
 

 

 

 

Abstract— Deep Reinforcement Learning (DRL) techniques 
have received significant attention in control and decision-
making algorithms. Most applications involve complex decision-
making systems, justified by the algorithms' computational 
power and cost. While model-based versions are emerging, 
model-free DRL approaches are intriguing for their 
independence from models, yet they remain relatively less 
explored in terms of performance, particularly in applied 
control. This study conducts a thorough performance analysis 
comparing the data-driven DRL paradigm with a classical state 
feedback controller, both designed based on the same cost 
(reward) function of the linear quadratic regulator (LQR) 
problem. Twelve additional performance criteria are introduced 
to assess the controllers' performance, independent of the LQR 
problem for which they are designed. Two Deep Deterministic 
Policy Gradient (DDPG)-based controllers are developed, 
leveraging DDPG's widespread reputation. These controllers are 
aimed at addressing a challenging setpoint tracking problem in a 
Non-Minimum Phase (NMP) system. The performance and 
robustness of the controllers are assessed in the presence of 
operational challenges, including disturbance, noise, initial 
conditions, and model uncertainties. The findings suggest that 
the DDPG controller demonstrates promising behavior under 
rigorous test conditions. Nevertheless, further improvements are 
necessary for the DDPG controller to outperform classical 
methods in all criteria. While DRL algorithms may excel in 
complex environments owing to the flexibility in the reward 
function definition, this paper offers practical insights and a 
comparison framework specifically designed to evaluate these 
algorithms within the context of control engineering. 

I. INTRODUCTION 

odel-free Deep Reinforcement Learning (DRL) 
algorithms have emerged in various domains, including 

gaming [1,2] and robotic control [3]. The promise of 
automating a wide range of decision-making, with a 
particularly strong connection to control and adaptive 

 
Fatemeh Tavakkoli was with the Faculty of Electrical and Computer 

Engineering Department, Babol Noshirvani University of Technology, Babol, 
Iran (e-mail: fatemetavakkolii71@gmail.com)  

Pouria Sarhadi is with the School of Physics, Engineering and Computer 
Science, University of Hertfordshire, Hatfield, AL10 9AB, Hertfordshire, UK 
(phone: +44(0)1707 285961; e-mail: p.sarhadi@herts.ac.uk) 

Benoit Clement is with ENSTA Bretagne, CROSSING ILR CNRS 2010 
and Flinders University, Australia (e-mail: benoit.clement@ensta-bretagne.fr) 

Wasif Naeem is with the School of Electronics, Electrical Engineering and 
Computer Science, Queen’s University Belfast, UK, (e-mail: 
w.naeem@qub.ac.uk).  

systems, is shared by the combination of Reinforcement 
Learning (RL) with high-capacity function approximators like 
neural networks [4]. Unlike supervised and unsupervised 
learning paradigms, RL entails learning a policy (by agent or 
controller) through the optimization of a reward function 
(control objective) via interaction with the environment 
(system), utilizing states (measurements) and actions (control 
signals) [5]. 

The challenge of enhancing the generalizability of RL has 
been significantly investigated over the past decade, marking 
a turning point with the introduction of Deep Q-Network 
(DQN) and continuous action approaches such as Deep 
Deterministic Policy Gradient (DDPG). DQN employs a deep 
neural network as a function approximator of the value 
function [6]. DQN addresses the inherent instability problem 
associated with function approximation in reinforcement 
learning by utilizing two techniques: experience replay [7] 
and target networks [8]. Deterministic policy gradient 
algorithms represent another advancement in RL algorithm, 
extending the standard policy gradient theorems from 
stochastic policies to deterministic policies [9]. Notably, three 
well-known algorithms in this category are DDPG [10], twin 
Delayed Deep Deterministic Policy Gradient (TD3) [11], and 
Proximal Policy Optimization (PPO) [12]. Initially developed 
using Python code, the remarkable level of acceptance and 
demand for these algorithms has even led to their integration 
into MATLAB toolboxes. Those approaches offer attractive 
model-free solutions that have received notable attention in 
control and decision-making (mission planning) systems [13]-
15]. However, their performance, robustness, and limitation 
boundaries have not been thoroughly identified and analyzed 
to date. This is despite the fact that even well-established 
algorithms like Smith Predictors, with longstanding history, 
are now understood as not superior to a PI controller [16]. 
Therefore, a meticulous analysis of these approaches is 
necessary for their utilization and future developments. 

