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Abstract. Reachability is a fundamental decision problem that arises
across various domains, including program analysis, computational mod-
els like cellular automata, and finite- and infinite-state concurrent sys-
tems. Mortality, closely related to reachability, is another critical decision
problem.
This study focuses on the computational complexity of the reachabil-
ity and mortality problems for two-dimensional hierarchical piecewise
constant derivative systems (2-HPCD) and one-dimensional piecewise
affine maps (1-PAM). Specifically, we consider the bounded variants of
2-HPCD and 1-PAM, as they are proven to be equivalent regarding their
reachability and mortality properties [3].
The proofs leverage the encoding of the simultaneous incongruences
problem, a known NP-complete problem, into the reachability (alterna-
tively, mortality) problem for 2-HPCD. The simultaneous incongruences
problem has a solution if and only if the corresponding reachability (al-
ternatively, mortality) problem for 2-HPCD does not. This establishes
that the reachability and mortality problems are co-NP-hard for both
bounded 2-HPCD and bounded 1-PAM.

Keywords: Reachability problem · Mortality problem · Complexity.

1 Introduction

Reachability is a fundamental problem that arises in various contexts, including
program analysis, computational models like cellular automata, and finite- and
infinite-state concurrent systems. It seeks to answer the question: given a com-
putational system with a set of rules, can a certain state (or set of states) be
reached from a given initial state (or set of states)? [1].

Another fundamental problem in the analysis of hybrid dynamical systems
is the mortality problem: given a computational system, decide whether the
system halts when starting from any state [6]. The mortality problem relates
closely to stability properties and the long-term behaviour of trajectories within
the system dynamics.

Neither the reachability problem nor the mortality problem is strictly more
general than the other. Both problems are generally undecidable and are only
known to be decidable for specific classes [9, 10].
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Studying the computational complexity of both the reachability and mortal-
ity problems is crucial for establishing theoretical boundaries on the efficiency of
underlying algorithms. To date, this aspect has received less attention compared
to the fundamental question of decidability, although some research has been
conducted in this direction [5, 6, 16].

Asarin et al. explored systems that straddle the boundary between decid-
ability and undecidability [3]. They investigated variants of two-dimensional
piecewise constant derivative systems (2-PCD) and demonstrated that certain
variants are equivalent, in terms of reachability, to subclasses of one-dimensional
piecewise affine maps (1-PAM).

In particular, Asarin et al. considered an extension of the 2-PCD model,
known as a two-dimensional hierarchical PCD (2-HPCD), where discrete loca-
tions are organised hierarchically, with each location defined by a 2-PCD. Affine
reset rules govern transitions between these locations. When all locations are
bounded, the 2-HPCD is referred to as a bounded 2-HPCD (2-BHPCD). Simi-
larly, if all intervals are bounded, 1-PAM is called bounded (1-BPAM).

This study explores the computational complexity of the reachability and
mortality problems for 2-HPCD and 1-PAM, aiming to elucidate the theoreti-
cal boundaries of their computational hardness. It also addresses in a broader
context the open question posed in [6] regarding the complexity of mortality in
dimension two, specifically focusing on restricted 2-HPCD.

Our proofs are based on encoding the NP-complete simultaneous incongru-
ences problem [7, 14] into the reachability and mortality problems for 2-BHPCD.
We then extend these results to 1-BPAM. Note that, in contrast to [6], one of the
challenges in this study is simulating the simultaneous incongruences problem
using a 2-BHPCD, that is, using a model of a lower dimension. In [6], verifying
whether the current k is a solution to the given instance of the simultaneous
incongruences problem is achieved through the z-coordinate, which represents
the current value of k in a restricted 3-HPCD.

It is notable that piecewise-affine models, together with reachability anal-
ysis, are applied in various domains, including gene-regulatory networks [15],
biochemical kinetics [8], and qualitative biological models that depict interac-
tions involving protein promotion or inhibition [4].

The rest of the paper is organised as follows. In Section 2 we introduce pre-
liminaries. Section 3 demonstrates how the simultaneous incongruences problem
can be simulated by 2-BHPCD. In Section 4 we prove that the reachability
problem for 2-BHPCD and 1-BPAM is co-NP-hard. Section 5 establishes that
the mortality problem for 2-BHPCD and 1-BPAM is also co-NP-hard. Finally,
Section 6 contains our concluding remarks.

