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ABSTRACT 

Structural health monitoring (SHM) is a means for maintaining structural integrity, safety and 

reliability by analysing various structural responses (i.e., mechanical signals) to pinpoint the anomalies 

of the structures due to damage. It is not an easy task to filter the noise and fluctuation of mechanical 

signals to successful find the damage-induced anomalies, but it might be achieved by machine learning 

algorithms. However, the successful implementation of a machine learning requires a large amount of 

training data, which is always available. In this work, a novel machine learning (ML) model, combining 

k-nearest neighbors kernel (KNN) and deep neural network (DNN), was proposed that can be trained 

by insufficient/incomplete SHM data. In addition, the damage states can be identified by Kernel 

Principle Component Analysis (KPCA). To demonstrate the accuracy of this model, training and 

validation data were taken from the strains of the braided composite beam under progressive three-point 

bending. The strain signals were measured by embedded distributed optical fibre sensors (DOFS). The 

prediction of the proposed novel ML model demonstrates a good agreement with the experimental 

observations for validation, which provides a novel approach for sufficient/incomplete training data. 

   

 

1 INTRODUCTION 

Structural Health Monitoring (SHM) is a transdisciplinary field of engineering devoted to ensuring 

the structural integrity and operational safety of a component or structure [1]. SHM is primarily driven 

by the damage detection to detect the damage at the earliest possible stage (near real-time) to extend the 

design basis service life of the existing structural and mechanical structures in aircraft, bridges, offshore 

platforms, buildings and defence systems [2]. Traditionally, the damage detection process relied on 

physical-based methods and parametric approaches, e.g., determination of the stiffness matrix or modal 

parameters [3,4], to extract meaningful information from the measured data. However, as the underlying 

system complexity increases (e.g., complex real-world structures, material uncertainties, 

environmental/operational variations), it is difficult to produce a reliable damage estimation. In fact, the 

monitoring and analysis of damage-sensitive features derived from raw experimental data of a monitored 

structure may be necessary to accurately detect structural anomalies resulting from damage [3]. Indeed, 

a large amount of SHM data are generated and collected which might include noise, redundant 

information, outliers, etc. Therefore, more efficient methodology of processing these SHM data based 

on the algorithms used to handle the data should also be developed [5]. All these have motivated the use 
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of a data-driven approach for SHM where damage assessment is handled to compensate for the 

challenges associated with the physical-based approach.  

The last few decades have stimulated the Machine Learning (ML) techniques at building models for 

mapping input patterns in measured SHM data to output targets for damage assessment at different levels 

(e.g., establishing the presence of damage) [1]. Conventionally, supervised learning ML techniques were 

limited in processing the large amount of data of hand-crafted damage-sensitive features on physical-

based SHM studies, for example, damage locating vector (DLV) [6,7], probabilistic reconstruction 

algorithm (PRA) [8]. In supervised and partially supervised approaches, there is a set of training data 

available, whose relationships with physical damage phenomena appear to be known. They are then 

applied to analyse the new datasets. Min et al. [9] proposed an innovative Neural Network (NN)-based 

pattern analysis tool to identify damage-sensitive frequency ranges to detect loose bolts and notches on 

a bolt-jointed aluminium beam and a lab-scale pipe structure. Selva et al. [10] presented a Probabilistic 

Neural Networks (PNNs) approach to detect and localize damage in composites Carbon Fibre 

Reinforced Plates (CFRPs) based on a coupled Finite Element Methods (FEM) and electromechanical 

impedance (EMI) techniques. However, these above damage detection systems were highly depended 

on the selected damage-sensitive features. In addition, these hand-crafted features may be sub-optimal 

for the structure under consideration, as there is no guarantee that the same set of features can be happen 

in the realistic situations. Whilst supervised learning is the most common form of learning, damage 

detection in most SHM applications is often performed in a semi-supervised or unsupervised manner 

since real-world structures are unlikely to have a clear description of their damage scenarios. To 

overcome this shortcoming, Deep learning (DL) methods have also attracted more attention as it allows 

raw data to be used and features to be learnt from it using a general-purpose learning process [1,11,12]. 

An interesting technique within the domain of unsupervised learning is clustering, which can be useful 

for anomaly detection. Clustering groups data points that are similar into different subsets in such a way 

that the normal distribution is preserved as clusters and the damage is detected using an outlier detection 

approach [3]. Park et al. [13] incorporated the Principal Component Analysis (PCA)-based data 

compression and k-means clustering-based pattern recognition methodology for an EMI-based SHM 

study and the proposed methods were effective in inspecting loose bolts in a bolt-jointed aluminium 

structures. Jiang et al. [14] employed k-means clustering analysis for a piezoelectric active sensor self-

diagnosis EMI SHM problem and the results found that k-means clustering based on admittance 

characteristics can accurately distinguish and identify the structural damage for four kinds of sensor 

damages.  

