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Abstract

Most of the existing mixed-criticality schedulers don’t take into account the fact that

low-criticality tasks operate as a group to implement one or more high-criticality ser-

vices. Consequently, arbitrary dropping of any of them may compromise the safety

of the high-criticality service they collectively implement. In addition, it is hard to

estimate a safe upper-bound of service execution time, which implies disruptive degra-

dation in case of execution time overrun by any of the high or low-criticality services.

This research introduces novel approaches for mixed-criticality systems by building

dependable services from many less dependable services and proportionate adaptation

to the empiric execution time overrun problem for systems services during the system

mission.

The presented approaches are mid and short-term mixed-criticality schedulers,

Critical Arithmetic Adaptive Tolerance-based Mixed-criticality Protocol (ATMP-CA)

and Criticality Arithmetic Lazy Bailout Protocol (LBP-CA), based on Criticality

Arithmetic (CA), and the framework E-ATMP based on the Empiric Worst Case

Execution Time (EWCET). Criticality Arithmetic schedulers change the system con-

figuration in case of core failures or systems transitions between normal and criticality

runtime modes. EWCET is initially the determined optimistic EWCET estimate but

gets updated during runtime to a higher value whenever a Worst-Case Execution Time

(WCET) overrun occurs, and dynamically re-allocates schedules of mixed-criticality

tasks using the E-ATMP framework. Both approaches deliver smoother degradation

than reference schedulers in the literature.

Build and architect, systems, and criticality, from many less dependable compo-

nents, and represent criticality by the architecture of these components, respectively,

with incorporating adaptive responses based on empiric information during the system

mission, and foreseen future, guarantees smooth degradation to the total system utility

when transient or permanent resource shortages occur.
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Chapter 1

Introduction

This chapter presents the context of this thesis and explains the main research

question, derived sub-questions, and contributions. Then, the chapter outlines

the success criteria for evaluating the research’s answers. Following that it

presents relevant publications and provides an overview of the thesis structure.

Section 1.1 presents the research context and significance. Section 1.2 ad-

dresses the main research question, including sub-questions. Section 1.3 demon-

strates the overview of the research’s answers in response to the research question.

Section 1.4 outlines the success criteria for evaluating the research’s answers. Sec-

tion 1.5 presents relevant publications. Section 1.6 provides an overview of the

thesis structure. Section 1.7 concludes this chapter.

1.1 Research Context

The failure of a safety-critical system, such as the Anti-lock Braking System

(ABS), or auto-pilot in an aircraft, or spaceship landing system, can result in

severe consequences, including loss of life, property damage, or environmental

harm. Such systems perform critical functions with a high degree of relia-

bility, safety, and security. They require strict adherence to safety standards

e.g. International Electrotechnical Commission (IEC) 61508, to ensure their

correct operation, especially in case of failures and resource shortages. Each

program/service/component/task provided by one of these systems has a spe-

cific level of safety Criticality. In the past, these systems were often designed to

operate on platforms where each processor executes services with the same level

of Criticality. However, recent advancements in hardware technologies put back

considerations for efficient usage of computing resources by integrating services

with different criticality levels on the same processor, instead of the partitioned

1



Chapter 1. Introduction 2

criticality systems, while ensuring the correctness of the system and running

services.

The Safety Integrity Level (SIL) of system services is a critical concept in

many domains. Each of these domains has standards that specify vocabulary for

indicating a service’s safety integrity, for example, the International Standard-

isation Organisation (ISO) 26262 standard, Automotive Safety Integrity Levels

(ASIL), and the Design Assurance Levels DO-178C (DAL) in the Aerospace Rec-

ommended Practice 4654 (ARP). The ISO 26262 is an international standard for

the functional safety of electrical and/or electronic systems that are installed in

serial production road vehicles [3]. The DAL in ARP is a classification system

that categorises the potentially catastrophic effects of software failure in airborne

systems. The allocated SIL to a service indicates information about the safety

levels needed when developing a component. Validating a service during the

development with high SIL, requires higher strictness than developing the same

service to a low SIL level. Integrating services with different criticalities on the

same platform requires considering the safety integrity levels required for system

services and components.

Mixed Criticality systems are high-integrity safety-critical systems that in-

tegrate services of different criticalities on a single or common platform while

preserving the same safety integrity levels of the systems services and compo-

nents. The theory for modelling, scheduling, and verification of mixed-criticality

systems was introduced in a seminal paper by Steve Vestal in 2007 [4]. Modelling

mixed-criticality systems considers defining the safety integrity and criticality

levels of system services. It also includes specifying runtime modes activated

whenever a resource shortage occurs, along with constraints on system services

based on their criticality levels during each activated runtime criticality mode

in the system. Scheduling mixed-criticality systems involves ensuring that all

services meet their timing constraints, while also preventing services with Low

Criticality (LO) from interfering with services with High Criticality (HI) during

critical/non-critical modes throughout the system operation. The verification of

mixed criticality is a pre-runtime analysis for the safety Integrity levels of the

mixed-criticality system services and components, during normal and critical

runtime criticality modes.

Scheduling mixed-criticality services on uni and multi-core processors ex-

tended the Real-time Scheduling Theory (RTSh) scheduling for dependable com-

puting. In partitioned safety-critical systems, RTSh is applied to coordinate the

execution of these services based on the concept of priority, where services are

scheduled in order of priority to ensure they meet their timing constraints, regard-
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less of their criticality or safety integrity levels. In a priority-based scheduling

approach, services with the same criticality are prioritised based on a defined

model or priority scheme established by the system designer. This model could

be based on Fixed or Dynamic priority assignment. An example of Fixed-priority

is prioritising services based on their arrival frequency, this approach often leads

to the use of Fixed-priority Rate Monotonic (RM) scheduling [5], as it is the

optimal Fixed-priority scheduling algorithm when priorities are assigned based

on the rate of service execution. An example of dynamic priority is prioritising

services based on the earliest deadline at any scheduling point or decision, this

approach leads to the use of Earliest Deadline First (EDF) scheduling [5], as it is

the optimal dynamic-priority scheduling algorithm when priorities are assigned

based on the earliest deadline. Vestal found that RM scheduling algorithm is not

optimal for mixed-criticality services [4]. In addition, Baruah et al. found that

neither EDF is optimal [6].

Mixed-criticality scheduling theory provides the framework for scheduling

mixed-criticality service sets using augmented models for real-time scheduling

algorithms [7]. The framework provides pre-runtime verification analysis that

assures the safety integrity of the system services during normal execution and

resource shortages, before the system deployment. A priori assurance for the sys-

tem safety integrity, despite the runtime mode of the system, is of utmost consid-

eration for dependable systems. It also provides runtime monitoring that provi-

sioning the consumption of CPU time by system services and applies scheduling

decisions by delaying, compromising, or even aborting the execution of services

that exceed their allocated budget for execution time [8, 9].

Determining the execution time of service is an open problem [10] [11, 1]. The

complexity of possible execution paths, and the size of possible input, complicates

determining an exact execution time for service, despite its safety integrity level

or criticality. Therefore, only upper bounds for best and worst case scenarios can

be derived to determine the Best-Case Execution Time (BCET) and Worst-Case

Execution Time (WCET) respectively. Different methods are used to measure

services WCET, which are categorised into static and dynamic methods. The

static methods are based on analysing the program’s code along with the target

micro-architecture that the code will execute on. The dynamic methods are

simpler than the static methods because they are based on running the program’s

code with different input sizes and different processor states. Each run is then

profiled, and the one with the largest execution time is considered to be the

worst-case execution time of the service [12, 11, 1]. Schedulability analysis for

the integrity of system services is then performed based on this information for
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each service.

Underestimating the WCET of a service may cause the service to overrun the

allocated WCET, which results in violating the assumptions made during the pre-

runtime verification analysis and the interference from lower criticality services

may violate the safety integrity of higher criticality services. Also, overestimating

the WCET results in inefficient usage for CPU time by allocating more time

to services who already completed their needed computation. In both cases,

underestimate or overestimate, other services with lower priority than running

service may fail to meet their deadlines. If the failed services are of criticality

lower than the criticality of the service overrun its WCET, it can be acceptable

to delay, compromise, or abort the lower criticality services to avoid interrupting

service of higher criticality. However, If the service overruns its WCET is of

criticality lower than services currently released and waiting for execution, a

delay, compromise, or aborting to the higher criticality service, violates the basic

rule of mixed-criticality systems for integrating the services on the same platform,

without compromising the safety integrity levels of each service [4, 13, 9].

The causes of resource shortages can take different forms, such as WCET over-

run, core failures, and reduced computing capacity a.k.a energy-saving modes.

[14, 15]. The impact of resource shortage is defined by its type and duration,

and the effect is a form of degradation in the overall system safety and utility

[16, 17, 18]. This effect of degradation in the system, in the context of mixed-

criticality systems, is bounded according to the concrete assumptions and expec-

tations during the pre-runtime analysis conducted before the system deployment

[7]. Mixed-criticality systems ensure that services in such situations are pri-

oritised based on criticality, to give available remaining resources - resource is

remaining cores in case of core failure or Central Processing Unit (CPU) time in

case ofWCEToverrun - to services with high criticality. Mixed-criticality systems

also minimise the effect of reduced priority on low-criticality services in response

to resource shortages.

Existing mixed-criticality scheduling models, schemes, and frameworks differ

in bounding the level of resulting degradation on the system, and in the level of

survivability when assumptions and expectations, established during pre-runtime

verification, are violated during the system mission. The degradation in most

existing research is often considered disruptive, lacking quantified responses to

bind the impact of a resource shortage based on its type and duration during the

system mission. Indeed, there are different interpretations for smooth or graceful

degradation in real-time and mixed-criticality literature, and few sources that

provide concrete models express smooth/graceful degradation.
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In the context of real-time systems, an abstract definition by Avivzienis [19]

mentioned that fail-operational, fail-soft, and graceful degradation are differ-

ent names pointing to the same concept. This concept is the deviation from

the correct-execution, which models the normal behaviour of the system [19].

Avivzienis stated that “The criteria for correct execution of a set of [services]”

[19] are:

a. The [services] and their data are not altered or halted by faults.

b. The results of [services] do not contain fault-caused errors.

c. The execution time of each [service] does not exceed [WCET].

d. The storage capacity that is available for each [service] remains above a

specified minimum value.

The system degrades gracefully in one of the following two cases:

1. Some of all services fails to meet the (a) and (b).

2. Some or all services fail to satisfy (c) and (d).

The following Truth-table translates Avivzienis definition 1.1 for graceful/smooth

degradation.

Services Criteria Graceful-degradation
some all a b c d

F F N/A F
F T T T F F T
T F F F T T T
T T N/A F

Table 1.1: Avivzienis Truth-table for smooth/graceful degradation

The downside of this definition is that the abstract criteria named “d” cannot

ascend to a concrete implementation, as there is no guarantee that services won’t

exceed their allocated WCET estimate .

Burns et al. provided a concrete definition for graceful degradation in the con-

text of survivability for mixed-criticality systems scheduling [20]. It is based on

tolerating a bounded number of high and low-criticality services’ WCET overruns

before aborting or compromising lower criticality services. The authors stated

that “The key to graceful degradation is that the response to such failures must

be commensurate with the magnitude of the failure” [20]. They classified the

response, per failure magnitude, to the following criteria:
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a. Full-operational: all [services] execute correctly (i.e. meet their deadlines).

b. Fail-robust: [some high-criticality services are allowed to skip number

ofWCEToverruns].

c. Fail-resilient: [some low-criticality services are delayed or aborted].

d. Fail-safe/restart: best-effort and restart techniques that have no guaran-

tees.

The system degrades gracefully when it evaluates to the criteria “d,” making

it Fail-resilient. Hence, under their definition, graceful degradation starts after

defined magnitude of tolerable WCET overruns by high-criticality services is ex-

ceeded, during Fail-robust, and compromising low-criticality tasks is a must. The

following Truth-table translates Burns et al. definition 1.3 for graceful/smooth

degradation.

Table 1.2: Add caption
WCET overrun Graceful-degradation

Robustness Resilience
F F F
F T T
T F F
T T T

Table 1.3: Buns Truth-table for smooth/graceful degradation

The downside of this definition is that it does not incorporate the global

utility of the system, defined as the sum of the utility per service for all services

[18, 21]. In this context, dropping a low-criticality service with low utility is

preferred over dropping a low-criticality service with high utility. In addition,

arbitrary dropping or aborting for low-criticality services may compromise the

safety of high-criticality services implemented by a many low-criticality services,

a known practice in industry for realising service of high integrity level by a many

services with low integrity levels [22].

This thesis discusses answers to questions about defining and evaluating

smooth degradation in mixed-criticality protocols on both uni and multi-core

processor platforms in case of transient and permanent resource shortages, adap-

tivity in response to WCET overrun, and building highly dependable components

from many less dependable components. The following section presents the re-

search questions that motivated and guided the findings in this thesis.



Chapter 1. Introduction 7

1.2 Research Questions

The aim of this thesis is to answer questions about defining and evaluating

smooth degradation in mixed-criticality protocols on both uni and multi-core

processor platforms in case of transient and permanent resource shortages, adap-

tivity in response to WCET overrun, and building highly dependable components

from less dependable components. Five objectives influenced the contributions

and answers, which involved investigating the literature to understand smooth

degradation definitions and techniques, and implied the implementation for dif-

ferent solutions for handling resource shortages, including the evaluation between

existing and novel ones developed during the thesis.

The first objective is to form a definition for smooth degradation for mixed-

criticality systems during resource shortages. During critical behaviour of the

system, due to resource shortages, the criticality of the service is incorporated

in granting resources to mixed-criticality services. The second objective is to

investigate existing policies and protocols under Fixed-priority based schedul-

ing for granting resources to mixed-criticality services, and how each protocol

provides different adaptation techniques, and levels of degradation in response

to resource shortages. The third objective is to determine evaluation metrics

and develop a simulator that facilitates flexibility in defining the permanent

and transient resource shortages, mixed-criticality, levels of degradation, and the

evaluation between two or more protocols. In real-time systems, dependability is

enabled by the use of Software (SW)/Hardware (HW) redundancy. The fourth

objective is to develop mixed-criticality protocols that provide smoother degra-

dation, considers systems with high criticality services constituted out of many

redundant low criticality services. The fifth objective is to exploit monitoring fa-

cilities for execution time or watchdog timers, which are essential components in

mixed-criticality systems, to enable the detection of WCET overrun, and trigger

adequate responses for recovery.

RQ: How to provide smooth degradation (also called graceful degradation) for

integrated systems with services of mixed-criticality in cases of resource

shortages?

This the main research question. In this research project, six sub-questions

have been identified as critical and important for the success of the thesis.

RQ1: What is a suitable definition of smooth degradation?

Investigating the types and durations of resource shortages using the

Tolerance-based Real-Time Computing Model (TRTCM) model [23], which
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establishes a relationship between resource shortages and the overall system

utility. This is answered in Chapter 3.

RQ2: What protocols are possible to grant resources to services of different crit-

icality in case of resource shortage?

Research existing approaches and adaptation techniques to tolerate tran-

sient and permanent faults in mixed-criticality systems, and identify meth-

ods for allocating resources to mixed-criticality services. This is answered

in Chapter 7.

RQ3: How can we evaluate and compare the smooth degradation of one protocol

against another?

Evaluating the adaptivity of a certain mixed-criticality scheduling protocol

can be realised by terms of achieved system utility, and number of successful

and compromised services. Designing and implementing a simulator to

simulate resource shortages on mixed-criticality systems is important for

experimental evaluation by implementing the found protocols during the

research. This is answered in Chapter 7.

RQ4: How can we provide higher levels of dependability from less dependable

components?

Exploring of existing fault-tolerance techniques to realise dependability,

and how these techniques are implemented in both the literature and real-

world standards for industrial safety-critical systems. This is answered in

Chapter 4.

RQ5: How can the system adapt based on occurrences of services’ overruns

ofWCETestimates?

Exploring the available adaptation techniques for theWCEToverrun in the

literature, and whether adopting the sameWCETafter overrun, under any

technique, is better, or adapting the system schedule based on the recently

observed new, longer WCET. This is answered in Chapter 5.

RQ6: What is a novel mixed-criticality scheduling protocol that provides an im-

provement on smooth degradation of service in case of resource shortage?

Developing protocols and frameworks that enable building dependable

mixed circularity systems, that can tolerate permanent and transient re-

source shortages while providing smooth degradation to the system. This

is answered in Chapter 5.
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1.3 Contributions

This research has focused on three main directions. Building highly dependable

components, from many less dependable components. Evaluating and improving

the smooth degradation for Mixed-criticality scheduling protocols on uni and

multi-core. Developing a framework that provides adaptive responses toWCET

overrun, while improving the smooth degradation. Figure 1.1 shows the rela-

tion between the existing approaches in the literature and the novel protocols

developed during the research of this thesis, including the evaluations between

existing ones.

• A concrete model for Criticality Arithmetic (CA). that enables realising

high criticality components from many low criticality components. The

research found that the awareness of CA by mixed-criticality protocols en-

hances the system dependability, and smoother degradation for free. The

limitation is that it is limited to two or three criticality levels. This contri-

bution contributes in answering research question RQ4, it is discussed in

Chapter 4 and evaluated in Chapter 7 Section 7.1.

• Mid-term Criticality Arithmetic (CA) protocol. ATMP-CA uses informa-

tion about CA to enable building highly dependable systems from less de-

pendable components. ATMP-CA shows smoother degradation than com-

pared protocols, Standard Adaptive Mixed-Criticality Protocol (SAMP),

and Adaptive Tolerance-based Mixed-criticality Protocol (ATMP). The

limitation of the study is that it’s based on two criticality levels. This con-

tribution contributes in answering research question RQ4, it is discussed

in Chapter 4 Section 4.1 and evaluated in Chapter 7 Section 7.1.

• Short-term Criticality Arithmetic (CA) protocol. The Criticality Arith-

metic Lazy Bailout Protocol (LBP-CA) uses CA to enable building de-

pendable systems for a quicker return to normal or low criticality mode,

which improves the smooth degradation compared to the reference proto-

cols, Bailout Protocol (BP), and Lazy Bailout Protocol (LBP). The limita-

tion of this study is that it allows the drop of high criticality task replica in

case another replica of the service is completed priorly. This contribution

contributes in answering research question RQ4, it is discussed in Chapter

4 Section 4.2 and evaluated in Chapter 7 Section 7.1.

• Empiric Worst Case Execution Time (EWCET) model for online adapta-

tion toWCEToverrun. EWCET for the first job of each service gets ini-
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tialised with a givenWCETestimate of that service, and for each succeeding

job, the EWCET is the maximum of the previous job EWCET and the cur-

rent job’s execution time. Therefore, any update of the EWCET is based

on the maximum with the previous job’s EWCET. This contribution con-

tributes in answering research question RQ5, it is discussed in Chapter 5

Section 5.1 and evaluated in Chapter 7 Section 7.4.

• Empiric Adaptive Tolerance-based Mixed-criticality Protocol (E-ATMP)

framework, which is a reconfiguration method for mixed-criticality systems

to provide smooth degradation for services in case of aWCEToverrun

occurs. E-ATMP uses the existing Adaptive Tolerance-based Mixed-

criticality Protocol (ATMP) framework and adds additional mechanisms

to facilitate the deployment of the EWCET updates during run-

time. E-ATMP provides a powerful line of defence against the threat

ofWCETunderestimations in a world where is increasingly difficult to

provide safe and accurateWCETestimates due to the ever-increasing

processor HW complexity. This contribution contributes in answering

research question RQ5, it is discussed in Chapter 5 Section 5.2 and

evaluated in Chapter 7 Section 7.4.

• Evaluation for three sets of analysis for smooth degradation of the achieved

system utility between SAMP and ATMP protocols, under computing ca-

pacity shortage. It shows the absolute utility achieved and the number of

dropped tasks when running the task set over three cases 8, 4, and 2 cores

under full and half frequency speed. Then, I compared the three cases be-

tween the two protocols, SAMP and ATMP. This contribution is discussed

and evaluated in Chapter 7 Section 7.2, which answers research question

RQ2.

• An evaluation for the ATMP utility function, as defined by the TRTCM

model, and integrated it with the real-time model, the E-MC. The eval-

uation is a comparison of smooth degradation between TRTCM-ILP and

TRTCM-Elastic. TRTCM-Elastic is an integration of the TRTCM util-

ity function and the real-time model, RT Elastic. RT Elastic provides a

heuristic function for finding an acceptable configuration for the system

services but lacks the utility metrics assigned to each service as featured in

TRTCM. This contribution is discussed and evaluated in Chapter 7 Section

7.3, which answers research question RQ2.

• A simulator that allows experimenting with different configurations for sys-
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tem resources and running services by defining different types of resource

shortages as mentioned above and reports the achieved overall system util-

ity by each protocol, the number of successfully scheduled services, and the

number of dropped or compromised services. This contribution is discussed

in Chapter 7 Section 7.3, which answers research question RQ2.

MC

TRTCM CA

ATMP

ATMP-CA

LBP

LBP-CA

EWCET

E-ATMP

RT

WCET

Sajid Fadlelseed: Contributions

Novel contributions developed during this thesis

Existed approaches in the Literature

Novel evaluation between existed approaches

Elastic

TRTCM-Elastic
TRTCM-ILP

AMC

SAMP

ATMP 
SAMP

Figure 1.1: Contributions/Solutions Answer Research Question

1.4 Success Criteria

The success of this thesis in addressing both main and sub-questions is measured

through concrete evaluation metrics classified into two categories, and applied in
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four experiments. The first evaluates smooth degradation based on the achieved

system and service absolute utility. The second evaluates smooth degradation

based on the number of allocated services to cores, the number of dropped or

degraded services during allocation, and the number of executed and aborted

services.

The first experiment assesses mid-term CA protocols (SAMP-CA, and

ATMP-CA), and CA agnostic protocols (SAMP and ATMP) on a multi-core

platform. The second experiment compares the achieved system utility between

ATMP and SAMP protocols for service allocation on a multi-core system. The

third experiment assesses smooth degradation on the uni-core system between

two variants of the TRTCM model: TRTCM-ILP and TRTCM-Elastic. The

fourth experiment assesses smooth degradation on the uni-core system between

EWCET-aware and EWCET-agnostic protocols.

Evaluaion Metrics: Evaluating smooth transitions between protocols studied

in this thesis to answer RQ3 has been accomplished using: Offline and Online

Feasibility Analysis, Number of successful services per protocol, Number of failed

services per protocol, Number of compromised services per protocol, Number of

postponed services per protocol, Ratio of achieved system/service utility between

the protocols.

• Offline and Online Feasibility Analysis: This analysis checks whether the

system can ensure task feasibility both before deployment (offline) and

during operation (online). This analysis is essential in all experiements

in this thesis. In the evaluation chapter, Chpater 7, before conducting

an experiment, an offline schedulability test is applied to the task set to

ensure that they can share the same processor without interference dur-

ing normal operation of the system or in low-criticality mode. During the

experiement, whenever the system experience a resource shortage of core-

failure or WCET overrun, an onine test is applied to ensure the schedula-

bility of the task set.

• Number of successful services per protocol: This counts services success-

fully executed according to each protocol’s requirements or constraints.

• Number of failed services per protocol: This counts services that could

not be completed within their expected parameters or deadlines for each

protocol.
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• Number of compromised services per protocol: This counts services that

were partially completed with reduced quality or functionality due to a

resource shortage.

• Number of postponed services per protocol: This counts services that were

delayed beyond their scheduled or desired execution times under each pro-

tocol due to a resource shortage.

• Ratio of achieved system/service utility between the protocols: This Com-

pares the overall utility achieved by the system or individual services by

each protocol.

1.5 Publications

The work related to CA has been published in two papers, a journal paper, and

a conference paper. The work related to the EWCET and E-ATMP framework

has been submitted to a journal.

• Sajid Fadlelseed, Raimund Kirner, and Catherine Menon. ”ATMP-CA:

Optimising Mixed-Criticality Systems Considering Criticality Arithmetic.”

Electronics 10.11 (2021): 1352.

• Sajid Fadlelseed, Raimund Kirner, and Catherine Menon. ”LBP-CA: A

Short-term Scheduler with Criticality Arithmetic.” Proceedings of Ab-

stracts School of Physics Engineering and Computer Science (2022).

• Sajid Fadlelseed, Che Xianhui, and Raimund Kirner. ”E-ATMP: Using

Empiric Worst-Case Execution Time to Build Ultra-Survivable Mixed-

Criticality Systems.” IEEE Transactions on Dependable and Secure Com-

puting (2023) [Submitted]

1.6 Thesis Structure

This section presents the thesis structure

• Chapter 2 presents background on Real-time and Mixed-criticality systems

and scheduling. It explains basic concepts and terminologies utilised in this

research, it also presents the mixed-criticality use case introduced by Vestal,

which triggered the research on mixed-criticality systems scheduling.
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• Chapter 3 reviews the related work in the literature. The chapter presents

significant contributions in real-time systems research 3.1,WCET analy-

sis 3.2, dependability, 3.3 and mixed-criticality systems scheduling 3.4.

• Chapter 4 presents the CA model, and the developed protocols ATMP-

CA and LBP-CA. The evaluation of this chapter is under the experimental

evaluation chapter, Chapter 7 in Section 7.1. ATMP-CA is a CA aware allo-

cation and Integer Linear Programming (ILP) formulation for the mapping

tasks to cores are presented in Section 4.1.2 and Section 4.1.3 respectively.

The chapter summary in Section 4.3, draws the chapter’s conclusions.

• Chapter 5 presents the EWCET model and the development of the E-

ATMP framework. The evaluation of this chapter is under the experimental

evaluation chapter, Chapter 7 in Section 7.4. the EmpiricWCETand E-

ATMP framework are presented in Section 5.2. The chapter summary in

Section 5.4, states the chapter’s conclusions.

• Chapter 6 presents the implementation of developed contributions: ATMP-

CA, LBP-CA, EWCET, and E-ATMP. ATMP-CA implementation is pre-

sented in Section 6.1, LBP-CA Bailout in Section 6.2, EWCET and E-

ATMP in Section 6.3. The presentation of this chapter is based on Uni-

fied Modeling Language (UML) diagrams. Each protocol’s classes are pre-

sented, including the relations between super and derived classes.

• Chapter 7 presents an evaluation of existing protocols in the literature

(TRTCM-ILP, TRTCM-Elastic, SAMP, ATMP, BP, and LBP), and the

novel contributions developed during the research of this thesis (ATMP-

CA, SAMP-CA), LBP-CA, and E-ATMP.

• Chapter 8 Concludes the thesis research findings and contributions in Sec-

tion 8.1 and 8.2, respectively, including the outlook for future work in

Section 8.3. Section 8.4 closes thesis.

1.7 Chapter Summary

In this chapter, I presented the context of this research in Section 1.1, including

main and sub-questions in Section 1.2, contributions in Section 1.3, success cri-

teria in Section 1.4, publications in Section 1.5, and finally, the thesis structure

in Section 1.6.
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Background

This chapter, Chapter 2, presents background on Real-time and Mixed-criticality

systems and scheduling. It explains basic concepts and terminologies utilised in

this research, it also presents the mixed-criticality use case introduced by Vestal,

which triggered the research on mixed-criticality systems scheduling. Section 2.1

explains the basics of Real-time scheduling. Section 2.2 explains the basics of

Mixed-criticality scheduling. Section 2.3 concludes this chapter.

Since Vestal paper in 2007 [4], different approaches and mechanisms [24] have

been proposed to address the problem of efficient allocation for computing re-

sources to serve services with different levels of assurance and criticalities. How-

ever, the research community has realised the need to extend Real-time schedul-

ing theory to consider the importance of system components based on their

priority and criticality levels. Efficient design and implementation for complex

mixed safety and mission-critical systems under the constraints of non-functional

requirements Sizw, Weight, and Power (SWAP) is a challenge. The correctness

of the implementation and the feasibility of the design are verified under the

highest assurance for best and worst-case scenarios. Therefore, the integration

of these systems with different levels of criticalities has been investigated in depth

in the literature with a focus on defining the possible policies to grant resources

for services in case of resource shortage. Granting must assure the continuity

of critical services with high assurance while affording non-critical services an

acceptable degraded level.

The following sections present the basics of Real-time systems and schedul-

ing. Characteristics of real-time systems and tasks are discussed, including

the schedulability analysis applied before the system deployment. In addition,

Vestal’s example that revealed the limitation of the existing priority-assignment

algorithm is explained, including the modified real-time priority-assignment al-

15
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void realTimeTask(){

int x;

while(1){

x = readSensor();

x += 2;

sleep(1000);

}

}
Figure 2.1: Implementation of a real-time task in the C programming language

gorithms that Vestal suggested to consider when developing a mixed-criticality

system.

2.1 Real-time Systems and Scheduling

This section explains real-time scheduling. It presents the timing character-

istics in real-time services and policies for optimal priority assignment to ser-

vices. Next, we provide a comprehensive overview of real-time service scheduling

and the required schedulability tests. Finally, we discuss existing fault-tolerance

methods designed to mitigate the impact of transient, intermittent, and perma-

nent faults.

A real-time system is one in which the correctness of the system depends

not only on the logical results of computation, but also on the time in which

results are conducted. The output of the system and the time when outputs

were generated, determine whether an execution is successful or not. The study

of Real-time systems includes the planning and scheduling of workload on the

processor cores so that the timeline guarantees for workload are never violated.

In Real-time systems, workload is quantified into discrete pieces called tasks,

which represents the unit for computation in the processor. To illustrate at

what point in time such a task can be executed we use the concept of timeline,

which goes from zero to a larger value that represents the real-world clock time of

the system execution, and when the task is scheduled it is placed on the timeline

based on the decision of the scheduler to execute its functionality. When a task

is scheduled, usually there is a basic code block, a loop, some functionality to

loop over, and a delay at the end to determine the period of the task. Here is an

implementation of Real-time task τi, written in programming language C, that

reads sensor data about every 1000 milliseconds:
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A real-time task is characterised by the following tuple:

τ = 〈id, p, d, c, ut, wr〉

• τ.id task identifier.

• τ.p task period.

• τ.d task relative deadline.

• τ.c task worst-case execution time.

• τ.ut task load or utilization of CPU time.

• τ.wr task worst-case response time, depends on other tasks in the task set.

Arrival of a task τi,j is called an instance of the task or job. The function-

ality of an instance of a task τi,j, a job, is defined in the task code. This

means that jobs are repeated executions of tasks’ functionality.

Real-time tasks and services are classified according to the rate of arrivals. A

periodic task arrives with constant time intervals. A sporadic task arrives in

a bounded time interval. A Aperiodic task has no guaranteed minimum time

between two subsequent arrivals. Real-time tasks and services are also classified

according to deadline. implicit deadlines equal to periods. constrained deadlines

less than or equal period. arbitrary deadlines can be equal, less, or higher than

periods. In case no deadline is given, it’s assumed that the relative deadline is

equal to the task period. Note that the longer the execution time, the more CPU

resources are needed, and if the execution time becomes too large, the system

gets overloaded. Real-time tasks can be independent or dependent. Independent

tasks do not share a resource other than the processor time, whereas dependent

tasks share a resource other than the processor time, e.g. memory, or rely on the

completion of another task to get selected for execution.

