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Abstract—This study delves into integrating Large Language
Models (LLMs), particularly ChatGPT-powered robots, as educa-
tional tools in primary school mathematics. Against the backdrop
of Artificial Intelligence (AI) increasingly permeating educational
settings, our investigation focuses on the response of young learn-
ers to errors made by these LLM-powered robots. Employing
a user study approach, we conducted an experiment using the
Pepper robot in a primary school classroom environment, where
77 primary school students from multiple grades (Year 3 to
5) took part in interacting with the robot. Our statistically
significant findings highlight that most students, regardless of
the year group, could discern between correct and incorrect
responses generated by the robots, demonstrating a promising
level of understanding and engagement with the Al-driven edu-
cational tool. Additionally, we observed that students’ correctness
in answering the Maths questions significantly influenced their
ability to identify errors, underscoring the importance of prior
knowledge in verifying LLM responses and detecting errors.
Additionally, we examined potential confounding factors such
as age and gender. Our findings underscore the importance
of gradually integrating Al-powered educational tools under
the guidance of domain experts following thorough verification
processes. Moreover, our study calls for further research to
establish best practices for implementing AI-driven pedagogical
approaches in educational settings.

Index Terms—Large Language Models, LLM Mathematical
Correctness, Educational Robots, Cognition, Social Robotics

I. INTRODUCTION

In the AI era, information is more accessible than in
previous generations. However, accessing information might
not lead to learning. Learning requires understanding how this
information came together and contributed to cognition devel-
opment. Learning from easily available information provided
by Al applications can limit natural intelligence development
and memory retention [1]. Education has a long-term impact
on the quality of life of individuals and societies. This is why
introducing new approaches without evaluating their long-term
impact on the cognition development of students might have
irrecoverable consequences that can be corrected only in the
following generations. Integrating new approaches needs to
be done while measuring impacts thoroughly and reevaluating
when needed.

Generally, LLMs have been used widely in education [2],
[3]. The consensus is that LLMs can be used to benefit

students, but it is important to note that they are prone to
a variety of errors [4]. Research looking at Al or LLMs in
education has focused on the following aspects. One aspect
concerns errors produced by a LLM that must be verified
before acceptance [5]-[7]. Some other studies evaluated meth-
ods to detect Al generated vs Human content such as Writer,
Copyleaks, GPTZero, and CrossPlag [8]. Some studies raised
questions of integrity when Al authors students’ submissions
or academic manuscripts for scientific publications or aca-
demic and educational gains [9]. The downside of using Al
for gaining such merits could be that the Al skills are being
evaluated and not the long-term student’s skills development
[10]. Most previous work focuses on university students or
textbooks, whether the LLM responses are identified as Al-
generated or human-generated, and whether this enhances
students’ skills or not. Some publications report that the
submissions are enhanced but do not focus on student skills
[11]. ChatGPT, as a famous LLM example, showed out-
standing performance enhancement in supporting students in
economics, satisfactory in programming, and unsatisfactory in
mathematics [12]. While other work has illustrated various
shortcomings in LL.M-assisted learning of computer science
without prior knowledge [13]. The rush to Al-answers in
various tasks at all ages and disciplines has created concerns
over creativity loss and negative impacts on learning and
natural intelligence development and mastery of skills [14]-
[16].

The “Al for Kids” proposal emphasizes the importance of
exposing children to Al literacy as part of digital literacy for
intelligent societies [17]. The proposal presents the why, what
and how to educate 3:8-year-old children about AI. Other
studies discussed further challenges and opportunities in Al in
early childhood education [18]. The World Economic Forum
estimates that 65% of today’s children will be working in
jobs not yet created. This necessitates that Al education start
early with children. The Al-powered education investments are
estimated to grow to $20 billion by 2027 from $4 billion in
2022. Privacy and safety concerns over the children’s excessive
use of Al-enabled technologies in phone and smart home
systems and others have grown consequently [19]. Concerns
also over Al-powered education’s various risks are expressed



at the AI+Education Summit. One of the risks discussed was
bias in the training dataset of the Al models, which did not re-
flect cultural diversity and affected the hoped-for personalised
learning. Another possible risk is that Al could harm students’
critical thinking development, lack of explanation and lack
of proper pedagogy, affecting learning how information is
generated as opposed to making this information quickly
available. The most relevant risk is the errors and incorrect
information in the LLMSs’ responses are well packaged and
sometimes difficult to detect [20].