Compared to other damage detection techniques (i.e., vibration based and ultrasonic guided wave-

based), the use of Distributed Optical Fibre Sensors (DOFS) for strain-based methods is appealing due 

to their light weight and small size, especially negligible intrusion in the host structure for composite 

materials. Many researchers have focused their studies on the embedment of DOFS in different 

production processes of thermoset composite materials (e.g., autoclave, hot press and VARIM) for 

manufacturing monitor and damage detection, debonding or delamination etc. [15–19]. However, most 

of the studies qualified the damage with a local change in the signal response without quantifying the 

high data flow into a state index after filtering out signals from environmental disturbances and noise. 

Moreover, a robust and generalizable model for the automated detection and characterization of damage 

is impossible to train unless sufficient data are collected and treated. Consequently, it is necessary to 

develop smart data-driven models to augment the insufficient/incomplete training data of real-world 

structures to perform higher levels of damage assessment and/or develop more comprehensive data 

acquisition methods, given the insufficient/incomplete training data. Semi-supervised learning strategy 

was found a powerful tool to integrate and associate raw data with the physical-based experimental 

observations using artificially labels of damage-sensitive features [20]. Normally, it takes a lot of efforts 

to artificially label the raw data and the way to label data may have effects on the fitting performance of 

neural network models. To significantly reduce the amount of artificially assigned labels as well as to 

interpret the material characteristics based on merely raw data sources, a data driven based new 

methodology was proposed in this paper. 

In this paper, we firstly tested a thermoplastic braided composite beam integrated with DOFS under 

a three-point bending test with six defined loading-unloading cycles. The raw measured strain data from 

DOFS was corelated to the bearing performance of the specimen by labeling a few particular points in 



 

 

the measured data sequence. Subsequently, a semi-supervised learning algorithm was employed to 

propagate the labels according to the data characteristics and fitted by a DNN architecture. A state index 

based on labels was proposed to represent the load performance and load capacity of the sample. The 

developed DNN architecture was capable of predicting the state index based on a sequence of raw data. 

The projected labels were further decomposed to the feature space and coupled with the prediction by 

DNN to identify the potential damage in the material, which was well supported by experimental 

findings.  

2. Distributed optical fibre sensors (DOFS) 

DOFS, as distributed optical fibre sensing, is capable of achieving the strain or temperature 

measurements without the use of gratings by measuring the low amplitude signal of reflected light 

referred to as Rayleigh backscatter [21]. Rayleigh scattering based OFS were used due to their high 

chemical stability and small diameter. Such fibres were embedded in the anode electrode of a prototype 

pouch cell to monitor the distributed strain and temperature in real-time under different operating 

conditions.  

The Rayleigh backscatter in DOFS is caused by random fluctuations in the index profile along the 

fibre length, which is an inherent phenomenon in fibre during the manufacturing process. For every 

individual fibre, the scatter amplitude as a function of distance is a random but static property of that 

fibre [21,22]. If the local changes in temperature and strain are relayed to the optical fibre (OF), the 

scattered signal in the fibre is modulated by these physical parameters. Specific optical interrogator-

based electronics utilise this scatter “fingerprint” to measure a shift between its reference state and 

externally stimulated state [22]. Therefore, this shift is calibrated to quantify the local physical variables 

of strain and temperature. The desired features of Rayleigh scattering based fibre sensing technique 

allows distributed measurements with millimetre-scale spatial resolution and high measurement 

accuracy, making it a suitable solution for in-situ applications.  

Optical Frequency Domain Reflectometry (OFDR) uses polarization-devise to measure both the 

amplitude and phase of the Rayleigh backscatter signal [22]. In OFDR, either the optical frequency of 

the light source or the frequency of an amplitude modulation is swept and acquired by “coherent” and 

“incoherent” systems [23]. The spatial information is then retrieved by a Fourier transform to the 

backscatter in the frequency domain. The network of the OFDR system is shown in Figure 1. Light from 

a Tunable Laser Source (TLS) with linearly scanning optical frequency is split by a coupler, where one 

part of the light is launched as the reference and the other parts acts into the fibre under test (FUT). In 

the measurement path, the backscattered light from the FUT recombined with the light from the 

reference path and their frequency beating is acquired by a photodetector. Finally, the Fourier transform 

of the signal at the detectors results in the phase and amplitude of the signal as a function of length (or 

delay) along the sensor [22].   

