8.3 Future Directions

8.3.1 Application of Methodologies to Cognitive Manipulation

The dataset used in this study was collected on 18 individuals (3 removed during
cleaning). The dataset used was a simultaneous recording of EEG-fMRI in
the resting state. This dataset itself includes some limitations that should be
highlighted. Firstly, the resting state may not be the most appropriate cognitive
state to investigate when attempting to identify significant connections between
EEG and fMRI. Previous studies that have attempted to draw connections
between the two imaging modalities with microstates in the resting state have
done so with weak correlation values (Britz et al., 2010; Yuan et al., 2012). It
perhaps may have been more suitable to investigate methods using tasks with
well established activity patterns in the fMRI domain, and to work backwards
from there, attempting to draw associations with each of the EEG microstates
this way. An event-based task design may have worked in synergy with the
temporally-based approaches developed here. Future studies should begin with
applying the methodologies outlined in this thesis at both subject- and group-
levels to the task data collected from the same individuals during a sustained
attention (Choice Reaction Time (CRT)) task, Fagerholm et al. (2015)).

The simultaneous EEG-fMRI data were collected during two versions of the
CRT task: one with blocks of rest and another with no rest. Participants were
shown an arrow pointing either left or right. The task was to react with a button
push with the left or right index finger as quickly as possible for the same side
as the arrow was pointing. As can be seen from Figure 43, the EEG microstates
derived from the resting state data used in Chapters 5 to 7 are very similar to
the EEG microstates derived from the EEG data during performance of two
CRT tasks.

The microstates are very similar between studies, though it appears that
meta-microstate F may change to G during the task (see Figure 2, or Koenig
et al. (2023)). The high similarity between the two cognitive states may allow
for more robust modelling, as comparison could be used to control for noise.

It is also worth highlighting that the methods developed here; especially the
EEG gradient space, may be valuable for investigation of EEG without associ-
ation to fMRI as was the case with this dataset. The notion of conceptualising
the EEG signal as a trajectory in a multi-dimensional space is a powerful one,
and may be a valuable method in instances where dynamics of EEG are at the
centre of investigation. Studies that are attempting to understand transition
boundaries between sleep states for example (Benington et al., 1994), may ben-
efit from such an approach. Future studies will focus on developing the EEG
gradient space approach and applying it to such investigations.
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Resting
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Blocked
CRT

Continuous
CRT

A B C D E
Microstates

Figure 43: EEG microstates generated using 5 cluster centres for rest, block
CRT and continuous CRT tasks, top to bottom. Microstates have not been
labelled, but have been aligned based on similarity. Note that polarity colour is
unimportant, only pole locations are considered in microstate analysis.

8.3.2 Future Methodological Developments

Future studies are likely to benefit from developing and refining the method-
ologies proposed here. For example, the Study 1 (Chapter 5) method which
measured distances between microstate n-gram distributions may be developed
upon by using other metrics than the number of edges over a given threshold.

The implementation of a gradient space methodology to observed EEG signal
in future investigations may further the understanding of EEGmicrostate syntax
by investigating EEG sequences post-hoc, following gradient space analysis.
This method allows for free investigation of the EEG time series which may
then be reduced to a discretised sequence of microstates post-hoc. The models
used then do not need to be constrained to those that investigate transitions
between microstates.

Future studies that wish to investigate the relationship between EEG mi-
crostates and the fMRI BOLD signal should in general consider the principles
laid out in the literature reviews of Chapters 2 and 3. New methods aimed
at investigating EEG microstate syntax must ensure that syntactic structure is
retained at all phases. The investigations relating EEG and fMRI BOLD signal
dynamics should aim to retain the resolution of recorded EEG, finding alterna-
tive approaches to overcoming the issue of temporal resolution of the EEG and
fMRI data.

8.3.3 Epsilon-Machines

One of the methods proposed for the study of complex microstate syntax is
using epsilon machines (Nehaniv & Antonova, 2017). Epsilon machines are dis-
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crete dynamical system automata with state-dependent probabilities on differ-
ent future observations (Crutchfield, 1994; Rhodes & Nehaniv, 2009). Syntactic
structure is well studied in formal language theory, where different classes of au-
tomata models act as recognisers of a “language” of possible sequences (Hopcroft
et al., 2001).

Epsilon machines model the syntactic structure of the observed sequence
of states. Unlike fitting parameters to the architecture of a pre-given model,
the structure of an epsilon machine is derived from the data, which is first
built naively and is then minimised into a more fundamental model. The ep-
silon machine iterates through each observation in the sequence and collects the
transitions from each state to the next. After iterating through the whole se-
quence, the epsilon machine has a count of transitions from each state to every
other state that occurred in the dataset, generating a probabilistic distribution.
This distribution predicts the next observation given the current observation.
Figure 44 shows a visualisation of the process.

