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Abstract. Transformer-based architectures have made significant progress
in speech emotion recognition (SER). However, most published SER re-
search trained and tested models on data from the same corpus, resulting
in poor generalisation ability to unseen data collected from different cor-
pora. To address this, we applied the HuBERT model to a combined
training set consisting of five publicly available datasets (IEMOCAP,
RAVDESS, TESS, CREMA-D, and 80% CMU-MOSEI) and conducted
cross-corpus testing on the Strong Emotion (StrEmo) Dataset (a natu-
ral dataset collected by the authors) and two publicly available datasets
(SAVEE and 20% CMU-MOSEI). Our best result achieved an F1 score
of 0.78 over the three test sets, with an F1 score of 0.86 for StrEmo
specifically. Additionally, we are pleased to release the spreadsheet of
key information on the StrEmo dataset as supplementary material to
the conference.

Keywords: Speech emotion recognition · HuBERT · StrEmo · Gener-
alisation ability · Cross-corpus testing.

1 Introduction

In recent years, there has been a growing interest in Speech Emotion Recognition
(SER) as it plays a crucial role in analyzing human-to-human conversations
and enabling effective human-to-machine interactions [25,8]. This technology
empowers machines to comprehend and respond to human emotions aptly [26].

There is now a trend of using large foundation models, which are pre-trained
on extensive datasets and then fine-tuning them for downstream tasks, which is
replacing specialized architectures created for specific tasks [4]. Such large foun-
dation models are recently dominating in many Artificial Intelligence (AI) fields,
such as SimCLR [7] in Computer Vision (CV), BERT [9] in Natural Language
Processing (NLP), and wav2vec 2.0 [2] in speech processing.

⋆ Supported by Innovate UK.
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HuBERT [14] model is one of the Transformer-based architectures pre-trained
by self-supervised methods. This BERT-like model follows the architecture of
wav2vec 2.0 [2], but either matches or surpasses wav2vec 2.0 performance [14,27].

This study applied the HuBERT model on six public datasets (RAVDESS
[19], CREMA-D [6], TESS [23], SAVEE [13], IEMOCAP [5] and CMU-MOSEI
[3]) and one natural dataset collected by the authors, named the Strong Emotion
(StrEmo) dataset, to investigate the model’s generalisation ability in SER. To
combine the different corpora, it was necessary to unify the different emotion
labels from the aforementioned datasets into three categories: positive, neutral,
and negative. Furthermore, we are pleased to release the key information of
the StrEmo dataset proposed in this work. In accordance with privacy policies,
we will publicly release the information that was used and obtained during the
collection of this dataset in the form of a spreadsheet containing YouTube video
IDs and segment timings. The StrEmo dataset is available at https://github.
com/IntelligentVoice/IV SER Data.

2 Related Work

Speech Emotion Recognition (SER) typically involves two phases: feature ex-
traction and feature classification [18]. Researchers in speech processing have de-
veloped various features, including continuous features, qualitative features, and
spectral features such as Linear Predictor Coefficients (LPC) and Mel-Frequency
Cepstral Coefficients (MFCC) [10]. In the second phase, researchers traditionally
applied machine learning methods, such as the Maximum Likelihood Principle,
Support Vector Machine, and Decision Trees, for feature classification.

Over the past decade, deep learning has emerged as a rapidly advancing field
of research, owing to its multi-layered structure that allows for the efficient pro-
cessing of complex data and the delivery of high-quality results [1,22]. Khalil et
al. [17] conducted a review of deep learning approaches in SER, such as Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Long Short-Term Memory (LSTM) networks. They deduced that deep learning
algorithms outperform traditional techniques in emotion recognition.

Researchers have applied different deep learning techniques in recent years
to improve the accuracy of SER. In 2018, Etienne et al. [11] designed a CNN
and LSTM architecture for SER on the IEMOCAP dataset [5] and obtained
results of 64.5% for weighted accuracy and 61.7% for unweighted accuracy on
four emotions. Georgescu et al. [12] implemented ResNet-18 and PyNADA to
work on CREMA-D [6] in 2020. Luna-Jiménez et al.[20] achieved their best
results using the CNN-14 of the PANNs framework on RAVDESS dataset [19]
in 2021. In 2022, Ye et al. [28] proposed a temporal emotional modeling approach
for SER, termed Temporal-aware bI-direction Multi-scale Network (TIM-Net).
With the recent rise in popularity of foundation models [27,4], Shreyah et al. [15]
compared the performance of an AlexNet-based CNN model with a Transformer-
based model, wav2vec 2.0, on speech emotion datasets.