A few studies have explored the application of these 
methods in process control applications, comparing their 
performance against control system requirements. For 
example, references [17-18] have examined the application of 
DDPG, TD3, PPO, TRPO, and SAC in specific process 
control systems, which is commendable. Superior 
performance for DDPG-based algorithms has been reported 
[17]. However, there remains a gap in the analysis of these 
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algorithms' performance in practical control challenges, 
including non-minimum phase (NMP) behavior, disturbances, 
noise, initial conditions, and model uncertainties such as 
delay. Additionally, analyzing the quality of the control signals 
is another crucial aspect to gain insights into their 
effectiveness in control applications. 

This study is dedicated to conducting a comprehensive 
assessment of DDPG's performance in demanding scenarios, 
particularly in comparison to a classical optimal controller, the 
Linear Quadratic Integral (LQI) controller, with a focus on the 
setpoint tracking problem in NMP systems. Given the 
widespread use of DDPG, we have selected it for the 
performance evaluation and gathering insights that can be 
applied to other applications. Two DDPG controller variants 
have been developed: one estimates the state feedback 
controller gains, while the other functions as a black-box data-
driven controller without any model structure. It is important 
to note that this study does not advocate for the replacement 
of well-established model-based controllers with 
computationally intensive techniques like DDPG. Instead, it 
offers quantitative insights into model-free DRL for potential 
future enhancements. As a contribution, the paper introduces a 
comprehensive framework with detailed criteria for evaluating 
practicality and facilitating comparative analyses of DRL 
techniques. 

II. THE ANALYSIS FRAMEWORK 

Twelve essential design criteria have been chosen to assess 
the controllers’ performance. They encompass critical aspects, 
including transient and steady state performance, cumulative 
error in step response tracking, robustness, and the quality of 
the control signal. They are explained as follows: 

C1. Rise time (𝑡 ) is defined as the duration it takes for 
the response to increase from 0 to 100 percent of its ultimate 
value. 

C2. Maximum Overshoot (𝑀 ) is the highest peak value 
of the response curve, as measured from the system's desired 
response. For a step input, the percentage overshoot (𝑀 ) is 
considered. 

C3. Maximum Undershoot (𝑀 ), similar to overshoot but 
in the opposite direction, quantifies the maximum dip in the 
signal as a percentage of the desired response. Undershoot is 
an inherent phenomenon in these systems, unavoidable, but its 
peak value should be fine-tuned for high-performance 
tracking. 

C4. Settling Time (𝑡 ) denotes the duration required for a 
system's response to reach and stay within a predefined range 
threshold (𝑒 ) around its final steady-state value. 

C5. Steady State error (𝑒 = 𝑟 − 𝑦(𝑡 )) is the difference 
between the desired or reference output (r) and the actual 
output (y) of a system in its steady-state condition. 

C6. Integral of the Square of the Error (ISE) is another 
traditional performance metric that assesses the cumulative 
square of the error between the system's output and the 
desired output over time (from 𝑡 = 0 to 𝑡 ). It emphasizes 
both the magnitude and the duration of the error: 

𝐼𝑆𝐸 = ∫ 𝑒 (𝑡)𝑑𝑡                                                        (1) 

C7. Integral of the Time multiplied by Absolute Error 
(𝐼𝑇𝐴𝐸) is another cumulative performance criterion that 
places larger weights for steady-state error by an increasing 
time weight: 

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑒(𝑡)| 𝑑𝑡                                                 (2) 

Both 𝐼𝑆𝐸 and 𝐼𝑇𝐴𝐸 are standard indices in control systems’ 
tracking performance [19]. 

C8. Integral of the Absolute of the Control Effort (𝐼𝐴𝐶𝐸) 
quantifies the cumulative absolute of the control effort or 
control signal (𝑢 ) applied over time, representing consumed 
energy. It can be calculated using the following formula: 

𝐼𝐴𝐶𝐸 = ∫ |𝑢 (𝑡)|𝑑𝑡                                                  (3) 

C9. Integral of the Absolute Control Effort Rate (𝐼𝐴𝐶𝐸𝑅) 
measures the integral of the absolute rate of change of the 
control effort or control signal applied to the system: 

𝐼𝐴𝐶𝐸𝑅 = ∫ |𝑑𝑢 (𝑡)|𝑑𝑡                                             (4) 

Maintaining lower bounds on control signal variations is 
pivotal for preventing rate saturation within actuation systems 
and its adverse effects on closed-loop stability [20]. 

