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RAVIOLO VERTEX ALGEBRAS, COCHAINS

AND CONFORMAL BLOCKS

LUIGI ALFONSI, HYUNGROK KIM AND CHARLES YOUNG

Abstract. Raviolo vertex algebras were introduced recently by Garner and Williams
in [GW23]. Working at the level of cochain complexes, in the present paper we con-
struct spaces of conformal blocks, or more precisely their duals, coinvariants, in the
raviolo setting. We prove that the raviolo state-field map correctly captures the
limiting behaviour of coinvariants as marked points collide.
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1. Introduction

Vertex algebras capture the physicists’ notion of operator product expansions and
the state-field correspondence in chiral conformal field theory in one complex dimen-
sion. Since their introduction [Bor86] they have become a powerful and ubiquitous
tool in mathematical physics and representation theory. Textbook references include
[Kac98; LL04; FB04].

The definition of vertex algebras appears to be closely tied to the special properties
of complex dimension one, and specifically of the formal disc D and the punctured
formal disc D× = D \ {0},

D = SpecC[[z]], D× = SpecC((z)).

Roughly speaking, the punctured formal disc D× describes the possible collision ge-
ometries of two marked points in the complex plane (one fixed at the origin, the other
movable). See Fig. 1.

What happens in higher dimensions? It has long been expected by experts that
the language of factorization algebras (as developed in the algebro-geometric setting
in [FG12] following [BD04] – cf. also [DK09; Bak+19; BDK21] – and in the smooth
setting in [CG16; CG21]) in principle allows vertex algebras to generalize to higher
dimensions. In this direction, see especially [Gwi+], [Wil18, §4] and [GW21], and also
[SWW21], all broadly in the smooth setting and using (pre)factorization algebras
constructed using the Dolbeault resolution of the holomorphic structure sheaf; and
in the complex-algebraic setting see [FHK19], [HK23], [Kap21]. Writing down explicit
axioms in closed form for higher-dimensional vertex algebras remains a challenge,
however.

Recently though, Garner and Williams ([GW23] and see also [GRW23]) have con-
sidered a particularly tractable instance of this general problem, namely the case of
theories with one real topological dimension and one complex holomorphic dimension,
i.e. theories on spacetimes modelled on R×C, such as twists of three-dimensional su-
persymmetric Yang-Mills theory [ESW22]. Such a spacetime structure can be neatly
captured by a transversely holomorphic foliation [DK79; Raw79; Asu10]: that is, a
foliation of the spacetime three-manifold by curves such that the leaf space has the
structure of a Riemann surface.

In that topological-holomorphic setting, marked points are allowed to collide in
the complex plane, but only if, when they do, they are separated in the topological
direction. The upshot is that pairwise collisions are no longer described by the formal
punctured disc D×, but rather by the formal raviolo

Rav := D ⊔D× D,

the scheme obtained by gluing together two copies of the formal disc along their
common copy of the formal punctured disc. Again, see Fig. 1, and § 2.1 below.

What’s so nice about this setting is that, on the one hand, it is a sufficiently mild
generalization that it is still possible to write down explicit axioms for the resulting
raviolo vertex algebras in a form closely parallel to the usual case – see [GW23] –
while on the other hand it is sufficiently different that it exhibits many of the features
expected in the higher setting. Indeed, the formal raviolo Rav is no longer an affine
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a

Da = SpecC[[z − a]]

a

D×
a = SpecC((z − a))

a

Rava = Da ⊔D×
a

Da

Figure 1. Sketch of copies of the formal disc D, the formal punctured
disc D×, and the formal raviolo Rav associated to a point a in the
complex plane.

scheme, unlike the punctured disc D×. Its structure sheaf has higher cohomology, and
one consequence is that in the raviolo vertex algebras of [GW23] the usual lowering
operators/negative modes disappear from degree zero, and reappear in cohomogical
degree one.

Now let us describe the contents of the present paper. We do essentially two things:
first, we work at the level of cochain complexes rather than their cohomologies, and
second, we introduce notions of configuration space and rational conformal blocks in
the raviolo setting.

In [GW23], the sheaf cohomology H•(Rav,O) is regarded as a graded commutative
algebra. It plays the role, there, that commutative algebra of functions on the punc-
tured formal disc, Γ(D×,O) = H0(D×,O) ∼= C((z)), plays in the case of standard
vertex algebras – i.e., roughly speaking, it is what organizes the positive and negative
modes in the state-field correspondence. However, the cohomology H•(Rav,O) comes
endowed with additional higher structure which is lost in this picture (as the authors
of [GW23] remark). One way to keep track of that higher structure is to work, in-
stead, with the derived global sections RΓ•(Rav,O) of the structure sheaf. This latter
comes with the structure of a differential graded (dg) commutative algebra, which,
via homotopy transfer, encodes all the higher products on its cohomology,

H•(Rav,O) ≡ H•(RΓ(Rav,O)).

Thus, for us it will be (a certain model of) RΓ•(Rav,O) which plays the role of
Γ(D×,O) = C((z)) in the usual case. For simplicity we focus exclusively on the
raviolo analogues of the Kac-Moody vertex algebras at level zero. We write down in
Section 2 the definition of the raviolo vacuum module and its state-field map at the
level of cochain complexes (i.e. dg vector spaces) rather than graded vector spaces.
One immediate consequence is that for us there are lowering operators both in degree
one (representing cohomology classes) and in degree zero; see the discussion in § 2.5.

Then our second and main goal is to introduce rational conformal blocks (or more
precisely, their duals, rational coinvariants) in the raviolo setting. To do that, after
reviewing the standard definition of rational coinvariants in Section 3, we define in
Section 4 a notion of ravioli configuration space, RavConfN , which plays the role of
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the usual configuration space

ConfN = AN
C \ diagonals

for standard vertex algebras. Mirroring the passage from the punctured disc D×

to the formal raviolo Rav, the ravioli configuration space will be defined by gluing
together N ! copies of AN

C along the complements of their diagonals. The resulting
(non-separated) scheme looks locally like AN

C everywhere except on diagonals, just
like ConfN . But the diagonals themselves, rather than being removed, instead appear
with multiplicity > 1 (as one expects since, whenever marked points coincide, one
has to keep track of their ordering in the topological/leaf direction). We introduce a
model of the derived space of sections

AN ≃ RΓ(RavConfN ,O)

of the structure sheaf on this configuration space. It is a dg commutative algebra,
and it plays the role of the commutative algebra of functions BN := Γ(ConfN ,O) =
C[zi, (zi − zj)−1]Ni,j=1;i6=j on configuration space in the usual case.

Our model AN is so chosen that it is possible to write down (see Section 5) explicit
raviolo analogues of all the constructions reviewed in Section 3 for the usual case. We
arrive at the definition of the space – more precisely, the dg AN -module – of ravioli
coinvariants

F(g;AN ; M1, . . . , MN ).

(See § 5.3.)
The main result of the paper is then Theorem 17 in Section 6, which shows that the

state-field map for the raviolo vacuum module, defined in Section 2, correctly captures
the limiting behaviour of ravioli coinvariants as two marked points, each with copies
of the vacuum module attached, are brought close together.

As we discuss at greater length in § 2.5 below, the limiting behaviour of conformal
blocks as two or three marked points collide is arguably what motivates the usual
vertex algebra axioms (notably, Borcherds identity), and at any rate those axioms
can certainly be reconstructed by considering such limits. Theorem 17 establishes an
analogous setup in the raviolo case.

The proof of the main theorem, Theorem 17, is given in Section 7. Finally, in an
appendix, we recall some background material on semisimplicial sets and the Thom-
Sullivan functor.

Acknowledgements. The authors gratefully acknowledge the financial support of the
Leverhulme Trust, Research Project Grant number RPG-2021-092. The authors thank
Leron Borsten and Charles Strickland-Constable for helpful discussions. CY would
like to thank Alexander Schenkel and James Waldron for helpful discussions.

2. The raviolo vacuum module in cochain complexes

2.1. The formal raviolo. The formal raviolo,

Rav := D ⊔D× D,
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is the C-scheme obtained by gluing two copies of the formal disc D = SpecC[[z]]
along their common copy of the formal punctured disc D× = SpecC((z)).1

For our purposes, it is best to visualize the affine line A1
C = SpecC[z] as a copy

of the complex plane. The formal disc, formal punctured disc, and formal raviolo at
some given closed point a ∈ C may be pictured as in Fig. 1.

2.2. Functions on the formal raviolo. By definition, then, the formal raviolo Rav
is the pushout in the category of C-schemes

D× D

D Rav

or, equivalently, the coequalizer in C-schemes

Rav = colim

(
D× D ⊔D

)
.

This latter is a useful way to think of Rav because it presents it explicitly as the colimit
of a diagram corresponding to a semisimplicial object in affine schemes. (The notion
of a semisimplicial object is recalled in Appendix A.) Namely it is the colimit of the

Čech nerve Č(U ) =
(

U1 ∩Rav U2 U1 ⊔ U2

)
of the open cover U = {U1, U2}

of Rav by two copies of the formal disc U1
∼= U2

∼= D whose intersection in Rav
is, by definition, a copy of the punctured disc, U1 ∩Rav U2

∼= D×. On applying the
global sections functor Γ(−,O), one obtains the semicosimplicial object Γ(Č(U ),O)
in commutative algebras. Commutative algebras embed in differential graded (dg)
commutative algebras. The derived global sections of the structure sheaf O on Rav
are then given, by definition, by taking homotopy limit in dg commutative algebras,

RΓ(Rav,O) := holimdgCAlgC
Γ(Č(U ),O)

= holimdgCAlgC
(C((z)) ⇔ C[[z]] × C[[z]]) .

As we shall recall in more detail in § 4.2 and Appendix A, the Thom-Sullivan con-
struction provides a means of computing such homotopy limits. Namely, we let C{{z}}
denote the dg commutative algebra

C{{z}} :=
{
ω ∈ C((z))⊗ C[v, dv] : ω|v=0 ∈ C[[z]] and ω|v=1 ∈ C[[z]]

}
.

and we then have
C{{z}} ≃ RΓ(Rav,O).

1Rav = D⊔D× D is an infinitesimal analogue of the affine-line-with-a-doubled-origin, A1
C ⊔Spec C[z,z−1]

A1
C, which is usually pictured like this

0

0′
.

Both are prototypical examples of nonseparated schemes obtained by gluing; see for example [EH00,
pp. I–44]. Note that D× is open in D.
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This will be our model, in dg commutative algebras, of the derived global sections of
the structure sheaf of Rav.2

Informally one should think of C{{z}} as the “functions on the formal raviolo Rav”,
just as the Laurent series C((z)) are the “functions on the formal punctured disc D×”.
The fact that C{{z}} is nontrivially differential graded is a reflection of the fact that
Rav is not an affine scheme. In particular the cohomology of C{{z}} computes the
sheaf cohomology of the structure sheaf O of Rav. As a graded vector space, this
cohomology is given by

H•(C{{z}}) ∼=grVectC





C[[z]] • = 0

z−1C[z−1] • = 1

0 otherwise.

(The classes in degree one have representatives in z−1C[z−1]dv. Indeed, such one-
forms are closed, obviously, but fail to be exact in C{{z}} because of the boundary
conditions. For example the would-be primitive z−1v is not in C{{z}} since it is not
regular in z when pulled back to v = 1.)

The cohomology H•(C{{z}}) comes with the structure of a graded commutative
algebra. It is isomorphic, as a graded commutative algebra, to the algebra called K,
or C〈〈z〉〉, in [GW23]:

H•(C{{z}}) ∼=grAlgC
K ≡ C〈〈z〉〉.

The cohomology has, however, more structure than that of a graded commutative
algebra. Indeed, H•(C{{z}}) gets the structure of a minimal C∞-algebra, coming from
homotopy transfer of the dg commutative algebra structure on C{{z}} ≃ RΓ(Rav,O)
itself. (See e.g. [LV12] for a discussion of homotopy transfer, and specifically [CG08]
and [LV12, §13.1.9] for the dg commutative case.) In practice, what that means is that
H•(C{{z}}) is endowed with a family (ck)k≥2 of higher products, the first of which,
c2 is the binary product of the graded commutative algebra structure. One way to
keep track of this extra structure is to work in dg commutative algebras rather than
passing to their cohomologies.

2.3. Splitting. Let us define the dg commutative algebras

C{{z}}− :=
{

ω ∈ z−1C[z−1]⊗ C[v, dv] : ω|v=0 = 0 and ω|v=1 = 0
}

C{{z}}+ := C[[z]] ⊗ C[v, dv].

Then evidently there are maps of dg commutative algebras

C{{z}}− →֒ C{{z}} ←֓ C{{z}}+

such that at the level of dg vector spaces

C{{z}} = C{{z}}− ⊕ C{{z}}+.

2Any other model of RΓ(Rav, O) will be related to this one by a zig-zag of quasi-isomorphisms. In
particular this should be true of (the local analogue of) the dg commutative algebra A of [GW23,
§1.2].
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Moreover there are strong deformation retracts of dg vector spaces 3

C{{z}}+ C[[z]] ∼= H0(C{{z}})

(−)| 1
2

h
ι

and 4

C{{z}}− z−1C[z−1][1] ∼= H1(C{{z}})[1].

∫ 1

0

k

(−)dv

2.4. Vacuum module. Let us now pick a finite-dimensional simple Lie algebra g

over C, for example sl2. We get the dg Lie algebra, i.e. the Lie algebra in dg vector
spaces over C, given by

g⊗ C{{z}}.