F

FF

F F F F

F

Figure 44: Visualisation of the epsilon machine. An epsilon machine iterates
through each state in the input sequence (top) and builds a probability dis-
tribution of transition from each state to every other possible state (bottom).
This results in a matrix of transition probabilities which can be used to gener-
ate a probabilistic automaton. This process can be done with n-grams of longer
lengths (i.e., bottom microstates shown here would be each n-gram with its own
distribution of transitions to the next possible state).

A benefit of the epsilon machine approach is the ability to use short length
sequences as input, rather than a single event as observation. In application to
microstates, n-grams can be used as states. For example, a 4-gram can be used
as an input observation, not just a single observation of microstate A.

Using an epsilon machine which considers n-grams as input events instead of
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single letters, causes a calculation of transition probabilities from each length n
sequence to the set of next possible length n sequences. For example, ABCD has
the possibility to transition to BCDA, BCDB and BCDC if using the canonical
EEG microstate set in event mode (see Chapter 3 for explanation). Using length
4-grams as an example, the generated automaton would be a much more complex
web of connections than the simple transitions between microstates, where each
state would be a 4-gram, rather than just a single letter. Following the building
of the 4-gram epsilon machine, each n-gram is an event that has an associated
transition probability distribution to all other possible states.

Once this basic structure has been derived, the epsilon machine can be “min-
imised”. The minimisation process involves identifying the causal structure of
the sequence. If two 4-grams have very similar probabilistic distributions to the
set of possible subsequent observations, they are binned into the same “causal
state”. In this context, binning two 4-grams into the same causal state iden-
tifies them as having the same predictive value when considering the following
observation.

Figure 45 shows the 1-gram epsilon machine generated from the observed
event-mode microstate sequences of the participants.

Figure 46 then shows a schematic of a 4-gram event-mode epsilon machine
after minimisation. Note how the minimisation process bins multiple n-grams
into a single causal state due to their similar probabilities of transition to the
next microstate.

Using a model such as this allows for a description of the EEG syntax that is
non-Markovian, something that has already been observed in past studies (von
Wegner et al., 2018). Preliminary results have observed some minimisation of n-
grams into causal states, suggesting that these n-grams have a similar predictive
power in predicting the next state.

Future work should utilise epsilon machines for the investigation of the rela-
tionship between EEG microstates and fMRI CAPs (or fMRI classes in general)
in simultaneously recorded EEG/fMRI data. The microstate sub-sequences that
are occurring during each fMRI state class can be isolated and used to build
epsilon machines. Figure 47 shows a representation of such a model.

The epsilon machines generated at the microstate level are for individual
fMRI CAP states. A machine can also be generated at the CAP level using
the sequence of CAPs as input. Hence a “multi-level” epsilon machine which
simultaneously describes the transitions between microstate n-grams and fMRI
CAPs can be generated, and subsequently interrogated.

This is a purely discrete model of the time series which only considers transi-
tions between states. Utilising such a model in-tandem with a continuous model
such as the gradient space regression models proposed above would allow for a
double-pronged approach to the investigation of microstate syntax which avoids
the pitfalls of a purely continuous, or purely discrete investigation.

134



E

A

D

B

C

0.3
0.1

0.2

0.4

0.3

0.1

0.2

0.4

0.5

0.1

0.2

0.1

0.7

0.1

0.15 0.05

0.5

0.5

F

Figure 45: Group 1-gram event-mode epsilon machine. Nodes in the graph
are microstates, directed edges are transition ratios. Process of minimisation is
not possible at the 1-gram level, so causal states are equivalent to microstate
classes.
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Figure 46: Visualisation of a minimised event-mode 4-gram epsilon machine,
not generated from data. The 4-grams with similar probability distributions are
binned into the same causal state, meaning it is assumed that the underlying
causal state is the driver of retained information through the syntax, rather than
the n-grams themselves. The impossible state includes the list of all possible
4-grams that did not occur in the input sequence, and the dead state is the
state transitioned into at the end of a sequence (i.e., at the end of a participants
observed sequence).
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Figure 47: Concept for a “multi-level” epsilon machine. The EEG microstates
which are occurring simultaneously during a given fMRI CAP are isolated and
an epsilon machine is built using only those n-grams, for each CAP. An epsilon
machine is then generated with the fMRI CAP sequence as input to get an fMRI-
level epsilon machine. The result would be an overarching CAP-level epsilon
machine which transitions between nested microstate-level epsilon machines. In
this example, the microstates generated are A to E, and there are eight CAPs.
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9 General Conclusion