2 Preliminaries

In this section, we define the notions of one-dimensional piecewise affine maps
(1-PAM) and two-dimensional hierarchical piecewise constant derivative systems
(2-HPCD), closely following the notations used in [2, 3, 11, 12].
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2.1 Piecewise Affine Maps

A rational interval in R is defined as one of the following forms: [x, y], [x, y),
(x, y], (x, y), (−∞, y], (−∞, y), [x,∞), (x,∞), where x, y ∈ Q with x 6 y.

Definition 1 (1-PAM, [3]). Let Ii be a finite set of disjoint rational intervals.
A function f : R → R is a one-dimensional piecewise affine map (1-PAM) if it
can be expressed as f(x) = aix+ bi for x ∈ Ii.

Definition 2 (Trajectory). A trajectory of a 1-PAM f is a sequence x1, x2, . . .
such that xi+1 = f(xi) for all i. We say that y is reachable from x if there exists
a finite trajectory starting at x and ending at y.

Definition 3 (1-BPAM, [3]). A 1-PAM f is called bounded (1-BPAM) if none
of its intervals is infinite.

The class of the bounded 1-PAM is particularly noteworthy because it rep-
resents a subset of piecewise affine functions that lie on the boundary between
decidability and undecidability when it comes to analysing their trajectories and
reachability properties. They pose interesting challenges in terms of determining
the reachability of points under repeated applications of f .

2.2 Hierarchical Piecewise Constant Derivative Systems

A two-dimensional piecewise constant derivative system (2-PCD) is defined as
a finite set of regions, where each region is associated with a constant vector
field. In this context, the vector field within each region is characterised by a
single vector in R2. Intuitively, the vector assigned to each region determines
the direction a particle would follow upon entering the region from any of its
boundaries.

Definition 4 (2-PCD, [11]). A two-dimensional piecewise constant derivative
system (2-PCD) is defined by a pair H = (P, ϕ), where:

1. P = {p1, . . . , pk} is a finite set of non-overlapping polygons with nonempty
interiors, referred to as regions throughout this paper.

2. ϕ : P → R2 is a function that assigns a vector ϕ(p) ∈ R2 to each region
p ∈ P, defining the dynamics within p.

The set of all border points of P, denoted B(P) =
⋃
p∈P B(p), consists of

the union of the boundaries of all regions p, where B(p) denotes the boundary
of region p. Formal definitions can be found in [11] or [12].

Since such a system exhibits deterministic behaviour within each polygonal
region, the reachability analysis primarily focuses on computing the discrete
successors of points located on the boundaries of these regions.

Definition 5 (Step, [11]). Let H = (P, ϕ) be a 2-PCD, and let x and x′ be
two distinct points in R2. We say that the pair (x,x′) is a step if there exists a
region p ∈ P and a t > 0 such that the following conditions hold:
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1. x′ = x+ t · ϕ(p),
2. x,x′ ∈ B(p), that is, both points lie on the boundary of region p,
3. x′′ = x+ t′ · ϕ(p) ∈ p for every 0 < t′ < t.

Intuitively, the pair (x,x′) is considered a step if both points x and x′ lie on
the boundary of a region p, and the straight line segment connecting x and x′

is entirely contained within p.

Definition 6 (Trajectory). Let H = (P, ϕ) be a 2-PCD, and let x0 be a point
in B(P). A trajectory rooted at x0 is a sequence τ `x0

= x0,x1, . . . ,x`, where each
pair (xi,xi+1) for 0 6 i 6 `− 1 is a step. We say that ` is the length of τ `x0

.

Note that for each point x0 and each `, such a trajectory is unique. Further-
more, we say that a point xf is reachable from x0 if xf belongs to the trajectory
τ `x0

for some finite `.

Definition 7 (2-HPCD, [3]). A two-dimensional hierarchical piecewise con-
stant derivative system (2-HPCD) consists of a collection of locations, where
each location is a 2-PCD system. Additionally:

1. Transition guards determine transitions between locations based on specified
conditions.

2. Affine reset rules govern the behaviour of variables when transitioning be-
tween locations.

A formal definition of a 2-HPCD system can be found in [3] and [6]. The
definition of a 2-HPCD system emphasises that its trajectories largely resem-
ble those of a 2-PCD system, but with occasional jumps induced by transition
guards. We note that the notion of a trajectory in a 2-PCD can be straightfor-
wardly extended to a 2-HPCD.