It is the raviolo loop algebra, the raviolo analogue of the usual loop algebra g⊗C((z)).
It has dg Lie subalgebras g⊗C{{z}}− and g⊗C{{z}}+. We shall think of elements of
g⊗C{{z}}− as lowering operators or negative modes, and of elements of g⊗C{{z}}+
as raising operators or positive modes. The PBW theorem holds for dg Lie algebras
and hence, in view of the splitting above, we have that

U(g⊗C{{z}}) ∼= U(g⊗ C{{z}}−)⊗ U(g⊗ C{{z}}+)

as dg vector spaces and moreover as U(g ⊗ C{{z}}−), U(g ⊗ C{{z}}+)-bimodules. In
particular U(g⊗ C{{z}}) is free as a U(g⊗ C{{z}}−), U(g⊗ C{{z}}+)-bimodule.

Let V denote the module over g⊗C{{z}} induced 5 from the trivial one-dimensional
module C|0〉 over g⊗ C{{z}}+:

V := U(g⊗ C{{z}}) ⊗U(g⊗C{{z}}+) C|0〉.

Following the usual convention for vertex algebras, we call vectors in V states. The
representation V is the raviolo vacuum Verma module (at level zero).

By the PBW decomposition above, there is an isomorphism

V ∼= U(g⊗ C{{z}}−)⊗C C|0〉

of left U(g⊗ C{{z}}−)-modules in dg vector spaces.

3The map ι is given by the embedding of C[[w − zk]] = C[[w − zk]] ⊗C
id⊗1
−−−→ C[[w − xk]] ⊗C[v, dv] =

C{{w −zk}}+, i.e. as “as constant 0-forms in the v direction”. The map (−)| 1
2

is given by pulling back

forms to (say) v = 1
2
. A suitable homotopy h is given by “h(ω)(v) =

∫ v
1
2

ω”, by which we mean, more

precisely, the following: we have ω = f(v) + F (v)dv for some f(v), F (v) ∈ C[[w − zk]] ⊗C[v], and we
define h(f(v) + F (v)dv) :=

∫ v

0
F (v′)dv′.

4A suitable homotopy k is given by is given by k(f(v) + F (v)dv) :=
∫ v

0
F (v′)dv′ − v

∫ 1

0
F (v′)dv′. Cf.

e.g. [AY23, Prop. 16].
5One can check that V models the derived tensor product U(g ⊗ C{{z}}) ⊗L

U(g⊗C{{z}}+) C|0〉 where

⊗L : D(U(g⊗C{{z}})ModU(g⊗C{{z}}+)) × D(U(g⊗C{{z}}+)Mod) → D(U(g⊗C{{z}})Mod).
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2.5. State-field map. Let V ((x)) denote the dg vector space of formal Laurent series
in x with coefficients in V , which one thinks of as a completion of the tensor product
V ⊗ C((x)). Let V {{x}} denote the following dg vector space,

V {{x}} :=
{
ω ∈ V ((x)) ⊗ C[u, du] : ω|u=0 ∈ V [[x]] and ω|u=1 ∈ V [[x]]

}
,

which we similarly think as a completion of the tensor product V ⊗C{{x}}. Now we
define a state-field map, namely a (degree-zero) map of dg vector spaces6

Y (−; x) : V → HomdgVectC
(V , V {{x}}).

We do so recursively, as follows. First, we set

Y (|0〉; x) := idV .

Then for all homogeneous X ∈ g ⊗ C{{x}}− and all homogeneous states B ∈ V we
define

Y (XB; x) := X+(x)Y (B; x) + (−1)|X||B|Y (B; x) X−(x),

where it remains to say what X+(x) and X−(x) are. To do so, it is enough to define,
for all a ∈ g and p(v, dv) ∈ C[v, dv], first

(
a⊗

p(v, dv)

z

)

+
(x) :=

∞∑

k=0

(
a⊗

p(v, dv)

zk+1

)
xk

(
a⊗

p(v, dv)

z

)

−
(x) :=

∞∑

k=0

(
a⊗ zk

) p(1− u,−du)

xk+1

and then, for any f(z) ∈ C((z)),
(

a⊗
∂

∂z
f(z)p(v, dv)

)

±
(x) :=

∂

∂x
(a⊗ f(z)p(v, dv))± (x).

More explicitly, one has the following, by induction.

Lemma 1 (Explicit formula for the state-field map). Given a collection of homoge-
neous lowering operators Xi ∈ g⊗ C{{z}}−, i = 1, . . . , n, we have

YRav(X1 . . . Xn|0〉, x) =
n∑

m=0

∑

(µ,ν)∈Unshfn
m

(−1)n−m+χ(|X1|,...,|Xn|,µ,ν)Xµ1
+ (x) . . . Xµm

+ (x)X
νn−m

− (x) . . . Xν1
− (x).

The sum is over unshuffles, i.e. permutations (µ1, . . . , µm, ν1, . . . , νn−m) of (1, . . . , n)

such that µ1 < · · · < µm and ν1 < · · · < νn−m, and (−1)χ(|X1|,...,|Xn|,µ,ν) is the Koszul

sign of an unshuffle of the Xi, defined such that (−1)χ(|X1|,...,|Xn|,µ,ν)X1 · · ·Xn =
Xµ1 · · ·XµmXνn−m · · ·Xν1 in the symmetric algebra Sym(g⊗ C{{w − zN}}−). �

Some remarks are called for about this definition.
First, one should compare it to that of the usual state-field map for the vacuum

Verma module V over the loop algebra g⊗C((x)). (Cf. §3.4 below.) In some informal

6Here by HomdgVectC
we mean the internal Hom in dg vector spaces, just as in the usual definition

of the state-field map – cf. § 3.4 – HomVectC really means the internal Hom in vector spaces.
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but intuitively helpful sense, the former collapses to the latter if one ignores all of the
factors p(v, dv).

To understand the role of the polynomial differential form p(v, dv), let us consider
in turn the examples

p(v, dv) = dv and p(v, dv) = v(1− v).

The lowering operators

a⊗
dv

zk
, a ∈ g, k ≥ 1,

represent non-trivial cohomology classes in degree one. What we call dv/zk corre-
sponds to what [GW23] call Ωk−1 ∝ λk−1ω. On such cohomology classes, our def-
inition here coincides with that of [GW23, §2.3]. (We wrote only a special case of
the normal-ordered product above. Cf. [GW23, Defn. 2.1.3].) In addition to those
lowering operators, there are also lowering operators in degree zero, for example

a⊗
v(1 − v)

zk
, a ∈ g, k ≥ 1,

which are neither closed nor exact. This is the first instance of what we meant above
by working in dg vector spaces rather than their cohomologies.

In view of [GW23], we expect that this definition of the state-field map will make
the raviolo vacuum module V above into an example of what should probably be
called a raviolo vertex algebra in dg vector spaces. It should be possible to spell out
suitable axioms for such a structure, following [GW23] in the case of raviolo vertex
algebras in graded vector spaces and standard references for vertex algebras, [Kac98;
FB04; LL04].7

However, in the present paper we want to do something slightly different. Let
us adopt the standard perspective that the reason the usual vertex algebra axioms
(locality, Borcherds identity, etc) are the way they are is that they formalize the
behaviour of what physicists would call operator product expansions (OPEs) in chiral
conformal field theories (CFTs). More precisely, they capture the limiting behaviour
of conformal blocks as two or more insertion points, associated to copies of the vacuum
module, are brought close together. That relationship between vertex algebras and
conformal blocks is known to hold for algebraic curves in very great generality – see
[FB04] and references therein, following especially [TUY]. But in particular it holds
in the prototypical setting of conformal blocks in genus zero, i.e. on the complex plane
or the Riemann sphere.

The crucial point, for us, is that in that latter genus zero setting it is well known how
to define conformal blocks without reference to vertex algebras. Namely, conformal
blocks are defined as the duals of rational coinvariants, as we are about to recall in
detail, following [FFR94] and [FB04, §13.3].8

7Note also that (standard) vertex algebras internal to the category of dg vector spaces have been stud-
ied in [CJL23b; CJL23a], with rather different motivations. Vertex algebras internal to the category
of Z/2Z-graded vector spaces, i.e. super vertex algebras, are ubiquitous in the literature; see (but also
contrast, because the reference deals with supersymmetric vertex algebras in different sense)[HK07].
8This is what we mean by “conformal blocks”. The term has a number of closely related meanings in
the mathematics and theoretical physics literature. See for example the discussion in [CP22, §8].
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Consequently, if the axioms of vertex algebras were mysteriously lost, one principled
way to recover them would be by studying the limiting behaviour of such rational
coinvariants.

The goal of the present paper is to establish the analogous relationship between
vertex algebras and coinvariants in the raviolo case. Namely, we shall define a notion
of coinvariants in the raviolo case, and then we shall show that the state-field map we
defined above for the raviolo vacuum module emerges naturally from the behaviour
of these raviolo coinvariants in the limit in which marked points collide.

3. Rational coinvariants and conformal blocks

In this section we review the standard definition of rational coinvariants/conformal
blocks on the complex plane with punctures. We focus exclusively on conformal blocks
associated to an untwisted affine Kac-Moody algebra; that is, in physics language, the
chiral sector of a WZW model. Moreover for simplicity we consider only the case of
level zero, i.e. we shall work with loop algebras and not their central extensions.9

3.1. Fixed punctures. In this subsection we work over the complex numbers C.
Let a1, . . . , aN ∈ C be pairwise distinct complex numbers. We think of them as

marked points or punctures in the complex plane.
Let C[w, (w − ai)

−1]′1≤i≤N denote the (non-unital) commutative C-algebra of ra-
tional expressions in w singular at most at the points a1, . . . , aN and vanishing as
w →∞. It is a subalgebra of the unital commutative C-algebra

Γ(A1
C \ {a1, . . . , aN},O) = C[w, (w − ai)

−1]1≤i≤N

of sections of the structure sheaf O of the affine line A1
C = SpecC[w] over the Zariski

open subset A1
C \ {a1, . . . , aN}.

For each puncture ai, 1 ≤ i ≤ N , we have the algebra of formal series and of formal
Laurent series,

C[[w − ai]] = Γ(Disc1(ai),O) and C((w − ai)) = Γ(Disc×
1 (ai),O) (1)

which are to be thought of as the algebras of regular functions on, respectively, the
formal disc Disc1(ai) = SpecC[[w − ai]] and the formal punctured disc Disc×

1 (ai) =
SpecC((w − ai)) = Disc1(ai) \ ai at the closed point ai of A1

C.
There are embeddings of commutative C-algebras

C[w, (w − ai)
−1]′1≤i≤N →֒

N⊕

i=1

C((w − ai)) ←֓
N⊕

i=1

C[[w − ai]] (2a)

– on the left, by Laurent-expanding at each of the marked points; on the right, by the
canonical embedding summand by summand – such that, at the level of vector spaces,
there is an isomorphism

N⊕

i=1

C((w − ai)) ∼=C C[w, (w − ai)
−1]′1≤i≤N ⊕

N⊕

i=1

C[[w − ai]]. (2b)

9It is worth recalling that level zero is in certain important senses a generic value. The non-generic
value is the critical level, k = −h∨ in standard normalizations, at which for example the usual
Sugawara conformal vector of the vacuum Verma module becomes singular.
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Let us now pick a simple Lie algebra g over C. We get Lie algebras over C

b :=
N⊕

i=1

g⊗ C((w − ai))

b+ :=
N⊕

i=1

g⊗ C[[w − ai]], b− := g⊗ C[w, (w − ai)
−1]′1≤i≤N

and embeddings of Lie algebras over C

b− →֒ b ←֓ b+ (3a)

which again give rise to an isomorphism of the underlying vector spaces,

b ∼=C b− ⊕ b+. (3b)

Let Mi, 1 ≤ i ≤ N be g-modules in the category of C-vector spaces. We make each
Mi into a module over the Lie algebra g⊗C[[w−ai]] by declaring X⊗1 acts as X and
X ⊗ (w − ai)

k acts as 0 for all k ≥ 0 and all X ∈ g. In other words, we pull back Mi

along the map of Lie algebras g⊗C[[w−ai]]→ g⊗C[[w−ai]]
/
g⊗(w−ai)C[[w−ai]] ∼= g.

We may then construct the induced g⊗ C((w − ai)) module

Mi := Ind
g⊗C((w−ai))
g⊗C[[w−ai]]

Mi := U(g⊗ C((w − ai)))⊗U(g⊗C[[w−ai]]) Mi. (4)

Equivalently, one sees that

M :=
N⊗

i=1

Mi = Indb
b+

M, where M :=
N⊗

i=1

Mi

On pulling back by the embedding b− →֒ b, M is, in particular, a module over b−.
The space of rational coinvariants (at level zero) associated to these data a1, . . . , aN ;

g; M1, . . . , MN is then by definition

F(g; a1, . . . , aN ; M1, . . . , MN ) := M
/
b− := M

/
(b−.M) ∼=C C⊗U(b−) M

and the space of rational conformal blocks (at level zero) is by definition the dual
space

HomC(M
/
b−,C) ∼=C HomModC(b−)(M,C).

Here we make C into the trivial b− module. Equivalently it is the U(b−)-module
obtained by pulling back by the counit map U(b−)→ C.

It follows from (3) together with the PBW theorem that there is an isomorphism
U(b) ∼= U(b−) ⊗C U(b+) of (U(b−), U(b+))-bimodules. Consequently the space of
coinvariants is canonically isomorphic to underlying vector space of the g-module
M = M1 ⊗ · · · ⊗MN from which we began:

M
/
b− = C⊗U(b−) M

∼=C C⊗U(b−) U(b)⊗U(b+) M
∼=C C⊗U(b−) U(b−)⊗C U(b+)⊗U(b+) M
∼=C C⊗C M = M.
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The richness of the space of coinvariants really emerges when one allows the marked
points a1, . . . , aN to vary.10 We turn to this now.

3.2. Movable punctures and configuration space. Our fixed set of distinct marked
points a1, . . . , aN ∈ C from the previous subsection is now to be thought of just one
choice of closed point of the configuration space

ConfN := AN
C \

⋃

1≤i<j≤N

(zi = zj) (5)

obtained by starting with the affine scheme AN
C = SpecC[z1, . . . , zN ] and removing

(the Zariski closures (zi = zj) of the generalized points (zi = zj) of) all the diagonal
hyperplanes.