Robots also have been frequently used in educational con-
texts [21], e.g. to support children with autism in their learning
[22]. Al-powered robots’ role in education and the learning
impact has been evaluated in a systematic review [23]. The
survey evaluated the different studies in which robots have
been used as tutees, tutors, and tools to assist learners in
various educational stages, from primary education to higher
education and in different subjects such as languages, math
and science, and STEM. The review provided various future
recommendations, such as the need for long-term studies.
Al provided robots with computer vision, voice recognition,
and natural language understanding. Other work discussed
different models in which LLM-powered Robots are used in
education and other applications [24].

For these reasons, we evaluated primary school children’s
abilities in detecting errors generated by robots empowered by
LLMs, such as ChatGPT, when answering common questions
from the maths curriculum. When errors are not detected, chil-
dren could be misled/wrongly educated. We also investigated
the confounding factors affecting children’s ability to detect
LLM errors, particularly students’ correctness in answering the
questions, age and gender. The presented experiment is one of
the very few experiments using LLM-powered robots in the
education of primary school students that is student-focused.
Another primary school experiment is teachers-focused [25].
In particular, we investigated if LLM-powered robots could be
used as maths tutors in primary schools and how the children
would respond in case of mistakes.

The following section, section II, will discuss some of the
related work that considers robots in education as well as
the benefits and drawbacks of using LLMs. Section III then
describes the methods we applied in setting up the experiment
to answer the questions above, how we collected the dataset,
and analysed it. The results from this experiment are explained
in section IV, followed by discussions in section V, which puts
our findings into the wider context of using Al in education.
We further provide some limitations and future work of our
work in section VI and draw a conclusion in section VII.

II. RELATED WORK

In this section, we will introduce related work. The first
subsection introduces the use of Al-powered Robots in educa-
tion, and the following subsection focuses on the LLMs error

types.

A. Robots and Al in educational settings

Since the 2010s, the rise of Al in education attracted sub-
stantial attention. Al technologies, including machine learning,
natural language processing, and computer vision, made sig-
nificant inroads into education. Al-powered applications began
offering personalised learning experiences [26], intelligent
tutoring systems [27], and automated grading [28]. The advent
of advanced LLMs, such as OpenAl’s Generative Pre-trained
Transformer (GPT) series, marked a shift towards natural
language understanding and generation. Educators started ex-
ploring using LLMs to create educational content, generate
quizzes and essay scoring, and provide instant feedback. Vir-
tual assistants and Al-powered chatbots have been integrated
into educational platforms for instant student support. These
systems can answer queries, offer guidance, and facilitate
interactive learning experiences. As Al and LLMs become
more prevalent in education, concerns about data privacy, bias
in algorithms, and the ethical use of technology have surfaced.
Striking a balance between automation and maintaining a
human touch in education remains an ongoing challenge.

Educators and learners find it easy to use LLMs to retrieve
answers faster than reading books and traditional references,
and they use publicly available portals without fine-tuning.
Cognitive abilities are linked to educational approaches af-
fected by learners’ genetic variations and affect long-term
health, wealth, morbidity and mortality [1]. Many studies
identified successful approaches in education to improve so-
ciety’s welfare in the Al era. Brain-based learning activities
such as practical activities, problem-solving exercises, multi-
sensory engagement, and discussions promote active learn-
ing and profoundly impact students’ engagement, knowledge
retention, and critical thinking abilities. Time to reflect on
learned knowledge connects to prior knowledge and creates
meta-cognitive skills.

Artificial Intelligence in Education (AIED) has enabled
personalised education experiences to be tailored to different
students’ genetic and educational experiences. Models such as
museum brain-based instruction, virtual reality, asynchronous
discussion groups, learning analytics, recommendation sys-
tems, adaptive learning, adaptive mastering tests, dynamic as-
sessment, intelligent tutoring systems, real-time feedback, and
targeted interventions are identified in the literature to support
cognitive development better. LLMs such as GPTs and other
models managed to process and generate massive amounts of
text after training on the massive corpus from internet-wide
content and other sources. The training dataset bias caused
ethical concerns about the validity of the responses. However,
fine-tuning these models into specific curriculum content can
enhance the responses personalised to different educational
contexts [29].