Periodic task sets are classified as synchronous, or asynchronous task sets.

Tasks that arrive at the same time, simultaneously, are synchronous, but they

are asynchronous if their arrivals are sequential. Worst-case Execution Time

(WCET) The WCET is the longest number of CPU cycles or the longest path

in the possible execution paths required by a service. It is obtained either by

dynamic or static analysis. Dynamic analysis runs the same task many times

with different input types and sizes, as well as different processor states, whereas

static analysis analyses the code paths given a certain processor architecture.

Different situations may render a task to overrun its WCET. Figure 2.2 from
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Wilhelm [1] shows a task with variations in execution times based on input data

or different factors related to the environment. The shortest execution time is

called the BCET, and the longest time is the WCET.
Worst-Case Execution Time Problem · 3
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Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an envelope of the former, represents
the times of all executions. Its minimum and maximum are the best-case and worst-case execution
times, resp., abbreviated BCET and WCET.

The literature on timing analysis has created a confusion by not always making
a distinction between worst-case execution times and estimates for them. We will
avoid this misnomer in this survey.

We will use the term timing analysis for the process of deriving execution-time
bounds or estimates. A tool that derives bounds or estimates for the execution
times of application tasks is called a timing-analysis tool. We will concentrate on
the determination of upper bounds or estimates of the WCET unless otherwise
stated. All tools described in Section 6 with the exception of SymTA/P offer
timing analysis of tasks in uninterrupted execution. Here, a task may be a unit of
scheduling by an operating system, a subroutine, or some other software unit. This
unit is mostly available as a fully-linked executable. Some tools, however, assume
the availability of source code and of a compiler supporting a subsequent timing
analysis.

Organization of the article

Section 2 introduces the problem and its subproblems and describes methods be-
ing used to solve it. Sections 3 and 4 present two categories of approaches, static
and measurement-based. Section 6 consists of detailed tool descriptions. Section 7
resumes the state of the art and the deployment and use in industry. Section 8
lists limitations of the described tools. Section 9 gives a condensed overview of the
tools in a tabulated form. Section 10 explains, how timing analysis is or should
be integrated in the development process. Section 11 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined by
architectural trends.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

Figure 2.2: Minimum and maximum are the best-case BCET and worst-case
WCET [1]

Run-time task model The basic run-time mechanism takes the first task

in the ready state queue and executes it on the processor.

1. ready : in this state, the task is not executing but can execute when the

scheduling point is reached.

2. running : in this state, the task has been scheduled to the CPU and cur-

rently executing.

3. blocked : in this state, a task is not scheduled until another task releases a

resource.

4. suspended completely remove the current of the task from the schedule.

Priority Assignment: Assigning priorities to tasks is obtained either using

fixed or dynamic priority assignment algorithms. A scheduling algorithm gener-

ates a schedule for a given set of tasks and a certain type of run-time system.

The priority assignment algorithm is implemented by a scheduler that decides

what order tasks should be executed. A schedule is feasible if all tasks in a task

set meet their deadlines according to certain priority assignments. A set of tasks
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are schedulable if there is a scheduling algorithm that can generate a feasible

schedule.

Schedulability Test: Schedulability tests are classified to sufficient, nec-

essary, and exact. The schedulability test is sufficient if it shows that a set of

tasks is schedulable. The schedulability test is necessary if it shows that a set

of tasks is not not-schedulable. The schedulability test is exact (sufficient and

necessary) if it shows that a set of tasks is schedulable.

Fixed-priority Assignment: In Rate Monotonic (RM) [5], the priority

of a task τi.pr is determined by the rate or period of the request for the task

execution. The rate of requests per task is the reciprocal of the task’s period
1
τi.p

. Tasks with lower periods (higher rates) have the highest priorities. RM is

optimal for all task sets with implicit deadlines over all Fixed-priority assignment

algorithms. The schedulability test is sufficient. In Deadline Monotonic (DM)

[25], the priority of a task τi.pr is determined by the deadline of the task. Tasks

with shorter relative deadlines are assigned the highest priorities. DM is optimal

for all task sets with constrained deadlines τi.d over all Fixed-priority assignment

algorithms.

Dynamic-priority assignment: In Earliest Deadline First (EDF) [5], The

priority of a task for execution is dynamically determined by the absolute dead-

line of a task. Tasks with the closest absolute deadline get the highest priority.

The schedulability test is exact. EDF is optimal for any task-sets with implicit

deadlines over all dynamic priorities schedulers. [26].

Response Time Analysis (RTA): RTA is an exact schedulability test for

Fixed-priority assignment schedulers. Started by Harter and extended by Pandya

and Audsley [27, 28][29][30][31]. RTA is a fixed point iteration that calculates

the Worst-case Response Time (WCRT) τi.wr for each task and then compares

this value with the task’s deadline τi.d, and if the response time τi.wr converges

to a value less than or equal to the task deadline τi.d then it is schedulable,

otherwise, it is not [32]. The RTA test is applied to each task τi against tasks

with a priority higher than the task in question. The response time value is

obtained from the following, where HP is a set of tasks with priority higher than

task τi priority τi.pr:

τi.wr = τi.c+
∑

τj .pr∈HP(τi.pr)

⌈
τi.wr

τj.p

⌉
· τj.c (2.1)

The RTA is valid under the following assumptions:

• uni-core processor system
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• synchronous tasks

• independent tasks

• periodic tasks

• tasks with implicit or constrained deadlines.

• context switch and all overheads are assumed to be 0.

• a task can’t abandon or drop itself.

• tasks WCET is less or equal to task deadlines.

Least Upper Bound (LUB) Another feasibility test for the Static and Dy-

namic Priorities technique enables calculating the accumulated utilization Ubounds

of all tasks in the system. Started by Liu et al. [5] and Fineberg et al. [33] [29].

If the resulted U value does not exceed a guarantee bound, all timing constraints

will be met [5]. The utilization is the fraction of processor time that is used for

executing the task set. The utilization of a task τ.ut is equal to τi.ut = τi.c
τi.p

. The

total utilization of the processor time for all tasks is
∑n

i=1 τi.ut. LUB provides

a sufficient schedulability test. This bound converges to 69% as the number of

tasks approaches infinity. [5]:

lim
n→∞

URMbounds = n(21/n − 1) ≤ 0.68 (2.2)

Under the EDF algorithm, tasks can use 100% utilization for the processor time.

UEDFBound =
∑

n=1

τi.c

τi.p
≤ 1 (2.3)

The LUB is valid under the following assumptions:

• uni-core processor system

• synchronous tasks

• independent tasks

• periodic tasks

• tasks with implicit deadlines.

• context switch and all overheads are assumed to be 0.

• a task can’t abandon or drop itself.
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• tasks WCET is less or equal to task deadlines.

Server-Based Scheduling In server-based scheduling, a designated task

with the highest priority acts as a server [34]. This server collects any surplus

unused slack time during system execution and then allocates this collected

WCET to specific tasks based on the server algorithm. This allows tasks to

utilise surplus execution time efficiently. It is mainly used for scheduling aperi-

odic tasks. Aperiodic servers for Fixed-priority scheduling are: Polling Server,

Deferrable Server, Sporadic Server, Slack Stealer [15]. Aperiodic servers for

Dynamic-priority scheduling are Dynamic Polling Servers, Dynamic Sporadic

Servers, Total Bandwidth Servers, Tunable Bandwidth Servers, and Constant

Bandwidth Servers [15].

Classification of Multi-processor Architectures: Different types of

multi-processors and multi-core systems can be classified based on their capabil-

ities and speed. This includes Homogeneous, Uniform Heterogeneous, and Non-

uniform Heterogeneous. By processor capabilities, we mean the size of cache

memory, energy efficiency, etc., where processor speed refers to the clock speed

of the processor; a higher clock speed indicates a faster processor. Table 2.1

presents the capabilities and speed by each classification. The speed between

processors is equal only in Homogenous systems, where capabilities are differ-

ent in the Non-uniform Heterogeneous but equal in the Uniform Heterogeneous

systems [14].

Asymmetric and Symmetric Multi-processing The process of defining

which core the task executing is called mapping of a task which requires the

study of overhead and communication delay for the efficient usage of each core.

There are two types, Symmetric Multiprocessing (SMP) and Asymmetric Mul-

tiprocessing (AMP). In SMP, all tasks across all cores share the same view of

the operating system. In AMP, each core operates with its own independent

operating system [35].

Multi-core Processor Scheduling Algorithms Multi-core and multi-

processor systems solve the problem of assigning tasks to cores. The allowed

migration of a task or job from one core/processor to another, determines the

scheduler class, either No-migration or Migration. The No-migration class, or

partitioned, prohibits tasks or jobs (instances of a task) from migrating to com-

plete execution on a core or processor different from the one to which they are

initially allocated. The Migration class, or global, allows such a feature where

schedulers can allow tasks and jobs to continue execution on different processor.
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Architectural Configurations Capabilities Speed

Homogeneous = =
Uniform Heterogeneous = !=
Non-uniform Heterogeneous != !=

Table 2.1: Different Architectural Configurations

2.2 Mixed-criticality Systems

Mixed-criticality system runs services with different criticalities in a common

computing platform and provides a bounded degradation for low-criticality ser-

vices and services in case of resource shortage. The following tuple characterises

the real-time mixed-criticality task model:

τ = 〈id, p, d, copt, cpes, l, wrmode〉

• τ.id task’s identifier.

• τ.p task’s period.

• τ.d task’s relative deadline.

• τ.copt task’s optimistic WCET.

• τ.cpes task’s pessimistic WCET.

• τ.utopt task’s load or utilization of CPU time using the optimistic WCET

and calculated by τ.utopt = τ.copt
τ.p

. It represents the workload of the task

during normal or LO criticality mode. τ.utpes task’s load or utilization of

CPU time using the pessimistic WCET and calculated by τ.utpes = τ.cpes
τ.p

.

It represents the workload of the task during the HI criticality mode.

• τ.wrmode task’s worst-case response time according to the activated mode,

where τ.wrLO denotes response time during the LO criticality mode and

τ.wrHI denotes the HI criticality mode response, and τ.wrCH caps the in-

terference by the LO criticality on HI criticality tasks before the activation

of HI criticality mode.

Adaptive Mixed-Criticality (AMC) The AMC response time analysis for

Fixed-priority mixed-criticality tasks, is the exact text for testing the schedula-

bility of the MC task set. AMC defines the analysis for each mode in the system,

LO and HI criticality mode, and the transition from LO to HI mode.
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LO-criticality mode In this mode, Low Criticality (LO)criticality tasks τi.l =

LO and High Criticality (HI)criticality tasks τi.l = HI , are assumed to

execute with in their optimistic WCET. The task is considered schedulable

if its response time during Low Criticality (LO)criticality mod τi.wrLO, is

less than or equal to its deadline. During this mode, tasks are prioritised

according to their priority.

τi.wrLO = τi.copt +
∑

τj .pr∈HP(τi.pr)

⌈
τi.wrLO
τj.p

⌉
· τj.copt (2.4)

Transtion from Low Criticality (LO)to High Criticality (HI)criticality mode

τ.wrCH = τi.cpes

+
∑

τj .pr∈HP(τi.pr)

⌈
τi.wrCH
τj.p

⌉
· τj.copt

+
∑

τj .pr∈HPL(τi.pr)

⌈
τi.wrLO
τj.p

⌉
· τj.copt (2.5)

HI-criticality mode MCHI This test is for the schedulability for the set of

HI-criticality tasks HPH(i) with priority higher than critical task τi(hi).

However, under any circumstances, this test may be used only in the worst

critical situations where the system starts to drop critical tasks according

to the available capacity.

τi.wrHI = τi.cpes +
∑

τj .pr∈HPH (τi.pr)

⌈
τi.wrHI
τj.p

⌉
· τj.cHI (2.6)

A typical MC system is defined with a number of runtime modes that dif-

ferentiate between normal mode and critical modes which the MC system may

experience. The normal mode, or Low criticality mode (LO), represents the spec-

ified behaviour when no resource shortage, and the critical mode, High criticality

mode (HI) is activated when the system experiences a resource shortage.

The MC system verifies the schedulability of the system services in nor-

mal and critical modes before the system deployment. In Low Criticality

(LO)criticality mode, all system services and tasks despite their criticality levels

are scheduled according to the underlying real-time scheduler and the priority

assignment algorithm. If the system experiences core failure or WCET overrun,
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Task ID Period Deadline Criticality Optimistic WCET Pessimistic WCET
τ1 2 2 LO 1 2
τ2 4 4 HI 1 1

Table 2.2: Mixed-criticality Task Set

the system activates the High Criticality (HI)criticality mode, and provisions

the prioritization of system services based on their priority and criticality, and

High Criticality (HI)criticality services are assured to continue execution while

Low Criticality (LO)criticality services are subject to abort or abandon for their

execution during the High Criticality (HI)criticality mode. The reason for drop-

ping the Low Criticality (LO)criticality services is to eliminate the interference

caused by low criticality with higher priority on services with High Criticality

(HI)criticality but with lower priority, which is a phenomenon known by criti-

cality inversion [4, 36]. The criticality inversion problem was first presented by

Vestal [4], but De Niz et al. [36]. [36] who coined this phenomenon with name

criticality inversion. The presented problem by Vestal is that assume a task set

of two tasks τ1 and τ2, defined by the timing and criticality configuration in Table

2.2.

If we use Deadline-monotonic scheduling - which is optimal for all task sets

with deadlines less than or equal to their periods and utilisation bound less than

1.0 - task τ1 is assigned higher priority and both tasks are schedulable during the

Low Criticality (LO)criticality mode using their optimistic WCET τi.cLO esti-

mate. In the case of τ1 overrun its optimistic WCET τi.cLO, τ2 has lower priority

but higher criticality, hence, τ2 can’t be scheduled until k τ1 completes execution.

However, the system is feasible if τ2 assigned higher priority. These findings are

found by Vestal and proposed dropping τ1 to eliminate its interference on the

High Criticality (HI)criticality task τ2. Vestal suggested two priority assignment

algorithms for assigning higher priority to the higher criticality task τ2, to solve

the problem. The first is period transformation [37] which is a technique origi-

nally developed for graceful degradation for critical tasks in partitioned criticality

systems - where tasks with equal criticality execute on the same platform, and

the second is Audsley optimal priority assignment algorithm (OPA) [38, 39].

Period Transformation The period transformation has been developed in

partitioned criticality systems to guarantee the schedulability of critical tasks

in case of a resource shortage in the form of processor overload [37]. The key

concept is, to increase a task priority, is to transform the task into a group of
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tasks with smaller periods, and WCETis allocated equally between the tasks in

the group. This is achieved by dividing the task period and WCET by a value

that is sufficient to reduce the period to a value ∆ at or below the period of every

other task on the system.

τ.ptransformed =
τ.p

∆
(2.7)

τ.ctransformed =
τ.c

∆
(2.8)

Audsley optimal priority assignment algorithm (OPA) The ordering

is partitioned for two queues: the first is ordered, consisting of the τi(LO) pri-

ority tasks, and the remaining unordered τi(HI) priority tasks. All tasks in the

unordered partition are chosen and placed at the top of the ordered partition

and verified for feasibility. If the chosen task can be scheduled, then the priority

of the task will remain, and the ordered partition will increase by one position.

If the task is not schedulable it is returned to its original priority. This continues

until either all tasks in the unordered partition have been checked and found

to be unschedulable, or else the ordered partition constitutes the final priority

assignment [38, 39]. The worst-case response time for a task by equation 1 is

extended by Vestal to [4] consider the criticality of the task, by knowing which

subset of tasks has higher priority than τ(HI) but without knowing their specific

priority assignments.

τi.wr = τi.copt +
∑

τj .pr∈HP(τi.pr)

⌈
τi.wr

τj.p

⌉
· τj.copt (2.9)

Fault Tolerant Systems The number of spare computers or redundant

peripheral devices to allocate is limited by the non-functional requirements of

Size/Shape, Weight, and Power (SWaP) that constrain the system design. Two

complementary approaches to obtain reliable computing. Fault-in-tolerance, to

prevent faults from happening and Fault-tolerance to prevent faults becomes

failures (protective and adaptive fault-tolerance) online [19]. Preventive fault-

tolerance applied to ensure total quality assurance to deliver system services.

Adaptive techniques are applied to smooth degrade service quality, but ensure

the continuity of vital services desired by the system user. This degradation is

realized by abandoning several non-critical services to ensure the continuity of

critical ones. The safety and quality of delivered service justifies its reliability

[21, 40].
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Multiple task errors due to multiple faults, affect this task job’s primary and

backups and that job becomes erroneous. Multiple task errors can affect different

jobs of the erroneous task or other jobs in different tasks may be affected as

well. Redundancy techniques for fault-tolerance scheduling are either temporal

for re-execution or spatial for replication of tasks among the available processors.

The choice of redundancy technique should be determined by the scheduling

algorithm [35].

Primary and Replica Tasks For static or dynamic scheduling, the basic

idea is to use the available slack reserved during the schedulability test. The

generated schedule contains the original task usually called primary, and the

re-execution instance of the same task named replica or backup [30] task. The

active-replicas are released in parallel on different processors if faults occur or

not, where passive-replicas are only invoked in case its primary task has failed

in its execution, note that activated passive-replicas must be de-allocated after

the faults tolerated [30].

2.3 Chapter Summary

This chapter has explained the background on real-time systems and scheduling

in Section 2.1, and the basics of mixed-criticality systems and scheduling in

Section 2.2.
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Related Work

This chapter reviews the related work, it presents significant contributions in

real-time systems research considered in this thesis and WCET analysis, depend-

ability, and mixed-criticality systems scheduling. Section 3.1 reviews Real-time

scheduling. Section 3.2 reviews WCET. Section 3.3 reviews Dependability. Sec-

tion 3.4 reviews Mixed Criticality Systems. Section 3.5 concludes the chapter.

The most robust and compelling findings in mixed-criticality systems research

since the start of the mixed-criticality research field by Vestal’s seminal paper [4]

in 2007 are as follows: Baruah et al. [6] proved that none of the existing priority

assignments is optimal for mixed-criticality systems scheduling. The work by

Burns in [20] introduced the importance of runtime survivability based on AMC,

and an explicit invitation in [7] for mixed-criticality researchers to focus more on

developing frameworks that achieve runtime survivability.

The establishment of the mixed-criticality field of research by Vestal high-

lighted that existing Fixed-priority real-time priority assignment algorithms are

not optimal when criticality and safety integrity levels of services are introduced

to the scheduling problem, nor are Dynamic-priority assignment algorithms, as

shown in [6].

The development of the Adaptive Mixed-Criticality (AMC) by Baruah et al.

[41] represents the foundation for priority assignment, response time analysis,

and scheduling for mixed-criticality services in most of the existing research in

[42, 20, 43, 44, 45, 46, 47, 24].

The introduction of survivability by Burns et al. [20] raised the need for a

focus on runtime survivability and smoother degradation than AMC. The model

provides runtime assurance against tolerable WCET overruns using robust and

resilience metrics, which quantify the level of system degradation. An interesting

idea is relaxing AMC’s pessimistic runtime behaviour and integrating tolerability

27



Chapter 3. Related Work 28

against several tolerable WCET overruns. The model is built on top of AMC

and defines proportionate responses to WCET overrun.

Few sources have followed one of the most important sources, Baruah et

al. [7], in my opinion, in mixed-criticality systems and scheduling research after

Vestal’s seminal paper [4]. The paper raised attention to the need for frameworks

that put more consideration into runtime survivability, using existing models

and protocols, most of which have been developed with a focus on providing

pre-runtime verification with no consideration for runtime survivability. Less

attention has been given to this shift, as observed in [48, 49, 50, 51], announced

by Baruah et al [7], and this thesis provides a concrete response to this shift.

In the following sections, we review optimal fixed-priority assignment algo-

rithms, WCET, and dependability before reviewing research on mixed-criticality

systems. This is important as these three areas provide the foundations for the

research on mixed-criticality systems from the perspective of this thesis.

Most of the existing approaches in mixed-criticality systems, are based on the

Vestal model [4]. Vestal’s model was later improved By Baruah et al in [8] by

adding runtime monitoring and the analysis for schedulability of system services

in low, high criticality modes, including the interference during the change from

LO mode to HI mode. However, though the Vestal and Baruah models are

safe, they lack the required runtime-survivability during the system mission.

Burns augmented Baruah’s model in et al [20], by adding the notion for runtime

survivability followed by another publication by Baruah et al [7] where triggered

the need for considering both: the pre-runtime verification support, and the run-

time survivability facilities that handle failures and resource shortages during the

system mission.

3.1 Real-time Scheduling

One significant finding in Vestal’s seminal paper is that known real-time priority

assignment algorithms, considered to be optimal, such as RM, DM [5] [25], and

EDF algorithms [5], are not optimal when criticality is introduced [4, 6, 24].

Vestal highlighted the problem of existing priority-assignment algorithms using

a use-case example for a mixed-criticality task set with multiple criticality levels.

The problem presented in Vestal’s paper, referred to as criticality-inversion by

Di Niz et al. in [36], is discussed in the background chapter. However, Vestal

found that Audsley’s optimal priority assignment [38, 39], known as OPA, is

optimal. In this section, we review the optimal priority assignment algorithms
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such as RM, EDF, and other real-time model alternatives to the Liu and Layland

model.

Real-time systems prioritise the execution of system tasks using priority as-

signment algorithms. Priority assignment algorithm manages the allocation of

processor time among tasks while ensuring that all tasks complete their compu-

tational requirements before their respective deadlines [29].

Liu and Layland (1973) [5] proposed two priority assignment algorithms and

techniques for deriving schedulability tests [5]. The two priority assignment

algorithms are RM and EDF [5]. RM ensures that tasks with deadlines equal

to their periods meet their deadlines if they pass the LUB schedulability test.

The safe LUB for the utilization of processor time for any task set scheduled

under RM is 0.71. This means that if the total utilization of all tasks in a task

set is less than 0.71, then the task set can be guaranteed to meet all deadlines

under RM scheduling [5]. The EDF algorithm assigns priorities dynamically at

runtime, where the task with the shortest deadline has the highest priority for

execution. EDF guarantees that all tasks in a task set meet their deadlines if

they pass the LUB schedulability test. The safe LUB of the processor utilization

for tasks scheduled under EDF is 1.0. This means that if the total utilization

of all tasks in a task set is less than or equal to 1.0, then the task set can be

guaranteed to meet all deadlines under EDF scheduling [5, 52].

Though Liu and Layland’s utilisation bounds are safe, their assumptions were

too pessimistic and lacked facilities for adaptability to overloads e.g. when task

set utilisation is greater than 1.0 due to resource shortage e.g. core failure.

The elastic model introduced in Elastic Task model [15], enables tasks to adjust

their rate of arrivals within predefined bounds whenever the system experiences

an overload. The key idea is to treat task utilisation as if it were a spring.

For example, if a task set’s utilization exceeds 1.0 and the underlying scheduler

is EDF, the compression equations for the springs are modified to bring the

task utilization within the EDF bounds by relaxing the tasks’ periodic rates of

arrivals. Conversely, if the processor is underutilised, a decompression equation

can be used to increase the task’s rate of arrivals. Though the Elastic model

enables different profiles of execution rate flexibility to keep the system within

a certain load, it lacks the aspect of value or utility that associates each task

with the overall system value. Considering importance-based or utility-based

adaptability is crucial to avoid adapting tasks with less importance than more

important ones.

The TU model is another perspective for real-time scheduling [16, 29]. The

Time-driven model is an integration for the fixed-priority model and best-effort
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scheduling [53]. This model is based on the fact that the completion of each task

within a set of tasks, has a value to the overall system that can be expressed as

a function that varies with time. However, the model considers traditional real-

time models, based on the Liu and Layland model, that are static and have no

consideration for the dynamic nature of real-time systems and their environment.

Also, periodic rates of task arrivals may change due to application dependencies,

resulting in a constantly dynamic changing of task set configuration [16], limiting

task arrivals by predefined bounds, as in the Elastic model, may not be adequate

for practical cases. The model redefines the traditional concept of a deadline

using the critical-time concept. critical time is equivalent to the deadline in

traditional real-time models but assigns two completion values for each task: a

high value before the critical time/deadline, and a low value after the critical

time/deadline, to prove the point that task completion after the deadline can

still contribute positively to the overall system utility.

3.2 WCET Analysis

Another finding by Vestal is that the greater the criticality of a service, the higher

and more the execution time estimate tends to be. Therefore, the schedulability

of services is verified against other services at the criticality level of the service in

question [4]. The impact of the WCET estimate has received less attention from

the mixed-criticality research. In this section, we review existing sources consid-

ering WCET measurement in real-time and mixed-criticality systems, and clarify

the need for redundant WCET estimates for each task in the system including

the reasons for such needs. Also, an assumption in these sources is that every

pessimistic WCET estimate has to be larger than the optimistic WCET esti-

mate, however, we show that this has little consensus with findings by Altmeyer

in [13]. The implicit goal is to show that none of the following sources considered

exploiting the WCET overrun, online or empirically, during the execution of the

system and optimising the system configuration accordingly, as this is the novel

approach followed in this thesis for handling WCET overrun.

Puschner et al. authored one of the very first research publications on how

to calculate an upper bound for WCET estimates [10]. The study provides logic

constructs that enable programmers to express and differentiate the behaviour

of different implementations of an algorithm, using preconditions and rules to

be met before the WCET measurement process. The control-flow information

includes details about loops, conditional branches, function calls, and other pro-
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gram structures influencing the flow of execution, and it is not possible to extract

all flow information directly from the source code [54]. Control flow is modelled

using techniques such as integer linear programming and branch trace informa-

tion to map assembly instructions to their origin in the source code [55]. The

control flow graph is necessary for WCET analysis, and the complexity of the

control flow can impact the precision of the analysis [56]. Kirner et al. have devel-

oped techniques that enable the mapping and transformation of this control-flow

information from the source code to the corresponding machine code [57]. These

techniques facilitate the analysis and optimisation of a program’s behaviour at

the machine code level. The work in [1] and [12, 11], provides comprehensive

reviews of different methods, tools, and techniques used in the literature and

industry to measure the WCET. Though measuring WCET in RT systems has

been researched extensively, the problem is still open [14].

Most of the research based on Vestal’s model [24] [58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68] which supplies more than a single WCET estimate for each task, re-

searched WCET influence on the schedulability analysis of tasks. Typically, two

or more WCET upper bounds are supplied to each task and the schedulability

analysis is performed using the lowest estimate when verifying the schedulability

of all tasks during normal behaviour of the system, whereas the largest WCET

estimate is considered when verifying the system at critical behaviour, for exam-

ple, resource shortages.

[13] investigated this source of the above findings by reviewing the static, dy-

namic, and hybrid methods for estimating the WCET of a task. Static methods

may provide a higher level of confidence than dynamic methods but do not neces-

sarily estimate larger WCET than the later estimations by dynamic methods or

measurement-based methods [69, 70]. Static analysis methods are complex and

limited to the micro-architectural model under investigation, therefore, therefore,

the results can’t be generalised to other micro-architectural models.

Dynamic or measurement-based methods are straight forward method and

don’t involve the same level of complexity (the need for the micro-architectural

model) in obtaining WCET estimates. The problem with dynamic methods is

the difficulty in determining a complete set of possible inputs and a set of initial

processor states [13]. Hybrid analysis uses both methods, static and dynamic, in

a single method for measuring WCET estimates but produces larger pessimistic

WCET. Hybrid analysis measures program code using dynamic methods, then,

considers the measurements during the static analysis [71, 62, 72].

[73] proposed a method for estimating WCET using existing approaches with

considerations for the interference from other tasks in the system. The method
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predicts the possible interference delay, which is the maximum overlap between

tasks competing for resources, and computes the maximum interference time,

then adds it to the task’s WCET in question. The used method is based on

Timing Composability (TC) [14], which estimates WCET by taking the sum

of the execution time in memory-related computation and processing-related

computations, to form the final WCET.

In a working group during the 2015 Dagstuhl seminar, a group led by

Maiza et al [9] discussed questions regards WCET estimates, in the context of

mixed-criticality systems. The discussion included a question about why mixed-

criticality tasks have more than WCET. Also, once a task has more than a single

WCET, then, this WCET estimate is not the worst-case execution time! The

most interesting question is should mixed-criticality researchers integrate WCET

analysis and schedulability analysis in a single form of verification method. The

first question was answered but the latter two questions remained unanswered.

The answer to the first question is that the many WCET values are due to the

variety of WCET measuring methods. Therefore, system designers tend to build

cumulative confidence by supplying tasks with more than a single WCET es-

timation, each to be subject to verification and use in a specific system mode.

The E-ATMP model developed in this thesis monitors the WCET online during

system execution and reconfigure the system accordingly. E-ATMP answers the

two later questions. E-ATMP framework updates the WCET estimate of a task

as it progresses during the system mission by the EWCET model developed in

this thesis, but uses the WCET estimate generated by static or dynamic analysis

as a starting point for the system pre-runtime verification analysis, and after

each update of a HI criticality task WCET, a runtime verification and schedu-

lability analysis is performed to ensure the schedulability of the whole system

configuration.

A method that updates the scheduler decisions based on the execution path

taken by high-criticality tasks was proposed in Cagnizi et al. [74]. The method

predicts the finishing time and the resulting slack out of the taken path, a inter-

rupt tool is introduced to allow low-criticality tasks to execute and to promote

the low-criticality tasks to interrupt the running high-criticality task. However,

no policy for overrun is stated in the method this may render the system unsafe

if promoted low-criticality task to become high criticality overrun its WCET by

taking long execution. A gap highlighted by Jiang et al. between different models

from the literature and industrial standards [75]. The gap is that it is difficult

to integrate theoretical models into the industry, primarily because these models

are developed without taking into account considerations for industrial safety
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standards. They extended the AMC scheme [8] into an industrial architecture

named (Z-MC), which accounts for industrial considerations for safety standards.

Z-MC provides runtime safety analysis with sufficient isolation between critical

and non-critical services using a flexible model to integrate with different safety

standards.

The online reconfiguration and redundancy mechanisms provided by Kadeed

et al. [76] use the concept of foreseen core failures to ensure sufficient isolation

specified by safety standards between low-criticality and high-criticality services

during the online-reconfiguration [76]. The proposed mechanism facilitate con-

tinuous monitoring for service failures , and determines the possible core failure

if service degradation exceeds a defined level of criticality. Therefore, services

replication to different cores is chosen instead than migrating them because the

detection of the failure is conducted before the core failure. However, service

replication depends on pre-defined solution plans before the system mission for

the reconfiguration process. Santy et al. introduced the concept of allowance

[77]. It is an offline model that measures the maximum time that can be added

to the optimistic WCET of high-criticality tasks without breaking the schedu-

lability. EWCET is an online model that updates maximum LO and HI task’s

WCET empirically and reconfigures the system accordingly without breaking the

schedulability.