Following the approach of [FB04, §13], one can think that going from fixed to
movable marked points is a matter of changing the ground ring from C to the C-
algebra BN := Γ(ConfN ,O) of regular functions on configuration space. Since ConfN

is the complement in AN
C of the zero locus of the function

∆N :=
∏

1≤i<j≤N

(zi − zj)

we have by definition – see e.g. [EH00, §I] – that

BN = C[z1, . . . , zN ][∆−1
N ] (6a)

is the localization of C[z1, . . . , zN ] = Γ(AN
C ,O) obtained by adjoining an inverse to

∆N , and
ConfN = SpecBN

is again an affine scheme. Of course, once we can invert ∆N , we can invert any (zi−zj),
so that, in more suggestive notation,

BN = C[zi, (zi − zj)−1]1≤i,j≤N
i6=j

. (6b)

Now we should ask what, in this setting, the analogues of the embeddings of
C-algebras in (2) should be. First, in place of C[w, (w − ai)

−1]1≤i≤N = Γ(A1
C \

{a1, . . . , aN},O) we should consider

BN+1 = C[z1, . . . , zN , w]



(

∆N

N∏

i=1

(w − zi)

)−1

 = Γ(ConfN+1,O). (7)

This is a BN -algebra in the obvious way. Let B′
N+1 denote the (non-unital) subalgebra

consisting of those functions that vanish as w →∞.
Next, we want the analogue of the disc Disc1(ai) = SpecC[[w − ai]] and the punc-

tured disc Disc×
1 (ai) = SpecC((w − ai)) near a closed point ai ∈ A1

C. Recall that
C[[w − ai]] is the completion of C[w] with respect to the ideal (w − ai)C[w], and
C((w− ai)) is then the localization of C[[w− ai]] obtained by adjoining an inverse to
w − ai. Here, since the ground ring is now BN , we consider the completion of BN [w]

10One sense in which this is true is that the rational coinvariants/conformal blocks obey the celebrated
KZ equations. It would be interesting to investigate whether the coinvariants we introduce below in
the ravioli setting obey some analogous equations.
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with respect to (w − zi)BN [w], i.e. the ring BN [[w − zi]], and then its localization
BN ((w − zi)).

We arrive at the following analogue of (2): there are embeddings of commutative
algebras in BN -modules

B′
N+1 →֒

N⊕

i=1

BN ((w − zi)) ←֓
N⊕

i=1

BN [[w − zi]] (8)

such that, at the level of BN -modules, there is an isomorphism

N⊕

i=1

BN ((w − zi)) ∼=BN
B′

N+1 ⊕
N⊕

i=1

BN [[w − zi]]. (9)

Let g be a simple Lie algebra over C as before. By extension of scalars we obtain the
Lie algebra over BN , i.e. the Lie algebra in BN -modules, given by

Bg := BN ⊗ g.

We have also Lie algebras in BN -modules given by

Bb :=
N⊕

i=1

g⊗ BN ((w − zi))

Bb+ :=
N⊕

i=1

g⊗ BN [[w − zi]], Bb− := g⊗ B′
N+1

and embeddings of Lie algebras in BN -modules

Bb− →֒ Bb ←֓ Bb+ (10a)

which give rise to an isomorphism of the underlying BN -modules,

Bb
∼= Bb− ⊕ Bb+. (10b)

Let Mi, 1 ≤ i ≤ N be g-modules as before. By extension of scalars we get Bg-
modules BM i := BN ⊗Mi, i.e. Bg-module objects in the category of BN -modules. We
make each BM i into a module over the Lie algebra g⊗BN [[w−zi]] by pulling back along
the map of Lie algebras g⊗BN [[w−zi]]→ g⊗BN [[w−zi]]

/
g⊗(w−zi)BN [[w−zi]] ∼= Bg.

We may then construct the induced g⊗ BN ((w − zi))-module

BMi := Ind
g⊗BN ((w−zi))
g⊗BN [[w−zi]] BM i

:= UBN
(g⊗ BN ((w − zi)))⊗UBN

(g⊗BN [[w−zi]]) BM i. (11)

(Here we write UBN
(−) : AlgLie(ModBN

) → AlgAs(ModBN
) for the functor whose

action on objects is to take a Lie algebra over BN to its universal envelope, an asso-
ciative algebra over BN .)

The tensor product of these modules,

BM :=
N⊗

i=1

BN BMi,
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is equivalently the induced module

BM = IndBb

Bb+ BM := UBN
(b)⊗UBN

(Bb+) BM, where BM :=
N⊗

i=1

BN BM i.

On pulling back by the embedding Bb− →֒ Bb, BM is, in particular, a module over

Bb−.
The space of rational coinvariants (at level zero) associated to these data g; M1, . . . , MN

is then by definition the BN -module

F(g;BN ; M1, . . . , MN ) := BM
/

Bb− := BM
/
(Bb−. BM)

∼=BN
BN ⊗UBN

(Bb−) BM (12)

and the space of rational conformal blocks (at level zero) is by definition the dual

HomBN
(BM

/
Bb−,BN ) ∼=BN

Hom
Bb−(BM,BN ).

Here we make BN into the trivial Bb−-module. Equivalently it is the UBN
(Bb−)-module

obtained by pulling back by the counit map UBN
(Bb−)→ BN .

Once more, the data of the triple of Lie algebras (10) together with the PBW
theorem imply that there is an isomorphism, UBN

(b) ∼= UBN
(Bb−) ⊗BN

UBN
(Bb+),

now of (UBN
(Bb−), UBN

(Bb+))-bimodules in BN -modules, and hence that the space
of coinvariants is canonically isomorphic to BM = BN ⊗M :

BM
/

Bb− = BN ⊗UBN
(Bb−) BM

∼=BN
BN ⊗UBN

(Bb−) UBN
(b)⊗UBN

(Bb+) BM

∼=BN
BN ⊗UBN

(Bb−) UBN
(Bb−)⊗BN

UBN
(Bb+)⊗UBN

(Bb+) BM

∼= BN ⊗BN BM = BM = BN ⊗M. (13)

3.3. Taking coinvariants. For any C-point (a1, . . . , aN ) ∈ ConfN we can apply the
evaluation map

eva1,...,aN
: BN → C

to recover the space of coinvariants for this particular choice of fixed marked points,
as we had it in § 3.1. That is, the constructions above are all suitably functorial, so
that there is a map

eva1,...,aN
: F(g;BN ; M1, . . . , MN )→ F(g; a1, . . . , aN ; M1, . . . , MN ).

In checking this, one notes in particular the following lemma.

Lemma 2. For each i, BMi
∼= BN ⊗C Mi. Hence BM

∼= BN ⊗C M.

Proof. Let us define

g− := (w − zN )−1C[(w − zN )−1] and Bg− := (w − zN )−1BN [(w − zN )−1].

These are Lie algebras over C and BN respectively. Certainly we have

Bg−
∼= BN ⊗C g− (14)
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(since these are just Lie algebras of polynomials) and hence that UBN
(Bg−) ∼= BN ⊗C

U(g−). We have the “local” Lie algebra splitting, i.e. the embeddings of Lie algebras
in BN -modules

Bg− →֒ g⊗ BN ((w − zN )) ←֓ g⊗ BN [[w − zN ]]

such that as BN -modules

Bg− ⊕ g⊗ BN [[w − zN ]] ∼= g⊗ BN ((w − zN )).

Therefore BMi is free as a module over UBN
(g−):

BMi
∼= UBN

(Bg−)⊗BN BM i

The analogous statements hold for g− and Mi. The result follows. �

On the other hand, we can now consider fixing vectors mi ∈ Mi, for 1 ≤ i ≤ N ,
while letting the marked points vary. More precisely, the unit map 1 : C→ BN induces
embeddings (of vector spaces)

Mi →֒ BN ⊗Mi
∼= BMi; m 7→ 1⊗m (15)

for each i, and hence M →֒ BN ⊗ M ∼= BM. We may take the class of the vector
m1 ⊗ · · · ⊗mN ∈ M ∼= 1⊗M →֒ BN ⊗M ∼= BM in the space of coinvariants in (13).
We shall write this class as [

m1

z1

⊗ · · · ⊗mN

zN

]
.

It is an element of BN⊗M , i.e. an M =
⊗N

i=1 Mi-valued rational function of z1, . . . , zN

singular at most on the diagonals zi − zj , 1 ≤ i < j ≤ N .
We call applying this map of BN -modules

M→ BN ⊗M ; m1 ⊗ · · · ⊗mN 7→
[
m1

z1

⊗ · · · ⊗mN

zN

]
, (16)

the operation of taking coinvariants.

3.4. The usual vacuum Verma module and state-field map. Let now

V := Ind
g⊗C((s))
g⊗C[[s]] C|0〉

denote the module over the loop algebra g ⊗ C((s)) induced from the trivial one-
dimensional module C|0〉 over g ⊗ C[[s]] generated a vector |0〉. This module V is
called the vacuum Verma module (at level zero).

The vacuum Verma module V comes equipped with a linear map

Y (−, s) : V→ HomVectC(V,V((s))), A 7→ Y (A, s) =
∑

n∈Z

A(n)s
−n−1, (17)

called the state-field map. Vectors in V are called states, and one can think that
Y (−, s) sends each state A ∈ V to the formal sum of its modes A(n) ∈ EndVectC(V).
The state-field map satisfies certain axioms (notably Borcherds identity) which can be
found in standard references including [Kac98; LL04; FB04] and which make V into
a vertex algebra. From our present perspective the important point is that one way
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to motivate these axioms is by studying the limit of rational coinvariants as points
collide, as we now describe.

Let us now specialize our discussion of rational coinvariants above to the case in
which MN−1 = C|0〉 and MN = C|0〉. In that case

M =
N−2⊗

i=1

Mi ⊗ C⊗ C =
N−2⊗

i=1

Mi and M =
N−2⊗

i=1

Mi ⊗ VN−1 ⊗ VN .

Now, by identifying local coordinates w− zi, we may identify each of the Lie algebras
g ⊗ C((w − zi)) with a single copy g ⊗ C((s)),11 and thereby identify their vacuum
Verma modules with a single abstract copy of V:

V ∼= Vi := Ind
g⊗C((w−zi))
g⊗C[[w−zi]]

C|0〉.

Pick vectors mi ∈Mi for 1 ≤ i ≤ N − 2, and states A, B ∈ V in this abstract copy of
V. On taking coinvariants, we get the M -valued rational function

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
∈ BN ⊗M. (18)

The usual state-field map captures the behaviour of this function in the limit in
which the marked point zN becomes close to marked point zN−1, while the points
z1, . . . , zN−1, the vectors m1, . . . , mN−2, and the states A, B are all held fixed.

Theorem 3 (Relation of the state-field map Y to rational coinvariants). For all
A, B ∈ V and mi ∈Mi, 1 ≤ i ≤ N − 2, we have

ιzN →zN−1

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]

=
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ Y (A; zN − zN−1) B

zN−1

]
.

We give a proof of this very standard fact below, in § 7.1. Note that while the
left-hand side here is manifestly in BN−1((zN − zN−1))⊗M , since it is the expansion
of an element of BN⊗M , a priori the right-hand side is merely an element of (BN−1⊗
M)((zN − zN−1)): indeed what is meant by the right-hand side is the series obtained
by computing the coinvariant in F(g;BN−1; M1, . . . , MN−2,C) ∼= BN−1 ⊗M order by
order in zN − zN−1.

Now let us close this digression on the usual rational conformal blocks associated
to Kac-Moody algebras at level zero, and return to the raviolo case.

11This identification is sometimes left implicit, but is an important assumption. Other ways of picking
preferred local coordinates and hence identifying copies of V at different points are possible and can
be important in applications: for example when one wants to go to what physicists would call the
cylinder geometry.
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4. Ravioli configuration space

As we just saw, the usual rational coinvariants/conformal blocks form a module
over the commutative algebra

BN := Γ(ConfN ,O) = C[z1, . . . , zN ][Discr−1
N ]

= C[zi, (zi − zj)−1]1≤i,j≤N
i6=j

of global sections of the structure sheaf on the configuration space of N distinguishable
pairwise distinct marked points in the complex plane,

ConfN := AN
C \

⋃

1≤i<j≤N

(zi = zj).

Remark 4. In more geometrical language, the module of conformal blocks is the
Γ(ConfN ,O)-module of global sections of a trivial vector bundle over configuration
space, whose typical fibre we described in §3.1; see [FB04, §13.3]. Cf. also e.g. [Var03],
[EFK98]. ⊳

In this section our goal is to introduce a suitable notion of configuration space in
the ravioli setting,

RavConfN ,

and then to construct a model

AN ≃ RΓ(RavConfN , O),

in dg commutative algebras, of the derived global sections of its structure sheaf. This
is a prelude to defining ravioli analogues of rational coinvariants/conformal blocks,
which we shall do in the next section.

In the ravioli setting, we again want to describe configurations of N distinguishable
marked points in the complex plane. However, we now want to allow them to coincide,
but with the stipulation that, whenever two points do coincide, we want to keep track
of which point is “on top” of which.

Formally then, what we shall do is to glue together N ! copies of the affine scheme
AN
C along the complements of the diagonal hyperplanes, as follows.
Let SN denote the group of permutations of the set [1, N ] = {1, . . . , N}. We shall

identify SN , as a set, with the set of total orders on [1, N ], by associating σ ∈ SN

with the total order ≺σ on [1, N ] defined by

σ(1) ≺σ σ(2) ≺σ · · · ≺σ σ(N).