It was demonstrated here, using a number of novel methodologies, firstly that
there is a marked difference between Electroencephalography (EEG) microstate
n-gram parameters during simultaneously occurring global Functional Magnetic
Resonance Imaging (fMRI) Co-Activation Pattern (CAP) patterns, and that
these associations could not be established across participants. This was ex-
tended to the investigation of fMRI gradient space, where preliminary results
suggested that the relationship between EEG microstate n-gram parameters
and fMRI Blood-Oxygenation Level Dependency (BOLD) signal could be estab-
lished as a dynamic signal rather than as differences between classes of activity
patterns. Finally, the EEG gradient space was derived as an alternative to mi-
crostate sequences and n-grams, as a potential means of liberating microstate
analysis from the investigation of parameters and transition probabilities. Re-
sults were generated using the preprocessing pipeline proposed here that was
developed specifically with EEG microstate syntax in mind, and also develop
upon existing methods that investigate the relationship between simultaneously
recorded EEG-fMRI data, prioritising the retaining of EEG temporal resolu-
tion. It is suggested that future investigations into the relationship between
EEG microstates and fMRI BOLD signal utilise these methods and develop
them further to elucidate the functional significance of EEG microstates.
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Tramèr, M. R., & Michel, C. M. (2022). EEG microstate dynamics in-
dicate a U-shaped path to propofol-induced loss of consciousness. Neu-
roImage, 256, 119156.

Bakhshayesh, H., Fitzgibbon, S. P., Janani, A. S., Grummett, T. S., & Pope,
K. J. (2019). Detecting connectivity in EEG: A comparative study of
data-driven effective connectivity measures. Computers in Biology and
Medicine, 111, 103329.

Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Inves-
tigations into resting-state connectivity using independent component
analysis. Philosophical Transactions of the Royal Society B: Biological
Sciences, 360 (1457), 1001–1013.

Benington, J. H., Kodali, S. K., & Heller, H. C. (1994). Scoring Transitions to
REM Sleep in Rats Based on the EEG Phenomena of Pre-REM Sleep:
An Improved Analysis of Sleep Structure. Sleep, 17 (1), 28–36.

Benjamini, Y., & Yekutieli, D. (2005). False Discovery Rate–Adjusted Multiple
Confidence Intervals for Selected Parameters. Journal of the American
Statistical Association, 100 (469), 71–81.

Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015).
The PREP pipeline: Standardized preprocessing for large-scale EEG
analysis. Frontiers in Neuroinformatics, 9.

139



Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-
planar mri. Magnetic Resonance in Medicine, 34 (4), 537–541.

Braga, R. M., & Leech, R. (2015). Echoes of the Brain: Local-Scale Represen-
tation of Whole-Brain Functional Networks within Transmodal Cortex.
The Neuroscientist, 21 (5), 540–551.
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A. (2021). Beyond imagination: Hypnotic visual hallucination induces
greater lateralised brain activity than visual mental imagery. NeuroIm-
age, 239, 118282.

Leech, R., Scott, G., Carhart-Harris, R., Turkheimer, F., Taylor-Robinson, S. D.,
& Sharp, D. J. (2014). Spatial Dependencies between Large-Scale Brain
Networks. PLOS ONE, 9 (6), e98500.

Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-
states by space-oriented adaptive segmentation. Electroencephalography
and Clinical Neurophysiology, 67 (3), 271–288.

Lehmann, D., Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T.,
Koukkou, M., Mucci, A., Pascual-Marqui, R. D., Saito, N., Wacker-
mann, J., Winterer, G., & Koenig, T. (2005). EEG microstate duration
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Functional Aspects of Resting EEG Microstates: A Systematic Review.
Brain Topography.

Teplan, M. (2002). Fundamentals of EEG Measurement. Measurement Science
Review, 2,2.

Tomescu, M. I., Rihs, T. A., Rochas, V., Hardmeier, M., Britz, J., Allali, G.,
Fuhr, P., Eliez, S., & Michel, C. M. (2018). From swing to cane: Sex
differences of EEG resting-state temporal patterns during maturation
and aging. Developmental Cognitive Neuroscience, 31, 58–66.