In this study we consider deterministic 2-HPCD systems: the transition
guards for each location are mutually exclusive.

Definition 8 (2-BHPCD, [3]). A 2-HPCD H is called bounded (abbreviated
as 2-BHPCD) if none of its regions is infinite.

2.3 Reachability and Mortality Problems

Reachability typically manifests in two forms: point-to-point reachability and
interval-to-interval reachability.

Definition 9 (Reachability problem). Given a 2-HPCD H, the point-to-
point and interval-to-interval reachability problems are defined as follows:

– Point-to-point reachability: given an initial point x0 and a final point
xf , determine whether xf is reachable from x0.

– Interval-to-interval reachability: given an initial interval I0 and a final
interval If , determine whether some point xf ∈ If is reachable from some
point x0 ∈ I0.
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Definition 10 (Mortality problem). Given a 2-HPCD H, the mortality prob-
lem asks whether there exists an initial point x0 such that the trajectory τx0

start-
ing from x0 is infinite. If such a point exists, H is called immortal. If for every
point x0, the trajectory τx0 , starting at x0, eventually halts, then H is called
mortal.

The reachability problem, including interval-to-interval reachability, and the
mortality problem for 1-PAM are defined analogously to those for 2-HPCD.

2.4 Notion of Simulation

The concept of simulation typically involves a relationship between two compu-
tational systems, A and B, where one system (the simulating system, in this
case A) can reproduce the behaviour of the other system (the simulated system,
in this case B). This implies that every computational step or action that B can
perform can also be executed by A.

Simulation is particularly relevant when comparing different models of com-
putation or analysing their complexity. It is formally defined below in terms of
state transition systems:

Definition 11 (Simulation).We assume deterministic transition systems Γ =
(S, δ, s0, sf ) and Γ ′ = (S′, δ′, s′0, s

′
f ), where:

– S, S′ are sets of states,
– δ : S → S, δ′ : S′ → S′ are transition functions,
– s0, s′0 are initial states,
– sf , s′f are final states.

We say that Γ can be simulated by Γ ′ with respect to the reachability and mor-
tality problems if there exists a function f : S → S′ such that the following
conditions hold:

1. s′0 = f(s0),
2. s′f = f(sf ),
3. f(δ(s)) = δ′(f(s)) for any s ∈ S.

This definition specifies that simulation involves finding a function f that
maps states of system Γ to states of system Γ ′, preserving initial and final
states, and ensuring that the transitions of Γ are mirrored by Γ ’s transitions
under f .

We note that it follows from Lemma 3.3 and Lemma 3.4 in [3] that bounded
1-PAM and bounded 2-HPCD can simulate each other, as summarised in the
following theorem:

Theorem 1 ([3]). Every bounded 1-PAM can be simulated by a bounded 2-
HPCD. Conversely, every bounded 1-HPCD can be simulated by a bounded 1-
PAM.

Furthermore, the complexity of simulating bounded 2-HPCD by bounded
1-PAM (and vice versa) is polynomial in the size of the simulated instance, as
demonstrated in the proofs provided in [3].
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3 Simulation of Simultaneous Incongruences Problem by
Bounded 2-HPCD

Our proof of the co-NP-hardness of reachability for bounded 2-HPCD, and sub-
sequently for bounded 1-PAM, is based on the simulation of the simultaneous
incongruences problem by 2-HPCD as outlined below:

1. In Section 3.1, we define the simultaneous incongruences problem and discuss
its feature used in our proofs.

2. In Section 3.2, we illustrate how to simulate an instance of the simultaneous
incongruences problem using the reachability problem for 2-BHPCD. By
construction, the instance of the simultaneous incongruences problem has a
solution if and only if the corresponding reachability problem does not.

3. In Section 3.3, we discuss the complexity of the provided simulation.

3.1 Simultaneous Incongruences Problem

In this section, we define the simultaneous incongruences problem, which is
known to be NP-complete [7]. We will use this problem to show that the reach-
ability and mortality problems for 2-HPCD and 1-PAM are co-NP-hard.