 
Figure 1: Basic set-up of a OFDR network. The incident light is a continuous wave with 

frequency sweeping; the Rayleigh backscattered light from the sensing fibre is mixed with the 

reference light at a photodetector, and the obtained signal is processed to retrieve the spatial 

information. TLS: Tunable Laser Source. FUT: Fibre under test. 
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Therefore, by analysing the interference signal of the main interferometer, it can be found that a 

specific frequency 𝑓𝐵, named as the beat frequency, directly corresponds to a specific position (𝑧) 
along the Fibre under test (FUT). The spatial resolution (∆𝑧) can be given as 

                                                   ∆𝑧 =
𝑐

2𝑛𝑔∆𝐹
                                                                                 (1) 

where 𝑐 is the speed of light in space, 𝑛𝑔 is the group refractive index, ∆𝐹 is the frequency tuning 

range of the Tunable Laser Source (TLS). In known conditions, a stable and unique fingerprint 

Rayleigh backscattered spectrum (RBS) is acquired. The local RBS shifts in frequency when a 

variation in the environmental conditions occurs. A change in strain or temperature from the baseline 

condition results in a frequency shift in the spectrum of light scattered in the fibre. Changes in the 

local period of Rayleigh scattering cause temporal and spectral shifts in the locally-reflected spectrum, 

which can be scaled to from a distributed sensor. The strain response arises due to both the physical 

elongation and compression of the sensor, and the change in fibre index due to photoelastic effects 

[24]. The physical length and refraction index of the fibre are intrinsically sensitive to the 

measurement of both temperature and strain; therefore, when the external temperature in unchanged, 

the bare fibre sensor is used as the ε-DOFS. 

3. Experimental Investigation 

3.1. Manufacturing of smart thermoplastic composite beam with DOFS 

The process used to produce the thermoplastic composite beams with integrated DOFS involved 

three steps, as shown in Figure 2. In the braiding and preform preparation, a commingled material system 

procured from Coats plc composed of E-glass fibres and polyamide 6 (PA6) filaments was used to braid 

the preforms. The braiding of the circular hollow preforms was performed at Composite Braiding Ltd 

using a 64-carier braiding machine. Three layers were overbraided on an acetal mandrel with an outer 

diameter of 25 mm. The machine parameters were set to achieve a target braid angle of 45° in all the 

braided layers.  

The next step is the Integration of OF. The OF employed in this study is a polyimide coated, low 

bend loss, single mode fibre, which was integrated between the outermost and second layer of the 

braided preform. In order to protect the termination of the optical fibre, a 0.6 mm diameter Poly-Tetra-

Fluoro-Ethylene (PTFE) coating was used in the ingress and egress portions. The coated portions were 

also secured to the second layer of the braid using masking tape to maintain orientation of the OF. 

Finally, the outermost layer was carefully reinstated, and a silicone rubber bladder was put through the 

preform. Bespoke designed metallic end fittings were attached at both ends of the bladder that would 

enable internal pressurisation during the moulding process.  

The preforms were moulded using a novel balder moulding technique called rapid variothermal 

moulding (RVM) developed previously by [25]. The process uses a hydraulic press integrated with a 

modern smart tooling concept developed by Surface Generation Ltd. The tooling setup enables rapid 

heating/cooling of the mould faces while maintaining thermal uniformity across the mould via localised 

thermal control. The detailed moulding process was depicted in [25].  



 

 

 
Figure 2: Key steps in manufacturing thermoplastic braided beams. Left: Braiding onto 

mandrel. Centre: Preparation for RVM and embedment of optical fibre. Right: Preform inside 

the press. The red line highlighted the insertion of DOFS.  

3.2. Interrupted mechanical tests 

A quasi-static three-point flexural test was conducted using an Instron 3367 test machine with a 30 

kN load cell in compression mode, as shown in Figure 3(a). The support span was 350 mm, which is 

consistent with those tested in our previous study [25]. The separate loading-unloading interrupted test 

was carried out at a slower crosshead speed of 0.5 mm/min under displacement control. The strain 

measurements from DOFS were validated with the surface strain distribution from a three-dimensional 

digital image correlation (GOM 12 3D-DIC) system in our previous study. The tests were stopped at a 

crosshead displacement of 12 mm as significant lateral movement was observed at the beam-support 

roller interfaces upon deflections beyond this. The reason of loading-unloading interrupted test was 

mainly to determine the repeatability of strain measurements in DOFS and also to visually observe the 

induced damage by a travelling microscope equipped with a digital camera, as shown in Figure 3(b). 

Six loading-unloading cycles (defined as LC1 to LC6) selected under progressively increasing 

maximum displacement were decided according to the continuous test done for the samples previously, 

as indicated in Table 2. The Optical Frequency Domain Reflectometry (OFDR) system from the LUNA 

Inc. (ODiSI-B model) was used to monitor strain in the optical fibre during the test. The DOFS’s 

acquisition rate is 1 Hz with a gage length of 1.25 mm. An X-Ray micro–Computed Tomography 

(micro-CT) scan was performed at the Centre for Imaging, Metrology and Additive Technologies 