Draskovic et al. the authors proposed a model that considers task WCET as

random variables; and introduced metrics that adhere to safety standards [78] for

systems subject to certification. Dong et al. presented a slack-based monitoring

approach, which the its a mechanism that monitors tasks completed with less

than their estimated WCET budget [79], so the resulting slack can be utilised by

both high and low-criticality tasks. Allocating a slack budget to a high-criticality

task reduces the frequency of switching between low and high-criticality modes

while allocating a slack budget to a low-criticality task minimises the number of

times the system enters the high criticality mode.

3.3 Dependable Computing

The fundamental principle of MC systems involves a shift from a partitioned

architecture, where each processor handles tasks with specific criticality levels,

to an integrated mixed-criticality architecture. Therefore, there is a need for

Fault Tolerance mechanisms to ensure the system’s reliability and maintain its

dependability, especially in situations where resource shortages could impact the
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safety integrity levels of the system [19]. One of the fault tolerance techniques

[23], known as redundancy, can be employed to enhance overall system depend-

ability. Redundancy, in the context of real-time fault-tolerance systems band

scheduling, can be categorised into temporal and spatial-redundancy techniques

[80, 81]. In the following, we review the concept of dependability, with a focus

on redundancy and what redundancy techniques are used in the literature for

achieving mixed-criticality systems dependability. The approach in this thesis

for achieving dependability is composing highly dependable components from

several redundant, less dependable components. Different approaches are fol-

lowed in the literature, and here we review the significant studies on dependable

mixed-criticality systems using redundancy. The implicit goal in this section is

to show that none of the following sources considered the form of redundancy

followed for dependability in this thesis, named Criticality Arithmetic, where re-

dundant components/services have equal or lower criticality than the criticality

of the component/services they implement.

Based on temporal redundancy, the work by Pathan in [61, 82, 42] ap-

plied task re-execution to tolerate WCET overruns. The study also tolerates

a bounded number of WCET overruns and considers task replication, where

each replica has different implementations and WCET estimates, but all replicas

have the same level of priority and criticality as their primaries. Re-execution

from recent checkpoints has been studied by [82, 44] where failed services jobs

can execute from the last point the system considered to be safe.

Four criticality modes model was introduced by Albayati et al. [42, 42, 64].

The model derived schedulability based on AMC analysis that considers the

number of re-execution times per service according to the service probability of

failure. An approach that employs re-execution and checkpoints was followed by

Von in [63], and [44], [63] provided the analysis to predict the duration of high

criticality mode before the activation, where [44] included rules for accessing

critical memory sections [15]. The work in [83] applied task re-execution and one

of the alternative solutions proposed early by Vestal [4], period transformation

[37], where high criticality jobs are decomposed to smaller jobs with shortest

deadline. [84] employed EDF-VD under the the assumption that the inter-arrival

time between two consecutive transient faults is at least equal to the hyper-period

of the task set, to determine the wasted time caused by the transient faults.

The mechanism for detecting detects transient faults, using bit flips, during job

execution and restarts the job to re-execute the same computation proposed

in [68]. The maximum number of allowed re-executions depends on the failure

requirements for specific tasks, which are usually mapped to the criticality level
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and certification requirements.

Hardware redundancy techniques proposed in [85, 86, 87, 88]. Standby-

sparing (SS) for energy saving in mixed-criticality systems proposed in [85],

which is a technique that employs a dual-processor platform consisting of a pri-

mary processor and a spare processor, and the spare remains dormant until the

primary processor fails, and each task in the system has a main copy on the

primary processor and a backup copy on the spare processor. [86] considered in-

tegration of SS fault tolerance with energy management. Using DVFS, the study

in [87] proposed varying utilisation levels of both processors, the primary and

the standby, with different processing speeds, and reduces tasks replicas tasks

as late as possible [88] defines two physical processor cores into a single logical

core that executes the same service simultaneously, to improve the hardware-

based adaptive redundancy in multi-core processors. The work in [89, 90, 67]

assumed a Time-Triggered Architecture (TTA), where periods between tasks ar-

rivals in constant, and provided a model to tolerate at most one fault over the

hyper-period, although the specific fault-tolerant techniques employed are not

explicitly mentioned. The work in [90] generates a schedule tree at design-time

and selects the schedulable node at runtime to re/execute high criticality tasks,

[67] uses a tree-based approach which selects nodes dependency between tasks

and selects the node that satisfies certification requirements.

Under the spatial redundancy category, one of the first studies on depend-

able mixed-criticality scheduling that employs task migration was proposed by

Saraswat et al. [58]. In their approach, high-criticality services have higher

priority than low-criticality services for the allocation of recovered services to

processing cores. An analysis for calculating the time a high-criticality task with

low priority can wait for a low-criticality task with high priority to complete

execution was defined in [60]. This analysis detects the WCET overrun by low-

criticality tasks when the waiting high-criticality task slack becomes equal to

zero. Approaches that considered optimisation for high critical replicas were

proposed in [59, 91, 2], to determine low criticality tasks timing parameters, and

high criticality tasks replicas executes on the same processor, but the work in

[2] differ by that it optimises high and low criticality tasks using Integer lin-

ear programming for the task allocation, where [59, 91] heuristics. [92] applied

N-Modular Redundancy (NMR), each high criticality task has more than two

replicas execute on different cores, and at the event of a fault, a majority voting

mechanism is used to determine the correct result. [93] discusses various fault

tolerance techniques such as replication, and re-execution. However, it does

not specify a concrete fault-tolerance model. [65] presented offline partitioned
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scheduling to provide timing guarantees per partition without the need for online

adaptation.

Criticality Arithmetic (CA) augments the fault tolerance technique of redun-

dancy by combining redundant components with lower criticalities to compose a

component with higher criticality. A theoretical model for CA was established

by Menon et al. [22]. A practical implementation of the CA model established

by Menon, which includes ATMP-CA and LBP-CA, was developed during the

research for this thesis and published in a journal [94] and conference [95] pa-

pers. This integration enhances ATMP with fault-tolerance techniques such as

redundancy and criticality inheritance provided by CA. CA redundancy differs

from traditional Fault-tolerance (FT) redundancy in that in FT the redundant

replicas and the services they provide have equal criticality. However, in CA,

the redundant replicas of tasks that implement a service have a lower criticality

than the service they provide. This distinction opens up new perspectives for

addressing resource shortages in mixed-criticality systems.

3.4 Mixed Criticality Scheduling

Tolerance-based Real-Time Computing Model (TRTCM) [18] is based on the

time/utility Real-time model [17]. TRTCM allows the system designer to de-

fine a performance parameter (rate, throughput, jitter, etc.) to optimize in

case of a resource shortage using Linear Programming (LP). TRTCM translates

each task into several possible configurations, each with a certain utility to the

overall system utility, and then selects the configurations with maximum utility

overall services. ATMP-CA uses the TRTCM utility optimisation function to

enhance the system after a core failure. It modifies the LP problem formulated

by TRTCM, exploiting the information about criticality arithmetic. A task τi

contains the period τi.p, the utility function τi.futil, and the relative utility τi.u.

The basic principle of these utility functions has been described in [23] and their

use to reconfigure systems in [2, 96]. These utility functions are inspired by a

more generic variant of utility functions of Jensen et al.[16].

The utility function defines the relation between the task’s period τi.p and

the relative utility τi.u. While the utility function could have an arbitrary shape,

in most cases it is sufficient to describe futil by two line equations, as shown in

3.1.

As shown in the figure, the shape of the utility function is defined by the

two points 〈pprim, 1.0〉 and 〈ptol, utol〉. Thus, we specify the utility function by
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Figure 3.1: TRTCM System-utility function [2]

these three parameters: primary period pprim, tolerance period ptol, and tolerance

utility utol. The primary period pprim represents the optimal arrival rate and any

rate higher than that does not increase the relative utility anymore. This is

because, as shown in Figure 3.1, for all periods τi.p ≤ pprim, the relative utility,

τi.u is equal to one. The tolerance period ptol, defines the highest period that

is considered to be acceptable for the service implemented by this task. The

tolerance utility utol is the relative utility according to the tolerance period.

When optimising the overall system utility, we do not use the relative utilities

τi.u for all the tasks τi ∈ Γ, but rather use the absolute utility τi.U , which is the

product of the relative utility τi.u and the criticality value τi.l of task τi:

τi.U = τi.u · τi.l (3.1)

Using the absolute utility τi.U of each task τi ∈ Γ is necessary for the overall

system optimisation, as this allows to make sure that tasks of higher criticality

get in general less degraded than tasks of lower criticality.

The Adaptive Mixed-Criticality (AMC) is a uniprocessor fixed-priority

scheduling scheme that offers a priority assignment algorithm based on Auds-

ley’s optimal priority algorithm [39] and a mixed-criticality aware schedulability

test based on Response Time Analysis (RTA) [97] [32]. AMC enters the high

criticality mode, whenever a HI or LO service consumes its optimistic-WCET

budget without signaling completion. AMC abandons all low criticality services
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released during the high criticality mode. However, it allows the completion

of low criticality services released before the trigger of high criticality mode.

ATMP-CA reconfigure in case of a core failure. ATMP-CA optimises the sys-

tem’s throughput per core and uses the AMC scheduling test on each core to test

the schedulability of the optimised reconfiguration according to the remaining

number of cores.

Another MC Protocol is AMC, which [43] integrates the AMC [8] protocol

with the TRTCM model [2]. The integration of ATMP is realized through four

key functionalities: First, it maximizes system utility by optimizing each ser-

vice’s utility using the utility function provided by TRTCM, defining a solution

space from the available safety margins within each service. Second, an online

search algorithm is employed to narrow down the TRTCM solution space. Third,

ATMP tests the schedulability of each solution and updates the search algorithm

accordingly. Fourth, ATMP assigns priorities to services based on their safety

margins to drop the ones with less criticality and adaptability. During the devel-

opment of this thesis, I integrated ATMP and CA to create a CA-aware version of

ATMP, named ATMP-CA [94]. As mentioned in the previous subsection 3.3, this

integration enhances ATMP with fault-tolerance techniques such as redundancy

and criticality inheritance provided by CA.

The MC Bailout-based BP scheduling [46, 47, 98] differs from traditional

MC models by that it defines three criticality modes to schedule the execution

of tasks: Normal, Bailout, and Recovery (Mixed-criticality models uses two crit-

icality modes: HI and LOmodes). Normal mode represents the desired system

behaviour or normal course of execution for system services. It corresponds to

the typical low-criticality mode in mixed-criticality scheduling. Bailout mode

represents the typical critical mode that mixed-criticality scheduling activates

to ensure the schedulability of high-criticality tasks whenever a transient fault

occurs, such as a task overrun. Recovery mode ensures that all high-criticality

tasks are completed before returning to Normal mode.

The BP was originally developed in [46] to enable the application of Mixed-

criticality models in the avionics and automotive industry. BP minimizes the

negative impact on low criticality tasks during resource shortages (WCET over-

run) by ensuring a quick return to normal operation after completing the recovery

process. LBP-CA offers a quicker return than BP. The quicker return is achieved

by exploiting the information about criticality arithmetic to reduce the BP re-

covery process time. The advantage of LBP-CA is the earlier return to normal

mode compared to BP, allowing for the release of low criticality services that

would otherwise be dropped during Bailout and Recovery modes under BP.
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LBP [98] extends BP by, instead of abandoning the release of low services

during critical modes such as Bailout-mode and Recovery-mode, inserting the low

services into a low priority queue for future execution when the system returns to

the Normal mode. In other words, BP allows the low services to execute during

the critical modes if they were released before entering the critical modes, while

LBP-CA inserts the ones released after the activation of the critical mode into

a low priority for future execution. LBP-CA reduces the waiting time for low-

criticality services. The key idea is that the relationship between waiting time

and critical time is that the less time the system stays in critical mode before

returning to normal mode, the more time low jobs have available to execute upon

returning to normal mode.

[99] integrated the elastic model to the uni-core Earliest Release Earliest

Deadline First algorithm (ER-EDF), and extended it to multi-core systems in

[100] and provided a schedulability test based on Guaranteed Bound Analysis in

[101]. [102] added as a survivable component to the elastic model in federated

architecture to stretch LO-tasks as needed to support the underlying MC elastic

facilities. [103, 104] exploits slack time generated by ER-EDF and introduces a

mode change mechanism to ER-EDF. Orr et al. [105, 106, 107] Integrate elastic

model to mixed-criticality but incorporate the WCET parameter to the elasticity

of the task. The model allows the platform to determine tasks’ elastic coefficients

according to the context of the system execution. The work later was remodeled

under the Liu and Layland model [5] for the analysis of real-time tasks, and the

concept of criticality was neglected. [108, 109] and integrated it to the Fluid

scheduling model [110].

3.5 Chapter Summary

This chapter reviewed the related work to this thesis, it presents significant con-

tributions in real-time systems in Section 3.1, WCET analysis in Section 3.2,

dependability in Section 3.3, and mixed-criticality systems scheduling in Sec-

tion 3.4. The real-time systems review concludes that the research commu-

nity realised the need to extend scheduling theory to include the concept of

scheduling tasks with different criticality levels on the same processor. WCET

review concludes that extending real-time scheduling theory by employing re-

dundant WCET estimations can provide an enhancement for Real-time schedul-

ing by changing the WCET according to the activated criticality mode of the

mixed-criticality system. Dependability review concludes that expanding redun-
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dancy techniques to include different forms of redundancy like task and hardware

replication, can address the limitation of real-time scheduling theory. Mixed-

criticality review concludes that none of the existing approaches update the sys-

tem according to the empiric execution time of system services as in EWCET

and E-ATMP framework introduced in this thesis, and constructing dependable

mixed-criticality systems by realising high criticality services from redundant low

criticality services with criticality less than or equal to the service they imple-

ment.
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Chapter 4

Criticality Arithmetic: Building

Dependable Mixed-criticality

Systems

This chapter introduces novel CA protocols, ATMP-CA and LBP-CA. The proto-

cols introduced in this chapter are distinct implementations that concretely man-

ifest the theoretical model proposed in a seminal work by Menon [22]. Starting

with an introduction to SIL and CA. Then, Mid-term ATMP-CA and Short-term

LBP-CA system models and methodologies are presented. Finally, we conclude

the chapter.

The organisation of this chapter is as follows Section 4.1 presents the ATMP-

CA protocol. Section 4.2 presents the LBP-CA protocol. Section 4.3 concludes

the chapter.

Criticality Arithmetic (CA) is the process of combining multiple redundant,

lower-criticality jobs or components to implement a higher-criticality function.

It is an engineering perspective that exploits the ability to compose a SW or HW

component or service of a certain safety integrity level, by several components

or services of a lower safety integrity level.

Safety Integrity Level (SIL) and Automotive Safety Integrity Levels (ASIL)

are standards used to assess and specify the safety integrity of systems in dif-

ferent industries, such as process industries and automotive. The International

Standardisation Organisation (ISO) 26262 [120] is the primary standard for func-

tional safety in the automotive industry. It defines four levels: ASIL A, ASIL

B, ASIL C, and ASIL D, where ASIL D represents the highest level of safety in-

tegrity. The ASIL levels in IISO 26262 are determined based on the assessment

of the potential risk and the severity of the potential injury. The higher the

45
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ASIL level, the more stringent the safety requirements for the system. Another

standard, IEC 61508 [121] is a general standard that provides a framework for

the functional safety of electrical, electronic, and programmable electronic sys-

tems. The Decomposition of high-integrity services into lower-integrity services

is presented in table 4.1.

Despite the number of safety integrity levels stated by a standard, exist-

ing mixed-criticality schedulers may act incorrectly when they are subject to

scheduling a set of mixed-criticality task sets that include criticality arithmetic

aware tasks. The criticality arithmetic agnostic mixed-criticality schedulers, drop

the allocation of low criticality services which lead to some level of degradation

in the system utility, to ensure the safety and schedulability of high criticality

services, in case of a resource shortage. In contrast, the criticality arithmetic

aware mixed-criticality scheduler presented in this chapter exploits the informa-

tion about criticality arithmetic, and enables finer graceful degradation for the

system utility in case of resource shortages such as core-failures, compared to

other mixed-criticality schedulers as shown by the experimental evaluation in

Chapter 7 Section 7.1.

ASIL Valid Decomposition
D C(D) + A(D)

B(D) + B(D)
D(D) + QM(D)

C B(C) + A(C)
C(C) + QM(C)

B A(B) + A(B)
B(B) + QM(B)

A A(A) + QM(A)

Table 4.1: Valid ASIL Decomposition

Example Application of Criticality/SIL Arithmetic: The ABS is an ex-

ample of a safety-critical system where ASIL decomposition is applied to min-

imise cost while maintaining safety. The primary function of the ABS is to

prevent the wheels from locking up during braking, thereby maintaining traction

with the road surface and preventing skidding.

The ABS may include components such as wheel speed sensors and hydraulic

actuators, each assigned a certain ASIL criticality level. For example, wheel

speed sensors detect the speed of each wheel and provide data to the ABS con-

troller. These sensors are assigned the highest criticality level, ASIL D.
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Hydraulic actuators, which are responsible for adjusting the brake pressure

in response to commands from the ABS controller, are assigned ASIL C.

By decomposing ASIL components such as the wheel speed sensors or hy-

draulic actuators, manufacturers can use a broader range of off-the-shelf prod-

ucts, which can be less expensive than a single high ASIL component.

As seen in Table ??, a component with ASIL D, such as the wheel speed

sensors, can be decomposed into two lower ASIL components, ASIL C(D) and

A(D), or into two components of ASIL B(D). Similarly, the hydraulic actuators

can be decomposed into two components of ASIL B(C) and A(C).

4.1 ATMP-CA: Adaptive-based Criticality

Arithmetic aware Mid-term Scheduling

The ATMP [96], implements the TRTCM model [23, 2], which maximises each

processing core by modifying the rate of arrival for running services in the system.

The ATMP classifies system services and tasks by their flexibility to change

their rate of arrival in case of resource shortage. The flexibility of a task to

modify arrival rate, and its usefulness to the overall system mission, determine its

allocation to computing cores in case of a core-failure. In such cases, ATMP sorts

tasks by descending criticality. Then, ILP optimisation for tasks in the system

is performed on the remaining processing-cores. The ILP optimises partitioned

tasks on each core if are schedulable after AMC schedulability test, then it is

processed by the processing core, and the binary search algorithm is performed

to maximise the utilisation. In case that ILP solver finds no feasible solution

to the whole task set, a single task with the least flexibility and criticality is

dropped at each step according to its adaptation capability.

The ILP optimisation performed by ATMP-CA consists of two contributions:

1. The allocation of tasks to processing cores is criticality arithmetic aware.

2. The modification of the ILP goal function considers different forms of re-

dundant tasks implementing a service based on criticality arithmetic.

4.1.1 ATMP-CA System Model

The following describes the system model. The system model consists of three

components: the platform, the service, and the task models. The system consists

of a multi-core platform that runs a set of mixed-criticality tasks. A criticality
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arithmetic agnostic service is a service that is implemented by a single task,

whereas a criticality arithmetic aware service is implemented by two or more

tasks, also known as replicas. In a criticality arithmetic agnostic service, the

criticality of the service is equal to the criticality of the task that implements it,

whereas, in a criticality arithmetic aware service, the criticality of the service is

always higher than that each task that implements it.

The following describes the platform, service, and task models for criticality

arithmetic multi-core mixed-criticality systems.

Platform model The platform model is constituted from many processing

cores cr ∈ Cores.

The computational capability Cap(cr) is modelled for each core cr ∈ Cores.

The WCET c(τ) of task τ is estimated according to the platform computing

capacity, because WCET is based on a defined computing capacity denoted

as Cap(cr) = 1.0.

The total computing capacity of the whole system can be calculated as

∑

cr∈Cores

Cap(cr)

This platform model allows the precise modeling of platforms with homo-

geneous cores. In the case of non-homogeneous cores, it would be better

to instead use a different WCET of a task for each core cr ∈ Cores.

Service model Here we describe the set of services and the service.

Γ is the set of services to be scheduled:

Γ = {si, ..., sn} | i ≥ 1

A service can be realised by a single task or through multiple tasks us-

ing criticality arithmetic. The system S provides a number of services

s, each service is identified by the following tuple:

s = 〈id, l, γ〉

s.id the service-identifier.

s.l the criticality level of a the service, with s.l > 0. The ~s.l represents

all criticality levels defined by the platform: ~l = (l1, . . . , lk), where the

minimum level is l1, and the maximum criticality level is lk.
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s.γ the task set τ ∈ γ collaborates to realise service s . in case single

task realises service (|s.γ| = 1), the task in considered to be agnostic

criticality-arithmetic, and in this case the criticality of the task has

equal criticality to the service it implement. If more than single task

collaborate in implementing the service (|s.γ| > 1), then service use

criticality arithmetic: each task criticality in s.γ has a criticality less

or equal than the criticality of the service it implements but with

redundant executions. In fault-tolerance task models, redundancy

assumes the same criticality among service replicas. The final sentence

highlights the novelty of CA

Task Model Here we describe the set of task/s to implement a service. The

task τ is identified by the following tuple:

τ = 〈id, s, d, c, l, uf, p, uγ〉

τ.id is the task’s identifier.

τ.s service realised by task τ .

τ.d the task deadline d.. The deadline model is implicit-deadline, where

the task’s deadline and period are equal e.g. τ.d = τ.uf.pprim. We

assume that the schedulability analysis is included in ATMP-CA, how-

ever, it is not a part of the ILP optimiser.

τ.c the execution time c, of task τ . A task may have redundant c estimates

doe each criticality level.

τ.l task’s criticality level l with l > 0. The ~s.l represents all criticality

levels defined by the platform: ~l = (l1, . . . , lk), where the minimum

level is l1, and the maximum criticality level is lk.

τ.uf the tasks utility function τ . The chosen performance metric such

as period/rate, throughput, jitter, and energy. In this context, and

in the evaluation 7 the focus is on the period. The following tuple

characterises the utility function:

uf = 〈pprim, ptol, utol〉

where, pprim represents the primary-period where the relative utility

is 1.0. The tolerance-period is ptol, minimum relative utility is utol,

and the utility is ranged between the primary-period and tolerance

bounds.



Chapter 4. Criticality Arithmetic: Building Dependable Mixed-criticality
Systems 50

τ.p and τ.u denote the task’s optimised period p and utility u. The

optimised period p is selected from the range between the primary

and tolerance bounds:

τ.uf.pprim ≤ τ.p ≤ τ.uf.ptol

The task’s utility function τ.u = τ.uf(τ.p) defines the resulting utility.

The achieved absolute utility τ.U , is multiplication of optimised utility

by the tasks criticality τ.U = τ.uf(p) · τ.l. The τ.U is an evaluation

metric for ATMP-CA and reference scheduler SAMP 7.

4.1.2 Criticality-Arithmetic-Aware Allocation (CAAA)

The ATMP-CA allocation of tasks to cores is different from the ATMP. The

allocation avoids assigning a replicated task from a service to cores that an-

other replica was allocated to previously. This guarantees fault tolerance for

the replicated tasks, allowing a maximum of one disruption from each core fail-

ure. Furthermore, if a service has more task replicas than cores available, the

ATMP-CA core allocation discards this replica.

The criticality arithmetic aware allocation is a multi-core scheduling algo-

rithm, that assigns/allocates tasks to processor cores. criticality arithmetic

aware allocation algorithm aims to avoid allocating replicated tasks to the same

core. For example, assume we have two cores c1, c2 and two high-criticality

criticality arithmetic aware services s1, s2, each service is constituted by two

s1.γ = 2, s2.γ = 2 low-criticality services s1.τA, s1.τB and s1.τC , s1.τD respec-

tively.

Criticality arithmetic agnostic schedulers may allocate both low criticality

replicas of the same high criticality service s1.τA and s1.τB, or s1.τC and s1.τD to

the same core c1(s1.τA, s1.τB) and c2(s2.τA, s2.τB). Criticality arithmetic aware

schedulers allocate each low criticality replica of the same high criticality service

s1 or s2 to the different core c1(s1.τA, s2.τA) and c2(s1.τB, s2.τB).

The algorithm starts with two inputs. The first input is a list of sorted tasks

by decreasing criticality. The second input is a list of cores available for allocating

the given tasks. Criticality-based sorting is to ensure that the highest criticality

services are allocated before the lower criticality ones. Though we assume similar

cores in terms of speed and memory, ATMP-CA is not limited to cores with equal

capabilities.

The criticality arithmetic aware allocation algorithm works by iteratively re-
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moving the task with the maximum criticality from the sorted task list, searching

the processing core with the minimum utilisation, and assigning the task to the

found core. The found core has to have no replica of the task in question. If

the task already has a replica on the core, or the task load is greater than the

available capacity on that core. Then, ATMP-CA searches for another core, If

a suitable core is found, the task is allocated to the core. Otherwise, the task is

dropped

CA-Aware Allocation
Algorithm

List of tasks
!!, !!"#, … , !$

List of cores
$%!, $%!"#, … , $%$

…

…

!!"%
!!"&

$%!"#

!$

$%$

!!
!!"#

$%!

Figure 4.1: Conceptual Diagram for Criticality Arithmetic aware Tasks-to-Cores
Allocation

Algorithm 1 shows the implementation of the Criticality Arithmetic aware

tasks to cores under in ATMP-CA. The algorithm receives two input: Γ, tasks

list sorted with descending criticality, and CS , the list of all available cores for

allocation process. The outer while-loop from line 2-12 runs as long as there are

tasks in Γ. In line 3 the function getTaskWithMaxCrit(Γ) removes from Γ the

task with maximum criticality. In line 4 the list CS with all core IDs is copied

as CS ′. This copy is needed in case of replicated tasks to make sure that no

two replicated tasks of the same service end up on the same core. In line 5 the

function getCoreWithMinLoad(CS’) removes from the core list CS’ the core with

currently the minimum task load assigned. Line 6-8 checks whether the task tid

already has a replica on the core cid. If this is the case, then inside the loop a new

core is extracted from CS’ until either a core is found that has no replica of tid

allocated or all cores have been tried without success. Line 9-11 does register the

allocation of the task tid to core cid only if the previous search for the core without
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a replica already allocated was successful. If this search was not successful, then

task tid is simply dropped and not allocated to a core. This search can only fail

if there are fewer operational cores available than the number of tasks replicas

services using criticality arithmetic is implemented with. When Algorithm 1

Algorithm 1: Criticality-Arithmetic-Aware Allocation of Tasks to
Cores

Input : Γ: task list sorted by criticality;
CS : list of computing elements (Cores);

1 begin
2 while Γ 6= ∅ do
3 tid ← getTaskWithMaxCrit(Γ);
4 CS’ = CS;
5 cid ← getCoreWithMinLoad(CS’);
6 while hasReplica(tid , cid) ∧ CS’ 6= ∅ do
7 cid ← getCoreWithMinLoad(CS’);
8 end
9 if ¬hasReplica(tid, cid) then

10 addTaskToCore(tid, cid);
11 end

12 end

13 end

terminates, then each of the tasks in the task set has been either allocated to a

core or has been dropped. The purpose of this allocation is to assign the tasks

to a core. Later, within each core, as part of the utility optimisation, which is

the same as in ATMP [96], some tasks might be removed again from a core to

pass the schedulability test.

4.1.3 Formulation of Criticality Arithmetic-Aware ILP

Here we describe the ILP formulation to find the optimal task periods in case of

resource shortages. We describe the constants and variables of that ILP problem,

the goal function to optimise the system utility, and the different constraints that

have to be considered.

Optimisation parameters (constants): In ATMP the units of scheduling are

tasks. As presented in Section 4.1.1, every single task τi of a task set Γ

consists of the following components:

τi = 〈uf, s, d, c,WT, p, u〉
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where the utility function uf is characterised by the following properties:

τi.uf = 〈pprim, ptol, utol〉. We model the utility function and the criticality

of each task τi in the ILP problem with the following constants:

τi.ci . . . the WCET of τi

τi.uf.pprim . . . the primary period (with utility τ.uf.uprim =

1.0),

τi.uf.ptol . . . the tolerance period,

τi.utol . . . the utility at the tolerance period ptol,i

τi.WT . . . the criticality weight of τi

Cap(cr) . . . the computing capacity of cr ∈ Cores

The parameters τi.pprim, τi.ptol, τi .utol characterise a task’s utility function

by two linear lines, as shown in Figure 3.1.

The horizontal line is a constant utility of 1.0, which can be directly ex-

pressed as an ILP constraint. The sloped line of each task’s utility function

can be also derived from τi.pprim, τi.ptol, τi.utol, for which we have to cal-

culate its slope τi.ki and y-intercept qi to express it as a line equation:

line equation . . . τi.u =τi.p · τi.k + τi.q (4.1)

slope . . . τi.k =
τi.utol − 1

τi.ptol − τi.pprim
(4.2)

y-intercept . . . τi.q =
τi.ptol − τi.utol · τ.pprim

τi.ptol − τi.pprim
(4.3)

Optimisation variables to optimise task configurations are

task period τ.p and the relative utlity of the task τi.u:

τi.p . . . the selected rate of arrival of task τi,

τi.u . . . the selected or optimised utility of task τi,

Objective function The optimisation ILP goal function maximises the system

utility through maximising the utility variable τi.u of each task τi multiplied

by its criticality weight τi .WT :

SU S.tol =
∑

τi∈TS

τi.WT · τi .u (4.4)

The criticality weight τi .WT is explained below at the optimisation con-

straints.
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Optimisation constraints We express the piecewise affine approximations

τi.u =

{
1 if τi.uf.pprim ≥ τi.p

τi.p · τi.k + τi.q if τi.uf.pprim < τi.pi ≤ τi.uf.ptol

of the utility functions to the following constraints:

τi.u ≤ 1 (4.5)

τi.u ≤ τi.p · τi.k + τi.qi (4.6)

The resource constraints are used to limit the workload at each of the

available cores cri ∈ Cores. The maximum workload a core cr can take is

its computing capacity Cap(cr):

∑

τi∈Γ

τi.c

τi.p
≤

∑

cr∈Cores

Cap(cr) (4.7)

The tolerance constraints determine the maximal acceptable period of τi.p

τi.p ≤ τi.ptol (4.8)

In ATMP-CA, the weight τi.WT is set to the task criticality τi.l, whereas

in ATMP-CA, we calculate the weight τi.WT of a task τi according to the

sate of replicas on all cores. The τi.WT is the criticality τi.l of the task

τiwhen other replicas implement the same service already been allocated

with their maximum utility or previously processed core, and inherit the

weight τi.WT for the criticality τi.s.l of the service τi.s it implements, which

is greater than or equal to the criticality of the task τi.l.

The algorithm of ILP formulation in ATMP-CA to calculate the weight

WT i is shown in Algorithm 2.