Definition 12 (Simultaneous incongruences problem). Given a set S =
{(α1, β1), . . . , (αk, βk)}, where k > 1, of ordered pairs of positive numbers such
that αi 6 βi for every 1 6 i 6 k, the simultaneous incongruences problem asks:
does there exist an integer x such that x 6≡ αi (mod βi) for every 1 6 i 6 k?

In the following, we use the notation LCM(β1, . . . , βk) to denote the least
common multiple of the numbers β1, . . . , βn. This is the smallest positive inte-
ger that is evenly divisible by β1, . . . , βk. We will also use the technical lemma
provided below.

Lemma 1 ([6]). There exists a solution for the simultaneous incongruences
problem for S = {(α1, β1), . . . , (αk, βk)} if and only if there exists a solution x
such that 1 6 x 6 Λ, where Λ = LCM(β1, . . . , βk), the least common multiple of
the numbers β1, . . . , βk.

3.2 Simulation

In this section, we demonstrate the construction of a 2-HPCD that simulates
the simultaneous incongruences problem. Unlike the approach taken by Bell et
al. in [6], our study has a challenge of simulating this problem using a lower-
dimensional system. In contrast, Bell et al. determine whether the current k is a
solution to the given simultaneous incongruences problem using the z-coordinate,
which tracks the current value of k in the restricted 3-HPCD.

Let S = {(α1, β1), . . . , (αk, βk)} be a set of ordered pairs of positive integers
such that αi 6 βi for 1 6 i 6 k. In the following, we will use Hsip(S) to denote
the 2-HPCD that simulates the simultaneous incongruences problem for S.

The reachability problem for 2-HPCD simulates the simultaneous incongru-
ences problem for S, incorporating the insights from Lemma 1.
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Fig. 1. Encoding of the simultaneous incongruences problem by the reachability
problem for 2-HPCD, where: (a) location Loc0 with the flow given by the vector
x = (1, 1− 1/(1+Λ)); (b) location Loci with the flow given by the vector x = (1,−1).

1. For the current value of x, where 1 6 x 6 Λ and Λ = LCM(β1, . . . , βk),
we check whether x 6≡ αi (mod βi) holds for each pair (αi, βi), where 1 6
i 6 k. If for every i, x is a solution to the given simultaneous incongruences
problem, then the reachability problem for the 2-HPCD Hsip(S) will not
have a solution. That is, the trajectory will not reach the final state.

2. If for any x, where 1 6 x 6 Λ, there is an i, where 1 6 i 6 k, such that
x ≡ αi (mod βi), then x is not a solution to the simultaneous incongruences
problem for S and the trajectory will reach the final state.

The locations of Hsip(S) are utilised in two primary ways: firstly, to perform
modulo operations, and secondly, to increment the value being tested as needed.
These functionalities are schematically depicted in Figure 1.

We assume that s0 = −1 and si = i +
∑i−1
j=1 βj , where 1 6 i 6 k. Now, we

specify details of the construction of each Loci, where 0 6 i 6 k:

1. Location Loc0:
(a) Loc0 is the convex polygon bounded by the straight lines x1 = s0, x1 = 0,

x2 = 0 and x2 = Λ.
(b) The flow in Loc0 is given by the vector x = (1, 1− 1/(1 + Λ)).

2. Location Loci, 1 6 i 6 k:
(a) Each Loci is the convex polygon bounded by the straight lines x1 = si,

x1 = si + βi, x2 = 0 and x2 = −x1 + (Λ+ si).
(b) The flow in Loci is given by the vector x = (1,−1).

To determine if the current value of x, 1 6 x 6 Λ, is a solution to the given
instance of the simultaneous incongruences problem, we simulate this check using
the trajectory starting at the point (1, x−x/(1+Λ)) within location Loc1. Thus,
x is encoded as (1, x− x/(1 + Λ)).

In the following, I×{y} will be used to denote the set {(x, y) | x ∈ I}, where
I is an open or half-open or closed bounded rational interval. We will use {x}×I
likewise. Now, each location Loci and its flow are used to perform the modulo
operation for the pair (αi, βi) as follows:
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Loci

x1
si + j − 1 si + j

. . .
δ = 1/(1 + Λ)

(a)

Loci′

x2

δ

0 1 Λ

. . .. . .