Let Partial[1,N ] denote the set of all partial orders ≺ on the set [1, N ] = {1, . . . , N}. We
make Partial[1,N ] itself into a partially ordered set (or, equivalently, a skeletal preorder)
in which there is an arrow ≺→≺′ if and only if≺′ refines ≺ in the obvious sense. Given
a partial order ≺∈ Partial[1,N ], let O(U≺) denote the commutative algebra

O(U≺) := C[z1, . . . , zN ]




∏

i,j∈[1,N ]
i6=j,i6≺j,j 6≺i

1

zi − zj


 ∈ AlgCom(VectC).
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That is, O(U≺) is the localization of the polynomial algebra C[z1, . . . , zN ] in which
zi − zj is invertible precisely for those distinct i and j that are ≺-incomparable. If
≺′ refines ≺ then there is a canonical inclusion of C-algebras O(U≺′)→ O(U≺), and
hence a map of affine C-schemes U≺ → U≺′ . This defines a functor12

U : Partial[1,N ] → AlgCom(VectC)op ≡ AffSchC →֒ SchC

4.1. Definition of RavConfN by gluing Čech data. Recall that if we are given
a C-scheme X, we can by definition always cover it with a collection U = {Ui}i∈I

of affine patches Ui ∈ AffSchC indexed by some totally ordered index set (I, <).

The Čech nerve of this cover is the semisimplicial object in C-schemes given by the
diagram

Č(U ) =



 · · ·
⊔

i,j∈I
i<j

Ui,j

⊔
i∈I Ui





where
Ui,j := Ui ∩X Uj

is the intersection in X of the affine patches Ui and Uj . (We recall the meaning of
semisimplicial objects in a category in Appendix A.) This is a diagram in C-schemes
whose colimit is the original scheme X:

X = colim Č(U ).

Moreover we may always find a Leray cover, and the Čech cohomology of O with
respect to such a cover computes the sheaf cohomology of O. This is the case in
particular if all the intersections Ui,j,...,k are themselves affine.

With this in mind, let us define the ravioli configuration space RavConfN as follows.
It is covered by the collection of N ! affine schemes

U :=
{

U≺σ
∼= AN

C : σ ∈ SN

}
.

We glue these affine patches together as follows. Given a collection of partial orders
≺1, . . . ,≺k∈ Partial[1,N ], let

≺1 ∧ · · · ∧ ≺k

denote their finest common coarsening, or in other words their meet, or categorical
product, in Partial[1,N ]. All meets exist in Partial[1,N ]; at worst the meet may be
the initial object, namely the partial order in which no two elements are comparable.
Given any distinct σ1, σ2 ∈ SN we define the intersection in RavConfN of the affine
patches U≺σ1

and U≺σ2
to be U≺σ1∧≺σ2

:

U≺σ1
∩RavConfN

U≺σ2
:= U≺σ1∧≺σ2

,

with the inclusions U≺σ1 ∧≺σ2
→֒ U≺σ1

and U≺σ1 ∧≺σ2
→֒ U≺σ2

being the canonical
inclusions we noted in the definition of the functor U above. This gluing data satisfies
the triple overlap condition, and we define RavConfN to be the resulting C-scheme.
(See e.g. [EH00, §I.2.4 and Corollary I-14] for a discussion of the gluing construction.)

12and hence a diagram in C-schemes. In fact RavConfN as we are about to define it is the colimit in
C-schemes of this diagram, RavConfN = colim≺∈Partial[1,N ]

U≺.
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Indeed, given any σ1, . . . , σk ∈ SN , the intersection of U≺σ1
, . . . , U≺σk

in RavConfN

is then a copy of the affine scheme U≺σ1∧···∧≺σk
:

U≺σ1
∩RavConfN

· · · ∩RavConfN
U≺σk

:= U≺σ1∧···∧≺σk
.

Thus, we pick and fix arbitrarily any total order < on SN , and define the semisimplicial
object in affine C-schemes given by the diagram

Č(U ) =



 . . .
⊔

σ1,σ2∈SN
σ1<σ2

U≺σ1∧≺σ2

⊔
σ∈SN

U≺σ



 ;

this diagram has a colimit in the category of C-schemes, and we define RavConfN to
be that colimit:

RavConfN := colimSchC
Č(U ).

Informally then, RavConf2 is a copy of A2
C but with a doubled diagonal; RavConf3

is a copy of A3
C but with all pairwise diagonals doubled and the main diagonal z1 =

z2 = z3 having multiplicity 3! = 6; and so on.13

4.2. Derived sections and the Thom-Sullivan functor. Our goal is now to give
a model in dg commutative algebras of the derived global sections RΓ(O, RavConfN )
of the structure sheaf on RavConfN .

Given any finite Leray cover U = {Ui}i∈I of a C-scheme X, the derived global
sections RΓ(X,O) of its structure sheaf O is the dg commutative algebra defined, up
to zig-zags of quasi-isomorphisms, as the homotopy limit in dg commutative algebras

RΓ(X,O) = holim Γ(Č(U ),O).

The Thom-Sullivan functor Th• provides one way of computing any such homotopy
limit, i.e. the homotopy limit of any diagram given by a semicosimplicial object in
dg commutative algebras. We recall the definition of this functor in Appendix A and
refer the reader to [HS94], [Kap21, Appendix A] or e.g. [AY23] for further discussion.

The model of the homotopy limit which the Thom-Sullivan functor produces can be
understood as consisting of polynomial differential forms on a single (|I|−1)-simplex,
valued in O(

⋂
i∈I Ui), together with polynomial differential forms on every face of that

simplex. Each face is labelled by some subset S ⊂ I, and the form on that face is
valued in O(

⋂
i∈S Ui). (These intersections are taken in X.) These forms are required

to satisfy the natural compatibility conditions under pullbacks.
Whenever, as is true in our case, the maps O(

⋂
i∈S Ui) → O(

⋂
i∈I Ui), S ⊂ I, are

all embeddings of commutative algebras, then these compatibility conditions mean
that the forms on the faces of the (|I| − 1)-simplex are actually determined by the
form in the bulk of the simplex itself. The model of the homotopy limit is then a dg
commutative algebra of polynomial differential forms on the (|I| − 1)-simplex, valued

13We emphasize that, like the formal raviolo Rav itself, this configuration space RavConfN is not
separated as a scheme for any N ≥ 2; its underlying topological space is not Hausdorff.
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in O(
⋂

i∈I Ui), subject to boundary conditions:

Th•(Γ(Č(U ),O)) =
{
ω ∈ O(

⋂

i∈I

Ui)⊗ C[ui, dui]i∈I

/
〈
∑

i∈I

ui − 1,
∑

i∈I

dui〉

: ω|{ui=0∀i∈I\S} ∈ O(
⋂

i∈S

Ui)⊗ C[ui, dui]i∈S

/
〈
∑

i∈S

ui − 1,
∑

i∈S

dui〉

for all nonempty subsets S ⊂ I
}
.

(Here ω|{ui=0∀i∈I\S} denotes the pullback.)
Thus, in our case, we arrive at the following. Define the dg commutative algebra

AN by

AN :=
{
ω ∈ BN ⊗ C[uσ, duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉

: ω|{uσ=0∀σ∈SN \S} ∈ O(U∧
σ∈S

≺σ
)⊗ C[ui, dui]i∈S

/
〈
∑

i∈S

ui − 1,
∑

i∈S

dui〉

for all nonempty subsets S ⊂ SN

}
.

Theorem 5. This AN is a model, in dg commutative algebras, of the derived global
sections of the structure sheaf on the ravioli configuration space RavConfN :

AN ≃ RΓ(RavConfN ,O).

�

Because this algebra AN will play a central role for us, it is worth noting the

following equivalent description. For any distinct i, j ∈ [1, N ], let Sij
N ⊂ SN denote

the set of total orders on [1, N ] in which i precedes j:

Sij
N

:= {σ ∈ SN : i ≺σ j}. (19)

Lemma 6. The definition of AN above is equivalent to

AN =
{
ω ∈ BN ⊗ C[uσ , duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉

: for all distinct i, j ∈ [1, N ], the pullback ω|
{uσ=0∀σ∈S

ij
N

}

is regular in zi − zj

}
.

Proof. The idea is that by imposing the boundary conditions at these particular faces
of the simplex, we are in fact imposing all the boundary conditions in the definition
of AN , because all other faces on which the boundary conditions are non-empty arise
as intersections of these faces.

To see this in detail, it is enough to check that, for every nonempty subset S ⊂ SN

of the set of total orders on [1, N ], if ω obeys the boundary conditions given in the
lemma, then it obeys the boundary condition given in the definition of AN at the face
{uσ = 0∀σ ∈ SN \ S} corresponding to S. To that end, pick any such S and let ≺S

denote the finest common coarsening,

≺S :=
∧

σ∈S

≺σ,
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or in other words, the partial order in which i ≺S j if and only if i ≺σ j for all σ ∈ S.

The set S is then the intersection (in SN ) of the subsets Sij
N as i, j range over all pairs

of distinct elements of [1, N ] such that i ≺S j:

S =
⋂

i≺Sj

Sij
N .

It follows that our hyperplane {uσ = 0∀σ ∈ SN \S} is the intersection (in AN !
C ) of the

hyperplanes {uσ = 0∀σ ∈ SN \ Sij
N} as i, j range over all pairs of distinct elements of

[1, N ] that are comparable with respect to ≺S :

{uσ = 0∀σ ∈ SN \ S} =
⋂

i≺Sj

{uσ = 0∀σ ∈ SN \ Sij
N}.

Now, of course, SN \ Sij
N = Sji

N , and zi − zj = −(zj − zi). So we see that by imposing
the boundary conditions in the statement of the lemma, we are thereby imposing the
condition that the pullback of ω to the face {uσ = 0∀σ ∈ SN \S} is regular in zi− zj

for all i ≺S j. This is the boundary condition on that face in the definition of AN , as
required. �

5. Rational ravioli coinvariants

Having defined the ravioli configuration space RavConfN and a model AN of the
derived global sections of its structure sheaf, we now define the ravioli analogues of
rational coinvariants/conformal blocks from Section 3. As far as possible, we shall
follow the same construction of spaces of coinvariants with movable marked points
we reviewed starting in § 3.2, with RavConfN playing the role of ConfN and AN

playing the role of BN .
In what follows, the dg commutative algebra

AN ≃ RΓ(RavConfN ,O)

will play the role of the base ring (i.e. we shall work in dg AN -modules) in the same
way that the commutative algebra

BN = Γ(ConfN ,O)

was the base ring (i.e. we worked in BN -modules) in the usual setting in § 3.2 of
rational coinvariants with N movable marked points.

Now, the commutative algebra BN+1
∼= BN [w, (w−zi)

−1]Ni=1 was naturally a module
over BN . We want something similar in the ravioli setting. Namely we would like to
show that AN+1 is a commutative algebra in dg AN -modules in some natural way.

To that end, let

πN : SN+1 → SN ; σ 7→ (σ(1), σ(2), . . . , N̂ + 1, . . . , σ(N + 1)) (20)

denote the surjective map of sets which sends total orders on [1, N +1] to total orders
on [1, N ] by forgetting about the position of N +1. We define a map of dg commutative
algebras

ιN : C[uσ, duσ]σ∈SN
→ C[uσ, duσ]σ∈SN+1
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by setting

ιN (uσ) :=
∑

τ∈π−1
N

(σ)

uτ . (21)

For example, when N = 2, we have

ι2(u(12)) = u(123) + u(132) + u(312), ι2(u(21)) = u(213) + u(231) + u(321).

Lemma 7. There is an injective map of dg commutative algebras

ιN : AN →֒ AN+1,

(overloading notation somewhat) given by the tensor product of ιN above with the
obvious embedding BN →֒ BN+1.

Proof. First observe that ιN maps the dg ideal 〈
∑

σ∈SN
uσ − 1,

∑
σ∈SN

duσ〉 to the
dg ideal 〈

∑
τ∈SN+1

uτ − 1,
∑

τ∈SN+1
duτ 〉, so it defines a map between the polynomial

differential forms on the (N ! − 1)-simplex and those on the ((N + 1)! − 1)-simplex.
Now we need to check that this map respects the defining boundary conditions of
AN+1. It is enough to consider elements ω ∈ AN of the form

ω = p⊗ λ, p ∈ BN , λ ∈ C[uσ, duσ]σ∈SN
.

Obviously, p is not singular in zi−zN+1 for any i. Pick any distinct i, j ∈ [1, N ] and
suppose that p is singular in zi−zj. We must check that ιN (λ) vanishes on pullback to

the face of the (N + 1)!− 1-simplex given by {uτ = 0∀τ ∈ Sij
N+1}. On that zero locus,

we have that ιN (uσ) = 0 for every σ ∈ Sij
N . That is, the operation of pulling back to the

zero locus of all the uτ with τ ∈ Sij
N+1 factors through the operation of pulling back

first to the zero locus of the images ιN (uσ) with σ ∈ Sij
N . That latter pullback com-

mutes with the dg algebra map ιN , i.e. ιN (λ)|
{ιN (uσ)=0∀σ∈S

ij
N

}
= ιN (λ|

{uσ=0∀σ∈S
ij
N

}
).

And finally, the pullback λ|
{uσ=0∀σ∈S

ij
N

}
vanishes, since by assumption ω obeys the

defining boundary conditions of AN . �

For example, when N = 2, we have the following well-defined element of A2:
u(12)u(21)

z1 − z2
∈ A2,

and its image is a well-defined element of A3:

(u(123) + u(132) + u(312))(u(213) + u(231) + u(321))

z1 − z2
∈ A3.

In this way, AN+1 has the structure of a commutative algebra not just in dg vector
spaces but in dg AN -modules.

In passing, let us note that the map ιN : AN →֒ AN+1 of Lemma 7 has a natu-
ral family of generalizations. Given any subset J ⊂ [1, N ] we have a corresponding
surjection

πJ⊂[1,N ] : SN ։ S|J |

between the sets of total orders (given by forgetting about the positions of elements
of [1, N ] \ J) and hence a map of dg commutative algebras

ιJ⊂[1,N ] : C[uσ, duσ]σ∈S|J|
→ C[uσ, duσ]σ∈SN

(22)
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On tensoring this with the obvious embedding of commutative algebras

B|J |

∼=
−→ C[zi, (zi − zj)−1]i,j∈J,i6=j →֒ BN

we obtain an embedding of dg commutative algebras

ιJ⊂[1,N ] : A|J | →֒ AN . (23)

For example we have the three maps

ι{1,2}⊂[1,3], ι{1,3}⊂[1,3], ι{2,3}⊂[1,3] : A2 →֒ A3.