(CiMAT) at WMG, Warwick University to extract detailed information regarding the positioning of the 

optical fibre within the three-dimensional volume of the specimen. The detailed X-ray micro-CT setup 

was introduced in our previous work. Figure 3(c) highlighted the DOFS with PTFE coating close to the 

end of the sample. It can be seen that the optical fibre situated with a vertical distance of 5.3 mm to the 

top surface where the loading created. 
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Figure 3: (a) Three-point bending experimental set up with OFDR-bases interrogator for 

strain measurement, (b) the traveling microscope used to measure damage during the 

interrupted test 

 

Table 1 Loading-unloading cycles of interrupted three-point bending test 

Loading cycle Maximum displacement (mm) Maximum load (N) 

1 3.0 272.96 

2 4.5 360.90 

3 6.0 427.46 

4 7.5 465.77 

5 9.0 471.38 

6 10.5 447.94 
 

4. Machine learning based approaches 

Machine learning technologies have merged as one of the most promising expertise thriving in the 

21st century, and by the way of learning, it can be classified as supervised learning, semi-supervised 

learning, and unsupervised learning algorithm. For supervised learning algorithms, the data input to 

the model is all labelled, and the mapping relationship between inputs and outputs will be fit by the 

model based on the labels. For unsupervised learning algorithms, the data will be clustered according 

to the characteristics of the data in the feature space. For semi-supervised learning algorithms, the 

input data is partially labelled, and the labels of the unlabelled data were inferred from the labelled 

ones.  

In this paper, we proposed a general prediction methodology for damage detection based on data 

driven models by means of raw strain measurements from DOFS using different machine learning 

based approaches. The schematic diagram of the proposed methodology was illustrated in Figure 4. 

This methodology consisted of the following steps:  

(a) The load-midspan performance of the structure under different load cycles were firstly analysed;  

(b) A state index Sindex was determined based on the stiffness degradation of the structure and a few 

points were also artificially labelled;  

(c) Semi-supervised label spreading algorithm was used to spread the labels to unassigned 

datapoints throughout the whole loading process; 

(d) A supervised Deep Neural Network (DNN) architecture was used to fit the dataset which was 

formed by the original data and labels obtained in step (c) for state index prediction;  

(e) Finally, the Kernel Principal Component Analysis (KPCA) algorithm was used to decompose 

the labels and to visualise the pattern change induced by damage in the feature space. 



 

 

The methodology utilizes the excellent capability of neural networks to fit the raw strain 

measurement data from DOFS and the limited number of artificially labelled state index based on the 

experimental observations. It was further combined with KPCA to reasonably reveal the pattern change 

occurred during the damage evolution process in the feature space by dimension decomposition. The 

main advantages of this methodology lie in the ability of label spreading algorithm to reduce the demand 

of the artificially labelled data and the reasonable assignment of labels based on the data characteristics. 

The detailed learning process of label spreading, DNN and KPCA are introduced in the following 

sections. 

 
Figure 4: Schematic diagram of the proposed damage detection methodology based on 

machine learning approaches. 

4.1. label spreading 

Label spreading is a kind of semi-supervised learning technique that use label spreading algorithm 

to propagate the labels to the unlabelled data points when given a set of labelled data points. The 

principal theory of label spreading can be referenced to [26] and illustrated as follows. 

Given dataset  1 1, , , , , m

l l nx x x x +=        , and the first p points ( )ix i p  have labels 

 1, , py y  while the others  ( )1ux p u n+    are unlabeled, and  is the label set. Let F denote 

a n c matrix with nonnegative elements: 

11 1

1

c

n nc

F F

F

F F

 
 

=
 
  

,  and labels  i j c ijy arg max F= for 

each data point ix . Let Y denote a n c matrix representing labeled data points. For artificially labeled 

data point ix  and corresponding label iy , ij y=  and let 1ijY =  otherwise 0ijY = . The affinity 

matrix W is defined by ( )2
2exp / 2

0

i j

ij

x x i j
W

i j

 − − 
= 

 =

. Constructing the matrix 

1 1

2 2S D WD
− −

=

in which D  is the diagonal matrix with its elements on the main diagonal of the matrix 

1

n

ii ij

j

D W
=

=  
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The label spreading algorithm iterate ( ) ( ) ( )1 1F t SF t Y + = + − until convergence. Let 
*F  

denote the limit of the sequence ( ) F t  and each point is labelled by 
*argmaxi j c ijy F= . 

4.2. Deep Neutral Network (DNN) 

DNN is one of the research focuses of artificial intelligence technology, and its excellent ability of 

nonlinear fitting makes it a promising tool to deal with large quantity data [27,28]. The data input to the 

deep neural network will backpropagate from the lower layers to upper layers and update the parameters 

in the new network, the formulation of the outputs in the 
thl  layer can be represented as: 

     
1

, , , ,

l l l l

i j m n i m j n i j

m n

x w o b−

+ += +                                                                      (2) 

4.3. Kernel Principal Component Analysis (KPCA) 

KPCA method is to decompose the dimensions of the original data to specified components 

according to the covariance matrix and kernel function [29]. Herein, linear kernel function K was used 

to calculate KPCA. The data samples contained N dimensions of data and were decomposed into K 

components. 