(b)

Fig. 2. Mapping the line interval (si + j− 1, si + j)×{0} ⊂ Loci, where 1 6 i 6 k and
1 6 j 6 βi, onto the line interval {si′}× (0, Λ) ⊂ Loci′ , where either 0 6 i+1 = i′ 6 k
or i′ = 0: (a) a schematic representation of the line segment (si + j − 1, si + j)× {0};
(b) a schematic representation of the line segment {si′} × (0, Λ).

– Whenever the trajectory transitions from a point in the line interval {si} ×
(0, Λ) to a point in the line interval {si + βi} × (0, Λ− βi), the value of the
variable x2 decreases by βi.

– If the trajectory reaches a point (x′, 0) ∈ (si + j − 1, si + j) × {0}, where
1 6 j 6 βi, it implies that x ≡ j (mod βi), where x = [(si + j)− x′](1 + Λ).

A summary of the details of the 2-HPCDHsip(S) such as its transition guards
and reset relations are provided in Table 3.2.

Guard Transition to Reset relation
G0 = {0} × (0, Λ) {1} × (0, Λ) ⊂ Loc1 x1 → 1

x2 → x2
G1

i = {si + βi} × (0, Λ− bi) {si} × (0, Λ− βi) ⊂ Loci x1 → si
x2 → x2

G2
i = (si + αi − 1, si + αi)× {0} {−1} × (0, Λ) ⊂ Loc0 x1 → −1

x2 → −Λx1+Λ(si+ai)
G3

i,j = (si + j − 1, si + j)× {0} {si+1} × (0, Λ) ⊂ Loci+1 x1 → si+1

x2 → −Λx1 +Λ(si + j)

Table 1. 2-HPCD Hsip(S): a summary of the guards, transitions and reset relations,
where 1 6 i 6 k, and 1 6 j 6 αi − 1 or αi + 1 6 j 6 βi.

The reset relation for variable x1 determines the transition to the next loca-
tion, and the reset relation for variable x2 is defined as follows:

1. If (x1, x2) ∈ G0 ∪ G1
i , then x2 → x2. In this case, the reset relation for x2 is

the identity relation.
2. If (x1, x2) ∈ G2

i ∪ G3
i,j , then x2 → −Λx1 + Λ(si + j) (see Figure 2). In this

case, the reset relation for x2 is computed by solving the system of equations
a(si + j − 1) + b = Λ and a(si + j) + b = 0, where a and b are unknowns.
This yields a = −Λ and b = Λ(si + j).
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The reachability problem forHsip(S) is defined as follows: is there a trajectory
starting at the initial point x0 and reaching the final point xf , where

– x0 = (1, 1− 1/(1 + Λ)) ∈ Loc1, and
– xf = (s0, Λ) ∈ Loc0.

Now, we verify if the current x, where 0 6 x 6 Λ, is a solution to the
simultaneous incongruences problem for the given set S. We assume that the
trajectory has reached a point (x′, 0) ∈ (si, si+βi)×{0} in Loci, where 1 6 i 6 k.

1. If x ≡ αi (mod βi), then the current value of x is not a solution to the
simultaneous incongruences problem for S. In this scenario, G2

i forces the
transition from Loci to Loc0 in order to increase the value of x by one.

2. If x 6≡ αi (mod βi), then the current value of x is a potential solution to the
simultaneous incongruences problem for S. Here, G3

i,j , where 1 6 j 6 αi − 1
or αi + 1 6 j 6 βi, forces a transition from Loci to Loci+1 to increment the
value of i by one.

We assume that all G3
k,j , where 1 6 j 6 αk − 1 or αk + 1 6 j 6 βk, have no

outgoing transitions. If there exists a solution to the simultaneous incongruences
problem for S, then starting at the point x0 = (1, 1 − 1/(1 + Λ)) in Loc1, the
trajectory will eventually reach a point in G3

k,j , meaning the trajectory will halt
without reaching the final state.

If there is no solution to the simultaneous incongruences problem for S,
then the trajectory will eventually reach the point xf = (s0, Λ) in Loc0, which
represents the final state.