Example 8. Such maps are a rich source of interesting elements of AN . Let i, j ∈
[1, N ] be distinct. Then the elements

dι{i,j}(u(12))

zi − zj

belong to AN . Compare Example 11 below. ⊳

5.1. Expansion maps. Recall that we write

ιw→zs : BN+1 → BN ((w − zs))

for the map of commutative algebras in BN -modules given by taking the Laurent
expansion in small w − zs = zN+1 − zs with z1, . . . , zN held fixed. (To keep track of
the distinguished role of the last coordinate, we shall continue to write w := zN+1.)
One thinks of BN ((w − zs)) as a certain completion of the tensor product

BN ⊗C C((w − zs)) ∼= Γ(ConfN ,O)⊗C Γ(D×,O).

In a similar spirit, let us now introduce a commutative algebra in dg AN -modules
AN{{w − zs}} which we think of as a certain completion of the tensor product

AN ⊗C C{{w − zs}} ≃ RΓ(RavConfN ,O)⊗C RΓ(Rav,O).

Namely, we define

AN{{w − zs}} :=
{
ω ∈ BN ((w − zs))⊗ C[v, dv]⊗ C[uσ , duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉

: for all distinct i, j ∈ [1, N ], the pullback ω|
{uσ=0∀σ∈S

ij
N

}

is regular in zi − zj ,

and both ω|v=0 and ω|v=1 are regular in w − zs

}
.

We think of AN{{w−zs}} as the dg commutative algebra of functions on the formal
raviolo near the sth of N distinguishable movable marked points, in the same way
that BN ((w − zs)) is the commutative algebra of functions on the punctured formal
disc near the sth of N distinguishable movable marked points, cf. [FB04, §13.2].

Now we shall define a map of commutative algebras in dg AN -modules

AN+1 → AN{{w − zs}}
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given by Laurent expanding in w − zs and simultaneously pulling back to a certain
judiciously chosen curved copy of ∆1

C × ∆N !−1
C inside the algebro-geometric ((N +

1)! − 1)-simplex

∆
(N+1)!−1
C := Spec



C[uσ]σ∈SN+1

/
〈
∑

σ∈SN+1

uσ − 1〉



 →֒ A
(N+1)!
C .

Namely, we first define a map of affine schemes

A1
C × AN !

C = Spec (C[v]⊗ C[uσ]σ∈SN
)→ A

(N+1)!
C = SpecC[uσ ]σ∈SN+1

or equivalently a map of commutative algebras

C[uσ]σ∈SN+1
→ C[v]⊗ C[uσ]σ∈SN

by sending

uσ 7→





(1− v)u(...,s,... ) if σ = (. . . , N + 1, s, . . . )

vu(...,s,... ) if σ = (. . . , s, N + 1, . . . )

0 otherwise.

(24)

Since ∑

σ∈SN+1

uσ 7→
∑

σ∈SN

(vuσ + (1− v)uσ) =
∑

σ∈SN

uσ,

this map induces a map of affine schemes

pN+1→s : ∆1
C ×∆N !−1

C → ∆
(N+1)!−1
C .

One should think of this as embedding a curved copy of ∆1
C ×∆N !−1

C into ∆
(N+1)!−1
C .

We get also the map p∗
N+1→s of dg commutative algebras from the polynomial differ-

ential forms on ∆
(N+1)!−1
C to the polynomial differential forms on ∆1

C ×∆N !−1
C ,

p∗
N+1→s : C[uσ, duσ]σ∈SN+1

/
〈
∑

σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ〉

→ C[v, dv]⊗ C[uσ , duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉,

given again by (24).
We can now define an analogue of the Laurent-expansion map ιw→zs for AN . (Here

we shall overload the notation ιw→zs somewhat.)

Definition-Proposition 9. There is a map of commutative algebras in dg AN -
modules

ιw→zs : AN+1 → AN{{w − zs}}

given by ιw→zs ⊗ p∗
N+1→s. That is, we take the formal Laurent expansion in small

w − zs with z1, . . . , zN held fixed, and we pull back to the copy of ∆1
C × ∆N !−1

C in

∆
(N+1)!−1
C defined by the map pN+1→s above.
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Proof. We certainly have a map of commutative algebras in dg vector spaces

AN+1 → BN ((w − zs))⊗ C[v, dv]⊗ C[uσ, duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉.

What has to be checked is first that this map respects the defining boundary conditions
of AN{{w − zs}} and second that it is a map of AN -modules.

Let ω ∈ AN+1 be any element. We must show that ιw→zs(ω) obeys the defining
boundary conditions of AN{{w − zs}}.

Consider first (ιw→zs(ω))|v=0. On the preimage of the zero locus of v under the
map p∗

N+1→s, we have that uτ vanishes for all τ ∈ SN+1 except for those of the form
(. . . , N + 1, s, . . . ). Thus, in particular, on that preimage we have that uτ = 0 for all

τ ∈ Ss,N+1
N+1 . Therefore the pullback of ω to that preimage is regular in w−zs by virtue

of the defining boundary conditions of AN+1, and hence (ιw→zs(ω))|v=0 is regular in
w − zs, as required.

The argument for (ιw→zs(ω))|v=1 is similar.
Next consider (ιw→zs(ω))|

uσ=0∀σ∈S
ij
N

for distinct i, j ∈ [1, N ] \ {s}. We must show

that this is regular in zi − zj . When we set to zero uσ for all σ ∈ Sij
N , we are thereby

setting to zero the images p∗
N+1→s(uτ ) of uτ for all τ ∈ Sij

N+1. Therefore the pullback
ω|

(p∗
N+1→s

)−1({uσ=0∀σ∈S
ij
N

})
of ω to this preimage is regular in zi − zj , by virtue of

the defining boundary conditions of AN+1. Hence (ιw→zs(ω))|
uσ=0∀σ∈S

ij
N

is regular in

zi − zj, again as required.
Finally we consider (ιw→zs(ω))|uσ=0∀σ∈Sis

N
for i ∈ [1, N ] \ {s}. When we set to

zero uσ for all σ ∈ Sis
N , we are thereby setting to zero the images p∗

N+1→s(uτ ) of uτ

both for all τ ∈ Sis
N+1 and crucially also for all τ ∈ Si,N+1

N+1 . Therefore the defining
boundary conditions of AN+1 guarantee that the pullback ω|(p∗

N+1→s
)−1({uσ=0∀σ∈Sis

N
})

of ω to this preimage is regular in both zi − zs and crucially also in zi − w. Hence
(ιw→zs(ω))|uσ=0∀σ∈Sis

N
is regular in zi−zs, again as required. (One should keep in mind

that the process of taking Laurent expansions introduces additional singularities. For
example

ιw→zs

1

w − zi
=

∞∑

k=0

(−1)k 1

(zs − zi)k+1
(w − zs)k.

These are dealt with by the “and crucially” part of the argument above.)
The argument for (ιw→zs(ω))|uσ=0∀σ∈Ssi

N
is similar.

It remains to check that the map is a map of dg AN -modules, cf. Lemma 7. But
this follows from the observation that, for every σ ∈ SN , we have

p∗
N+1→s(ιN (uσ)) =

∑

τ∈π−1
N

(σ)

p∗
N+1→s(uτ ) = vuσ + (1− v)uσ = uσ. �

5.2. Cospan of dg Lie algebras. Let us define A′
N+1 to be the nonunital dg sub-

algebra of AN+1 consisting of those elements vanishing as w → ∞. At this stage we
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have maps of commutative algebras in dg AN -modules

A′
N+1 −→

N⊕

k=1

AN{{w − zk}} ←−
N⊕

k=1

AN{{w − zk}}+.

(Here AN{{w − zk}}+ := AN [[w − zk]]⊗C[v, dv], as in § 2.3.)
Let g be a simple finite-dimensional Lie algebra over C, as earlier. On tensoring

with g we get maps of Lie algebras in dg AN -modules. Namely, let us define

a := g⊗
N⊕

k=1

AN{{w − zk}}, a+ := g⊗
N⊕

k=1

AN{{w − zk}}+, a− := g⊗A′
N+1.

Then we have the cospan of Lie algebras in dg AN -modules

a−
IGlobal−−−−→ a

IRavioli←−−−− a+.

This is analogous to the cospan of Lie algebras in BN -modules we had in Sec-
tion 3 above. (In what follows we shall often omit the map IRavioli and simply identify
elements of a+ with their embedded images in a.)

Moreover, we still have the following.

Proposition 10. As a dg AN -module, a is the sum (although not, as we shall see,
the direct sum) of the images of a+ and a−:

a = a+ + IGlobal(a−).

Proof. We must show that every element of a can be written as a sum of an element
of a+ and an element of IGlobal(a−). Let us define

a± := g⊗
N⊕

i=1

AN{{w − zi}}±

where on the right ±means restricting to non-negative (respectively, strictly negative)
powers of w−zi. Thus, a+ ≡ a+, but of course a− 6= IGlobal(a−). At the level of dg AN -
modules we evidently have a = a−⊕a+. Given any element X ∈ a, let X = X+ +X−

be its corresponding decomposition. It is enough to show that X− is in the image of
IGlobal(a−) modulo terms in a+. In other words, it is enough to construct a map of
dg AN -modules

g : a− → a−,

the “building global objects” map, with the property that (IGlobal(g(X−)))− = X−

for all X ∈ a. To that end, we first note that the map

pN+1→s : ∆1
C ×∆N !−1

C → ∆
(N+1)!−1
C

we defined above has a left inverse

qs : ∆
(N+1)!−1
C → ∆1

C ×∆N !−1
C (25)

given by (here, recall (22))

q∗
s := ι{s,N+1}⊂[1,N+1] ⊗ ι[1,N ]⊂[1,N+1].
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That is, explicitly, we have

q∗
s(v) =

∑

τ∈S
s,N+1
N+1

uτ , q∗
s(uσ) = ιN (uσ), σ ∈ SN ,

with ιN as in (21) and Ss,N+1
N+1 as in (19). To see that qs is left inverse to pN+1→s

we note first that p∗
N+1→sq∗

s(uσ) = p∗
N+1→s(ιN (uσ)) = uσ for every σ ∈ SN , as we

checked in the proof of Definition-Proposition 9 above; and second that

p∗
N+1→sq∗

s(v) = p∗
N+1→s




∑

τ∈S
s,N+1
N+1

uτ


 = v

∑

σ∈SN

uσ = v.

where in the last equality we have used the defining relation
∑

σ∈SN
uσ = 1 of the

algebro-geometric simplex ∆N !−1
C .

Now, suppose we are given an element ω ∈ AN{{w−zk}}−. Such an ω is in particular
a polynomial differential form valued in (w−zk)−1BN [(w−zk)−1]. We apply to it the
map of commutative algebras in BN -modules

(w − zk)−1BN [(w − zk)−1] →֒ B′
N+1.

The result is an element of the dg commutative algebra

B′
N+1 ⊗ C[v, dv]⊗ C[uσ , duσ]σ∈SN

/
〈
∑

σ∈SN

uσ − 1,
∑

σ∈SN

duσ〉

obeying certain boundary conditions. We may map it to the dg commutative algebra

B′
N+1 ⊗ C[uσ, duσ]σ∈SN+1

/
〈
∑

σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ〉

via the map q∗
s,N . Let us check that the resulting form, call it ω̃, obeys the defining

boundary conditions ofAN+1. First, consider singularities in zi−zj for any i, j ∈ [1, N ]

with i 6= j. We must consider the pullback of ω̃ to {uσ = 0∀σ ∈ Sij
N+1}. On the latter

zero locus, we have q∗
s,N(uτ ) = 0 for every τ ∈ Sij

N . Therefore this pullback of ω̃ is
regular in zi − zj , since ω obeyed the boundary conditions of AN . Next, consider

singularities in w− zs. We are to consider the pullback of ω̃ to {uσ = 0∀σ ∈ Ss,N+1
N+1 }

(or the same with SN+1,s
N+1 , for which the argument is similar). On that zero locus,

q∗
s(v) vanishes. Therefore ω̃ is regular in w − zs there, since ω obeyed the boundary

conditions of AN{{w − zs}}. Finally note that ω̃ is obviously regular everywhere in
zi − w for i 6= s.

In this way we obtain a map of dg AN -modules

gk : AN{{w − zk}}− → A
′
N+1 (26)

for each k. For future use, let us remark that for each individual k, the map gk is even
a map of commutative algebras in dg AN -modules. (It is the analogue in our raviolo
context of the map (w − zk)−1BN [(w − zk)−1]→ B′

N+1 above.)
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Hence we obtain a map of dg AN -modules

g : g⊗
N⊕

k=1

AN{{w − zk}}− → g⊗A′
N+1.

By construction, we have that (IGlobal(g(X)))− = X− for all X ∈ a. Thus, finally,

X = IGlobal(g(X)) + (X − IGlobal(g(X))) ∈ IGlobal(a−) + a+ (27)

for every X ∈ a, as required. �

The map IGlobal has a nontrivial kernel.14 Of course, one could always simply define
the subalgebra A′

N+1 to be the quotient of AN+1 by the kernel of IGlobal (a dg ideal).
However, the following example illustrates a more profound disanalogy between the
usual case and the ravioli case.