                            ( ) ( ) ( ), , , , 1, ,
T

i j i j i jK x x x x x x i j N  = =    = ,                                 

  (3) 

Assuming that  is the mean of the data in the feature space and we have zero mean:  

                                               ( )
1

1
0, 1, ,

n

i

i

x i N
n

 
=

= =  =                                                (4) 

The covariance matrix is calculated by:  

                                              ( ) ( )
1

1
, 1, ,

n
T

i i

i

C x x i N
n

 
=

=  =                                            

  (5) 

Its eigenvalues and eigenvectors are given by:  

                                                             C =                                                                       (6) 

The above formulation can be rewritten as: 

                         ( ) ( ) 
1

1
, 1, , 1, ,

N
T

i i k k k

i

x x i N and k K
N

    
=

=  =   =                        

   (7) 

And then k can be derived as: 

                             

( )
1

, 1, , 1, ,
N

k ki i

i

a x i N and k K 
=

=  =   =
                                              

   (8) 

Assuming matrix ( ), , , , 1, ,i j i jK K x x i j N=    = , and then the Equation can be rewritten in matrix 

form 
2   k k kK a NKa= . For data features ( )ix  may not have mean 0, the normalized ( )ix can 

be written as: 

                          ( ) ( ) ( )
1

1
, 1, , 1, ,

N

i i k

k

x x x i N and k K
N

  
=

= −  =   =                           

  (9) 

The normalized kernel function can be written as: 



 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
, 1, , 1, ,, 

T
N N

j k j

T

j i kk i

i i

x x x x i N and k K
N

K x x x x
N

   
= =

   
= − −  =   =   

 
=

 
 

  (10) 

The new data point after dimensionality reduction can be represented as: 

                                                 

( )
1

, , 1, , 
N

j ji i

i

y a K x x j K
=

=  =
                                                      (11) 

The steps of kernel PCA dimensionality reduction can be summarised as: 

1. Construct the kernel matrix K from the training data set  ix using Eq. (3); 

2. Compute the Gram matrix K using Eq. (10); 

3. Use to solve for the vectors ai (substitute K with K ); 

4. Compute the kernel principal components jy  using Eq. (11). 

5. Results and discussion 

5.1. Load cycles and strain measurements 

The load-midspan displacement curves obtained from interrupted tests were presented in Error! 

Reference source not found. and the maximum displacement points (MDPs) at each consecutive load 

steps were marked. The intercepts of the tangent lines at the MDPs of each loading cycles were denoted 

as b1 to b6, which was used later for state index identification. Every loading cycle (LC) was composed 

of two phases: a rising load phase (RL) and a decreasing load phase (DL). The initial load cycle, i.e., 

LC1, showed a linear trend during the RL phase. An observed non-linearity was found at the RL of LC2 

after following replicated linear trend as LC1 and the positional offset from the initial point after the DL 

of LC2 was evident, which was guessed due to the rate-dependent relaxation phenomenon. From LC3, 

the RL phase indicated a decrease in the stiffness compared with LC1 and LC2, which could be a sign 

of microcracks damage initiation. This stiffness degradation was further increased in the load cycles, 

LC4 and LC5, during when the fictitious cracks might generate. Finally, when the beam resistance was 

maximum with the force of 471.3 N (LC5), gradual degradation with a rise in deflection continued as 

the localised fictitious cracks propagated and the fibre was yielding, with a comparatively reduced peak 

load in LC6. It should be noted that the inherent damage was induced under the upper loading cell due 

to the high contact stress concentration instead of the bending effect. 

      

b1 

b2 

b3 

b4 

b5 

b6 



Zhangquan Shen, Yiding Liu, Anubhav Singh, Wenhao Li, Tianyu Chen, Shijun Guo and Darren J. Hughes  

Figure 5: Load-displacement curves of the braided composite beam during interrupted quasi-

static test. The Maximum Displacement Point (MDP) at each consecutive load cycles (LC) in 

interrupted tests are marked. bi (i =1-6) indicates the intercepts of the tangent lines at the 

MDPs of loading cycles. 