B. Large language models and accuracy

LLMs such as Google Fine-tuned Language Net (FLAN)
or Pathways Language Model (PaLM), Facebook Open Pre-
trained Transformers (OPT), Microsoft BARD and OpenAl
Generative Pre-trained Transformers (GPT) have managed to



process and generate large amounts of text after training on
the very large corpus from the internet-wide content and other
sources [30]. To reach this unprecedented higher level of
accuracy, these models have billions of parameters and are
trained on many petaflops-days of computation. Being trained
on unverified datasets on diverse domains, LLMs are known to
produce various types of errors, with the most notable being
hallucination and factual errors. Other errors include repeti-
tion, grammatical errors, semantic incoherence, out-of-domain
responses, biased responses, undergeneration, overgeneration
and uncertainty. Hallucination refers to the generation of text
that is not grounded in reality or factual information. This
could involve the creation of entirely fictional events, entities,
or statements that do not exist in the real world. Factual errors,
or factuality, refer to inaccuracies in the information the LLM
presents. These errors occur when the model generates text that
contradicts established facts, empirical evidence, or common
knowledge. Factual errors can range from minor inaccuracies
to significant distortions of reality. The work in [5] emphasises
the importance of verifying the LLM erroneous responses that
are labelled as hallucinations. The authors identified physics,
chemistry, computer science and mathematics LLM errors
taken from university-level textbooks and exams. The verifi-
cation process can include private hosting to eliminate breach
of privacy of use history, fine-tuning to eliminate irrelevant
responses, and changing response vocabulary to eliminate
negative emotions building up on learners and blocking their
cognitive development.

Errors in LLM retrieved information in various domains
can cause safety issues or even life-threatening issues in
Healthcare, loss or harm in economics and legal domains,
and misinformation and deteriorated mastery and negative
cognition development in education domains. The work in [6]
identified factuality problems in the various domains rather
than the explicit hallucinations. This extensive review identi-
fied the factuality of information quantitatively using various
metrics, causes of non-factual errors at the various levels of
training, inference or retrieval and approaches to enhance the
factuality of LLMs such as fine-tuning to specific knowledge
bases, multi-agents, decoding approaches, interactive retrieval
among others. While fine-tuning these models into specific
curriculum content can enhance the responses personalised to
different educational contexts [29], choice of training dataset
and other biases can still negatively impact the validity of the
responses and might introduce other mistakes [7].

III. METHODS

Given the current state-of-the-art investigations of LLM-
powered robots in education described in section II, we explore
the ability of primary school students to trust their knowledge
when faced with errors introduced by LLM responses. We
focused on a fundamental knowledge area, specifically the
UK Maths Year 3 curriculum, where maths reasoning plays
a crucial role. Lack of mathematical reasoning can lead to
various issues in different domains, such as providing inac-
curate financial advice, misinterpretation of medical statistics

affecting treatment decisions and/or dosage needs, errors in
scheduling and planning tasks, grading errors by teachers in
various disciplines, misinterpretation of statistical reasoning
from datasets by data scientists, algorithms errors by pro-
grammers, and drawing incorrect conclusions in everyday life
tasks even as simple as incorrect measurements in cooking
recipes. Mathematical fallacies often result in misinformation,
particularly for individuals experiencing Maths anxiety. Build-
ing confidence in mathematical skills and identifying errors
becomes essential to address these challenges [31], [32].

We specifically investigate whether ChatGPT-powered
robots could be used as maths tutors in primary schools and
how children would respond in case of mistakes. We conducted
a user study bringing a Pepper robot into a classroom at
a primary school. The LLM responses were retrieved from
the OpenAl gpt-3.5-turbo model using its published
APIs. LLM and the Pepper Robot SDK text-to-speech were
connected using custom-built Python code. The experiment
was designed to investigate the following four hypotheses:

H1 Primary school students can detect whether ChatGPT-
generated answers presented by a Pepper robot are
correct or incorrect.

H2 The accuracy of spotting such mistakes is influenced by
the student’s correctness in answering the question.

H3 The accuracy of spotting such mistakes depends on the
student’s school year.

H4 The accuracy of spotting such mistakes is influenced by
the student’s gender.

The first two hypotheses indicate the ability to identify
errors and how this is affected by students’ correctness as a
measure of confidence. To study other confounding character-
istics in student responses, we analysed the effect of age on the
results and the effect of gender because these were available
in the collected dataset.

A. Participants

We recruited 77 primary school students from the Hatfield
Community Free School, a local school in our area, from years
3 to 5 in the UK elementary school system, which corresponds
roughly to between 7 and 11 years of age. This study was
approved by the University of Hertfordshire ethics board under
approval number (SPECS/SF/UH/05395). Informed consent
was obtained from the parents or legal guardians of the
children.