3.3 Complexity of Simulation

We adhere to the standard complexity theory convention, where both a set
S = {(α1, β1), . . . , (αk, βk)} and the corresponding 2-HPCD Hsip(S) are en-
coded in a “reasonable” manner, typically in binary. It is straightforward that
the representation of S requires at least k bits. We also assume that the values
of βi’s in S are polynomial in k.1

From a computational perspective, Hsip(S) can be specified by lists of loca-
tions (vertices), guards, and flows. By construction, the number of locations in
Hsip(S) is k + 1. The number of guards in Hsip(S) totals g = 1 +

∑k
i=1(βi + 1),

which is polynomial in k provided that all βi are polynomial in k.
Moreover, for any vertex v = (x, y) in Hsip(S), by construction, we have

−1 6 x 6 k +
∑k
i=1 βk and 0 6 y 6 Λ, where Λ is the least common multiplier

of β1, . . . , βk. Since Λ 6 β1 × β2 × . . . × βk, its binary representation requires

1 A 3-SAT problem ϕ with n variables can be transformed into the simultaneous
incongruences problem for some set S, where the number of pairs in S is polynomial
in the size of ϕ, and all βi are integers polynomial in n [7, 14]. Therefore, in this
context, it suffices to consider a set S containing k pairs, where all βi are integers
polynomial in k.



10 O. Tveretina

O(
∑k
i=1 log βi) bits. This implies that representing all vertices in Hsip(S) is also

polynomial in k.
The complexity of representing the flow in location Loc0, given by the vector

x = (1, 1 − 1/(1 + Λ)), is also polynomial in k assuming Λ is represented in
binary. Therefore, we conclude that the complexity of representing Hsip(S), in
terms of the number of bits required, is polynomial in k.

4 Complexity of the Reachability Problem

In this section, we establish our main result, demonstrating the co-NP-hardness
of the reachability problem for 2-HPCD and 1-PAM. Our approach is outlined
as follows:

1. We use the encoding provided in Section 3, which has the property that the
given instance of the simultaneous incongruences problem has a solution if
and only if the reachability problem does not.

2. The complexity of our simulation is polynomial in the description size of
the given simultaneous incongruences problem, as discussed in Section 3.3.
Consequently, we demonstrate that the reachability problem for 2-BHPCD is
co-NP-hard in Section 4.1.

3. In Section 4.2, we extend our results to show that the reachability problem
for 1-BPAM is also co-NP-hard.

4.1 Complexity of Reachability for Bounded 2-HPCD

In this section, we prove that the complexity of the reachability problem for
2-HPCD is co-NP-hard.

Theorem 2. The reachability problem for 2-BHPCD is co-NP-hard.

Proof. Assume a set of pairs S = {(α1, β1), . . . , (αk, βk)}, k > 1. As discussed
in Section 3.3, we can assume without loss of generality that all βi are of size
polynomial in k.

We encode the simultaneous incongruences problem for S into the bounded
2-HPCD Hsip(S) as described in Section 3.2. The complexity of the construction
is polynomial in k, as outlined in Section 3.3.

By construction, the reachability problem for the 2-HPCD Hsip(S) has a
solution if and only if there is no solution to the simultaneous incongruences
problem for S. Since the simultaneous incongruences problem is NP-complete,
this implies that the reachability problem for 2-HPCD is co-NP-hard. ut

4.2 Complexity of Reachability for Bounded 1-PAM

Now, we show that the complexity of the reachability problem for a bounded
1-PAM is also co-NP-hard.
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Corollary 1. The reachability problem for 1-BPAM is co-NP-hard.

Proof. The complexity of simulating 2-BHPCD by 1-BPAM (or vice versa) is
polynomial in the instance size, as demonstrated in the proofs provided in [3].
Now, it follows from Theorem 1 and Theorem 2 that the reachability problem
for 1-BPAM is co-NP-hard. ut

5 Complexity of the Mortality Problem

Next, we establish that the mortality problem for bounded 2-HPCD and 1-
PAM is also co-NP-hard. Unlike the reachability problem, which focuses on
determining whether a trajectory reaches a final state, the mortality problem
examines whether all trajectories halt. More specifically:

1. In Section 5.1, we demonstrate how to encode an instance of the simulta-
neous incongruences problem using the mortality problem for 2-BHPCD.
Specifically, the system is mortal if and only if there is no solution for the
corresponding simultaneous incongruences problem, otherwise the system is
immortal.