C10.  Control Signal Maximum Value (𝑢 ) represents 
the maximum value or amplitude of the control signal applied 
to the system as follows: 

𝑢 = max |𝑢 (𝑡)|                                                   (5) 

To prevent amplitude saturation in actuators, keeping 𝑢  
below the input limitations of the system is advisable. 

𝐼𝐴𝐶𝐸, 𝐼𝐴𝐶𝐸𝑅, and 𝑢  indices play a crucial role in 
designing a practical controller. Most of the time, a controller 
that can satisfy tracking performance (C1-C7) while 
minimizing control quality indices (C8-C10) is preferred but it 
can vary depending on the application case.  

C11. Gain Margin (𝐺𝑀) is a frequency domain stability 
measure for a linear closed-loop system (𝐺 ). It quantifies the 
range of adjustability in the open-loop system (𝐺 ) gain 
before instability occurs. GM is calculated as [19]: 

 𝐺𝑀 = 20 𝑙𝑜𝑔
| |

                                             (6)   

where is 𝐺 𝑗𝜔  the magnitude of the system's transfer 
function at the phase crossover frequency 𝜔  where phase 
shift is -180 degrees. A larger 𝐺𝑀 indicates greater stability.  

C12. Delay Margin (𝐷𝑀), as a practical stability index, 
represents the time delay margin of a system and indicates the 
maximum value of time delay that can be introduced to 𝐺  
without causing instability in the closed-loop system 𝐺  [21]. 



 

 

 

It is measured in seconds and can theoretically be calculated 
using the following formula: 

 𝐷𝑀 =
| |

                                                            (7)   

where 𝑃𝑀 is the system phase margin and 𝜔  symbolizes 
the gain crossover frequency [21]. We appreciate that both 
𝐺𝑀 and 𝐷𝑀 are frequency domain indicators, which may not 
be applied to ML-based or nonlinear loops. However, one can 
manually increase the amount of gain or delay uncertainty to 
determine these margins, providing valuable insights into the 
system's stability.  

Together, the introduced criteria (C1-C12) can serve as 
valuable tools for assessing and comparing controller 
performance. Hence, we suggest using them as standard 
comparison metrics in control system design. 

III. LINEAR QUADRATIC CONTROLLER WITH AUGMENTED 

ERROR INTEGRAL STATE FEEDBACK (LQI) 

This Section provides a brief description of the LQI 
controller as the classic baseline for comparison [22]. The 
reasons to select this controller are: i) it is a classical 
controller with wide use of applications inheriting PID-like 
performance in lower order systems, ii) incorporating a cost 
function comprising tracking error and the control signal that 
can be directly used as a reward function for a fair comparison 
with DPPG. Consider a plant with the following state-space 
representation: 

�̇� = 𝐴 𝑥 + 𝐵 𝑢

𝑦 = 𝐶 𝑥
                                                     (8)  

Where 𝑥 , 𝑢 , and y denote state vector, control signal, and 
output respectively. The matrices (𝐴 , 𝐵 , 𝐶 ) describe the 
dynamics of the plant, which does not necessarily include 
tracking. By introducing a new integrator state where (𝑒 ) is 
the integral of the error, the �̇� = 𝑒 a tracking error, an 
augmented system with states 𝑥 = [𝑥 𝑒 ]  can be achieved 
as follows [19]: 

�̇�

𝑒̇
̇

=
𝐴        0

−𝐶     0
  

𝑥
𝑒 +

𝐵

0
𝑢 +

0
𝐼

𝑟                  (9) 

Where 𝐴, 𝐵, and 𝐶 are the augmented system’s matrices. 
Utilizing a quadratic cost function as follows: 

     𝐽 = ∫ (𝑥 𝑄 𝑥 + 𝑢 𝑅  𝑢 )𝑑𝑡                      (10) 

It is shown by solving the following Riccatti equation [22]:  
𝐴 𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅 𝐵 𝑃 = 0                (11) 

The following control signal can be achieved: 
𝑢 (𝑡) = −𝐾 𝑥 (𝑡) + 𝑘 𝑒 (𝑡)                               (12) 

Fig. 1 illustrates the block diagram of LQI controller. This 
controller inherits PID attributes with optimal gains calculated 
using LQR which makes it popular in realistic applications. 