B. Generation of the LLM answers

The LLM was provided with the 29 questions as prompts,
and it generated answers and explanations that were recorded
and compared to the correct responses from the curriculum
[33]. The analysis revealed that LLM’s responses for 13 out
of the 29 questions were inaccurate, with an approximate
accuracy rate of 55%. Among the 13 incorrect answers, the
LLM’s answers and explanations were found to be wrong
in 8 questions, while the remaining 4 had correct answers
but incorrect explanations, and 1 question had partial correct
answers from the several possible answers.



C. Procedure

The students were divided into groups according to their
school year and participated in an activity where the Pepper
robot was involved in asking them Maths questions, with the
lead author as a facilitator, supported by the school teachers.
The activity lasted for a total of 1 hour and 20 minutes, and
we ensured that no more than 20 students were present at the
time to avoid the activity from being too crowded.

The students were presented with 20 questions out of a pool
of 29 questions chosen from the UK Maths curriculum for
grade three [33]. The students in each session were presented
with ten questions with LLM-generated correct answers and
ten questions with LLLM-generated incorrect answers in ran-
dom order for each session. The students also had to complete
a questionnaire asking their views about the robot’s answers,
following the steps below.

1) The respective question from the questionnaire was
projected onto a screen and simultaneously displayed on
Pepper’s tablet. Additionally, Pepper read the question
aloud.

2) Students were asked to write their answers on the
provided questionnaire.

3) Pepper vocalised the generated answer from the LLM.
This response was also displayed on Pepper’s tablet and
projected onto the screen.

4) Subsequently, students commented on the perceived
correctness of Pepper’s answer using a 5-point Likert
scale, as illustrated in Figure 1.

5) In cases where Pepper’s answer or explanation was
incorrect, Pepper apologised and read the hard-coded
correct answer text. Also, the lead author discussed with
the students to clarify the accurate answer or explanation
to avoid misinformation or lack of confidence in their
correct answers.

Question 1
My answer is:
Pepper’s answer is:
| think Pepper’s answer is correct:

&)

Definitely Yes

@
Yes

Definitely No No Maybe

Fig. 1. Questionnaire items presented to students after each Maths question

IV. RESULTS

The questionnaires completed by the students were collated
for statistical analysis. We augmented the questionnaire re-
sponses with student scores about the correctness of their
answers, age at the grade level, and their gender. Hypothe-
sis testing was conducted to address the research questions,
specifically comparing observed frequencies to expected fre-
quencies. Given the nature of the comparisons, Chi-square
statistical hypothesis testing was employed with a confidence
level of 95%. The graphs illustrate student percentages on the
y-axis, while the numbers displayed on the bars represent the
corresponding student counts. Initially, the first graph presents
LLM correctness as the sole bars along the x-axis. However,

this metric is depicted atop grey shades in subsequent graphs,
with the bars indicating the influence of confounding factors.

A. Robot Error

The most important research question is the ability of the
students to identify when the LLM (Robot’s first answer) is
wrong, partially correct, or correct and rate it accordingly,
formalised in H1. From Figure 1, we identify a low rating
as the first two left-hand side faces. This means the student
thinks the LLM answer is wrong. We considered that the
middle face is chosen when the student is undecided about
the LLM correctness, and the last two faces are chosen when
the student thinks that the LLM answer is correct. Testing
against the null hypothesis that there is no difference in the
proportions of different students’ ratings and whether LLM is
in error or not, we calculated (X2 =504.7, df=4, N = 1540, p
<.001), and hence we reject the null hypothesis. The results
suggest that 76.5% of students identified correct answers, 72%
identified incorrect answers, and partial correctness caused
some confusion. The confusion might be caused as they realise
from previous questions that LLM errors are possible. The
visualisation of the proportions is illustrated in Fig. 2.

100% =
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N of Pepper's Answer
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FALSE PART TRUE
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Fig. 2. Student rating of Pepper’s answer by the correctness of the answer.

B. Student Correctness

When students correctly answer the presented Maths ques-
tions, we expected their confidence in identifying the LLM
errors to be higher (H2). We tested against the null hypoth-
esis that students’ ability to identify LLM mistakes is not
influenced by their ability to solve the question correctly. We
calculated (x2 = 374.95, df=8, N = 1540, p <.001), hence
rejecting the null hypothesis. The results suggest that 81%
of students identified incorrect LLM answers when they were



correct as opposed to the earlier 72% regardless of whether
they were correct. The visualisation of the proportions is
illustrated in Figure 3.
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Fig. 3. Student rating of Pepper’s answer by the correctness of the answer,
split by student’s correctness.