https://github.com/IntelligentVoice/IV_SER_Data
https://github.com/IntelligentVoice/IV_SER_Data
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Most of the previous studies in this field either trained and tested the model
on the same dataset [11,12,20,15] or did not use a Transformer-based foundation
model [11,12,20,28]. This study aims to combine seven datasets [19,5,6,23,13,3]
and perform cross-corpus testing using the advanced Transformer-based foun-
dation model, HuBERT [14], to examine its generalisation ability in SER. Ad-
ditionally, this research introduces a new natural dataset (StrEmo) collected by
the authors, which is used to verify the generalisation ability of the model.

3 Description of Datasets

This study utilizes seven datasets, including six publicly available datasets for
speech emotion recognition research. These datasets can be categorized as acted
datasets (RAVDESS [19], CREMA-D [6], TESS [23], SAVEE [13]), elicited dataset
(IEMOCAP [5]), and natural datasets (CMU-MOSEI [3]). In addition, we intro-
duce a new natural dataset (StrEmo) collected from YouTube videos.

3.1 Publicly Available Datasets

Utterances in six publicly available datasets were spoken in English. Each dataset
includes various detailed emotion categories. For instance, in the RAVDESS
dataset, there are eight emotions: neutral, happiness, sadness, fear, anger, dis-
gust, surprise, and calm. The duration of each audio clip varies, with an average
of 2 seconds in the TESS dataset and ranging up to an average of 8 seconds in
the CMU-MOSEI dataset. The descriptions of datasets are presented in Table 1.

Table 1. Descriptions of six publicly available datasets.

Dataset
Number of
Utterances

Number of
Emotions

Average Duration
(seconds)

Category

CMU-MOSEI 23500 9 8.0 Natural
IEMOCAP 10093 9 4.4 Elicited
RAVDESS 1440 8 3.7 Acted
CREMA-D 7442 6 2.5 Acted
TESS 2800 7 2.0 Acted
SAVEE 480 7 3.9 Acted

3.2 StrEmo

We gathered a new dataset called the Strong Emotion (StrEmo) Dataset to
further assess the model’s generalisation performance. The data were collected
from English YouTube videos using only the audio signal and were labeled by the
authors into three emotional categories: 180 happiness, 94 neutral, and 222 anger
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emotions. The audio clips have an average duration of approximately 5 seconds.
We have released a spreadsheet for this dataset that includes information on the
emotion label, the YouTube video ID, the time points of clip segments, as well as
audio characteristics such as spoken language, speaker gender, ethnicity, accent,
and age of the data.

4 Methodology

In this study, we utilize the HuBERT [14] model for SER. To ensure balanced
data across emotion labels in the training set, we employ the undersampling
technique. Additionally, we use cross-validation to determine the optimal hyper-
parameters.

4.1 HuBERT Model

The Hidden-Unit BERT (HuBERT) [14] approach is a self-supervised speech
representation learning method that utilizes offline clustering to provide aligned
target labels for a BERT-like prediction loss. It applies the prediction loss over
the masked regions only and relies on the consistency of unsupervised clustering.
The model either matches or improves upon wav2vec 2.0 performance on several
benchmarks with various fine-tuning subsets. Facebook proposed five types of
HuBERT models, and the large version, which was pretrained on Libri-Light
[16] and fine-tuned on Librispeech [21], was used in this study.

4.2 Undersampling

Various techniques can be used to address class imbalance issues, including un-
dersampling and oversampling. Undersampling involves reducing the size of the
majority class, while oversampling involves increasing the data from the minority
class. In this study, after merging seven datasets and splitting them into training
and test sets, the training set had an imbalanced distribution of three emotion
labels: 11975 (negative), 5198 (neutral), and 4149 (positive). To balance the data
volume of each emotion classification, the undersampling method was used, re-
sulting in 5198 samples for negative and neutral emotions, and 4149 samples for
positive emotion.