The algorithm input is an individual task, for which we want to calculate

its weight τi.WT concerning the task criticality τi. or the criticality of

the service s.l the task τi implements. Then, the algorithm checks for

two conditions: the first checks if replicas of the task in question have

been allocated to another core. the second checks if previously allocated

replicas of task in question have been allocated with maximum utility or

primary period. The latter is dependent on the former. In case any one of

the conditions fails, then we calculate the weight for the service criticality.

If both are satisfied, then ATMP-CA calculates the weight based on the
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task’s criticality.

The algorithm receives one input, the task τ , that we want to calculate

its weight WT i as presented in Equation 4.4. As shown In line 2, the

function CoresHaveReplicaWithMaxUtil(τ) checks if a task’s replica τ has

been optimised with maximum utility in the previously processed cores,

The function CoresHaveReplica(τ) assesses whether the yet-to-be processed

cores will include an allocation of a replica of task τ . If any of the functions

returned True, then we select, as presented in line 3, the task’s criticality

τ.l. However, we select in line 4 the criticality τ.s.l of the service τ.s that

task τ implement. Finally in line 7, the calculated weight WT for the LP

optimiser objective function is set to the selected criticality l.

Algorithm 2: Calc-CA-Aware-ILP-Weight

Input : τ : task for which to calculate its ILP weight WT ;

1 begin
2 if CoresHaveReplicaWithMaxUtil(τ) ∨ CoresHaveReplica(τ) then
3 l = τ.l
4 else
5 l = τ.s.l
6 end
7 WT = l

8 end

4.2 LBP-CA: Criticality Arithmetic aware

Short-term Scheduler

This section presents the Criticality Arithmetic Lazy Bailout Protocol (LBP-

CA). LBP-CA is a short-term mixed-criticality scheduling protocol with smooth

degradation based on criticality arithmetic. LBP-CA Improves the recovery from

transient resource shortages by a quick return to normal behaviour or low criti-

cality mode and enhances the schedulability of tasks by minimising the negative

impact on low criticality services using the knowledge of criticality arithmetic.

LBP-CA is built upon the LBP protocol, and LBP itself is based on the BP pro-

tocol. The following presents the system model, three criticality levels—Normal,

Bailout, and Recovery—on which the three protocols operate are presented, and

the quick return mechanism featured in LBP-CA is explained using Figure 4.2.
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4.2.1 LBP-CA System Model

The following explains the platform, service, task, job, and system modes models.

Platform Model The platform model consists of a single computing element,

called core cr. For this thesis, it does not matter whether this core is part

of a multi-processor CPU or a single-core processor CPU.

Service Model The set of services, the set of tasks to implement a service,

and the criticality of a service. are identical to the ATMP-CA service

model, where Γ is the set of services to be scheduled, defined by the

tuple following tuple 〈id, l, γ〉, and each service is realised by single or

many instances with using the information of criticality-arithmetic. The

platform S runs a group of mixed-criticality services s, where each service

is identified by Γ = {si, ..., sn} | i ≥ 1. s.id represents the service’s name.

s.l is the service’s criticality level, with s.l > 0. A higher value of s.li

means a higher level of criticality. The vector ~s.l is used to represent all

possible criticality levels in a system: ~l = (l1, . . . , lk), with l1 being the

minimum and lk being the maximum possible criticality level. s.γ is the

set of tasks τ ∈ γ collaborates to implement the service s . If only one

task implements the service (|s.γ| = 1), then no criticality arithmetic is

used, and the task in this case has the same criticality as the service or

criticality arithmetic agnostic task. If multiple tasks implement the service

(|s.γ| > 1), then criticality arithmetic is used: the criticality of each task

in s.γ has a criticality less than the criticality of the service it implements

but with redundant executions. In fault-tolerance task models, redundancy

assumes the same criticality among service replicas. The final sentence

highlights the novelty of criticality arithmetic

Task Model Each task τ of a task set γ is defined as follows:

τ = 〈s, d, c, l, p〉

τ.s is the service that is implemented by task τ .

τ.d is the relative deadline d of task τ . We assume constrained deadlines,

where the task’s deadline is less than or equal to its period e.g. τ.d ≤ τ.p.

τ.c is the WCET estimate c of task τ . CPU scheduler requires differ-

ent WCET bounds for each criticality level. Therefore tasks have two

WCWCETET, τ.cLO and τ.cHI , where low criticality tasks lower WCET
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bound is equal to its higher WCET bound τ.cLO == τ.cHI , and high criti-

cality tasks higher WCET bound is always greater than the lower WCET

bound τ.cHI ≥ τ.cLO.

τ.l is the criticality level l of task τ with l > 0. A higher value of l means

a higher level of criticality. The vector ~τ.l is used to represent all possible

criticality levels in a system: ~l = (l1, . . . , lk), with l1 being the minimum

and lk being the maximum possible criticality level.

τ.p represents the task’s period. Note that there is no use for the utility

function function here.

Job Model The individual instances of a task τi at runtime are called jobs

τi,k | k ≥ 0, where τi,0 denotes the first job of task τi. A job τi,k has the

following parameters:

τi,k = 〈a, p, d, et, ec, l〉

where the parameters are defined as follows:

τi,k.a is the arrival time

τi,k.et actual execution time

τi,k.l is the criticality level, which is inherited from its task τi,k.l = τi.l.

System Modes We have three system modes, Normal, Bailout, and Recovery.

Normal-mode: Represents the low criticality mode where the system

tasks and services are scheduled and executed within their assigned WCET

estimates.

Bailout-mode: A high criticality mode that is activated due to a transi-

tion from normal mode in response to WCET overrun by one of the low

or high criticality tasks. Only high criticality tasks τ.l = HI scheduled in

this mode, and low criticality tasks τ.l = LO are abandoned from future

releases, except the ones already released before the mode activation. The

execution of high criticality tasks during this mode, is controlled by the

variable, Bailout Fund BF . The BF funds high-criticality services with

execution time according to their need and accumulates unused execution

time from high-criticality tasks, where τ.l = HI , that execute with less

than their respective WCET bounds τ.cLO and τ.cHI , and from low criti-

cality tasks, where τ.l = LO , execute with less than their WCET bounds,

where τ.cLO == τ.cHI , and are released before the WCET overrun.
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Recovery-mode: an additional criticality mode activated at the end of

Bailout-mode when the BF fund is zero, and a task with high criticality

and the lowest priority (longest deadline) is released during the most recent

Normal or Bailout modes. Direct return from bailout mode to normal mode

may cause interference in the schedule safety, because the released task with

the highest criticality and lowest priority may be interfered with by a lower

criticality task with higher priority. In Normal mode, tasks are prioritised

according to their deadlines τ.d, not criticality τ.l.

4.2.2 Quick Return to Normal Behaviour using Critical-

ity Arithmetic

Allocated tasks to cores by a criticality arithmetic mid-term scheduler as ATMP,

are prioritised for execution on the underlying core. The underlying real-time

scheduler in this section is the Fixed-priority Deadline Monotonic scheduling al-

gorithm DM [122], where tasks are prioritised according to their deadlines. Tasks

with shorter deadlines have higher priority than tasks with longer deadlines. Pro-

visioning the prioritisation of tasks on each core scheduler is necessary since DM

is not optimal for mixed-criticality tasks [4, 6]. Rate Monotonic RM and Earliest

Deadline EDF First are not optimal as well [5].

AMC protocol provides a scheduling scheme that augments Fixed-priority

schedulers to consider the notion of criticality, provides a pre-runtime verifi-

cation, priorities assignment [8], and guaranteed bounded degradation for the

system services whenever a resource shortage in form of WCET overrun occurs,

by aborting all low criticality tasks and abandon their future releases. However,

the guaranteed bound is verified offline and under certain assumptions. Short-

term schedulers and frameworks are important in case AMC assumptions are

violated to enable runtime survivability [7]. [5].

The Short-term schedulers, BP and LBP, ensure the schedulability of high-

criticality tasks and minimise the return time from high-criticality modes to

low-criticality modes. The criticality arithmetic aware short-term scheduler aug-

ments the criticality arithmetic agnostic short-term schedulers by the ability for

a quicker return to normal execution mode using the criticality arithmetic infor-

mation.

I integrated Criticality arithmetic to existing Short-term scheduling Bailout-

based protocols, BP and LBP, the resulting protocol is LBP-CA. LBP-CA ex-

ploits information about CA) via task redundancy. Compared to BP and LBP,

it shows that LBP-CA can return earlier than a normal schedule after a resource
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shortage. The two key ideas of Bailout-based protocols are that the available

slack in an FP schedule is translated into a Bank of execution time funds and

the two criticality modes developed by ACM, are extended by one additional

mode, the Recovery-mode. [5].

The Bank of execution time, named Bailout Funds and denoted as BF , is

a variable that is initialised and updated during different transitions between

the system modes. It is restricted to be greater or equal to zero BF ≥ 0. The

initialisation and update of BF can be according to the need to withdraw extra

execution time or funds by high criticality tasks, or deposit underspent execution

time either from low or high criticality tasks, during certain system runtime

modes. low criticality tasks, released before a resource shortage, deposit their

execution times to BF but never withdraw an execution time. high criticality

tasks deposit their execution times to BF whenever a resource shortage occurs

and allowed to withdraw from BF whenever they exceed their τ.cLO estimate.

[5].

Bailout-based protocols, BP, LBP, and LBP-CA, use three criticality modes:

Normal, Bailout, and Recovery modes. In the following, the system model, and

definition for each mode are presented, followed by a figure4.2 that shows the

three system criticality modes, including the transitions and activation from/to

and of each mode. While explaining the figure, the novel feature of LBP-CA for

a quick return to normal operation is highlighted in this section and evaluated

in the experimental evaluation chapter, Chapter 7. [5].

Figure 4.2 shows the transitions between system modes. starting mode is

normal mode. In this mode, tasks’ execution is prioritised according to their

deadlines; task with a shorter deadline has the highest priority. low criticality

jobs exceed their optimistic τ.cLO are aborted, and the transition from normal

mode to bailout mode is activated when a high criticality job exceeds its opti-

mistic execution τ1. [5].

As shown in Figure 4.2, The return to the normal mode from the Bailout-

mode, relies on two conditions. The first is that an idle instant has occurred -

which indicates that no job is released for execution at the idle instant - and the

bailout fund BF is reset to zero. [5].

When a high criticality task overruns its τ.cLO execution time, transition to

Bailout-mode is activated and the bailout fund BF is initialised to zero BF = 0.0

. At the activation of the Bailout-mode, the high criticality task, which activated

the mode, deposits the difference between its optimistic execution time τ.cLO,
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and the pessimistic execution time τ.cHI into the bailout fund BF , where

BF = τ.cHI − τ.cLO

. Simultaneously, all future releases for low-criticality tasks are abandoned during

this mode. Then, all high criticality tasks withdraw execution time whenever

they overrun the optimistic execution time τ.cLO, including the one activated

the Bailout-mode, and deposit the difference between their respective WCET

estimates, the optimistic and pessimistic WCET, where

BF = BF + τ.cHI − τ.cLO

. [5].

During the Bailout, low criticality jobs released before the activation, and

high criticality jobs, update the bailout fund BF by reducing the the underspent

execution time τ.c, if their actual execution time τ.c is less than the optimistic

execution time τ.cLO, where

BF = BF − (τ.cLO − τ.c)

. low criticality jobs released before the activation are aborted their execution

times are used to reduce the bailout fund, where

BF = BF − τ.cLO

[5].

Funded high criticality jobs overrun optimistic WCET during Bailout-mode

and complete before consuming the funded execution time budget, reduce the

bailout fund BF , where

BF = BF − (τ.cHI − τ.c)

. [5].

As seen in Figure 4.2, the transition from Bailout-mode to Normal or Re-

covery modes occurs according to the occurrence of an idle instant or when the

bailout fund BF becomes zero. In the case of idle instant occurrence, a transition

from bailout mode to normal mode is activated, and BF is reset to zero. In the

case where the bailout fund BF becomes zero, a transition from Bailout-mode to

Recovery-mode is activated, and the high criticality job with the lowest priority



Chapter 4. Criticality Arithmetic: Building Dependable Mixed-criticality
Systems 61

BailoutNormal

HI job overrun WCET
AND BF is initialised.

There is an idle instant
AND BF is reset .

Recovery

Lowest priority HI 
criticality job 
overrun, and BF is 
updated.

Lowest priority HI job completes.

CA-aware Lowest priority HI 
job service executed By 
another replica.

BF becomes zero
Lowest priority HI job is 
scheduled before return to 
Normal mode.

Figure 4.2: Criticality mode changes in Bailout-based protocols, LBP-CA quick
return to Normal-mode is coloured in red.

is recorded to execute in the Recovery-mode. The return from Recovery-mode

to Bailout occurs when the recorded high criticality job overruns its optimistic

execution time τ.cLO. In this case, it initialises and deposits its budget to the

bailout fund BF , and the Bailout-mode continues as mentioned above. The

Recovery-mode is designed for the safety of the high-criticality task with the

lowest priority (longest deadline). In existing Bailout-based protocols, BP and

LBP, the transition from Recovery-mode to normal mode is only activated when

the high criticality job completes its execution time. [5].

The LBP protocol differs from the classic BP protocol by allowing the release

of low-criticality tasks during the Bailout and Recovery modes. This is applied by

inserting the released low criticality tasks into a low priority queue to possible

eventual execution during idle time in the future. LBP-CA differs from both

reference protocols, BP and LBP, in facilitating a quicker return from Bailout to

Normal mode. LBP-CA accelerates the activation of the transition from Bailout

to Normal mode when the lowest-priority, high-criticality job service has already

been executed by another replica. This acceleration prevents the transition from

Bailout mode to Recovery mode. This mechanism is highlighted by the red colour

in Figure 4.2. The quicker return to normal mode enables the system to resume

the release for low criticality jobs. [5].
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4.3 Chapter Summary

This chapter introduced novel Criticality Arithmetic (CA) protocols, ATMP-CA

and LBP-CA. Started with an introduction to SIL and Criticality Arithmetic.

Then, Mid-term ATMP-CA and Short-term LBP-CA system methodologies are

presented in Section 4.1 and Section 4.2, respectively.



Chapter 5

EWCET and E-ATMP: WCET

Overrun Treated as WCET

Update

This chapter presents the motivation and methodology for the development of the

Empiric Adaptive Tolerance-based Mixed-criticality Protocol (E-ATMP) frame-

work. First, the used system model in the development of the E-ATMPframework

is described. Then, the EWCET and E-ATMP framework are explained in de-

tail. Finally, an example of E-ATMP handling WCET overrun is discussed. The

organisation of this chapter is as follows: Section 5.1 presents the system model.

Section 5.2 explains the E-ATMP framework. Section 5.3 presents an example

of the E-ATMP framework. Section 5.4 concludes the chapter.

It is challenging to determine a safe upper bound for the WCET, especially in

cases involving complex processor hardware. More readily available are methods

to establish an optimistic WCET estimate, which may be close to the real WCET

but lacks a guarantee of safety.

High-criticality tasks typically have a pessimistic or higher WCET estimate

used for task schedulability analysis. This analysis takes into account the opti-

mistic WCET when verifying the safety of execution during normal, best-case,

or low-criticality system modes, while the pessimistic WCET is applied for the

analysis of disruptive, worst-case scenarios in high-criticality system modes.

The concept of Empiric Worst Case Execution Time (EWCET) introduces a

new adaptation model for responding to the execution time overrun in real-time

and mixed-criticality systems. EWCET updates the execution time during the

task’s runtime and can adjust the execution schedule in response to variations

observed in each execution. EWCET initially is determined by the optimistic

63
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WCET estimate. WCET serves as an upper bound for the execution time of

service code under the worst-case scenario. It can be determined through dy-

namic experiments or static analysis, where the latter involves analysing the

worst longest execution path of the service code.

When a high-criticality task exceeds its WCET budget without completion,

the measurement of empirical execution for the high-criticality task begins. This

measurement can only be interrupted by tasks with equal or higher criticality, but

it resumes once the high-criticality task resumes execution. Conversely, when a

low-criticality task exhausts its WCET budget without completion, it is deferred

for future completion.

EWCET cannot function independently; it depends on a reconfiguration pro-

tocol to adjust the schedule based on recently acquired EWCET data. The recon-

figuration algorithm must be capable of utilising this new information to ensure

smooth degradation. A framework that manages the integration of EWCET and

reconfiguration protocol has been developed to answer the research question,

coined by the E-ATMP framework.

The E-ATMP framework uses EWCET and reconfigures schedules of mixed-

criticality tasks and services using the ATMP protocol. ATMP protocol exploits

safety margins of systems tasks in the form of utility functions to enable a smooth

degradation for the overall system utility.

Therefore, E-ATMP addresses this question with a novel approach that builds

upon recent findings in the literature. Since E-ATMP consistently provides re-

sults that are at least as good as reference methods, it offers a concrete answer to

the question of how the system can adapt based on occurrences of tasks’ overruns

of WCET estimates.

5.1 EWCET System Model

We assume a single processor system S, which schedules a task-set Γ = {τi, ..., τn}
using a FP algorithm. The system S consists of the following parameters:

S = (l,Γ, JQ)

S.l is the criticality mode of the system: S.l ∈ {0,Val1,Val2, . . . }, where

Val1,Val2, . . . denote the different criticality levels of the tasks (see Sec-

tion 5.1.1), which are all expressed as numbers > 0. By default, the system

is in ground mode: S.l = 0. A criticality mode S.l > 0 denotes the case

that an overrun of a task’s WCET estimate has happened. The change of
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the criticality mode based on the runtime events is described in 5.2.

S.Γ is the set of tasks to be scheduled:Γ = {τi, ..., τn} | i ≥ 1.

S .JQ a queue structure maintained by the FPPS algorithm, which contains an

ordered list of jobs released for execution.

5.1.1 Task Model

Each task τi ∈ Γ consists of the following parameters:

τi = 〈id, p, d, c, l, u, U, uf〉

where the parameters of task τi are defined as follows:

τi.id is the task identifier. τi.p is the task period. In our case, the period is an

output of the system optimisation based on the utility function described

in Section 5.2.2.

τi.d is the relative task deadline

τi.c is the WCET estimate (can be optimistic). In this model, each WCET

estimate can be potentially optimistic, regardless of the task’s criticality

level. The system is supposed to find an overall smooth degradation of

system services, even if the WCET estimate of the most critical task is

overrun.

τi.l is the criticality level of the task. As explained in Section 5.2.2, we map

utility values to numeral weights (τi.l > 0), for the sake of the system op-

timisation. In our model the criticality levels not only serve as an ordering

relation between different criticalities, but the value itself is also important

for the system optimisation.

Other mixed-criticality research often uses only two symbolic criticality

levels like {HI ,LO}, which in our model would be mapped to numeral

weights, for example, HI = 2.0 and LO = 1.0.

τi.u is the relative utility of the task.

τi.U is the absolute utility of the task, which is the product of its relative utility

τi.u and its criticality τi.l:

τi.U = τi.u · τi.l
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futil is the utility function, which describes the relationship between the task’s

period τi.p and its relative utility τi.u. The utility function is further de-

tailed in Section 5.2.2.

Furthermore, it is assumed that it is acceptable that a task is continued with

its execution after its deadline has passed, as this is necessary to be able to

observe the EWCET. This would also require that the real-time application is

within a temporal safe-state, in order to tolerate the delay of the service due to

the overrun and the system reconfiguration.

5.1.2 Job Model

The individual instances of a task τi at runtime are called jobs τi,k | k ≥ 0, where

τi,0 denotes the first job of task τi. A job τi,k has the following parameters:

τi,k = 〈a, p, d, et, ec, l〉

where the parameters are defined as follows:

τi,k.a is the arrival time

τi,k.et execution time

τi,k.ec is the empiric EWCET. The empiric EWCET of a job τi,k.ec is the max-

imum of the tasks WCET estimates τi.c and all the execution times τi,k.et

observed so far from all job instances so far of task τi:

τi,k.ec = max

(
max

n∈{0...k}
(τi,n.et) , τi.c

)
(5.1)

Thus, the empiric EWCET τi,k.ec of a job is not defined only by the task

τi and its current job τi,k itself, but also by the whole history of execution

times τi,k.et of all previous job instances τi,n | 0≤n<k of the same task.

τi,k.l is the criticality level, which is inherited from its task τi,k.l = τi.l.

Theorem 5.1.1 The empiric WCET τi,k.ec is non-strict monotonically growing

with each new job instance τi,k against the previous job instance τi,k−1.

Proof 5.1.1 The proof of this theorem follows directly from Equation 5.1, as

the EWCET for the first job τi,0 gets initialised with task’s WCET estimate τi.c

(τi,0.ec = τi.c), and for each succeeding jobs τi,k the EWCET is the maximum
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of the previous job τi,k−1’s EWCET and the current job’s execution time τi,k.et

(τi,k.ec = max(τi,k−1.ec, τi,k.et)). So any update of the EWCET is based on the

maximum with the previous job’s EWCET, which proves the theorem.

The reconfiguration framework for E-ATMP will be presented in the process-

ing section.

5.2 The Reconfiguration Framework E-ATMP

This subsection offers a comprehensive explanation of the E-ATMP framework,

divided into two parts. The first part covers the framework’s construction, while

the second covers the formulation of resource shortages as an ILP problem.

5.2.1 Construction of E-ATMP Framework

The E-ATMP framework is designed and constructed to ensure the smooth degra-

dation of service in mixed-criticality systems when resource shortages occur. E-

ATMP achieves this by coordinating various system components and effectively

managing the WCET overruns of both low-criticality and high-criticality tasks.

The framework’s primary goal is to maintain system functionality and prioritise

critical tasks based on importance and adaptability during resource shortages.

E-ATMP coordinates the following system components: the underlying

real-time scheduler, responsible for task scheduling and execution; the mixed-

criticality scheduler, which manages task scheduling based on their criticality

levels; EWCET management, involving the considering of actual task execution

times; and the reconfiguration protocol used to make system adjustments in the

event of resource shortages.

The main goal of the framework is to handle WCET overrun while maximising

system utility to take actions so the system continues to operate smoothly. When

a task with low criticality overruns its execution time, the framework’s response

is to postpone the execution of the task. In the case of high-criticality task

overruns, the framework allows the task to continue its execution beyond the

allocated WCET.

The flowchart presented in Figure 5.1 provides a visual representation of the

sequence of steps and decisions involved in performing the E-ATMP process. It

comprises 14 sequential steps (Step 1 . . . 14), five decision points (A, B, C, D,

E), and four loops (Loop 1 . . . 4), guiding the process from the start through its

continued progress.
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To gain a better understanding of the flowchart, we will now describe the basic

functionality of the four loops labelled Loop 1, Loop 2, Loop 3, and Loop 4, along

with the decision stages labeled A, B, C, and D. The transition between different

steps depends on the decisions made at the decision stages, which, in turn, dictate

whether loops continue or terminate. The legend shows the colour codes for the

different components of the framework: blue are actions by the short-term real-

time schedulers, green are the actions by the mixed-criticality scheduler, pink

denotes the actions for the EWCET handling, and orange denotes the call of the

existing ATMP framework for smooth degradation.

The four loops that E-ATMP uses for the flow of its decisions are Loop 1

IDLE the state; Loop 2 the job scheduler; Loop 3 the EWCET overrun monitor;

Loop 4 the schedule reconfiguration protocol. Each one of these loops is a True or

False result of a decision stage except Loop 4, which is a result of the brand new

schedule for the system restart produced by the ATMP reconfiguration protocol.

The following text explains each loop, followed by an explanation of the decision

stages that lead to the activation of each loop.

Loop 1: IDLE represents the Idle state of the processor, indicating that no

job has arrived yet to be executed, and keeps the system in a S.l = LO

mode. The system leaves any criticality mode (S.l > 0) and returns to the

no-criticality mode (S.l = LO).

Loop 2: job scheduler is responsible for managing the normal scheduling of

jobs. It operates by dispatching jobs from the filtered job queue and exe-

cuting them. The loop continues dispatching jobs for execution until a job

exceeds its WCET estimate, at which Loop 2 is left to handle the WCET

overrun or a job has been scheduled and completed its execution.

Loop 3: overrun monitor is responsible for measuring the complete execu-

tion time of a task in case of a WCET estimate overrun. The WCET

overrun of a permitted high criticality job or the continuation of a post-

poned low criticality job at their next instances is essential for accurately

measuring the EWCET.

Loop 4: schedule reconfiguration is the reconfiguration process, which is

entered in case the currently finished job has a WCET estimate over-

run. This loop contains an optional run of ATMP to achieve a smooth

degradation of the whole system to compensate for the updated EWCET

values. Since ATMP is a relatively costly reconfiguration, one can decide

to run it based on the criticality values of the overrunning tasks and their
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Begin
INPUT
taskset Γ
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Figure 5.1: Flowchart of E-ATMP, using the EWCET
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frequency of overruns. If ATMP is triggered, then one can be sure that

future execution times up to the current EWCET values will not cause a

WCET overrun, and consequently the system leaves any criticality mode

(S.l becomes zero again).

The system’s decision-making process involves five distinct decisions. Deci-

sion A handles system status and job execution. Decision B focuses on the initial

occurrence of tasks. Decision C assesses the job’s WCET completion and over-

run Decision D deals with job postponement and updates. Decision E considers

system reconfiguration, influenced by the utility, criticality, and WCET overrun.

These decisions collectively guide the E-ATMP framework for ensuring a smooth

degradation. In the following, we detail each one of these stages.

Decision A: decides whether the system is currently idle, in which case the

criticality mode gets reset (S.l = 0) and Loop 1 is taken. In case there is

at least one job in the ready queue, one job τi,k gets fetched from the ready

queue and executed.

Decision B: decides whether the job τi,k is the first instance of task τi (k = 0).

If τi,k is the first instance, then the EWCET gets initialised with the current

WCET estimate, otherwise, the EWCET value gets copied over from the

previous job τi,k−1 of the same task.

Decision C decides whether the job τi,k being just executed was able to finish

within the given time budget τi,k.c. If this was the case, it proceeds with

Decision D whether τi,k was already a postponed job. Otherwise, the job

gets postponed and Loop 3 is taken.

Decision D decides whether the currently finished job τi,k was postponed or

not. If it was not postponed (i.e., it finished without a WCET-estimate

overrun) then Loop 2 is taken. If it was postponed, the system proceeded

with an EWCET update, leading to Decision E.

Decision E decides whether a system reconfiguration via ATMP should be trig-

gered after job τi,k finished its WCET estimate overrun. This decision

might not always be true, as a reconfiguration by itself is costly. Thus, the

decision will be a heuristics that takes into account the criticality level of

all the previously overrunning jobs, their factor by how much they overrun

and how often they overrun. A concrete logic for this decision is presented

in the Evaluation chapter based on the criticality of the tasks in question.
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With the overall understanding of all the loops and decisions involved in E-

ATMP, we now explain the individual actions performed in Steps 1 . . . 14

Step 1 S.l = 0

The input of E-ATMP is a mixed-criticality taskset Γ. The E-ATMP starts

in Step 1 where the criticality mode S.l gets reset to non-critical mode (S.l =

0). S.l represents the criticality ceiling of all the jobs that have overrun their

WCET estimate since the last reconfiguration (or beginning, if there was no

reconfiguration so far).

Step 2 JQ = FETCH JOBS(JQ, Γ)

In Step 2 the ready queue JQ gets updated by adding any new arriving jobs

at the end of JQ via the function FETCH JOBS(JQ,Γ). The new arriving jobs

are derived and created from the task set Γ. Afterward, in Decision A it is tested

if JQ is currently empty (the system is idle), in which case E-ATMP returns to

Step 2 via Loop 1.

Step 3 On the way back via Loop 1 the criticality mode gets reset in Step 3

(S.l = 0).

Step 4 If the ready queue JQ was not empty, then in Step 4 JQ gets updated

via the function FILTER(JQ, Γ), as described in Algorithm 3, to make space

for postponed jobs. FILTER(JQ , S.l) removes ready tasks that are going to be

replaced by a postponed task in JQ . For any postponed job τi,k the next job of

the same task τi,k+1 will be removed from JQ to allow the continuation of τi,k.

Algorithm 3FILTER(JQ, l) shows the implementation of Step 4 algorithm.

Step 5 Afterwards, Step 5 continues the mixed-criticality scheduler with the

function SELECT JOB(JQ, S.l), given in Algorithm 4, which selects the job τi,k

to be executed next, based on the following order: We only consider jobs τ ∈ JQ

that have a criticality that is larger or equal to the current criticality mode: τ ≤ l.

From those selected jobs it then chooses the next one based on the underlying

real-time protocol.

Algorithm 4SELECT JOB (JQ , l) shows the implementation of Step 4 algo-

rithm.

Step 6 and 7 The function SELECT JOB() also returns the time budget tbound

for this job, which is the WCET estimate of the job. Then, based on Decision B

the EWCET for the selected job τi,k gets initialised either with the EWCET of

the previous job τi,k−1 (Step 6) in case that k > 0, or gets otherwise initialised

with the WCET estimate τi.c (Step 7).

Step 8 In Step 8 the job τi,k gets executed via the function

BOUND EXECUTE(τi,k, tbound), till it finishes, or the time budget tbound runs out,



Chapter 5. EWCET and E-ATMP: WCET Overrun Treated as WCET Update72

Algorithm 3: Step 4 FILTER(JQ, l)

1 This function detects postponed jobs τi,k and removes the next job of
the same task τi,k+1, to make space for the execution of τi,k.

Input : JQ . . . queue structure of jobs to be scheduled
l . . . System criticality mode;

Output: JQ ;
2 begin
3 JQtmp ← JQ t ← real time() // current absolute real-time for

τi,k ∈ JQtemp do
4 if isPostponedJob(τi,k) then
5 JQ = JQ \ τi,k+1 // make place for postponed
6 end
7 if (τi,k).d < t) then
8 JQ = JQ \ τi,k // remove, if deadline passed
9 end

10 end
11 return JQ

12 end

Algorithm 4: Step 5 SELECT JOB (JQ , l)

1 This function selects the next job to be scheduled. The considered jobs
τ ∈ JQ have a criticality that is larger or equal to the current
criticality mode: τ ≤ l. If the criticality mode l is zero, then all jobs
are considered. From those selected jobs it then chooses the next one
based on the underlying real-time protocol, written as next RT(JQtmp).

Input : JQ : ready queue of jobs to be scheduled
l : Current system-criticality mode

Output: τi,k, τi,k.c
2 begin
3 JQtmp = [] // init empty queue for filtering
4 for τi,k ∈ JQ do
5 if τi.l ≥ l then // only keep high criticality jobs
6 (JQtmp).add(τi,k)
7 end

8 end
9 τi,k = next RT(JQtmp) // real-time scheduler

10 JQ = JQ \ τi,k // remove from ready queue
11 return τi,k, τi,k.c

12 end
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whichever one comes first. After the execution of job τi,k, in Decision C it is

checked, whether τi,k finished, or else it was pre-empted because it consumed

the time budget τi,k.c. In case τi,k finished, it continues with Decision D,

where it is tested if τi,k was not a postponed job (i.e., it did not overrun its

WCET estimate), If it was not an overrun, then it continues via Loop 2 back to

Step 2. Algorithm 5BOUND EXECUTE (JQ , l) shows the implementation of Step 8

algorithm.