C. Student Age/Year

Age or school year reflects the amount of training they
had on the curriculum tested (cf. H3). We had 30 students
in Year 3, 24 in Year 4, and 23 in Year 5. We tested against
the null hypothesis that there is no difference in the accuracy
of spotting LLM mistakes depending on the student’s school
year. We calculated (X2= 19.68, df=16, N = 1540, p >.05),
and hence we fail to reject the null hypothesis. Although
students are trained more on this content, it seems that the
experiment setting, with other confounding factors, did not
show a higher ability to detect LLM mistakes affected by
the student’s school grade. The illustration in Figure 4 further
supports this conclusion.

D. Student Gender

We wanted to explore if gender significantly affected stu-
dents’” spotting LLM mistakes (H4). The study included 37
female and 40 male participants. We tested against the null
hypothesis that there is no difference in the accuracy of
spotting LLM mistakes influenced by the student’s gender. We
calculated (X2 = 37.88, df=8, N = 1540, p <.001). We can
conclude that the observed difference in LLM error spotting
varied significantly by gender. In our observations, female
students tend to be correct more often than male students.
The illustration in Figure 5 shows the proportions of correct
vs incorrect answers for both genders.
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Fig. 4. Student rating of Pepper’s answer by the correctness of the answer,
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V. DISCUSSION

In the first research question, students’ ability to identify
LLM errors at such a young age is observed with statistical
significance. Our results reflect children’s concentration on the
different questions, although the difficulty of the questions,
topics, and LLM-correctness varied among the questions,
which were randomly presented to the children. It will be
interesting to check if older learners can show such skill in
identifying errors or if they will rely on technology, which
could lead to accepting errors without verification due to a
lack of time to check further.

Regarding the second research question, the results sup-
ported that students’ ability to solve the question first increased
their ability to identify LLM errors. This reflects confidence
in their knowledge that did not change when Pepper, as an
LLM-powered Maths Tutor, made some correct answers and
some incorrect ones. This confidence in children is known to
decrease as people get older [34]. This confirms the recom-
mendation of [13] that prior knowledge in the domain LLM
is used for is required to be able to verify and properly use
the generated response.

The results of the third research question did not support
our hypothesis. Although it is commonly agreed that maths
practice through the years is expected to increase students’
ability to identify correct answers, other confounding factors
in the experimental settings could have distracted the older
students. Noting that higher year groups responded to a Year
3 question set, it might also be that the students in higher
year groups follow a different curriculum. Because of this,
their performance was comparable with their younger peers,
not better. A future extension of this study could consider
exposing each year group to the specific questions extracted
from their year curriculum, thus addressing this uncertainty.

The findings of the fourth research question align with other
studies such as [35]. However, some studies find that males are
better than females in Maths. In this experiment, our findings
support the counter-argument. However, we have no baseline
data regarding these students’ mathematical knowledge, their
interest in technology and their equal attentiveness to the task
on the day.

VI. LIMITATIONS AND FUTURE WORK

The observations and results are valid only for the recruited
cohort and could be representative of similar age groups.
Various confounding factors might have introduced noise in
our dataset, that we did not account for in this experiment.
A main confounding factor is socioeconomic student data,
which usually affects learning skills. The school did not release
information about students’ socioeconomic backgrounds, so
these factors might have impacted our observations.

A potential complicating factor when using a robot with
primary school students is the possibility that they perceive
it more as a toy than a learning tool. This perception could
impact their ability to focus on detecting the error, especially
at a young age. However, we cannot confidently assess this
influence. Additionally, we question whether this factor could

explain why older students, who presumably have more ad-
vanced skills and longer exposure to training, may also be
distracted by the novel setting of math tutoring with a robot.
The students’ mutual interactions and further interactions with
teachers might be influencing the results to be different than
working independently with Al It is a common interest of
the UK government to evaluate all factors affecting Maths
education, and study the various aspects of enhancing the UK
international ratings [36].