4.3 Cross-Validation

In this study, we performed hyperparameter experiments for HuBERT train-
ing using 5-fold cross-validation. The hyperparameters typically include learning
rate, batch size, and epoch. However, since we used the early stop approach in
the final training, the epoch was not explored as a hyperparameter. Due to GPU
memory limitations, the maximum batch size we could use was 2, so batch size
was not included in the hyperparameter experiments. Therefore, we only studied
the effect of learning rate on the model’s performance, testing values of 1×10−4,
1×10−5, and 1×10−6. Since 1×10−5 is the default value for many frameworks,
we specifically tested this value along with the others.
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4.4 Experiment Procedure

The experiment included the following eight steps:

1. Loading and combining the data from all datasets (StrEmo, RAVDESS [19],
CREMA-D [6], TESS [23], SAVEE [13], IEMOCAP [5], CMU-MOSEI [3]).

2. Relabeling the data into three emotion categories - positive (includes ”Hap-
piness”, ”Excitement” and ”Pleasant Surprise”), negative (includes ”Anger”,
”Sadness”, ”Fear”, ”Disgust”, ”Frustration” and ”Disappointment”) and
neutral (includes ”Neutral” and ”Calm”). All other emotions (includes ”Sur-
prise” and ”Other”) were discarded because they were not as directly clas-
sifiable into these three categories.
In this step, we implemented additional preprocessing on the CMU-MOSEI
dataset to improve data quality. Firstly, we used Whisper [24] to transcribe
the audio from the CMU-MOSEI dataset into text. Next, we used the Se-
quenceMatcher in a python module named “difflib” to compare the obtained
text with the original text provided by the dataset and calculated a simi-
larity score. We only selected data with a similarity score greater than 0.85.
Since the CMU-MOSEI dataset is a multi-emotion dataset, each data point
has emotion scores for all emotions. We selected data with either i) exclu-
sively positive or negative emotion scores greater than 2 or ii) all emotion
scores equal to 0 (indicating neutral data) for experimentation. This prepro-
cessing allowed us to obtain high-quality data, but the size of the dataset
was drastically reduced to 3071. After relabeling the emotions and selecting
only positive, negative, and neutral data from all datasets, Table 2 shows
the number of audio files used in this study.

3. Splitting all the data into a training set (IEMOCAP, RAVDESS, TESS,
CREMA-D and 80% CMU-MOSEI) and a test set (StrEmo, SAVEE and
20% CMU-MOSEI). Since CMU-MOSEI is a relatively complex dataset for
SER, we used it in both the training and test sets.

4. Balancing the training set by undersampling the data (Section 4.2).
5. Performing 5-fold cross-validation on the training set to determine the opti-

mal learning rate (Section 4.3).
6. Retraining the model on the entire training set using the best learning rate

obtained from step 5.

Table 2. Distribution of emotions across datasets after preprocessing.

Dataset Positive Neutral Negative Category

StrEmo 180 94 222 Natural
CMU-MOSEI 298 2157 616 Natural
IEMOCAP 1636 1708 4078 Elicited
RAVDESS 192 288 768 Acted
CREMA-D 1271 1087 5084 Acted
TESS 800 400 1600 Acted
SAVEE 60 120 240 Acted
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Table 3. Cross-validation on different learning rate (LR). Kx denotes the xth fold out
of five folds and Avg. the average value over Five folds.

LR K1 K2 K3 K4 K5 Avg.

1× 10−4 0.40 0.94 0.82 0.53 0.99 0.74
1× 10−5 0.94 0.97 0.95 0.97 0.99 0.96
1× 10−6 0.68 0.76 0.72 0.82 0.88 0.77

7. Testing the fine-tuned model on the unseen test set to evaluate its generali-
sation performance.

8. Calculating the F1 score as the evaluation metric for the test results.

5 Experiments and results

To investigate the generalisation capability of the HuBERT model in speech
emotion recognition, we conducted an experiment using seven datasets. The
datasets were divided into a training set (consisting of IEMOCAP, RAVDESS,
TESS, CREMA-D, and 80% of CMU-MOSEI) for cross-validation and training
purposes, and a test set (consisting of StrEmo, SAVEE, and 20% of CMU-
MOSEI) for evaluation. By splitting the dataset in this way, the StrEmo and
SAVEE datasets were completely new corpora to the SER model and were used
to assess the model’s generalisation ability.

5.1 Results of Cross-Validation on Learning Rate

According to Table 3, the cross-validation results demonstrate that a learning
rate that is either too large or too small cannot achieve good performance. The
optimal learning rate for this training was found to be 1× 10−5.