 
Figure 6(a) and 6(b) showed the strain profiles taken at the MDPs of each load cycle along the 

embedded DOFS length for LC1 to LC5 and with LC6, respectively. The increase in the strain peak 

from LC1 to LC3 was constant until a significant strain change occurred at LC4. At LC4, localised peak 

vibrations around the middle position were visible from DOFS: this abrupt change could be an indication 

of significant local damage within fibres. At LC5, some dropout points started to appear at around crack 

locations, which was caused by the spectral shift calculation algorithm due to the low correlation with 

the reference spectrum [30]. However, during LC1 to LC5, the signal from OF had the capability to go 

back to the starting point during the unloading, since LC6, the signal was not able to return. The strain 

configuration measurement indicated the breakage of the optical fibre at LC6. It worth to highlight that 

although the optical fibre located with a short distance away from the damage location, it still sensitive 

enough to capture the strain change caused by the damage. Generally, the direct strain outputs revealed 

qualify distinctions between each step, however, it would be difficult to quantify the damage evolution 

due to the lack of a proper methodology to deal with all the raw data. Therefore, the proposed smart 

learning scheme was required to link the raw strain data with the state index determined from the 

physical performance of the material.  

       
Figure 6: Strain distributions along the embedded DOFS length at the MDPs of each load 

cycles: (a) MDP1 to MDP6 and (b) MDP1 to MDP5. 

 

5.2. Damage label projection and propagation 

Based on the load-displacement performance of the specimen under different load cycles, the 

intercept of the tangent line at MDP of the ith cycle was defined at bi, considering both the physical 

influences of the failure load and failure displacement. Such as, the intercepts of the tangent line at 

MDPs decreased from LC1 to LC6, and switched to negative at LC6. Six damage classes (defined as 

Ci) were described by normalising the intercept of the tangent lines at the MDPs at the ith cycle, as 

explained in Eq. (12). The values of the six damage classes were shown in Table 2, indicating the damage 

state at the last loading point in a certain load cycle.  

Table 2 Defined damage classes (Ci) 

C1 C2 C3 C4 C5 C6 

0 0.2043 0.3383 0.497 0.9566 1 

(b) 

(a) 



 

 

                                                  

min( )
, 1,2, ,6

max( ) min( )

i
i

b b
C i

b b

−
=  =

−
                                                                                              (12) 

where bi is the intercept of the tangent line at MDP in the ith cycle. According to the DOFS's acquisition 

rate of 1 Hz, a datapoint was described as the strain distribution along the embedded DOFS length at the 

ith second, where the upper range of i was 1179 to cover the whole load cycles. The strain nephogram 

of LC1 to LC6 were illustrated in Figure 8(a), where the starts and ends of each cycle were marked with 

red dash lines and the MDP locations in the datapoint were noticed with black dash lines. A total of 500 

points along the embedded DOFS length direction was mapped in Figure 8(a). The labels of the datapoint 

(defined as ai) were defined as the proportion coefficient of the damage classes (Ci). Hence, a state index 

(defined as Sindex) can be determined by summing up the class values after multiplying each proportion 

coefficient, as explained in Eq. (13):  

                                                       
6

1

, 1, 2, , 6.index i i

i

S C a i
=

 =  =                                                (13) 

The purpose of the label spreading was to propagate the initial few labels that were artificially 

assigned at the MDPs to the whole load cycles and compare the similarity of all the other datapoints and 

then assign the labels to them. In this case, the state index could be calculated for all the datapoints based 

on the raw strain distributions. All the datapoints were labelled by KNN kernel with label spreading 

algorithm. Subsequently, the label values will be changed in iterations and spreading to all the unlabeled 

data. The prerequisite of the label spreading algorithm was that the datapoints at the MDPs were given 

initial labels with ai equals to 1 where i was the corresponded load cycle and 0 in other labels. For 

example, at LC3, the labels of the datapoints were a3 = 1 and a1,2,4,5,6 = 0. The visualisation of the labels 

predicted by the label spreading algorithm was shown in the Figure 8(b), since the value of C1 is 0 which 

did not affect the state index, therefore C1 was not plotted. It can be seen that the label distributions 

along the datapoints in damage class 2 (C2) and damage class 3 (C3) exhibited some similarity, this was 

also happened to C4 and C5, however, C6 behaved differently due to the OF breakage. The label 

performance could be evident by the strain nephogram in Figure 8(a). 

 
Figure 8: (a) Strain nephogram along the embedded optical fibre length of LC1 to LC6 obtained 

from DOFS measurement: the starts and ends of each cycle were marked with red dash lines 

and the MDP locations in the datapoint sequence were marked with black dash lines; (b) 

visualization of the labels predicted by the label spreading algorithm. 
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Figure 9 shows the state index projected by the labels given by the label spreading algorithm. The 

blue points were the state index calculated by the initial labels, and the red points were the predicted 

values of the state index by KNN kernel. Since the proportion fractions of artificially labelled points can 

be altered, their label values were changed in each alteration until convergence reached. The other 

colourful markers shown in Figure 9 were automatically propagated by the algorithm. The fitting results 

reflected the damage degradation of different load cycles. The state index plots at LC1 and LC2 were 

symmetric and from LC3, a slight unsymmetric behaviour was found which was guessed due to the 

inherent microcracks in the matrix which required further detailed studies. The state index scattered 

around the peak of LC4 and LC5 indicating the potential noise impact due to the crack propagation. In 

LC6, the state index was collapsed. The predictions of state index were verified by the experimental 

observations, taken at the end of each load cycle with a travelling microscope, as shown in Figure 3(b). 