IV. DETERMINISTIC POLICY GRADIENT AS A MODEL FREE 

SETPOINT TRACKER 

Another way to tune a controller is based on RL. It revolves 
around the concept of an agent engaging with its environment, 
aiming to learn behavior that maximizes reward [10]. At each 
discrete time step, denoted as t, the agent operates in a specific 
state (𝑠 ∈ 𝑆) and selects actions (𝑎 ∈ 𝐴 )  based on a policy 
(𝜋: 𝑆 → 𝐴). Consequently, the agent receives a reward 𝑟  and 
the environment transitions to a new state 𝑠′.  

The primary objective in RL is to identify the optimal 
policy  𝜋 , with parameters  𝜙, that maximizes the expected 
return  𝐽 (𝜙) = 𝑬𝒔𝒊~𝒑𝝅,𝒂𝒊~𝝅 [𝑹 ]. For continuous control, 
parametrized policies 𝜋  can be updated by taking the 
gradient of the expected return ∇ 𝐽(𝜙). In actor-critic 
methods, the policy, referred to as the actor, can be updated 
using the deterministic policy gradient algorithm: 

∇ 𝐽(𝜙) = 𝐸 ~ [∇ 𝑄 (𝑠, 𝑎)  ( )∇ 𝜋 (𝑠)]             (13) 

𝑄 (𝑠, 𝑎) = 𝐸 ~ , ~ [𝑅 |𝑠, 𝑎], the expected return when 

performing action 𝑎  in state 𝑠  and following 𝜋 afterward, is 
known as the critic or the value function. In this paper, two 
DDPG agents are developed to approximate the discounted 
long-term reward through a Q-value-function critic. In the 
first algorithm (𝐷𝐷𝑃𝐺 ), the critic network endeavors to 
estimate state feedback gains referred to as 𝐾 , the same 
structure employed in the LQI controller. The second method 
(𝐷𝐷𝑃𝐺 ) deploys an end-to-end black-box controller that 
maximize the reward function. To facilitate a comprehensive 
analysis and comparison with the LQI controller, both 
methods utilize identical observations represented by 𝑠 = 𝑥 =

[𝑥 𝑥 𝑥 ] = [𝑥 𝑒 ] . The reward equation is defined 
as the negative cost function in LQR as below: 

𝑟(𝑡) = −(𝑥(𝑡) 𝑄 𝑥(𝑡) + 𝑢 𝑅 𝑢 )                       (14)  
In 𝐷𝐷𝑃𝐺 , the critic implemented as a neural network, 

accepts observations, and actions as inputs and returns scalar 
values. It utilizes a network with both quadratic and fully 
connected layers to approximate the quadratic value function 
of the optimal policy. The policy implemented by the actor, 
which has been selected by 𝑎 = 𝑢 = 𝐾 𝑥 + 𝐾 𝑥 + 𝐾 𝑥 =
𝐾 𝑥. The matrix form of the Q-value function is defined 
as follows Where 𝑤𝑖 are the weights of the fully connected 
layer: 

 

Fig. 1: Block diagram of LQI controller 
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   For a fixed policy  𝑢 = 𝐾 𝑥(𝑡), the cumulative long-
term reward is:  

𝑅(𝑥) = 𝑄(𝑥, 𝐾 𝑥) = 𝑥 [𝐼    𝐾 ]𝑤 
𝐼
𝐾

𝑥

= 𝑥 𝑃𝑥

 (16) 

Since the rewards are always negative, to properly 
approximate the cumulative reward both P and W should be 
negative definite.  

The 𝐷𝐷𝑃𝐺  algorithm combines the strengths of policy-
based and value-based methods by exploiting two neural 
networks: the actor-network determines the optimal actions 
given the current state, while the critic-network estimates the 
state-action value function (Q-function), which represents the 
expected cumulative reward. Fig. 2 shows the block diagram 
of the developed DDPG set-point tracking controller. 

V. SIMULATION RESULTS 

The LQI and DDPG controllers are simulated on a NMP 
system tracking problem, and their behavior is analyzed using 
the proposed framework in Section II. The considered plant’s 
transfer function is as follows: 

𝐺 =
.