5.2 Results on the Combined Dataset

After we found out the best learning rate from cross-validation, we retrained the
HuBERT model on the whole training set with the hyperparameters. Figure 1 is
the confusion matrix we computed after we tested the fine-tuned model on the
unseen test set. The overall F1 score is 0.73. In addition, F1 scores of unseen

Table 4. Experimental results of unseen test set for model trained with balanced data.

Precision Recall F1 Score

Negative 0.84 0.56 0.67
Neutral 0.70 0.98 0.82
Positive 0.72 0.60 0.66
Weighted Avg. 0.76 0.74 0.73
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Fig. 1. Confusion matrix of test results for model fine-tuned with balanced data.

test in three emotion categories are shown in Table 4. They are 0.67 (Negative),
0.82 (Neutral) and 0.66 (Positive) respectively.

5.3 Detailed Results on the StrEmo Dataset

In order to verify that the model’s generalisation ability has been improved after
multi-datasets training, we compared the prediction performance of models with
different fine-tuning degrees on StrEmo dataset. From Table 5, it can be seen
that without fine-tuning, the original HuBERT model [14] predicted all the data
as positive emotion. After fine-tuning only on RAVDESS, the weighted average
F1 score improved to 0.8. With the fine-tuning on the balanced training set from
the combination of IEMOCAP, RAVDESS, TESS, CREMA-D and 80% CMU-
MOSEI, the F1 score slightly increased to 0.82. Finally, we tried the best model
fine-tuned with unbalanced training set of the combination of the five datasets,
the F1 score continued to improve to 0.86.

Table 5. F1 scores on StrEmo dataset for the models with different fine-tuning degrees.
Com-Bal denotes balanced training set from the combination of IEMOCAP, RAVDESS,
TESS, CREMA-D and 80% CMU-MOSEI. Com-Unbal denotes unbalanced training set
from the combination datasets.

Fine-Tuned F1.POSITIVE F1.NEUTRAL F1.NEGATIVE F1

None 0.53 0 0 0.19
RAVDESS 0.81 0.69 0.84 0.8
Com-Bal 0.79 0.93 0.81 0.82
Com-Unbal 0.83 0.93 0.86 0.86
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Table 6. F1 score for each unseen test dataset.

Training Set CMU-MOSEI StrEmo SAVEE Overall

Balanced 0.69 0.82 0.62 0.73
Unbalanced 0.77 0.86 0.68 0.78

5.4 Discussion

Model Prediction Trend against Emotion According to the F1 scores
shown in Table 4, the model performed the best in predicting neutral emotion.
However, when examining the confusion matrix (Figure 1), it indicates that the
model is more likely to classify negative emotions as neutral.

The Impact of Data Volume From Table 6, it can be observed that training
the model with an unbalanced training set yields better performance, as indi-
cated by a higher F1 score of 0.78. We considered that the reason was that we
used the undersampling method to balance training set, which led to less train-
ing data. A further conclusion is that training with more data can lead to higher
performance of the model.

As mentioned in Section 4.2, besides undersampling, oversampling is another
method to deal with the imbalanced dataset. Unlike undersampling, where some
data is lost, oversampling allows more data to be used. We plan to use data
augmentation in future studies to conduct oversampling and to further improve
the performance of the model.

Effect of emotional strength on model performance Table 6 also shows
the F1 scores obtained on different datasets in testing. We can see that the
StrEmo dataset achieved the highest F1 score, which was approximately 20%
higher than that of the SAVEE dataset. This can be attributed to the stronger
emotional expression in the StrEmo dataset, making it easier for the model to
predict. As the SAVEE dataset is an actor simulation dataset, the expression of
emotion is not as apparent, resulting in greater difficulty for the model to make
accurate predictions.

6 Conclusions

In this study, we evaluated the generalisation ability of the HuBERT model in
speech emotion recognition using six publicly available datasets and a natural
dataset collected by ourselves. Notably, the test set in this research comprised
data from corpora that differed from the training corpora. Our findings demon-
strated that the model’s performance improved as we fine-tuned it with addi-
tional data. The best F1 score achieved on the unseen test set was 0.78, and on
our collected dataset StrEmo, it was 0.86. Moreover, we observed that the fine-
tuned model was more effective in analyzing stronger emotional data. However,
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it was noted that the fine-tuned model had a higher tendency to misclassify neg-
ative emotion as neutral, indicating a need for further investigation with more
data in the future.
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