It can be seen that there was no evident crack before LC3, however, from LC4, a dominant crack of 

approximately 5 mm and a side crack of around 3 mm which was located close to the dominant crack 

were evident from the sample. In LC5 and LC6, the two cracks continuously grew in dimension and 

induced obvious vibration in the datapoints, as shown in Figure 8(a). It was guessed that the cracks were 

propagated to the location of the OF and resulted in the OF damage finally. In general, the state index 

and labels prediction had a good agreement with the experimental observations, which demonstrated the 

accuracy and effectivity of the study. 

 
Figure 9: State index projected by label spreading algorithm: blue points were the state index 

calculated by the initially given labels; red points were the fitted results of datapoints given 

by the KNN kernel algorithm. The images showed the damage happened at the centre of the 

beam under the loading cell taken by the travelling microscope, with the red lines indicated 

the crack length. 

 

5.3. Data regression and validation 

In section 5.2, the state index and labels were created for all datapoints and associated with the 

experimental performance. To achieve the purpose of using a specific datapoint to predict the state index 

herein, an eight-layer DNN architecture was constructed to fit the labels of all the datapoints. The 

datapoints from LC1 to LC5 were considered as datasets, it should be noted that the one from LC6 was 

excluded due to the significant noise from OF breakage. The general schematic of the DNN network 

used for predicting labels was shown in Figure 10. The input of the neural network was the data 

contained in a datapoint, and it was then propagated to the three Dense layers (Dense layer 1 to Dense 

layer 3) which contained 256, 128, and 64 kernels separately. After being propagated, the variables in 

the Dense layer 3 were transferred to six branches. In each branch, another three Dense layers were used 

to map the relationship between the variables in Dense layer 3 and the output labels, with the number of 

kernels listed. Two kinds of activation functions, named “Sigmoid” and “ReLU” were used in the red 

box below Dense in Figure 10. The biases were used in each layer, initialised as 0. For the weights in 

the kernels, the initialiser of “glorot uniform” was employed. The superparameters were set as learning 
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rate of 0.005, rho of 0.95, epsilon of 1e-07 and the optimiser “Adadelta” was used in the model. “Mean 

squared error” function was chosen to calculate the metrics and the losses of the labels. The data was 

fitted by the model and updated in a batch size of 32. The outputs of the DNN architecture were the 

predicted labels, which were then used to predict the state index by utilising Eq. (13). 

 
Figure 10: General schematic of a DNN architecture for predicting labels. The number of 

kernels were listed below each hidden layer and the choice of activation functions was shown 

in the red box below the Dense. 

 
The dataset of the model was split as 50 datapoints for prediction, 100 datapoints for validation and 

the remaining datapoints for training. In the learning process, only the training dataset was used to 

update the variables of the model and the validation dataset was performed after the variable updates 

of each batch. Once the model was trained, all the datasets will be used to verify the accuracy of the 

model. The order of the datapoints in the dataset was shuffled to ensure that the model could learn all 

the process in the load cycles stochastically. To avoid the so-called “overfitting” effects may be caused 

by the choice of dataset split, six cross validations were performed to verify the adaptivity of the 

model to all the datapoints. The split of dataset for cross validations was shown in the Figure 11. The 

fitting performances of the model on all datasets in shuffled order and normal order under six cross 

validations were plotted in Figure 12. The data between black and blue dotted line was the prediction 

dataset and the data between blue and red dotted line was the validation dataset. Generally, the model 

can fit all the training datasets well, although the accuracy was comparably low for the validation and 

prediction datasets. This was because the validation and prediction datasets were not used to update 

the variables in the model during the training process resulting in the underfitting of the datapoints. As 

it can be seen, the state index of the datapoints could be fitted uniformly over all load cycles and 

exhibited no difference over the cross validations.  

 
Figure 11: Scheme diagram of the split of dataset for cross validations. 
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Figure 12: Cross validation of the DNN, the left and right indicate the shuffled and ordered 

data samples. The data between black and blue dotted line are the prediction dataset and the 

data between blue and red dotted line are the validation dataset. 

 

5.4. Damage state visualisation and identification in the feature space 

By data analysis in Section 5.2 and data regression in Section 5.3, the state index projected by label 

spreading algorithm on the basis of raw datapoints can be successfully regressed by DNN models. It is 

also very important to visualise and identify the loading situations and damage state to assist the 

intermittent inspection and maintenance activities in the practical engineering work.  