Algorithm 5: Step 8 BOUND EXECUTE (τi,k, tbound)

Input : τi,k
tbound

1 begin
2 Try:
3 TIMER COUNTDOWN ( tbound )
4 executeJob(τi,k);
5 TIMER STOP();
6 setF inished(τi,k);

7 Exception TIMER COUNTDOWN :
8 return
9 end

10 end

Step 9 Coming back to Decision C, if τi,k was pre-empted because it con-

sumed the time budget c, then in Step 9 the job τi,k gets marked as postponed and

is put back into the ready queue JQ with its deadline extended by another period

to allow continuation: (τi,k).d = (τi,k).d + (τi,k).p. Algorithm 6POSTPONE(τi,k,

JQ) shows the implementation of Step 9 algorithm.

Algorithm 6: Step 9 POSTPONE(τi,k, JQ)

Input : τi,k
JQ

1 begin
2 removeJobFromJobQueue(τi ,k+1 , JQ);
3 insertJobIntoJobQueue(τi,k, JQ);

4 end
5 return τ.i, k

Step 10 Afterwards in Step 10 the criticality ceiling S.l is updated with the

criticality τi,k.l of job τi,k, and the system continues via Loop 3 at Step 2.

Step 11 Coming back to Decision D, if τi,k is a job that was postponed before,
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then the system proceeds with Step 11, where EWCET of τi,k gets updated with

the total execution time, including all the postponed executions.

Step 12 and 13 Afterwards, we reach Decision E, where it is decided whether

the whole task set should be reconfigured via ATMP in Step 13 or not. As men-

tioned above in the description of Decision E, this decision can use different

heuristics to find a balance between the benefit of smooth degradation and dis-

ruption due to reconfiguration. If it is chosen to call ATMP in Step 13, then

before in Step 12 for all tasks their EWCET is assigned as the new WCET es-

timate. This way, ATMP will now be able to find a new smooth degradation

where the tasks will not overrun with the EWCET values observed so far.

Step 14 Regardless of whether ATMP was triggered or not, the system

continues afterward via Loop 4 in Step 2, which concludes all cases of iterations,

and the system will try to schedule the next job, and so on.

5.2.2 E-ATMP ILP Problem Formulation

In this section, we shall illustrate the E-ATMP optimisation method. First, we

define the decision variables, which are the individual task utilities. Second, we

define the objective function, which is the maximised system utility calculated

by the sum of optimised task utilities. Third, we define the problem constraints,

which are resource and performance metrics constraints. Finally, we present an

example of E-ATMP optimisation in action.

Optimisation Variables The decision variable is the utility of a task τ.u. E-

ATMP maximise the relative utility τi.u of each task τi and multiplies it by its

numerical value (weight) for criticality τi.l and the resulting value represents the

absolute utility of the optimised task τi.U .

τ.U = τ.W · τ.u, τ.W = τ.l (5.2)

Task criticality tau.l The designated criticality of the task, either LO or HI.

Task weight tau.W τ.W maps a numerical value to the task criticality level τi.l

as follows: when τ.l equals 2, it represents τi.l as HI, and when W equals 1, it

corresponds to τi.l being LO.

Objective Function The goal of E-ATMP optimisation is to maximise the

overall system utility SU . This overall system utility is calculated as the sum

of the absolute utility levels for individual tasks τ.U for all tasks in the supplied
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task set Γ.

SUopt =
∑

τi∈Γ

τi.U (5.3)

SUopt optimised system utility that is the sum of optimised utilities by all tasks.

Resource Constraint The key concept of E-ATMP is that it calibrates the

overall throughput within safe bounds according the a certain EWCET update

(EWCET overrun). The resource constraint is the sum of each task load τ. in

the task set. The maximum load of a task is the EWCET τi.ec divided by the

primary period pprim,τi .

SR =
∑

τi∈Γ

loadτi ≤ 1.0 (5.4)

where the load of each task loadτi is calculated by:

maxloadτi =
τi.ec

τi.uf.pprim
(5.5)

The resource constraints are used to limit the workload at each of the available

cores cri ∈ Cores. The maximum workload a core cr can take is its computing

capacity Cap(cr):

∑

τi∈Γ

loadτi≤
∑

cr∈Cores

Cap(cr) (5.6)

Period Constraints This constraint ensures that the optimised period τ.p is

constrained to be less than the τ.uf.pprim, and greater than τ.uf.ptol:

τ.uf.ptol ≤ τ.p ≤ τ.uf.pprim (5.7)

5.3 Motivation: The Reconfiguration of Mixed-

Criticality Scheduling

In this section, we show how a mixed-criticality task set would be scheduled

in a system with/without the possibility of measuring the WCET and recon-

figuring the system accordingly at runtime. This includes the case where the

actual execution time is greater than the job’s execution time budget, or WCET

overrun.

Using the task set example presented in Tables and 5.1 and 5.2, we understand

what the impact of WCET overrun in the context of mixed-criticality scheduling
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on uni-core system using the AMC protocol, and the potential benefit of applying

the EWCET reconfiguration model in case of WCET overrun.

In this example, we consider two tasks, Task τA and Task τB, each with

distinct characteristics. Task τA has a primary-period pprim of 2.0 ms, a tolerance-

period ptol of 3.0 ms, a tolerance-utility utol of 0.3, an optimistic WCET estimate

τA.c of 0.5 ms, and a criticality level τA.l=1 (LO). On the other hand, Task

τB has a primary-period pprim of 5.0 ms, a tolerance-period ptol of 6.0 ms, a

tolerance-utility utol of 0.6, an optimistic WCET estimate τB.c of 0.5 ms, and a

criticality level τB.l=2 (HI).

As a concrete scheduling protocol, we use the AMC scheduling scheme [123].

First, we understand the AMC and its system criticality modes using an exam-

ple that shows how AMC handles WCET overruns 5.3.1. Then, we apply the

knowledge of an online update for the empiric execution EWCET, presented in

the previous section, and reconfigure the schedule accordingly. Based on the

example, we can motivate that our reconfiguration at runtime based on the

EWCET provides a smoother service degradation in case of resource shortages

due to WCET estimate overruns. An extended evaluation of the EWCET and

E-ATMP framework is presented under the Experimental Evaluation chapter 7.

5.3.1 Mixed-Criticality Scheduling without Reconfigura-

tion

The AMC scheduling scheme defines two system runtime modes: low-criticality

mode and high-criticality mode. HI criticality tasks are assigned two WCET

estimates: the optimistic WCET and the pessimistic WCET. In contrast, low-

criticality tasks have only an optimistic WCET estimate. The low-criticality

mode represents the normal behaviour of the system where no resource shortage

such as WCET overrun. In this mode, all task executions are assumed to be

bounded by the optimistic WCET estimates.

The high-criticality mode represents the system state after response to a

resource shortage due to WCET overrun. In the HI criticality mode, HI criticality

tasks are guaranteed and the execution times are bounded by the pessimistic

WCET, which is greater than the optimistic WCET. However, LO criticality

tasks are dropped until the system experiences an idle state (no task instance

to execute). It is worth noting that the return of AMC to LO criticality during

an idle instant is acceptable as defined by Santy et al. [77]. The transition

from the LO criticality mode to the high-criticality mode occurs when any low

or high-criticality task exceeds its optimistic WCET budget without completion.
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Conversely, the transition from the high-criticality mode to the LO criticality

mode occurs when no job arrives to execute or when the processor is idle. AMC

guarantees that all deadlines are met in the LO criticality mode, while only HI

criticality tasks are guaranteed in the HI criticality mode.

In the following example, using the task set presented in table 5.1, we un-

derstand how AMC schedules handle WCET overrun by dropping LO criticality

jobs, using a mixed-criticality task set of two tasks, one HI criticality task, and

one low-criticality task. Table 5.1 shows the example task set, which includes a

Task ID Period Deadline [ms] WCET Estimate [ms] Real WCET [ms] Criticality
A 2.0 1.0 2.0 1 (= LO)
B 5.0 1.0 2.0 2 (= HI)

Table 5.1: Example: Mixed Criticality Task Set

high-criticality task B and a low-criticality task A. In this example, we see that

under the AMC scheduling protocol, whenever a high LO criticality job of a

task, exceeds its execution time budget without completion, AMC activates the

HI criticality mode, and removes all LO criticality jobs as long as HI criticality

mode is activated, and LO criticality jobs are rescheduled again if an idle instant

occurs.

While this approach ensures the schedulability and safety of the HI critical-

ity jobs, it can result in inefficient utilisation of available resources, including

the CPU and memory. Additionally, this removal of jobs can cause disruptive

degradation in the services provided by the mixed-criticality system that AMC

serves.

Table 5.1 provides information about our example two tasks, denoted as Task

A and Task B. Each row represents a task and contains the following columns:

• Task ID: It identifies the task τ.id labelled as A and B.

• Period/Deadline: represents the time interval between consecutive in-

stances of a task τ.p. Task A period is 2.0 units of time, indicating that it

repeats every 2.0 ms. task B period is 5.0 units of time.

• WCET Estimate: It represents the task τ.p estimated WCET, which in

general might be an optimistic or safe WCET bound τ.c. For both tasks,

the WCET estimate is 1.0, which in our case optimistic WCET estimate,

so we can show the scenarios of WCET estimate overruns.



Chapter 5. EWCET and E-ATMP: WCET Overrun Treated as WCET Update78

AMC and its runtime modes. Next, we present an example
for AMC showing how it handles WCET overruns. Based on
that example we can motivate that a our reconfiguration at
runtime based on the EWCET provides a more smooth service
degradation in case of resource shortages due to WCET-
estimate overruns.

AMC scheduling mechanism for mixed-criticality systems
that defines two runtime modes, the low-criticality mode and
the high-criticality mode. The low-criticality mode represents
the normal behaviour of the system where no resource shortage
such as WCET overrun. In this mode, all task executions are
assumed to be bounded by the optimistic Worst-Case Execu-
tion Time (WCET) estimates. The high-criticality mode repre-
sents the system state after response to a resource shortage. In
the high-criticality mode, high-criticality tasks are guaranteed
and the execution times are bounded by the pessimistic WCET,
which is greater than the optimistic WCET. However, low-
criticality tasks are dropped until the system experience an
idle state (no task instance to execute).

The transition from the low-criticality mode to the high-
criticality mode occurs when any low or high criticality
task exceeds its optimistic WCET budget without completion.
Conversely, the transition from the high-criticality mode to the
low-criticality mode occurs when no job arrives to execute or
when the processor is idle. AMC guarantees that all deadlines
are met in the low-criticality mode, while only high-criticality
tasks are guaranteed in the high-criticality mode.

In the following example, we present how AMC schedules
handles WCET overrun using a mixed-criticality task set of
two tasks, one high-criticality task, and one low-criticality
task.

A. Example: WCET Overruns in Mixed-Criticality Systems

Table I shows the example task set, which include a high-
criticality task B and a low-criticality task A. In this example,
we demonstrate that under the AMC scheduling protocol,
whenever a high low-criticality job of a task, exceeds its
execution time budget without completion, AMC activates the
high-criticality mode, and removes all low-criticality jobs as
long as high-criticality mode is activated, and rescheduled
again if an idle instant occurs.

While this approach ensures the schedulability and safety of
the high-criticality jobs, it can result in inefficient utilization
of available resources, including the CPU and memory. Addi-
tionally, this removal of jobs can cause disruptive degradation
in the services provided by the mixed-criticality system that
AMC serves.

Task
ID

Period
Deadline
[ms]

WCET
Estimate
[ms]

Real
WCET
[ms]

Criticality

A 2.0 1.0 2.0 1 (= LO)
B 5.0 1.0 2.0 2 (= HI)

TABLE I
EXAMPLE: MIXED CRITICALITY TASK SET

Table I provides information about our example two tasks,
denoted as Task A and Task B. Each row represents a task
and contains the following columns:

• Task ID: It identifies the task. In this case, Task A and
Task B are labelled as ”A” and ”B” respectively.

• Period/Deadline: represents the time interval between
consecutive instances of a task. For Task A, the period
is 2 units of time, indicating that it repeats every 2 time
units. For Task B, the period is 5 units of time.

• WCET Estimate: It represents the estimated WCET,
which in general might be an optimistic or safe WCET
bound. For both tasks, the WCET estimate is 1.0, which
in our case optimistic WCET estimates, so we can show
the scenarios of WCET-estimate overruns.

• Real WCET: It represents the real WCET under worst-
case conditions. The real WCET is typically not known,
only the WCET estimates are known. For both tasks, the
real WCET is assumed to be 2.0.

• Criticality: It denotes the criticality level of a task,
indicating its importance or priority. For Task A, the
criticality level is ”LO” (low, numeric value 1), and for
Task B, it is ”HI” (high, numeric value 2).

The (Figure III-A) illustrates the AMC schedule for the
tasks presented above, along with a run-time monitor that
handles the optimistic-WCET overrun problem. Additionally,
the transitions between run-time modes in AMC are recorded
within each schedule.

(a) High-criticality task overrun (b) Low-criticality task overrun

Fig. 1. AMC Schedule at Overrun

We present two cases of WCET overrun: the first case
involves the overrun of a high-criticality task, while the second
case involves the overrun of a low-criticality task. In Figure
III-A.a, we illustrate the first case, and in Figure III-A.b, we
illustrate the second case.

In Figure III-A, we observe that the job B0 exceeds its
optimistic WCET starting from time 2, which is highlighted
in yellow. To address this situation, the AMC scheduling
protocol activates the critical mode at the start of the overrun,
as depicted in the bottom half of Figure III-A.a. Consequently,
any low-criticality job that was scheduled for execution, such
as job A1 , is dropped.

The criticality mode remains active until the completion of
B0 at time 3. At this point, AMC deactivates the HI-mode. To
mitigate interference during the overrun of B0 , AMC activates
the HI-mode. Once the HI-mode is activated, AMC disregards
and discards low-criticality releases. Specifically, due to the
arrival of A1 coinciding with the start of the B0 overrun,
AMC abandons the execution of A1 . Despite A1 having a
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AMC and its runtime modes. Next, we present an example
for AMC showing how it handles WCET overruns. Based on
that example we can motivate that a our reconfiguration at
runtime based on the EWCET provides a more smooth service
degradation in case of resource shortages due to WCET-
estimate overruns.

AMC scheduling mechanism for mixed-criticality systems
that defines two runtime modes, the low-criticality mode and
the high-criticality mode. The low-criticality mode represents
the normal behaviour of the system where no resource shortage
such as WCET overrun. In this mode, all task executions are
assumed to be bounded by the optimistic Worst-Case Execu-
tion Time (WCET) estimates. The high-criticality mode repre-
sents the system state after response to a resource shortage. In
the high-criticality mode, high-criticality tasks are guaranteed
and the execution times are bounded by the pessimistic WCET,
which is greater than the optimistic WCET. However, low-
criticality tasks are dropped until the system experience an
idle state (no task instance to execute).

The transition from the low-criticality mode to the high-
criticality mode occurs when any low or high criticality
task exceeds its optimistic WCET budget without completion.
Conversely, the transition from the high-criticality mode to the
low-criticality mode occurs when no job arrives to execute or
when the processor is idle. AMC guarantees that all deadlines
are met in the low-criticality mode, while only high-criticality
tasks are guaranteed in the high-criticality mode.

In the following example, we present how AMC schedules
handles WCET overrun using a mixed-criticality task set of
two tasks, one high-criticality task, and one low-criticality
task.

A. Example: WCET Overruns in Mixed-Criticality Systems

Table I shows the example task set, which include a high-
criticality task B and a low-criticality task A. In this example,
we demonstrate that under the AMC scheduling protocol,
whenever a high low-criticality job of a task, exceeds its
execution time budget without completion, AMC activates the
high-criticality mode, and removes all low-criticality jobs as
long as high-criticality mode is activated, and rescheduled
again if an idle instant occurs.

While this approach ensures the schedulability and safety of
the high-criticality jobs, it can result in inefficient utilization
of available resources, including the CPU and memory. Addi-
tionally, this removal of jobs can cause disruptive degradation
in the services provided by the mixed-criticality system that
AMC serves.
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• Period/Deadline: represents the time interval between
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is 2 units of time, indicating that it repeats every 2 time
units. For Task B, the period is 5 units of time.

• WCET Estimate: It represents the estimated WCET,
which in general might be an optimistic or safe WCET
bound. For both tasks, the WCET estimate is 1.0, which
in our case optimistic WCET estimates, so we can show
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real WCET is assumed to be 2.0.

• Criticality: It denotes the criticality level of a task,
indicating its importance or priority. For Task A, the
criticality level is ”LO” (low, numeric value 1), and for
Task B, it is ”HI” (high, numeric value 2).

The (Figure III-A) illustrates the AMC schedule for the
tasks presented above, along with a run-time monitor that
handles the optimistic-WCET overrun problem. Additionally,
the transitions between run-time modes in AMC are recorded
within each schedule.

(a) High-criticality task overrun (b) Low-criticality task overrun

Fig. 1. AMC Schedule at Overrun

We present two cases of WCET overrun: the first case
involves the overrun of a high-criticality task, while the second
case involves the overrun of a low-criticality task. In Figure
III-A.a, we illustrate the first case, and in Figure III-A.b, we
illustrate the second case.

In Figure III-A, we observe that the job B0 exceeds its
optimistic WCET starting from time 2, which is highlighted
in yellow. To address this situation, the AMC scheduling
protocol activates the critical mode at the start of the overrun,
as depicted in the bottom half of Figure III-A.a. Consequently,
any low-criticality job that was scheduled for execution, such
as job A1 , is dropped.

The criticality mode remains active until the completion of
B0 at time 3. At this point, AMC deactivates the HI-mode. To
mitigate interference during the overrun of B0 , AMC activates
the HI-mode. Once the HI-mode is activated, AMC disregards
and discards low-criticality releases. Specifically, due to the
arrival of A1 coinciding with the start of the B0 overrun,
AMC abandons the execution of A1 . Despite A1 having a

3

time
[ms]

time
[ms]

a) High-criticality job B0 overrun by 1 ms b) Low-criticality job A0 attempt
overrun but postponed

Figure 5.2: Example of AMC scheduling, where a task exceeds its WCET esti-
mate

• Real WCET: It represents the real WCET under worst-case conditions.

The real WCET is typically not known, only the WCET estimates are

known. For both tasks, the real WCET is assumed to be 2.0 in each

overrun case.

• Criticality: It denotes the criticality level of a task τ.l, indicating its im-

portance or priority. For task A, the criticality level is LO (LO, numeric

value 1), and for task B, it is HI(HI, numeric value 2).

Figure 5.2 shows the AMC schedule for the tasks presented above, along with

a run-time monitor that handles the optimistic WCET overrun problem. Ad-

ditionally, the transitions between run-time modes in AMC are recorded within

each schedule and two cases of WCET overrun: the first case involves the over-

run of a HI criticality task, while the second case involves the overrun of a LO

criticality task. In Figure 5.2.a, we illustrate the first case, and in Figure 5.2.b,

we illustrate the second case.

In Figure 5.2.a, we observe that the job B0 exceeds its optimistic WCET

starting from time 2, which is highlighted in yellow. To address this situation,

the AMC activates the HI criticality mode at the start of the overrun, as seen in

the bottom half of Figure 5.2.a. Consequently, any LO criticality job that was

scheduled for execution, such as job A1 , is dropped.

To handle interference during the overrun of B0 , AMC activates the high

mode. Once the HI mode is activated, AMC abandons new LO criticality job

releases. Specifically, due to the arrival of A1 at the start of the B0 overrun,

AMC abandons the execution of A1 . Despite A1 having a higher priority than
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B0 , it is prevented from utilising the underlying processor due to its lower crit-

icality level. The system returns to its normal behaviour with the activation of

the S.l = 0 at time 3.

In Figure 5.2.b, the low-criticality job A0 exceeds its WCET and fails to

complete at time 2, entering the overrun state. To handle the overrun, AMC

takes the following actions: it activates the HI criticality mode at time 1, aborts

A1 at time 1, and deactivates the S.l = HI at time 2. Since the HI criticality

mode is activated, AMC ignores the arrival of A1 because the HI criticality task

B0 is completed within its estimated WCET, resulting in the system being idle.

Subsequently, AMC deactivates the HI mode, but A0 is aborted, and A1 is

abandoned. The outcome of the A0 overrun in this example is the dropping of

A1 to ensure the safety and schedulability of task B jobs.

From the two cases presented above, the overrun of HI criticality job (B0 )

and a LO criticality job (A0 ), it is evident that AMC takes an over-pessimistic

approach in addressing WCET overrun. It achieves safety by dropping jobs

with low-criticality and ensure the schedulability of high-criticality jobs. This

approach cannot provide smooth degradation for the system’s quality of service

in case we consider a larger task set.

In the next section, we demonstrate how E-ATMP can provide a more smooth

service degradation, by optimising the schedule in case of a WCET estimate

overrun. E-ATMP generally aims to minimise the number of dropped tasks of

lower criticality, by allowing to degrade of tasks based on empiric WCET.

5.3.2 Mixed-Criticality Scheduling with E-ATMP Recon-

figuration

In this section, we show how the E-ATMP protocol handles the WCET overrun

using the same scenario handled by AMC in the previous subsection 5.3.1.

Task ID Primary Period [ms] Tolerance Period [ms] WCET [ms] Relative Utility Criticality
A 2.0 3.0 0.3 0.5 1 (LO)
B 5.0 6.0 0.6 0.5 2 (HI)

Table 5.2: Example: Tolerance-based Mixed Criticality Task Set

As shown in Figure 5.1.a, τB,0.ec is twice the task’s WCET bound τB,0.c,

which leads E-ATMP to activate the HI mode (S.l = 2) and stops job τA,0

at time 2 ms, trigger the ATMP optimiser for a new schedule with the new

τB,k.ec execution time. The optimised schedule eliminates the need to abandon
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Algorithm 2 FILTER(JQ, l)

This function detects postponed jobs ⌧i,k and removes the next
job of the same task ⌧i,k+1, to make space for the execution
of ⌧i,k.

Input : JQ . . . queue structure of jobs to be scheduled
l . . . System criticality mode

Output: JQ
1 begin
2 JQtmp  JQ
3 for ⌧i,k 2 JQtemp do
4 if isPostponedJob(⌧i,k) then
5 JQ = JQ \ ⌧i,k+1

6 return JQ

with a HI criticality level (⌧i,k.l=2). Then, we demonstrate
how E-ATMP handles the overrun of jobs ⌧i,k with a LO
criticality level (⌧i,k.l=1).

In this example, we consider two tasks, Task ⌧A and Task
⌧B , each with distinct characteristics. Task ⌧A has a primary-
period pprim of 2.0 ms, a tolerance-period ptol of 3.0 ms,
a tolerance-utility utol of 0.3, an optimistic WCET estimate
⌧A.c of 0.5 ms, and a criticality level ⌧A.l=1 (LO). On the
other hand, Task ⌧B has a primary-period pprim of 5.0 ms, a
tolerance-period ptol of 6.0 ms, a tolerance-utility utol of 0.6,
an optimistic WCET estimate ⌧B .c of 0.5 ms, and a criticality
level ⌧B .l=2 (HI).

task pprim

[ms]
ptol

[ms]
utol

[ms]
c
[ms]

l

A 2.0 3.0 0.3 0.5 1 (LO)
B 5.0 6.0 0.6 0.5 2 (HI)

TABLE II
EXAMPLE: TOLERANCE-BASED MIXED CRITICALITY TASK SET

As shown in Figure 3.a, ⌧B,0.ec is twice task’s WCET
bound ⌧B,0.c, which lead E-ATMP to activate the HI mode
(S.l = 2) and stops job ⌧A,0 at time 2 ms, trigger the ATMP
optimiser for a new schedule with the new ⌧B,k.ec execution
time. The optimised schedule eliminates the need to abandon
all jobs ⌧A,k of LO task ⌧A, while ensuring the safety of all
jobs of HI task ⌧B with new updated WCET estimate ⌧B .c
(from the latest EWCET value). At time 6, E-ATMP allowed
Task ⌧B,1 to overrun again without the need to activate the
high-criticality mode. This demonstrates the flexibility of the
E-ATMP protocol in handling overrun situations while main-
taining efficient operation. Additionally, during the execution,
Task ⌧A,3 safely interrupts ⌧B,1, executes, and once completed,
⌧B,1 resumes its execution.

Figure 4.b shows that ⌧A,0.ec completed without completion
and attempts to overrun at time 1.0. E-ATMP aborts ⌧A,0

and allows ⌧A=B,0 to execute normally, but ⌧A,0 is postponed
and replaces ⌧A,1 execution while keeping the system in low
criticality level.

The experiment setup and results in the next section, illus-
trates a practical application for E-ATMP and the reference
protocol AMC. The example presents a set of overrun sce-
narios displayed in schedules and system-mode monitors for
scheduling Airbus 380 Flight Control System task set [21].

(a) High-criticality job B0 overrun by 1ms (b) Low-criticality task overrun A0 by 1ms

Fig. 4. Example of mixed-criticality scheduling, where a task exceed its
WCET estimate

A. Formulation of ILP Problem for E-ATMP

In this section, we illustrate how E-ATMP formulate the
task parameters into linear-programming optimisation prob-
lem. This by presenting the objective function, optimisation
variables and constraints.
Objective Function E-ATMP optimisation goal function is to

maximise the overall system utility. E-ATMP maximise
the relative utility ⌧i.u of each task ⌧i and multiplies it
by its numerical value (weight) for criticality ⌧i.l and
the resulted value represents the absolute utility of the
optimised task ⌧i.U .

SU =
X

⌧i2�

⌧i.U (4)

where,
SUopt optimised system utility by ATMP linear-
programming solver.

maps a numerical value to the task criticality level ⌧i.l
as follows: when W equals 2, it represents ⌧i.l as HI ,
and when W equals 1, it corresponds to ⌧i.l being LO.

System-resources and tasks constraints are specified in the
following:

Resource Constraint: The key concept of E-ATMP is that
it calibrate the overall throughput within safe bounds according
the a certain EWCET update (WCET overrun). The resource
constraint is the sum of each task load in the task set. The
maximum load of a task is the EWCET ⌧i.ec divided by the
primary period pprim,⌧i .

SR =
X

⌧i2�

load⌧i
 1.0 (5)

where the load of each task load⌧i is calculated by:

loadpprim,⌧i
=

⌧i.ec

pprim,⌧i

(6)

Period Constraints: This constraint ensures that the opti-
mised period ptol,⌧i

is constrained to be less than the pprim,⌧i
,

and greater than ptol,⌧i :

8

time
[ms]

time
[ms]

time
[ms]

time
[ms]

Algorithm 2 FILTER(JQ, l)

This function detects postponed jobs ⌧i,k and removes the next
job of the same task ⌧i,k+1, to make space for the execution
of ⌧i,k.

Input : JQ . . . queue structure of jobs to be scheduled
l . . . System criticality mode

Output: JQ
1 begin
2 JQtmp  JQ
3 for ⌧i,k 2 JQtemp do
4 if isPostponedJob(⌧i,k) then
5 JQ = JQ \ ⌧i,k+1

6 return JQ

with a HI criticality level (⌧i,k.l=2). Then, we demonstrate
how E-ATMP handles the overrun of jobs ⌧i,k with a LO
criticality level (⌧i,k.l=1).

In this example, we consider two tasks, Task ⌧A and Task
⌧B , each with distinct characteristics. Task ⌧A has a primary-
period pprim of 2.0 ms, a tolerance-period ptol of 3.0 ms,
a tolerance-utility utol of 0.3, an optimistic WCET estimate
⌧A.c of 0.5 ms, and a criticality level ⌧A.l=1 (LO). On the
other hand, Task ⌧B has a primary-period pprim of 5.0 ms, a
tolerance-period ptol of 6.0 ms, a tolerance-utility utol of 0.6,
an optimistic WCET estimate ⌧B .c of 0.5 ms, and a criticality
level ⌧B .l=2 (HI).

task pprim

[ms]
ptol

[ms]
utol

[ms]
c
[ms]

l

A 2.0 3.0 0.3 0.5 1 (LO)
B 5.0 6.0 0.6 0.5 2 (HI)

TABLE II
EXAMPLE: TOLERANCE-BASED MIXED CRITICALITY TASK SET

As shown in Figure 3.a, ⌧B,0.ec is twice task’s WCET
bound ⌧B,0.c, which lead E-ATMP to activate the HI mode
(S.l = 2) and stops job ⌧A,0 at time 2 ms, trigger the ATMP
optimiser for a new schedule with the new ⌧B,k.ec execution
time. The optimised schedule eliminates the need to abandon
all jobs ⌧A,k of LO task ⌧A, while ensuring the safety of all
jobs of HI task ⌧B with new updated WCET estimate ⌧B .c
(from the latest EWCET value). At time 6, E-ATMP allowed
Task ⌧B,1 to overrun again without the need to activate the
high-criticality mode. This demonstrates the flexibility of the
E-ATMP protocol in handling overrun situations while main-
taining efficient operation. Additionally, during the execution,
Task ⌧A,3 safely interrupts ⌧B,1, executes, and once completed,
⌧B,1 resumes its execution.

Figure 4.b shows that ⌧A,0.ec completed without completion
and attempts to overrun at time 1.0. E-ATMP aborts ⌧A,0

and allows ⌧A=B,0 to execute normally, but ⌧A,0 is postponed
and replaces ⌧A,1 execution while keeping the system in low
criticality level.

The experiment setup and results in the next section, illus-
trates a practical application for E-ATMP and the reference
protocol AMC. The example presents a set of overrun sce-
narios displayed in schedules and system-mode monitors for
scheduling Airbus 380 Flight Control System task set [21].

(a) High-criticality job B0 overrun by 1ms (b) Low-criticality task overrun A0 by 1ms

Fig. 4. Example of mixed-criticality scheduling, where a task exceed its
WCET estimate

A. Formulation of ILP Problem for E-ATMP

In this section, we illustrate how E-ATMP formulate the
task parameters into linear-programming optimisation prob-
lem. This by presenting the objective function, optimisation
variables and constraints.
Objective Function E-ATMP optimisation goal function is to

maximise the overall system utility. E-ATMP maximise
the relative utility ⌧i.u of each task ⌧i and multiplies it
by its numerical value (weight) for criticality ⌧i.l and
the resulted value represents the absolute utility of the
optimised task ⌧i.U .

SU =
X

⌧i2�

⌧i.U (4)

where,
SUopt optimised system utility by ATMP linear-
programming solver.

maps a numerical value to the task criticality level ⌧i.l
as follows: when W equals 2, it represents ⌧i.l as HI ,
and when W equals 1, it corresponds to ⌧i.l being LO.