Example 11. Consider the case N = 2, N + 1 = 3. Let us write

v12 := ι{1,2}(u(12)) = u(123) + u(132) + u(312),

v13 := ι{1,3}(u(12)) = u(123) + u(213) + u(132),

v23 := ι{2,3}(u(12)) = u(123) + u(213) + u(231)

(and v32 = 1− v23 etc.). Consider the element

Ω12 :=
dv31

w − z1
∧

dv32

w − z2
−

dv21

z2 − z1
∧

dv32

w − z2
−

dv31

w − z1
∧

dv12

z1 − z2
∈ A′

3.

It is nonzero. The singular part of its expansion in small w − z1 is

dv31 ∧ (dv32 − dv12)
1

w − z1

1

z1 − z2
.

Consider the pullback of this to the copy of ∆1 ×∆1 in ∆3 defined by the map p3;1

above. We have, on this copy of ∆1 ×∆1,

p∗
3→1(v12) = 0 + (1− v)u(12) + vu(12) = u(12)

p∗
3→1(v13) = 0 + vu(21) + vu(12) = v(u(21) + u(12)) = v

p∗
3→1(v23) = 0 + vu(21) + (1− v)u(21) = u(21).

Therefore this pullback vanishes:

−dv ∧ d(u(12) − u(12))
1

w − z1

1

z1 − z2
= 0.

A similar story holds for the expansion in small w − z2.

14For example, consider the case N = 2, N + 1 = 3. The element
u(123)u(312)

w − z2

belongs to A′
3, and it is in the kernel of the expansion map A3 → A2{{w − z1}} ⊕ A2{{w − z2}}.

Indeed, p∗
3→1(u(123)) = 0 and p∗

3→2(u(312)) = 0.

(Observe, in passing, that for example neither
u(123)

w−z2
nor

du(123)

w−z2
belong to A3: they are not regular

in w − z2 on pullback to u(321) = u(312) = u(132) = 0.)
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We conclude that the image of this element Ω12 ∈ A
′
3 in A2{{w−z1}}⊕A2{{w−z2}},

while nonzero, is nonsingular in the local variables w−zi in each summand, i.e. it lies
in the subalgebra A2{{w − z1}}+ ⊕A2{{w − z2}}+. ⊳

Remark 12. The element Ω12 is closed and we expect that it represents a nontrivial
cohomology class in A3. However we expect that its image in A2{{w−z1}}⊕A2{{w−
z2}} is exact. That is, we expect that H(Ω12) is in the kernel of the induced map of
cohomologies. ⊳

Remark 13. It is interesting to note the superficial similarity of the elements of which
Ω12 is an example, namely

dvN+1,j

w − zj
∧

dvjk

zj − zk
+

dvjk

zj − zk
∧

dvk,N+1

zk − w
+

dvk,N+1

zk − w
∧

dvN+1,j

w − zj
,

with the relations

dzi − dzj

zi − zj
∧

dzj − dzk

zj − zk

+
dzj − dzk

zj − zk

∧
dzk − dzi

zk − zi
+

dzk − dzi

zk − zi
∧

dzi − dzj

zi − zj
= 0

which hold in the de Rham complex of holomorphic forms on the usual configuration
space ConfN = AN

C \{diagonals} = SpecBN , and which are examples of Orlik-Solomon
relations associated to a hyperplane arrangement. See [SV91] and e.g. [VY19, §2]. ⊳

As Example 11 shows, the image of a− in a has nontrivial intersection with a+. Let
us define a0 to be this intersection, a Lie subalgebra in dg AN -modules of a:

a0 := IGlobal(a−) ∩ a+ ⊂ a.

Remark 14. Recall that in the usual case reviewed in Section 3, we were able to arrange
that b−∩b+ = 0 in b, and hence that b = b−⊕b+ was the direct sum of vector spaces, or
of BN -modules. We did that by defining b− = g⊗B′

N+1, where B′
N+1 was the nonunital

subalgebra of BN+1 consisting of those rational expressions in w vanishing as w→∞;
that ensured, in (8), that the image of B′

N+1 had trivial intersection with the image

of
⊕N

i=1 BN [[w − zi]]. In the construction of rational conformal blocks, [FFR94], it
is common to define B′

N+1 that way, for precisely this reason. Doing so yields what
is called the modified space of conformal blocks in [FB04, §13]. If one weakens that
restriction on b− then one also has a non-trivial intersection b− ∩ b+ =: b0 in the
usual setting, and the space of coinvariants has a residual quotient,

F(g;BN ; M1, . . . , MN ) ∼= (BN ⊗M)
/
b0.

For example, if one insists only that elements of b− be regular as w → ∞, then one
finds b0 = BN ⊗ g, the Lie algebra of zero modes. In that case, the space of rational
coinvariants is isomorphic as a BN -module to the quotient by the diagonal action of
g on M =

⊗N
i=1 Mi:

F(g;BN ; M1, . . . , MN ) ∼= BN ⊗
(
M
/
g
)
.

⊳
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In our present setting, there seems to be no obvious way to avoid this non-trivial
intersection a0. By the PBW theorem (which holds since AN ⊃ Q) we get that

UAN
(a) ∼= UAN

(IGlobal(a−))⊗UAN
(a0) UAN

(a+) (28)

as (UAN
(IGlobal(a−)), UAN

(a+))-bimodules in dg AN -modules.
That has the following somewhat awkward consequence: UAN

(a) is not free as a
(UAN

(a−), UAN
(a+))-bimodule in dg AN -modules, and therefore we have no reason

to expect UAN
(a) to be cofibrant in that category with respect to its projective model

structure, cf. Remark 15 below.

5.3. Ravioli coinvariants. Let now Mi be any smooth module over the dg Lie
algebra g ⊗ C{{w − zi}}+, for each 1 ≤ i ≤ N . (By smooth we mean, following the
usual case in [FB04, §5.1.5], that for all m ∈Mi the Lie ideal g⊗(w−zi)

kC{{w−zi}}+
acts as zero on m, for all sufficiently large k.)

Then AN ⊗Mi is a smooth module over g⊗AN{{w − zi}}+, for each i, and

AN ⊗M := AN ⊗
N⊗

i=1

Mi,

is a left UAN
(a+)-module. We have the induced module

M := UAN
(a)⊗UAN

(a+) (AN ⊗M),

a left UAN
(a)-module. It is equivalently, the tensor product (over AN ) of the induced

modules

Mi := UAN
(g⊗AN{{w − zi}}) ⊗UAN

(g⊗AN {{w−zi}}+) (AN ⊗Mi)

at the marked points.
We may then define the space (more precisely, the dg AN -module) of ravioli coin-

variants of g acting on M1, . . . , MN to be

F(g;AN ; M1, . . . , MN ) := AN ⊗UAN
(a−) UAN

(a) ⊗UAN
(a+) (AN ⊗M).

By the PBW theorem, (28), we have that

F(g;AN ; M1, . . . , MN ) ∼= AN ⊗UAN
(a0) (AN ⊗M) =: (AN ⊗M)/a0 (29)

as left AN -modules.

Remark 15. This definition has the merit of being relatively concrete (although we
don’t have an explicit description of a0). In principle however, one should really con-
sider the derived tensor product

AN ⊗
L
UAN

(a−) UAN
(a)⊗L

UAN
(a+) M, (30)

which will be modelled by the tensor product

F̃ := AN ⊗UAN
(a−) QUAN

(a)⊗UAN
(a+) M
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where QUA(a) is a cofibrant replacement of UA(a) in the category of (UAN
(a−), UAN

(a+))-
bimodules in dg AN -modules equipped with its projective model structure [Hin97].15

We expect Theorem 17 below to apply to (a suitable choice of model F̃ of) this derived
space of coinvariants as well, but we do not show that here.

⊳

6. Main result

We can now state the main result of the present paper, which says that the state-
field map for the raviolo vacuum module V , as we defined it in §2.5, emerges naturally
when one considers appropriate limits of the spaces of coinvariants introduced in
§ 5.3 above. That is, Theorem 3 above continues to hold in the raviolo case, mutatis
mutandis.

Indeed, let us again specialize to the case in which we insert a copy of the vacuum
module at the N − 1st and Nth marked points, MN−1 = C|0〉 and MN = C|0〉. By
identifying local coordinates w−zi in the complex-algebraic direction, we may identify
each of the dg Lie algebras g⊗C{{w− zi}} with a single copy g⊗C{{s}}, and thereby
identify their vacuum Verma modules with a single abstract copy of V :

V ∼= Vi := Ind
g⊗C{{w−zi}}
g⊗C[[w−zi]]

C|0〉.

There is then an evident embedding map of dg vector spaces

Vi →֒ UAN
(g⊗AN{{w − zi}})⊗UAN

(g⊗AN {{w−zi}}+) (AN |0〉)

coming from the unit map 1 : C →֒ AN .
At the other sites, we pick arbitrary smooth modules Mi as before. Pick vectors

mi ∈ Mi for 1 ≤ i ≤ N − 2, and states A, B ∈ V in this abstract copy of V . On
taking coinvariants, we get the class

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
∈ F(g;AN ; M1, . . . , MN−2,C,C) (31)

Remark 16. One should keep in mind that, despite our attempt to make the notation
as similar as possible to the usual case in (18), this object encodes a lot of information.
It is a polynomial differential form on a simplex of dimension N !−1, whose pullbacks
to certain faces of that simplex encode the behaviour in regimes in which some of the
insertion points are ordered in particular ways in the topological direction whenever
they collide in the complex plane. For example, the pullback to the vertex given by
uσ = 1 encodes the behaviour in the regime in which all the points are so ordered, in
the particular total order σ(1) < · · · < σ(N). ⊳

The raviolo vacuum module state-field map captures the behaviour of this coinvari-
ant in the limit in which the Nth marked point becomes close to the (N−1)st marked

15That is, a (UAN
(a−), UAN

(a+))-bimodule in dg AN -modules is the same thing as a left dg
UAN

(a−) ⊗AN
UAN

(aop
+ ))-module, so this is a special case of the model category structure on the

category of (left) dg-modules over a (not necessarily graded-commutative) dg-algebra as defined in
[Hin97].
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point, while remaining marked points, the vectors m1, . . . , mN−2, and the states A, B
are all held fixed.

Indeed, recall that AN ≃ RΓ(RavConfN ,O) models the dg commutative algebra
of derived sections of the structure sheaf on ravioli configuration space. We have the
expansion map

ιzN →zN−1
: AN → AN−1{{zN − zN−1}}

defined in the same way as ιzN+1→zN
in § 5.1 above.

Theorem 17 (Relation of the raviolo state-field map YRav to coinvariants). For all
homogeneous states A, B ∈ V and vectors mi ∈Mi, 1 ≤ i ≤ N − 2, we have

ιzN →zN−1

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]

= (−1)|A||B|[m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ YRav(A; zN − zN−1) B

zN−1

]

where

YRav(−; x) : V → HomdgVectC
(V , V {{x}})

is the raviolo state-field map defined in § 2.5.

Proof. The proof is given in Section 7 below. �

6.1. Worked example. Before we give the proof of Theorem 17 it is instructive to
work through a simple example in detail. Let a ∈ g and consider the state

(
a⊗

dv

z

)
|0〉 ∈ V

in the vacuum module V . Everything below will hold, mutatis mutandis, with dv
replaced by v(1 − v); cf. the discussion about cochains versus cohomology in § 2.5
above.

We are first to identify this abstract copy of V with the local copy associated to the
Nth marked point, by identifying the coordinate z with the local coordinate w − zN

at that point. Then we are to insert the state above into a generic coinvariant with
some vectors m1, . . . , mN−2 at (what are about to be) the far marked points, and
some state B ∈ V at (what is about to be) the nearby N − 1st marked point. We
obtain a coinvariant we shall call f ,

f :=
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗

(
a⊗

dv

w − zN

)
|0〉

zN

]
∈ AN ⊗M. (32)

Our aim is to now to “swap” the lowering operator onto the other sites. The first step
is to identify the lowering operator a ⊗ dv

w−zN
as the expansion at this Nth site of

some element of the global dg Lie algebra. To do that, we apply the map gN of (26)
to the element

a⊗
dv

w − zN
∈ g⊗ C{{w − zN}}− →֒ g⊗AN{{w − zN}}−.
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We have, cf. (25),

q∗
N (v) = ι{N,N+1}⊂[1,N+1](v) =

∑

σ∈S
N,N+1
N+1

uσ

and so we find that

G := gN (a⊗
dv

w − zN
) = a⊗

d
∑

σ∈S
N,N+1
N+1

uσ

w − zN
∈ g⊗A′

N+1

where we have introduced a name, G, for this element. By definition of coinvariants,
we have

−f =
N−2∑

i=1

(−)∗[m1

z1

⊗ · · · ⊗ (ιw→zi
G) mi

zi

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ |0〉

zN

]

+ (−)|B|[m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗
(
ιw→zN−1

G
)

B

zN−1

⊗ |0〉

zN

]

Here (−)∗ are certain Koszul signs, which we do not write out in full.
We are to take the expansion ιzN →zN−1

f ∈ AN−1{{zN−zN−1}}⊗M of this element
f ∈ AN ⊗M . As we shall discuss in §7.2.1 below, coinvariants are suitably functorial,
so that

−ιzN →zN−1
f =

N−2∑

i=1

(−)∗[m1

z1

⊗ · · · ⊗
(
ιzN →zN−1

ιw→zi
g
)

mi

zi

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ |0〉

zN

]

+ (−1)|B|[m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗
(
ιzN →zN−1

ιw→zN−1
g
)

B

zN−1

⊗ |0〉

zN

]

(33)

Now let us actually compute these expansions of G at the other sites. Recall the
definition of the expansion map, Definition-Proposition 9. For every s ∈ {1, . . . , N−1}
we have

p∗
N+1→s




∑

σ∈S
N,N+1
N+1

uσ


 = v

∑

σ∈S
N,s
N

uσ + (1− v)
∑

σ∈S
N,s
N

uσ =
∑

σ∈S
N,s
N

uσ (34)

Thus, in particular, the expansion of G at the (N − 1)st site is given by

ιw→zN−1
G = −

∞∑

k=0

d
∑

σ∈S
N,N−1
N

uσ

(zN − zN−1)k+1

(
a⊗ (w − zN−1)k

)
.