Tomescu, M. I., Papasteri, C. C., Sofonea, A., Boldasu, R., Kebets, V., Pis-
tol, C. A. D., Poalelungi, C., Benescu, V., Podina, I. R., Nedelcea,
C. I., Berceanu, A. I., & Carcea, I. (2022). Spontaneous thought and
microstate activity modulation by social imitation. NeuroImage, 249,
118878.

Tops, M., & Boksem, M. (2011). A Potential Role of the Inferior Frontal Gyrus
and Anterior Insula in Cognitive Control, Brain Rhythms, and Event-
Related Potentials. Frontiers in Psychology, 2.

148



Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a Universal
Taxonomy of Macro-scale Functional Human Brain Networks. Brain
Topography, 32 (6), 926–942.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E.,
& Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An
overview. NeuroImage, 80, 62–79.

Vellante, F., Ferri, F., Baroni, G., Croce, P., Migliorati, D., Pettoruso, M., De
Berardis, D., Martinotti, G., Zappasodi, F., & Giannantonio, M. D.
(2020). Euthymic bipolar disorder patients and EEG microstates: A
neural signature of their abnormal self experience? Journal of Affective
Disorders, 272, 326–334.

von Wegner, F., Bauer, S., Rosenow, F., Triesch, J., & Laufs, H. (2021). EEG
microstate periodicity explained by rotating phase patterns of resting-
state alpha oscillations. NeuroImage, 224, 117372.

von Wegner, F., Tagliazucchi, E., & Laufs, H. (2017). Information-theoretical
analysis of resting state EEG microstate sequences - non-Markovianity,
non-stationarity and periodicities. NeuroImage, 158, 99–111.

von Wegner, F., Knaut, P., & Laufs, H. (2018). EEG Microstate Sequences From
Different Clustering Algorithms Are Information-Theoretically Invari-
ant. Frontiers in Computational Neuroscience, 12.

Vos de Wael, R., Royer, J., Tavakol, S., Wang, Y., Paquola, C., Benkarim, O.,
Eichert, N., Larivière, S., Xu, T., Misic, B., Smallwood, J., Valk, S. L.,
& Bernhardt, B. C. (2021). Structural Connectivity Gradients of the
Temporal Lobe Serve as Multiscale Axes of Brain Organization and
Cortical Evolution. Cerebral Cortex, 31 (11), 5151–5164.

Wagstyl, K., Ronan, L., Goodyer, I. M., & Fletcher, P. C. (2015). Cortical
thickness gradients in structural hierarchies. NeuroImage, 111, 241–250.

Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic Classification of
Artifactual ICA-Components for Artifact Removal in EEG Signals. Be-
havioral and Brain Functions, 7 (1), 30.

Xu, J., Pan, Y., Zhou, S., Zou, G., Liu, J., Su, Z., Zou, Q., & Gao, J.-H. (2020).
EEG microstates are correlated with brain functional networks during
slow-wave sleep. NeuroImage, 215, 116786.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D.
(2011). NeuroSynth: A new platform for large-scale automated synthesis
of human functional neuroimaging data. Frontiers in Neuroinformatics,
5.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl,
B., Liu, H., & Buckner, R. L. (2011). The organization of the human
cerebral cortex estimated by intrinsic functional connectivity. Journal
of Neurophysiology, 106 (3), 1125–1165.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Net-
works: LSTM Cells and Network Architectures. Neural Computation,
31 (7), 1235–1270.

149



Yuan, H., Zotev, V., Phillips, R., Drevets, W. C., & Bodurka, J. (2012). Spa-
tiotemporal dynamics of the brain at rest — Exploring EEG microstates
as electrophysiological signatures of BOLD resting state networks. Neu-
roImage, 60 (4), 2062–2072.

Zanesco, A. P., Denkova, E., & Jha, A. P. (2021). Associations between self-
reported spontaneous thought and temporal sequences of EEG mi-
crostates. Brain and Cognition, 150, 105696.

150


	General Introduction
	Background and Context
	Definition of EEG Microstates
	Choosing the Optimal Number of EEG Microstates
	EEG Microstate Parameters
	Functional Significance of EEG Microstates: Findings from the Studies Of Clinical Populations
	Functional Significance of EEG Microstates: Findings from Cognitive Manipulation, Source Localisation and fMRI BOLD Signal Association Studies
	EEG Microstate Syntax
	EEG Microstate n-Grams

	Aims and Objectives
	Thesis Overview

	Literature Review: Methodological Approaches to the Association of EEG Microstates and fMRI BOLD Signal Time-Series
	fMRI Networks
	Spatial fMRI Networks
	Global Temporal fMRI Patterns