System-resources and tasks constraints are specified in the
following:

Resource Constraint: The key concept of E-ATMP is that
it calibrate the overall throughput within safe bounds according
the a certain EWCET update (WCET overrun). The resource
constraint is the sum of each task load in the task set. The
maximum load of a task is the EWCET ⌧i.ec divided by the
primary period pprim,⌧i .

SR =
X

⌧i2�

load⌧i
 1.0 (5)

where the load of each task load⌧i is calculated by:

loadpprim,⌧i
=

⌧i.ec

pprim,⌧i

(6)

Period Constraints: This constraint ensures that the opti-
mised period ptol,⌧i

is constrained to be less than the pprim,⌧i
,

and greater than ptol,⌧i :
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a) High-criticality job B0 overrun by 1 ms b) Low-criticality job A0 attempt
overrun but postponed

Figure 5.3: Example of mixed-criticality scheduling, where a task exceeds its
WCET estimate

all jobs τA,k of LO criticality task τA while ensuring the safety of all jobs of

HI criticality task τB with new updated WCET estimate τB.c (from the latest

EWCET value). At time 6, E-ATMP allowed Task τB,1 to overrun again without

the need to activate the HI criticality mode. This demonstrates the flexibility of

the E-ATMP protocol in handling overrun situations while maintaining efficient

operation. Additionally, during the execution, Task τA,3 safely interrupts τB,1,

executes, and once completed, τB,1 resumes its execution. Figure 5.3.b shows

that τA,0.ec completed without completion and attempts to overrun at time 1.0.

E-ATMP aborts τA,0 and allows τA=B,0 to execute normally, but τA,0 is postponed

and replaces τA,1 execution while keeping the system in LO criticality level.

5.4 Chapter Summary

This chapter presented the methodology for the development of the Empiric

execution time EWCET and E-ATMP framework. The EWCET is initialised

with the available optimistic WCET estimate updated during runtime each time

a WCET overrun by a task happens, and the E-ATMP framework exploits the

enabled information by EWCET. The EWCET and E-ATMP methodologies

are explained in Section 5.2, and an example of WCET overrun is presented in

Section 5.3.



Chapter 6

Implementation of ATMP-CA,

LBP-CA, EWCET, and E-ATMP

This chapter describes the implementation of the protocols evaluated in this the-

sis, both existing and novel. The implementation for Mixed-criticality and Crit-

icality Arithmetic classes is presented first. Following that, implementation of

Bailout-based protocols, BP, LBP, and LBP-CA classes. Finally, it presents the

Empiric EWCET and E-ATMP framework implementation. The organisation of

this chapter is as follows: Section 6.1 presents the implementation for Mixed-

criticality and Criticality Arithmetic classes. Section 6.2 presents the implemen-

tation for Bailout-based protocols, BP, LBP, and LBP-CA classes. Section 6.3

presents the implementation for the BP framework. Section 6.4 concludes the

chapter.

The simulator is developed using Python programming language. Figure

6.1 shows the main elements of the developed simulator for this thesis. These

elements are:

• Configure Tasks: here we define the number of tasks and the timing re-

quirements for each task.

• Generate Jobs: here we generate instances for each task, where the number

of these instances per task is either based on the hyper-period - Least

Common Multiple (LCM) - of the tasks periods in the task set or based on

the largest period.

• Real-Time Configuration: here we define the priority assignment and

schedulability test. Implemented Priority assignment algorithms, are:

Rate Monotonic (RM), Deadline Monotonic (DM), Earliest Deadline First

(EDF), and Least Laxity First (LLF). Schedulability analyses and testing

81
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Configure tasks

Generate jobs

RT configuration:

• Priority assignment (RM, DM, EDF, LLF)

• Schedulability analyses (RTA, GBA) 

MC configuration:

• System criticality modes (HI, LO, Normal, Bailout, Recovery)

• Tasks criticality levels (HI, LO)

• Schedulability analyses (AMC)

Determine MC Scheduling protocol :

• ATMP-CA

• SAMP-CA

• LBP-CA

• EWCET

• E-ATMP

• SAMP

• ATMP

• TRTCM-ILP

• TRTCM-Elastic

• BP

• LBP

Resource shortage configuration:

• Core failures

• WCET overrun

• Energy saving

Run simulator:

• Collect results 

• Tabulating

• Plotting

ILP configuration (MIT lp_solve):

• Problem formulation

• Decision variables

• Constraints

Figure 6.1: Developed Simulator for the Thesis
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are based on the Response Time Analysis (RTA) and Guaranteed Bound

Analysis.

• Mixed-Criticality (MC) Configuration: Define system criticality modes

that are activated in response to resource shortages to trigger adaptation

facilities. These modes can be either High (HI) and Low (LO) criticality

modes for classic mixed-criticality scheduling, or Normal, Bailout, and Re-

covery in case of Bailout scheduler is used. Tasks criticality levels are also

identified in this stage which can be either LO or HI criticality tasks, and

the schedulability analysis used is the AMC .

• Resource Shortage Configuration: here er define the desired fault model

if needed for the running experiment, which can be either core failures,

WCET overruns, or energy-saving modes.

• ILP Configuration (MIT lp solve): lp solve is a free - under the GNU lesser

general public license - linear programming solver software. lp solve allows

describing the linear problem in a text file, including the goal function,

decision variables, and the problem constraints.

• Determine MC Scheduling Protocol: this defines the mixed-criticality pro-

tocol that provision the execution of services during normal and critical

systems modes.

• Run Simulator: After the previous stages for configuration, we execute

the simulation and collect data on task executions and system behaviour.

Then, we tabulate the collected results and visualize performance metrics

and system behaviour.

6.1 Implementation of Criticality Arithmetic-

based Protocols

Criticality Arithmetic is designed and implemented to support survivability of

Mixed-criticality schedulers in both, multi-core and uni-core platforms. The

multi-core platforms consist of a central class that implements basic functionality

shared by existing protocols in the literature, and developed ones in this thesis.

The central class is MultiCoreScheduler. This class defines the attributes and

methods for mixed-criticality protocols. Two derived classes and four multi-

level inheritance classes are created from the MultiCoreScheduler class. The
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Figure 6.2: Developed Mixed-criticality Classes for the Thesis
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two direct derived classes are MC Scheduler and the MC CA Scheduler. Two of

the four multi-level inheritance classes are CA-aware classes ( SAMP-CA and

ATMP-CA ), and the other two classes are CA-agnostic (SAMP and ATMP ).

The attributes in MultiCoreScheduler class are: the experiment identifier

experiment id and the necessary directories paths experiment dir, the task set

task set to be allocated on available cores, the number of the available cores in

the system number of cores, the mixed-criticality protocol mc protocol chosen

to allocated the provided task set, criticality levels number of crit levels. In

case the criticality level equals one, then MultiCoreScheduler behaves as a

mixed-criticality-agnostic scheduler and operates as a normal Real-time multi-

core scheduler.

The methods implemented in this class are: dropTask: to drop a task from

the scheduling in case of resource shortage, getCoreWithMinUf retrieve core

with the minimum utilization factor, getLoadPrim calculates get the task load

using the primary period, getLoadTol calculates get the task load using the

tolerance period, getMinCritSet gets the set of tasks with minimum critical-

ity, getTaskUtilisation returns task load, getTaskWithLeastUtilisation

returns a task with minimum WCET and maximum period in the task set,

getUtilShape Method to get the utilization shape, getMaxUtilshape deter-

mine the task’s largest tolerance range and highest tolerance utility, optimise

This method is overridden by the inherited multi-level inheritance classes,

staticSchedAnalysis This method runs certain schedulability tests to check

the feasibility of the task set. startAnalysis triggers the staticSchedAnalysis

method.

In the following we briefly explain the classes inherited from the

MultiCoreScheduler class:

MC Scheduler and MC CA Scheduler Allocation of tasks is based on awareness

about criticality arithmetic. As seen in 6.2, class MC Scheduler implements

the getPartitionedSet method that performs the allocation process of

mapping tasks to cores but allows tasks implement a service to be allo-

cated on the same core. class MC CA Scheduler implements the method

getCAPartitionedSet that performs the allocation process of tasks to

cores and disallows CA-ware tasks of the same service to be allocated on

the same core and ensures that each replica is allocated on a separate core.

In case of a shortage in computing resources, for example, core-failure, one

of the four multi-level inheritance protocols texttt SAMP , ATMP , texttt

SAMP-CA and ATMP-CA can be used to reconfigure the system. Each
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protocol provides a certain level form of graceful degradation.

SAMP and ATMP These classes integrate mixed-criticality protocols from

the existing literature and are implemented to evaluate the applicability of

criticality-arithmetic [43, 94].

SAMP is built upon the AMC mixed-criticality protocol and manifests

the behavior of most mixed-criticality scheduling protocols. It extends the

AMC protocol to support multi-core scheduling. The graceful degradation

of SAMP is determined offline by limiting the impact of resource shortage

through the dropping of all LO-criticality tasks.

ATMP class is based on AMC and the TRTCM model. It enables graceful

degradation by using the TRTCM utility function to maximize task utility

to maximize the system utility in case of resource shortage. It extends

the AMC protocol to multi-core scheduling. ATMP reconfigure the system

whenever a resource shortage occurs, but tests the schedulability of the new

configuration using AMC response time analysis, before the deployment of

the new configuration.

SAMP-CA and ATMP-CA These novel classes are developed during the research

in the thesis. They manifest the modularity of criticality arithmetic and its

ability to integrate into existing multi-core fixed-priority mixed-criticality

protocols in the literature.

6.2 Implementation of Bailout-based Protocols

Mixed-criticality Bailout-based scheduling [46, 47, 98] differs from traditional

Mixed-criticality models by that it defines three criticality modes - normal,

bailout, recovery - to enable the execution of mixed-criticality tasks: Normal,

Bailout, and Recovery. Compared to existing mixed-criticality models which use

two criticality modes: HI and LO-criticality modes, the three modes model

enables finer graceful degradation.

The central class is BP. This class defines the attributes and methods for

Bailout-based mixed-criticality protocols. One derived class and one multi-level

inheritance class are created from the BP class. The directly derived class is LBP

and the novel multi-level inheritance CA-aware class implemented for this thesis,

is the LBP CA class.

The attributes in BP class are: the execution bank of funds fund and the

boolean flag for already funded tasks funded, the list of bailout-modes mode,
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scheduling changes chart which logs the traverse between bailout-modes during

runtime.

The methods implemented in this class are: checkB6 checks the necessity

to activate the recovery mode, checkB7 checks the ability to return to normal

mode from bailout mode, checkR3 checks the ability to return to normal mode

from recovery mode, getFund reads the current available amount of funds, isCA

checks Criticality Arithmetic awareness, it returns true if the object is an LBP-

CA object or false otherwise. isLazy check if it survives jobs released during

bailout or recovery modes. modeIs returns active mode. reduceFund deduct

execution time budget from funds to HI-criticality job. resetFund sets bailout

fund to zero. setMode applies mode transition from one mode to another.

In case of a shortage in computing resources, for example, WCET -overrun,

one of the criticality-arithmetic-agnostic classes BP and LBP but they lack the

awareness about criticality-arithmetic as LBP-CA. Each class provides a certain

level form of graceful degradation.

In the following we briefly explain the classes inherited from the BP class:

LBP implements the Lazy Bailout protocol. LO-criticality jobs released dur-

ing bailout and recovery are dropped by BP, where in LBP-CA are inserted

in low-priority queue for possible execution in the future [98].

LBP CA uses criticality-arithmetic with LBP for quick return to normal mode.

CA relaxes the condition for entering the recovery mode, which in turn

allows the system to activate the normal mode earlier than reference classes,

BP and LBP.

6.3 Implementation od E-ATMP Framework

Mixed-criticality Empiric Worst-case Execution Time ( EWCET ), is a novel

model for adapting to the WCET overrun by real-time tasks. The methods

performed by the EWCET are: actionByCrit specifies the course of actions

according to the criticality of the job about to overrun its WCET or most recent

EWCET . allow EWCET prepares HI-criticality jobs to measure new overrun.

Only tasks with higher criticality and higher priority may interrupt the HI-

criticality job in question. setFutureWCETToEmpiric

The model is based on measuring the WCET overrun during runtime and

updating the system accordingly. The EWCET model works in conjunction

with a mixed-criticality protocol. In this thesis, EWCET is integrated into the
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ATMP protocol. The following explains the methods performed by the E-ATMP

framework class.

fetchJobs updates the jobs queue by the incoming ready tasks. isEmptyA

decides whether the system is currently idle or not. filterJobs removes ready

tasks that are going to be replaced by a postponed task in the jobs queue.

selectJobs selects the next job to be executed isFirstJobB decides whether a

job is the first instance of a task in question. boundExecute monitor and control

jobs EWCET . isfinished decides whether a job completed its computation or

not. postpone isPostponed set the job to execute at the next instance of the

same task.

6.4 Chapter summary

This chapter presented the implementation of Mixed-criticality and Criticality

Arithmetic protocols in this thesis, including existing and novel ones. Followed by

the implementation of Bailout-based protocols, BP, LBP, and LBP-CA classes.

Finally, it presented the implementation of the Empiric EWCET and E-ATMP

framework. The implementation of Criticality Arithmetic is presented in Sec-

tion 6.1, and the implementation of Bailout-based protocols is presented in Sec-

tion 6.2. The implementation of Empiric EWCET and E-ATMP framework in

Section 6.3.
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Experimental Evaluation

This chapter presents the evaluation of the existing and novel contributions pre-

sented in this thesis. First, an evaluation of ATMP-CA and LBP-CA protocols

in Section 7.1. Second, an evaluation of SAMP and ATMP protocols in Sec-

tion 7.2. Third, an evaluation of TRTCM-ILP and TRTCM-Elastic protocols in

Section 7.3 Fourth, an evaluation of the E-ATMP framework for measuring and

handling WCET overrun.

The organization of this chapter is as follows: Section 7.1 presents ATMP-

CA and LBP-CA evaluation. Section 7.2 presents SAMP and ATMP protocols

evaluation. Section 7.3 presents TRTCM-ILP and TRTCM-Elastic evaluation.

Section 7.4 presents E-ATMP evaluation. Section 7.6 concludes the chapter.

The first evaluation evaluates criticality arithmetic protocols (SAMP-CA, and

ATMP-CA), and criticality arithmetic agnostic protocols (SAMP and ATMP)

on a multi-core platform. The criticality arithmetic aware protocols SAMP-

CA and ATMP-CA achieve smooth degradation by dropping services based on

their criticality, utility, adaptation, and the state of low criticality replicas. The

evaluation also assesses criticality arithmetic protocol (LBP-CA), and criticality

arithmetic agnostic protocols BP and LBP. The experimental setup 7.1.1, results

and analysis 7.1.2, and discussion 7.1.3 are presented in Section 7.1.

The second evaluation compares achieved system utility between ATMP and

SAMP protocols for service allocation on a multi-core system. The ATMP

achieves smooth degradation by dropping services based on their criticality, util-

ity, and adaptation. The SAMP achieves smooth degradation by dropping ser-

vices based on criticality only. The experimental setup 7.2.1, results and analysis

7.2.2, and discussion 7.2.3 are presented in Section 7.2.

The third evaluation assesses smooth degradation on the uni-core system be-

tween two variants of the TRTCM model: TRTCM-ILP and TRTCM-Elastic .

89
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TRTCM-ILP optimises services for smooth degradation by formulating an ILP

problem and solving it using LP solver to maximise system utility and subject

to each service utility function and resource load constraints. TRTCM-Elastic

optimises services by applying a modification for spring compression and decom-

pression functions, to compress and decompress services load to satisfy desired

resource load constraint. The experimental setup 7.3.1, results and analysis 7.3.2,

and discussion 7.3.3 are presented in Section 7.3.

The fourth evaluation assesses smooth degradation on the uni-core system

between EWCET aware and EWCET -agnostic protocols. The EWCET aware

framework is E-ATMP and the EWCET agnostic is the AMC scheme. The

E-ATMP measures new WCET for services once they overrun their execution

time bounds during the system mission, and provides smooth degradation by

reducing the number of times the system enters high criticality mode, hence,

avoiding dripping all low criticality services in case of resource shortages The

AMC uses the existing WCET without new measurements during the system

mission and provides a low level of smooth degradation by dropping all low-

criticality services in case of resource shortages. The experimental setup 7.4.1,

results and analysis 7.4.2, and discussion 7.4.3 are presented in Section 7.4.

Evaluaion Metrics: Evaluating smooth transitions between protocols studied

in this thesis to answer RQ3 has been accomplished using: Offline and Online

Feasibility Analysis, Number of successful services per protocol, Number of failed

services per protocol, Number of compromised services per protocol, Number of

postponed services per protocol, Ratio of achieved system/service utility between

the protocols.

Offline and Online Feasibility Analysis In the context of real-time systems,

offline and online feasibility analysis is applied to a set of services and a

given number of cores/processors to ensure the correct execution of these

services in terms of meeting their deadlines. Offline analysis is conducted

before the system runs, while online analysis is conducted during the run.

The offline analysis ensures that, before comparing and evaluating the per-

formance of certain protocols, no service from the given set interferes with

another service meeting its deadline during normal execution on the spec-

ified number of cores/processors. The online analysis tests the system’s

recovery from failures, whether core failure or WCET overrun.

Number of successful services per protocol A service is considered suc-

cessful in two cases within the context of this thesis: either it is mapped
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to be executed on a certain processor, or it completes its task/s within its

worst-case execution time (WCET) estimate and before its deadline. This

metric is essential for evaluating any MC protocol or comparing it aginst

another MC protocol. . In ATMP-CA, SAMP-CA, ATMP, and SAMP, a

successfull task is a task that has been assigned to one of the existing cores.

In LBP-CA, and E-ATMP a successfull task is a task that has completed

its execution within its WCET estimate.

Number of failed services per protocol A service is considered failed in two

cases: either its mapping has failed and it cannot be executed on a proces-

sor, or it missed its deadline due to being dropped or postponed to avoid

its interference on higher criticality tasks. This metric is essential for eval-

uating any MC protocol or comparing it aginst another MC protocol. In

ATMP-CA, SAMP-CA, ATMP, and SAMP, a failed task is defined as a

task that has failed to be allocated to one of the existing cores. In LBP-

CA, and E-ATMP a failed task is a task that has missed its deadline before

completing its execution.

Number of compromised services per protocol A service is considered

compromised when it executes below the optimal performance but remains

at an acceptable level of operation due to resource shortages, which may

result from permanent or transient faults. I used the TRTCM model and

ILP solver to maximise the utility of each service, thereby maximising

the overall system utility. In the case of permanent faults, such as core

failure, the ILP solver is triggered to reconfigure the system for allocating

a number of services on the remaining cores or processors. In the case

of transient faults, such as WCET estimate overrun, the LP solver is

triggered to generate an optimised schedule that acknowledges recent

overruns information.

Number of postponed services per protocol A service is considered to be

postponed to continue its execution in future when its of low criticality and

has cosumed its WCET budget without completion. This metirc will only

be found under E-ATMP chapter, Chapter 5 and its evaluation section in

the Evaluation chapter, Section 7.4 in Chapter 7. A service is considered to

be deferred to continue its execution in the future when it is of low criticality

and has consumed its WCET budget without completion. If a postponed

service completes its execution in the future, then it is considered successful;

otherwise, it is considered failed. This postponed-service metric will only
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be found under the E-ATMP Framework in 5, and in its evaluation section

in the 7 7.4

Ratio of achieved system/service utility between the protocols The

sum of maximised utility per service defines the overall utility of the

system. Failed services, whether due to core allocation or deadline misses,

have zero utility. Only successful and compromised services contribute

to the overall system utility. Therefore, after designing, running, and

collecting the results of an experiment in this thesis, the achieved overall

system utility from each protocol is used to compare which protocol

provided smoother degradation than the other. For example, 7.6 shows

ratio od absoluate utility between ATMP and SAMP protocol.

7.1 Experimental Evaluation of ATMP-CA and

LBP-CA

7.1.1 Experimental Setup

In the following, we describe the setup of criticality arithmetic for mixed-

criticality systems in multi-core and uni-core systems. This includes: system

configuration, reference protocols, and the generation of tasks implement ser-

vices..

System and Resource-shortage Configurations: I simulated a multi-

core system with 6 cores for the evaluation of ATMP-CA and a uni-core system

for the evaluation of LBP-CA. In the ATMP-CA experiment setup, we failed

one core for each run, starting from 6 cores down to 2 cores. For the LBP-

CA experiment setup, we induce WCET overrun at the critical instant of a

HI criticality task. The reference protocols for comparison in the ATMP-CA

evaluation are SAMP, ATMP, and SAMP-CA, whereas reference protocols for

comparison in the LBP-CA evaluation are: BP and LBP protocols. As such,

we simulated the resulting overall system utility for different cases of resource

shortages caused by core failure and WCET overrun, on multi and uni-core

mixed-criticality systems.

Reference Protocols: The reference protocols for the ATMP-CA evalua-

tion, ATMP, and SAMP, were introduced in [43], but the SAMP-CA is developed

for this evaluation. In essence, ATMP is similar to ATMP-CA in the sense that it

also performs utility optimisation, but its core allocation and ILP constraints for

utility maximisation do not take into account any of the services using criticality
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arithmetic. So, the comparison of ATMP-CA and ATMP shows the potential

benefit of supporting any knowledge about criticality arithmetic in the scheduler.

The other reference scheduler, SAMP, is generally less capable than ATMP and

is only included for further reference. I developed SAMP-CA, which is basically

the simple SAMP protocol, but using the new Algorithm 1 for core allocation,

which also uses knowledge about criticality arithmetic. As such,SAMP-CA might

perform better for systems with criticality arithmetic than SAMP, but it is not

supposed to be able to compete with the utility optimisation performed by ATMP

or ATMP-CA.

The reference protocols for the LBP-CA evaluation, BP and LBP, were in-

troduced in [98]. LBP can schedule more services than BP, rather than dropping

low criticality tasks released during the high criticality modes, bailout and recov-

ery modes, are appended to another queue for future execution at idle instants

where the system returns to the normal criticality mode.

Services/Tasks Generation A task set generated with random parame-

ters for WCET τ.c and the utility-function τ.uf . For the ATMP-CA evaluation,

each task deadline is implicit τ.d, where the task’s period equals its deadline

τ.d = τ.p. Note that at the start of the system, the task’s period τ.p is equal to

its primary period τ.uf.pprim, but gets reconfigured whenever the TRTCM opti-

misation function is triggered due to core-failure. For the LBP-CA evaluation,

task deadlines are constrained, where the task deadline is less than or equal to

their periods τ.d ≤ τ.p. The criticality of a task τi.l or service Si.l is either high

or low, which corresponds to a numeric value of either 2.0 or 1.0 respectively.

For the ATMP-CA evaluation, the task generation was constrained such that

it includes two normal high criticality services, S1 and S2 , two high criticality

services that use criticality arithmetic (S3 AND S4 ), and a few other low services

(S5 , S6 , S7 ,S8 ). The whole structure of this task set is shown in Table 7.1. As

shown in the table, the tasks T1 and T2 , which implement the high criticality

high services S1, S2, have the same criticality as the service itself. However, the

high services S3 and S4, which use criticality arithmetic, are both implemented by

two redundant tasks T3a, T3b respectively T4a, T4b, which all have low criticality.

For the LBP-CA evaluation, the generated task set was constrained such that it

includes one three high criticality service, S1, one high criticality service that uses

criticality arithmetic, (S2), implemented by tasks T2a and T2b. The structure

of this task set is shown in Table 7.2. services S1, S3, and S4 have the same

criticality as the service itself. Services S2 is implemented by two low-criticality

tasks T2a, T2b.

The following presents the results and analysis for ATMP-CA and LBP-CA
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Service: name S1 S2 S3 S4 S5 S6 S7 S8
crit. high high high high low low low low

Task: name T1 T2 T3a, T4a, T5 T6 T7 T8
T3b T4b

crit. high high low low low low low LO
id. A B C D E F G H I J

Task
ID

Period
[ms]

Tolerance
[ms]

WCET1
[ms]

WCET2
[ms]

Task Crit-
icality

Service
ID

Service
Criticality

A 21 37.8 15.12 16.8 2 S1 2
B 10 18 7.2 8 2 S2 2
C 17 30.6 12.24 13.6 1 S3 2
D 17 30.6 12.24 13.6 1 S3 2
E 17 30.6 10.36 20.4 1 S4 2
F 17 30.6 12.24 13.6 1 S4 2
G 5 9 3.6 4 1 S5 1
H 5 9 3.6 4 1 S6 1
I 5 9 3.6 4 1 S7 1
J 11 19 7.92 8.8 1 S8 1

Table 7.1: ATMP-CA: Services and asks (the criticality arithmetic aware services
are S3 and S4)

experiments.

7.1.2 Results and Analysis

In this subsection, we present the results obtained from the ATMP-CA and

LBP-CA experiments. First, we analyse the ATMP-CA results in data, including

absolute utility achieved and the number of dropped tasks, collected from running

the task set starting from 6 cores and fail core per run down to 2 cores. Second,

we analyse the LBP-CA results data, the number of dropped and executed tasks,

and the total time spent on each criticality mode, collected from running the task

set on a uni-core mixed-criticality system.

ATMP-CA Figure 7.1 shows the results for our experiments with 6 cores

down to 2 available cores. The MAX line denotes the maximum possible absolute

utility for each task, which is either 2.0 or 1.0. Simultaneously, Table 7.3 provides

a detailed breakdown of the corresponding numerical values for absolute and

relative utility, optimised periods, and the allocation of tasks to assigned cores.
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Service: name S1 S2 S3 S4
crit. high high high low

Task: name T1 T2a T2b T3 T4
crit. high low high low low
id A B C D E

Task
ID

Period
[ms]

Deadline
[ms]

WCET1
[ms]

WCET2
[ms]

Task
Critical-
ity

Service
ID

Service
Critical-
ity

A 25 12 8 8 1 S1 1
B 27 12 4 4 1 S2 2
C 49 24 4 10 2 S3 2
D 33 32 8 8 2 S2 2
E 93 92 12 12 1 S4 1

Table 7.2: LBP-CA: Set of Services and Tasks (S2 uses criticality arithmetic)

Each protocols presents the core identifier cri, task id τ.id, optimised period

τ.p, optimised relative utility τ.util, resulted absolute utility τ.util · τ.l, and the

service id S.id a task τ.id implements.

Figure 7.1.a shows the case with no resource shortage, i.e. all 6 cores out of

6 cores are available. This case represents the optimal allocation, which means

for each task it was possible to assign them their primary period τ.uf.pprim,

resulting in the maximum relative utility of 1.0, and no service is dropped at all.

Figure 7.1.b shows the case with 5 cores out of 6 cores available. SAMP

and SAMP-CA dropped low criticality task, T7, that implements low criticality

service, S7. ATMP and ATMP-CA successfully allocated the low criticality task,

T7, but with minor degradation.

Figure 7.1.c shows the case with 4 cores out of 6 cores available. We see

that SAMP allocated tasks that implement services S1, S2 and S4, except the

two low criticality task replicas T4a,T4b that implement service S3, and SAMP-

CA assigned the high-criticality tasks at the cost of dropping all low criticality

tasks. Also, SAMP and SAMP-CA show an equal number of allocated and

dropped tasks but differ in the behaviour of tasks dropping when considering

criticality arithmetic. ATMP and ATMP-CA protocols have assigned all services

to available processing cores, with minor degradation of their absolute utility

without dropping any tasks at all. This resulted by the criticality-arithmetic-

aware algorithm that uses the ILP objective function mentioned in Section 4.1.3
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a) Six available cores, with zero core failures
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b) Five available cores, with one core failures
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b) Four available cores, with two core failures
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c) Two available cores, with four core failures

Figure 7.1: Achieved Absolute Utility by tasks (T3a,T3b implement service S3,
and T4a,T4b implement service S4)
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for service S3. Under ATMP-CA, the first task T3a has been set to full utility,

resulting in the degraded utility in T3b, which allows to give resources to other

tasks. Because both tasks execute the service S3, there is no need to assign

maximum utility to both of them during system overload, as observed in ATMP.

Also with service S4, ATMP-CA allows a degraded utility for task T4a with the

full utility to T4b, whereas under ATMP noth tasks implement S4 are degraded.

Figure 7.1.d shows the case with 3 cores out of 6 cores available. It’s clear

that SAMP-CA have dropped all low criticality services including service tasks,

S3, to retain all high criticality services. ATMP-CA shows smoother degradation

than ATMP while providing an acceptable level of remaining services.

Figure 7.1.e shows the case with 2 cores out of 6 cores available. Here, SAMP

retained the tasks of high criticality services S1 and S2 and just one low crit-

icality task T8, but dropped all the tasks of all other high criticality services,

including S3 and S4. SAMP-CA performed already a bit better by retaining the

tasks of high criticality services S1 and S2 and also retaining one task T4b of

high criticality service S4, while dropping all other services. This shows that the

criticality-arithmetic-aware core allocation in SAMP-CA shows some benefit, but

generally, both SAMP and SAMP-CA have limited performance, as they don’t

support the flexibility with the tolerance range. On the other hand, ATMP and

ATMP-CA have shown a significant difference in dropping high-criticality ser-

vices. ATMP retained two high-criticality services and four low-criticality tasks

but dropped both S3 and S4 replicas, where ATMP-CA successfully allocated all

high-criticality services including the replicated tasks dropped all low-criticality

ones. In addition, ATMP-CA has allocated S3 replica task D with maximum

utility as a result of the degradation of task C, and both S4 replicas have been

degraded which shows that the modified optimisation process couldn’t find a

solution that allocates task F at the maximum utility.