We are working in dg AN -modules, so that the factor
d
∑

σ∈S
N,N−1
N

uσ

(zN −zN−1)k+1 is a scalar. Let

us apply the expansion map ιzN →zN−1
to this scalar prefactor. Note that

p∗
N→N−1

∑

σ∈S
N,N−1
N

uσ = (1− u)
∑

σ∈SN−1

uσ = (1− u).
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Here we write u here rather than v for the coordinate of

C{{zN − zN−1}} :=
{
ω ∈ C((zN − zN−1))⊗ C[u, du]

: ω|u=0 ∈ C[[zN − zN−1]] and ω|u=1 ∈ C[[zN − zN−1]]
}

to avoid a clash with the coordinate v of e.g. C{{w − zs}}. Note that the above is
consistent with the fact that

∑
σ∈S

N,N−1
N

uσ = ι{N−1,N}⊂[1,N ](1 − u); see (22) for the

definition of ι{N−1,N}⊂[1,N ]. We obtain that

ιzN →zN−1

d
∑

σ∈S
N,N−1
N

uσ

(zN − zN−1)k+1
= 1

d(1− u)

(zN − zN−1)k+1
∈ AN−1{{zN − zN−1}}.

Next let us consider the expansions of g at the far sites. Crucially, for each i ≤ N−2,
the operations ιzN −zN−1

and ιw→zi
commute. This is true for the the coefficients in

C[zi, w, (zi − zj)
−1, (w − zi)

−1]1≤i,j≤N ;i6=j ≡ BN+1 just as in the usual case; and for
the forms on the simplex, one checks (similarly to (34)) that on the one hand

p∗
N→N−1p∗

N+1→i




∑

σ∈S
N,N+1
N+1

uσ


 =

∑

σ∈S
N,i
N

uσ =
∑

σ∈S
N−1,i
N−1

uσ

while on the other hand

p∗
N+1→ip

∗
N→N−1




∑

σ∈S
N,N+1
N+1

uσ


 =

∑

σ∈S
N−1,N+1
{1,...,N−1,N+1}

uσ =
∑

σ∈S
N−1,i
N−1

uσ.

(We don’t get such agreement when i = N−1, which is reassuringly consistent with the
fact that the usual expansion maps ιw→zN−1

and ιzN →zN−1
certainly do not commute

– indeed this failure is in some sense at the heart of how vertex algebras work.)
Thus, for each i ≤ N − 2, we have ιzN →zN−1

ιw→zi
G = ιw→zi

ιzN →zN−1
G and here

ιzN −zN−1
G = +

∞∑

k=0

(zN − zN−1)k ⊗



a⊗
d
∑

σ∈S
N−1,N+1
{1,...,N−1,N+1}

uσ

(w − zN−1)k+1



 .

We recognize the terms in this expansion as elements of the global Lie algebra, and
by definition of coinvariants we obtain that

ιzN →zN−1
f =

∞∑

k=0

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ (−)|B|(zN − zN−1)k

(
a⊗

dv

(w − zN−1)k+1

)
B

zN−1

]

+
∞∑

k=0

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ (−)|B| d(1− u)

(zN − zN−1)k+1

(
a⊗ (w − zN−1)k

)
B

zN−1

]

(Here we dropped the vacuum state at the Nth site, cf. § 7.3 below.)
We recognize the first and second lines here as, respectively, the (−)+ and (−)−

parts of the raviolo mode expansion of the state (a⊗ dv
w−zN

)|0〉 with which we began,

as we defined it in § 2.5.
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7. Proof of Theorem 17

In this section we prove Theorem 17, namely that the raviolo state-field map YRav

from § 2.5 emerges naturally when one considers appropriate limits of the spaces of
ravioli coinvariants introduced in § 5.3.

To separate concerns, we shall first warm up by rehearsing a proof of the analogous
statement in the usual case, Theorem 3. Our approach is similar to that of [VY17].

7.1. Proof of Theorem 3. We first need to recall a functoriality property of coin-
variants and the property known as propagation of vacua.

7.1.1. Functoriality of coinvariants. Let us consider certain spaces of coinvariants
with N − 1 movable marked points. The construction of coinvariants in Section 3 of
course goes through with N − 1 in place of N , yielding the BN−1-module

F(g;BN−1; M1, . . . , MN−1).

But we may also choose to work over BN , or over BN−1((zN − zN−1)), i.e. to allow
our coefficient functions to depend in some prescribed way on the formal variable zN ,
even though there are now only modules assigned to the points z1, . . . , zN−1. More
precisely, we may consider the following cospans of commutative algebras

BN [w, (w − zi)
−1]′1≤i≤N−1 BN−1((zN − zN−1))[w, (w − zi)

−1]′1≤i≤N−1

⊕N−1
j=1 BN ((w − zj))

⊕N−1
j=1 BN−1((zN − zN−1))((w − zj))

⊕N−1
j=1 BN [[w − zj ]]

⊕N−1
j=1 BN−1((zN − zN−1))[[w − zj ]]

(35)

– in BN -modules on the left and in BN−1((zN − zN−1))-modules on the right. We
obtain corresponding spaces of coinvariants which we denote respectively as

F(g;BN ; M1, . . . , MN−1) and F(g;BN−1((zN − zN−1)); M1, . . . , MN−1).

Moreover the algebra map

BN → BN−1((zN − zN−1))

given by expanding in small zN − zN−1 for fixed z1, . . . , zN−1 allows us to change
base ring, in the sense that it induces the embeddings of commutative algebras in
BN−1-modules shown as horizontal arrows in the diagram above. Let us use ιbase

change

for that change-of-base map. The diagram above commutes. In this way, one has the
following functoriality property of coinvariants.
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Lemma 18 (Base change commutes with taking coinvariants). The following diagram
of BN−1-modules commutes:

⊗N−1
i=1 Mi

⊗N−1
i=1 ιbase

change
Mi

F(g;BN ; M1, . . . , MN−1) F(g;BN−1((zN − zN−1)); M1, . . . , MN−1)

BN ⊗M BN−1((zN − zN−1))⊗M

∼= ∼=

�

Let us stress that in the horizontal maps in (35) above, we are merely performing
a change of base ring. By contrast, we reserve the notation ιzN →zN−1

for the algebra
map which expands in small zN − zN−1 for fixed z1, . . . , zN−1 and w ≡ zN+1. Thus,
for example,

ιzN →zN−1
: B′

N+1 → BN−1[w, (w − zj)
−1]1≤j≤N−1((zN − zN−1))

sends the element 1/(w − zN ) to its expansion
∑∞

k=0
(zN −zN−1)k

(w−zN−1)k+1 .

One should keep in mind that the Laurent-expansion maps ιw→zN−1
and ιzN →zN−1

do not commute. For example, they fail to commute when applied to 1/(w − zN ).
(Indeed, they map from BN+1 into different rings. In some sense, this fact is central
to the notion of vertex algebras: see e.g. the discussion in [FB04, §1].) On the other
hand, for all i ≤ N−2, the Laurent expansion maps ιw→zi

and ιzN →zN−1
do commute.

7.1.2. Propagation of vacua. When MN = C, there is a canonical identification, of
BN -modules, between our initial space of coinvariants with N marked points and one
with only N − 1 marked points:16

F(g;BN ; M1, . . . , MN−2,C,C) ∼= BN ⊗M ∼= F(g;BN ; M1, . . . , MN−2,C).

One has, moreover, the following equality
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ |0〉

zN

]
=
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

]
. (36)

This property is an example of what is sometimes called propagation of vacua.

7.1.3. Completion of the proof of Theorem 3. The equality in (36) establishes the
statement of Theorem 3 in the special case that A = |0〉 is the vacuum state.

Next we shall show that for all states A ∈ V, the class
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
∈ F(g;BN ; M1, . . . , MN−2,C,C) ∼= BN ⊗M

16The reader will notice that while the choice MN = C is crucial here, the choice MN−1 = C actually
plays no role. And indeed, the construction goes through more generally, and yields the structure of
MN−1 as a module over the vertex algebra V.
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has a representative of the form

∑

i

[
A

(−)
i .(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗A
(+)
i . B

zN−1

⊗ |0〉

zN

]

for some finite sum over i and for certain A
(−)
i and A

(+)
i belonging to U(g ⊗ (w −

zN )−1C[(w− zN )−1]). Here, when we write A
(−)
i .(m1 ⊗ · · · ⊗mN−2), the action is by

definition via the embedding

ιfar : g⊗ (w − zN )−1C[(w − zN )−1] →֒ g⊗ (w − zN )−1BN [(w − zN )−1]

→֒
N−2⊕

i=1

g⊗ BN [[w − zi]].

Call this embedding ιfar. Similarly when we write A
(+)
i .B, the action is via the em-

bedding into g⊗ BN [[w − zN−1]] which we shall call ιnear:

ιnear : g⊗ (w − zN )−1C[(w − zN )−1] →֒ g⊗ (w − zN )−1BN [(w − zN )−1]

→֒ g⊗ BN [[w − zN−1]].

Indeed, we may suppose

A = X1
−k1
· · ·Xn

−kn
|0〉

for some number n ∈ Z≥0 of elements Xi ∈ g and mode numbers −ki ∈ Z<0. Here
Xk := X⊗(w−zN )k. (Such states A span V as a C-vector space.) By a straightforward
induction on n, one checks that

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]

= (−1)n
n∑

m=0

∑

(µ,ν)∈Unshfn
m

[
(ιfar
←−
A µ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ (ιnear
←−
A ν) B

zN−1

⊗ |0〉

zN

]
(37)

where the inner sum is over unshuffles, i.e. permutations (µ1, . . . , µm, ν1, . . . , νn−m) of
(1, . . . , n) such that µ1 < · · · < µm and ν1 < · · · < νn−m, and where we write

←−
Aµ := Xµm

−kµm
· · ·Xµ1

−kµ1
,

←−
A ν := X

νn−m

−kνn−m
· · ·Xν1

−kν1
.

Then by propagation of vacua as in (36), we may regard the right-hand side in (37)
as an element of the space of coinvariants F(g;BN ; M1, . . . , MN−2,C). The equality
in (37) is in BN ⊗M . We may apply the change-of-base map ιbase

change
to both sides to
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obtain the equality

ιbase
change

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
(38)

= (−1)n
n∑

m=0

∑

(µ,ν)∈Unshfn
m

ιbase
change

[
(ιfar
←−
Aµ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ (ιnear
←−
A ν)B

zN−1

]

= (−1)n
n∑

m=0

∑

(µ,ν)∈Unshfn
m

[
ιbase
change

(ιfar
←−
A µ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ ιbase
change

(ιnear
←−
A ν)B

zN−1

]

= (−1)n
n∑

m=0

∑

(µ,ν)∈Unshfn
m

[
(ιbase
change

ιfar
←−
A µ)ιbase

change
(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ ιbase
change

(ιnear
←−
A ν)B

zN−1

]

in BN−1((zN−zN−1))⊗M . In the second step, we used the functoriality of coinvariants,
Lemma 18.

It remains to show that this expression is equal to the expression on the right-
hand side in the statement of Theorem 3. The latter is, first and foremost, a for-
mal series in (zN − zN−1)±1 whose coefficients belong to the space of coinvariants
F(g;BN−1; M1, . . . , MN−2,C) ∼=BN−1

BN−1 ⊗M :
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ Y (A; zN − zN−1) B

zN−1

]

=
∑

k∈Z

(zN − zN−1)−k−1[m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗A(k) B

zN−1

]

Smoothness of the module V ensures that for each fixed A, B ∈ V this is in fact
a formal Laurent series, i.e. A(k)B = 0 for k ≫ 0. Thus, it certainly belongs in
(BN−1⊗M)((zN − zN−1)). To show that it is equal to the expression in (38) we must
show that for each k ∈ Z, the coefficients of (zN − zN−1)k agree. Consider any term
(µ, ν) in the sum in (38). We have

ιbase
change

ιfar
←−
A µ = ιzN →zN−1

ιfar
←−
Aµ = ιfarιzN →zN−1

←−
A µ.

Since (ιnear
←−
A ν)B ∈ (zN − zN−1)−1BN−1[(zN − zN−1)−1] ⊗ V, only finitely many

terms in the series ιzN →zN−1

←−
Aµ contribute to the overall coefficient of (zN − zN−1)k.

The coefficients of these finitely many terms belong to U(g⊗BN−1[w, (w−zN−1)−1]′),
and we can swap them over to the module at the marked point zN−1, by definition
of the space of coinvariants. After doing so we obtain

(−1)n
n∑

m=0

(−1)m
∑

(µ,ν)∈Unshfn
m

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ (ιnearιzN →zN−1

−→
Aµ)(ιbase

change
ιnear
←−
A ν)B

zN−1

]

where
−→
A µ := Xµ1

−kµ1
. . . Xµm

−kµm
. Here, we recognize the state-field map Y :

n∑

m=0

(−1)n−m
∑

(µ,ν)∈Unshfn
m

(ιnearιzN →zN−1

−→
A µ)(ιbase

change
ιnear
←−
A ν)B = Y (A, zN − zN−1)B.
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(This expression can be checked by induction on n.)

7.2. Proof of Theorem 17. Now we return to the proof of Theorem 17. Where
possible, we shall try to follow the proof above almost word-for-word.

We begin by establishing a raviolo analogue of the functoriality property of coin-
variants, Lemma 18.

7.2.1. Functoriality of raviolo coinvariants. Once again, let us consider certain spaces
of coinvariants with N − 1 movable marked points. We certainly have the dg AN−1-
module

F(g;AN−1; M1, . . . , MN−1).