A. Long-term impacts and Recommendations

Our experiment presents a snapshot of the current situation
with other potential confounding factors. Long-term impact
on cognition development from psychological, societal, deep
effective learning and creativity and problem-solving skills
are not well evaluated in the literature. Previous work dis-
cusses the use of LLMs in psychotherapy and its effects on
behavioural health [14]. The authors discuss the consequences
of Al failures that could lead to self-harm or other societal
damage if no experts are involved to validate the outcomes.
Also in defence and self-driving car applications, Al failure
causes direct loss of life. Education does not pose fewer risks
than other AI applications. Complete automation, labelled
autonomous Al, is the highest level of trusting Al, as opposed
to the lowest level in assistive Al, in which humans use Al
but manage the process fully. Collaborative Al is a middle
stage in which Al is heavily used and guided by humans in
the loop. The authors recommend gradual integration of Al
through these stages while measuring the outcome to ensure
safe Al integration is achieved. The same recommendation
can be reached about all Al integration in all application
domains to avoid irrecoverable failures. Education has a long-
term impact on the quality of life of individuals and societies.
Measuring the safety of Al integration in education might
require measuring the outcomes over a year or more to identify
best practices. Other previous work iterated that the impact of
using Al in teaching and learning on cognition development
has yet to be evaluated [15]. The assessment for learning
(AFL) link with Al-powered education has been systematically
reviewed, exposing some challenges that still need to be
addressed in the literature [16]. These challenges include fewer
human interactions and their emotional impact on the learner,
limited understanding due to lack of the required depth and
breadth of the learning objectives, lack of creativity due to
easy information finding, lack of contextual understanding
due to fragmented pieces of information, lack of time and
effort consideration in student assessments in disciplines where
practice to mastery is required. This last challenge led to
the proposal of using multi-modal systems in assessments
to evaluate students’ active involvement in their submissions
rather than passively copying information. This is all besides
the known issue of bias in training data of these models, the
nontransparent learning algorithms owned by the companies
producing these models, the responses generated depending
on the provided prompts or data, and the privacy challenges.
The following summarise our recommendations:



1) AI Gradual integration: Teachers should verify Al-
generated knowledge, starting from assistive Al to col-
laborative Al with careful evaluation. However, we dis-
courage reaching autonomous Al in Education (learners
alone).

2) Prior knowledge: AI should be used after learner
exposure to the educational content using brain activities
over a reasonable time.

3) Early Age Exposure: Al-assisted education needs to
be introduced to all ages to increase their confidence in
identifying errors, accompanied by brain activities to aid
in information retention, connecting to prior knowledge
and mastery development.

4) Teacher/Student - Focused: Al should empower teach-
ers more than learners. The presented experiment was
student-focused, while many previous work was teacher-
focused only. Measuring effects in hybrid teacher and
student-focused experiments will be more realistic as Al
is available to both.

B. Future work Directions

In future work, instead of tailoring the code connecting the
LLM to Robots for the experiment details, more advanced
LLM-powered Robots can use emerging APIs for a standard-
ised code [37]. Aspects of selecting the level of challenge
according to the curriculum relevant to each year group, and
also considerations for assessing other STEM topics using
the same approach remain the focus of our future work. We
can reduce LLM inaccuracies by applying prompt engineering
guidance [38]. We can also use fine-tuned LLM models trained
on mathematics datasets to reduce the inaccuracy rate [39]
or Retrieval Augmented Generation (RAG) techniques across
different modalities [40]. We can also increase the number of
participants from other schools to increase the representation
and the significance of the study. We can collect more infor-
mation about participants’ scores in previous Math exams and
other topics, and possibly more confounding factors.

VII. CONCLUSIONS

We support other studies’ recommendations that LLM-
powered education, whether using robots or indirectly in the
teaching content preparation, assessments, or student support
and feedback, should all be introduced gradually and after
careful verification by domain experts. We recommend intro-
ducing LLM-powered learning support at all ages, though, to
increase people’s confidence in their knowledge and increase
learners’ abilities to identify mistakes and continue depending
on brain activities that enhance mastery levels from valid
references. Education relies on teachers’ skills and this will
not change in the AI era, however, teachers can be signif-
icantly empowered when using Al technologies responsibly.
We recommend repeating similar experiments with young chil-
dren, as we observed students’ confidence in their knowledge
increase, and their trust in AI becomes more balanced as
they learn at a young age that Al can make mistakes. This
study contributes to the growing body of research on Al in

education, shedding light on the potential benefits and chal-
lenges associated with integrating LLM-powered technologies
into classroom settings. While our findings suggest positive
outcomes in terms of student engagement, error detection and
some confounding factors, further research is warranted to
explore optimal strategies for integrating LLM-powered educa-
tional tools into curriculum design and pedagogical practices.
Ultimately, our study underscores the need for responsible and
thoughtful implementation of Al technologies in education to
enhance learning outcomes and support cognitive development
in young learners.
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