LBP-CA The purpose of our experiment was to show that the LBP-CA

returns to normal mode with the least number of abandoned Low-critical tasks

compared to reference protocols. Figure 7.3 shows the schedule for the task

set presented in Table 7.2 by LBP-CA, which uses criticality arithmetic, and

reference Bailout-based schedulers, BP and LBP [47, 98] The figure presents

three sub-figures, each presenting the generated schedule by each protocol. At

each sub-figure, the top half of the sub-figure shows the real-time execution for all

tasks in the system uni-core system. The other half shows the criticality modes

each protocol traverses by the induced WCET overrun on the first job of the

high criticality service S3, implemented by task C. At the schedule part of each

sub-figure, the x-axis represents the real time or absolute time, and the y-axis
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Number of Cores SAMP SAMP-CA ATMP ATMP-CA
crid τ.id τ.p τ.util τ.abs S.id Core τ.id τ.p τ.util τ.abs S.id Core τ.id τ.p τ.util τ.abs S.id Core τ.id τ.p τ.util τ.abs S.id

6 CORES

0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1
1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2
2 C 17 1 1 S3 2 C 17 1 1 S3 2 C 17 1 1 S3 2 C 17 1 1 S3
3 D 17 1 1 S3 3 D 17 1 1 S3 3 D 17 1 1 S3 3 D 17 1 1 S3
4 E 17 1 1 S4 4 E 17 1 1 S4 4 E 17 1 1 S4 4 E 17 1 1 S4
5 F 17 1 1 S4 5 F 17 1 1 S4 5 F 17 1 1 S4 5 F 17 1 1 S4
2 G 5 1 1 S5 2 G 5 1 1 S5 2 G 5 1 1 S5 2 G 5 1 1 S5
3 H 5 1 1 S6 3 H 5 1 1 S6 3 H 5 1 1 S6 3 H 5 1 1 S6
4 I 5 1 1 S7 4 I 5 1 1 S7 4 I 5 1 1 S7 4 I 5 1 1 S7
5 J 11 1 1 S8 5 J 11 1 1 S8 5 J 11 1 1 S8 5 J 11 1 1 S8

5 CORES

0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1
1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2
2 C 17 1 1 S3 2 C 17 1 1 S3 2 C 17 1 1 S3 2 C 17 1 1 S3
3 D 17 1 1 S3 3 D 17 1 1 S3 3 D 17 1 1 S3 3 D 17 1 1 S3
4 E 17 1 1 S4 4 E 17 1 1 S4 4 E 17 1 1 S4 4 E 17 1 1 S4
2 F 17 1 1 S4 2 F 17 1 1 S4 2 F 17 1 1 S4 2 F 17 1 1 S4
3 G 5 1 1 S5 3 G 5 1 1 S5 3 G 5 1 1 S5 3 G 5 1 1 S5
4 H 5 1 1 S6 4 H 5 1 1 S6 4 H 5 1 1 S6 4 H 5 1 1 S6
x I 0 0 0 S7 x I 0 0 0 S7 0 I 6.6 0.8 0.8 S7 0 I 6.6 0.8 0.8 S7
1 J 11 1 1 S8 1 J 11 1 1 S8 1 J 11 1 1 S8 1 J 11 1 1 S8

4 CORES

0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 21 1 2 S1
1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2
x C 0 0 0 S3 2 C 17 1 1 S3 2 C 17 1 1 S3 2 C 17 1 1 S3
x D 0 0 0 S3 3 D 17 1 1 S3 3 D 17 1 1 S3 3 D 31 0.7 0.7 S3
2 E 17 1 1 S4 2 E 17 1 1 S4 2 E 27 0.8 0.8 S4 2 E 27 0.8 0.8 S4
3 F 17 1 1 S4 3 F 17 1 1 S4 3 F 31 0.7 0.7 S4 3 F 17 1 1 S4
x G 0 0 0 S5 x G 0 0 0 S5 0 G 6.6 0.8 0.8 S5 0 G 6.6 0.8 0.8 S5
x H 0 0 0 S6 x H 0 0 0 S6 1 H 6.2 0.9 0.9 S6 1 H 6.2 0.9 0.9 S6
2 I 5 1 1 S7 x I 0 0 0 S7 2 I 9 0.7 0.7 S7 2 I 9 0.7 0.7 S7
3 J 11 1 1 S8 x J 0 0 0 S8 3 J 20 0.7 0.7 S8 3 J 20 0.7 0.7 S8

3 CORES

0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 22 1 2 S1 0 A 22 1 2 S1
1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2
x C 0 0 0 S3 2 C 17 1 1 S3 x C 0 0 0 S3 2 C 17 1 1 S3
x D 0 0 0 S3 x D 0 0 0 S3 0 D 31 0.7 0.7 S3 0 D 31 0.7 0.7 S3
x E 0 0 0 S4 2 E 17 1 1 S4 2 E 17 1 1 S4 2 E 31 0.7 0.7 S4
x F 0 0 0 S4 1 F 17 1 1 S4 1 F 27 0.8 0.8 S4 1 F 27 0.8 0.8 S4
2 G 5 1 1 S5 x G 0 0 0 S5 2 G 9 0.7 0.7 S5 x G 0 0 0 S5
x H 0 0 0 S6 x H 0 0 0 S6 0 H 9 0.7 0.7 S6 0 H 9 0.7 0.7 S6
x I 0 0 0 S7 x I 0 0 0 S7 1 I 9 0.7 0.7 S7 1 I 9 0.7 0.7 S7
2 J 11 1 1 S8 x J 0 0 0 S8 2 J 17 0.8 0.8 S8 2 J 20 0.7 0.7 S8

2 CORES

0 A 21 1 2 S1 0 A 21 1 2 S1 0 A 26 0.9 1.8 S1 0 A 22 1 2 S1
1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 10 1 2 S2 1 B 18 0.7 1.4 S2
x C 0 0 0 S3 x C 0 0 0 S3 x C 0 0 0 S3 0 C 31 0.7 0.7 S3
x D 0 0 0 S3 x D 0 0 0 S3 x D 0 0 0 S3 1 D 17 1 1 S3
x E 0 0 0 S4 x E 0 0 0 S4 x E 0 0 0 S4 0 E 31 0.7 0.7 S4
x F 0 0 0 S4 1 F 17 1 1 S4 x F 0 0 0 S4 1 F 29 0.7 0.7 S4
x G 0 0 0 S5 x G 0 0 0 S5 0 G 9 0.7 0.7 S5 x G 0 0 0 S5
x H 0 0 0 S6 x H 0 0 0 S6 1 H 9 0.7 0.7 S6 x H 0 0 0 S6
x I 0 0 0 S7 x I 0 0 0 S7 0 I 9 0.7 0.7 S7 x I 0 0 0 S7
1 J 11 1 1 S8 x J 0 0 0 S8 1 J 17 0.8 0.8 S8 x J 0 0 0 S8

Table 7.3: Allocation of Tasks to Cores (red x indicates failed allocation on the
respective core, bolded numbers indicate compromised service either degraded
or dropped)
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shows the progress of periodic tasks presented in Table 7.2. At the criticality

part in each sub-figure, the x-axis represents the real time or absolute time, and

the y-axis shows the system criticality modes Normal, Bailout, and Recovery

modes, where active mode in the system is represented by the blue horizontal

line, and the vertical lines associates the time and duration of a mode change

according to the schedule sub-figure at the top part of the sub-figure.

Figure 7.2 shows the complete Fixed-priority based schedule with no WCET

overrun for the job set presented in Table 7.4. In the Figure 7.3, job C0 overrun

its optimistic WCET estimates, WCET1, by 6 ms from time 16 to 22 ms. The

following code fragment shows how we induced this overrun in the experiment.

def set_overrun(job): job.et = 10

jobs_queue = [set_et(x) for x in sched.jobs_queue if x.id == ‘C0’]

All protocols: - BP, LBP, LBP-CA - activate the bailout mode at the start of

the overrun. BP and LBP show identical mode changes, but different schedules.

BP and LBP activate the bailout modes at time 16 and remain C0 completion

at time 22. BP and LBP activate the recovery modes at time 22 until the last

HI criticality task D0 completes execution at time 30. BP and LBP spent 14 ms

in bailout and recovery high criticality modes

LBP-CA shows unique mode changes, with a criticality arithmetic perspective

for a smoother degradation schedule. LBP-CA enters bailout mode at time 16

until C0 completion at time 22. Since LBP-CA is using criticality arithmetic,

it realizes that service S2 already executed by task B job, B0, and activation

for the recovery mode can be neglected to return to normal mode at time 22.

LBP-CA spent 6 ms in bailout mode, about 50% of time spent by BP and LBP

protocols in high criticality modes, 14 ms.

In the schedule part of the protocol, we see different responses for C0 overrun.

Though BP and LBP show identical mode changes, they differ in their resilience

to the induced C0 overrun. LBP shows smoother degradation than BP. BP

abandons the release of low criticality jobs A1 and B1 during the recovery mode.

Note that job E0 is released before BP and LBP activate the criticality modes of

bailout and recovery, and it’s abandoned according to the AMC analysis. LBP

tolerated the situation by append releasing low criticality jobs to a low priority

queue for a possible future execution, which occurred after the completion of

D0 at time 30. LBP schedules low criticality job B1 for execution, but A1 is

dropped after B1 finishes due to the arrival of high criticality job D1, and job

E0 is delayed by 12 ms. BP and LBP schedule complete at time 90 ms. LBP-

CA degradation features quickly to normal mode by using criticality arithmetic.
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LBP-CA schedules low criticality job E0 at its release time and returns to normal

mode quicker than BP and LBP. Service S2 is already completed by the execution

of replica B0, D0 that collaborates B0 in implementing S2 can be neglected. The

system returns to normal mode and E0 scheduled at its scheduling time for

normal execution LBP-CA schedule completes at time 84 ms. Table 7.5 presents

a summary of the degradation caused by CO overrun. Competed and dropped

jobs are presented for each protocol, and the mode change duration for the start

of time 0 - critical instant - up to time 30 where the identical system returns to

normal mode by the reference protocols BP and LBP. BP and LBP. remained

in normal mode for 48% of the time, 20% in bailout mode, and 26.67% of the

time in recovery mode. In contrast, LBP-CA shows the earliest return to normal

compared to BP and LBP, resulting in staying up to 80% normal behavior, 20%

in bailout mode, and 0% of the time in recovery mode.

a) BP, BP, and LBP-CA (0 dropped, 14 allocated)

Figure 7.2: Comparison of scheduling mixed-criticality tasks between BP, LBP,
and LBP-CA
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Figure 7.3: Comparison of scheduling mixed-criticality tasks between BP, LBP,
and LBP-CA
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Task
ID

Arrival Priority Abs.
Dealine

Actual
WCET

WCET1 WCET2 Task
Criti-
claity

Service
Criti-
claity

Service
Criti-
claity

A0 0 5 12 8 8 8 1 1 S1
B0 0 4 12 4 4 4 1 2 S2
C0 0 3 24 10 4 10 2 2 S3
D0 0 2 32 8 8 8 2 2 S2
E0 0 1 92 12 12 12 1 1 S4
A1 24 5 36 8 8 8 1 1 S1
B1 26 4 38 4 4 4 1 2 S2
D1 32 2 64 8 8 8 2 2 S2
A2 48 5 60 8 8 8 1 1 S1
C1 48 3 72 4 4 10 2 2 S3
B2 52 4 64 4 4 4 1 2 S2
D2 64 2 96 8 8 8 2 2 S2
A3 72 5 84 8 8 8 1 1 S1
B3 78 4 90 4 4 4 1 2 S2

Table 7.4: Jobs Releases for LBP-CA experiment (jobs use criticality arithmetic
agnostic are Bolded)

BP LBP LBP-CA
Job Arrival Priority Absolute Dealine Criticality Service ID Completed Dropped Completed Dropped Completed Dropped
A0 0 5 12 1 S1 Y Y Y
B0 0 4 12 1 S2 Y Y Y
C0 0 3 24 2 S3 Y Y Y
D0 0 2 32 2 S2 Y Y Y
E0 0 1 92 1 S4 Y Y
A1 24 5 36 1 S1 Y Y Y
B1 26 4 38 1 S2 Y Y Y

Normal 53.33 Normal 53.33 Normal 80.00
Bailout 20.00 Bailout 20.00 Bailout 20.00
Recovery 26.67 Recovery 26.67 Recovery 0.00

Table 7.5: Responses impact on jobs induced by C0 WCET overrun BP, LBP,
and LBP-CA Protocols (S2 jobs, B0 and D0, use criticality arithmetic), and
Modes Duration (LBP-CA shows earliest return)
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7.1.3 Discussion

This experiment sets out with the aim of assessing the importance of incorpo-

rating Criticality Arithmetic for building dependable mixed-criticality systems.

The most obvious finding to emerge from the analysis is that integrating crit-

icality arithmetic into mixed-criticality systems allows better survivability and

smooth degradation when tolerating permanent faults in system cores such as

core failures. In such situations, criticality arithmetic enables efficient usage of

the remaining cores by allocating tasks according to the criticality of the service

they implement.

The present study raises the possibility that integrating criticality arithmetic

into existing Mixed-criticality allocation and scheduling algorithms, will empower

such systems with fine-grained graceful degradation during overload and com-

puting resource shortages. In addition, the study discovers that there is no need

to allocate all critical service replicas at their maximum quality of service at the

cost of dropping another critical service.

One limitation of this experiments is that its limited to systems with two

criticality levels. Future work would be extending these findings by ones obtained

from systems with more than three criticality levels.

The next section presents the experimental evaluation for comparing SAMP

and ATMP mixed-criticality protocols for assessing smooth degradation under

reduced computing capacity resource shortage.

7.2 Experimental Evaluation of SAMP and

ATMP Protocols

7.2.1 Experimental Setup

The following presents the setup for evaluating smooth degradation between

mixed-criticality protocols, Adaptive Tolerance-based Mixed-criticality Proto-

col (ATMP), and Standard Adaptive Mixed-criticality Protocol (SAMP), on a

multi-core platform with reduced computing capacity. This includes: system

configuration, protocols, and the generation of tasks implement services.

System and Resource-shortage Configurations: In order to assess

smooth degradation between ATMP and SAMP, we applied a frequency scal-

ing algorithm on both protocols over 8 cores with a frequency slowdown factor of

2% and cores turn-down factor of 1. The experiment was performed by running

the same task set on both protocols, every time we decreased the frequency by
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a factor of 2% on the available number of cores. Then, we record the achieved

absolute utility and number of dropped tasks by each protocol. The frequency

scaling algorithm starts with 8 cores and runs the task set under 50 degrees of

processing speed. Subsequently, we reduce the number of cores by turning one

core and start all over again on the available number of cores.

Mixed-criticality Protocols:, SAMP is a multi-core scheduling protocol

that partitions the multi-core computing resources into single partitioned cores,

each core tests and runs its allocated services under the AMC analysis and

scheduling scheme [43, 8]. The ATMP protocol is an application of the tolerance-

based real-time computing model. ATMP is a multi-core scheduling protocol that

partitions the multi-core computing resources that maximises each core utility

using linear programming to optimise task rates and tolerance ranges in case of

core failure, constrained to the remaining number of cores after the failure. The

main value that distinguishes ATMP from the traditional SAMP model, is that

abandoning system tasks from execution to reduce the workload when tolerating

resource shortage, is based on the usefulness and run-time adaptation capability

of these tasks.

Tasks Generations: We generated a mixed-criticality task set consisting

of 20 tasks, with two criticality levels, 12 low-criticality, and 8 high-criticality

tasks. The maximum absolute utility of each task depends on its criticality level

as seen in the previous section, each criticality task has an absolute utility of 2.0,

whereas a low-criticality task’s absolute utility is 1.0, and the maximum system

utility is the sum of achieved utility by all tasks in the system, which is 28 in the

current task set.

The first set of analyses examined smooth degradation on the SAMP ap-

proach. In this part of the experiment, disruptive degradation for the overall

system utility is seen in Figure 7.4. The achieved absolute utility has decreased

significantly from 28 to 22 when slowing core speed from 100% to 80% while

showing a stable performance between 26 to 22, with more reduction for speed

from 80% to 40%, before we see a significant decline for the system utility with

lower frequencies from 40% to 2% and the lowest absolute utility achieved is

between 14 and 16 in the 8 cores case and 2 in the two cores case.

The second set of analyses examined smooth degradation under the ATMP

approach. We observe that the absolute utility degradation is smoother and

finely graded with a greater reduction in processing speed compared to SAMP.

As seen in Figure 7.5, the achieved absolute utility is decreasing gracefully with

the overall reduction of frequency. The smooth degradation is seen in two ranges

of speeds, between 100% to 60% and between 60% to 2%. It’s apparent in
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Figure 7.4: Achieved Absolute Utility Under SAMP Protocol (8 cores, 50 pro-
cessing speeds)
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the first range, that the lowest utility achieved in the 8 cores case is between

28 to 22, were in the two cores case is between 2 to 6. In the second range,

the lowest utility achieved in the 8 cores was about 22 and about 3 in the two

cores case. I compared the two sets of analyses for smooth degradation between
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Figure 7.5: Achieved absolute utility under ATMP protocol (8 cores, 50 process-
ing speeds)

ATMP & SAMP. The comparison is conducted by recording the total absolute

utility for each run by ATMP and dividing it by the achieved utility under

SAMP as presented in Figure ??. The table presents the numerical data for the

ratio comparison figure. The main point is that ATMP shows a higher ratio of

achieved absolute utility between 40% and 60% of frequency speed. Therefore, in

the next section, we present experimental results and analysis for task dropping

and maximized utility by ATMP and SAMP, using distinct use cases from the

8, 4, and 2 cores with 50% and 100% frequency experiment data.

7.2.2 Results and Analysis

The following presents results obtained from the three sets of analysis for utility

degradation under frequency scaling, SAMP, ATMP, and SAMP versus ATMP.

First, we show the absolute utility achieved and the number of dropped tasks

when running the task set over three cases 8, 4, and 2 cores under full and
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Number of Cores
Processing
Speed

1 2 3 4 5 6 7 8

1.00 1.68 1.27 1.45 1.16 1.10 1.06 1.04 1.00
0.96 1.66 1.58 1.52 1.13 1.15 1.09 1.03 1.00
0.92 1.65 1.57 1.48 1.16 1.13 1.13 1.03 1.00
0.88 1.55 1.47 1.32 1.15 1.16 1.16 1.07 1.03
0.84 1.53 1.40 1.38 1.21 1.31 1.15 1.05 1.03
0.80 1.35 1.29 1.30 1.21 1.26 1.12 1.13 1.07
0.76 1.26 1.25 1.26 1.23 1.26 1.17 1.11 1.15
0.72 1.25 1.23 1.24 1.21 1.23 1.15 1.12 1.14
0.68 1.25 1.18 1.27 1.19 1.22 1.16 1.11 1.14
0.64 1.25 1.10 1.25 1.17 1.20 1.17 1.14 1.13
0.60 1.22 1.10 1.03 1.12 1.16 1.16 1.16 1.12
0.56 1.12 1.09 1.23 1.09 1.13 1.27 1.22 1.11
0.52 2.25 1.30 1.19 1.06 1.10 1.31 1.21 1.07
0.48 2.18 1.45 1.94 1.19 1.23 1.39 1.20 1.06
0.44 2.19 1.29 1.93 1.65 1.40 1.35 1.17 1.05
0.40 2.19 1.29 1.93 1.65 1.36 1.31 1.16 1.08
0.36 1.86 1.92 1.91 1.42 1.52 1.40 1.25 1.06
0.32 1.86 1.92 1.90 1.90 1.63 1.48 1.32 1.15
0.28 1.84 1.90 1.89 1.75 1.63 1.47 1.31 1.14
0.24 1.84 1.91 1.87 1.74 1.62 1.54 1.29 1.19
0.20 1.82 1.89 1.87 1.69 1.46 1.67 1.37 1.23
0.16 1.83 1.88 1.72 1.67 1.61 1.65 1.36 1.24
0.12 1.83 1.86 1.69 1.52 1.58 1.60 1.45 1.31
0.08 1.81 1.83 1.65 1.52 1.53 1.57 1.44 1.30
0.04 1.82 1.84 1.64 1.51 1.47 1.57 1.43 1.29

Table 7.6: Ratio of Achieved Absolute Utility Between SAMP and ATMP over
8 cores at Various Processing Speeds
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half frequency speed. Second, we present a comparison between the three cases.

Table 7.6 shows an overview of the ratio of achieved absolute utility between

SAMP and ATMP over 8 cores at various processing speeds.

Figure 7.7 provides the results for task dropping obtained from the 8 cores

case. The maximum system utility 28 is reached when running the task set with

full frequency on both protocols and no drop of any task as shown in Figure 7.7.a.

However, when we reduce frequency speed to half as seen in Figure 7.7.b, SAMP

protocol dropped 4 low criticality tasks, where only one task dropped by ATMP

in the cost of the quality of 6 low criticality tasks.
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Figure 7.7: Achieved absolute utility by tasks under ATMP & SAMP on 8 cores

In the second case of the comparison, the 4 cores case, Figure 7.8 displays the

result for task dropping by each protocol. It’s clear from the Figure 7.8.a that

with 100% frequency, SAMP abandoned the execution of 8 low criticality tasks

and no drop of any high criticality tasks. Though that ATMP has abandoned
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only two low criticality tasks, 5 high criticality tasks, and 8 low criticality tasks

have been executed with compromised performance. However, when we reduce

frequency speed to half as seen in Figure 7.8.b, SAMP protocol dropped 4 low

criticality tasks, while a single task dropped by ATMP in the expenses of the

quality of 6 low criticality tasks. Thus, with half frequency speed, more com-

promise for system performance and quality of execution. SAMP protocol has

dropped the execution of all 12 low criticality tasks but maintained the maximum

performance of the high criticality tasks. On the other hand, two low-criticality

tasks have succeeded in execution, and 5 high-criticality tasks have experienced

an acceptable delay in the ATMP case.
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Figure 7.8: Achieved absolute utility by tasks under ATMP & SAMP on 4 cores

In the third case, the 2 cores case. Figure 7.9 illustrates the results under

this severe reduction in the number of cores. In Figure 7.9.a, we see that SAMP

and ATMP dropped all low criticality tasks. ATMP dropped one high criticality



Chapter 7. Experimental Evaluation 111

and SAMP dropped 3 high criticality tasks. Both protocols achieved similar

performance when we reduced the frequency to half as shown in Figure 7.9.b. It

can be seen that the performance is almost identical in dropping all low-criticality

tasks and almost half of the high-criticality tasks in both protocols.
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Figure 7.9: Achieved absolute utility by tasks under ATMP & SAMP on 2 cores

At the end of this section, we illustrate an overview of the main results on

two frequency speeds, 100%, and 50%, between SAMP and ATMP. Then, we

compare the achieved utility and count the number of dropped tasks between

SAMP and ATMP.

Table 7.7 demonstrates the performance between the three cases in both

protocols. We ignore the optimal case; 8 cores with maximum speed in the

top half of the table for SAMP and ATMP columns. Further vital points can

be concluded from this table. First, under the SAMP approach column, the

frequency speed reduction for all available cores achieves higher utility than the



Chapter 7. Experimental Evaluation 112

SAMP ATMP
Frequency #Cores Abs. utility #Tasks dropped Abs utility #Tasks dropped

100%
8 28 0 28 0
4 20 8 23.21 2
2 10 15 12.68 13

50%
8 24 4 25.54 1
4 16 12 16.62 9
2 6 17 7.84 16

Table 7.7: Slowdown-Frequency/Turndown-Cores Effect on ATMP and SAMP

Abs. Utility #Tasks dropped
Frequency #Cores ATMP/SAMP ATMP - SAMP

100%
8 1.00 0
4 1.16 -6
2 1.27 -2

50%
8 1.06 -3
4 1.04 -3
2 1.31 -1

Table 7.8: Comparison of achieved absolute utility & dropped tasks between
ATMP & SAMP

turn-down half number of the available cores and half the number of dropped

tasks. Second, under the ATMP column, minimising the processing speed of

overall available cores achieves higher utility than the turn-down half number of

the available cores and half the number of dropped tasks. We end the comparison

by dividing the achieved utility for ATMP against SAMP and determining the

difference in the number of dropped tasks per protocol.

Both approaches deliver higher performance when reducing frequency speed

to half. Table 7.8 shows that the obtained ATMP utility Is higher than that

in SAMP when turning down 4 cores, and operating the remaining cores at full

speed, which retains 6 tasks from being dropped compared to SAMP.

7.2.3 Discussion

The comparison shows that ATMP fulfilled a smoother degradation than SAMP.

In addition, ATMP guarantees more tasks than SAMP, while at the same time

maximise system utility higher than SAMP protocol. It was found from the anal-

ysis that slowing down frequency is more efficient than turn-down cores, despite

which model is used, the traditional or TRTCM-based model. These findings

broadly support the work of other studies in the tolerance-based model, which
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allows us to extend the development of resilient systems for mixed-criticality

systems based on the TRTCM-based model.

In this next section, we evaluate the TRTCM utility function, as defined

by the TRTCM model that features smooth degradation as seen in this chap-

ter. The evaluation involves a comparison between TRCTM-ILP and a heuristic

function, which represents an integration between TRTCM and the Elastic Real-

time model ( TRTCM-Elastic ). TRTCM-Elastic is agnostic to the two concepts

of service utility and criticality. I Integrated the two concepts into the original

Real-time Elastic model for evaluating smooth degradation under different types

of resource shortages, and the reduced desired load, between TRTCM-ILP and

TRTCM-Elastic .

7.3 Experimental Evaluation of TRTCM-ILP

and TRTCM-Elastic

This section describes the experimental setup, results, and analysis for evaluating

smooth degradation between TRTCM-ILP and TRTCM-Elastic .

7.3.1 Experimental Setup

System and Resource-shortage Configurations: The first part of the evalu-

ation compares the achieved absolute utility between TRTCM-ILP and TRTCM-

Elastic . I applied a desired-load reduction algorithm to both models to observe

the degradation in overall system utility each time we reduced the desired load

on the processor. The second part compares the execution time overhead for

finding each solution between the methods. Each time we reduce the desired

load in each run, we record the execution time by each method.

TRTCM translates the resource shortage problem into a utility function that

is constrained to the reduced desired load. TRTCM-ILP uses integer linear pro-

gramming for optimising the task set according to a given load, and TRTCM-

Elastic uses a compression/decompression heuristic that compresses and decom-

presses tasks to meet the given desired load. Under the TRTCM-Elastic model,

tasks with 0 elasticity cannot change their configuration and always receive the

initial. Similarly, under TRTCM-ILP , tasks with a primary period equal to

their tolerance periods, cannot change their configuration. The experiment was

performed by running the same task set on both optimisation models. I de-

creased the load by a factor of 0.01 starting from 1.0, which is the maximum
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load bound for using a single processing core. The maximum load of the tasks in

the experiment exceeds the processing core load bound of 1.4 and the minimum

load is 0.71, therefore, the desired load degradation starts from 1.0 and stops at

0.71. For clarification, no core failure or WCET overrun is assumed here, only

reducing the desired load.

Task-set The task set consists of two tasks presented in 7.9, one high and

one low criticality task, each defined with primary and tolerance periods, im-

plicit deadlines, relative utility, single WCET estimate, criticality, and elasticity

parameters. The maximum utility of the two tasks is 3.0 (sum of tasks criticality

weight). The task set maximum load is 1.4 and the minimum load is 0.7. A task

with a relative utility of 1.0 or elasticity of 0.0, indicates that the task reconfig-

uration is prohibited and has to remain constant, therefore, these two cases are

eliminated in both tasks in the task set. Task A is a high-criticality task with a

weight of 2.0, whereas task B is of low criticality with a weight of 1.0.

7.3.2 Results and Analysis

Here we describe the results and analysis obtained from the experiment. First,

we analyse the results for the achieved absolute system utility between TRTCM-

ILP and TRTCM-Elastic . Then, we analyse the approach taken by each method

in finding a configuration for each task for the desired configurations, which

implies the total absolute utility achieved by the method. Finally, we analyse

the execution time overhead by each method.

Figure 7.12 presents the achieved absolute utility against a reduction in the

desired load. We can observe that the solution obtained by TRTCM-ILP , using

the linear programming solver, consistently optimizes the overall system util-

ity better than the heuristic function used by TRTCM-Elastic . As seen in

Figure 7.12, TRTCM-ILP provides steadier degradation than TRTCM-Elastic

, although TRTCM-Elastic heuristic shows relatively smooth degradation. As

seen in Figure 7.12, the maximum utility achieved by TRTCM-ILP is greater

than 2.6, whereas the maximum utility achieved by TRTCM-Elastic is less than

2.5. These results are expected, since TRTCM-Elastic solutions are sub-optimal,

where TRTCM-ILP always finds the optimal solution if exists. In addition, the

ratio of the difference between TRTCM-ILP and TRTCM-Elastic shows that the

more the scheduling problem gets easier, the ratio of difference decreases, and

the more the problem gets harder by reducing the desired load, the ratio of dif-

ference increases. This reveals that when the desired load problem is considered

to be less complex according to a given task set, it is better to find a sub-optimal
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solution quickly with reduced overhead using TRTCM-Elastic , than executing

the linear programming solver by TRTCM-ILP for finding an optimal solution,

where sub-optimal solution can deliver accepted level of service with minimum

cost in terms of execution time and memory overhead.

This optimal performance by TRTCM-ILP comes in cost in terms of execu-

tion time as seen in sub-figure Figure 7.13.a, TRTCM-Elastic execution time is

consistently below 10 ms, remaining steady as far as the problem of finding a so-

lution or configuration gets more complex. In contrast, TRTCM-ILP execution

time ranges between 30 and 45.

In the sub-figure, Figure 7.13.b, the ratio of execution time between TRTCM-

Elastic and TRTCM-ILP is presented. We can see that the execution time

overhead of the TRTCM-ILP utility function is almost 10 times higher than

the TRTCM-Elastic heuristic function, and the execution time ratio between

TRTCM-ILP and TRTCM-Elastic is the same despite the complexity of the

scheduling problem.

Figures 7.10 and 7.11 illustrate the impact of reducing the desired load on the

two tasks in the task set, task A and task B. In sub-figures 7.10.a and 7.10.b, the

results from each method for task A are presented, while 7.11.a and 7.11.b show

the results for task B. The intersection area between the two colours/constraints

represents the solution space for possible configurations of the task. The x-

axis represents the tolerance range of task periods, while the y-axis represents

the desired load. Each sub-figure highlights the task period and desired load

constraints with orange and green respectively. Task A has a tolerance range for

its period between 15 and 30, and task B between 20 and 40, where the maximum

and minimum load for task A are 0.6 and 0.3, and for task B, they are 0.8 and

0.4 respectively.

In sub-figure 7.10.a, we observe that TRTCM-Elastic exploits task A to be

in the range between 26 and 30, each time we reduce the desired load. On

the other hand, TRTCM-ILP exploits most of the task A’s solution space with

smooth degradation, as seen in figure 7.10.b. Also, TRTCM-ILP has determined

schedulable periods for task A when, where TRTCM-Elastic selected periods

with load is less than or equal to 0.3. For task B, as shown in sub-figures 7.11.a

for the TRTCM-Elastic case and figure 7.11.b for the TRTCM-ILP case, we can

see that TRTCM-Elastic configured task B to be between 22 and 30, whereas

TRTCM-ILP solution in the degrade task B to minimum level of service at period

40.0.

Table 7.10 presents the ratio of achieved utility by each task and the result

total system utility. Table 7.11 presents the ratio of achieved utility by each task
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Figure 7.10: Task A Degradation between TRTCM-ILP and TRTCM-Elastic
under Reduced Desired Load
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Task ID Primary Period [ms] Tolerance Period [ms] WCET [ms] Relative Utility Criticality
A 15 30 0.72 9 2
B 20 40 0.72 16 1

Table 7.9: Example: TRTCM-Elastic and TRTCM-ILP Task set
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Figure 7.13: Execution Time Overhead by TRTCM-ILP and TRTCM-Elastic

and the result total system utility.

7.3.3 Discussion

The more the scheduling problem gets easier, the ratio of difference decreases,

and the more the problem gets harder by reducing the desired load, the ratio of

difference increases. This reveals that when the problem is considered to be less

complex, according to a given task set and certain desired load, it is better to

find a sub-optimal solution quickly with reduced overhead using TRTCM-Elastic

, than executing the linear programming solver by TRTCM-ILP for finding an

optimal solution with high execution time overhead, where sub-optimal solu-

tion can deliver accepted utility with minimum cost in terms of execution time

overhead.