                                                                (17) 

The system is stable but exhibits NMP behavior due to the 
presence of a right-hand side zero. Challenges associated with 
controlling such systems are well-recognized within the 
control community [23]. These challenges result in an 
undershoot in the step response and can pose limitations for 
achievable performance in control. Thus, we explore the 
performance of the model-free DRL approach in addressing 
such systems. Its controllability state-space representation can 
be expressed as follows: 

𝐴 =
0 1

−2 −3
, 𝐵 =

0
1

, 𝐶 = [−1 0.5]            (18) 

The parameters of the reward function are selected as: 
𝑄 = 𝑑𝑖𝑎𝑔(0,0,10),   𝑅 = 1                                 (19)  
where 𝑑𝑖𝑎𝑔 is a diagonal matrix with weight 10 for 

tracking error and 𝑅 = 1 as the control weight to achieve a 

tradeoff between tracking and energy consumption. The 
DDPG algorithms employ two networks: a critic network and 
an actor network. The critic network takes observations and 
actions as inputs and generates output values through layers. 
The actor network employs a parametrized continuous 
deterministic policy to produce corresponding actions based 
on observations. In the critic network of 𝐷𝐷𝑃𝐺 , the bias 
learn rate factor is set to 4 with a bias value of zero, while 
both parameters are set to zero in the actor network. In 
𝐷𝐷𝑃𝐺 , the critic estimates the state-action value function 
using two fully connected layers followed by a rectified linear 
unit (ReLU) layer for observations, and one fully connected 
layer for actions. After combining results of these layers there 
are two fully connected layers and two ReLU layers, each 
with a hidden layer size of 100 for all fully connected layers. 
The action network comprises four fully connected layers and 
three ReLU layers with one 𝑡𝑎𝑛ℎ layer and scaling layer 

 
Fig. 2: Block diagram of the setpoint tracking DDPG controller 

 
Fig. 3: Learning curves for 𝐷𝐷𝑃𝐺  (top) and 𝐷𝐷𝑃𝐺  (bottom)  

          TABLE I Hyper-parameters for DDPG controller 

Parameter Value 

Discount factor  1 
Initial learn rate of critic 1e-3 
Initial learn rate of actor 1e-4 
Exploration noise variance 0.1 
Noise variance decay rate 1e-6 
Integral gain 0.1 
Simulation time step 0.1 
Batch size 256 
Maximum steps in an episode 200 
Maximum episode 850 

 



 

 

 

    
Fig. 4: Step response for DDPG and LQI controllers 
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Fig. 6: Step response in the presence of initial conditions  
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TABLE Ш Performance criteria of the controllers in perturbed condition 

No. Criteria LQI 𝐷𝐷𝑃𝐺  𝐷𝐷𝑃𝐺  

1 ISE 21.2 22.3 14.1 
2 ITAE 268.3 297.6 170.7 
3 IACE 446.6 477.2 481.4 
4 IACER 72.7 237.6 62.8 

 

where the scale is set to 4 to determine the optimal action. The 
remaining agent hyper-parameters are listed in Table I. The 
learning curves for 850 episodes, as depicted in Fig. 3, 
demonstrate the agents' efforts to maximize reward. 

Figure 4 illustrates the performance comparison between 
LQR-based and DRL-based controllers in a step setpoint 
tracking scenario, alongside the corresponding performance 
criteria listed in Table II. While all controllers achieve the 
tracking mission, they exhibit distinct strengths and 
weaknesses when evaluated against the performance criteria. 
Both DDPG controllers indicate a faster rise-time, however, 
𝐷𝐷𝑃𝐺  has higher values for 𝑀 , 𝑀 , and 𝑡 , and 𝐷𝐷𝑃𝐺  has 
higher 𝑀  but its 𝑀 , 𝑡  are less than the LQI controller. 
𝐷𝐷𝑃𝐺  shows lower cumulative error measures than LQI, 
persisting throughout operation, while LQI initially 
experiences higher errors but improves over time. DDPG 
controllers demand higher maximum control effort, while 
𝐷𝐷𝑃𝐺  operates within lower signal boundaries. In terms of 
robustness, DDPG controllers demonstrate smaller gain 
margins and delay margins compared to the LQI controller. 
One can say 𝐷𝐷𝑃𝐺  exhibits the best overall performance. 

In the second test, we evaluate the controllers' performance 
under disturbance and noise conditions. An output disturbance 
with an amplitude of 0.2 and white noise with a standard 
deviation of 0.1 are introduced at the 15th and 20th seconds, 
respectively. The response is shown in Fig. 5, and 

performance comparison for the affected criteria are presented 
in Table III. The results suggest that the DRL controller 
performs adequately under perturbed conditions and slightly 
outperforms LQI controller. These results are intriguing as the 
DRL controller was not specifically trained for the perturbed 
condition.  