But we may also choose to work over AN , or over AN−1{{zN −zN−1}}. More precisely,
we may consider the following cospans of commutative algebras

AN{w, (w − zi)
−1}′1≤i≤N−1 AN−1{{zN − zN−1}}{w, (w − zi)

−1}′1≤i≤N−1

⊕N−1
j=1 AN{{w − zj}}

⊕N−1
j=1 AN−1{{zN − zN−1}}{{w − zj}}

⊕N−1
j=1 AN [[w − zj ]]

⊕N−1
j=1 AN−1{{zN − zN−1}}[[w − zj ]]

(39)
– in dg AN -modules on the left and in dg AN−1{{zN − zN−1}}-modules on the right.
Here, the algebras appearing in the top line are defined in close analogy with the
definition of A′

N+1 in §5.1. Namely, we first let AN{w, (w−zi)
−1}1≤i≤N−1 denote the

commutative algebra in dg AN -modules given by the subalgebra of AN+1 consisting
of forms which are regular in w − zN ≡ zN+1 − zN everywhere:

AN{w, (w − zi)
−1}1≤i≤N−1

:=
{
ω ∈ BN [w, (w − zi)

−1]1≤i≤N−1 ⊗ C[uσ, duσ]σ∈SN+1

/
〈
∑

σ∈SN+1

uσ − 1,
∑

σ∈SN+1

duσ〉

: for all distinct i, j ∈ [1, N + 1], the pullback ω|
{uσ=0∀σ∈S

ij
N+1}

is regular in zi − zj

}
.
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Similarly, we let AN−1{{zN − zN−1}}{w, (w− zi)
−1}1≤i≤N−1 denote the dg commuta-

tive algebra given by

AN−1{{zN − zN−1}}{w, (w − zi)
−1}1≤i≤N−1

:=
{
ω ∈ BN−1((zN − zN−1))[w, (w − zi)

−1]1≤i≤N−1 ⊗ C[v, dv]

⊗ C[uσ, duσ]σ∈S[1,N−1]∪{N+1}

/
〈

∑

σ∈S[1,N−1]∪{N+1}

uσ − 1,
∑

σ∈S[1,N−1]∪{N+1}

duσ〉

: for all distinct i, j ∈ [1, N − 1] ∪ {N + 1},

the pullback ω|
{uσ=0∀σ∈S

ij

[1,N−1]∪{N+1}
}

is regular in zi − zj ,

and the pullbacks ω|v=0 and ω|v=1 are both regular in zN − zN−1
}
.

It is a commutative algebra in dgAN−1{{zN−zN−1}}-modules, by an argument similar
to that in Lemma 7.

We again let prime ′ denote the subalgebras of these algebras consisting of forms
ω such that ω → 0 as w →∞.

We obtain corresponding spaces of coinvariants which we denote respectively as

F(g;AN ; M1, . . . , MN−1) and F(g;AN−1{{zN − zN−1}}; M1, . . . , MN−1).

Moreover the algebra map

AN → AN−1{{zN − zN−1}}

from § 5.1 induces the maps of commutative algebras in dg AN−1-modules shown as
horizontal arrows in the diagram above. At the cost of overloading notation somewhat,
let us continue to use ιbase

change
for that change-of-base map.

The diagram above is then a commuting diagram in the category of commutative
algebras in dg AN−1-modules. In this way, one has the following functoriality property
of coinvariants.

Lemma 19 (Base change commutes with taking coinvariants – raviolo case). The
following diagram of dg AN−1-modules commutes:

⊗N−1
i=1 Mi

⊗N−1
i=1 ιbase

change
Mi

F(g;AN ; M1, . . . , MN−1) F(g;AN−1{{zN − zN−1}}; M1, . . . , MN−1)

�

We continue to reserve the notation ιzN →zN−1
for the expansion map, in the sense

of § 5.1, which expands in small zN − zN−1 for fixed z1, . . . , zN−1 and w ≡ zN+1.

7.3. Propagation of vacua in the raviolo case. When MN = C is the trivial
module, there is an isomorphism, of dg AN -modules, between our initial space of
coinvariants with N marked points and one with only N − 1 marked points:

F(g;AN ; M1, . . . , MN−2,C,C) ∼= F(g;AN ; M1, . . . , MN−2,C).



RAVIOLO VERTEX ALGEBRAS, COCHAINS AND CONFORMAL BLOCKS 41

One has the equality
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ |0〉

zN

]
=
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

]
, (40)

which is the propagation of vacua property in the raviolo case.

7.4. Completion of the proof of Theorem 17. The equality in (40) establishes
the statement of Theorem 17 in the special case that A = |0〉 is the vacuum state.

Next we shall show that for all states A ∈ V in the raviolo vacuum module V , the
class [

m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
∈ AN ⊗M

has a representative of the form
∑

i

[
A

(−)
i .(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗A
(+)
i . B

zN−1

⊗ |0〉

zN

]

for some finite sum over i and for certain A
(−)
i and A

(+)
i belonging to U(g⊗C{{w −

zN}}−). Recall the algebra map

gN : AN{{w − zN}}− → A
′
N+1

from (26). When we write A
(−)
i .(m1⊗ · · ·⊗mN−2), the action is by definition via the

map of dg Lie algebras

ιfar : g⊗ C{{w − zN}}− →֒ g⊗AN{{w − zN}}−

gN−−→ g⊗A′
N+1

(ιw→z1 ,...,ιw→zN−2
)

−−−−−−−−−−−−−→
N−2⊕

i=1

g⊗AN{{w − zi}}+,

which we continue to call ιfar. Similarly when we write A
(+)
i .B, the action is by defi-

nition via the map of dg Lie algebras

ιnear : g⊗ C{{w − zN}}− →֒ g⊗AN{{w − zN}}−

gN−−→ g⊗A′
N+1

ιw→zN−1
−−−−−−→ g⊗AN{{w − zN−1}}+.

Indeed, we may suppose

A = X1 · · ·Xn|0〉

for some number n ≥ 0 of elements Xi ∈ g ⊗ C{{w − zN}}−, 1 ≤ i ≤ n. By a
straightforward induction on n, one checks that
[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]

=
n∑

m=0

∑

(µ,ν)∈Unshfn
m

(−1)n+χ
[
(ιfar
←−
Aµ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ (ιnear
←−
A ν) B

zN−1

⊗ Y

zN

|0〉
]

(41)
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where the inner sum is over unshuffles, as defined above after (37), and where we write
←−
A µ := Xµm · · ·Xµ1 ,

←−
A ν := Xνn−m · · ·Xν1 .

In the expression above (−1)χ denotes the appropriate Koszul sign coming from the
braiding of the tensor product; it is implicitly a function of the grades of the factors
Xi and of the states mj (all of which without loss of generality we shall assume are
homogeneous) and on the unshuffle (µ, ν). We don’t need to work it out explicitly at
this stage – many of the terms will cancel out in the next swapping step below; in
particular the dependence on the |mj | will drop out.

By propagation of vacua as in (40), we may regard the right-hand side in (41) as
an element of the space of coinvariants F(g;AN ; M1, . . . , MN−2,C,C). We may apply
the change-of-base map ιbase

change
to both sides to obtain the equality

ιbase
change

[
m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ B

zN−1

⊗ A

zN

]
(42)

=
n∑

m=0

∑

(µ,ν)∈Unshfn
m

(−1)n+χιbase
change

[
(ιfar
←−
A µ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ (ιnear
←−
A ν)B

zN−1

]

=
n∑

m=0

∑

(µ,ν)∈Unshfn
m

(−1)n+χ
[
ιbase
change

(ιfar
←−
A µ)(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ ιbase
change

(ιnear
←−
A ν)B

zN−1

]

=
n∑

m=0

∑

(µ,ν)∈Unshfn
m

(−1)n+χ
[
(ιbase
change

ιfar
←−
A µ)ιbase

change
(m1

z1

⊗ · · · ⊗mN−2

zN−2

)⊗ ιbase
change

(ιnear
←−
A ν)B

zN−1

]
.

In the second step, we used Lemma 19.
The space of coinvariants F(g,AN−1{{zN−zN−1, M1, . . . , MN−2,C,C) is a quotient

of the free module AN−1{{zN − zN−1}} ⊗M , cf. (29). Consider a representative in
that free module. An element of AN−1{{zN − zN−1}}⊗M is by definition an element
of

AN−1((zN − zN−1))⊗ C[v, dv]⊗M

whose pullbacks to v = 0 and v = 1 are regular in zN − zN−1. So it is a Laurent series
in zN − zN−1 (albeit one obeying certain extra conditions), and thus to specify it it
is enough to give the coefficient of (zN − zN−1)k for every k ∈ Z. So, let k ∈ Z and
consider the coefficent of (zN − zN−1)k in the expression in (42). Consider any term
(µ, ν) in the sum. We still have17

ιbase
change

ιfar
←−
A µ = ιzN →zN−1

ιfar
←−
Aµ = ιfarιzN →zN−1

←−
A µ.

By smoothness of the vacuum module V , we have that

ιnear
←−
A νB ∈ AN−1{{zN − zN−1}}− ⊗ V .

17In more detail: it is still the case that ιw→zs and ιzN →zN−1 commute whenever s ≤ N − 2, where
these are now the expansion maps defined as in Definition-Proposition 9. Indeed, one checks that the
maps p∗

N+1→s and p∗
N→N−1 (the latter defined by obvious analogy with the former) commute for all

s ≤ N − 2. It is interesting to note also that they do not commute for s = N − 1.
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(To stress the point: on grading grounds, at most finitely many terms in the series
ιnearX ∈ g⊗AN [[w−zN−1]] are nonzero when acting on B, for any given state B ∈ V

and X ∈ g ⊗ C{{w − zN}}. It follows that there is a lower bound on the powers of

zN−zN−1 that appear in ιnear
←−
A νB. This logic is exactly as in the usual case discussed

in § 7.1.)

Therefore only finitely many terms in the series ιzN →zN−1

←−
Aµ contribute to the

overall coefficient of (zN−zN−1)k. The coefficients of these finitely many terms belong
to U(g ⊗ AN−1{{zN − zN−1}}−), and we can swap them over to the module at the
marked point zN−1, by definition of the space of coinvariants. After doing so we obtain

(−1)|A||B|[m1

z1

⊗ · · · ⊗mN−2

zN−2

⊗ YRav(A, zN − zN−1)B

zN−1

]

where we recognize the expression for the raviolo state-field map YRav from Lemma 1.
This completes the proof of Theorem 17.

Appendix A. Semisimplicial objects and the Thom-Sullivan functor

A.1. Semisimplicial objects. Let ∆ denote the category whose objects are the
finite nonempty totally-ordered sets

[n] := {0 < 1 < · · · < n}, n ∈ Z≥0,

and whose morphisms are the strictly order-preserving maps θ : [n]→ [N ]. Such maps
are generated by coface maps,

dj : [n]→ [n + 1]; i 7→

{
i i < j

i + 1 i ≥ j
for j = 0, 1, . . . , n + 1.

A semicosimplicial object A in a category C is a functor A : ∆ → C. Similarly,
a semisimplicial object Z in a category C is a functor Z : ∆op → C. The maps
∂n

i := Z(dn
i ) : Z([n + 1])→ Z([n]) are the face maps of Z. One thinks of the category

∆ as follows:
· · · [2] [1] [0]

and so a semisimplicial object Z in C defines a diagram in C of the form

· · ·Z([2]) Z([1]) Z([0]).

A.2. Polynomial differential forms on the standard algebro-geometric sim-

plex. There is a simplicial dg commutative algebra

Ω : ∆op → AlgCom(dgVectC)

defined as follows. For each n ≥ 0, Ω([n]) is the dg commutative algebra

Ω([n]) := C[t0, . . . , tn; dt0, . . . dtn]
/
〈

n∑

i=0

ti − 1,
n∑

i=0

dti〉

with ti in degree 0 and dti in degree 1, for each i, and equipped with the usual de
Rham differential. For any map φ : [n]→ [N ] of ∆,

Ω(φ) : Ω([N ])→ Ω([n])
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is the map of dg commutative algebras defined by ti 7→
∑

j∈φ−1(i) tj. One should think

of Ω([n]) as the complex of polynomial differential forms on the standard algebro-
geometric n-simplex,

∆n
C := SpecC[t0, . . . , tn]/〈

n∑

i=0

ti − 1〉 →֒ An+1
C .

A.3. The functor Th. Suppose we are given a functor A : ∆ → AlgCom(VectC);
that is, suppose we are given a semicosimplicial object in commutative algebras in
vector spaces. One can construct a commutative algebra in dg vector spaces, given
by the graded vector space

Th•(A) :=

{
a = (an)n≥0 ∈

∏

n≥0

A([n])⊗ Ω•([n]) :

(A(φ)⊗ id⊗) an = (id⊗ Ω(φ)) am in Ω([n])⊗A([m])

for all maps φ : [n]→ [m] of ∆

}
, (43)

equipped with the de Rham differential d = dde Rham⊗id and the graded commutative
product given by (ω⊗ a)(τ ⊗ b) := ω ∧ τ ⊗ ab. This defines the action on objects of a
functor, called the Thom-Sullivan [HS97] or Thom-Whitney [FMM12] functor, from
semicosimplicial commutative algebras to dg commutative algebras,

Th : [∆, AlgCom(VectC)]→ AlgCom(dgVectC).

There is a quasi-isomorphism of dg vector spaces
∫

: Th•(A)
∼
−→ C•(A) to the un-

normalized cochain complex C•(A) associated A, namely the complex with Cn(A) :=
A([n]) for n ≥ 0, Cn(A) = 0 for n < 0, and differential dn

C :=
∑n+1

j=0 (−1)jdj . (This

quasi-isomorphism is defined by integrating over the simplices; see [HS97, §5.2.6].)
(By suitably totalizing, the definition Th• extends to a functor from semicosimpli-

cial dg commutative algebras to dg commutative algebras, which is how Th• is more
commonly presented; but the semicosimplicial commutative algebras we encounter in
the present paper are all concentrated in degree 0, so (43) suffices for our purposes.)
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