Consequently, the labels projected by the label spreading algorithm were decomposed to a three-

dimensional feature space by kernel principal component analysis. The decomposed dimensions were 

referred as components which retained the maximal integrity of the intact data information while 

reduce the redundancy. Three components were extracted from the six labels of datapoints of six load 

Prediction dataset 
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cycles. All the datapoints were used to form the transformation matrix and the visualisation of the 

datapoints in the transformed space, as shown in Figure 13(a). In this way, the loading and unloading 

processes and data pattern changes of the specimen could be easily identified. In Figure 13(a), the data 

components changed continuously from LC1 to LC3 with the data of the loading and unloading cycles 

along the same path in the component space. After LC3, the data showed a pattern change in the load 

cycles, and they were no longer in the same path as LC1 to LC3 which indicated an irreversible 

damage occurred in the structure. In the unloading process of LC4 and LC5, the data cannot recover to 

the original position of that cycle even at the ends of unloading. In LC6, the data showed random and 

irregular patterns which was caused by the DOFS breakage failure, the data scattered in the space 

which was out of the previously presented path. 

 
Figure 13: (a, b) Kernel PCA analysis of propagated labels; (c) state index and position of A~I 

in load cycles. 

 
To better interpret and implement this methodology for SHM application, a group of data was 
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start of LC1; point C was picked in the loading of LC2; point G was picked in the unloading of LC4. 

The state index values predicted by DNN were also listed in Figure 13(c). These points were visualised 

in the feature space for damage identification and verification in Figure 13 (b). A normal operating curve 

(NOC) was defined to be the path of LC1 to LC3 where no damage was considered. The direction of 

solid line plotted in the Figure 13(b) was defined as the positive direction of NOC and vice versa for the 

dotted line. If the presence of data followed the positive direction of NOC, the state index would also 

increase, which indicated that the sample was under loading stage, such as, point A to point B in LC1 

and point C to point D in LC2, and vice versa. The position of the data in NOC was also associated with 

the magnitude of loading, i.e., the positions of data in MDPs were at the furthest position from the 

initiation, for example, point B was at the furthest position in data of LC1.  

It could also be found that the presenting order of damaged data would be different or along different 

path in the feature space, such as, point G, H, and I, which could be regarded as a pattern change of 

strain measurement. It should be pay attention that point I was not on the NOC and the data at the end 

of LC5 could not return to original position (point A). Thus, the damage state of the specimen could be 

identified by observing the position and sequence of datapoints in the feature space. 

6. Conclusions 

This paper presented a general data driven based prediction methodology to auto-detect state index 

in a Structural Health Monitoring (SHM) system by utilising Distributed Optical Fibre Sensing (DOFS) 

for strain measurement within a composite braided beam structure under six three-point bending 

loading-unloading cycles. Instead of designing a large set of experiments in various scenarios and 

numerical simulations to compensate for the data driven models, this study employed semi-supervised 

learning from a realistic test setup with merely six load cycles. The diagram of this methodology 

included a combination of preliminary defined state index based on experimental behaviours, and label 

projection given by the label spreading algorithm and KNN kernel algorithm, as well as state index 

prediction and validation with a DNN architecture. The damage state of the sample within different load 

situations was able to be visualised and identified in the feature space. Based on the above studies, the 

following conclusions can be drawn: 

1. The DOFS located with a vertical distance of approximately 5.3 mm has demonstrated the 

sensitivity of detecting the strain changes within the different loading cycles. When the crack 

propagated to the position of DOFS, the breakage of the DOFS has resulted in a significant 

amount of noise. 

2. The state index and labels projected by label spreading algorithm can well fit and corelate with 

the experimental observations with only a few artificially labelled datapoints, which 

demonstrated the feasibility of the proposed methodology. These labels can then be successfully 

fitted by the proposed DNN architecture, and the subsequent state index of the sample can be 

accurately predicted by merely raw strain datapoints. 

3. By decomposing the labels of datapoints with the Kernel Principal Component Analysis, the 

positions of datapoints in the feature space combined with state index can be used to verify the 

presented damages and loading conditions of the sample, which can help to implement structural 

health monitoring of structures. 

4. In SHM of the composite braided beam with DOFS, this technology can examine the presented 

damage and load state by learning six progressive cycles. Upon this study, this technology can 

be exploited to other engineering cases that satisfy the following two requirements: a) damage 

only occurred and propagated in the specific area of the sample, b) the loads are repeatedly and 

gradually increasing. In this case, the measured raw data (e.g., strain) would alter continuously 

in patterns, making it possible to be decomposed to feature space and the pattern change would 

follow an explicit routine associated with the load magnitude. Meanwhile, any data presence 

deviated from this routine indicated potential damage in the sample. 

Overall, the proposed methodology offers a novel perspective on SHM data processing, which is 

crucial for automatic real-time monitoring and alarming of SHM systems as well as long-term analysis 

of structures based on its long-term performance data. This methodology also serves for other types of 



 

 

SHM techniques, i.e., sensors. In the future work, it may be worth to examine the feasibility of this 

methodology with combined load cases. 
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