To analyze performance scalability, Figure 6 displays 
results for two different initial conditions for 𝐷𝐷𝑃𝐺  and LQI 
(𝑥 = [1; −2], 𝑥 = [−1; 2]).  𝐷𝐷𝑃𝐺  demonstrates smaller 
undershoot and higher overshoot compared to LQI. Both 
controllers have same rise time while the 𝐷𝐷𝑃𝐺  exhibits a 
slightly shorter settling time. While scalability for a linear 
controller like LQI is predictable, these tests highlight DRL's 
performance in challenging control problems. It is important 
to note that none of the controllers can be definitively deemed 
superior; however, the performance of 𝐷𝐷𝑃𝐺  is partially 
better. Nonetheless, considering the tuning efforts and 
computational burden required for DDPG, LQI may be 
preferred for systems with an available model.  

TABLE II Performance criteria of the controllers in nominal tracking 

No.  Criteria LQI 𝐷𝐷𝑃𝐺  𝐷𝐷𝑃𝐺  

1 𝑡  3.0 2.5 1.7 
2 𝑀  21.5% 45.1% 15.3% 
3 𝑀  7.7% 7.7% 22.5% 
4 𝑡  6.7 9.4 3.7 
5 𝑒  0 0 0 
6 ISE 19.4 20.9 12.8 
7 ITAE 52.2 121.9 12.6 
8 IACE 406.8 419.3 420.3 
9 IACER 40.4 82.7 26.9 

10 𝑢   2.8 3.4 4.00 
11 GM 27.8 2.3 18.1 
12 DM 0.85 0.08 0.55 

 
      
Fig. 5: Setpoint tracking in the presence disturbance and noise 
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VI. CONCLUSION 

The paper offers a transparent comparison between a state-
of-the-art DRL-based algorithm (DDPG) and a well-
established classical controller (LQI). This comparison aims 
to improve the understanding of how emerging RL techniques 
perform in control applications. While DDPG and its model-
free counterparts are recently applied to numerous decision-
making and control problems, elaborated and explicit 
comparison are lacking. For this purpose, a NMP system 
setpoint tracking problem is considered in various testing 
scenarios. From a control standpoint, twelve tailored criteria 
are proposed to quantify performance across various critical 
aspects. These aspects include transient and steady-state 
performance, cumulative error in tracking, robustness, and the 
quality of the control signal. The proposed framework can be 
adopted in similar studies. Findings are summarized below: 

 The DDPG-based controller can achieve setpoint 
tracking performance for NMP systems in the presence of 
disturbances, noise, and uncertainties in gain and delay, 
performing comparably or better than the classical LQI 
controller. 
 While promising, model-free DDPG indicates lower 

robustness (𝐺𝑀 and 𝐷𝑀) under similar conditions.  
 Despite not requiring a model and featuring reasonable 

training time, the DRL controller is highly sensitive to 
tuning parameters. Slight variations in hyperparameters can 
lead to successful convergence or poor performance with the 
same reward function. The agent's performance is 
significantly affected by its training parameters, highlighting 
a key area for future investigation. 
 In general, despite appealing features, the DRL 

controller cannot showcase a considerably better 
performance. This follows a similar trend as reported in 
other applications, such as signal processing [24]. 
 One notion entails integrating model-based controllers 

and DRL techniques [25], a paradigm that necessitates 
employing or estimating models even with reduced 
precision, which is beyond the scope of this research. 
 Our findings are constrained by the existing benchmark; 

DRL solutions may show superior performance in other 
complex applications. However, this requires further studies. 
Nonetheless, similar behavior has been observed in other 
analogous control problems. 
 Further evaluations are recommended to assess the 

performance and robustness of existing DRL controllers. 
Employing a fair and transparent methodology, similar to 
the one used in this paper, is advisable. Ongoing efforts are 
crucial to enhancing the performance of current algorithms. 
 Finally, our simulations rely on the MATLAB RL 

toolbox codes, thus its validity is an assumption. 
Overall, promising performance is observed with DDPG, 

although it is not deemed extraordinary at present and has 

potential for improvement in the future. This study does not 
advocate for the replacement of well-established classical 
controllers like state feedback LQI with computationally 
intensive techniques such as DDPG. Rather, its objective is to 
provide a quantitative analysis of model-free data-driven DRL 
controllers for potential future enhancements. 
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