The limitation of the current experiments is that it does not consider other

forms of resource shortages or the comparison, for example, the core, failures,

computing capacity, and the WCET overrun. Future work can be extending the



Chapter 7. Experimental Evaluation 119

TRTCM-ILP TRTCM-Elastic Ratio(τi) = ILP(τi )
Elastic(τi )

TotalILP
TotalElastic

Load A B Total A B Total Ratio A Ratio B Ratio Total
1.00 2.00 0.72 2.72 1.55 0.94 2.50 1.29 0.76 1.09
0.99 1.98 0.72 2.70 1.53 0.94 2.47 1.29 0.76 1.09
0.98 1.96 0.72 2.68 1.51 0.94 2.45 1.30 0.77 1.09
0.97 1.94 0.72 2.66 1.49 0.94 2.43 1.31 0.77 1.10
0.96 1.93 0.72 2.65 1.46 0.94 2.40 1.31 0.77 1.10
0.95 1.91 0.72 2.63 1.44 0.94 2.38 1.32 0.77 1.11
0.94 1.89 0.72 2.61 1.41 0.93 2.35 1.33 0.77 1.11
0.93 1.87 0.72 2.59 1.39 0.93 2.32 1.35 0.77 1.12
0.92 1.85 0.72 2.57 1.36 0.93 2.29 1.36 0.77 1.12
0.91 1.83 0.72 2.55 1.33 0.93 2.26 1.38 0.78 1.13
0.90 1.81 0.72 2.53 1.30 0.93 2.23 1.39 0.78 1.14
0.89 1.79 0.72 2.51 1.27 0.92 2.19 1.42 0.78 1.15
0.88 1.78 0.72 2.50 1.23 0.92 2.16 1.44 0.78 1.16
0.87 1.76 0.72 2.48 1.20 0.92 2.12 1.47 0.78 1.17
0.86 1.74 0.72 2.46 1.16 0.92 2.08 1.50 0.78 1.18
0.85 1.72 0.72 2.44 1.12 0.92 2.04 1.54 0.79 1.20
0.84 1.70 0.72 2.42 1.08 0.91 1.99 1.58 0.79 1.22
0.83 1.68 0.72 2.40 1.03 0.91 1.95 1.63 0.79 1.23
0.82 1.66 0.72 2.38 0.99 0.91 1.90 1.69 0.79 1.26
0.81 1.65 0.72 2.37 0.93 0.91 1.84 1.76 0.79 1.28
0.80 1.63 0.72 2.35 0.88 0.91 1.79 1.85 0.79 1.31
0.79 1.61 0.72 2.33 0.82 0.90 1.73 1.96 0.80 1.35
0.78 1.59 0.72 2.31 0.76 0.90 1.66 2.09 0.80 1.39
0.77 1.57 0.72 2.29 0.69 0.90 1.59 2.27 0.80 1.44
0.76 1.55 0.72 2.27 0.62 0.90 1.52 2.50 0.80 1.50
0.75 1.53 0.72 2.25 0.54 0.90 1.44 2.82 0.80 1.56
0.74 1.51 0.72 2.23 0.46 0.89 1.35 3.29 0.81 1.65
0.73 1.50 0.72 2.22 0.37 0.89 1.26 4.06 0.81 1.76
0.72 1.48 0.72 2.20 0.27 0.89 1.16 5.49 0.81 1.90
0.71 1.46 0.72 2.18 0.16 0.89 1.05 9.12 0.81 2.08

Table 7.10: Achieved Absolute Utility at Various Load Levels Between TRTCM-
ILP and TRTCM-Elastic
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TRTCM-ILP TRTCM-Elastic Ratio(τi) = ILP(τi )
Elastic(τi )

load A B A B Ratio A Ratio B
1.00 15.00 40.00 27.00 24.00 0.56 1.67
0.99 15.25 40.00 27.55 24.12 0.55 1.66
0.98 15.52 40.00 28.12 24.24 0.55 1.65
0.97 15.79 40.00 28.72 24.37 0.55 1.64
0.96 16.07 40.00 29.35 24.49 0.55 1.63
0.95 16.36 40.00 30.00 24.62 0.55 1.63
0.94 16.67 40.00 30.68 24.74 0.54 1.62
0.93 16.98 40.00 31.40 24.87 0.54 1.61
0.92 17.31 40.00 32.14 25.00 0.54 1.60
0.91 17.65 40.00 32.93 25.13 0.54 1.59
0.90 18.00 40.00 33.75 25.26 0.53 1.58
0.89 18.37 40.00 34.62 25.40 0.53 1.58
0.88 18.75 40.00 35.53 25.53 0.53 1.57
0.87 19.15 40.00 36.49 25.67 0.52 1.56
0.86 19.57 40.00 37.50 25.81 0.52 1.55
0.85 20.00 40.00 38.57 25.95 0.52 1.54
0.84 20.45 40.00 39.71 26.09 0.52 1.53
0.83 20.93 40.00 40.91 26.23 0.51 1.53
0.82 21.43 40.00 42.19 26.37 0.51 1.52
0.81 21.95 40.00 43.55 26.52 0.50 1.51
0.80 22.50 40.00 45.00 26.67 0.50 1.50
0.79 23.08 40.00 46.55 26.82 0.50 1.49
0.78 23.68 40.00 48.21 26.97 0.49 1.48
0.77 24.32 40.00 50.00 27.12 0.49 1.48
0.76 25.00 40.00 51.92 27.27 0.48 1.47
0.75 25.71 40.00 54.00 27.43 0.48 1.46
0.74 26.47 40.00 56.25 27.59 0.47 1.45
0.73 27.27 40.00 58.70 27.75 0.46 1.44
0.72 28.12 40.00 61.36 27.91 0.46 1.43
0.71 29.03 40.00 64.29 28.07 0.45 1.43

Table 7.11: Optimised Period by Each Task at Various Load Levels Between
TRTCM-ILP and TRTCM-Elastic
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Task ID Primary Period [ms] Tolerance Period [ms] WCET [ms] Relative Utility Criticality
A 2 3 0.3 0.5 1 (=LO)
B 4 6 0.6 0.5 1 (=LO)
C 6 9 0.2 0.5 1 (=LO)
D 8 12 0.8 0.5 1 (=LO)
E 10 15 0.3 0.7 1 (=LO)
F 12 18 0.5 0.7 2 (=HI)
G 14 21 0.5 0.7 1 (=LO)
H 16 24 0.7 0.7 2 (=HI)
I 18 27 0.3 0.7 1 (=LO)
J 20 30 0.5 0.7 2 (=HI)
K 22 33 0.9 0.7 1 (=LO)
L 30 36 0.2 0.5 2 (=HI)

Table 7.12: Example: Airbus 380 Flight Control System Mixed-criticality Task-
set (to improve readability, in the text we use synonyms for the two criticality
levels l: 1=LO, 2= HI)

evaluation to consider different types of resource shortages.

7.4 Experimental Evaluation of EWCET model

and E-ATMP framework

7.4.1 Experimental Setup

We created a simulation tool that models task scheduling on a single processor

platform. The simulator allows to definition of scenarios where specific task in-

stances exceed the estimated WCET and projects the aborted and abandoned

tasks during the transition between low and high criticality modes. Using Ma-

henni’s research on modelling safety-critical systems using the SysML modelling

language [124], show how E-ATMP shows better handling for jobs execution time

overrun than AMC .

To demonstrate how AMC and E-ATMP handle low and high criticality tasks

WCET overrun situations, we configured the simulator to execute the Airbus

A380 task set. We intentionally induced overruns for three jobs, one job of a low

criticality task and two instances of a high criticality task. Specifically, we focus

on the first job (τA,0) of task τA and the first and second jobs (τF,0 and τF,1) of

task τF to examine the handling of overruns by these jobs.
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7.4.2 Results and Analysis

This section presents the experiment results.

Figure 7.14.a presents the effect of optimistic-WCET by the induced overrun

on low jobs under the AMC protocol. A total of 15 jobs having criticality low

criticality τi,k.l = LO are abandoned from execution as a result of the effect of

overrun on jobs τA,0, τF,0, τF,1. Please note that the numerical representation of

low criticality jobs is τi,k.l=1 and high criticality jobs is τi,k.l=2.

During the first occurrence of an overrun by job τA,0, the AMC protocol

aborted job τA,0 and dropped it, along with eight low criticality (τi,k = LO, 1)

jobs. It also activated the high criticality mode (S.l = HI). AMC activates the

S.l = HI mode to prevent future releases of jobs from tasks with low criticality

τi.l = LO, 1 during this mode. The dropped jobs due to the overrun caused

by τA,0 include τB,0, τC,0, τA,0, and τE,0, and jobs dropped because they were

released during the S.l = HI, 2 mode are τG,0, τI,0, and τK,0. Similarly, during

the second occurrence of an overrun by job τF,0, the AMC protocol dropped four

low criticality jobs and activated the S.l = HI mode. The dropped jobs due to

this overrun include τA,8, τB,4, τD,2, and τG,1. Finally, during the third occurrence

of an overrun by job τF,1, the AMC protocol dropped 8 low criticality jobs and

activated the S.l = HI mode. The dropped jobs due to this overrun include

τA,A14, τB,7, and τG,2.

Figure 7.14.b presents how E-ATMP minimises the effect of empiric-WCET

overrun on low-criticality jobs. During the first occurrence of an overrun by job

τA,0, the E-ATMP protocol postponed τA,0 to replace JA,1, and without activate

the S.l = HI mode. Only one low criticality job dropped due to this replacement

that is job τA,1.

Similarly, during the second occurrence of an overrun by job τF,0, the E-

ATMP protocol activated the S.l = HI mode and dropped five low criticality

jobs. The dropped jobs due to this τF,0 overrun include τA,8, τB,4, τD,2, τG,1, and

τK,0.

7.4.3 Discussion

This experiment introduced the concept of an empiric worst-case execution time

( EWCET ), which mandates a continuous update of the WCET estimate when-

ever an overrun of the current WCET of a task happens. The EWCET is useful

in real-time systems, as it allows triggering a reconfiguration of the system with

smooth degradation of services in cases of too many deadline overruns happening.
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(a) AMC schedule with overrun: Overrun jobs: A0, F0, F1;
Number of abandoned LO-jobs: 15

(b) E-ATMP schedule with overrun: Overrun jobs: A0, F0;
Number of abandoned LO-jobs: 5

Fig. 5. AMC and E-ATMP Schedule for Airbus Flight Control Services

accurate WCET estimates due to the ever increasing processor
HW complexity.

We use a mixed-criticality scheduling example to demon-
strate that E-ATMP can provide a smooth degradation of
service in case of WCET overruns.
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mode. The dropped jobs due to this overrun include ⌧A,A14,
⌧B,7, and ⌧G,2.

Figure 5.b presents how E-ATMP minimise effect of
empiric-WCET overrun on LO-jobs. During the first
occurrence of an overrun by job ⌧A,0, the E-ATMP protocol
postponed ⌧A,0 to replace JA,1, and without activate the
S.l = HI mode. Only one low criticality job dropped due to
this replacement that is job ⌧A,1.

Similarly, during the second occurrence of an overrun by
job ⌧F,0, the E-ATMP protocol activated the S.l = HI mode
and dropped five low-criticality jobs. The dropped jobs due to
this ⌧F,0 overrun include ⌧A,8, ⌧B,4, ⌧D,2, ⌧G,1, and ⌧K,0.

However, because E-ATMP

(a) AMC schedule with overrun: Overrun jobs: A0, F0, F1;
Number of abandoned LO-jobs: 15

(b) E-ATMP schedule with overrun: Overrun jobs: A0, F0;
Number of abandoned LO-jobs: 5

Fig. 5. AMC and E-ATMP Schedule for Airbus Flight Control Services

We present the conclusion, summary and the future work
in the next section.

VIII. SUMMARY AND CONCLUSION

In this paper we introduced the concept of an empiric worst-
case execution time (EWCET), which mandates a continuous
update of the WCET estimate whenever an overrun of the
current WCET of a task happens. The EWCET is useful in
real-time systems, as it allows to trigger a reconfiguration of

the system with smooth degradation of services in cases of
too many deadline overruns happening.

However, while the idea of the EWCET is simple in itself,
it is not straight forward to use, as one has to provide a
scheduling framework that can take advantage of the EWCET.
In particular, for the EWCET to be deployed, the scheduling
framework has to allow for the extended execution of a task
even after the overrun of its current WCET budget.

To demonstrate the applicability of the EWCET, we in-
troduced in this paper E-ATMP, which is a reconfigura-
tion method for mixed-criticality systems to provide smooth
degradation of services. E-ATMP uses the existing ATMP
framework and adds additional mechanisms to facilitate the
deployment of the EWCET. E-ATMP provides a powerful line
of defence against the threat of WCET underestimations in
a world where is is increasingly difficult to provide safe and
accurate WCET estimates due to the ever increasing processor
HW complexity.

We use a mixed-criticality scheduling example to demon-
strate that E-ATMP can provide a smooth degradation of
service in case of WCET overruns.
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However, while the idea of the EWCET is simple in itself, it is not straight-

forward to use, as one has to provide a scheduling framework that can take

advantage of the EWCET . In particular, for the EWCET to be deployed, the

scheduling framework has to allow for the extended execution of a task even after

the overrun of its current WCET budget.

To demonstrate the applicability of the EWCET , we introduced in this chap-

ter E-ATMP , which is a reconfiguration method for mixed-criticality systems

to provide smooth degradation of services. E-ATMP uses the existing ATMP

framework and adds additional mechanisms to facilitate the deployment of the

EWCET . E-ATMP provides a powerful line of defense against the threat of

WCET underestimations in a world where is increasingly difficult to provide safe

and accurate WCET estimates due to the ever-increasing processor HW complex-

ity. I use a mixed-criticality scheduling example to demonstrate that E-ATMP

can provide a smooth degradation of service in case of WCET overruns.

7.5 Chapter Discussion

The criticality arithmetic aware protocols LBP-CA and ATMP-CA achieve

smoother degradation than reference protocols SAMP, BP, and LBP. ATMP-

CA degrades services based on their criticality, utility, adaptation, and the state

of low criticality replicas. LBP-CA enables a quicker return to normal mode of

operation after failures. The ATMP achieves smoother degradation by dropping

services based on their criticality, utility, and adaptation. The SAMP achieves

smooth degradation by dropping services based on criticality only. TRTCM-ILP

optimises services for smooth degradation by formulating an ILP problem and

solving it using LP solver to maximise system utility and subject to each ser-

vice utility function and resource load constraints. TRTCM-Elastic optimises

services by applying a modification for spring compression and decompression

functions, to compress and decompress services load to satisfy desired resource

load constraint. The EWCET aware framework is E-ATMP and the EWCET

agnostic is the AMC scheme. The E-ATMP measures new WCET for services

once they overrun their execution time bounds during the system mission, and

provides smooth degradation by reducing the number of times the system enters

high criticality mode, hence, avoiding dripping all low criticality services in case

of resource shortages
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7.6 Chapter Summary

This chapter presented an evaluation of the contributions during the research

and development of this thesis. First, an evaluation of ATMP-CA and LBP-

CA protocols for the evaluation of criticality arithmetic and dependability in

Section 7.1. Second, an evaluation of SAMP and ATMP protocols for evaluat-

ing the smooth degradation between the two protocols in Section 7.2. Third,

an evaluation of TRTCM-ILP and TRTCM-Elastic protocols for evaluating the

smooth degradation between the two protocols in Section 7.3. Fourth, an evalu-

ation of the E-ATMP framework for measuring and handling WCET overrun in

Section 7.4.
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Chapter 8

Conclusions

This chapter provides a summary and conclusion of my dissertation. Addition-

ally, it presents an outlook on future work.

The organization of this chapter is as follows: Section 8.1 presents research

findings. Section 8.2 presents contributions to knowledge. Section 8.3 presents

the future work. Section 8.4 closes the thesis.

8.1 Research Questions and Findings

This thesis aimed to define and evaluate smooth degradation in mixed-criticality

protocols on both uni and multi-core processor platforms in case of transient and

permanent resource shortages, facilitate adaptivity in response to WCET over-

run, and build highly dependable components from less dependable components.

RQ: How to provide smooth degradation (also called graceful degradation) for in-

tegrated systems with services of mixed-criticality in case of resource short-

ages?

RQ1: What is a suitable definition of smooth degradation?

RQ2: What protocols are possible to grant resources to services of different crit-

icality in case of resource shortage?

RQ3: How can we evaluate and compare the smooth degradation of one protocol

against another?

RQ4: How can we provide higher levels of dependability from less dependable

components?

127
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RQ5: How can the system adapt based on occurrences of services’ overruns of

WCET estimates?

RQ6: What is a novel mixed-criticality scheduling protocol that provides an im-

provement on smooth degradation of service in case of resource shortage?

Answer to RQ1: The first objective was to investigate different adaptation

approaches from existing literature to understand these adaptive techniques for

smooth degradation and summarise a concrete definition. During the research of

this dissertation, I researched mixed-criticality literature and developed experi-

ments for Mixed Criticality systems under four types of resource shortages, which

are: core failures, WCET overrun, reduced computing capacity, and reduced

desired/available load. Drawing a universal definition for smooth degradation

is challenging. Many sources present solutions that feature smooth degrada-

tion, but a consensus for a concrete definition in the literature is absent. An-

swer to RQ2: The second objective acknowledges state-of-the-art approaches

and adaptation techniques for mixed-criticality systems and identifies existing

Fixed-priority-based approaches for granting resources to mixed-criticality ser-

vices. The identified approaches are AMC, SAMP, ATMP, BP, and LBP. They

have been studied, implemented, and used in experimental evaluation for com-

paring smooth degradation between mixed-criticality protocols as seen in the

experimental evaluation chapter, Chapter 7, and as reference schedulers against

novel approaches developed in this dissertation, ATMP-CA, LBP-CA, E-ATMP,

EWCET, TRTCM-Elastic.

Answer to RQ3: The third objective was to design and implement a sim-

ulator to simulate resource shortages on mixed-criticality systems and evaluate

each protocol adaptation in terms of achieved system utility, and number of

successful and compromised services. This provided the method for comparing

smooth degradation between different approaches. Reduced computing capac-

ity, core failures, and WCET overrun have been simulated and investigated.

Then, evaluate the smooth degradation performed between the given protocols

by comparing the achieved overall system utility by each protocol, the number

of successfully scheduled services, and the number of dropped or compromised

services. The evaluation method for smooth degradation between ATMP and

SAMP, under reduced computing capacity, is in Chapter 7 Section 7.2. Smooth

degradation overhead between TRTCM-ILP and TRTCM-Elastic, under reduced

desired/available l is in Chapter 7 Section 7.3. The evaluation for novel Critical-

ity Arithmetic aware protocols developed in chapter 4: ATMP-CA, SAMP-CA,

and LBP-CA, against Criticality Arithmetic agnostic protocols: SAMP, ATMP,
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BP, and LBP, and evaluated in Chapter 7 Section 7.1. The evaluation for novel

EWCET and the E-ATMP framework developed in 5, EWCET mixed-criticality

scheme, AMC, is in Chapter 7 Section 7.4.

During the research of this thesis, I implemented over 40 classes classified into

modules, with a primary focus on modularity throughout development to facili-

tate reusability and seamless integration of various functionalities. The simulator

allows experimenting with different configurations for system resources and run-

ning services by defining different types of resource shortages as mentioned above

and reports the achieved overall system utility by each protocol, the number of

successfully scheduled services, and the number of dropped or compromised ser-

vices. Then, comparing the ratio of achieved system utility and the difference

in dropped or compromised services in the reported results reveals which pro-

tocol provides smoother degradation than the other protocol. The experiments

presented in this thesis provide the foundation for comparing the smooth degra-

dation of services and systems, between mixed-criticality protocols. Chapter 6

presents the significant classes developed for this object.

Answer to RQ4:

The fourth objective aimed to establish reliable mixed-criticality systems us-

ing components that are inherently less dependable. For this objective, pro-

tocols were derived from the Criticality Arithmetic model, which itself drew

inspiration from the industrial SIL arithmetic model. These protocols, namely

ATMP-CA for mid-term scheduling and LBP-CA for short-term scheduling, were

developed to enhance the dependability of mixed-criticality services constructed

from less reliable services. ATMP-CA implements a core allocation and utility-

optimization algorithm that uses information about criticality arithmetic. This

way, ATMP-CA can consider the property that, in case of a core failure, the

scheduler does not have to ensure that all replicated tasks of the service have

to get rescheduled. Also, ATMP-CA can consider that when running multiple

tasks as instances of a service with criticality arithmetic, it might be sufficient

to ensure that only one task runs at the full frequency, i.e., providing maximum

throughput. Therefore, ATMP-CA maximises the system utility whenever case

of resource shortages occur, while providing an acceptable level of degradation

for services implemented via criticality arithmetic.

LBP-CA provides quicker returns from high criticality modes, Bailout, and

Recovery modes, using the information about criticality arithmetic. LBP-CA

cancels the activation of the transition from Bailout to Normal mode when the

lowest-priority, high-criticality job service has already been executed by another

replica. As such, LBP-CA information about criticality arithmetic prevents the
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transition from Bailout mode to Recovery mode, which provides smoother degra-

dation than Bailout-based schedulers BP and LBP.

The quick return to normal operation, criticality arithmetic aware allocation,

and formulation for granting system resources in mixed-criticality systems enable

building dependable high-criticality services, from less dependable low-criticality

services. The evaluation for novel ATMP-CA and LBP-CA developed in 4 is in

Chapter 7 Section 7.1.

Answer to RQ5: The fifth objective was to address the issue of WCET

overruns. This involved exploring various static and dynamic analysis methods

for measuring WCET in existing literature. In this thesis, a novel approach called

EWCET was developed, which initialised using one of the static or dynamic esti-

mates, and updated whenever a service exceeds the known WCET at the present

and assuming it for all future arrivals of this service. Additionally, a framework

was created that incorporates adaptive responses for each overrun, the E-ATMP.

This framework generates a new system configuration with an acceptable level

of service rather than enabling a high-criticality mode of operation in the fu-

ture for the same WCET overrun. The evaluation for novel Empiric Worst-case

execution time EWCET and the E-ATMP framework developed in 5, EWCET

mixed-criticality scheme, AMC, is in Chapter 7 Section 7.4.

Answer to RQ6: The sixth objective is the resultant of achieving previ-

ous objectives which is the realisation of novel mixed-criticality protocols and

a framework. This achievement allows for smoother degradation in the event

of resource shortages while maintaining an equivalent level of safety but higher

overall system utility as provided by the reference scheduler in experimental con-

ditions. The protocols based on Criticality Arithmetic, namely ATMP-CA and

LBP-CA, along with the E-ATMP time framework, contribute to enhancing the

smooth degradation of services. ATMP-CA and LBP-CA improve the response

to core failure, while the E-ATMP framework addresses issues related to resource

shortages arising from WCET overruns.

ATMP-CA can optimise the overall system utility in case of resource shortages

while providing an acceptable level of degradation for services implemented via

criticality arithmetic, better than reference protocols, SAMP and ATMP. LBP-

CA system transitions and mode activations are always better than or equal to

the one provided by reference protocols, LBP, and BP.

EWCET and E-ATMP framework to find a stable schedule after the occur-

rence of WCET overruns with smooth degradation of service quality. The pro-

posed solution is based on dynamic adaptation by smooth service degradation

in case of WCET overruns due to the optimistic nature of the available WCET
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estimates.

8.2 Contribution to Knowledge

The research has produced three main contributions. Building highly dependable

components, from less dependable components. Evaluating and improving the

state-of-the-art smooth degradation for mixed-criticality scheduling protocols on

uni and multi-core. Developing a framework that provides adaptive responses

to WCET overrun, while improving the smooth degradation. The following

summarises these novel contributions.

• I introduced a concrete model for criticality arithmetic theory, that en-

ables realising high criticality components from low criticality components.

The research found that the awareness of criticality arithmetic by mixed

protocols enhances the system’s dependability, and smoother degradation

for free. The limitation of criticality is that it is limited to two and three

criticality levels.

• I introduced the ATMP-CA protocol, which is a mid-term multi-core crit-

icality arithmetic protocol. ATMP-CA uses information about criticality

arithmetic to enable building highly dependable systems from less depend-

able components. ATMP-CA shows smoother degradation than compared

protocols, SAMP, and ATMP. The limitation of the study is that it’s based

on two criticality levels, and has no solution for when several computing

cores is only one. In this case, ATMP-CA has no difference against ATMP.

• I introduced the LBP-CA protocol, which is a short-term uni-core criticality

arithmetic protocol. LBP-CA uses criticality arithmetic to enable build-

ing dependable systems for a quicker return to normal or low criticality

mode, which improves the smooth degradation compared to the reference

protocols, BP, and LBP. The limitation of this study is that it allows the

drop of high criticality task replica in case another replica of the service is

completed priorly.

• I introduced the EWCET model for measuring WCET overrun online.

EWCET for the first job of each service gets initialised with a given WCET

estimate of that service, and for each succeeding job, the EWCET is the

maximum of the previous job EWCET and the current job’s execution

time. Therefore, any update of the EWCET is based on the maximum

with the previous job’s EWCET.
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• To demonstrate the applicability of the EWCET, I introduced the E-ATMP

framework, which is a reconfiguration method for mixed-criticality systems

to provide smooth degradation for services in case of a WCET overrun oc-

curs. E-ATMP uses the existing ATMP framework and adds additional

mechanisms to facilitate the deployment of the EWCET updates during

runtime. E-ATMP provides a powerful line of defense against the threat

of WCET underestimations in a world where is increasingly difficult to

provide safe and accurate WCET estimates due to the ever-increasing pro-

cessor HW complexity.

• I evaluated results obtained from the three sets of analysis for smooth

degradation of the achieved system utility between SAMP and ATMP pro-

tocols, under computing capacity shortage. I show the absolute utility

achieved and the number of dropped tasks when running the task set over

three cases 8, 4, and 2 cores under full and half frequency speed. Then, I

compared the three cases between the two protocols, SAMP and ATMP.

• I evaluated the ATMP utility function, as defined by the TRTCM model,

and integrated it with the E-MC . The evaluation is a comparison of smooth

degradation between TRTCM-ILP and TRTCM-Elastic. TRTCM-Elastic

is an integration of the TRTCM utility function and the E-MC . E-MC

Elastic provides a heuristic function for finding an acceptable configuration

for the system services but lacks the utility metrics assigned to each service

as featured in TRTCM.

8.2.1 Research Significance

The concrete Criticality Arithmetic (CA) protocols in this dissertation allow

the integration of mixed-criticality systems services using redundant per acr-

shortseooc for building dependable mixed-criticality systems. Software Element

out-of Context (SEooC) approach is used for developing Software (SW), Hard-

ware (HW), or System elements where the developer is sure that this element

will be used as a Safety element not just the context of one Safety program, but

the Safety element finds use in several Safety goals or Safety requirements, and

probably cuts across items and vehicles (i.e., Electronic Control Unit (ECU)).

In such cases, it is much more efficient in terms of development costs and effort

to integrate the same element SEooC in several programs instead of developing

separate Safety elements for every program.



Chapter 8. Conclusions 133

8.3 Future work

Alternative Methodologies: probabilistic approaches.

• Dynamic Priority-based Scheduling: All contributions in this thesis

assume a Fixed-priority assignment-based system. Extending Criticality

Arithmetic protocols to include dynamic-based priority assignment opens

new questions regards smooth degradation for integrated mixed criticality

systems.

• Verifying Simulated Findings on Physical Platform The findings in

this thesis have to be verified on modern real computing platforms such

as Kalray Massively Parallel Processor Array (MPPA) [125]. MPPA2-256

is the second processor of the MPPA processor family. MPPA2-256 is

specially designed support to networking, storage, and high-performance

embedded applications with high integrity safety, and mission-critical sys-

tems. In MPPA2-256, 256 cores organised in 16 computing clusters each

containing 16 cores. The system’s core operating system in each computing

cluster provisions the scheduling and execution among the 16 cores.

• Extending Criticality Arithmetic: The ATMP-CA protocol can be

extended to support systems with more than two criticality runtime op-

eration modes, this will allow the applicability ofATMP-CA to different

core allocation and ILP formulation. Also, LBP-CA can be extended to

support migration to different cores with resource shortages, which may

return the system to normal criticality mode quicker than the uni-core

model presented in this dissertation. In this system model, BP fund is dis-

tributed among cores, which in turn better allocation for WCET budgets

system services by exploiting the unused execution time from all cores in

the system.

• Extending EWCET: Currently, EWCET is not included in the prior

verification for the schedulability of system services before deployment,

therefore, it relies on a framework to provision the adaptation process dur-

ing WCET overrun. This aspect of EWCET can be seen as a feature from

one perspective, and a limitation from another. From the feature perspec-

tive, it does not rely on specific priori verification analysis, and hence, both

priority assignment algorithms, dynamic and static, can use the EWCET

model either with the E-ATMP framework or any framework that enables

an optimisation function or heuristics. From the limitation perspective,
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the predictability of system behaviour and assurance for interference-free

execution for high criticality services, EWCET may not be useful in sys-

tems with tight tolerance ranges or limited solution spaces for possible

configurations to the system to adapt in case of WCET overrun. There-

fore developing a schedulability analysis that considers EWCET for priori

verification is important and can be realised by bounding the WCET by

available slack in the system.

• Extending E-ATMP: Different optimisation and reconfiguration algo-

rithms can be integrated into E-ATMP. Currently, it uses the LP solver

to find an optimal schedule with every WCET update in the system. The

LP solver overhead is relatively high. Heuristics alike TRTCM-Elastic can

find a sub-optimal schedule with small overhead for less complex problems

or with resource shortages that don’t require as much computation as in

the LP solver.

• Undergraduate Courses: In addition, this thesis lays the groundwork

by providing materials and tools for the design of courses centred on mixed-

criticality systems for undergraduate education. The background chapter

in this thesis can be expanded to encompass the course titled “Mixed-

Criticality Systems Concepts and Practices”. The contributions and eval-

uation chapters can be repurposed for a course named “Theory and Anal-

ysis for Mixed-Criticality Systems”. Collaborative efforts with industry

partners could further enhance the practical applicability of the courses,

bridging the gap between academic knowledge and real-world implementa-

tion.

8.4 Closing

Building highly dependable components, from less dependable components, eval-

uating and improving smooth degradation for mixed-criticality scheduling, and

developing a framework that provides adaptive responses to WCET overrun,

have been presented in this thesis.

This implementation sets the stage for researchers to consider criticality arith-

metic and EWCET approaches, with the implementation of future work and fur-

ther technological improvements, this research can be truly transcended into a

real-world solution for building highly dependable mixed-criticality systems from

less dependable components, that degrade smoothly in case of resource shortage
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due to core-failures or WCET overrun.
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