	Association of fMRI Networks with EEG Signal
	Asymmetrical Methods of Alignment
	Symmetrical Methods of Alignment


	Literature Review: Methodological Considerations regarding Microstate Syntax
	EEG Pre-processing for Microstate Syntax Investigation
	Standard EEG Pre-processing Pipeline
	Downsampling
	Epoch Removal
	Improved Pre-processing Pipeline for Microstate Syntax investigations

	Microstate Definition and Analysis Methods for Application to Syntax Investigation
	Canonical vs Data-Driven Microstates
	Smoothing Destroys Syntactic Structure
	A Formal Definition of Sequence Types - Event, Clock and Peak Mode

	Within-Cluster Differences - Microstates as Attractor Points
	Proposed Methodology for Microstate Syntax Analysis

	Overview of Studies
	Data and Recording Paradigm
	Participants
	EEG Recording
	fMRI Recording

	Code Availability
	Plan of Investigation
	Study 1 (Chapter 5)
	Study 2 (Chapter 6)
	Study 3 (Chapter 7)


	Study 1 - Microstate n-Gram Parameters during fMRI ``Macro-states"
	Introduction
	Methodology
	EEG Preprocessing
	EEG Microstate Analysis
	EEG Microstate n-gram Derivation and Parameter Calculation
	FMRI Preprocessing
	EEG Microstate fMRI General Linear Model
	FMRI Co-Activation Pattern Derivation
	Microstate and Co-Activation Pattern Sequence Alignment
	Obtaining Microstate Sub-Sequences per Co-occurring fMRI TR
	Comparison of Microstate n-gram Parameters between Co-occurring fMRI CAPs
	Microstate n-Gram Parameter Differences between CAP Labels as an Undirected Graph
	Comparison of Distances between CAPs against a Data-Driven Null Distribution

	Results
	EEG Microstate Derivation
	EEG Microstate Parameters
	EEG Microstate fMRI General Linear Model
	fMRI CAPs and Parameters
	Functional Significance of CAPs
	EEG Microstate n-gram Parameters
	L1 Distance Null Distributions Compared to Observed CAP Differences
	Observed Differences in Microstate n-gram Parameters between CAP Labels

	Discussion
	Microstates and Parameters
	Microstates fMRI General Linear Model
	CAPs and Parameters
	Statistically Significant Differences between n-Gram Parameters Occurring during Different CAPs


	Study 2 - EEG Microstate n-gram Parameters in the fMRI Gradient Space
	Introduction
	Methodology
	Derivation of Microstate Parameters for Peak-Mode n-Grams
	fMRI Gradient Coordinate Calculation
	Alignment of Microstate n-Gram Parameters with fMRI Time-Series
	Application of Random Forest Regressors
	Analysis of Random Forest Models

	Results
	fMRI Gradient Coordinates
	EEG Microstate Sequences in fMRI Gradient Space
	Peak-Mode Microstate n-Grams
	Random Forest Regressors Three Coordinates
	Random Forest Regressors for Separate fMRI Gradient Coordinate Axes
	Random Forest Post-hoc Analysis

	Discussion
	fMRI Gradient Space
	Microstates in fMRI Gradient Space
	Peak-Mode EEG Microstates
	Predicting fMRI Gradient Space Coordinates Using EEG Microstate n-Gram Parameters


	Study 3 - EEG Gradient Space as a Method for the Investigation of Microstate Sequence Patterns between fMRI States
	Introduction
	Methodology
	EEG Gradient Space and fMRI Alignment
	Predicting fMRI CAPs using EEG Gradient Space Trajectories

	Results
	EEG Gradient Space Axes
	EEG Gradient Space Trajectory and Density
	LSTM Prediction of CAPs
	EEG Microstates within the EEG Gradient Space

	Discussion
	EEG Gradient Axes
	EEG Gradient Space
	Prediction of fMRI CAPs
	Microstates in EEG Gradient Space


	General Discussion
	Review of Proposed Methodologies
	Pre-processing Considerations for EEG Microstate Syntax
	Considerations for Simultaneous EEG-fMRI Analysis
	Sparse Distance Graphs
	fMRI Gradient Coordinates and Ensemble Regressors
	Using the EEG Gradient Space to understand EEG Microstate Syntax

	Relevance to the Field
	Derived EEG Microstates
	Development of Microstate and EEG-fMRI Association Methodologies
	Findings
	Usefulness of EEG Microstates and n-Grams

	Future Directions
	Application of Methodologies to Cognitive Manipulation
	Future Methodological Developments
	Epsilon-Machines


	General Conclusion