2. The complexity of our simulation is polynomial in the description size of the
given simultaneous incongruences problem. Consequently, we show that the
mortality problem for 2-BHPCD is co-NP-hard in Section 5.1.

3. In Section 5.2 we extend our results to show that the mortality problem for
1-BPAM is also co-NP-hard.

5.1 Complexity of Mortality for Bounded 2-HPCD

Now we can state that the complexity of the mortality problem for 2-HPCD is
co-NP-hard.

Theorem 3. The mortality problem for 2-BHPCD is co-NP-hard.

Proof. Assume a set of pairs S = {(α1, β1), . . . , (αk, βk)}, where k ≥ 1. As
discussed in Section 3.3, we can assume without loss of generality that all βi are
of size polynomial in k.

We construct the 2-HPCD Hsip
m (S) such that the system is mortal if and only

if there is no solution to the simultaneous incongruences problem for S.
The construction follows the approach detailed in Section 3.2. Additionally,

we assume that G3
k,j , where 1 6 j 6 αk − 1 or αk + 1 6 j 6 βk, is reset to

the interval [x0, x0] (or, alternatively, to a sufficiently small interval around x0),
where x0 = (1, 1 − 1/(1 + Λ)), which is the initial point in location Loc1, as
defined in Section 3.2. Further specifics are as follows:

1. Assuming that there is a solution to the simultaneous incongruences problem
for S:
If there exists a solution to the simultaneous incongruences problem for
S, then starting from x0 = (1, 1 − 1/(1 + Λ)) in Loc1, the trajectory will
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eventually reach some point x ∈ G3
k,j , where 1 6 j 6 αk − 1 or αk + 1 6

j 6 βk, and it will be reset to the initial point x0 = (1, 1 − 1/(1 + Λ)) in
Loc1. That is, there is at least one infinite trajectory. Therefore, Hsip

m (S) is
immortal.

2. Assuming that there is no solution to the simultaneous incongruences prob-
lem for S:
If the simultaneous incongruences problem for S has no solution, then start-
ing from any point, the trajectory will eventually reach the final point
xf = (s0, Λ) ∈ Loc0. We assume that there is no outgoing transition from
xf . That is, if there is no solution to the simultaneous incongruences prob-
lem for S, then regardless of where the trajectory starts, it will eventually
halt. Therefore, Hsip

m (S) is mortal.

Since the complexity of this simulation is polynomial in the description size of
an instance of the simultaneous incongruences problem, following the reasoning
provided in Section 3.3, we conclude that the mortality problem for 2-BHPCD is
co-NP-hard. ut

5.2 Complexity of Mortality for Bounded 1-PAM

Extending the results provided in Section 5.1, we can conclude that the com-
plexity of the mortality problem for 1-PAM is also co-NP-hard.

Corollary 2. The mortality problem for 1-BPAM is co-NP-hard.

Proof. The complexity of simulating 2-BHPCD by 1-BPAM (or vice versa) is
polynomial in the instance size, as demonstrated in the proofs provided in [3].
Now, it follows from Theorem 1 and Theorem 3 that the mortality problem for
1-BPAM is co-NP-hard. ut

6 Conclusion

In this work, we have demonstrated that the reachability and mortality problems
for bounded 2-HPCD and 1-PAM are co-NP-hard. Our proofs are based on en-
coding the NP-complete simultaneous incongruences problem into the reachabil-
ity and mortality problems for bounded 2-HPCD, and consequently, for bounded
1-PAM.

The interval-to-interval version of the reachability problem in our proofs can
be formulated by considering an ε0-interval around the initial point to represent
the initial interval, and an εf -interval around the final point to represent the final
interval for sufficiently small ε0 and εf . Furthermore, we anticipate that interval-
to-interval reachability and mortality are decidable for bounded 1-PAM and 2-
HPCD, which can be demonstrated by extending the results found in [12, 13].

This work addresses, in a broader context, the open question regarding the
complexity of mortality in dimension two posed for restricted HPCD in [6]. It also
leaves several immediate questions for future research, including providing an
upper bound on the computational complexity of the reachability and mortality
problems in the context of bounded 2-HPCD and 1-PAM.
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